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Abstract. This paper studies an optimal irreversible extraction problem of an exhaustible
commodity in presence of regime shifts. A company extracts a natural resource from a reserve
with finite capacity, and sells it in the market at a spot price that evolves according to a Brownian
motion with volatility modulated by a two state Markov chain. In this setting, the company
aims at finding the extraction rule that maximizes its expected, discounted net cash flow. The
problem is set up as a finite-fuel two-dimensional degenerate singular stochastic control problem
over an infinite time-horizon. We provide explicit expressions both for the value function and for
the optimal control. We show that the latter prescribes a Skorokhod reflection of the optimally
controlled state process at a certain state and price dependent threshold. This curve is given
in terms of the optimal stopping boundary of an auxiliary family of perpetual optimal selling
problems with regime switching. The techniques are those of stochastic calculus and stochastic
optimal control theory.
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1 Introduction

Since the seminal work [8], both the literature in Applied Mathematics and that in Economics
have seen numerous papers on optimal extraction problems of non-renewable resources under
uncertainty. Some of these works formulate the extraction problem as an optimal timing problem
(see, e.g., [12], [28] and references therein); some as a combined absolutely continuous/impulse
stochastic control problem (e.g., [7] and [21]); and some others as a stochastic optimal control
problem only with classical absolutely continuous controls (cf. [1] and [14], among many others),
but with commodity price dynamics possibly described by a Markov regime switching model (cf.,
e.g., [20]). The latter kind of dynamics, firstly introduced in [19], may indeed help to explain
boom and bust periods of commodity prices in terms of different regimes in a unique stochastic
process.
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In this paper we provide the explicit solution to a stochastic irreversible extraction problem
in presence of regime shifts in the underlying commodity spot price process. The problem we
have in mind is that of a company extracting continuously in time a commodity from a reserve
with finite capacity, and selling the natural resource in the spot market. The reserve level can
be decreased at any time at a given proportional cost, following extraction policies which do not
need be rates. Moreover, the company also faces a cost for reserve’s maintenance at a rate that is
dependent on the reserve level. The company aims at finding the extraction rule that maximizes
the expected discounted net cash flow in presence of market uncertainty and macroeconomic
cycles. The latter are described through regime shifts in the volatility of the commodity spot
price dynamics.

We set up the optimal extraction problem as a finite-fuel two-dimensional degenerate singular
stochastic control problem under Markov regime switching. It is two-dimensional because for
any regime i the state variable consists in the value of the spot price, x, and the level of the
reserve, y. It is a problem of singular stochastic control with finite-fuel since extraction does
not need be performed at rates, and the commodity reserve has a finite capacity. Finally, it is
degenerate as the amount of natural resource extracted does not have a market impact.

While the literature on optimal stopping problems under regime switching is relatively rich
(see, e.g., [5], [9], [16], [17], [29], among others), that on explicit solutions to singular stochastic
control problems with regime switching is still quite limited. We refer, e.g., to [22], [23] and
[27] where the optimal dividend problem of actuarial science is formulated as a one-dimensional
problem under Markov regime switching. If we then further restrict our attention to singular
stochastic control problems with two-dimensional state space and regime shifts, to the best of
our knowledge [18] is the only paper available in the literature. That work addresses an optimal
irreversible investment problem in which the growth and the volatility of the decision variable
jump between two states at independent exponentially distributed random times. However,
although in [18] the authors provide a detailed discussion on the structure of the candidate
solution and on the economic implications of regime switching for capital accumulation and
growth, they do not tackle a complete verification theorem confirming their guess.

In this paper, with the aim of an analytical study, we assume that the commodity spot price
X evolves according to a Bachelier model with regime switching between two states. Under
suitable restrictions on the parameters of the model, we show that the optimal extraction rule
is of threshold type and we provide an explicit expression for the value function.

The Hamilton-Jacobi-Bellman (HJB) equation for our optimal extraction problem takes
the form of a system of two coupled variational inequalities with state dependent gradient
constraints. The coupling is through the transition rates of the underlying continuous-time
Markov chain ε, and it makes the problem of finding an explicit solution much harder than in
the standard case without regime switching. We associate to the singular control problem a
family of optimal stopping problems for the Markov process (X, ε). Such family is parametrized
through the initial reserve level y. We explicitly solve the related free boundary problem and
we characterize the geometry of stopping and continuation regions. As it is usual in optimal
stopping theory we show that the first time the underlying process leaves the continuation region
is an optimal stopping rule. For any given and fixed y, such time takes the form of the first
hitting time of X to a regime dependent boundary x∗i (y), i = 1, 2, which is monotonic as a
function of y. Under some conditions on the model parameters, these boundaries are found
as unique solutions to a system of nonlinear algebraic equations derived by imposing the well
known smooth-fit principle.

We then show that a suitable integral of the stopping problem value function solves the HJB
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equation of the original optimal control problem, thus providing a candidate value function.
Such guess is finally tested against a verification theorem which confirms its actual optimality.
As a byproduct we also provide the explicit form of the optimal extraction policy. It keeps at
any time the optimally controlled reserve level below a certain critical value b∗ with minimal
effort, i.e. according to a Skorokhod reflection. Such threshold depends on the spot price and
the market regime, and is the inverse of the optimal stopping boundary previously determined.
As already discussed in [18], we prove that the optimal control has jumps at times of regime
shifts, thus prescribing a lump-sum extraction at those instants. This feature is not observed
in singular control problems in a diffusive setting without regime switching, where jumps in the
optimal control are typically observed (possibly) only at initial time. We also show, that in
presence of macroeconomic cycles, the company is more reluctant (resp. favourable) to extract
and then sell the commodity, relative to the case in which the market were always in the good
(resp. bad) regime with the lowest (resp. highest) volatility. The previous economic results are
discussed in a final section of the paper.

Our findings hinge on suitable restrictions on the model parameters that allow us to prove the
optimality of a regime-dependent barrier strategy for the family of optimal stopping problems
involved in our analysis. Unfortunately, without these requirements we did not succeed to prove
existence and uniqueness of the solution to the nonlinear smooth-fit equations characterizing the
candidate optimal stopping boundaries, and then to verify their actual optimality. By means
of a numerical study we show that the set of parameters fulfilling our assumptions is definitely
nonempty (see Remark 3.3). Moreover, numerically solving the nonlinear system characterizing
the optimal stopping boundaries x∗i , i = 1, 2, we also provide an illustrative plot of the optimal
extraction rule in Figure 2 below.

The study of the auxiliary family of optimal stopping problems performed in this paper has a
financial interest on its own. Each stopping problem takes indeed the form of a perpetual optimal
selling problem under regime switching that we explicitly solve. It is worth noticing that most of
the papers dealing with optimal stopping problems with regime switching, and following a guess
and verify approach, assume existence of a solution of the smooth-fit equations and additional
properties of the candidate value function in order to perform a verification theorem (see, e.g.,
[17] and [29]). An abstract and nonconstructive approach, based on a thorough analysis of
the involved variational inequality, is adopted in [5]. Here, instead, we construct a solution to
the free boundary problem, and we then prove all the properties needed to verify that such
solution is actually the value function of our optimal stopping problem with regime switching
(see our Theorems 3.8 and 3.9 below). We believe that also such result represents an interesting
contribution to the literature.

The rest of the paper is organized as follows. In Section 2 we formulate the optimal extraction
problem, we introduce the associated HJB equation and we discuss the solution approach. The
family of optimal stopping problems is then solved in Section 3, whereas the optimal control is
provided in Section 4. A comparison with the optimal extraction rule that one would find in
the no-regime-switching case is contained in Section 5. Appendix A collects the proofs of some
results of Section 3, whereas in Appendix B one can find an auxiliary result needed in the paper.
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2 Problem Formulation and Solution Approach

2.1 The Optimal Extraction Problem

Let (Ω,F ,P) be a complete probability space, rich enough to accommodate a one-dimensional
Brownian motion {Wt, t ≥ 0} and a continuous-time Markov chain {εt, t ≥ 0} with state space
E := {1, 2} and with irreducible generator matrix

Q :=

(
−λ1 λ1

λ2 −λ2

)
, (2.1)

for some λ1, λ2 > 0. The Markov chain ε jumps between the two states at exponentially
distributed random times, and the constant λi represents the rate of leaving state i = 1, 2. We
take ε independent of W and denote by F := {Ft, t ≥ 0} the filtration jointly generated by W
and ε, as usual augmented by P-null sets.

Assume that the spot price of the commodity evolves according to a Bachelier model [3] with
regime switching; i.e.

dXt = σεtdWt, t > 0, X0 = x ∈ R, (2.2)

where for every state i = 1, 2 σi > 0 is a known finite constant. The choice of an arithmetic
dynamics allows us also to capture the fact - unusual in other areas of mathematical finance -
that certain commodities can be traded at negative spot prices [13].

(X, ε) is a strong Markov process (see [30], Remark 3.11) and we denote by P(x,i)( · ) :=
P( · |X0 = x, ε0 = i), and by E(x,i) the corresponding expectation operator. From Section 3.1
in [30] we also know that (X, ε) is regular, in the sense that the sequence of stopping times
{βn, n ∈ N}, with βn := inf{t ≥ 0 : |Xt| = n}, is such that limn↑∞ βn = +∞, P(x,i)-a.s.

The level of the commodity reserve is such that

dY ν
t = −dνt, t > 0, Y ν

0 = y ∈ [0, 1]. (2.3)

Taking y ≤ 1 we model the fact that the reserve level has a finite capacity, normalized to 1
without loss of generality. Here νt represents the cumulative quantity of commodity extracted
up to time t ≥ 0. We say that an extraction policy is admissible if it belongs to the nonempty
convex set

Ay := {ν : Ω× R+ 7→ R+, (νt(ω) := ν(ω, t))t≥0 is nondecreasing, left-continuous, adapted

with y − νt ≥ 0 ∀ t ≥ 0, ν0 = 0 P− a.s.}. (2.4)

Moreover, we let P(x,y,i)( · ) := P( · |X0 = x, Y0 = y, ε0 = i) and E(x,y,i) the corresponding
expectation operator.

While extracting, the company faces two types of costs: the first one is proportional through
a constant c > 0 to the amount of commodity extracted; the second one is a running cost for the
maintenance of the reserve. The latter is measured by a function f of the reserve level satisfying
the following assumption.

Assumption 2.1. f : R → R+, lies in C1(R) and is strictly increasing, strictly convex and
such that f(0) = 0.

Assumption 2.1 will be standing throughout this paper.
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Remark 2.2.

1. Notice that the requirement f(0) = 0 is without loss of generality, since if f(0) = fo > 0
then one can always set f̂(y) := f(y)−f(0) and write f(y) = f̂(y)+fo, so that the firms’s
optimization problem (cf. (2.6) below) remains unchanged up to an additive constant.

2. Cost functions of the form f(y) = αoy
2 + βoy for some αo, βo > 0, or f(y) = γo(e

y − 1),
for some γo > 0, clearly meet Assumption 2.1.

Following an extraction policy ν ∈ Ay and selling the extracted amount in the spot market
at price X, the expected discounted cash flow of the company, net of extraction and maintenance
costs, is

Jx,y,i(ν) := E(x,y,i)

[ ∫ ∞
0

e−ρt
(
Xt − c

)
dνt −

∫ ∞
0

e−ρtf(Y ν
t )dt

]
, (x, y, i) ∈ O, (2.5)

where ρ > 0 is a given discount factor and O := R× [0, 1]× {1, 2}. Throughout this paper, for
t > 0 and ν ∈ Ay we will make use of the notation

∫ t
0 e
−ρs(Xx

s − c)dνs to indicate the Stieltjes
integral

∫
[0,t) e

−ρs(Xx
s − c)dνs with respect to ν.

The company manager aims at choosing an admissible extraction rule so to maximize (2.5);
that is, she faces the optimization problem

V (x, y, i) := sup
ν∈Ay

Jx,y,i(ν), (x, y, i) ∈ O. (2.6)

Notice that due to the convexity of Ay, the linearity of ν 7→ Y ν and the strict convexity of
f(·), the functional Jx,y,i(·) is strictly concave. Hence, if a solution to problem (2.6) does exist,
then it is unique. Moreover, it is easy to see that convexity of Ay and concavity of Jx,y,i(·)
imply in turn concavity of y 7→ V (x, y, i). Finally, if y = 0 then no control can be exerted, i.e.
A0 = {ν ≡ 0}, and therefore V (x, 0, i) = Jx,0,i(0) = 0, for any (x, i) ∈ R× {1, 2}.

Problem (2.6) falls into the class of singular stochastic control problems, i.e. problems in
which admissible controls need not be absolutely continuous with respect to Lebesgue measure
(see [26] for an introduction). In particular, it is a finite-fuel two-dimensional degenerate singular
stochastic control problem under Markov regime switching. It is degenerate as the control
variable does not affect directly the dynamics of (X, ε), and it is finite-fuel since the controls
stay bounded.

2.2 The Hamilton-Jacobi-Bellman Equation and the Solution Approach

In light of classical results in stochastic control (see, e.g., Chapter VIII in [15]), we expect that
for any i = 1, 2 the value function V (·, i) suitably satisfies the Hamilton-Jacobi-Bellman (HJB)
equation

max
{(
G − ρ

)
U(x, y, i)− f(y), (x− c)− Uy(x, y, i)

}
= 0, (2.7)

for (x, y) ∈ R × (0, 1) and with boundary condition U(x, 0, i) = 0. Here G is the infinitesimal
generator of (X, ε). It acts on functions h : R × {1, 2} → R with h(·, i) ∈ C2(R) for any given
and fixed i ∈ {1, 2} as

Gh(x, i) :=
1

2
σ2
i hxx(x, i) + λi

(
h(x, 3− i)− h(x, i)

)
. (2.8)
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It is worth noting that (2.7) is actually a system of two variational inequalities with state-
dependent gradient constraints, coupled through the transition rates λ1, λ2.

To have an heuristic justification of (2.7) one can proceed as follows. Assuming that an
optimal extraction rule does exist, at initial time the company manager has to choose between
two options: (a) extract immediately an amount δ > 0 of commodity, sell it in the spot market
and then continue optimally; (b) do not extract the commodity for a small amount of time ∆t
and then continue following the optimal extraction policy. Both these two strategies are a priori
suboptimal. In particular, the first action is associated to the inequality

V (x, y, i) ≥ (x− c)δ + V (x, y − δ, i),

that is, dividing by δ and taking limits as δ ↓ 0

Vy(x, y, i) ≥ (x− c). (2.9)

On the other hand, following action (b) we obtain

V (x, y, i) ≥ E(x,y,i)

[
−
∫ ∆t

0
e−ρsf(y)ds+ e−ρ∆tV (X∆t, y, ε∆t)

]
.

Supposing that V is regular enough to apply Dynkin’s formula to the second term in the expec-
tation above, we have after rearranging terms

0 ≥ E(x,y,i)

[ ∫ ∆t

0
e−ρs

[(
G − ρ

)
V (Xs, y, εs)− f(y)

]
ds

]
. (2.10)

Dividing (2.10) by ∆t, invoking mean value theorem and taking limits as ∆t ↓ 0 we obtain(
G − ρ

)
V (x, y, i)− f(y) ≤ 0. (2.11)

Given the Markovian nature of the setting, one of the two actions (a)-(b) should be optimal and
one of (2.9)-(2.11) should be an equality, thus leading to (2.7).

As it is commonly observed in the singular stochastic control literature (see, e.g., [2], [4],
[6] and references therein), also here we expect a connection between our (2.6) and a certain
optimal stopping problem. In particular, formally differentiating (2.7) with respect to y inside
the region where (G − ρ)V (x, y, i) − f(y) = 0, one sees that for any i = 1, 2 Vy should identify
with an appropriate solution to the variational inequality

max
{(
G − ρ

)
ζ(x, i; y)− f ′(y), x− c− ζ(x, i; y)

}
= 0, (2.12)

for x ∈ R and any given y ∈ [0, 1].
As well as (2.7), we notice that also (2.12) is actually a system of variational inequalities. It

is indeed the variational inequality associated to the parameter-dependent (as y enters only as
a parameter) optimal stopping problem with regime switching

v(x, i; y) := sup
τ≥0

E(x,i)

[
e−ρτ (Xτ − c)−

∫ τ

0
e−ρsf ′(y)ds

]
, y ∈ [0, 1], (2.13)

where f ′ denotes the derivative of the cost function f and the optimization is taken over all
P(x,i)-a.s. finite F-stopping times.

In the rest of this paper we will solve (2.6) by relying on its - so far only guessed - connection
with problem (2.13). In particular,
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(i) Under suitable assumptions on the model parameters, we will solve (2.13) and we will show
that its optimal solution is triggered by suitable regime dependent stopping boundaries
x∗i (y), y ∈ [0, 1], which are monotonic functions of the parameter y. These boundaries are
completely characterized as unique solutions to a system of nonlinear algebraic equations.

(ii) We will then show that the function U(x, y, i) :=
∫ y

0 v(x, i;u)du is a classical solution to
(2.7) and that it actually coincides with the value function V of (2.6). As a byproduct we
will also provide the optimal control ν∗ as a Skorokhod reflection at the inverse of x∗i (·).

As it will become clear reading the next sections, the solution to the optimal extraction
problem under regime switching is much more complex than that one obtains in absence of
regime shifts (see Section 5). To deal with such complexity we needed to impose suitable
restrictions on the model’s parameters, i.e. Assumptions 3.2 and 3.7 below. These conditions
allow us to rigorously solve the problem, and to provide the optimal extraction rule as a threshold
policy in terms of a price and regime dependent barrier (see equation (4.6)). Even if we believe
that a similar policy is optimal for all the parameters’ values, unfortunately we have not been
able to prove that.

3 The Associated Family of Optimal Selling Problems

In this section we will explicitly solve the parameter-dependent optimal stopping problem with
regime switching (2.13). In the following y will be given and fixed in [0, 1]. It is immediate to
see that (2.13) can be rewritten as

v(x, i; y) = u(x, i; y)− f ′(y)

ρ
, (3.1)

where we have introduced

u(x, i; y) := sup
τ≥0

E(x,i)

[
e−ρτ (Xτ − ĉ(y))

]
(3.2)

with

ĉ(y) := c− f ′(y)

ρ
. (3.3)

The results of this section are of interest on their own since problem (3.2) takes the form of
an optimal selling problem in a Bachelier model with regime switching and with a transaction
cost ĉ that is parameter-dependent. Some preliminary properties of u(·; y) are stated in the next
proposition. These will be important in the following when constructing the solution to (3.2),
hence of (2.13).

Proposition 3.1. For any (x, i) ∈ R× {1, 2} one has

1. u(x, i; y) ≥ x− ĉ(y);

2. |u(x, i; y)| ≤ K(1 + |x|) for some K > 0.

Proof. The first claim immediately follows by taking the admissible τ = 0. As for the second
property, let τ be an F-stopping time and notice that by Itô’s formula we can write

e−ρτ (Xτ − ĉ(y)) = (x− ĉ(y))−
∫ τ

0
ρe−ρs

(
Xs − ĉ(y)

)
ds+

∫ τ

0
e−ρsσεsdWs. (3.4)
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Denoting Mt :=
∫ t

0 e
−ρsσεsdWs, t ≥ 0, and recalling boundedness of σε· , M is uniformly bounded

in L2(Ω,P(x,i)) and therefore P(x,i)-uniformly integrable. Therefore we can take expectations in
(3.4), apply optional stopping Theorem 3.2 in [25] and obtain

E(x,i)

[
e−ρτ (Xτ − ĉ(y))

]
= (x− ĉ(y))− E(x,i)

[ ∫ τ

0
ρe−ρs

(
Xs − ĉ(y)

)
ds

]
. (3.5)

Recalling (2.2) it then follows from (3.5)∣∣∣E(x,i)

[
e−ρτ (Xτ − ĉ(y))

]∣∣∣ ≤ |x|+ |ĉ(y)|+ E(x,i)

[ ∫ ∞
0

ρe−ρs
∣∣Xs − ĉ(y)

∣∣ds]
≤ 2(|x|+ |ĉ(y)|) +

∫ ∞
0

ρe−ρsE(x,i)

[∣∣∣ ∫ s

0
σεudWu

∣∣∣2] 1
2

ds (3.6)

≤ 2(|x|+ |ĉ(y)|) + (σ2
1 ∨ σ2

2)
1
2

∫ ∞
0

ρ
√
se−ρsds ≤ K(1 + |x|),

for some K > 0. Tonelli’s Theorem and Hölder’s inequality imply the second step above,
the third step is guaranteed by Itô’s isometry, whereas the last one employs monotonicity and
convexity of f(·) to have |ĉ(y)| ≤ c + f ′(1)/ρ. The second claim of the proposition then easily
follows from (3.6).

In line with the standard theory of optimal stopping (see, e.g., [24]) we expect u to suitably
satisfy the variational inequality (cf. (2.12))

max
{(
G − ρ

)
w(x, i; y), x− ĉ(y)− w(x, i; y)

}
= 0, (3.7)

for (x, i) ∈ R × {1, 2} and any given y ∈ [0, 1], and we define the continuation and stopping
region of (3.2) as

C :=
{

(x, i) ∈ R×{1, 2} : u(x, i; y) > x−ĉ(y)
}
, S :=

{
(x, i) ∈ R×{1, 2} : u(x, i; y) = x−ĉ(y)

}
,

respectively. Given the structure of optimal stopping problem (3.2) we also expect that

C :=
{

(x, 1) : x < x∗1(y)
}
∪
{

(x, 2) : x < x∗2(y)
}
, (3.8)

for some thresholds, x∗i (y), i = 1, 2, such that x∗i (y) ≥ ĉ(y), i = 1, 2, and depending para-
metrically on y ∈ [0, 1]. According to this conjecture three configurations are possible: (A)
x∗1(y) < x∗2(y), (B) x∗1(y) = x∗2(y), and (C) x∗1(y) > x∗2(y). We now explicitly solve (3.7) in cases
(A) and (B). Case (C) is completely symmetric to case (A) and can be treated with similar
arguments. We therefore omit its discussion in this paper in the interest of length. In a second
step, by a verification argument, we will show that the solution w to (3.7) satisfies w ≡ u. As a
byproduct we will also provide the optimal stopping rule τ∗.
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3.1 Case (A): x∗1(y) < x∗2(y)

We rewrite (3.7) in the form of a free boundary problem to find (w(x, 1; y), w(x, 2; y), x∗1(y), x∗2(y)),
with w ∈ C1(R) and wxx ∈ L∞loc(R) for any i = 1, 2, solving

1
2σ

2
iwxx(x, i; y)− ρw(x, i; y) + λi(w(x, 3− i; y)− w(x, i; y)) = 0 for x < x∗1(y) and i = 1, 2

1
2σ

2
2wxx(x, 2; y)− ρw(x, 2; y) + λ2(w(x, 1; y)− w(x, 2; y)) = 0 for x∗1(y) < x < x∗2(y)

w(x, 1; y) = x− ĉ(y) for x∗1(y) ≤ x ≤ x∗2(y)

w(x, 1; y) = x− ĉ(y) = w(x, 2; y) for x ≥ x∗2(y)

wx(x, 1; y) = 1 for x = x∗1(y)

w(x−, 2; y) = w(x+, 2; y) for x = x∗1(y)

wx(x−, 2; y) = wx(x+, 2; y) for x = x∗1(y)

wx(x, 2; y) = 1 for x = x∗2(y)
1
2σ

2
iwxx(x, i; y)− ρw(x, i; y) + λi(w(x, 3− i; y)− w(x, i; y)) ≤ 0 for a.e. x ∈ R and i = 1, 2

w(x, i; y) ≥ x− ĉ(y), for x ∈ R and i = 1, 2

(3.9)

where w(· ±, i; y) := limh↓0w(· ± h, i; y) and wx(· ±, i; y) := limh↓0wx(· ± h, i; y).

Recalling that σi > 0 and λi > 0, i = 1, 2, let α1 < α2 < 0 < α3 < α4 be the roots of the
fourth-order equation Φ1(α)Φ2(α)−λ1λ2 = 0, with Φi(α) := −1

2σ
2
i α

2 + ρ+λi, i = 1, 2 (see [16],
Remark 2.1, and [27], Lemma 3.1). Then the general solution to the first equation of (3.9) is
given by {

w(x, 1; y) = A1(y)eα1x +A2(y)eα2x +A3(y)eα3x +A4(y)eα4x

w(x, 2; y) = B1(y)eα1x +B2(y)eα2x +B3(y)eα3x +B4(y)eα4x,
(3.10)

for any x < x∗1(y), x∗1(y) to be found, and where Bj(y) :=
Φ1(αj)
λ1

Aj(y) = λ2
Φ2(αj)

Aj(y), j =

1, 2, 3, 4, with Aj(y) to be determined. Since the value function (3.2) diverges at most linearly
(cf. Proposition 3.1) we set A1(y) = 0 = A2(y) so that also B1(y) = 0 = B2(y).

On the other hand, the general solution to the second and the third of (3.9) is given on
(x∗1(y), x∗2(y)) by  w(x, 1; y) = x− ĉ(y)

w(x, 2; y) = B5(y)eα5x +B6(y)e−α5x + λ2

(
x−ĉ(y)
ρ+λ2

)
,

(3.11)

with α5 =
√

2(ρ+λ2)
σ2
2

and for some B5(y) and B6(y) to be found.

Finally, for any x ≥ x∗2(y) we have (cf. the fourth of (3.9))

w(x, 1; y) = x− ĉ(y) = w(x, 2; y). (3.12)

It remains now to find the constants A3(y), A4(y), B5(y), B6(y) and the two threshold val-
ues x∗1(y), x∗2(y). To do so we impose that w(·, 1; y) is continuous with continuous first-order
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derivative at x = x∗1(y) and that w(·, 2; y) is continuous with continuous first-order derivative at
x = x∗1(y) and x = x∗2(y). Then we find from (3.10)–(3.12) the nonlinear system

A3(y)eα3x∗1(y) +A4(y)eα4x∗1(y) = x∗1(y)− ĉ(y)

α3A3(y)eα3x∗1(y) + α4A4(y)eα4x∗1(y) = 1

B3(y)eα3x∗1(y) +B4(y)eα4x∗1(y) = B5(y)eα5x∗1(y) +B6(y)e−α5x∗1(y) + λ2

(
x∗1(y)−ĉ(y)
ρ+λ2

)
α3B3(y)eα3x∗1(y) + α4B4(y)eα4x∗1(y) = α5B5(y)eα5x∗1(y) − α5B6(y)e−α5x∗1(y) + λ2

ρ+λ2

B5(y)eα5x∗2(y) +B6(y)e−α5x∗2(y) + λ2

(
x∗2(y)−ĉ(y)
ρ+λ2

)
= x∗2(y)− ĉ(y)

α5B5(y)eα5x∗2(y) − α5B6(y)e−α5x∗2(y) + λ2
ρ+λ2

= 1.

(3.13)

Solving the first two equations of (3.13) with respect to A3(y) and A4(y) we obtain after
some simple algebra

A3(y) =
[α4(x∗1(y)− ĉ(y))− 1

α4 − α3

]
e−α3x∗1(y), A4(y) =

[1− α3(x∗1(y)− ĉ(y))

α4 − α3

]
e−α4x∗1(y). (3.14)

Analogously, the solution to the fifth and the sixth equations of (3.13) is given in terms of the
unknown x∗2(y) as 

B5(y) =
ρ

ρ+ λ2

[
e−α5x∗2(y)(1 + α5(x∗2(y)− ĉ(y)))

2α5

]

B6(y) =
ρ

ρ+ λ2

[
eα5x∗2(y)(α5(x∗2(y)− ĉ(y))− 1)

2α5

]
.

(3.15)

Finally, plugging (3.14) and (3.15) into the third and the fourth equations of (3.13), recalling that

B3(y) = Φ1(α3)
λ1

A3(y) and B4(y) = Φ1(α4)
λ1

A4(y), we find after some algebra that (x∗1(y), x∗2(y))
should satisfy

F1(x∗1(y), x∗2(y); y) = 0 and F2(x∗1(y), x∗2(y); y) = 0, (3.16)

where we have set
F1(u, v; y) := ρ

ρ+λ2

[
(v − ĉ(y)) cosh

(
α5(v − u)

)
− 1

α5
sinh

(
α5(v − u)

)]
+ a1(u− ĉ(y)) + a2

F2(u, v; y) := ρ
ρ+λ2

[
cosh

(
α5(v − u)

)
− α5(v − ĉ(y)) sinh

(
α5(v − u)

)]
+ a3(u− ĉ(y)) + a4,

(3.17)

with ai := ai(ρ, λ1, λ2, σ1, σ2), i = 1, 2, 3, 4, given by
a1 := −α4Φ1(α3)− α3Φ1(α4)

λ1(α4 − α3)
+

ρ

ρ+ λ2
, a2 :=

Φ1(α3)− Φ1(α4)

λ1(α4 − α3)
,

a3 :=
α3α4

λ1(α4 − α3)
[Φ1(α4)− Φ1(α3)], a4 :=

α3Φ1(α3)− α4Φ1(α4)

λ1(α4 − α3)
+

λ2

ρ+ λ2
.

(3.18)

Notice that a1 < 0, a2 > 0, a3 < 0 and a4 > 0 by Lemma B.1 in Appendix B.
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Since we are looking for x∗i (y), i = 1, 2, such that x∗2(y) > x∗1(y) ≥ ĉ(y), it is natural to check
if (3.16) admits a solution in (ĉ(y),∞)× (ĉ(y),∞). So far we do not know about existence, and
in case uniqueness, of such a solution. To investigate this fact we define z∗1(y) := x∗1(y) − ĉ(y)
and z∗2(y) := x∗2(y)− x∗1(y), so that x∗2(y)− ĉ(y) = z∗1(y) + z∗2(y), and we notice that with such
definition the explicit dependence with respect to y in (3.16) disappears. We can thus drop the
y-dependence in z∗i (y), i = 1, 2, and set (z∗1 , z

∗
2) as the solution, if it does exist, of the equivalent

system
G1(u, v) = 0 and G2(u, v) = 0, (3.19)

with
G1(u, v) := (a1 + ρ

α5(ρ+λ2) cosh(α5v))u− ρ
α5(ρ+λ2) [sinh(α5v)− v cosh(α5v)] + a2

G2(u, v) := (a3 − ρα5

(ρ+λ2) sinh(α5v))u− ρ
(ρ+λ2) [vα5 sinh(α5v)− cosh(α5v)] + a4,

(3.20)

for u, v ≥ 0.
The following requirements on the parameters of our model suffice to determine a unique

solution to (3.19).

Assumption 3.2.

1. α5 ≤ 1;

2. a1 + ρ
α5(ρ+λ2) < 0;

3. a1 + ρ
α5(ρ+λ2) cosh(1) ≥ 0;

4. 1
a3

(
ρ

ρ+λ2
+ a4

)
− a2

a1+ ρ
α5(ρ+λ2)

< 0.

Remark 3.3. The first of Assumption 3.2 requires that σ2 is sufficiently large, namely σ2
2 ≥

2(ρ + λ2). On the other hand, noticing that ai, i = 1, 2, 3, 4 (cf. (3.18)) and αi, i = 3, 4, 5, are
functions of ρ, λ1, λ2, σ1 and σ2, the last three conditions of Assumption 3.2 should be read as
requirements on these parameters. Expressing these constraints as explicit analytical relations
between the parameters of the problem is an hard task. However, it is a simple numerical
exercise to find ranges of parameters’ values satisfying 1.–4. above. As an example, picking
model parameters in either of the following ranges, Assumption 3.2 holds true.

ρ σ1 σ2 λ1 λ2

[0.030, 0.033] [0.023, 0.026] [0.76, 0.80] [0.015, 0.017] [0.014, 0.016]

[0.025, 0.027] [0.038, 0.040] [0.63, 0.66] [0.40, 0.47] [0.042, 0.044]

[0.32, 0.35] [0.18, 0.38] [1.6, 1.9] [1.5, 1.7] [0.42, 0.44]

In the next plot we visualize in grey all the values of (σ1, σ2) that verify Assumption 3.2 when
we take, e.g., ρ = 0.03, λ1 = 0.017 and λ2 = 0.016.
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Figure 1: For ρ = 0.03, λ1 = 0.017, λ2 = 0.016, any (σ1, σ2) taken in the grey region satisfies Assumption
3.2.

Proposition 3.4. Let Assumption 3.2 hold and let ẑ2 be the unique positive solution to the
equation

a1 +
ρ

α5(ρ+ λ2)
cosh(α5v) = 0, v ≥ 0,

with a1 as in (3.18) and α5 =
√

2(ρ+λ2)
σ2
2

. Then there exists a unique couple (z∗1 , z
∗
2) solving (3.19)

in (0,∞)× (0, ẑ2). Moreover z∗1 is such that

− a2

a1 + ρ
α5(ρ+λ2)

< z∗1 < −
ρ

ρ+λ2
+ a4

a3
.

Proof. The proof is organised in three steps. In each step we point out the conditions needed
on the parameters so to help the reader understanding the role played by the requirements of
Assumption 3.2.

Step 1. It is matter of direct calculations to show that if α5 ≤ 1 then the function f(v) :=
ρ

α5(ρ+λ2) [sinh(α5v)−v cosh(α5v)]−a2, v ≥ 0, is strictly decreasing and therefore strictly negative

for any v ≥ 0 since f(0) = −a2 < 0. On the other hand, because v 7→ a1 + ρ
α5(ρ+λ2) cosh(α5v) is a

strictly increasing function, it follows that under the condition α5 ≤ 1 the equation G(·, v) = 0,
v ≥ 0, cannot have a positive solution if a1 + ρ

α5(ρ+λ2) ≥ 0.

Step 2. Assume then α5 ≤ 1 and a1 + ρ
α5(ρ+λ2) < 0. We start proving that the equation

h(v) = 0 with h(v) := a1 + ρ
α5(ρ+λ2) cosh(α5v), v ≥ 0, has a unique solution ẑ2 > 0. For this

it suffices to notice that h(0) = a1 + ρ
α5(ρ+λ2) < 0, and v 7→ h(v) is strictly increasing with

limv→∞ h(v) = +∞. For any v ∈ [0, ẑ2) we can thus rewrite (3.19) in the equivalent form

u = M1(v), M1(v)−M2(v) = 0,
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with 
M1(v) :=

ρ
α5(ρ+λ2) [sinh(α5v)− v cosh(α5v)]− a2

a1 + ρ
α5(ρ+λ2) cosh(α5v)

M2(v) :=

ρ
ρ+λ2

[vα5 sinh(α5v)− cosh(α5v)]− a4

a3 − ρα5

(ρ+λ2) sinh(α5v)
,

(3.21)

and where we have used the fact that a3 − ρα5

(ρ+λ2) sinh(α5v) 6= 0 on [0,∞) being a3 < 0 (see

again Lemma B.1 in Appendix B).
The numerator of M1 in (3.21) is strictly negative on v ≥ 0 by Step 1. Using this fact,

and noticing that a1 + ρ
α5(ρ+λ2) cosh(α5v) < 0 on [0, ẑ2), by direct calculations one can observe

that v 7→ M1(v) strictly increases to +∞ in [0, ẑ2). On the other hand we claim (and prove
later) that under the third of Assumption 3.2 v 7→ M2(v) strictly decreases in [0, ẑ2]. Because

M1(0) − M2(0) = 1
a3

(
ρ

ρ+λ2
+ a4

)
− a2

a1+ ρ
α5(ρ+λ2)

< 0 by the fourth of Assumption 3.2, and

v 7→ M1(v) − M2(v) strictly increases on [0, ẑ2) and diverges to +∞ as z approaches ẑ2, it
follows that there exists a unique z∗2 ∈ (0, ẑ2) solving M1(v) −M2(v) = 0. Hence z∗1 = M1(z∗2)
or, equivalently, z∗1 = M2(z∗2). z∗1 is strictly positive as M1(v) ≥M1(0) > 0 on [0, ẑ2). Moreover,
since M1(·) is strictly increasing and M2(·) is strictly decreasing on [0, ẑ2) and z∗2 < ẑ2, one has
M1(0) < z∗1 < M2(0), i.e.

0 < − a2

a1 + ρ
α5(ρ+λ2)

< z∗1 < −
ρ

ρ+λ2
+ a4

a3
. (3.22)

Step 3. To complete the proof we need to show that under Assumption 3.2, v 7→ M2(v)
is strictly decreasing in [0, ẑ2]. By direct calculations one can see that the latter monotonicity
property holds if

r(v) :=
ρ

(ρ+ λ2)

[
vα5 sinh(α5v)− cosh(α5v)

]
− a4 < 0, on [0, ẑ2]. (3.23)

Using the definition of ẑ2 and the third of Assumption 3.2 one has

cosh(α5ẑ2) = −a1

[α5(ρ+ λ2)

ρ

]
≤ cosh(1),

which in turn implies α5ẑ2 ≤ 1, and therefore

r(ẑ2) =
ρ

(ρ+ λ2)

[
ẑ2α5 sinh(α5ẑ2)− cosh(α5ẑ2)

]
− a4 < 0, (3.24)

since a4 > 0 and sinh(v) ≤ cosh(v). Equation (3.24), together with r(0) = − ρ
(ρ+λ2) −a4 < 0 and

r′(v) = ρ
(ρ+λ2)vα

2
5 cosh(α5v) > 0, imply (3.23) and thus completes the proof.

Remark 3.5. Notice that if α5 > 1, the function f(·) defined in Step 1 of the proof above does
not have a definite sign. The subsequent analysis becomes then much more complex and very
difficult to be analytically tackled, if possible at all. The complexity of the smooth-fit equations
arising in optimal stopping problems with regime switching is the main reason behind the common
approach (see, e.g., [17] and [29]) consisting of assuming existence of their solution.
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The proof of the next corollary can be found in Appendix A.

Corollary 3.6. Under Assumption 3.2 there exists a unique solution (x∗1(y), x∗2(y)) ∈ (ĉ(y),+∞)×
(ĉ(y),+∞) with x∗2(y) > x∗1(y) solving (3.16). Moreover, the mappings y 7→ x∗i (y) are continu-
ously strictly decreasing on [0, 1].

In the following assumption we slightly strenghten the requirement on α5. This condition
will be employed in the proof of Theorem 3.8 below.

Assumption 3.7. α5 ≤
λ2 ∧ ρ
λ2

.

Theorem 3.8 below proves that under our assumptions (w(x, 1; y), w(x, 2; y), x∗1(y), x∗2(y))
solves free boundary problem (3.9). Its proof is quite long and technical, and for this reason it
is postoponed to Appendix A.

Theorem 3.8. [The Candidate Value Function] Let Assumption 3.2 hold and let (x∗1(y), x∗2(y))
with x∗2(y) > x∗1(y) be the unique solution to (3.16) in (ĉ(y),+∞) × (ĉ(y),+∞). Define A3(y)

and A4(y) as in (3.14), B3(y) := Φ1(α3)
λ1

A3(y) and B4(y) := Φ1(α4)
λ1

A4(y), and B5(y) and B6(y)
as in (3.15). Then the functions

w(x, 1; y) :=

{
A3(y)eα3x +A4(y)eα4x, x ≤ x∗1(y)

x− ĉ(y), x ≥ x∗1(y),
(3.25)

and

w(x, 2; y) :=


B3(y)eα3x +B4(y)eα4x, x ≤ x∗1(y)

B5(y)eα5x +B6(y)e−α5x + λ2

(
x−ĉ(y)
ρ+λ2

)
, x∗1(y) ≤ x ≤ x∗2(y)

x− ĉ(y), x ≥ x∗2(y),

(3.26)

belong to C1(R) with wxx(x, i; y) ∈ L∞loc(R), and are such that |w(x, i; y)| ≤ κi(1 + |x|) for some
κi > 0.

If also Assumption 3.7 holds true then (w(x, 1; y), w(x, 2; y), x∗1(y), x∗2(y)) solves free boundary
problem (3.9).

We now verify the actual optimality of the candidate value function constructed in the
previous section. The proof of this result is quite standard and it is contained in Appendix A
for the sake of completeness.

Theorem 3.9. [The Verification Theorem] Let Assumption 3.2 and 3.7 hold and let C =
{(x, 1) : x < x∗1(y)} ∪ {(x, 2) : x < x∗2(y)}. Then, for w as in Theorem 3.8 and for u as in (3.2),
one has w ≡ u on R× {1, 2} and

τ∗ := inf{t ≥ 0 : (Xt, εt) 6∈ C}, P(x,i) − a.s., (3.27)

is an optimal stopping time.
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3.2 Case (B): x∗1(y) = x∗2(y)

In this section we study the case in which the two boundaries x∗1(y) and x∗2(y) coincide and equal
some x∗(y) to be found.

We rewrite (3.7) in the form of a free boundary problem to find (w(x, 1; y), w(x, 2; y), x∗(y)),
with w ∈ C1(R) and wxx ∈ L∞loc(R) for any i = 1, 2, solving

1
2σ

2
iwxx(x, i; y)− ρw(x, i; y) + λi(w(x, 3− i; y)− w(x, i; y)) = 0 for x < x∗(y)

w(x, i; y) = x− ĉ(y) for x ≥ x∗(y)

wx(x, i; y) = 1 for x = x∗(y)
1
2σ

2
iwxx(x, i; y)− ρw(x, i; y) + λi(w(x, 3− i; y)− w(x, i; y)) ≤ 0 for a.e. x ∈ R and i = 1, 2

w(x, i; y) ≥ x− ĉ(y), for x ∈ R and i = 1, 2.

(3.28)

Let β1,2 :=
−bo±
√
b2o−4aoco

2ao
be the solutions of aoζ

2 + boζ + co = 0, where we have defined

ao := 1
4σ

2
1σ

2
2, bo := −1

2σ
2
1(ρ+ λ2)− 1

2σ
2
2(ρ+ λ1) and co := (ρ+ λ1)(ρ+ λ2)− λ1λ2. Notice that

β1 > 0 and β2 > 0 since β1 + β2 = −bo/ao > 0 and β1β2 = co/ao > 0 (cf. Vieta’s formulas).
Therefore we can introduce α1 < α2 < 0 < α3 < α4 as

−α1 = α4 =
√
β1, −α2 = α3 =

√
β2.

The general solution of the first equation of (3.28) is given for any x < x∗(y) by{
w(x, 1; y) = Ã1(y)eα1x + Ã2(y)eα2x + Ã3(y)eα3x + Ã4(y)eα4x

w(x, 2; y) = B̃1(y)eα1x + B̃2(y)eα2x + B̃3(y)eα3x + B̃4(y)eα4x,
(3.29)

with

B̃j(y) =
Φ1(αj)

λ1
Ãj(y) =

λ2

Φ2(αj)
Ãj(y), j = 1, 2, 3, 4, (3.30)

and where

Φi(α) = −1

2
σ2
i α

2 + ρ+ λi, i = 1, 2. (3.31)

Notice that by the expressions of α3 and α4 we have Φ1(α3) > 0 and Φ1(α4) < 0. Since for
x → −∞, the value function diverges at most with linear growth (cf. Proposition 3.1) we set
Ã1 = Ã2 = 0 = B̃1 = B̃2.

In the stopping region x ∈ [x∗(y),+∞) we have from (3.28)

w(x, 1; y) = x− ĉ(y) = w(x, 2; y). (3.32)

It now remains to find Ã3(y), Ã4(y) and x∗(y), since B̃3(y) and B̃4(y) are related to Ã3(y)
and Ã4(y) via (3.30). To do so, we impose that w(·, i; y), i = 1, 2, is continuous across x∗(y)
together with its first derivative and we find

Ã3(y)eα3x∗(y) + Ã4(y)eα4x∗(y) = x∗(y)− ĉ(y)

α3Ã3(y)eα3x∗(y) + α4Ã4(y)eα4x∗(y) = 1

B̃3(y)eα3x∗(y) + B̃4(y)eα4x∗(y) = x∗(y)− ĉ(y)

α3B̃3(y)eα3x∗(y) + α4B̃4(y)eα4x∗(y) = 1.

(3.33)
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Solving the first two of (3.33) for Ã3(y) and Ã4(y) one has

Ã3(y) =
α4(x∗(y)− ĉ(y))− 1

(α4 − α3)eα3x∗(y)
Ã4(y) =

1− α3(x∗(y)− ĉ(y))

(α4 − α3)eα4x∗(y)
. (3.34)

On the other hand, recalling (3.30) and plugging Ã3(y) and Ã4(y) from (3.34) into the third of
equation (3.33) some simple algebra leads to

x∗(y) =
1
2σ

2
1(α3 + α4)

ρ+ 1
2σ

2
1α3α4

+ ĉ(y), (3.35)

where (3.31) has been used. Similarly, inserting Ã3(y) and Ã4(y) of (3.34) into the fourth of
(3.33) and using (3.31) one obtains

x∗(y) =
1
2σ

2
1(α2

3 + α2
4 + α3α4)− ρ

1
2σ

2
1α3α4(α3 + α4)

+ ĉ(y). (3.36)

Equations (3.35) and (3.36) then imply that system (3.33) admits a solution (which is then
unique) if and only if

1
2σ

2
1(α3 + α4)

ρ+ 1
2σ

2
1α3α4

=
1
2σ

2
1(α2

3 + α2
4 + α3α4)− ρ

1
2σ

2
1α3α4(α3 + α4)

. (3.37)

Using that (α3α4)2 = β1β2 = co/ao and α2
3 +α2

4 = β1 + β2, simple algebra shows that the latter
is equivalent to σ2

1 = σ2
2 =: σ2, i.e. to the case in which there is no jump. In such case, it is not

hard to check by direct calculations that α2
3 = 2ρ/σ2 and α2

4 = 2(ρ+ λ1 + λ2)/σ2. With regard
to (3.30) this in turn gives

B̃3(y) = Ã3(y), B̃4(y) = −λ2

λ1
Ã4(y). (3.38)

The proof of the next result follows by using α2
3 = 2ρ/σ2 and α2

4 = 2(ρ+ λ1 + λ2)/σ2 in (3.35),
and from the properties of ĉ(·).

Corollary 3.10. One has

x∗(y) =
σ√
2ρ

+ ĉ(y) > ĉ(y) (3.39)

Moreover, the mapping y 7→ x∗(y) is continuously strictly decreasing on [0, 1].

We will show and comment in Section 5 that the boundary x∗ of (3.39) coincides with
that one would obtain in a model without regime switching. The next result, whose proof is
contained in Appendix A, shows however that the (candidate) optimal value is regime-dependent
and differs from that one has in a no-regime-switching case.

Theorem 3.11. [The Candidate Value Function] Let σ1 = σ2. Let x∗(y) ∈ (ĉ(y),+∞)
be given by (3.35) (or equivalently by (3.36)), define Ã3(y) and Ã4(y) as in (3.34) and recall
(3.38). Then the functions

w(x, 1, y) :=

{
Ã3(y)eα3x + Ã4(y)eα4x, x ≤ x∗(y)

x− ĉ(y), x ≥ x∗(y),
(3.40)
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and

w(x, 2; y) :=

{
Ã3(y)eα3x − λ2

λ1
Ã4(y)eα4x, x ≤ x∗(y)

x− ĉ(y), x ≥ x∗(y),
(3.41)

belong to C1(R) with wxx(x, i; y) ∈ L∞loc(R), and are such that |w(x, i; y)| ≤ κi(1 + |x|) for some
κi > 0. Moreover, (w(x, 1; y), w(x, 2; y), x∗(y)) solves free boundary problem (3.28).

By arguing as in the proof of Theorem 3.9, one can also show the following theorem.

Theorem 3.12. [The Verification Theorem] Let C = {(x, i) ∈ R × {1, 2} : x < x∗(y)}.
Under the same conditions of Theorem 3.11 and with u as in (3.2) one has w ≡ u on R×{1, 2}
and

τ∗ := inf{t ≥ 0 : (Xt, εt) 6∈ C}, P(x,i) − a.s., (3.42)

is an optimal stopping time.

4 The Optimal Extraction Policy

In this section we provide the solution to the finite-fuel singular stochastic control problem (2.6)
in terms of the solution of the optimal stopping problem with regime switching studied in Section
3.

By Corollary 3.6 (see also Corollary 3.10 in the case x∗1(y) = x∗2(y) = x∗(y)) we know that
for any i = 1, 2, y 7→ x∗i (y) is strictly decreasing and so has a decreasing inverse with respect to
y. For i ∈ {1, 2}, define

b∗i (x) :=


1, x ≤ x∗i (1)

(x∗i )
−1(x), x ∈ (x∗i (1), x∗i (0))

0, x ≥ x∗i (0).

(4.1)

Clearly b∗i : R → [0, 1] is continuous and decreasing. Notice that also case (B) of Section 3 in
which x∗1(y) = x∗2(y) can be accommodate in (4.1). Indeed, in such case we simply have b∗1 = b∗2.

We now aim at providing a candidate value function for problem (2.6). To this end, for v of
(2.13) and u as in Theorems 3.9 or 3.12, we introduce the function

U(x, y, i) :=

∫ y

0
v(x, i; z)dz =

∫ y

0
u(x, i; z)dz − f(y)

ρ
, (4.2)

where the last equality follows from (3.1), upon recalling that f(0) = 0 (cf. Assumption 2.1).
We expect that U(x, y, i) = V (x, y, i) for all (x, y, i) ∈ O, with V as defined in (2.6).

Proposition 4.1. The function U of (4.2) is such that U(·, i) ∈ C2,1(R× [0, 1]) for any i = 1, 2
and the following bounds hold∣∣U(x, y, i)

∣∣+
∣∣Uy(x, y, i)∣∣ ≤ C(1 + |x|),

∣∣Ux(x, y, i)
∣∣+
∣∣Uxx(x, y, i)

∣∣ ≤ κ (4.3)

for (x, y, i) ∈ O and some positive constants C and κ (possibly depending on i).
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Proof. It is easy to verify from (3.25) and (3.26), and from (3.40) and (3.41) (upon recalling
also Theorems 3.9 and 3.12) that u is of the form u(x, i; y) = ζi(y)Gi(x) + ηi(y)Hi(x) for some
continuous functions ζi, ηi, Gi and Hi. It thus follows that (x, y) 7→ U(x, y, i) is continuous on
R × [0, 1] and y 7→ Uy(x, y, i) is continuous on [0, 1]. Also, from (3.25) and (3.26), and from
(3.40) and (3.41), one can see that for any x in a bounded set K ⊂ R and for any i = 1, 2 the
derivatives |ux| and |uxx| are at least bounded by a function FK(y) ∈ L1(0, 1). It follows that to
determine Ux and Uxx one can invoke dominate convergence theorem and evaluate derivatives
inside the integral in (4.2) so to obtain

Ux(x, y, i) =

∫ b∗1(x)∧y

0
ux(x, i; z)dz +

∫ b∗2(x)∧y

b∗1(x)∧y
ux(x, i; z)dz +

∫ y

b∗2(x)∧y
ux(x, i; z)dz (4.4)

and

Uxx(x, y, i) =

∫ b∗1(x)∧y

0
uxx(x, i; z)dz +

∫ b∗2(x)∧y

b∗1(x)∧y
uxx(x, i; z)dz, (4.5)

where the second integrals on the right hand side of (4.4) and (4.5) equal zero in case b∗1 = b∗2.
Therefore U(·, i) ∈ C2,1 for i = 1, 2 by (3.25) and (3.26), (3.40) and (3.41), Theorems 3.9 and
3.12, and continuity of b∗i (·) (cf. (4.1)). Finally, bounds (4.3) follow from (3.25) and (3.26),
(3.40) and (3.41), (4.2), (4.4) and (4.5).

From (4.2), the fact that u of (3.2) identifies with a solution in the a.e. sense of (2.12) (cf.
Theorems 3.9 and 3.12) and from Proposition 4.1, the next result follows.

Proposition 4.2. U is a classical solution of (2.7) for all (x, y, i) ∈ R × (0, 1] × {1, 2} and
satisfies the boundary condition U(x, 0, i) = 0 for (x, i) ∈ R× {1, 2}.

Satisfying (2.7) and the boundary condition U(x, 0, i) = 0 for (x, i) ∈ R×{1, 2}, U is clearly
a candidate value function for problem (2.6). We now introduce a candidate optimal control
process. Let (x, y, i) ∈ O, recall b∗i of (4.1) and consider the process

ν∗t =
[
y − inf

0≤s<t
b∗εs
(
Xs

)]+
, t > 0, ν∗0 = 0, (4.6)

where [ · ]+ denotes the positive part.

Proposition 4.3. The process ν∗ of (4.6) is an admissbile control.

Proof. Recall (2.4). For any given and fixed ω ∈ Ω, t 7→ ν∗t (ω) is clearly nondecreasing and such
that Y ν∗

t (ω) ≥ 0, for any t ≥ 0, since b∗i (x) ∈ [0, 1] for any x ∈ R. Moreover, since (X, ε) is right-
continuous with left-limits (cf. Lemma 3.6 in [30]) and (x, i) 7→ b∗i (x) is continuous, t 7→ ν∗t (ω)
is left-continuous. Finally, F-progressively measurability of (X, ε) and measurability of b∗ imply
that ν∗ is F-progressively measurable by [11], Theorem IV.33, whence F-adapted.

Process ν∗ is the minimal effort needed to have Y ν∗
t ≤ b∗εt(Xt) at any time t. In particular

it is a standard result (see, e.g., Proposition 2.7 in [10] and references therein for a proof in a
similar setting) that ν∗ of (4.6) solves the Skorokhod reflection problem (SRP)

1. Y ∗t ≤ b∗εt(Xt), P(x,y,i)-almost surely, for each t > 0;
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Figure 2: Adopting the terminology of [18], the boundaries b∗i , i = 1, 2, split the state space into the
inaction region (y < b∗1(x)), transient region (b∗1(x) < y < b∗2(x)) and action region (y > b∗2(x)). When
the initial state is (x, y, i) ∈ O with y < b∗i (x) one observes a Skorokhod reflection of (X,Y ∗, ε) at b∗i in
the vertical direction up to when all the fuel is spent. If the system is reflected at the upper boundary,
at a time of regime switch ν∗ prescribes an immediate jump of Y ∗ from the upper to the lower boundary
(whenever they are different). This plot was obtained solving with Matlab the nonlinear system (3.19)
when f(y) = 1

3 (ey − 1) and with σ1 = 0.38, σ2 = 1.9, λ1 = 1.7, λ2 = 0.44, ρ = 1/3 and c = 0.5.

2.

∫ T

0
1{Y ∗t <b∗εt (Xt)}

dν∗t = 0 almost surely, for all T ≥ 0,

where Y ∗ := Y ν∗ . An illustration of the (candidate) optimal policy ν∗ is provided in Figure 2.

Theorem 4.4. [The Verification Theorem] The control ν∗ of (4.6) is optimal for problem
(2.6), and U of (4.2) is such that U ≡ V .

Proof. The proof is organized into two steps and it is based on a verification argument.

Step 1. Fix (x, y, i) ∈ O and take an arbitary R > 0. Set τR := inf
{
t ≥ 0 : Xt /∈ (−R,R)

}
,

pick an admissible control ν, and note the regularity results for U of Proposition 4.1. Then
recalling (2.8), Itô’s formula up to the stopping time τR ∧ T , for some T > 0, leads to

U(x, y, i) =E(x,y,i)

[
e−ρ(τR∧T )U(Xx

τR∧T , Y
ν
τR∧T , ετR∧T )−

∫ τR∧T

0
e−ρs(G − ρ)U(X,Y ν

s , εs)ds

]
+ E(x,y,i)

[ ∫ τR∧T

0
e−ρsUy(Xs, Y

ν
s , εs)dνs

]
− E(x,y,i)

[ ∑
0≤s<τR∧T

e−ρs
(
U(Xs, Y

ν
s+, εs)− U(Xs, Y

ν
s , εs)− Uy(Xs, Y

ν
s , εs)∆Ys

) ]
,

where ∆Ys := Ys+ − Ys = −∆νs = −(νs+ − νs) and the expectation of the stochastic integral
vanishes since Ux is bounded on (x, y, i) ∈ [−R,R]× [0, 1]× {1, 2}.

Now, noticing that any admissible control ν can be written as the sum of its continuous part
and of its pure jump part, i.e. dν = dνcont + ∆ν (see [15], Chapter 8, Section VIII.4, Theorem
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4.1 at pp. 301-302), one has

U(x, y, i) =E(x,y,i)

[
e−ρ(τR∧T )U(XτR∧T , Y

ν
τR∧T , ετR∧T )−

∫ τR∧T

0
e−ρs(G − ρ)U(Xs, Y

ν
s , εs)ds

]
+ E(x,y,i)

[ ∫ τR∧T

0
e−ρsUy(Xs, Y

ν
s , εs)dν

cont
s

]
− E(x,y,i)

[ ∑
0≤s<τR∧T

e−ρs
(
U(Xs, Y

ν
s+, εs)− U(Xs, Y

ν
s , εs)

) ]
.

Since by Proposition 4.2 U satisfies the HJB equation (2.7), and because

U(Xs, Y
ν
s+, εs)− U(Xs, Y

ν
s , εs) = −

∫ |∆Ys|
0

Uy(Xs, Y
ν
s − |∆Ys|+ z, εs)dz, (4.7)

one obtains

U(x, y, i) ≥E(x,y,i)

[
e−ρ(τR∧T )U(XτR∧T , Y

ν
τR∧T , ετR∧T )

]
− E(x,y,i)

[ ∫ τR∧T

0
e−ρsf(Y ν

s )ds

]
+ E(x,y,i)

[ ∫ τR∧T

0
e−ρs(Xs − c)dνconts

]
+ E(x,y,i)

[ ∑
0≤s<τR∧T

e−ρs(Xs − c)∆νs
]

(4.8)

=E(x,y,i)

[
e−ρ(τR∧T )U(XτR∧T , Y

ν
τR∧T , ετR∧T ) +

∫ τR∧T

0
e−ρs(Xx

s − c)dνs
]

− E(x,y,i)

[ ∫ τR∧T

0
e−ρsf(Y ν

s )ds

]
,

where the fact that |∆Ys| = ∆νs has been used.
By Hölder’s inequality, (2.2), and Itô’s isometry we have

E(x,y,i)

[
e−ρ(τR∧T )|XτR∧T |

]
≤ E(x,y,i)

[
e−2ρ(τR∧T )

] 1
2E(x,y,i)

[
|XτR∧T |

2
] 1

2

≤
√

2E(x,y,i)

[
e−2ρ(τR∧T )

] 1
2

(
|x|2 + E(x,y,i)

[∣∣∣ ∫ τR∧T

0
σεudWu

∣∣∣2]) 1
2

≤
√

2E(x,y,i)

[
e−2ρ(τR∧T )

] 1
2
(
|x|2 + (σ2

1 ∨ σ2
2)T
) 1

2
.

The latter estimate, together with the sub-linear growth property of U (cf. (4.3)), then imply

E(x,y,i)

[
e−ρ(τR∧T )U(XτR∧T , Y

ν
τR∧T , ετR∧T )

]
≥ −CE(x,y,i)

[
e−ρ(τR∧T )

]
−
√

2CE(x,y,i)

[
e−2ρ(τR∧T )

] 1
2
(
|x|2 + (σ2

1 ∨ σ2
2)T
) 1

2
,

for some constant C > 0. Hence

U(x, y, i) ≥ −CE(x,y,i)

[
e−ρ(τR∧T )

]
−
√

2CE(x,y,i)

[
e−2ρ(τR∧T )

] 1
2
(
|x|2 + (σ2

1 ∨ σ2
2)T
) 1

2

+E(x,y,i)

[ ∫ τR∧T

0
e−ρs(Xx

s − c)dνs
]
− E(x,y,i)

[ ∫ τR∧T

0
e−ρsf(Y ν

s )ds

]
. (4.9)
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When taking limits as R → ∞ we have τR ∧ T → T , P(x,y,i)-a.s. by regularity of (X, ε). Then
letting R→∞ and then T →∞, and employing monotone convergence theorem for the integral
terms on the right-hand side of (4.9) we obtain

U(x, y, i) ≥ E(x,y,i)

[ ∫ ∞
0

e−ρs(Xs − c)dνs −
∫ ∞

0
e−ρsf(Y ν

s )ds

]
. (4.10)

Since (4.10) holds for any ν ∈ Ay we have U(x, y, i) ≥ V (x, y, i).

Step 2. If y = 0 then U(x, 0, i) = 0 = V (x, 0, i). Take then y ∈ (0, 1], Y ∗ := Y ν∗ with ν∗

as in (4.3) and define ϑ := inf
{
t ≥ 0 : ν∗t = y

}
. We can repeat arguments of Step 1 on Itô’s

formula with τR replaced by τR ∧ ϑ to obtain

U(x, y, i) =E(x,y,i)

[
e−ρ (τR∧ϑ)U(XτR∧ϑ, Y

∗
τR∧ϑ, ετR∧ϑ)−

∫ τR∧ϑ

0
e−ρs(G − ρ)U(Xs, Y

∗
s , εs)ds

]
+ E(x,y,i)

[ ∫ τR∧ϑ

0
e−ρsUy(Xs, Y

∗
s , εs)dν

∗,cont
s

]

− E(x,y,i)

 ∑
0≤s<τR∧ϑ

e−ρs
(
U(Xs, Y

∗
s+, εs)− U(Xs, Y

∗
s , εs)

) .
If we now recall Proposition 4.2, (4.7) and the fact that ν∗ solves the Skorokhod reflection
problem (SRP), then from the above we obtain

U(x, y, i) =E(x,y,i)

[
e−ρ (τR∧ϑ)U(XτR∧ϑ, Y

∗
τR∧ϑ, ετR∧ϑ) +

∫ τR∧ϑ

0
e−ρs(Xs − c)dν∗s (4.11)

−
∫ τR∧ϑ

0
e−ρsf(Y ∗s )ds

]
.

As R→∞, again τR →∞, and clearly τR ∧ϑ→ ϑ, P(x,y,i)-a.s. Moreover, we can use sub-linear
growth property of U (cf. (4.3)) and estimates as in the last part of the proof of Theorem 3.9 to

apply dominated convergence theorem and have limR↑∞ E(x,y,i)

[
e−ρ (τR∧ϑ)U(XτR∧ϑ, Y

∗
τR∧ϑ, ετR∧ϑ)

]
=

E(x,y,i)

[
e−ρϑU(Xϑ, Y

∗
ϑ , εϑ)

]
= 0. Finally, we also notice that since d ν∗s ≡ 0 and f(Y ∗s ) ≡ 0 for

s > ϑ the integrals in (4.11) may be extended beyond ϑ up to +∞ to get

U(x, y, i) =E(x,y,i)

[ ∫ ∞
0

e−ρs(Xs − c)dν∗s −
∫ ∞

0
e−ρsf(Y ∗s )ds

]
= Jx;c(ν

∗). (4.12)

Then U ≡ V and ν∗ is optimal.

5 A Comparison to the No-Regime-Switching Case

It is quite immediate to solve our optimal extraction problem when there is no regime switching.
In particular, in this case it can be checked that the optimal extraction rule reads as

ν#
t :=

[
y − inf

0≤s<t
b#
(
Xs

)]+
, t > 0, ν#

0 = 0, (5.1)
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where [ · ]+ denotes the positive part. Here, the optimal boundary b# is given by

b#(x) :=


1, x ≤ x#(1)

(x#)−1(x), x ∈ (x#(1), x#(0))

0, x ≥ x#(0),

(5.2)

where
x#(y) :=

σ√
2ρ

+ ĉ(y). (5.3)

A first observation that is worth making is that x# = x∗, with x∗ as in (3.39). To understand
this, recall that in Section 3.2 we have obtained that the two regime-dependent boundaries x∗i ,
i = 1, 2, coincide and areg iven by (3.39) if and only if σ1 = σ2. In such case the price process
does not jump and it therefore behaves as if we had not regime-switching. It is then reasonable
to obtain for such setting the same optimal selling price that we would obtain in absence of
regime shifts, although the associated optimal value is still regime-dependent.

In general, although qualitatively similar to (5.1), the optimal extraction rule ν∗ of the two
regimes case (cf. (4.6)) shows an important feature which is not present in the single regime
case. Indeed, ν∗ of (4.6) jumps at the moments of regime shifts from state 2 to state 1, thus
implying a lump-sum extraction at those instants. This fact is not observed in (5.1) where a
jump can happen only at initial time. We also refer to the detailed discussion in [18].

It is also interesting to see how the presence of regime shifts is reflected into the optimal
investment boundaries. This is shown in Figure 3. There we have a plot of the optimal bound-
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Figure 3: The dashed curve b#i (x), i = 1, 2, is the optimal extraction boundary (5.2) of the single
regime case when the volatility is σi. The solid curves are the optimal extraction boundaries (b∗1, b

∗
2)

when there is regime switching in the spot price process. To generate this plot with Matlab we have
taken f(y) = 1

3 (ey − 1) and with σ1 = 0.38, σ2 = 1.9, λ1 = 1.7, λ2 = 0.44, ρ = 1/3 and c = 0.5.

aries in the case of regime switching, b∗i , i = 1, 2 (solid curves), and in the case of a single

regime, b#i with volatility σi (dashed curves), i = 1, 2. Taking σ1 < σ2 we observe, that under
macroeconomic cycles, the value at which the reserve level should be kept is higher than the
one at which it would be kept if the volatility were always σ1. On the other hand, the value at
which the reserve level should be maintained when business cycles are present, is lower than the
one at which it would be kept if the volatility were always σ2. To some extent, this fact can be
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thought of as an average effect of the regime switching. For example, if the market volatility
assumes at any time the highest value possible (i.e. it is always equal to σ2), then the company
would be more reluctant to extract and sell the commodity in the spot market relative to the
case in which the volatility could jump to the lower value σ1. A symmetric argument applies to
explain b#1 < b∗i , i = 1, 2.
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A Some Proofs from Section 3

Proof of Corollary 3.6

Recalling that z∗1 := x∗1(y) − ĉ(y) and z∗2 := x∗2(y) − x∗1(y) so that x∗1(y) = z∗1 + ĉ(y) > ĉ(y)
and x∗2(y) := z∗2 + x∗1(y) > x∗1(y) > ĉ(y), the first part of the statement follows from Proposition
3.4. As for the second claim, it suffices to notice that the only dependence with respect to y
in x∗1(y) and x∗2(y) is via ĉ and therefore these two thresholds have the same monotonicity and
regularity of ĉ(y) := c− f ′(y)/ρ, i.e. they are strictly decreasing and continuous on [0, 1]. 2

Proof of Theorem 3.8

Step 1. The fact that w(·, i; y) ∈ C1(R) for i = 1, 2 follows by construction. It is also easy to
verify from (3.25) and (3.26) that w(·, i; y), i = 1, 2, grows at most linearly and that wxx(·, i; y)
are bounded on any compact subset of R.

We now show that if also Assumption 3.7 holds, then (w(x, 1; y), w(x, 2; y), x∗1(y), x∗2(y))
solves free boundary problem (3.9). Since by construction (w(x, 1; y), w(x, 2; y), x∗1(y), x∗2(y))
solves the first eight conditions of (3.9), then it suffices to prove that also the last two of (3.9)
are fulfilled. This part of the proof is organized in the next steps.

Step 2. Here we show that w(x, 1; y) ≥ x − ĉ(y) for any x ∈ R. This is clearly true with
equality by (3.25) for any x ≥ x∗1(y). To prove the claim when x < x∗1(y) we show that w(·, 1; y)
is convex therein. Indeed such property together with the fact that wx(x∗1(y), 1; y) − 1 = 0
implies that wx(x, 1; y) − 1 ≤ 0 for any x < x∗1(y) and therefore that w(x, 1; y) ≥ x − ĉ(y) for
x < x∗1(y) since also w(x∗1(y), 1; y)− (x∗1(y)− ĉ(y)) = 0.

To complete, we need to show that w(·, 1; y) is convex on x < x∗1(y). To this end note that
for any x < x∗1(y) we have from (3.25)

wxx(x, 1; y)(α4−α3) = α2
3(α4(x∗1(y)− ĉ(y))−1)eα3(x−x∗1(y)) +α2

4(1−α3(x∗1(y)− ĉ(y)))eα4(x−x∗1(y)).
(A-1)

Moreover, some algebra gives

α2
3(α4(x∗1(y)−ĉ(y))−1)+α2

4(1−α3(x∗1(y)−ĉ(y))) = (α4−α3)
[
α4+α3−α3α4(x∗1(y)−ĉ(y))

]
. (A-2)

Also (by simple but tedious algebra) one has

− 1

a3

( ρ

ρ+ λ2
+ a4

)
− 1

α3
≤ 1

α4
⇐⇒ ρ

λ1
≥ 0, (A-3)
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and
1

α4
≤ − a2

a1 + ρ
α5(ρ+λ2)

⇐⇒ Φ1(α4) ≤ ρλ1

ρ+ λ2
(1 + α5). (A-4)

It thus follows that the inequalities on the left hand-side of (A-3) and (A-4) are verified for any
choice of the parameters (being Φ1(α4) < 0 by direct check). Then recalling that x∗1(y)− ĉ(y) =
z∗1 , using bounds (3.22) (cf. proof of Proposition 3.4) and the inequalities on the left hand side
of (A-3) and (A-4) into (A-2) we get (α4 − α3)[α4 + α3 − α3α4(x∗1(y)− ĉ(y))] ≥ 0, whence

α2
3(α4(x∗1(y)− ĉ(y))−1)+α2

4(1−α3(x∗1(y)− ĉ(y))) = (α4−α3)
[
α4 +α3−α3α4(x∗1(y)− ĉ(y))

]
≥ 0.

Therefore
α2

4(1− α3(x∗1(y)− ĉ(y))) ≥ −α2
3(α4(x∗1(y)− ĉ(y))− 1),

which substituted into (A-1) yields

wxx(x, 1; y)(α4 − α3) ≥ α2
3(α4(x∗1(y)− ĉ(y))− 1)

[
eα3(x−x∗1(y)) − eα4(x−x∗1(y))

]
≥ 0, (A-5)

where (3.22), (A-3), and the fact that α3 < α4 but x < x∗1(y) have been employed for the last
estimate.

Step 3. In this step we prove that w(x∗1(y), 2; y) ≥ x∗1(y) − ĉ(y) and wx(x∗1(y), 2; y) ≤ 1.
These estimates will be needed to show that w(x, 2; y) ≥ x − ĉ(y) for any x ∈ R. From (3.26)

and using that B3(y) := Φ1(α3)
λ1

A3(y), B4(y) := Φ1(α4)
λ1

A4(y), with A3(y) and A4(y) as in (3.14),
one easily finds

w(x∗1(y), 2; y) =
Φ1(α3)[α4(x∗1(y)− ĉ(y))− 1]

λ1(α4 − α3)
+

Φ1(α4)[1− α3(x∗1(y)− ĉ(y))]

λ1(α4 − α3)

and

wx(x∗1(y), 2; y) =
α3Φ1(α3)[α4(x∗1(y)− ĉ(y))− 1]

λ1(α4 − α3)
+
α4Φ1(α4)[1− α3(x∗1(y)− ĉ(y))]

λ1(α4 − α3)
.

Recalling that Φi(z) = −1
2σ

2
i z

2 + ρ+ λi, i = 1, 2, a simple calculation yields

w(x∗1(y), 2; y) =
−1

2σ
2
1(α3 + α4) + (x∗1(y)− ĉ(y))(1

2σ
2
1α3α4 + ρ+ λ1)

λ1
(A-6)

and

wx(x∗1(y), 2; y) =
α4Φ(α4)− α3Φ(α3)

λ1(α4 − α3)
+
α3α4σ

2
1(x∗1(y)− ĉ(y))(α4 + α3)

2λ1
. (A-7)

It is now matter of algebraic manipulation to show that

σ2
1(α3 + α4)

σ2
1α3α4 + 2ρ

≤ − a2

a1 + ρ
α5(ρ+λ2)

(A-8)

is verified under Assumption 3.7 since it is equivalent to α5 ≤ ρ/λ2, whereas

−
ρ

ρ+λ2
+ a4

a3
≤ 2λ1

α3α4σ2
1(α4 + α3)

[
1 +

α3Φ1(α3)− α4Φ1(α4)

λ1(α4 − α3)

]
(A-9)
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is always satisfied. Then by (3.22), (A-8) and (A-9) we obtain

σ2
1(α3 + α4)

σ2
1α3α4 + 2ρ

≤ x∗1(y)− ĉ(y) ≤ 2λ1

α3α4σ2
1(α4 + α3)

[
1 +

α3Φ(α3)− α4Φ(α4)

λ1(α4 − α3)

]
,

which, used into (A-6) and (A-7) yield w(x∗1(y), 2; y) ≥ x∗1(y) − ĉ(y) and wx(x∗1(y), 2; y) ≤ 1,
respectively.

Step 4. We now show that w(x, 2; y) ≥ x − ĉ(y) for x < x∗2(y) and therefore for any x ∈ R
due to the fourth of (3.9). On x ∈ (−∞, x∗1(y)) ∪ (x∗1(y), x∗2(y)) one has from (3.9)

1

2
σ2

2wxx(x, 2; y) + λ2(w(x, 1; y)− w(x, 2; y))− ρw(x, 2; y) = 0. (A-10)

Setting ŵ(x, i; y) = w(x, i; y)− (x− ĉ(y)), i = 1, 2, it follows that on (−∞, x∗1(y))∪ (x∗1(y), x∗2(y))

1

2
σ2

2ŵxx(x, 2; y) + λ2(ŵ(x, 1; y)− ŵ(x, 2; y))− ρŵ(x, 2; y) = ρ(x− ĉ(y)). (A-11)

We now consider separately the two cases x ∈ (−∞, x∗1(y)) and x ∈ (x∗1(y), x∗2(y)). For x ∈
(−∞, x∗1(y)) we can differentiate (A-11) once more with respect to x so to obtain

1

2
σ2

2ŵxxx(x, 2; y) + λ2(ŵx(x, 1; y)− ŵx(x, 2; y))− ρŵx(x, 2; y) = ρ.

Setting τ1 := inf{t ≥ 0 : (X, ε) /∈ D1} P(x,i)-a.s., where D1 := {(x, i) ∈ R × {1, 2} : x < x∗1(y)},
an application of Itô’s formula (possibly with a standard localization argument) leads to

ŵx(x, 2; y) = E(x,i)

[
e−ρτ1ŵx(Xτ1 , ετ1 ; y)−

∫ τ1

0
e−ρsρds

]
≤ E(x,i)

[
e−ρτ1ŵx(Xτ1 , ετ1 ; y)

]
= E(x,i)

[
e−ρτ1ŵx(Xτ1 , ετ1 ; y)1{ετ1=1}

]
+ E(x,i)

[
e−ρτ1ŵx(Xτ1 , ετ1 ; y)1{ετ1=2}

]
,(A-12)

for any x < x∗1(y). Since ŵx(x∗1(y), i; y) = wx(x∗1(y), i; y) − 1 ≤ 0, i = 1, 2, by the fifth of (3.9)
and by Step 3., and because τ1 < +∞ P(x,i)-a.s. due to recurrence property of (X, ε) (see (i)
of Theorem 4.4 of [30] with k > 0, α ∈ (0, 1), c1 = c2 therein), we conclude from (A-12) that
ŵx(x, 2; y) ≤ 0 for any x < x∗1(y). In turn this implies w(x, 2; y) ≥ x − ĉ(y) for any x < x∗1(y)
since w(x∗1(y), 2; y) ≥ x∗1(y)− ĉ(y) again by the results of Step 3.

Take now x ∈ (x∗1(y), x∗2(y)) and define τ1,2 := inf{t ≥ 0 : (X, ε) /∈ D1,2} P(x,i)-a.s., where
D1,2 := {(x, i) ∈ R×{1, 2} : x∗1(y) < x < x∗2(y)}. Employing the same rational of the arguments
above and using also that ŵx(x∗2(y), 2; y) = 0 and ŵx(x∗2(y), 1; y) = 0, we obtain ŵx(x, 2; y) ≤ 0
for any x ∈ (x∗1(y), x∗2(y)). Hence ŵ(x, 2; y) ≥ 0 for any x ∈ (x∗1(y), x∗2(y)) since ŵ(x∗2(y), 2; y) =
0. Therefore w(x, 2; y) ≥ x− ĉ(y) for any x < x∗2(y), by combining the previous results and the
fact that w(x∗1(y), 2; y) ≥ x∗1(y)− ĉ(y) proved in Step 3.

Steps 2, 3 and 4 above show that w(x, i; y) ≥ x− ĉ(y) for x ∈ R and i = 1, 2. We now turn
to prove that one also has 1

2σ
2
iwxx(x, i; y)−ρw(x, i; y) +λi(w(x, 3− i; y)−w(x, i; y)) ≤ 0 for a.e.

x ∈ R and i = 1, 2.

Step 5. We start showing that

1
2σ

2
2wxx(x, 2; y)− ρw(x, 2; y) + λ2(w(x, 1; y)− w(x, 2; y)) ≤ 0 (A-13)
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for a.e. x ∈ R. This is true with equality for any x < x∗2(y) by construction. For x > x∗2(y) we
have w(x, 1; y) = x − ĉ(y) = w(x, 2; y). On that interval (A-13) thus reads −ρ(x − ĉ(y)) ≤ 0,
which is fulfilled since ρ > 0 and x∗2(y) > ĉ(y) by Corollary 3.6.

We now check that one also has

1
2σ

2
1wxx(x, 1; y)− ρw(x, 1; y) + λ1(w(x, 2; y)− w(x, 1; y)) ≤ 0 (A-14)

for a.e. x ∈ R. Again, it suffices to show that the previous is true for x > x∗1(y), as it is verified
with equality by construction on (−∞, x∗1(y)).

If x > x∗2(y) then w(x, 2; y) = x − ĉ(y) = w(x, 1; y) and (A-14) holds since ρ > 0 and
x∗2(y) > ĉ(y) by Corollary 3.6. To complete the proof we consider the case x ∈ (x∗1(y), x∗2(y)). On
such interval we have again w(x, 1; y) = x−ĉ(y), and therefore (A-14) is verified on (x∗1(y), x∗2(y))
if

w(x, 2; y) ≤ ρ+ λ1

λ1
w(x, 1; y), (A-15)

where we have used that wxx(x, 1; y) = 0 on (x∗1(y), x∗2(y)). In Step 4. we have shown that
wx(x, 2; y) − 1 ≤ 0 for any x ∈ (x∗1(y), x∗2(y)), from which one has w(x, 2; y) − w(x, 1; y) =
w(x, 2; y) − (x − ĉ(y)) ≤ w(x∗1(y), 2; y) − (x∗1(y) − ĉ(y)) = w(x∗1(y), 2; y) − w(x∗1(y), 1; y), where
the fact that w(x, 1; y) = x− ĉ(y) for any x ≥ x∗1(y) has been used. Therefore on (x∗1(y), x∗2(y))

w(x, 2; y) ≤ w(x∗1(y), 2; y)− w(x∗1(y), 1; y) + w(x, 1; y), (A-16)

Also 1
2σ

2
1wxx(x, 1; y)−ρw(x, 1; y)+λ1(w(x, 2; y)−w(x, 1; y)) = 0, for any x < x∗1(y), and therefore

w(x, 2; y) ≤ ρ+ λ1

λ1
w(x, 1; y), x < x∗1(y), (A-17)

by convexity of w(x, 1; y) proved in Step 2. Then, taking limits as x ↑ x∗1(y) we get from (A-17)
and continuity of w(·, i; y)

w(x∗1(y), 2; y) ≤ ρ+ λ1

λ1
w(x∗1(y), 1; y), (A-18)

and we conclude from (A-16) and (A-18) that for any x ∈ (x∗1(y), x∗2(y))

w(x, 2; y) ≤ ρ+ λ1

λ1
w(x∗1(y), 1; y)− w(x∗1(y), 1; y) + w(x, 1; y) ≤ ρ+ λ1

λ1
w(x, 1; y),

where the fact that w(x∗1(y), 1; y) = x∗1(y) − ĉ(y) ≤ (x − ĉ(y)) = w(x, 1; y) for any x > x∗1(y)
implies the last step. Hence (A-15) holds on (x∗1(y), x∗2(y)) and therefore also (A-14) is satisfied
on that interval. 2

Proof of Theorem 3.9

Step 1. Fix (x, i) ∈ R × {1, 2}, let τ be an arbitrary P(x,i)-a.s. finite stopping time, and
set τR := inf{t ≥ 0 : Xt /∈ (−R,R)} P(x,i)-a.s. for R > 0. Given the regularity of w(·, i; y) for
any i = 1, 2 (cf. Theorem 3.8) Itô-Tanaka’s formula (see, e.g., [25], Chapter VI, Proposition 1.5,
Corollary 1.6 and following Remarks) can be applied to get

w(x, i; y) = E(x,i)

[
e−ρ(τ∧τR)w(Xτ∧τR , ετ∧τR ; y)−

∫ τ∧τR

0
e−ρs(G − ρ)w(Xs, εs; y)ds

]
≥ E(x,i)

[
e−ρ(τ∧τR)w(Xτ∧τR , ετ∧τR ; y)

]
≥ E(x,i)

[
e−ρ(τ∧τR)(Xτ∧τR − ĉ(y))

]
, (A-19)
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where we have used that w solves free boundary problem (3.9) (cf. Theorem 3.8). If now
{e−ρ(τ∧τR)Xτ∧τR , R > 0} is a P(x,i)-uniformly integrable family, then observing that if R ↑ ∞
one has τ ∧ τR ↑ τ a.s. by regularity of (X, ε) (cf. [30], Section 3.1), we can take limits as R ↑ ∞
in (A-19), invoke Vitali’s convergence theorem and obtain

w(x, i; y) ≥ E(x,i)

[
e−ρτ (Xτ − ĉ(y))

]
.

Since τ was arbitrary, w(x, i; y) ≥ supτ≥0 E(x,i)[e
−ρτ (Xτ − ĉ(y))

]
= u(x, i; y).

To conclude this part of the proof it remains to prove that {e−ρ(τ∧τR)Xτ∧τR , R > 0} is
P(x,i)-uniformly integrable. By Itô’s formula we have due to (2.2)

e−ρ(τ∧τR)Xτ∧τR = x−
∫ τ∧τR

0
ρe−ρsXsds+

∫ τ∧τR

0
e−ρsσεsdWs,

from which ∣∣∣e−ρ(τ∧τR)Xτ∧τR

∣∣∣ ≤ |x|+ ∫ ∞
0

ρe−ρs|Xs|ds+
∣∣∣ ∫ τ∧τR

0
e−ρsσεsdWs

∣∣∣.
Now, on the one hand by Hölder’s inequality and Itô’s isometry one has

E(x,i)

[ ∫ ∞
0

ρe−ρs|Xs|ds
]
≤ |x|+

∫ ∞
0

ρe−ρsE(x,i)

[∣∣∣ ∫ s

0
σεudWu

∣∣∣2] 1
2

(A-20)

≤ |x|+ (σ2
1 ∨ σ2

2)
1
2

∫ ∞
0

ρ
√
se−ρsds <∞,

for some K > 0. Hence
∫∞

0 ρe−ρs|Xs|ds ∈ L1(Ω,P(x,i)). On the other hand, the continuous

martingale {
∫ t

0 e
−ρsσεsdWs, t ≥ 0} is bounded in L2(Ω,P(x,i)) since E(x,i)[|

∫ t
0 e
−ρsσεsdWs|2] ≤

(σ2
1 ∨ σ2

2)
∫∞

0 e−2ρsds, and therefore (cf. [25], Chapter IV, Proposition 1.23)

E(x,i)

[∣∣∣ ∫ τ∧τR

0
e−ρsσεsdWs

∣∣∣2] = E(x,i)

[ ∫ τ∧τR

0
e−2ρsσ2

εsds

]
≤ (σ2

1 ∨ σ2
2)

∫ ∞
0

e−2ρsds, R > 0.

Hence, the family {
∣∣ ∫ τ∧τR

0 e−ρsσεsdWs

∣∣, R > 0} is bounded in L2(Ω,P(x,i)) as well, thus uni-
formly integrable. This fact, together with (A-20), in turn imply uniform integrability of the
family {e−ρ(τ∧τR)Xτ∧τR , R > 0} and complete this part of the proof.

Step 2. To prove the reverse inequality, i.e. w(x, i; y) ≤ u(x, i; y), take τ = τ∗, in the previous
rationale and notice that one has (G − ρ)w(x, i; y) = 0 on C. Then taking limits as R ↑ ∞ one
finds

w(x, i; y) = E(x,i)

[
e−ρτ

∗
w(Xτ∗ , ετ∗ ; y)

]
= E(x,i)

[
e−ρτ

∗
(Xτ∗ − ĉ(y))

]
, (A-21)

where the last equality follows from the fact that τ∗ < +∞ P(x,i)-a.s. by recurrence of (X, ε)
(cf. Theorem 4.4 in [30]). Therefore w(x, i; y) ≤ u(x, i; y), whence w(x, i; y) = u(x, i; y) and
optimality of τ∗. 2

Proof of Theorem 3.11

The claimed regularity follows by construction, whereas the growth property can be easily
checked from (3.40) and (3.41). Moreover, by construction we also have that for any i = 1, 2
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1
2σ

2
iwxx(x, i; y) − ρw(x, i; y) + λi

(
w(x, 3 − i; y) − w(x, i; y)

)
= 0 on x < x∗(y) and w(x, i; y) =

x − ĉ(y) on x ≥ x∗(y). It thus remains only to check that for any i = 1, 2 a) 1
2σ

2
iwxx(x, i; y) −

ρw(x, i; y) + λi
(
w(x, 3 − i; y) − w(x, i; y)

)
≤ 0 on x > x∗(y) and b) w(x, i; y) ≥ x − ĉ(y) on

x < x∗(y).
Since on x > x∗(y) one has w(x, 1; y) = x − ĉ(y) = w(x, 2; y), property a) above follows by

noticing that x∗(y) ≥ ĉ(y) (cf. (3.35) or equivalently (3.36)) and recalling that ρ > 0.
As for b), it suffices to show that wx(x, i; y)− 1 ≤ 0 for any x < x∗(y) since w(x∗(y), i; y)−

(x∗(y) − ĉ(y)) = 0. To this end define ŵ(x, i; y) := w(x, i; y) − (x − ĉ(y)), i = 1, 2, and notice
that we can differentiate once more the first of (3.28) with respect to x inside (−∞, x∗(y)) to
obtain

1

2
σ2
i ŵxxx(x, i; y) + λi(ŵx(x, 3− i; y)− ŵx(x, i; y))− ρŵx(x, i; y) = ρ.

Then an argument based on Dynkin’s formula as that employed in Step 4. of the proof of
Theorem 3.8 yields ŵx(x, i; y) ≤ 0 for any x < x∗(y), which in turn gives w(x, i; y) ≥ x − ĉ(y)
for any x < x∗(y), because w(x∗(y), i; y) = x∗(y)− ĉ(y). 2

B An Auxiliary Result

Lemma B.1. Let ai, i = 1, 2, 3, 4, be defined as in (3.18). Then one has a1 < 0, a2 > 0, a3 < 0
and a4 > 0.

Proof. Noticing that Φi(α) = −1
2σ

2
i α

2 + ρ + λi, i = 1, 2, is a strictly decreasing function of α,
the fact that α3 < α4 imply a2 > 0 and a3 < 0.

As for a1, recall that from (3.18) one has

a1 = −α4Φ1(α3)− α3Φ1(α4)

λ1(α4 − α3)
+

ρ

ρ+ λ2
. (B-1)

By using the explicit expression of Φi(α), i = 1, 2, direct calculations lead to

α4Φ1(α3)− α3Φ1(α4) =
(1

2
σ2

1α3α4 + ρ+ λ1

)
(α4 − α3),

which substituted into (B-1) yields

a1 = −
1
2σ

2
1α3α4 + ρ+ λ1

λ1
+

ρ

ρ+ λ2
< −

1
2σ

2
1α3α4 + ρ

λ1
< 0.

We conclude showing that a4 > 0. It is matter of simple algebra to show that

α3Φ1(α3)− α4Φ1(α4) = (α4 − α3)
[1

2
σ2

1(α3α4 + α2
3 + α2

4)− (ρ+ λ1)
]
,

which used in the expression for a4 of (3.18) allows to write

a4 =
1
2σ

2
1(α3α4 + α2

3 + α2
4)− (ρ+ λ1)

λ1
+

λ2

ρ+ λ2
. (B-2)

Since α3 and α4 solve Φ1(α)Φ2(α) = λ1λ2, by Vieta’s formulas we deduce that

α2
3 + α2

4 =
2σ2

1(ρ+ λ2) + 2σ2
2(ρ+ λ1)

σ2
1σ

2
2

. (B-3)
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Noticing that α3α4 > 0, and using (B-3) in (B-2) we obtain

a4 >
1
2σ

2
1(α2

3 + α2
4)− (ρ+ λ1)

λ1
>

1

λ1

[σ2
1σ

2
2(ρ+ λ1)

σ2
1σ

2
2

− (ρ+ λ1)
]

= 0,

thus completing the proof.
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