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Abstract. In this paper we establish a new connection between a class of 2-player nonzero-
sum games of optimal stopping and certain 2-player nonzero-sum games of singular control. We
show that whenever a Nash equilibrium in the game of stopping is attained by hitting times at
two separate boundaries, then such boundaries also trigger a Nash equilibrium in the game of
singular control. Moreover a differential link between the players’ value functions holds across
the two games.
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dimensional diffusion, Hamilton-Jacobi-Bellman equation, verification theorem.
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1 Introduction

Connections between some problems of singular stochastic control (SSC) and questions of opti-
mal stopping (OS) are well known in control theory. In 1966 Bather and Chernoff [5] studied the
problem of controlling the motion of a spaceship which must reach a given target within a fixed
period of time, and with minimal fuel consumption. This problem of aerospace engineering was
modeled in [5] as a singular stochastic control problem, and an unexpected link with optimal
stopping was observed. The value function of the control problem was indeed differentiable in
the direction of the controlled state variable, and its derivative coincided with the value function
of an optimal stopping problem.

The result of Bather and Chernoff was obtained by using mostly tools from analysis. Later
on, Karatzas [24, 25], and Karatzas and Shreve [26] employed fully probabilistic methods to
perform a systematic study of the connection between SSC and OS for the so-called “monotone
follower problem”. The latter consists of tracking the motion of a stochastic process (a Brownian
motion in [24], [25], [26]) by a nondecreasing control process in order to maximise (minimise)
a performance criterion which is concave (convex) in the control variable. Further, a link to
optimal stopping was shown to hold also for monotone follower problems of finite-fuel type; i.e.
where the total variation of the control (the fuel available to the controller) stays bounded (see
[17], [27], and also [4] for dynamic stochastic finite-fuel). More recent works provided extensions
of the above results to diffusive settings in [6] and [7], to Brownian two-dimensional problems
with state constraints in [11], and to non-Markovian processes in [3].
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Nonzero-sum games of singular control and stopping 2

It was soon realised that this kind of connections could be established in wider generality
with admissible controls which are of bounded variation as functions of time (rather than just
monotone). Indeed, under suitable regularity assumptions (including convexity or concavity of
the objective functional with respect to the control variable) the value function of a bounded
variation control problem is differentiable in the direction of the controlled state variable and its
derivative equals the value function of a 2-player zero-sum game of optimal stopping (Dynkin
game). To the best of our knowledge this link was noticed for the first time in [36] in a problem
of controlling a Brownian motion, and then generalised in [8] and [29], and later on also in [20]
via optimal switching.

It is important to observe that despite their appearance in numerous settings, connections be-
tween SSC and OS are rather “delicate” and should not be given for granted, even for monotone
follower problems with very simple diffusion processes. Indeed counterexamples were recently
found in [14] and [15] where the connection breaks down even if the cost function is arbitrarily
smooth and the underlying processes are Ornstein-Uhlenbeck or Brownian motion.

The existing theory on the connection between SSC and OS is well established for single agent
optimisation problems. However the latter are not suitable for the description of more complex
systems where strategic interactions between several decision makers play a role. Problems
of this kind arise for instance in economics and finance when studying productive capacity
expansion in an oligopoly [35], the competition for the market-share control [30], or the optimal
control of an exchange rate by a central bank (see the introduction of the recent [22] for such
application).

In this paper we establish a new connection between a class of 2-player nonzero-sum games
of optimal stopping (see [16] and references therein) and certain 2-player nonzero-sum games
of singular stochastic control. In particular, we consider a game of control in which each one
of the two players may exert a monotone control to adjust the trajectory of a one-dimensional
controlled Itô-diffusion X̃. The first player pushes the level of X̃ up, whereas the second player
pushes it down. If player 1 uses a unit of control at time t > 0 pays a cost G1(X̃t) and player
2 receives a reward L2(X̃t). A symmetric situation occurs if player 2 exerts control (see Section
2.2). Each player wants to maximise her own expected reward functional. To establish the
link we also consider a 2-player nonzero-sum game of stopping on another diffusion process X
suitably related to X̃. Both players in the game aim at minimising their expected costs by
optimally stopping the game. The i-th player can decide to stop first and pay Gi(Xt) or to wait
until the other player stops and then pay Li(Xt).

We show that if a Nash equilibrium in the game of stopping is attained by hitting times of
two separate thresholds, i.e. the process X is stopped as soon as it leaves an interval (a∗, b∗)
of the real line, then the couple of controls that keep X̃ inside [a∗, b∗] with minimal effort (i.e.
according to a Skorokhod reflection policy) realises a Nash equilibrium in the game of singular
control. Moreover, we also prove that the value functions of the two players in the game of
singular control can be obtained by suitably integrating their respective ones in the game of
optimal stopping. The existence of Nash equilibria of threshold type for the game of stopping
holds in a large class of examples as it is demonstrated in the recent [16]. Here the proof of our
main theorem (cf. Theorem 3.1 below) is based on a verification argument following an educated
guess. In order to illustrate an application of our results we present a game of pollution control
between a social planner and a firm representative of the productive sector.

Another important result of this paper is a simple explicit construction of closed-loop Nash
equilibria1 for a class of 2-player continuous time stochastic games of singular control. This is
a problem in game theory which has not been solved in full generality yet (see the discussion in
Section 2 of [2] and in [35]), and here we contribute to further improve results in that direction.
We seek for Nash equilibria in the class of control strategies M which forbids the players to

1i.e. equilibria in which each player dynamically reacts to her opponent’s decisions
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exert simultaneous impulsive controls (i.e. simultaneous jumps of their control variables). On
the one hand this is a convenient choice for technical reasons, but on the other hand we also
show in Appendix A.1 that it induces no loss of generality in a large class of problems commonly
addressed in the literature on singular stochastic control.

Our work marks a new step towards a global view on the connection between singular
stochastic control problems and questions of optimal stopping by extending the existing results
to multi-agent optimisation problems. A link between these two classes of optimisation problems
is important not only from a purely theoretical point of view but also from a practical point
of view. Indeed as it was pointed out in [26] (cf. p. 857) one may hope to “jump” from one
formulation to the other in order to “pose and solve more favourable problems”. As an example,
one may notice that questions of existence and uniqueness of optimisers are more tractable
in control problems, than in stopping ones; on the other hand, a characterisation of optimal
control strategies is in general a harder task than the one of optimal stopping rules. Recent
contributions to the literature (e.g., [12] and [13]) have already highlighted how the combined
approach of singular stochastic control and optimal stopping is extremely useful to deal with
investment/consumption problems for a single representative agent. It is therefore reasonable
to expect that our work will increase the mathematical tractability of investment/consumption
problems for multiple interacting agents.

The rest of the paper is organised as follows. In Section 2 we introduce the setting, the
game of singular controls and the game of optimal stopping. In Section 3 we prove our main
result and we discuss the assumptions needed. An application to a game of pollution control is
considered in Section 4, whereas some proofs and a discussion regarding admissible strategies
are collected in the appendix.

2 Setting

2.1 The underlying diffusions

Denote by (Ω,F ,P) a complete probability space equipped with a filtration F = (Ft)t≥0 under

usual hypotheses. Let W̃ = (W̃t)t≥0 be a one-dimensional standard Brownian motion adapted

to F, and (X̃ν,ξ
t )t≥0 the solution of the controlled stochastic differential equation (SDE)

dX̃ν,ξ
t = µ(X̃ν,ξ

t )dt+ σ(X̃ν,ξ
t )dW̃t + dνt − dξt, X̃ν,ξ

0 = x ∈ I, (2.1)

with I := (x, x) ⊆ R. Here (νt)t≥0 and (ξt)t≥0 belong to

S :=
{
η : (ηt(ω))t≥0 left-continuous, adapted, increasing, with η0 = 0, P-a.s.

}
(2.2)

and we denote

σ I := inf{t ≥ 0 : X̃ν,ξ
t /∈ I} (2.3)

the first time the controlled process leaves I.
Notice that ν and ξ can be expressed as the sum of their continuous part and pure jump

part, i.e.

νt = νct +
∑
s<t

∆νs, ξt = ξct +
∑
s<t

∆ξs, (2.4)

where ∆νs := νs+ − νs and ∆ξs := ξs+ − ξs. Throughout the paper we will consider the process
X̃ν,ξ killed at σI and we make the following assumptions on µ and σ.

Assumption 2.1. The functions µ and σ are in C1(I) and σ(x) > 0, x ∈ I.
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To account for the dependence of X̃ on its initial position, from now on we shall write X̃x,ν,ξ

where appropriate. In the rest of the paper we use the notation Exf(X̃ν,ξ
t ) = Ef(X̃x,ν,ξ

t ), for
f Borel-measurable, since (X̃, ν, ξ) is Markovian but the initial value of the controls is always
zero. Here Ex is the expectation under the measure Px( · ) := P( · |X0 = x) on (Ω,F).

While (2.1) will be the underlying process in the game of control, we also introduce on
(Ω,F ,F,P) another Brownian motion (Wt)t≥0 and a diffusion (Xt)t≥0 evolving according to

dXt =
(
µ(Xt) + σ(Xt)σ

′(Xt)
)
dt+ σ(Xt)dWt, X0 = x ∈ I, (2.5)

which will appear in the game of stopping. Notice that under Assumption 2.1 the above SDE
admits a weak solution (X,W,F) which is unique in law up to a possible explosion time [28,
Ch. 5.5]. Indeed for every x ∈ I there exists εo > 0 such that∫ x+εo

x−εo

1 + |µ(z)|+ |σ(z)σ′(z)|
|σ(z)|2

dz < +∞. (2.6)

To account explicitly for the initial condition we denote by Xx the solution of (2.5) starting
from x ∈ I at time zero. Due to (2.6) the diffusion X is regular in I; that is, if τz := inf{t ≥
0 : Xx

t = z} one has P(τz < ∞) > 0 for every x and z in I so that the state space cannot be
decomposed into smaller sets from which X cannot exit (see [9, Ch. 2]).

For the diffusion Xx we take x and x either natural or entrance-not-exit, hence unattainable
(see p. 15 in [9]). We also assume that x and x are unattainable for the uncontrolled process
X̃0,0 and in the next remark we show that such condition holds provided that σ′ is sufficiently
integrable.

Remark 2.2. Let us consider the uncontrolled dynamics X̃0,0 on the canonical space under the

measure PX̃x and the dynamics X on the canonical space under the measure PXx . Let us also

define a new measure QX̃x by the Radon-Nikodym derivative

Zt :=
dQX̃x

dPX̃x

∣∣∣∣
Ft

= exp
{∫ t

0
σ′(X̃0,0

s )dW̃s −
1

2

∫ t

0
(σ′)2(X̃0,0

s )ds
}
, PX̃x − a.s.

which is an exponential martingale under suitable integrability conditions on σ′. Hence Girsanov
theorem implies that the process Bt := W̃t−

∫ t
0 σ
′(X̃0,0

s )ds is a standard Brownian motion under

QX̃x and it is not hard to verify that Law (X̃0,0
∣∣QX̃x ) = Law (X

∣∣PXx ).

It follows that denoting σ0
I = inf{t > 0 : X̃0,0

t /∈ I} and τI = inf{t > 0 : Xt /∈ I} we have

that Law (σ0
I |QX̃x ) = Law (τI |PXx ). Notice also that the measures QX̃x and PX̃x are equivalent on

FW̃t for all 0 ≤ t < +∞ (see [28], Chapter 3.5) and in particular {σ0
I ≤ t} ∈ FW̃t . Therefore

using that x and x are unattainable for X we get

0 = PXx (τI ≤ t) = QX̃x (σ0
I ≤ t) =⇒ PX̃x (σ0

I ≤ t) = 0

for all t > 0. Hence PX̃x (σ0
I < +∞) = 0 which proves that x and x are unattainable for the

process X̃0,0 under PX̃x for all x ∈ I.

The infinitesimal generator of the uncontrolled diffusion X̃x,0,0 is denoted by L
X̃

and is
defined as

(L
X̃
f) (x) :=

1

2
σ2(x)f ′′(x) + µ(x)f ′(x), f ∈ C2(I), x ∈ I, (2.7)

whereas the one for X is denoted by LX and is defined as

(LXf) (x) :=
1

2
σ2(x)f ′′(x) + (µ(x) + σ(x)σ′(x))f ′(x), f ∈ C2(I), x ∈ I. (2.8)

Letting r > 0 be a fixed constant, we assume
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Assumption 2.3. r > µ′(x) for x ∈ I.

We denote by ψ and φ the fundamental solutions of the ODE (see [9, Ch. 2, Sec. 10])

LXu(x)− (r − µ′(x))u(x) = 0, x ∈ I, (2.9)

and we recall that they are strictly increasing and decreasing, respectively.
Finally we denote by S′(x), x ∈ I the density of the scale function of (Xt)t≥0 and by w the

Wronskian

w :=
ψ′(x)φ(x)− φ′(x)ψ(x)

S′(x)
, x ∈ I, (2.10)

which is a positive constant.
Particular attention in this paper is devoted to solutions of (2.1) reflected inside intervals

[a, b] ⊂ I and we recall here the following result on Skorokhod reflection whose proof can be
found for instance in [37, Thm. 4.1] (notice that µ′ and σ′ are bounded on [a, b]).

Lemma 2.4. Let Assumption 2.1 hold. For any a, b ∈ I with a < b and any x ∈ I there exist a
unique couple (νa, ξb) ∈ S × S that solves the Skorokhod reflection problem SP(a, b) defined as:

Find (ν, ξ) ∈ S × S s.t.


X̃x,ν,ξ
t ∈ [a, b],P-a.s. for 0 < t ≤ σI ,∫ T∧σI

0 1{X̃x,ν,ξ
t >a}dνt = 0,P-a.s. for any T > 0,∫ T∧σI

0 1{X̃x,ν,ξ
t <b}dξt = 0,P-a.s. for any T > 0.

(SP(a, b))

It also follows that supp{dνat } ∩ supp{dξbt} = ∅.

For future frequent use we also recall the one-sided version of the above result.

Lemma 2.5. Let Assumption 2.1 hold. For any a ∈ I, x ∈ I and ξ ∈ S there exists a unique
νa ∈ S that solves the Skorokhod reflection problem SP ξ

a+ defined by

find ν ∈ S s.t.

 X̃x,ν,ξ
t ∈ [a, x),P-a.s. for 0 < t ≤ σI ,∫ T∧σI

0 1{X̃x,ν,ξ
t >a}dνt = 0,P-a.s. for any T > 0.

(SPξ
a+)

Similarly, for any b ∈ I, x ∈ I and ν ∈ S there exists a unique ξb ∈ S that solves the Skorokhod
reflection problem SP ν

b− defined by

find ξ ∈ S s.t.

 X̃x,ν,ξ
t ∈ (x, b],P-a.s. for 0 < t ≤ σI ,∫ T∧σI

0 1{X̃x,ν,ξ
t <b}dξt = 0,P-a.s. for any T > 0.

(SPν
b−)

The proof of the above lemma is based on a Picard iteration scheme. Although this derivation
seems to be standard we could not find a precise reference for our particular setting, and we
provide a short proof in Appendix A.2.

2.2 The game of controls

We introduce a 2-player nonzero-sum game of singular control, where player 1 (resp. player 2)
can influence the dynamics (2.1) by exerting the control ν (resp. ξ). The game has the following

structure: if player 1 uses a unit of control at time t > 0 pays a cost G1(X̃ν,ξ
t ) and player 2
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receives a reward L2(X̃ν,ξ
t ). A symmetric situation occurs if player 2 exerts control. Both players

want to maximise their own expected discounted reward functional Ψi defined by

Ψ1(x; ν, ξ) := E
[ ∫ σI

0
e−rtL1(X̃x,ν,ξ

t )	 dξt −
∫ σI

0
e−rtG1(X̃x,ν,ξ

t )⊕ dνt

]
, (2.11)

Ψ2(x; ν, ξ) := E
[ ∫ σI

0
e−rtL2(X̃x,ν,ξ

t )⊕ dνt −
∫ σI

0
e−rtG2(X̃x,ν,ξ

t )	 dξt

]
, (2.12)

where r > 0 is the discount rate and the integrals are defined below.
A definition of the integrals with respect to the controls in presence of state dependent costs

requires some attention because simultaneous jumps of ξ and ν may be difficult to handle. An
extended discussion on this matter is provided in Appendix A.1. Here we consider the class of
admissible strategies (see Remark 2.8 below)

M := {(ν, ξ) ∈ S × S : Px(∆νt ·∆ξt > 0) = 0 for all t ≥ 0 and x ∈ I}. (2.13)

Following [39] (see also [30, 31] among others) we define the discounted costs of controls by∫ T

0
e−rtg(X̃x,ν,ξ

t )	 dξt =

∫ T

0
e−rtg(X̃x,ν,ξ

t )dξct +
∑
t<T

∫ ∆ξt

0
g(X̃x,ν,ξ

t − z)dz , (2.14)

∫ T

0
e−rtg(X̃x,ν,ξ

t )⊕ dνt =

∫ T

0
e−rtg(X̃x,ν,ξ

t )dνct +
∑
t<T

∫ ∆νt

0
g(X̃x,ν,ξ

t + z)dz , (2.15)

for T > 0, (ν, ξ) ∈M and for any function g such that the integrals are well defined.
Throughout the paper we take functions Gi and Li satisfying

Assumption 2.6. Gi, Li : I → R ∪ {±∞}, with Li < Gi on I and with Gi ∈ C1(I) and
Li ∈ C(I). Moreover the following asymptotic behaviours hold

lim sup
x→x

∣∣∣Gi
φ

∣∣∣(x) = 0 and lim sup
x→x

∣∣∣Gi
ψ

∣∣∣(x) = 0.

Nash equilibria for the game are defined in the following way.

Definition 2.7. For x ∈ I we say that a couple (ν∗, ξ∗) ∈M is a Nash equilibrium if and only
if ∣∣Ψi(x; ν∗, ξ∗)

∣∣ < +∞, i = 1, 2,

and {
Ψ1(x; ν∗, ξ∗) ≥ Ψ1(x; ν, ξ∗) for any ν ∈ S s.t. (ν, ξ∗) ∈M,
Ψ2(x; ν∗, ξ∗) ≥ Ψ2(x; ν∗, ξ) for any ξ ∈ S s.t. (ν∗, ξ) ∈M.

(2.16)

We also say that Vi(x) := Ψi(x; ν∗, ξ∗) is the value of the game for the i-th player relative to the
equilibrium.

Remark 2.8. In several problems of interest for applications, the functionals (2.11) and (2.12)
may be rewritten as the sum of three terms: the integral in time of a state dependent running
profit plus two integrals with respect to the controls with constant instantaneous costs (see, e.g.,
[13], [19] and [33] for similar functionals in the case of single agent optimisation problems).
In such cases condition (2.13) on the admissible strategies is not needed. In fact we show in
Appendix A.1 that if at least one player picks a control that reflects the process at a fixed boundary
(i.e. solving one of the problems in Lemma 2.5) then the other player has no incentives in picking
strategies outside of the class M.
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Remark 2.9. Nash equilibria could in principle exist in broader sets thanM. However this fact
does not per se add useful information. In fact unless some additional optimality criterion is
introduced (for example maximisation of the total profit of the two players) it is often impossible
to rank multiple equilibria according to the players’ individual preferences. In this paper we
content ourselves with equilibria in M as these lead to explicit solutions and to the desired
connection between OS and SSC.

2.3 The game of stopping

In this section we introduce a 2-player nonzero-sum game of stopping where the underlying
process is Xx as in (2.5). This is the game which we show is linked to the game of control
introduced in the previous section.

Denote by T the set of F-stopping times. The i-th player chooses a τi ∈ T with the aim of
minimising an expected cost functional Ji(x; τ1, τ2), and the game ends at τ1 ∧ τ2. This game
has payoffs of immediate stopping given by the marginal costs of control Gi and Li appearing
in the functionals (2.11) and (2.12) of the game of control. More precisely for i = 1, 2 and j 6= i
we set

Ji(τ1, τ2;x) := E
[
e−

∫ τi
0 (r−µ′(Xx

s ))dsGi(X
x
τi)1{τi<τj} + e−

∫ τj
0 (r−µ′(Xx

s ))dsLi(X
x
τj )1{τi≥τj}

]
. (2.17)

As in the case of the game of controls also here we introduce the notion of Nash equilibrium.

Definition 2.10. For x ∈ I we say that a couple (τ∗1 , τ
∗
2 ) ∈ T × T is a Nash equilibrium if and

only if ∣∣Ji(x; τ∗1 , τ
∗
2 )
∣∣ < +∞, i = 1, 2

and {
J1(τ∗1 , τ

∗
2 ;x) ≤ J1(τ1, τ

∗
2 ;x), ∀ τ1 ∈ T ,

J2(τ∗1 , τ
∗
2 ;x) ≤ J2(τ∗1 , τ2;x), ∀ τ2 ∈ T .

(2.18)

We also say that vi(x) := Ji(τ∗1 , τ∗2 ;x) is the value of the game for the i-th player relative to the
equilibrium.

3 The main result

Here we prove the key result of the paper, i.e. a differential link between the value functions vi,
i = 1, 2 relative to Nash equilibria in the game of stopping and the value functions Vi, i = 1, 2
relative to Nash equilibria in the game of control. The result holds when the equilibrium stopping
times for X are hitting times to suitable thresholds so that the related optimally controlled X̃
is reflected at such thresholds.

Our main theorem relies on assumptions regarding the existence of a Nash equilibrium in
the game of stopping and suitable properties of the associated values v1 and v2. It was shown
in [16] that such requirements hold in a broad class of examples and we will summarise results
of [16] in Proposition 3.5 below, for completeness.

Theorem 3.1. Suppose there exist a∗, b∗ with x < a∗ < b∗ < x such that the following conditions
hold:

(a) The stopping times

τ∗1 := inf{t > 0 : Xx
t ≤ a∗}, τ∗2 := inf{t > 0 : Xx

t ≥ b∗} (3.1)

form a Nash equilibrium for the game of stopping as in Definition 2.10;
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(b) The value functions vi(x) := Ji(x; τ∗1 , τ
∗
2 ), i = 1, 2 are such that vi ∈ C(I), i = 1, 2

with v1 ∈ W 2,∞
loc (x, b∗) and v2 ∈ W 2,∞

loc (a∗, x) (hence in particular v1 ∈ C1(x, b∗) and
v2 ∈ C1(a∗, x) by Sobolev embedding [10, Ch. 9, Cor. 9.15]);

(c) v1 = G1 in (x, a∗], v1 = L1 in [b∗, x) and v2 = G2 in [b∗, x), v2 = L2 in (x, a∗]. Moreover
they solve the boundary value problem(

LXvi − (r − µ′)vi
)
(x) = 0, a∗ < x < b∗, i = 1, 2 (3.2)(

LXv1 − (r − µ′)v1

)
(x) ≥ 0, x < x ≤ a∗ (3.3)(

LXv2 − (r − µ′)v2

)
(x) ≥ 0, b∗ ≤ x < x (3.4)

vi ≤ Gi, x ∈ I, i = 1, 2. (3.5)

Then the couple of controls (νa∗ , ξb∗) which uniquely solves Problem SP(a∗, b∗) forms a
Nash equilibrium for the game of control as in Definition 2.7 and the value functions Vi(x) =
Ψi(x; νa∗ , ξb∗), i = 1, 2 are given by

V1(x) = κ1 +

∫ x

a∗

v1(z)dz, x ∈ I, (3.6)

V2(x) = κ2 +

∫ b∗

x
v2(z)dz, x ∈ I, (3.7)

with

κ1 :=
1

r

(σ2

2
G′1 + µG1

)
(a∗), κ2 := −1

r

(σ2

2
G′2 + µG2

)
(b∗). (3.8)

Proof. The proof is by direct check and it is performed in two steps.

Step 1. The functions

u1(x) = κ1 +

∫ x

a∗

v1(z)dz, x ∈ I, (3.9)

u2(x) = κ2 +

∫ b∗

x
v2(z)dz, x ∈ I, (3.10)

with κ1 and κ2 as in (3.8), are C1 on I (by continuity of Gi and Li on I) with u1 ∈ C2(x, b∗)
since v1 ∈ C1(x, b∗), and u2 ∈ C2(a∗, x) since v2 ∈ C1(a∗, x). We now show that u1, u2 and the
boundaries a∗, b∗ solve the system of coupled variational problems

(L
X̃
u1 − ru1)(x) = 0, x ∈ (a∗, b∗)

(L
X̃
u1 − ru1)(x) ≤ 0, x ∈ (x, b∗)

u′1(x) ≤ G1(x), x ∈ (x, b∗)

u′1(x) = G1(x), x ∈ (x, a∗)

u′1(x) = L1(x), x ∈ (b∗, x)

(3.11)

and 

(L
X̃
u2 − ru2)(x) = 0, x ∈ (a∗, b∗)

(L
X̃
u2 − ru2)(x) ≤ 0, x ∈ (a∗, x)

u′2(x) ≥ −G2(x), x ∈ (a∗, x)

u′2(x) = −G2(x), x ∈ (b∗, x)

u′2(x) = −L2(x), x ∈ (x, a∗).

(3.12)
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We will only give details about the derivation of (3.12) as the ones for (3.11) are analogous.
The last three properties in (3.12) follow by observing that u′2 = −v2 and by using v2 = G2

in [b∗, x), v2 = L2 in (x, a∗] and (3.5) (cf. (c) in the statement of the theorem). For the first
equation in (3.12) we use that

(L
X̃
u2 − ru2)(x) = −σ

2(x)

2
v′2(x)− µ(x)v2(x)− rκ2 −

∫ b∗

x
rv2(z)dz (3.13)

and that for x ∈ (a∗, b∗) ∫ b∗

x
rv2(z)dz =

∫ b∗

x

(
LXv2(z) + µ′(z)v2(z)

)
dz (3.14)

by (3.2). Integrating by parts the latter, using v2(b∗) = G2(b∗) and v′2(b∗) = G′2(b∗) and
substituting the result back into (3.13), the right-hand side of (3.13) equals zero upon recalling
the definition of κ2 (see (3.8)). Finally to prove the second line in (3.12) it is enough to notice
that for x ∈ [b∗, x) ∫ b∗

x
rv2(z)dz ≥

∫ b∗

x

(
LXv2(z) + µ′(z)v2(z)

)
dz (3.15)

by (3.4) and then argue as before.

Step 2. We now proceed to a verification argument to show that ui = Vi, i = 1, 2 and that
the controls (νa∗ , ξb∗) form a Nash equilibrium. To simplify the notation we set ν∗ := νa∗ and
ξ∗ := ξb∗ . Since (ν∗, ξ∗) solves SP(a∗, b∗), it clearly belongs toM. We provide again full details
only for u2 as the proof follows in the same way for u1.

First we show that u2 ≥ V2. Let ξ ∈ S be such that (ν∗, ξ) ∈ M. Since u2 ∈ C2(a∗, x)

and X̃x,ν∗,ξ
t ≥ a∗ for all t > 0 we can apply Itô-Meyer’s formula up to a localising sequence

of stopping times. The integral with respect to the continuous part of the bounded variation
process ν∗−ξ is the difference of the integrals with respect to dν∗,c and dξc. For x ∈ I we obtain

u2(x) =e−rθyu2(X̃x,ν∗,ξ
θy

)−
∫ θy

0
e−rs(L

X̃
− r)u2(X̃x,ν∗,ξ

s )ds−Mθy

−
∫ θy

0
e−rsu′2(X̃x,ν∗,ξ

s )dν∗,cs +

∫ θy

0
e−rsu′2(X̃x,ν∗,ξ

s )dξcs (3.16)

−
∑
s<θy

e−rs
(
u2(X̃x,ν∗,ξ

s+ )− u2(X̃x,ν∗,ξ
s )

)
,

where M is

Mt :=

∫ t

0
e−rsσ(X̃x,ν∗,ξ

s )u′2(X̃x,ν∗,ξ
s )dW̃s (3.17)

and θy is the stopping time

θy := inf{u > 0 : X̃x,ν∗,0
u ≥ y}, for y > b∗. (3.18)

Notice that for any t ∈ (0, θy] we have a∗ ≤ X̃x,ν∗,ξ
t ≤ X̃x,ν∗,0

t ≤ y, hence continuity of σ and of
u′2 imply that (Mt)t≤θy is a martingale.

Since (ν∗, ξ) ∈M, the process X̃x,ν∗,ξ is left-continuous and we have∑
s<θy

e−rs
(
u2(X̃x,ν∗,ξ

s+ )− u2(X̃x,ν∗,ξ
s )

)
(3.19)

=
∑
s<θy

e−rs
(
u2(X̃x,ν∗,ξ

s+ )− u2(X̃x,ν∗,ξ
s )

)[
1{∆ν∗s>0} + 1{∆ξs>0}

]
,
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where ∑
s<θy

e−rs
(
u2(X̃x,ν∗,ξ

s+ )− u2(X̃x,ν∗,ξ
s )

)
1{∆ν∗s>0} =

∑
s<θy

e−rs
∫ ∆ν∗s

0
u′2(X̃x,ν∗,ξ

s + z)dz,

∑
s<θy

e−rs
(
u2(X̃x,ν∗,ξ

s+ )− u2(X̃x,ν∗,ξ
s )

)
1{∆ξs>0} = −

∑
s<θy

e−rs
∫ ∆ξs

0
u′2(X̃x,ν∗,ξ

s − z)dz.

Hence (3.16) may be written in a more compact form as (cf. (2.14), (2.15))

u2(x) =e−rθyu2(X̃x,ν∗,ξ
θy

)−
∫ θy

0
e−rs(L

X̃
− r)u2(X̃x,ν∗,ξ

s )ds−Mθy

−
∫ θy

0
e−rsu′2(X̃x,ν∗,ξ

s )⊕ dν∗s +

∫ θy

0
e−rsu′2(X̃x,ν∗,ξ

s )	 dξs. (3.20)

Now, using the fact that u′2 ≥ −G2 on I and that u′2(X̃x,ν∗,ξ
s ) = −L2(X̃x,ν∗,ξ

s ) for all s in the

support of dν∗s (i.e. for all s ≥ 0 s.t. X̃x,ν∗,ξ
s ≤ a∗), and employing the second expression in (3.12)

jointly with the fact that X̃x,ν∗,ξ
s ≥ a∗ for s > 0 we get

u2(x) ≥e−rθyu2(X̃x,ν∗,ξ
θy

)−Mθy

+

∫ θy

0
e−rsL2(X̃x,ν∗,ξ

s )⊕ dν∗s −
∫ θy

0
e−rsG2(X̃x,ν∗,ξ

s )	 dξs. (3.21)

By taking expectations we end up with

u2(x) ≥Ex
[
e−rθyu2(X̃ν∗,ξ

θy
) +

∫ θy

0
e−rsL2(X̃ν∗,ξ

s )⊕ dν∗s −
∫ θy

0
e−rsG2(X̃ν∗,ξ

s )	 dξs

]
. (3.22)

We aim at taking limits as y → x in (3.22) and we preliminarily notice that θy ↑ σI as y → x,
Px-a.s.

(i) By (3.10) it is easy to see that

|u2(X̃ν∗,ξ
θy

)| ≤κ2 +

∫ b∗

a∗

|v2(z)|dz +

∫ b∗∨X̃ν∗,ξ
θy

b∗

|G2(z)|dz

≤C2 +

∫ b∗∨X̃ν∗,0
θy

b∗

|G2(z)|dz ≤ C2 +

∫ y

b∗

|G2(z)|dz,

for some C2 > 0, and where we have used v2 = G2 on [b∗, x) and X̃ν∗,ξ
θy
≤ X̃ν∗,0

θy
≤ y Px-a.s.

Hence we have

Ex
[
e−rθyu2(X̃ν∗,ξ

θy
)
]
≥ −Ex

[
e−rθy

](
C2 +

∫ y

b∗

|G2(z)|dz
)
. (3.23)

Lemma A.2 in Appendix guarantees

lim sup
y↑x

Ex
[
e−rθy

](
C2 +

∫ y

b∗

|G2(z)|dz
)
≤ 0, (3.24)

so that (3.23) yields

lim inf
y↑x

Ex
[
e−rθyu2(X̃ν∗,ξ

θy
)
]
≥ 0. (3.25)
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(ii) Denoting by h+ (resp. h−) the positive (resp. negative) part of any Borel-measurable
function h, the integrals with respect to the controls can be rewritten as

Ex
[ ∫ θy

0
e−rsL2(X̃ν∗,ξ

s )⊕ dν∗s −
∫ θy

0
e−rsG2(X̃ν∗,ξ

s )	 dξs

]
= Ex

[ ∫ θy

0
e−rs(L2)+(X̃ν∗,ξ

s )⊕ dν∗s −
∫ θy

0
e−rs(G2)+(X̃ν∗,ξ

s )	 dξs

]
− Ex

[ ∫ θy

0
e−rs(L2)−(X̃ν∗,ξ

s )⊕ dν∗s −
∫ θy

0
e−rs(G2)−(X̃ν∗,ξ

s )	 dξs

]
.

Recall that θy ↑ σI as y ↑ ∞ and apply monotone convergence theorem to each term in
the right hand-side of the above expression to obtain

lim
y→x

Ex
[ ∫ θy

0
e−rsL2(X̃ν∗,ξ

s )⊕ dν∗s −
∫ θy

0
e−rsG2(X̃ν∗,ξ

s )	 dξs

]
= Ex

[ ∫ σI

0
e−rsL2(X̃ν∗,ξ

s )⊕ dν∗s −
∫ σI

0
e−rsG2(X̃ν∗,ξ

s )	 dξs

]
.

Finally we combine items (i) and (ii) and take limits in (3.22) as y → x to get

u2(x) ≥Ex
[ ∫ σI

0
e−rsL2(X̃ν∗,ξ

s )⊕ dν∗s −
∫ σI

0
e−rsG2(X̃ν∗,ξ

s )	 dξs

]
. (3.26)

Hence u2(x) ≥ Ψ2(x; ν∗, ξ) for any ξ ∈ S such that (ν∗, ξ) ∈M.
Now repeating the steps above with ξ = ξ∗, the inequalities in (3.21) and (3.22) become strict

equalities due to the fact that X̃x,ν∗,ξ∗

t ∈ [a∗, b∗] for all t > 0 and u′2(X̃x,ν∗,ξ∗

t ) = −G2(X̃x,ν∗,ξ∗

t )
on supp{dξ∗t }. Hence passing to the limit as y → x dominated convergence theorem gives (3.25)
so that u2(x) = Ψ(x; ν∗, ξ∗) = V2(x).

Remark 3.2. From the game-theoretic point of view, Nash equilibria of Theorem 3.1 above are
Markov perfect [32] (also called Nash equilibria in closed-loop strategies), i.e. equilibria in which
players’ actions only depend on the “payoff-relevant” state variable X̃. Our result provides a
simple construction of closed-loop Nash equilibria for specific continuous time stochastic games
of singular control. Since this problem is yet to be solved in game theory in its full generality
(see the discussion in Section 2 of [2] and in [35]), our work contributes to fill this gap.

3.1 On the assumptions of Theorem 3.1.

In this section we give sufficient conditions under which a∗ and b∗ as in Theorem 3.1 exist.
Moreover in Remark 3.6 we provide algebraic equations for a∗ and b∗ which can be solved at
least numerically. Recall φ and ψ, i.e. the fundamental decreasing and increasing solutions to
(2.9), and recall that r > µ′(x) for x ∈ I by Asssumption 2.3. We need the following set of
functions:

Definition 3.3. Let A be the class of real valued functions H ∈ C2(I) such that

lim sup
x→x

∣∣∣H
φ

∣∣∣(x) = 0, lim sup
x→x

∣∣∣H
ψ

∣∣∣(x) = 0 (3.27)

and Ex

[ ∫ σI

0
e−

∫ t
0 (r−µ′(Xs))ds

∣∣h(Xt)
∣∣dt] <∞ (3.28)

for all x ∈ I and with h(x) := (LXH − (r − µ′)H)(x). We denote by A1 (respectively A2) the
set of all H ∈ A such that h is strictly positive (resp. negative) on (x, xh) and strictly negative
(resp. positive) on (xh, x) for some xh ∈ I with lim infx→x h(x) > 0 (resp. lim supx→x h(x) < 0)
and lim supx→x h(x) < 0 (resp. lim infx→x h(x) > 0).
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We also need the following

Assumption 3.4. For i = 1, 2, it holds Gi ∈ Ai with infx∈I Gi(x) < 0 and

lim sup
x→x

∣∣∣Li
φ

∣∣∣(x) < +∞ and lim sup
x→x

∣∣∣Li
ψ

∣∣∣(x) < +∞. (3.29)

Moreover letting x̂1 and x̂2 in I be such that

{x : (LXG1 − (r − µ′)G1)(x) > 0} = (x, x̂1), (3.30)

{x : (LXG2 − (r − µ′)G2)(x) > 0} = (x̂2, x), (3.31)

we assume x̂1 < x̂2.

The above conditions have a simple interpretation for the game of stopping (see the introduc-
tion of [16]): payoffs Gi which are negative for at least some values of x guarantee that stopping
in finite time is incentivised relative to waiting indefinitely; the fact that x̂1 < x̂2 implies that
for any value of the process X at least one player has a running benefit from waiting.

The proofs of the next two propositions are given in Appendix A.2. In their statements we
denote

ϑi(x) :=
G′i(x)φ(x)−Gi(x)φ′(x)

wS′(x)
, i = 1, 2, (3.32)

with w > 0 as in (2.10).

Proposition 3.5. Let Assumptions 2.6 and 3.4 hold, then each one of the conditions below is
sufficient for the existence of a∗ and b∗ fulfilling (a), (b) and (c) of Theorem 3.1:

1. x and x are natural boundaries for (Xt)t≥0.

2. x is an entrance boundary and x is a natural boundary for (Xt)t≥0; moreover the following
hold

(2.i) ϑ1(x+) := limx↓x ϑ1(x) < (L1/ψ)(x∞2 ), where x∞2 uniquely solves ϑ2(x) = (G2/ψ)(x)
in (x̂2, x);

(2.ii) sup{x > x : L1(x) = ϑ1(x+)ψ(x)} ≤ x̂2;

(2.iii) limx↑x(L1/φ)(x) > −∞.

Remark 3.6. An important byproduct of our connection between nonzero-sum games of control
and nonzero-sum games of stopping is that the equilibrium thresholds a∗ and b∗ of Theorem 3.1
are a solution of a system of algebraic equations which can be computed at least numerically. In
the terminology of singular control theory these equations correspond to the smooth-fit conditions
V ′′1 (a∗+) = G′1(a∗) and V ′′2 (b∗−) = −G′2(b∗) and were obtained via a geometric constructive
approach in [16] (see Theorem 3.4). We recall the system here for completeness

G1

φ
(a∗)−

L1

φ
(b∗)− ϑ1(a∗)

(ψ
φ

(a∗)−
ψ

φ
(b∗)

)
= 0 ,

G2

φ
(b∗)−

L2

φ
(a∗)− ϑ1(b∗)

(ψ
φ

(b∗)−
ψ

φ
(a∗)

)
= 0 ,

(3.33)

where a∗ < x̂1 and b∗ > x̂2.
Uniqueness of the solution to (3.33) is discussed in [16, Thm. 3.7].
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4 A game of pollution control

In order to understand the nature of our Assumptions 2.6 and 3.4 and illustrate an application
of our results we present here a game version of a pollution control problem.

A social planner wants to keep the level of pollution low while the productive sector of the
economy (modeled as a single representative firm) wants to increase production capacity. If we
assume that the pollution level is proportional to the firm’s production capacity (see for example
[23, 38]) then the problem translates into a game of capacity expansion. Indeed the representative
firm aims at maximising profits by investing to increase the production level, whereas the social
planner aims at keeping the pollution level under control through environmental regulations
which effectively cap the maximum production rate.

For the production capacity we consider a controlled geometric Brownian motion as in [12,
13, 19], amongst others,

dX̃ν,ξ
t = µX̃ν,ξ

t dt+ σX̃ν,ξ
t dW̃t + dνt − dξt, X̃ν,ξ

0 = x ∈ R+, (4.1)

for some µ ∈ R and σ > 0. The firm has running operating profit π(x), which is C1 and strictly
concave and a positive cost per unit of investment α1(x). The social planner has an instantaneous
utility function u(x) which is C1, decreasing and strictly concave2. Since imposing a reduction
of production might also have some negative impact on social welfare (e.g., it might cause an
increase in the level of unemployment) we introduce a positive ‘cost’ (in terms of the expected
total utility) associated to the social planner’s policies and we denote it by α2(x). For simplicity
here we assume αi(x) ≡ αi > 0, i = 1, 2, and the objective functionals for the firm, denoted by
Ψ1, and the social planner, denoted by Ψ2, are given by

Ψ1(x; ν, ξ) := Ex
[ ∫ σI

0
e−rtπ(X̃ν,ξ

t )dt− α1

∫ σI

0
e−rtdνt

]
, (4.2)

Ψ2(x; ν, ξ) := Ex
[ ∫ σI

0
e−rtu(X̃ν,ξ

t )dt− α2

∫ σI

0
e−rtdξt

]
. (4.3)

Both players want to maximise their respective functional by picking admissible strategies from
M. As explained in Lemma A.1 below, in this context there is no loss of generality for our
scopes in considering M rather than S × S.

The game with functionals (4.2)–(4.3) could be tackled directly with the same methods
developed in the previous sections. This however would require some lengthy repetitions on the
side of the OS game to account for the running profit/utility terms. Nevertheless results of [16]
would still apply in this setting. To avoid such repetitions we prefer to reduce (4.2)–(4.3) to our
original formulation and for that it is indeed convenient to deal with M.

Here I = R+ and we define the functions Π and U via the ODEs

(L
X̃
− r)Π(x) = π(x), (L

X̃
− r)U(x) = u(x) (4.4)

with finiteness conditions at zero, Π(0+) < +∞ and U(0+) < +∞, and possibly growth condi-
tions at infinity as needed.

Then for any (ν, ξ) ∈ M an application of Itô-Meyer formula shows that finding a Nash
equilibrium for the functionals (4.2)–(4.3) is equivalent to finding one for (2.11)–(2.12) with

G1(x) = α1 + Π′(x), G2(x) = α2 − U ′(x),

L1(x) = Π′(x), L2(x) = −U ′(x).

2The social planner’s utility decreases with increasing pollution levels. Moreover, if the pollution is high the
marginal benefit from decreasing it is large, whereas if the pollution is low a further contraction of the economy
has very little or no benefit.
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It is not hard to verify that

ζ1(x) := (LXG1 − (r − µ)G1)(x) = π′(x)− (r − µ)α1 (4.5)

ζ2(x) := (LXG2 − (r − µ)G2)(x) = −u′(x)− (r − µ)α2, (4.6)

and we notice that ζ1 is decreasing by concavity of π whereas ζ2 is increasing by concavity of u.
For instance assuming Inada conditions

lim
x→∞

π′(x) = 0, lim
x→0

π′(x) = +∞,

lim
x→∞

u′(x) = −∞, lim
x→0

u′(x) = 0,

we have that (3.30) and (3.31) hold for some x̂i, i = 1, 2, which depend on the specific choice of
π and u.

A more detailed discussion regarding Assumption 3.4 can be easily addressed in the case
of π(x) = xλ and u(x) = −xδ where λ ∈ (0, 1) and δ > 1. For r > µ and sufficiently large
we can guarantee (3.28). Moreover, denoting by γ1 (resp. γ2) the positive (resp. negative) root
of the second order equation 1

2σ
2γ(γ − 1) + (µ + σ2)γ − (r − µ) = 0, conditions (3.27) on G1

and G2 are satisfied if λ > max{0, γ2 + 1} and 1 < δ < 1 + γ1. Clearly (3.29) holds by the
same arguments. In all cases G1 assumes negative values for x in suitable intervals, whereas we
guarantee infxG2(x) < 0 by additionally requiring, e.g., γ1 < δ < γ1 + 1. Finally we have

x̂1 =
(rα1

λ

)− 1
1−λ

, x̂2 =
(rα2

δ

) 1
δ−1

,

so that a suitable choice of α1 and α2 ensures that x̂1 < x̂2.

A Appendix

A.1 Cost integrals and the set of strategies M

It is well known in the singular stochastic control literature that state dependent instantaneous
costs of control give rise to questions concerning the definition of integrals representing the
cumulative cost of exercising control.

Zhu in [39] provided a definition consistent with the classical verification argument used in
SSC for the solution of an HJB equation derived by the Dynamic Programming Principle. This
definition has been adopted in several other papers concerning explicit solutions of SSC problems
(see [30, 31] among others), and this is also the one that we use in our (2.14) and (2.15). Another,
perhaps more natural, possibility is instead to define the integral as a Riemann-Stieltjes’ integral
as for example it was done by Alvarez in [1].

Despite this formal difference it is remarkable that the two definitions for the cost of exercising
control lead essentially to the same optimal strategies for problems of monotone follower type.
In particular it is possible to obtain Zhu’s integral from the Riemann-Stieltjes’ one by taking
the limit as n→∞ of a sequence of controls that at a given time t make n instantaneous jumps
of length h/n for a fixed h > 0. The optimality of this behaviour is illustrated for example by
Alvarez in Corollary 1 of [1] and it is often referred to as “chattering policy”. The inconvenient
with this approach is that the control obtained in the limit is not admissible in our S and
therefore optimisers can only be obtained in a larger class.

Zhu’s integral has proved to work very well in problems with monotone controls (representing
for instance irreversible investments) or with controls of bounded variation (representing for
instance partially reversible investment policies). In particular the latter are often chosen in
such a way that the controller’s decisions to invest/disinvest reflect the minimal decomposition
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of the control process (cf. [13], [18] and [21], among others). In other words, investment and
disinvestment do not occur at the same time, and this assumption is often justified by conditions
on the absence of arbitrage opportunities.

Here instead we have agents who use their controls independently and it is unclear why
a priori they should decide not to contrast each other’s moves by acting simultaneously. To
elaborate more on this point and understand our choice of the set M, it is convenient to look
at particular cases of our problem.

In some instances an application of Itô-Tanaka formula allows to rewrite our functionals
(2.11) and (2.12) in terms of equivalent ones with a state-dependent running cost πi plus constant
costs of control αi, βi (see our example in Section 4 or problems studied in [13], [19] or [33]).
The new functionals read as follows

Ψ̂1(x; ν, ξ) := E
[ ∫ σI

0
e−rtπ1(X̃x,ν,ξ

t )dt+

∫ σI

0
e−rtα1 dξt −

∫ σI

0
e−rtβ1 dνt

]
, (A-1)

Ψ̂2(x; ν, ξ) := E
[ ∫ σI

0
e−rtπ2(X̃x,ν,ξ

t )dt+

∫ σI

0
e−rtα2 dνt −

∫ σI

0
e−rtβ2 dξt

]
. (A-2)

In these cases the integrals with respect to the controls are simply understood as a Riemann-
Stieltjes’ integrals. For αi < βi we prove that if one of the two players opts for a control that
reflects the process at a threshold, then the other player’s best response avoids simultaneous
jumps of the controls. The condition αi < βi is the analogue in this context of the absence of
arbitrage in papers like [13], [19] and [33]. The result is illustrated in the next lemma.

Lemma A.1. Consider the game with functionals (A-1)–(A-2). Recall Lemma 2.5 and assume

αi < βi, i = 1, 2. If player 1 (resp. player 2) chooses νa (resp. ξb) that solves SP ξ
a+ for a ∈ I

(resp. SP ν
b− for b ∈ I) then the best reply ξ̂a := argmax Ψ̂2(x; νa, ξ) is such that (νa, ξ̂a) ∈ M

(resp. (ν̂b, ξ
b) ∈M with ν̂a := argmax Ψ̂1(x; ν, ξb)).

Proof. Let x, a ∈ I and ξ ∈ S and consider νa solving SP ξ
a+. We want to perform a pathwise

comparison of the cost functional for player 2 under two different controls. In particular we fix
ω ∈ Ω and assume that there exists (a stopping time) t0 = t0(ω) > 0 such that

(
∆νat0 ·∆ξt0

)
(ω) >

0. With no loss of generality we may assume that Xx,νa,ξ
t0

(ω) > a and that the downward jump
∆ξt0 is trying to push the process below a, i.e.

∆ξt0(ω) > [Xx,νa,ξ
t0

− a](ω).

This push causes the immediate reaction of the control νa and therefore a simultaneous jump
of the two controls. The case in which Xx,νa,ξ

t0
(ω) ≤ a can be dealt with in the same way up to

trivial changes.
We denote by ξ0 a control in S such that

ξ0
t (ω) =

{
ξt(ω) , t ≤ t0
ξt(ω)− [∆ξt0 − (Xx,νa,ξ

t0
− a)](ω) , t > t0,

i.e. ξ0(ω) is the same as ξ(ω) but the jump size at t0(ω) is reduced so that the process is not

pushed below a. For νa solving SPξ0

a+ the jump at t0 is not triggered and Xx,νa,ξ0

t0+ (ω) = a due
only to the downward push given by ξ0. Now we observe that the (random) Borel measure dνa

induced by νa is the same for ξ and ξ0 with the only exception of a mass at time t0 in reaction

to the jump of ξ. Moreover, since νa solves SPξ
a+ for any ξ, then Xx,νa,ξ

t (ω) = Xx,νa,ξ0

t (ω) for

all t > 0, since Xx,νa,ξ
t0+ (ω) = Xx,νa,ξ0

t0+ (ω) = a and nothing else has changed for t 6= t0.
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It is now easy to see that the couple (νa, ξ) requires an additional cost for player 2 compared
to the couple (νa, ξ0) and therefore cannot be optimal. For the sake of clarity here we denote

by νa,ξ the solution of SPξ
a+ and by νa,ξ

0
the solution of SPξ0

a+. So we obtain∫ σI

0
e−rtπ2(X̃x,νa,ξ,ξ

t )dt+

∫ σI

0
e−rtα2 dν

a,ξ
t −

∫ σI

0
e−rtβ2 dξt

=

∫ σI

0
e−rtπ2(X̃x,νa,ξ

0
,ξ0

t )dt+

∫ σI

0
e−rtα2 dν

a,ξ0

t −
∫ σI

0
e−rtβ2 dξ

0
t

+ e−rt0(α2 − β2)[∆ξt0 − (Xx,νa,ξ,ξ
t0

− a)]

and the last term is negative as α2 < β2. Since the above argument can be repeated for any
simultaneous jump of νa and ξ, and any ω ∈ Ω the proof is complete.

The point of the above lemma is that if costs of control are constant then a simple condition
for the absence of arbitrage opportunities implies that if one player picks a reflecting strategy
then the other one will pick a control such that (ν, ξ) ∈ M. Therefore under such assumptions
the equilibria constructed in Theorem 3.1 are also equilibria in the larger class S × S.

A.2 Auxiliary results

We recall here the fundamental solutions φ and ψ of (2.9), and recall also that x and x are
unattainable for X of (2.5) and for the uncontrolled diffusion X̃0,0 of (2.1).

Lemma A.2. Let a∗ ∈ I be arbitrary but fixed and denote by X̃ν∗,0 the solution of the Skorokhod
reflection problem SP 0

a∗+ of Lemma 2.5. For y > a∗, y ∈ I set θy := inf{t > 0 : X̃ν∗,0 ≥ y}
and

q(x, y) := Ex
[
e−rθy

]
, x ∈ [a∗, x).

Then for i = 1, 2 we have

lim
y↑x

q(x, y)

(
1 +

∫ y

a∗

|Gi(z)|dz
)

= 0. (A-3)

Similarly let b∗ ∈ I be arbitrary but fixed and denote by X̃0,ξ∗ the solution of the Skorokhod
reflection problem SP 0

b∗− of Lemma 2.5. For y < b∗, y ∈ I set ηy := inf{t > 0 : X̃0,ξ∗ ≤ y} and

p(x, y) := Ex
[
e−rηy

]
, x ∈ (x, b∗].

Then for i = 1, 2 we have

lim
y↓x

p(x, y)

(
1 +

∫ y

b∗

|Gi(z)|dz
)

= 0. (A-4)

Proof. We provide a full proof only for the first claim as the one for the second claim follows
by similar arguments. Existence of a solution to SP 0

a∗+ is a well known result. It is shown in
Lemma 2.1 and Corollary 2.2 of [34] that the function q( · , y) solves

(L
X̃
− r)q(x, y) = 0, x ∈ (a∗, x) (A-5)

with boundary conditions

q(y−, y) := lim
x↑y

q(x, y) = 1, qx(a∗+, y) := lim
x↓a∗

qx(x, y) = 0.
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In particular we refer to the condition at a∗ as the reflecting boundary condition.
Since q( · , y) solves (A-5) then it may be written as

q(x, y) = A(y)ψ̃(x) +B(y)φ̃(x), x ∈ I

where ψ̃ and φ̃ denote the fundamental increasing and decreasing solutions, respectively, of
(L

X̃
− r)u = 0 on I. By imposing the reflecting boundary condition we get

B(y) = −A(y)
ψ̃′(a∗)

φ̃′(a∗)

which plugged back into the expression for q gives

q(x, y) = A(y)

(
ψ̃(x)− ψ̃′(a∗)

φ̃′(a∗)
φ̃(x)

)
. (A-6)

Now imposing the boundary condition at y we also obtain

A(y) =

(
ψ̃(y)− ψ̃′(a∗)

φ̃′(a∗)
φ̃(y)

)−1

. (A-7)

Notice that −ψ̃′(a∗)/φ̃′(a∗) > 0 thus implying A(y), B(y) > 0 and q(x, y) > 0 as expected.
Since the sample paths of X̃ν∗,0 are continuous for all t > 0 then y 7→ q(x, y) must be strictly
decreasing. Hence

qy(x, y) = A′(y)

(
ψ̃(x)− ψ̃′(a∗)

φ̃′(a∗)
φ̃(x)

)
< 0

which implies A′(y) < 0 since the term in brackets is positive. From (A-7) and direct computa-
tion we get

A′(y) = − 1

(A(y))2

(
ψ̃′(y)− ψ̃′(a∗)

φ̃′(a∗)
φ̃′(y)

)
and A′(y) < 0 implies (

ψ̃′(y)− ψ̃′(a∗)

φ̃′(a∗)
φ̃′(y)

)
> 0. (A-8)

The latter inequality is important to prove (A-3).
The assumed regularity of µ and σ (see Assumption 2.1) implies that ψ̃′ solves LXu(x) −

(r − µ′(x))u(x) = 0 in I (cf. (2.9)), and it can therefore be written as a linear combination of
the fundamental increasing and decreasing functions ψ and φ. That is,

ψ̃′(x) = αψ(x) + βφ(x), (A-9)

for some α, β ∈ R. Analogously

φ̃′(x) = γψ(x) + δφ(x). (A-10)

Moreover since ψ̃′ > 0 and φ̃′ < 0 in I, and x and x are unattainable for X, then it must be
α, β ≥ 0 and γ, δ ≤ 0. Noticing that y > a∗ was arbitrary, the inequality (A-8) now reads(

α− γ ψ̃
′(a∗)

φ̃′(a∗)

)
ψ(y) +

(
β − δ ψ̃

′(a∗)

φ̃′(a∗)

)
φ(y) > 0 y > a∗. (A-11)
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We aim at showing that α > 0 and we can do it by considering separately two cases.

Case 1. Assume γ < 0. Since the second term in (A-11) can be made arbitrarily small by letting
y → x then it must be α > γψ̃′(a∗)/φ̃

′(a∗) > 0.

Case 2. Assume γ = 0. If α = 0 then the first term on the left-hand side of (A-11) is zero and
by using (A-9) and (A-10) we get from (A-11)

0 <

(
β − δ ψ̃

′(a∗)

φ̃′(a∗)

)
φ(y) =

(
β − δβφ(a∗)

δφ(a∗)

)
φ(y) = 0,

hence a contradiction. So it must be α > 0.

Finally, for fixed x ∈ [a∗, y), there exists a constant C = C(a∗, x) > 0 such that (A-6) and
(A-7) give

0 ≤ q(x, y)

(
1 +

∫ y

a∗

|Gi(z)|dz
)
≤ C

ψ̃(y)

(
1 +

∫ y

a∗

|Gi(z)|dz
)
. (A-12)

Now letting y → x we have ψ̃(y)→∞ as x is unattainable for X̃0,0. We have two possibilities:

(a)
∫ x
a∗
|Gi(z)|dz < +∞ and therefore (A-3) holds trivially from (A-12);

(b)
∫ x
a∗
|Gi(z)|dz = +∞ so that by using de l’Hôpital rule in (A-12), (A-9) and Assumption

2.6 we get

lim
y→x

1

ψ̃(y)

∫ y

a∗

|Gi(z)|dz = lim
y→x

|Gi(y)|
αψ(y)

= 0.

Proof of Lemma 2.5. We provide here a short proof of the existence of a unique solution to
the Skorokhod reflection problem SP ξ

a+.
Notice that the drift and diffusion coefficients in the dynamics (2.1) are locally Lipschitz-

continuous due to our Assumption 2.1. So we first prove the result for Lipschitz coefficients
and then extend it to locally Lipschitz ones. Notice that here we are not assuming sublinear
growth of µ and σ but we rely on non attainability of x and x for the uncontrolled process X̃0,0.
Existence of a unique solution to problem SP ν

b− can be shown by analogous arguments.

Step 1 - Lipschitz coefficients. Here we assume µ, σ ∈ Lip(I) with constant smaller than L > 0.
Let a ∈ I, x ∈ I and ξ ∈ S, and consider the sequence of processes defined recursively by

X
[0]
t = x, ν

[0]
t = 0 and

X
[k+1]
t = x+

∫ t

0
µ(X [k]

u )du+

∫ t

0
σ(X [k]

u )dWu + ν
[k+1]
t − ξt,

ν
[k+1]
t = sup

0≤s≤t

[
a− x−

∫ s

0
µ(X [k]

u )du−
∫ s

0
σ(X [k]

u )dWu + ξs
]
,

(A-13)

for any k ≥ 0 and t ≥ 0. Notice that at any step the process X [k+1] is kept above the level
a by the process ν[k+1] with minimal effort, i.e. according to a Skorokhod reflection at a. The
Lipschitz-continuity of µ and σ allows to obtain from (A-13) the estimate

Ex
[

sup
0≤s≤t

∣∣X [k+1]
s −X [k]

s

∣∣2] ≤ CEx[ ∫ t

0

∣∣X [k]
s −X [k−1]

s

∣∣2ds], (A-14)
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for k ≥ 1 and for some positive C := C(x, a, L). Since for k = 0 one has Ex[sup0≤s≤t |X
[1]
s −x|2] ≤

Rt for some R := R(x, a, L) > 0, then an induction argument together with (A-14) yield

Ex
[

sup
0≤s≤t

∣∣X [k+1]
s −X [k]

s

∣∣2] ≤ (R0t)
k+1

(k + 1)!
, k ≥ 0, (A-15)

for some other positive R0 := R0(x, a, L). Analogously,

Ex
[

sup
0≤s≤t

∣∣ν[k+1]
s − ν[k]

s

∣∣2] ≤ (R1t)
k+1

(k + 1)!
, k ≥ 0, (A-16)

with R1 := R1(x, a, L) > 0.
Thanks to (A-15) and (A-16) we can now proceed with an argument often used in SDE

theory for the proof of existence of strong solutions (see, e.g., the proof of [28, Ch. 5, Thm. 2.9]).
That is, we use Chebyshev inequality and Borel-Cantelli’s lemma to find that (X [k+1], ν[k+1])k≥0

converges a.s., locally uniformly in time, as k ↑ ∞. We denote this limit by (X̃νa,ξ, νa). By
Lipschitz continuity of µ and σ and the same arguments as above we also obtain that the

sequences (
∫ t

0 µ(X
[k]
u )du)k≥0 and (

∫ t
0 σ(X

[k]
u )dWu)k≥0 converge a.s., locally uniformly in time.

Then we have a.s. (up to a possible subsequence)

νa = lim
k↑∞

ν
[k+1]
t = lim

k↑∞
sup

0≤s≤t

[
a− x−

∫ s

0
µ(X [k]

u )du−
∫ s

0
σ(X [k]

u )dWu + ξs
]

= sup
0≤s≤t

[
a− x−

∫ s

0
µ(X̃νa,ξ

u )du−
∫ s

0
σ(X̃νa,ξ

u )dWu + ξs
]
.

It thus follows that (X̃νa,ξ, νa) solves SP ξ
a+. Finally, uniqueness can be proved as, e.g., in the

proof of [37, Thm. 4.1].

Step 2 - locally Lipschitz coefficients. Here we assume µ and σ as in Assumption 2.1. Let xn ↑ x
and define

µn(x) = µ(x)1{x≤xn} + µ(xn)1{x>xn}, σn(x) = σ(x)1{x≤xn} + σ(xn)1{x>xn}.

For each n we denote by SP
ξ (n)
a+ the Skorokhod problem SP ξ

a+ but for the dynamics

dXt = µn(Xt)dt+ σn(Xt)dWt + dνt − dξt

rather than for (2.1).
Since for each n we have µn and σn uniformly Lipschitz on [a, x) then Step 1 guarantees that

there exists a unique (X(n), ν(n)) that solves SP
ξ (n)
a+ . We denote τn := inf{t > 0 : X

(n)
t ≥ xn}

and for all t ≤ τn we have

X
(n)
t =x+

∫ t

0
µn(X(n)

u )du+

∫ t

0
σn(X(n)

u )dWu + ν
(n)
t − ξt

=x+

∫ t

0
µ(X(n)

u )du+

∫ t

0
σ(X(n)

u )dWu + ν
(n)
t − ξt (A-17)

ν
(n)
t = sup

0≤s≤t

[
a− x−

∫ s

0
µn(X(n)

u )du−
∫ s

0
σn(X(n)

u )dWu + ξs
]

= sup
0≤s≤t

[
a− x−

∫ s

0
µ(X(n)

u )du−
∫ s

0
σ(X(n)

u )dWu + ξs
]
. (A-18)

Since the coefficients above do not depend on n, by construction the process (X
(n)
t , ν

(n)
t ) also

solves SP ξ
a+ for t ≤ τn. Uniqueness of the solution for SP

ξ (n)
a+ implies that (X

(n)
t , ν

(n)
t ) is also
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the solution of SP
ξ (m)
a+ for t ≤ τm, for each m ≤ n and therefore the unique solution of SP ξ

a up
to the stopping time τn.

Fix an arbitrary T > 0. For all ω ∈ {τn > T} and all t ≤ T we can define (X̃νa,ξ
t , νat ) :=

(X
(n)
t , ν

(n)
t ) so that the couple (X̃νa,ξ

t , νat ) is the unique solution of SP ξ
a+ for t ≤ T . It remains

to show that limn→∞ P(τn > T )→ 1 so that we have constructed a unique solution of SP ξ
a+ for

a.e. ω ∈ Ω up to time T .
Let us consider first the case ξ ≡ 0. It follows from Lemma A.2 that Ex[e−rθxn ] → 0 as

n→∞ with θxn = inf{t > 0 : X̃νa,0
t ≥ xn} and hence θxn →∞ Px-a.s. Hence

lim
n→∞

P(τn > T ) = lim
n→∞

P(θxn > T ) = 1

since τn = θxn P-a.s. To conclude it is sufficient to notice that X̃νa,ξ
t ≤ X̃νa,0

t , for all t > 0, and
arbitrary ξ ∈ S. Then x is unattainable for X̃νa,ξ as well.

Proof of Proposition 3.5. The proofs are contained in [16] and here we provide precise ref-
erences to the relevant results in each case. In particular one must notice that Appendix A.2 of
[16] addresses the specific setting of the state dependent discount factor r − µ′(x) that appears
in our stopping functional (2.17).

1. It follows from Theorem 3.4 (and Appendix A.2) of [16].

2. It follows from Proposition 3.11 (and Appendix A.2) of [16]. For the sake of completeness
here we notice that to prove that x∞2 uniquely solves ϑ2(x) = (G2/ψ)(x) in (x̂2, x) it is useful to
change variables. Defining y = (ψ/φ)(x) =: F (x), where F is strictly increasing, and introducing
Ĝ2(y) :=

[
(G2/φ)◦F−1

]
(y), y > 0, it follows from simple algebra (cf. Appendix A.1 of [16]) that

ϑ2(x) = (G2/ψ)(x) is equivalent to Ĝ′2(y)y = Ĝ2(y). It is shown on page 13 of [16] that the latter
equation has a unique root y∞2 in the interval (ŷ2,∞), with ŷ2 := F (x̂2) and ∞ = limx↑x F (x).
Therefore x∞2 = F−1(y∞2 ) solves the initial problem in (x̂2, x).
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