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Abstract

A problem of optimally purchasing electricity at a real-valued spot price (that is, with
potentially negative cost) has been recently addressed in De Angelis, Ferrari and Moriarty
(2015) [SIAM J. Control Optim. 53(3)]. This problem can be considered one of irreversible
investment with a cost functional which is non convex with respect to the control variable.
In this paper we study the optimal entry into this investment plan. The optimal entry policy
can have an irregular boundary arising from this non convexity, with a kinked shape.
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1 Introduction

In this paper we consider the question of optimal entry into a plan of irreversible investment
with a cost functional which is non convex with respect to the control variable. The irreversible
investment problem is that of [7], in which the investor commits to delivering a unit of electricity
to a consumer at a future random time Θ and may purchase and store electricity in real time
at the stochastic (and potentially negative) spot price (Xt)t≥0. In the optimal entry problem
considered here, the consumer is willing to offer a single fixed initial payment P0 in return for
this commitment and the investor must choose a stopping time τ at which to accept the initial
premium and enter the contract. If Θ ≤ τ then the investor’s opportunity is lost and in this
case no cashflows occur. If τ < Θ then the inventory must be full at the time Θ of demand,
any deficit being met by a less efficient method whose additional cost is represented by a convex
factor Φ of the undersupply. The investor seeks to minimise the total expected costs, net of the
initial premium P0, by choosing τ optimally and by optimally filling the inventory from time τ
onwards.

Economic problems of optimal entry and exit under uncertain market prices have attracted
significant interest. In the simplest formulation the timing of entry and/or exit is the only
decision to be made and the planning horizon is infinite: see for example [8] and [19], in which
the market price is a geometric Brownian motion (GBM), and related models in [9] and [22]. An
extension of this problem to multiple types of economic activity is considered in [4] and solved
using stochastic calculus. In addition to the choice of entry / exit time, the decision problem
may also depend on another control variable representing for instance investment or production
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capacity. For example in [10] the rate of production is modeled as a progressively measurable
process whereas in [13] the production capacity is a process of bounded variation. In this case
the problem is usually solved by applying the dynamic programming principle to obtain an
associated Hamilton-Jacobi-Bellman (HJB) equation. If the planning horizon is finite then the
optimal stopping and control strategies are time-dependent and given by suitable curves, see for
example [6].

Typically, although not universally, the costs in the aforementioned problems are assumed
to be convex with respect to the control variable. In addition to being reasonable in a wide
range of problems, this assumption usually simplifies the mathematical analysis. In the present
problem the underlying commodity is electricity, for which negative prices have been observed in
several markets (see, e.g., [12] and [18]). The spot price is modelled by an Ornstein-Uhlenbeck
process which is mean reverting and may take negative values and, as shown in [7], this makes
our control problem neither convex nor concave: to date such problems have received relatively
little attention in the literature. In our setting the control variable represents the cumulative
amount of electricity purchased by the investor in the spot market for storage. This control
is assumed to be monotone, so that the sale of electricity back to the market is not possible,
and also bounded to reflect the fact that the inventory used for storage has finite capacity. The
investment problem falls into the class of singular stochastic control (SSC) problems (see [1],
[15], [16], among others).

Borrowing ideas from [13], we begin by decoupling the control (investment) problem from
the stopping (entry) problem. The value function of this mixed stopping-then-control problem
is shown to coincide with that of an appropriate optimal stopping problem over an infinite time-
horizon whose gain function is the value function of the optimal investment problem with fixed
entry time equal to zero. Unlike the situation in [13], however, the gain function in the present
paper is a function of two variables without an explicit representation. Indeed [7] identifies
three regimes for the gain function, depending on the problem parameters, only two of which
are solved rigorously: a reflecting regime, in which the control may be singularly continuous,
and a repelling regime, in which the control is purely discontinuous. We therefore only address
these two cases in this paper and leave the remaining open case for future work.

The optimal entry policies obtained below depend on the spot price and the inventory level
and are described by suitable curves. On the one hand, for the reflecting case we prove that
the optimal entry time is of a single threshold type as in [10] and [13]. On the other hand, the
repelling case is interesting since it gives either a single threshold strategy or, alternatively, a
complex optimal entry policy such that for any fixed value of the inventory level, the continuation
region may be disconnected.

The paper is organised as follows. In Section 2 we set up the mixed irreversible investment-
optimal entry problem, whose two-step formulation is then obtained in Section 3. Section 4 is
devoted to the analysis of the optimal entry decision problem, with the repelling case studied
separately in Section 5. Afterwards follows the conclusion, appendix, acknowledgements and
references.

2 Problem Formulation

We begin by recalling the optimal investment problem introduced in [7]. Let (Ω,A,P) be a
complete probability space, on which is defined a one-dimensional standard Brownian motion
(Bt)t≥0. We denote by F := (Ft)t≥0 the filtration generated by (Bt)t≥0 and augmented by P-null
sets. As in [7], the spot price of electricity X follows a standard time-homogeneous Ornstein-
Uhlenbeck process with positive volatility σ, positive adjustment rate θ and positive asymptotic
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(or equilibrium) value µ; i.e., Xx is the unique strong solution of

dXx
t = θ(µ−Xx

t )dt+ σdBt, for t > 0, with Xx
0 = x ∈ R. (2.1)

Note that this model allows negative prices, which is consistent with the requirement to balance
supply and demand in real time in electrical power systems and also consistent with the observed
prices in several electricity spot markets (see, e.g., [12] and [18]).

We denote by Θ the random time of a consumer’s demand for electricity. This is modelled
as an A-measurable positive random variable independent of F and distributed according to
an exponential law with parameter λ > 0, so that effectively the time of demand is completely
unpredictable. Note also that since Θ is independent of F, the Brownian motion (Bt)t≥0 remains
a Brownian motion in the enlarged filtration G := (Gt)t≥0, with Gt := Ft ∨ σ({Θ ≤ s} : s ≤ t),
under which Θ becomes a stopping time (see, e.g., Chapter 5, Section 6 of [14]).

We will denote by τ any element of T , the set of all (Ft)-stopping times. At any τ the
investor may enter the contract by accepting the initial premium P0 and committing to deliver
a unit of electricity at the time Θ. At any time during [τ,Θ) electricity may be purchased in the
spot market and stored, thus increasing the total inventory Cc,ν = (Cc,ν)t≥0, which is defined as

Cc,νt := c+ νt , t ≥ 0. (2.2)

Here c ∈ [0, 1] denotes the inventory at time zero and νt is the cumulative amount of electricity
purchased up to time t. We specify the (convex) set of admissible investment strategies by
requiring that ν ∈ Scτ , where

Scτ := {ν : Ω× R+ 7→ R+, (νt(ω))t≥0 is nondecreasing, left-continuous,

(Ft)− adapted, with c+ νt ≤ 1 ∀t ≥ 0, ντ = 0 P− a.s.}.

The amount of energy in the inventory is bounded above by 1 to reflect the investor’s limited
ability to store. The left continuity of ν ensures that any electricity purchased at time Θ is
irrelevant for the optimisation. The requirement that ν be (Ft)-adapted guarantees that all
investment decisions are taken only on the basis of the price information available up to time t.
The optimisation problem is given by

inf
τ≥0, ν∈Scτ

E
[( ∫ Θ

τ
Xx
t dνt +Xx

ΘΦ(Cy,νΘ )− P0

)
1{τ<Θ}

]
. (2.3)

Here the first term represents expenditure in the spot market and the second is a penalty
function: if the inventory is not full at time Θ then it is filled by a less efficient method, so
that the terminal spot price is weighted by a strictly convex function Φ. We make the following
standing assumption:

Assumption 2.1. Φ : R 7→ R+ lies in C2(R) and is decreasing and strictly convex in [0, 1] with
Φ(1) = 0.

For simplicity we assume that costs are discounted at the rate r = 0. This involves no loss of
generality since the independent random time of demand performs an effective discounting, as
follows. Recalling that Θ is independent of F and distributed according to an exponential law
with parameter λ > 0, Fubini’s theorem gives that (2.3) may be rewritten as

V (x, c) := inf
τ≥0, ν∈Scτ

Jx,c(τ, ν) (2.4)

with

Jx,c(τ, ν) := E
[ ∫ ∞

τ
e−λtXx

t dνt +

∫ ∞
τ
e−λtλXx

t Φ(Cc,νt )dt− e−λτP0

]
, (2.5)

adopting the convention that on the set {τ = +∞} we have
∫∞
τ := 0 and e−λτ := 0. The

discounting of costs may therefore be accomplished by appropriately increasing the exponential
parameter λ.
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3 Decoupling the Problem and Background Material

To deal with (2.4) we borrow arguments from [13] to show that the stopping (entry) problem
can be split from the control (investment) problem, leading to a two-step formulation. We first
briefly recall some results from [7], where the control problem has the value function

U(x, c) := inf
ν∈Sc0
J 0
x,c(ν) (3.1)

with

J 0
x,c(ν) := E

[ ∫ ∞
0

e−λtXx
t dνt +

∫ ∞
0

e−λsλXx
t Φ(Cc,νt )dt

]
. (3.2)

As was shown in [7, Sec. 2], the function

k(c) := λ+ θ + λΦ′(c), c ∈ R, (3.3)

appears in an optimal stopping functional which may be associated with U . For convenience we
let ĉ ∈ R denote the unique solution of k(c) = 0 if it exists and write

ζ(c) :=

∫ 1

c
k(y)dy = (λ+ θ)(1− c)− λΦ(c), c ∈ [0, 1]. (3.4)

We formally introduce the variational problem associated with U :

max{−LXU + λU − λxΦ(c),−Uc − x} = 0, on R× (0, 1), (3.5)

where LX is the second order differential operator associated to the infinitesimal generator of
X:

LXf (x) :=
1

2
σ2f ′′(x) + θ(µ− x)f ′(x), for f ∈ C2

b (R) and x ∈ R. (3.6)

According to standard theory on control problems we define the inaction set for problem (3.1)
by

C := {(x, c) ∈ R× [0, 1] : Uc(x, c) > −x}. (3.7)

The non convexity of functional (3.2) with respect to the control variable ν, which arises due to
the real-valued factor Xx

t , places it outside the standard existing literature on SSC problems.
We therefore collect here the solutions proved in Sections 2 and 3 of [7].

Proposition 3.1. We have |U(x, c)| ≤ C(1 + |x|) for (x, c) ∈ R× [0, 1] and a suitable constant
C > 0. Moreover the following holds

i) If ĉ < 0 (i.e. k( · ) > 0 in [0, 1]), then U ∈ C2,1(R× [0, 1]) and it is a classical solution of
(3.5). The inaction set (3.7) is given by

C = {(x, c) ∈ R× [0, 1] : x > β∗(c)} (3.8)

for some function β∗ ∈ C1([0, 1]) which is decreasing and dominated from above by x0(c)∧
x̂0(c), c ∈ [0, 1], with

x0(c) := −θµΦ′(c)/k(c) and x̂0(c) := θµ/k(c), (3.9)

(cf. [7, Prop. 2.5 and Thm. 2.8]). For c ∈ [0, 1] the optimal control is given by

ν∗t =

[
g∗

(
inf

0≤s≤t
Xx
s

)
− c
]+

, t > 0, ν∗0 = 0, (3.10)

with g∗(x) := β−1
∗ (x), x ∈ (β∗(1), β∗(0)), and g∗ ≡ 0 on [β∗(0),∞), g∗ ≡ 1 on (−∞, β∗(0)].
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ii) If ĉ > 1 (i.e. k( · ) < 0 in [0, 1]), then U ∈ W 2,1,∞
loc (R × [0, 1]) and it solves (3.5) in the

a.e. sense. The inaction set (3.7) is given by

C = {(x, c) ∈ R× [0, 1] : x < γ∗(c)} (3.11)

with suitable γ∗ ∈ C1([0, 1]), decreasing and bounded from below by x̃(c) ∨ x0(c), c ∈ [0, 1],
with

x0(c) := θµΦ(c)/ζ(c) and x̃(c) := θµ(1− c)/ζ(c), (3.12)

(cf. [7, Thm. 3.1 and Prop. 3.4]). Moreover U(x, c) = x(1 − c) for x ≥ γ∗(c), c ∈ [0, 1],
and for any c ∈ [0, 1] the optimal control is given by (cf. [7, Thm. 3.5])

ν∗t :=

{
0, t ≤ τ∗,
(1− c), t > τ∗

(3.13)

with τ∗ := inf
{
t ≥ 0 : Xx

t ≥ γ∗(c)
}

.

We now perform the decoupling into two sub-problems, one of control and one of stopping.

Proposition 3.2. If ĉ < 0 or ĉ > 1 then the value function V of (2.4) can be equivalently
rewritten as

V (x, c) = inf
τ≥0

E
[
e−λτ

(
U(Xx

τ , c)− P0

)]
, (3.14)

with the convention e−λτ (U(Xx
τ , c)− P0) := lim inft↑∞ e

−λt(U(Xx
t , c)− P0) = 0 on {τ =∞}.

Proof. Let us set

w(x, c) := inf
τ≥0

E
[
e−λτ

(
U(Xx

τ , c)− P0

)]
, for (x, c) ∈ R× [0, 1]. (3.15)

Thanks to the results of Proposition 3.1 we can apply Itô’s formula to U , in the classical sense
in case i) and in its generalised version (cf. [11, Ch. 8, Sec. VIII.4, Thm. 4.1]) in case ii). In
particular for an arbitrary stopping time τ , an arbitrary admissible control ν ∈ Scτ and with
τn := τ ∨ n, n ∈ N we get

E
[
e−λτnU(Xx

τn , C
c,ν
τn )
]

= E
[
e−λτU(Xx

τ , c)
]

+ E

[ ∫ τn

τ
e−λt

(
LXU − λU

)
(Xx

t , C
c,ν
t )dt

]
+ E

[ ∫ τn

τ
e−λtUc(X

x
t , C

c,ν
t )dνcontt

]
+ E

[ ∑
τ≤t<τn

e−λt
(
U(Xx

t , C
c,ν
t+ )− U(Xx

t , C
c,ν
t )
)]
, (3.16)

where we have used standard localisation techniques to remove the martingale term, and decom-
posed the control into its continuous and jump parts, i.e. dνt = dνcontt +∆νt, with ∆νt := νt+−νt.
Since U solves the HJB equation (3.5) it is now easy to prove (cf. for instance [7, Thm. 2.8])
that, in the limit as n→∞, one has

E
[
e−λτU(Xx

τ , c)
]
≤ E

[ ∫ ∞
τ

e−λtλXx
t Φ(Cc,νt )dt+

∫ ∞
τ

e−λtXx
t dνt

]
, (3.17)

and therefore

E
[
e−λτ

(
U(Xx

τ , c)− P0

)]
≤ E

[ ∫ ∞
τ

e−λtλXx
t Φ(Cc,νt )dt+

∫ ∞
τ

e−λtXx
t dνt − e−λτP0

]
, (3.18)
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for an arbitrary stopping time τ and an arbitrary control ν ∈ Scτ . Hence by taking the infimum
over all possible stopping times and over all ν ∈ Scτ , (2.4), (3.15) and (3.18) give w(x, c) ≤ V (x, c).

To prove that equality holds, let us fix an arbitrary stopping time τ . In case i) of Proposition
3.1, one can pick a control ντ ∈ Scτ of the form

ντt = 0 for t ≤ τ and ντt = ν∗t for t > τ (3.19)

with ν∗ as in (3.10), to obtain equality in (3.17) and hence in (3.18). In case ii) instead we
define σ∗τ := inf{t ≥ τ : Xx

t ≥ γ∗(c)} and pick ντ ∈ Scτ of the form

ντt = 0 for t ≤ σ∗τ and ντt = 1− c for t > σ∗τ (3.20)

to have again equality in (3.17) and hence in (3.18). Now taking the infimum over all τ we find
w(x, c) ≥ V (x, c).

To complete the proof we need to prove the last claim; that is, lim inft↑∞ e
−λt(U(Xx

t , c) −
P0) = 0 a.s. It suffices to show that lim inft↑∞ e

−λt|U(Xx
t , c) − P0| = 0 a.s. To this end recall

that |U(x, c)| ≤ C(1 + |x|), for (x, c) ∈ R× [0, 1] and a suitable constant C > 0 (cf. Proposition
3.1), and then apply Lemma B.1 in Appendix B.

Remark 3.3. The optimal stopping problems (3.14) depend only parametrically on the inventory
level c (the case c = 1 is trivial as U( · , 1) = 0 on R and the optimal strategy is to stop at once
for all initial points x ∈ R).

It is worth noting that we were able to perform a very simple proof of the decoupling knowing
the structure of the optimal control for problem (3.1). In wider generality one could obtain a
proof based on an application of the Dynamic Programming Principle although in that case
it is well known that some delicate measurability issues should be addressed as well (see [13],
Appendix A). Although each of the optimal stopping problems (3.14) is for a one-dimensional
diffusion over an infinite time horizon, standard methods find only limited application since no
explicit expression is available for their gain function U(x, c)− P0.

In the next section we show that the cases ĉ < 0 and ĉ > 1, which are the regimes solved
rigorously in [7], have substantially different optimal entry policies. To conclude with the back-
ground we prove a useful concavity result.

Lemma 3.4. The maps x 7→ U(x, c) and x 7→ V (x, c) are concave for fixed c ∈ [0, 1].

Proof. We begin by observing that X
px+(1−p)y
t = pXx

t +(1−p)Xy
t for all t ≥ 0 and any p ∈ (0, 1).

Hence (3.2) gives

J 0
px+(1−p)y,c(ν) = pJ 0

x,c(ν) + (1− p)J 0
y,c(ν) ≥ pU(x, c) + (1− p)U(y, c), ∀ν ∈ Sc0

and therefore taking the infimum over all admissible ν we easily find U(px + (1 − p)y, c) ≥
pU(x, c) + (1− p)U(y, c) as claimed.

For V we argue in a similar way and use concavity of U( · , c) as follows: let τ ≥ 0 be an
arbitrary stopping time, then

E
[
e−λτ

(
U(Xpx+(1−p)y

τ , c)− P0

)]
= E

[
e−λτ

(
U(pXx

τ + (1− p)Xy
τ , c)− P0

)]
≥ E

[
e−λτ

(
pU(Xx

τ , c) + (1− p)U(Xy
τ , c)− P0

)]
= p× E

[
e−λτ

(
U(Xx

τ , c)− P0

)]
+ (1− p)× E

[
e−λτ

(
U(Xy

τ , c)− P0

)]
≥ p V (x, c) + (1− p)V (y, c).

We conclude the proof by taking the infimum over all stopping times τ ≥ 0.
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4 Timing the Entry Decision

We first examine the optimal entry policy via a standard argument based on exit times from
small intervals of R. An application of Dynkin’s formula gives that the instantaneous ‘cost of
continuation’ in our optimal entry problem is given by the function

L(x, c) + λP0 := (LX − λ)(U − P0)(x, c). (4.1)

In the case ĉ < 0, which is covered in Section 4.1, the function (4.1) is monotone decreasing (see
(4.12) below). Since problem (2.3) is one of minimisation, it is never optimal to stop at points
(x, c) ∈ R × [0, 1] such that L(x, c) + λP0 < 0; an easy comparison argument then shows there
is a unique lower threshold that determines the optimal stopping rule in this case.

When ĉ > 1 the picture is more complex. The function (4.1) is decreasing and continuous
everywhere except at a single point where it has a positive jump (cf. Proposition 5.1 below) and
so can change sign twice. The comparison argument now becomes more subtle: continuation
should not be optimal when the function (4.1) is positive in a ‘large neighbourhood containing
the initial value x’. Indeed it will turn out in Section 5 that there are multiple possible optimal
stopping regimes depending on parameter values. In particular the continuation region of the
optimal stopping problem may be disconnected, which is unusual in the literature on optimal
entry problems. The resulting optimal entry region can have a kinked shape (Figure 1). The
jump in the function (4.1) arises from the ‘bang-bang’ nature of the optimal investment plan
when ĉ > 1, and so this may be understood as causing the unusual shape of the optimal entry
boundary.

Figure 1: An indicative example of an optimal entry region (shaded) when ĉ > 1, together
with the functions γ∗ and x0

1, x0
2 (introduced in Prop. 5.1 below). The functions m1 and m2

(not drawn to scale) are important determinants for the presence of the kinked shape (see
Remark 5.4 below). This plot was generated using µ = 1, θ = 1, σ = 3, λ = 1, P0 = 4 and
Φ(c) = 2.2(1− c) + 8(1− c)2.
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4.1 The case ĉ < 0

Let us now assume that ĉ < 0, i.e. k(c) > 0 for all c ∈ [0, 1] (cf. (3.3)). We first recall from
Section 2.2 of [7] that in this case

U(x, c) = x(1− c)−
∫ 1

c
u(x; y)dy, for (x, c) ∈ R× [0, 1], (4.2)

where u is the value function of an associated optimal stopping problem with (cf. Sections 2.1
and 2.2 of [7])

(i) u( · , c) ∈W 2,∞
loc (R) for any c ∈ [0, 1] (4.3)

(ii) u(x, c) > 0 for x > β∗(c) and u(x, c) = 0 for x ≤ β∗(c), c ∈ [0, 1], (4.4)

and with β∗ given as in Proposition 3.1-i). Moreover, define

G(x, c) :=
µ(k(c)− θ)

λ
+
k(c)(x− µ)

λ+ θ
, (4.5)

and introduce the two functions φλ and ψλ as follows:

Definition 4.1. Let φλ : R → R+ and ψλ : R → R+ denote respectively the decreasing and
increasing fundamental solutions of the differential equation LXf = λf on R (see Appendix B
for details).

Then u is expressed analytically as

u(x, c) =

{
G(x, c)− G(β∗(c),c)

φλ(β∗(c))
φλ(x), x > β∗(c)

0, x ≤ β∗(c)
(4.6)

for c ∈ [0, 1], and it solves the variational problem(
LX − λ

)
u(x, c) = θµ− k(c)x x > β∗(c), c ∈ [0, 1] (4.7)(

LX − λ
)
u(x, c) = 0 x ≤ β∗(c), c ∈ [0, 1] (4.8)

u(β∗(c), c) = ux(β∗(c), c) = 0 c ∈ [0, 1]. (4.9)

By the regularity of u and dominated convergence we have

(LX − λ)U(x, c) = (1− c)(θµ− (λ+ θ)x)−
∫ 1

c
(LX − λ)u(x; y)dy (4.10)

for (x, c) ∈ R× [0, 1].
As is usual, for each c ∈ [0, 1] we define the continuation region CcV and stopping region DcV

for the optimal stopping problem (3.14) as

CcV = {x ∈ R : V (x, c) < U(x, c)− P0} , DcV = {x ∈ R : V (x, c) = U(x, c)− P0}. (4.11)

With the aim of characterising the geometry of CcV and DcV we start by providing some prelim-
inary results on U − P0 that will help to formulate an appropriate free-boundary problem for
V .

Proposition 4.2. For any given c ∈ [0, 1], there exists a unique x0(c) ∈ R such that

(
LX − λ

)(
U(x, c)− P0)


< 0 for x > x0(c)

= 0 for x = x0(c)

> 0 for x < x0(c)

(4.12)
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We refer to Appendix A for the proof of the previous proposition.
As discussed at the beginning of Section 4, it is never optimal in problem (3.14) to stop in

(x0(c),∞), c ∈ [0, 1], for x0(c) as in Proposition 4.2, i.e.

(x0(c),∞) ⊆ CcV for c ∈ [0, 1], (4.13)

and consequently

DcV ⊂ [−∞, x0(c)] for c ∈ [0, 1]. (4.14)

Hence we conjecture that the optimal stopping strategy should be of single threshold type. In
what follows we aim at finding `∗(c), c ∈ [0, 1], such that DcV = [−∞, `∗(c)] and

τ∗(x, c) = inf{t ≥ 0 : Xx
t ≤ `∗(c)} (4.15)

is optimal for V (x, c) in (3.14) with (x, c) ∈ R× [0, 1]. The methodology adopted in [7, Sec. 2.1]
does not apply directly to this problem due to the semi-explicit expression of the gain function
U − P0.

4.1.1 Formulation of Auxiliary Optimal Stopping Problems

To work out the optimal boundary `∗ we will introduce auxiliary optimal stopping problems and
employ a guess-and-verify approach in two frameworks with differing technical issues. We first
observe that since U is a classical solution of (3.5), an application of Dynkin’s formula to (3.14)
provides a lower bound for V , that is

V (x, c) ≥ U(x, c)− P0 + Γ(x, c), (x, c) ∈ R× [0, 1], (4.16)

with

Γ(x, c) := inf
τ≥0

E

[ ∫ τ

0
e−λs

(
λP0 − λXx

s Φ(c)
)
ds

]
(x, c) ∈ R× [0, 1]. (4.17)

On the other hand, for (x, c) ∈ R× [0, 1] fixed, set σ∗β := inf{t ≥ 0 : Xx
t ≤ β∗(c)} with β∗ as in

Proposition 3.1, then for arbitrary stopping time τ one also obtains

E
[
e−λ(τ∧σ∗β)

(
U(Xx

τ∧σ∗β
, c)− P0

)]
(4.18)

= U(x, c)− P0 + E

[ ∫ τ∧σ∗β

0
e−λs

(
λP0 − λXx

s Φ(c)
)
ds

]
by using the fact that U solves (3.5) and Dynkin’s formula. We can now obtain an upper bound
for V by setting

Γβ(x, c) := inf
τ≥0

E

[ ∫ τ∧σ∗β

0
e−λs

(
λP0 − λXx

s Φ(c)
)
ds

]
, (x, c) ∈ R× [0, 1], (4.19)

so that taking the infimum over all τ in (4.18) one obtains

V (x, c) ≤ U(x, c)− P0 + Γβ(x, c) (x, c) ∈ R× [0, 1]. (4.20)

It turns out that (4.16) and (4.20) allow us to find a simple characterisation of the optimal
boundary `∗ and of the function V in some cases. Let us first observe that 0 ≥ Γβ(x, c) ≥ Γ(x, c)
for all (x, c) ∈ R× [0, 1]. Defining for each fixed c ∈ [0, 1] the stopping regions

DcΓ = {x ∈ R : Γ(x, c) = 0} and DcΓβ = {x ∈ R : Γβ(x, c) = 0}
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it is easy to see that DcΓ ⊂ DcΓβ . Moreover, by the monotonicity of x 7→ Xx
· it is not hard

to verify that x 7→ Γ(x, c) and x 7→ Γβ(x, c) are decreasing. Hence we again expect optimal
stopping strategies of threshold type, i.e.

DcΓ = {x ∈ R : x ≤ α∗1(c)} and DcΓβ = {x ∈ R : x ≤ α∗2(c)} (4.21)

for c ∈ [0, 1] and for suitable functions α∗i ( · ), i = 1, 2 to be determined.
Assume for now that α∗1 and α∗2 are indeed optimal, then we must have

α∗1(c) ≤ `∗(c) ≤ α∗2(c) for c ∈ [0, 1]. (4.22)

Indeed, for all (x, c) ∈ R× [0, 1] we have DcΓ ⊂ DcV since Γ(x, c) ≤ V (x, c)−U(x, c)+P0 ≤ 0, and
DcV ⊂ DcΓβ since V (x, c) − U(x, c) + P0 ≤ Γβ(x, c) ≤ 0. Notice also that since the optimisation

problem in (4.19) is the same as the one in (4.17) except that in the former the observation is
stopped when X hits β∗, we must have

α∗2(c) = β∗(c) ∨ α∗1(c) for c ∈ [0, 1]. (4.23)

Thus for each c ∈ [0, 1] we can now consider two cases:

1. if α∗1(c) > β∗(c) we have Γ(x, c) = Γβ(x, c) =
(
V −U+P0

)
(x, c) for x ∈ R and `∗(c) = α∗1(c),

2. if α∗1(c) ≤ β∗(c) we have α∗2(c) = β∗(c), implying that `∗(c) ≤ β∗(c).

Both 1. and 2. above need to be studied in order to obtain a complete characterisation of `∗,
however we note that case 1. is particularly interesting as it identifies V and `∗ with Γ +U −P0

and α∗1, respectively. As we will clarify in what follows, solving problem (4.17) turns out to be
theoretically simpler and computationally less demanding than dealing directly with problem
(3.14).

4.1.2 Solution of the Auxiliary Optimal Stopping Problems

To make our claims rigorous we start by analysing problem (4.17). This is accomplished by
largely relying on arguments already employed in [7, Sec. 2.1] and therefore we omit proofs
here whenever a precise reference can be provided. Moreover, the majority of the proofs of new
results are provided in Appendix A to simplify the exposition.

In problem (4.17) we conjecture an optimal stopping time of the form

τα(x, c) := inf{t ≥ 0 : Xx
t ≤ α(c)} (4.24)

for (x, c) ∈ R × [0, 1] and α to be determined. Under this conjecture Γ should be found in the
class of functions of the form

Γα(x, c) =

 E

[ ∫ τα

0
e−λsλ

(
P0 −Xx

s Φ(c)
)
ds

]
, x > α(c)

0, x ≤ α(c)
(4.25)

for each c ∈ [0, 1]. Now, repeating the same arguments of proof of [7, Thm. 2.1] we obtain

Lemma 4.3. One has

Γα(x, c) =

{ (
P0 − Ĝ(x, c)

)
−
(
P0 − Ĝ(α(c), c)

) φλ(x)
φλ(α(c)) , x > α(c)

0, x ≤ α(c)
(4.26)

for each c ∈ [0, 1], with

Ĝ(x, c) := µΦ(c) + (x− µ)λΦ(c)
λ+θ (x, c) ∈ R× [0, 1]. (4.27)
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To single out the candidate optimal boundary we impose the so-called smooth fit condition,
i.e. d

dxΓα(α(c), c) = 0 for every c ∈ [0, 1]. This amounts to finding α∗ such that

−λΦ(c)
λ+θ +

(
Ĝ(α∗(c), c)− P0

)φ′λ(α∗(c))
φλ(α∗(c)) = 0 for c ∈ [0, 1]. (4.28)

Proposition 4.4. For c ∈ [0, 1] define

x†0(c) := µ+
(
P0 − µΦ(c)

) (λ+θ)
λΦ(c) . (4.29)

For each c ∈ [0, 1] there exists a unique solution α∗(c) ∈ (−∞, x†0(c)) of (4.28). Moreover
α∗ ∈ C1([0, 1)) and it is strictly increasing with limc→1 α

∗(c) = +∞.

For the proof of Proposition 4.4 we refer to Appendix A.
To complete the characterisation of α∗ and Γα

∗
we now find an alternative upper bound for

α∗ that will guarantee
(
LXΓα

∗ − λΓα
∗)

(x, c) ≥ −λ(P0 − xΦ(c)) for (x, c) ∈ R × [0, 1]. Again,
the proof of the following result may be found in Appendix A.

Proposition 4.5. For all c ∈ [0, 1] we have α∗(c) ≤ P0/Φ(c) with α∗ as in Proposition 4.4.

With the aim of formulating a variational problem for Γα
∗

we observe that d2

dx2
Γα
∗
(x, c) > 0

for x > α∗(c), c ∈ [0, 1] by (4.26), convexity of φλ and the fact that Ĝ(α∗(c), c)−P0 < 0. Hence
Γα
∗ ≥ 0 on R × [0, 1]. It is not hard to verify by direct calculation from (4.26) and the above

results that for all c ∈ [0, 1] the couple
(
Γα
∗
( · , c), α∗(c)

)
solves the free-boundary problem(

LX − λ
)
Γα
∗
(x, c) = −λ(P0 − xΦ(c)) x > α∗(c), (4.30)(

LX − λ
)
Γα
∗
(x, c) > −λ(P0 − xΦ(c)) x < α∗(c), (4.31)

Γα
∗
(α∗(c), c) = Γα

∗
x (α∗(c), c) = 0, Γα

∗
(x, c) ≥ 0 x ∈ R (4.32)

and Γα
∗
( · , c) ∈ W 2,∞

loc (R). Following now the same arguments as in the proof of [7, Thm. 2.1],
which is based on an application of the Itô-Tanaka formula and (4.30)–(4.32), we can verify our
guess and prove the following theorem (the details are omitted).

Theorem 4.6. The boundary α∗ of Proposition 4.4 is optimal for (4.17) in the sense that
α∗ = α∗1 with α∗1 as in (4.21),

τ∗α = inf{t ≥ 0 : Xx
t ≤ α∗(c)} (4.33)

is an optimal stopping time and Γα
∗ ≡ Γ (cf. (4.17)).

4.1.3 Solution of the Original Optimal Stopping Problem (3.14)

In Theorem 4.6 we have fully characterised α∗1 and Γ thus also α∗2 and Γβ (cf. (4.19), (4.21) and
(4.23)). Moreover we have found that α∗1( · ) is strictly increasing on [0, 1). On the other hand,
β∗( · ) is a strictly decreasing function (cf. Proposition 3.1-i)), hence there exists at most one
c∗ ∈ (0, 1) such that

β∗(c) > α∗1(c) for c ∈ (0, c∗) and β∗(c) ≤ α∗1(c) for c ∈ [c∗, 1). (4.34)

As already mentioned, it may be possible to provide examples where such a value c∗ does not
exist (0, 1) and α∗1(c) > β∗(c) for all c ∈ [0, 1]. In those cases, as discussed in Section 4.1.1, one
has `∗ = α∗1 and V = U − P0 + Γ and problem (3.14) is fully solved. Therefore to provide a
complete analysis of problem (3.14) we must consider the case when c∗ exists in (0, 1). From
now on we make the following assumption.
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Assumption 4.7. There exists a unique c∗ ∈ (0, 1) such that (4.34) holds.

As a consequence of the analysis in Section 4.1.2 we have the next simple corollary.

Corollary 4.8. For all c ∈ [c∗, 1) it holds V (x, c) = (Γ+U−P0)(x, c), x ∈ R and `∗(c) = α∗1(c),
with Γ and α∗1 as in Theorem 4.6.

It remains to characterise `∗ in the interval [0, c∗) in which we have `∗(c) ≤ β∗(c). This is
done in Theorem 4.13, whose proof requires other technical results which are cited here and
proved in the appendix. Fix c ∈ [0, c∗), let `(c) ∈ R be a candidate boundary and define the
stopping time τ`(x, c) := inf

{
t ≥ 0 : Xx

t ≤ `(c)
}

for x ∈ R. Again to simplify notation we set
τ` = τ`(x, c) when no confusion may arise. It is now natural to associate to `(c) a candidate
value function

V `(x, c) := E
[
e−λτ`

(
U(Xx

τ`
, c)− P0

)]
, (4.35)

whose analytical expression is provided in the next lemma.

Lemma 4.9. For c ∈ [0, c∗) we have

V `(x, c) =

{
(U(`(c), c)− P0) φλ(x)

φλ(`(c)) , x > `(c)

U(x, c)− P0, x ≤ `(c)
(4.36)

The candidate boundary `∗, whose optimality will be subsequently verified, is found by
imposing the smooth fit condition, i.e.

(U(`∗(c), c)− P0)
φ′λ(`∗(c))

φλ(`∗(c))
= Ux(`∗(c), c), c ∈ [0, 1]. (4.37)

Proposition 4.10. For any c ∈ [0, c∗) there exists at least one solution `∗(c) ∈ (−∞, x0(c)) of
(4.37) with x0(c) as in Proposition 4.2.

Remark 4.11. A couple of remarks before we proceed.

i. The analytical representation (4.36) in fact holds for all c ∈ [0, 1] and it must coincide with
(4.26) for c ∈ [c∗, 1]. Furthermore, the optimal boundary α∗1 found in Section 4.1.2 by solving
(4.28) must also solve (4.37) for all c ∈ [c∗, 1] since α∗1 = `∗ on that set. This equivalence can
be verified by comparing numerical solutions to (4.28) and (4.37). Finding a numerical solution
to (4.37) for c ∈ [0, c∗) (if it exists) is computationally more demanding than solving (4.28),
however, because of the absence of an explicit expression of the function U .

ii. It is important to observe that the proof of Proposition 4.10 does not use that c ∈ [0, c∗)
and in fact it holds for c ∈ [0, 1]. However, arguing as in Section 4.1.2 we managed to obtain
further regularity properties of the optimal boundary in [c∗, 1] and its uniqueness. We shall see in
what follows that uniqueness can be retrieved also in c ∈ [0, c∗) but it requires a deeper analysis.

Now that the existence of at least one candidate optimal boundary `∗ has been established,
for the purpose of performing a verification argument we would also like to establish that for
arbitrary c ∈ [0, c∗) we have V `∗(x, c) ≤ U(x, c) − P0, x ∈ R. This is verified in the following
proposition (whose proof is collected in appendix).

Proposition 4.12. For c ∈ [0, c∗) and for any `∗ solving (4.37) it holds V `∗(x, c) ≤ U(x, c)−P0,
x ∈ R.

Finally we provide a verification theorem establishing the optimality of our candidate bound-
ary `∗ and, as a by-product, also implying uniqueness of the solution to (4.37).
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Theorem 4.13. There exists a unique solution of (4.37) in (−∞, x0(c̄)]. This solution is the
optimal boundary of problem (3.14) in the sense that V `∗ = V on R× [0, 1) (cf. (4.36)) and the
stopping time

τ∗ := τ∗` (x, c) = inf{t ≥ 0 : Xx
t ≤ `∗(c)} (4.38)

is optimal in (3.14) for all (x, c) ∈ R× [0, 1).

Proof. For c ∈ [c∗, 1) the proof was provided in Section 4.1.2 recalling that `∗ = α∗1 on [c∗, 1)
and V = U − P0 + Γ on R × [c∗, 1) (cf. (4.17), Remark 4.11). For c ∈ [0, c∗) we split the proof
into two parts.

1. Optimality. Fix c̄ ∈ [0, c∗). Here we prove that if `∗(c̄) is any solution of (4.37) then
V `∗( · , c̄) = V ( · , c̄) on R (cf. (3.14) and (4.36)).

First we note that V `∗( · , c̄) ≥ V ( · , c̄) on R by (3.14) and (4.35). To obtain the reverse
inequality we will rely on Itô-Tanaka’s formula. Observe that V `∗( · , c̄) ∈ C1(R) by (4.36) and
(4.37), and V `∗

xx( · , c̄) is continuous on R\
{
`∗(c̄)

}
and bounded at the boundary `∗(c̄). Moreover

from (4.36) we get(
LX − λ

)
V `∗(x, c̄) = 0 for x > `∗(c̄) (4.39)(

LX − λ
)
V `∗(x, c̄) =

(
LX − λ

)
(U − P0)(x, c̄) > 0 for x ≤ `∗(c̄) (4.40)

where the inequality in (4.40) holds by (4.12) since `∗(c̄) ≤ x0(c̄) (cf. Proposition 4.10). An
application of Itô-Tanaka’s formula (see [17], Chapter 3, Problem 6.24, p. 215), (4.39), (4.40)
and Proposition 4.12 give

V `∗(x, c̄) = E

[
e−λ(τ∧τR)V `∗

(
Xx
τ∧τR , c̄

)
−
∫ τ∧τR

0
e−rt

(
LX − λ

)
V `∗(Xx

t , c̄)dt

]
(4.41)

≤ E
[
e−λ(τ∧τR)

(
U
(
Xx
τ∧τR , c̄

)
− P0

)]
with τ an arbitrary stopping time and τR := inf

{
t ≥ 0 : |Xx

t | ≥ R
}

, R > 0. We now pass
to the limit as R → ∞ and recall that |U(x, c̄)| ≤ C(1 + |x|) (cf. Proposition 3.1) and that{
e−λτR |Xx

τR
| , R > 0

}
is a uniformly integrable family (cf. Lemma B.2 in Appendix B). Then in

the limit we use the dominated convergence theorem and the fact that

lim
R→∞

e−λ(τ∧τR)Xx
τ∧τR = e−λτXx

τ , P− a.s.

to obtain V `∗( · , c̄) ≤ V ( · , c̄) on R by the arbitrariness of τ , hence V `∗( · , c̄) = V ( · , c̄) on R and
optimality of `∗(c̄) follows.

2. Uniqueness. Here we prove the uniqueness of the solution of (4.37) via probabilistic
arguments similar to those employed for the first time in [20]. Let c̄ ∈ [0, c∗) be fixed and,
arguing by contradiction, let us assume that there exists another solution `′(c̄) 6= `∗(c̄) of (4.37)
with `′(c̄) ≤ x0(c̄). Then by (3.14) and (4.35) it follows that

V `′( · , c̄) ≥ V ( · , c̄) = V `∗( · , c̄) on R, (4.42)

V `′( · , c̄) ∈ C1(R) and V `′
xx( · , c̄) ∈ L∞loc(R) by the same arguments as in 1. above. By construction

V `′ solves (4.39) and (4.40) with `∗ replaced by `′.
Assume for example that `′(c̄) < `∗(c̄), take x < `′(c̄) and set σ∗` := inf

{
t ≥ 0 : Xx

t ≥ `∗(c̄)
}

,
then an application of Itô-Tanaka’s formula gives (up to a localisation argument as in 1. above)

E
[
e−λσ

∗
` V `′

(
Xx
σ∗`
, c̄
)]

= V `′(x, c̄) + E
[ ∫ σ∗`

0
e−λt

(
LX − λ

)
V `′
(
Xx
t , c̄
)
dt
]

(4.43)

= V `′(x, c̄) + E
[ ∫ σ∗`

0
e−λt

(
LX − λ

)(
U
(
Xx
t , c̄
)
− P0

)
1{Xx

t <`
′(c̄)}dt

]
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and

E
[
e−λσ

∗
` V
(
Xx
σ∗`
, c̄
)]

= V (x, c̄) + E
[ ∫ σ∗`

0
e−λt

(
LX − λ

)(
U
(
Xx
t , c̄
)
− P0

)
dt
]
. (4.44)

Recall that V `′(Xx
σ∗`
, c̄) ≥ V (Xx

σ∗`
, c̄) by (4.42) and that for x < `′(c̄) ≤ `∗(c̄) one has V (x, c̄) =

V `′(x, c̄) = U(x, c̄)− P0, hence subtracting (4.44) from (4.43) we get

−E

[∫ σ∗`

0
e−λt

(
LX − λ

)(
U
(
Xx
t , c̄
)
− P0

)
1{`′(c̄)<Xx

t <`∗(c̄)}dt

]
≥ 0. (4.45)

By the continuity of paths of Xx we must have σ∗` > 0, P-a.s. and since the law of X is absolutely
continuous with respect to the Lebesgue measure we also have P

(
{`′(c̄) < Xx

t < `∗(c̄)}
)
> 0 for

all t > 0. Therefore (4.45) and (4.40) lead to a contradiction and we conclude that `′(c̄) ≥ `∗(c̄).
Let us now assume that `′(c̄) > `∗(c̄) and take x ∈

(
`∗(c̄), `

′(c̄)
)
. We recall the stopping time

τ∗ of (4.38) and again we use Itô-Tanaka’s formula to obtain

E
[
e−λτ

∗
V
(
Xx
τ∗ , c̄

)]
= V (x, c̄) (4.46)

and

E
[
e−λτ

∗
V `′
(
Xx
τ∗ , c̄

)]
= V `′(x, c̄) + E

[ ∫ τ∗

0
e−λt

(
LX − λ

)(
U
(
Xx
t , c̄
)
− P0

)
1{Xx

t <`
′(c̄)}dt

]
(4.47)

Now, we have V (x, c̄) ≤ V `′(x, c̄) by (4.42) and V `′
(
Xx
τ∗ , c̄

)
= V

(
Xx
τ∗ , c̄

)
= U(`∗(c̄), c̄) − P0, P-

a.s. by construction, since `′(c̄) > `∗(c̄) and X is positively recurrent (cf. Appendix B). Therefore
subtracting (4.46) from (4.47) gives

E
[ ∫ τ∗

0
e−λt

(
LX − λ

)(
U
(
Xx
t , c̄
)
− P0

)
1{`∗(c̄)<Xx

t <`
′(c̄)}dt

]
≤ 0. (4.48)

Arguments analogous to those following (4.45) can be applied to (4.48) to find a contradiction.
Then we have `′(c̄) = `∗(c̄) and by the arbitrariness of c̄ the first claim of the theorem follows.

Remark 4.14. The arguments developed in this section hold for all c ∈ [0, 1]. The reduction of
(3.14) to the auxiliary problem of Section 4.1.1 is not necessary to provide an algebraic equation
for the optimal boundary. Nonetheless, it seems convenient to resort to the auxiliary problem
whenever possible due to its analytical and computational tractability. In contrast to Section
4.1.2, here we cannot establish either the monotonicity or continuity of the optimal boundary `∗.

5 The Case ĉ > 1

In what follows we assume that ĉ > 1, i.e. k(c) < 0 for all c ∈ [0, 1]. As pointed out in
Proposition 3.1-ii) the solution of the control problem in this setting substantially departs from
the one obtained for ĉ < 0. Both the value function and the optimal control exhibit a structure
that is fundamentally different, and we recall here some results from [7, Sec. 3].

The function U has the following analytical representation:

U(x, c) =


ψλ(x)

ψλ(γ∗(c))

[
γ∗(c)(1−c)−λΦ(c)

(γ∗(c)−µ
λ+θ + µ

λ

)]
+λΦ(c)

[
x−µ
λ+θ + µ

λ

]
, for x < γ∗(c)

x(1− c), for x ≥ γ∗(c)
(5.1)
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with γ∗ as in Proposition 3.1-ii). In this setting U is less regular than the one for the case of
ĉ < 0, in fact here we only have U( · , c) ∈W 2,∞

loc (R) for all c ∈ [0, 1] (cf. Proposition 3.1-ii)) and
hence we expect x 7→ L(x, c) + λP0 := (LX − λ)(U − P0)(x, c) to have a discontinuity at the
optimal boundary γ∗(c). For c ∈ [0, 1] we define

∆L(x, c) := L(x+, c)− L(x−, c), x ∈ R, (5.2)

where L(x+, c) denotes the right limit of L( · , c) at x and L(x−, c) its left limit.

Proposition 5.1. For each c ∈ [0, 1) the map x 7→ L(x, c) + λP0 is C∞ and strictly decreasing
on (−∞, γ∗(c)) and on (γ∗(c),+∞) whereas

∆L(γ∗(c), c) = (1− c)
[
θµ− (λ+ θ)γ∗(c)

]
+ λγ∗(c)Φ(c) > 0. (5.3)

Moreover, define

x0
1(c) :=

P0

Φ(c)
and x0

2(c) :=
θµ(1− c) + λP0

(λ+ θ)(1− c)
, c ∈ [0, 1); (5.4)

then for each c ∈ [0, 1) there are three possible settings, that is

1. γ∗(c) ≤ x0
1(c) hence L(x, c) + λP0 > 0 if and only if x < x0

2(c);

2. γ∗(c) ≥ x0
2(c) hence L(x, c) + λP0 > 0 if and only if x < x0

1(c);

3. x0
1(c) < γ∗(c) < x0

2(c) hence L(x, c)+λP0 > 0 if and only if x ∈ (−∞, x0
1(c))∪(γ∗(c), x

0
2(c)).

Proof. The first claim follows by (5.1) and the sign of ∆L(γ∗(c), c) may be verified by recalling
that γ∗(c) ≥ x̃(c) (cf. Proposition 3.1-ii)). Checking 1, 2 and 3 is matter of simple algebra.

We may use Proposition 5.1 to expand the discussion in Section 4. In particular, from
the first and second parts we see that if either γ∗(c) ≥ x0

2(c) or γ∗(c) ≤ x0
1(c) then the optimal

stopping strategy must be of single threshold type. On the other hand, for x0
1(c) < γ∗(c) < x0

2(c),
as discussed in Section 4, there are two possible shapes for the continuation set. This is setting
for the preliminary discussion which follows.

If the size of the interval (γ∗(c), x
0
2(c)) is “small” and/or the absolute value of L(x, c) + λP0

in (γ∗(c), x
0
2(c)) is “small” compared to its absolute value in (x0

1(c), γ∗(c)) ∪ (x0
2(c),+∞) then,

although continuation incurs a positive cost when the process is in the interval (γ∗(c), x
0
2(c)), the

expected reward from subsequently entering the neighbouring intervals (where L(x, c)+λP0 < 0)
is sufficiently large that continuation may nevertheless be optimal in (γ∗(c), x

0
2(c)) so that there

is a single lower optimal stopping boundary, which lies below x0
1(c) (see Figures 1 and 2a).

If the size of (γ∗(c), x
0
2(c)) is “big” and/or the absolute value of L(x, c)+λP0 in (γ∗(c), x

0
2(c))

is “big” compared to its absolute value in (x0
1(c), γ∗(c))∪(x0

2(c),+∞) then we may find a portion
of the stopping set below x0

1(c) and another portion inside the interval (γ∗(c), x
0
2(c)). In this case

the loss incurred by continuation inside a certain subset of (γ∗(c), x
0
2(c)) may be too great to be

mitigated by the expected benefit of subsequent entry into the profitable neighbouring intervals
and it becomes optimal to stop at once. In the third case of Proposition 5.1, the continuation
and stopping regions may therefore be disconnected sets (see Figures 1 and 2b).

To make this discussion rigorous let us now recall CcV and DcV from (4.11). Note that for any
fixed c ∈ [0, 1) and arbitrary stopping time τ the map x 7→ E[e−λτ

(
U(Xx

τ , c)−P0

)
] is continuous,

hence x 7→ V (x, c) is upper semicontinuous (being the infimum of continuous functions). Recall
that X is positively recurrent and therefore it hits any point of R in finite time with probability
one (see Appendix B for details). Hence according to standard optimal stopping theory, if
DcV 6= ∅ the first entry time of X in DcV is an optimal stopping time (cf. e.g. [21, Ch. 1, Sec. 2,
Corollary 2.9]).
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(a) Illustration when c = 0 (b) Illustration when c = 0.25

Figure 2: The function x 7→ L(x, c) + λP0 changes sign in both plots but, with the visual aid of
Figure 1, the stopping region is connected in (a) and is disconnected in (b).

Proposition 5.2. Let c ∈ [0, 1) be fixed. Then

i) if γ∗(c) ≥ x0
2(c), there exists `∗(c) ∈ (−∞, x0

1(c)) such that DcV = (−∞, `∗(c)] and τ∗ =
inf{t ≥ 0 : Xx

t ≤ `∗(c)} is optimal in (3.14)

ii) if γ∗(c) ≤ x0
1(c), there exists `∗(c) ∈ (−∞, x0

2(c)) such that DcV = (−∞, `∗(c)] and τ∗ =
inf{t ≥ 0 : Xx

t ≤ `∗(c)} is optimal in (3.14)

iii) if x0
1(c) < γ∗(c) < x0

2(c), there exists `
(1)
∗ (c) ∈ (−∞, x0

1(c)) such that DcV ∩ (−∞, γ∗(c)] =

(−∞, `(1)
∗ (c)]. Moreover, either (a): DcV ∩ [γ∗(c),∞) = ∅ and τ∗ = inf{t ≥ 0 : Xx

t ≤
`
(1)
∗ (c)} is optimal in (3.14), or (b): there exist `

(2)
∗ (c) ≤ `

(3)
∗ (c) ≤ x0

2(c) such that DcV ∩
[γ∗(c),∞) = [`

(2)
∗ (c), `

(3)
∗ (c)] (with the convention that if `

(2)
∗ (c) = `

(3)
∗ (c) =: `∗(c) then

DcV ∩ [γ∗(c),∞) = {`∗(c)}) and the stopping time

τ
(II)
∗ := inf{t ≥ 0 : Xx

t ≤ `
(1)
∗ (c) or Xx

t ∈ [`
(2)
∗ (c), `

(3)
∗ (c)]} (5.5)

is optimal in (3.14).

Proof. We provide a detailed proof only for iii) as the other claims follow by analogous argu-
ments. Let us fix c ∈ [0, 1) and assume x0

1(c) < γ∗(c) < x0
2(c).

Step 1. We start by proving that DcV 6= ∅. By localisation and an application of Itô’s formula
in its generalised version (cf. [11, Ch. 8]) to (3.14) and recalling Proposition 5.1 we get

V (x, c) = U(x, c)− P0 + inf
τ

[ ∫ τ

0
e−λt

(
λP0 + L(Xx

t , c)
)
dt
]

for x ∈ R. (5.6)

Arguing by contradiction we assume that DcV = ∅ and hence the optimum in (5.6) is obtained by
formally setting τ = +∞. Moreover by recalling that U solves (3.5) we observe that L(Xx

t , c) ≥
−Xx

t Φ(c) P-a.s. for all t ≥ 0 and (5.6) gives

V (x, c) ≥ U(x, c)− P0 +R(x, c) for x ∈ R (5.7)

where

R(x, c) := E

[ ∫ ∞
0

e−λtλ
(
P0 −Xx

t Φ(c)
)
dt

]
for x ∈ R. (5.8)

It is not hard to see from (5.8) that for sufficiently negative values of x we have R(x, c) > 0 and
(5.7) implies that DcV cannot be empty.



Optimal Entry with Non Convex Costs 17

Step 2. Here we prove that DcV ∩ (−∞, γ∗(c)] = (−∞, `(1)
∗ (c)] for suitable `

(1)
∗ (c) ≤ x0

1(c).
The previous step has already shown that it is optimal to stop at once for sufficiently negative
values of x. It now remains to prove that if x ∈ DcV ∩ (−∞, γ∗(c)] then x′ ∈ DcV ∩ (−∞, γ∗(c)]
for any x′ < x. For this, fix x̄ ∈ DcV ∩ (−∞, γ∗(c)] and let x′ < x̄. Note that the process Xx′

cannot reach a subset of R where λP0 + L( · , c) < 0 (cf. Proposition 5.1-(3)) without crossing
x̄ and hence entering DcV . Therefore, if x′ ∈ CcV and τ∗(x

′) is the associated optimal stopping
time, i.e. τ∗(x

′) := inf{t ≥ 0 : Xx′
t ∈ DcV }, we must have

V (x′, c) = U(x′, c)− P0 + E
[ ∫ τ∗(x′)

0
e−λt

(
λP0 + L(Xx′

t , c)
)
dt
]
≥ U(x′, c)− P0, (5.9)

giving a contradiction and implying that x′ ∈ DcV .

Step 3. We now aim to prove that ifDcV ∩[γ∗(c),∞) 6= ∅ thenDcV ∩[γ∗(c),∞) = [`
(2)
∗ (c), `

(3)
∗ (c)]

for suitable `
(2)
∗ (c) ≤ `

(3)
∗ (c) ≤ x0

2(c). The case of DcV ∩ [γ∗(c),∞) containing a single point is
self-explanatory. We then assume that there exist x < x′ such that x, x′ ∈ DcV ∩ [γ∗(c),∞) and
prove that also [x, x′] ⊆ DcV ∩ [γ∗(c),∞).

Looking for a contradiction, let us assume that there exists y ∈ (x, x′) such that y ∈ CcV .
The process Xy cannot reach a subset of R where λP0 +L( · , c) < 0 without leaving the interval
(x, x′) (cf. Proposition 5.1-(3)). Then, by arguing as in (5.9), with the associated optimal
stopping time τ∗(y) := inf{t ≥ 0 : Xy

t ∈ DcV }, we inevitably reach a contradiction. Hence the
claim follows.

Before proceeding further we clarify the dichotomy in part iii) of Proposition 5.2, as follows.
Lemma 5.3 below characterises the subcases iii)(a) and iii)(b) via condition (5.10). Remark 5.4
then shows that this condition is based on comparing the minima of two convex functions.

Lemma 5.3. Fix c ∈ [0, 1) and suppose that x0
1(c) < γ∗(c) < x0

2(c). Then DcV ∩ [γ∗(c),∞) = ∅
if and only if there exists `∗(c) ∈ (−∞, x0

1(c)) such that for every x ≥ γ∗(c):

U(x, c)− P0

φλ (x)
>
U (`∗(c), c)− P0

φλ (`∗(c))
. (5.10)

Proof. i). Necessity. If DcV ∩ [γ∗(c),∞) = ∅, then by Proposition 5.2-iii) there exists a point
`∗(c) ∈ (−∞, x0

1(c)) such that DcV = (−∞, `∗(c)]. Let x ≥ γ∗(c) be arbitrary and notice that
V (x, c) < U(x, c) − P0 since the current hypothesis implies x ∈ [γ∗(c),∞) ⊂ CcV . According to
Proposition 5.2-iii), the stopping time τ∗ defined by

τ∗ := inf{t ≥ 0 : Xx
t ≤ `∗(c)} (5.11)

is optimal in (3.14). On the other hand, since X has continuous sample paths and Px({τ∗ <
∞}) = 1 by positive recurrence of X, we can also show that

U(x, c)− P0 > V (x, c) = Ex
[
e−λτ∗ (U(Xτ∗ , c)− P0)

]
= Ex

[
e−λτ∗ (U(`∗(c), c)− P0)

]
= (U(`∗(c), c)− P0)Ex

[
e−λτ∗

]
= (U(`∗(c), c)− P0)

φλ (x)

φλ (`∗(c))
(5.12)

where the last line follows from (B-5). Since x ≥ γ∗(c) was arbitrary we have proved the necessity
of the claim.
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ii). Sufficiency. Suppose now that there exists a point `∗(c) ∈ (−∞, x0
1(c)) such that (5.10)

holds for every x ≥ γ∗(c). Using the same arguments establishing the right-hand side of (5.12),
noting that τ∗ as defined in (5.11) is no longer necessarily optimal, for every x ≥ γ∗(c) we have

V (x, c) ≤ Ex
[
e−λτ∗ (U(Xτ∗ , c)− P0)

]
= (U(`∗(c), c)− P0)

φλ (x)

φλ (`∗(c))

< U(x, c)− P0

which shows DcV ∩ [γ∗(c),∞) = ∅.

Remark 5.4. Let us fix c ∈ [0, 1) such that x0
1(c) < γ∗(c) < x0

2(c), or equivalently part iii) of
Proposition 5.2 holds. Writing

F(x) :=
U(x, c)− P0

φλ (x)
, (5.13)

F (x) := ψ(x)/φ(x), (5.14)

H(y) := F ◦ F−1(y) for y > 0, (5.15)

we will appeal to the discussion given at the start of Section 6 of [5]. Since L(x, c) + λP0 > 0
for x ∈ (−∞, x0

1(c)) (from Proposition 5.1), it follows from equation (*) in Section 6 of [5] that
the function y 7→ H(y) is convex for y ∈ (0, F (x0

1(c))). Define y1
m and y2

m by

y1
m := arg min{H(y) : y ∈ (0, F (x0

1(c)))}
y2
m := arg min{H(y) : y ∈ (F (γ∗(c)), F (x0

2(c)))}
(5.16)

Since the function F is monotone increasing we have

m1 := inf
x≤x01(c)

F(x) = F(F−1(y1
m))

m2 := inf
x≥γ∗(c)

F(x) = F(F−1(y2
m))

(5.17)

It is clear from Lemma 5.3 that when m1 < m2 then part iii)(a) of Proposition 5.2 holds,
while when m1 > m2 part iii)(b) of Proposition 5.2 holds. (Of course, when m1 = m2 then the
values of F at the boundaries should also be examined to determine whether the condition of
Lemma 5.3 holds).

5.1 The Optimal Boundaries

We will characterise the four cases i, ii, iii)(a), iii)(b) of Proposition 5.2 through direct proba-
bilistic analysis of the value function and subsequently derive equations for the optimal bound-
aries obtained in the previous section. We first address cases i and ii of Proposition 5.2.

Theorem 5.5. Let c ∈ [0, 1) and B be a subset of R. Consider the following problem: Find
x ∈ B such that (

U(x, c)− P0

)φ′λ(x)

φλ(x)
= Ux(x, c). (5.18)

i) If γ∗(c) ≥ x0
2(c), let `∗(c) be given as in Proposition 5.2-i), then V (x, c) = V `∗(x, c)

(cf. (4.36)), x ∈ R and `∗(c) is the unique solution to (5.18) in B = (−∞, x0
1(c)).

ii) If γ∗(c) ≤ x0
1(c), let `∗(c) be given as in Proposition 5.2-ii), then V (x, c) = V `∗(x, c), x ∈ R

(cf. (4.36)) and `∗(c) is the unique solution to (5.18) in B = (−∞, x0
2(c)).
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Proof. We only provide details for the proof of i) as the second part is completely analogous.
From Proposition 5.2-i) we know that `∗(c) ∈ (−∞, x0

2(c)) and that taking τ∗(x) := inf{t ≥
0 : Xx

t ≤ `∗(c)} is optimal for (3.14), hence the value function V is given by (4.36) with ` = `∗
(the proof is the same as that of Lemma 4.9). If we can prove that smooth fit holds then `∗
must also be a solution to (5.18). To simplify notation set `∗ = `∗(c) and notice that

V (`∗ + ε, c)− V (`∗, c)

ε
≤ U(`∗ + ε, c)− U(`∗, c)

ε
, ε > 0. (5.19)

On the other hand, consider τε := τ∗(`∗ + ε) = inf{t ≥ 0 : X`∗+ε
t ≤ `∗} and note that τε → 0,

P-a.s. as ε → 0 (which can be proved by standard arguments based on the law of iterated
logarithm) and therefore X`∗+ε

τε → `∗, P-a.s. as ε → 0 by the continuity of (t, x) 7→ Xx
t (ω) for

ω ∈ Ω. Since τε is optimal in equation (3.14) with x = `∗ + ε we obtain

V (`∗ + ε, c)− V (`∗, c)

ε
≥

E
[
e−λτε

(
U(X`∗+ε

τε , c)− U(X`∗
τε , c)

)]
ε

, ε > 0. (5.20)

The mean value theorem, (B-1) and (5.20) give

V (`∗ + ε, c)− V (`∗, c)

ε
≥

E
[
e−λτεUx(ξε, c)

(
X`∗+ε
τε −X`∗

τε

)]
ε

= E
[
e−(λ+θ)τεUx(ξε, c)

]
, (5.21)

with ξε ∈ [X`∗
τε , X

`∗+ε
τε ], P-a.s. From (5.1) one has that Ux( · , c) is bounded on R, hence taking

limits as ε → ∞ in (5.19) and (5.21) and using the dominated convergence theorem in the
latter we get Vx(`∗, c) = Ux(`∗, c), and since V ( · , c) is concave (see Lemma 3.4) it must also
be C1 across `∗, i.e. smooth fit holds. In particular this means that differentiating (4.36) at `∗
we observe that `∗ solves (5.18). The uniqueness of this solution can be proved by the same
arguments as those in part 2 of the proof of Theorem 4.13 and we omit them here for brevity.

Next we address cases iii)(a) and iii)(b) of Proposition 5.2. Let us define

F1(ξ, ζ) := ψλ(ξ)φλ(ζ)−ψλ(ζ)φλ(ξ) and F2(ξ, ζ) := ψ′λ(ξ)φλ(ζ)−ψλ(ζ)φ′λ(ξ) (5.22)

for ξ, ζ ∈ R.

Theorem 5.6. Let c ∈ [0, 1) be such that x0
1(c) < γ∗(c) < x0

2(c) and consider the following
problem: Find x < y < z in R with x ∈ (−∞, x0

1(c)) and γ∗(c) < y < z < x0
2(c) such that the

triple (x, y, z) solves the system

(U(z, c)− P0)
φ′λ(z)

φλ(z)
= Ux(z, c) (5.23)

(U(x, c)− P0)
F2(x, y)

F1(x, y)
− (U(y, c)− P0)

F2(x, x)

F1(x, y)
= Ux(x, c) (5.24)

(U(x, c)− P0)
F2(y, y)

F1(x, y)
− (U(y, c)− P0)

F2(y, x)

F1(x, y)
= Ux(y, c) (5.25)

i) In case iii)(b) of Proposition 5.2 the stopping set is of the form DcV = (−∞, `(1)
∗ (c)] ∪

[`
(2)
∗ (c), `

(3)
∗ (c)], and then {x, y, z} = {`(1)

∗ (c), `
(2)
∗ (c), `

(3)
∗ (c)} is the unique triple solving
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(5.23)–(5.25). The value function is given by

V (x, c)=



(
U(`

(3)
∗ , c)−P0

) φλ(x)

φλ(`
(3)
∗ )

for x>`
(3)
∗

U(x, c)− P0 for `
(2)
∗ ≤x≤`(3)

∗

(U(`
(1)
∗ , c)−P0) F1(x,`

(2)
∗ )

F1(`
(1)
∗ ,`

(2)
∗ )

+(U(`
(2)
∗ , c)−P0) F1(`

(1)
∗ ,x)

F1(`
(1)
∗ ,`

(2)
∗ )

for `
(1)
∗ <x<`

(2)
∗

U(x, c)− P0 for x≤`(1)
∗

(5.26)

where we have set `
(k)
∗ = `

(k)
∗ (c), k = 1, 2, 3 for simplicity.

ii) In case iii)(a) of Proposition 5.2 we have DcV = (−∞, `(1)
∗ (c)], moreover V (x, c) = V `

(1)
∗ (x, c),

x ∈ R (cf. (4.36)) and `
(1)
∗ (c) is the unique solution to (5.18) with B = (−∞, x0

1(c)).

Proof. Proof of i). In the case of Proposition 5.2-iii)(b), the stopping τ
(II)
∗ defined in (5.5) is

optimal for (3.14):

V (x, c) = E
[
e−λτ

(II)(
U(Xx

τ (II)
, c)− P0

)]
Equation (5.26) is therefore just the analytical representation for the value function in this

case. The fact that `
(1)
∗ , `

(2)
∗ and `

(3)
∗ solve the system (5.23)–(5.25) follows from the smooth

fit condition at each of the boundaries. A proof of the smooth fit condition can be carried out
using probabilistic techniques as done previously for Theorem 5.5. We therefore omit its proof
and only show uniqueness of the solution to (5.23)–(5.25).

Uniqueness will be addressed with techniques similar to those employed in Theorem 4.13,
taking into account that the stopping region in the present setting is disconnected. We fix

c ∈ [0, 1), assume that there exists a triple {`′1, `′2, `′3} 6= {`
(1)
∗ , `

(2)
∗ , `

(3)
∗ } solving (5.23)–(5.25) and

define a stopping time

σ(II) := inf
{
t ≥ 0 : Xx ≤ `′1 or Xx

t ∈ [`′2, `
′
3]
}

x ∈ R. (5.27)

We can associate to the triple a function

V ′(x, c) := E
[
e−λσ

(II)(
U(Xx

σ(II) , c)− P0

)]
x ∈ R (5.28)

and note that V ′( · , c) has the same properties as the value function V ( · , c) provided that we

replace `
(k)
∗ by `′k everywhere for k = 1, 2, 3. Moreover, equation (3.14) implies

V ′(x, c) ≥ V (x, c), x ∈ R. (5.29)

Step 1. First we show that (`
(2)
∗ , `

(3)
∗ )∩ (`′2, `

′
3) 6= ∅. We assume that `′2 ≥ `

(3)
∗ but the same

arguments would apply if we consider `
(2)
∗ ≥ `′3. Note that `′1 < `

(3)
∗ since `′1 ∈ (−∞, x0

1(c)),

then fix x ∈ (`′2, `
′
3) and define the stopping time τ3 = inf{t ≥ 0 : Xx

t ≤ `
(3)
∗ }. We have

V (x, c) < U(x, c)−P0 and by (5.28) it follows that V ′(x, c) = U(x, c)−P0. Then an application
of the Itô-Tanaka formula gives

0 < V ′(x, c)− V (x, c) = E
[
e−λτ3

(
V ′(Xx

τ3 , c)− V (Xx
τ3 , c)

)]
(5.30)

− E

[ ∫ τ3

0
e−λt

(
LX − λ

)(
U(Xx

t , c)− P0

)
1{Xx

t ∈(`′2,`
′
3)}dt

]
< E

[
e−λτ3

(
V ′(`

(3)
∗ , c)− U(`

(3)
∗ , c) + P0

)]
≤ 0
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where we have used Proposition 5.1-(3) in the first inequality on the right-hand side and the

fact that V ′(`
(3)
∗ , c) ≤ U(`

(3)
∗ , c) − P0 in the second. We then reach a contradiction with (5.29)

and (`
(2)
∗ , `

(3)
∗ ) ∩ (`′2, `

′
3) 6= ∅.

Step 2. Notice now that if we assume `′3 < `
(3)
∗ we also reach a contradiction with (5.29)

as for any x ∈ (`′3, `
(3))∗) we would have V ′(x, c) < U(x, c)− P0 = V (x, c). Then we must have

`′3 ≥ `
(3)
∗ .

Assume now that `′3 > `
(3)
∗ , take x ∈ (`

(3)
∗ , `′3) and τ3 as in Step 1. above. Note that

V ′(x, c) = U(x, c) − P0 > V (x, c) whereas V (`
(3)
∗ , c) = U(`

(3)
∗ , c) − P0 = V ′(`

(3)
∗ , c) by Step 1.

above and (5.28). Then using the Itô-Tanaka formula again we find

0 < V ′(x, c)− V (x, c) = E
[
e−λτ3

(
V ′(Xx

τ3 , c)− V (Xx
τ3 , c)

)]
(5.31)

− E

[ ∫ τ3

0
e−λt

(
LX − λ

)(
U(Xx

t , c)− P0

)
1{Xx

t ∈(`
(3)
∗ ,`′3)}dt

]
< E

[
e−λτ3

(
V ′(`

(3)
∗ , c)− U(`

(3)
∗ , c) + P0

)]
= 0

hence there is a contradiction with (5.29) and `
(3)
∗ = `′3.

Step 3. If we now assume that `
(2)
∗ < `′2 we find the same contradiction with (5.29) as in Step

2. as in fact for any x ∈ (`
(2)
∗ , `′2) we would have V ′(x, c) < U(x, c)−P0 = V (x, c). Similarly if we

assume that `′1 < `
(1)
∗ then for any x ∈ (`′1, `

(1)
∗ ) we would have V ′(x, c) < U(x, c)−P0 = V (x, c).

These contradictions imply that it must be `′2 ≤ `
(2)
∗ and `′1 ≥ `

(1)
∗ .

Let us assume now that `′2 < `
(2)
∗ , then taking x ∈ (`′2, `

(2)
∗ ), applying the Itô-Tanaka formula

until the first exit time from the open set (`
(1)
∗ , `

(2)
∗ ) and using arguments similar to those in

Steps 1. and 2. we end up with a contradiction. Hence `′2 = `
(2)
∗ ; analogous arguments can be

applied to establish that `′1 = `
(1)
∗ .

Proof of ii). To prove ii) we simply argue as in Theorem 5.5, concluding that V (x, c) =

V `
(1)
∗ (x, c), x ∈ R and `

(1)
∗ solves (5.18) with B = (−∞, x0

1(c)).

6 Conclusion

In this paper we have studied the problem of optimal entry into an irreversible investment
problem with a cost functional which is non convex with respect to the control variable. The
non convexity of the expected cost criterion is due to the real-valued nature of the spot price
of electricity. We show that the problem can be decoupled and that the investment phase can
be studied independently of the “entry” decision as an investment problem over an infinite time
horizon. Instead the optimal entry decision depends heavily on the properties of the optimal
investment policy.

The complete value function can be rewritten as one of an optimal stopping problem where
the cost of immediate stopping involves the value function of the infinite horizon investment
problem. It has been shown in [7] that the latter problem presents a complex structure of the
solution, in which the optimal investment rule can be either singularly continuous or purely
discontinuous, depending on the problem parameters. Such features, together with the non
explicit representation of the investment problem’s value function, in turn imply a non standard
optimal entry policy. Indeed, the optimal entry rule can be either the first hitting time of the
spot price at a single threshold, or can be triggered by multiple boundaries splitting the state
space into non connected stopping and continuation regions. The techniques employed in the
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paper are those of stochastic calculus and optimal stopping theory, and computer drawings have
been given to support the theoretical findings of our work.

A Some Proofs from Section 4.1

Proof of Proposition 4.2

Fix c̄ ∈ [0, 1] and set L(x, c̄) :=
(
LX −λ

)
U(x, c̄) for simplicity. By (4.2), (4.10) and recalling

that u(x; c̄) = 0 for all x ∈ R such that c̄ ≤ g∗(x) (or equivalently x ≤ β∗(c̄)) we get

L(x, c̄) =

{
−λxΦ(c̄) for x > β∗(c̄)[
θµ− (λ+ θ)x

](
g∗(x)− c̄

)
− λxΦ(g∗(x)) for x ≤ β∗(c̄).

(A-1)

Since g∗ is continuous with g∗(β∗(c̄)) = c̄ one can verify that x 7→ L(x, c̄) is continuous,
limx→+∞ L(x, c̄) = −∞ and, by recalling also that g∗(x) = 1 for x ≤ β∗(1), limx→−∞ L(x, c̄) =
+∞. Since β∗ ∈ C1([0, 1]) and it is strictly monotone then g∗ is differentiable for a.e. x ∈ R
with g′∗ ≤ 0. In particular d

d xL(x, c̄) exists everywhere with the exception of points x = β∗(c̄)
and x = β∗(1). It follows that

d
d xL(x, c̄) = −λΦ(c̄) < 0 for x > β∗(c̄) (A-2)

d
d xL(x, c̄) = −(λ+ θ)

(
1− c̄

)
< 0 for x < β∗(1) (A-3)

where in the second expression we have used that Φ(1) = 0 by Assumption 2.1. Now we recall
that β∗(c) ≤ x̂0(c) for c ∈ [0, 1] (cf. Proposition 3.1-i)) and θµ− k(c)β∗(c) > 0 on [0, 1]. Hence
in particular for c = g∗(x), x ∈ [β∗(1), β∗(0)], we get θµ− k(g∗(x))x > 0 and

d
d xL(x, c̄) =

[
θµ− k(g∗(x))x

]
g′∗(x) (A-4)

− (λ+ θ)
(
g∗(x)− c̄

)
− λΦ(g∗(x)) < 0 for x ∈

(
β∗(1), β∗(c̄)

)
.

We then obtain that x 7→ L(x, c̄) is continuous, strictly decreasing (by (A-2), (A-3)) and (A-4)
and it equals zero at a single point for any given c̄ ∈ [0, 1]. Obviously the result extends to
L(x, c̄) + λP0 =

(
LX − λ

)(
U(x, c)− P0) and (4.12) follows.

Proof of Proposition 4.4

Existence, uniqueness and smoothness of α∗ follow from arguments analogous to those em-
ployed to prove [7, Thm. 2.1]. For the limiting behaviour of α∗(c) as c → 1 we observe that

Φ(c) ↓ 0 and x†0(c) ↑ ∞ when c ↑ 1. Since α∗ is strictly increasing it has left-limit so we argue
by contradiction and assume that α∗(c) → α0 as c → 1 for some α0 < +∞. Then in the limit
as c→ 1 (4.28) gives

0 = (Ĝ(α0, 1)− P0)φ′λ(α0)/φλ(α0) = −P0φ
′
λ(α0)/φλ(α0) 6= 0

and we reach a contradiction.

Proof of Proposition 4.5

Fix c ∈ [0, 1]. It is clear that α∗(c) solves (4.28) if and only if K(α∗(c), c) = 0 where

K(x, c) := − λ
λ+θΦ(c)φλ(x) +

(
Ĝ(x, c)− P0

)
φ′λ(x) x ∈ R. (A-5)
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From direct computation it is not hard to verify that x 7→ K(x, c) is strictly decreasing and

convex on (−∞, x†0(c)), so that it is sufficient to show that K(z0(c), c) < 0 for z0(c) := P0/Φ(c)

to conclude the proof. In fact we shall only consider the case z0(c) ∈ (−∞, x†0(c)) as otherwise
the result is trivial.

Set for simplicity z0 = z0(c), then from straightforward algebra we find

K(z0, c) = φλ(z0(c))Φ(c)
[
− λ

λ+θ + (1− λ
λ+θ )(µ− z0)

φ′λ(z0)

φλ(z0)

]
. (A-6)

Now, since φ′′λ > 0 and LXφλ = λφλ on R one has (µ− z0)
φ′λ(z0)

φλ(z0) <
λ
θ hence from (A-6) it follows

K(z0, c) < 0.

Proof of Lemma 4.9

We recall that the Ornstein-Uhlenbeck process is positively recurrent (cf. Appendix B), hence
τ`(x, c) < +∞ P-a.s. for any x ∈ R and it follows that U(Xx

τ`
, c) = U(`(c), c) P-a.s. The latter

and (4.35) then imply

V `(x, c) =
(
U(`(c), c)− P0

)
E
[
e−λτ`(x,c)

]
=
(
U(`(c), c)− P0

) φλ(x)

φλ(`(c))
(A-7)

for x > `(c), where (B-5) has been used.

Proof of Proposition 4.10

Fix c ∈ [0, c∗). Since we are looking for a finite-valued boundary `∗, solving (4.37) is equiv-
alent to finding x such that Ĥ(x, c) = 0 where

Ĥ(x, c) := (U(x, c)− P0)φ′λ(x)− Ux(x, c)φλ(x). (A-8)

We recall (4.2), (4.3), (4.4) and that the function g∗ is the inverse of β∗ (cf. Proposition 3.1).
As in (4.10) we can derive U with respect to x and take the derivative inside the integral so to
obtain

U(x, c) = x(1− c)−
∫ 1

c∨g∗(x)
u(x, y)dy and Ux(x, c) = (1− c)−

∫ 1

c∨g∗(x)
ux(x, y)dy (A-9)

for all x ∈ R and where we have used that u and ux equal zero for x ∈ R such that c ≤ g∗(x).
In order to study the asymptotic behaviour of (A-8) as x → −∞ let us observe that for

x < b∗(1) one has g∗(x) = 1 and hence U(x, c) = x(1 − c) and Ux(x, c) = 1 − c. Also from the
expression of φλ (cf. Appendix B) one gets

lim
x→−∞

φλ(x) = +∞, lim
x→−∞

xφ
′
λ(x) = +∞, lim

x→−∞
φ
′
λ(x) = −∞

and limx→−∞ xφ
′′
λ(x) = −∞. Then, by applying De l’Hopital rule twice we have

0 ≤ lim
x→−∞

φλ(x)

xφ
′
λ(x)

= lim
x→−∞

1

1 + xφ
′′
λ(x)/φ

′
λ(x)

= lim
x→−∞

1

2 + xφ
′′′
λ (x)/φ

′′
λ(x)

≤ 1

2
, (A-10)
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since xφ
′′′
λ (x)/φ

′′
λ(x) > 0 for x < 0. Therefore limx→−∞

[
1− φλ(x)

xφ
′
λ(x)

]
= a ∈ [1

2 , 1] and we conclude

that

lim
x→−∞

Ĥ(x, c) = lim
x→−∞

[
(x(1− c)− P0)φ′λ(x)− (1− c)φλ(x)

]
≥(1− c) lim

x→−∞
xφ′λ(x)

(
1− φλ(x)

xφ′λ(x)

)
= +∞.

Next we aim at showing that Ĥ(x0(c), c) < 0 so that by continuity of x 7→ Ĥ(x, c) we obtain

existence of a solution of (4.37). We denote Σ(c) := −
∫ 1
c
G(β∗(y),y)
φλ(β∗(y)) dy > 0 where positivity holds

by observing that G(x, c) < 0 for x < x0(c) and hence for x = β∗(c). Then by using (4.6) and
(4.5) in (A-9), and evaluating the other integrals we obtain

U(x, c) = x
(
g∗(x) ∨ c− c

)
+ λ

λ+θΦ
(
g∗(x) ∨ c

)(
x+ µθ

λ

)
− φλ(x)Σ

(
c ∨ g∗(x)

)
(A-11)

Ux(x, c) =
(
g∗(x) ∨ c− c

)
+ λ

λ+θΦ
(
g∗(x) ∨ c

)
− φ′λ(x)Σ

(
c ∨ g∗(x)

)
(A-12)

for all x ∈ R. We now substitute (A-11) and (A-12) inside (A-8) to obtain

Ĥ(x, c) =
[
x
(
g∗(x) ∨ c− c

)
+ λ

λ+θΦ
(
g∗(x) ∨ c

)(
x+ µθ

λ

)
− P0

]
φ′λ(x)

−
[
(g∗(x) ∨ c− c) + λ

λ+θΦ
(
g∗(x) ∨ c

)]
φλ(x) (A-13)

In order to evaluate (A-13) at x0(c) we recall (A-1) and that x 7→ L(x, c) is continuous. Then it
may be rewritten in a more compact form as

L(x, c) = [θµ− (λ+ θ)x]
(
g∗(x) ∨ c− c

)
− λΦ(g∗(x) ∨ c)x (A-14)

and, by definition, x0(c) is such that

−P0 = 1
λL(x0(c), c). (A-15)

For simplicity set x0 := x0(c), then plugging (A-15) into (A-13) and using (A-14) we find

Ĥ(x0, c) = φλ(x0)

[
θ(µ− x0)

λ

φ′λ(x0)

φλ(x0)
− 1

](
g∗(x

0) ∨ c− c+
λΦ
(
g∗(x

0) ∨ c
)

λ+ θ

)
. (A-16)

Since
(
LX − λ

)
φλ = 0 for all x ∈ R and φ′′λ > 0 on R then it holds θ(µ− x)φ′λ(x)− λφλ(x) < 0

for all x ∈ R. Hence from (A-16) we obtain Ĥ(x0(c), c) < 0 and there must be at least one point
`∗(c) < x0(c) that fulfils (4.37). By arbitrariness of c ∈ [0, c∗) the proof is complete.

Proof of Proposition 4.12

First fix an arbitrary c ∈ [0, 1] and recall (4.2), (4.3) and (4.4). Then by standard arguments
based on dominated convergence theorem we get

Uxx(x, c) = φ′′λ(x)

∫ 1

g∗(x)∨c

G(β∗(y), y)

φλ(β∗(y))
dy x ∈ R (A-17)

by the affine nature of x 7→ G(x, c) (cf. (4.5)). As expected Uxx( · , c) is continuous on R. Now by
differentiating separately in the two regions

{
x ∈ R : c > g∗(x)

}
and

{
x ∈ R : c < g∗(x)

}
, with
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the exception of points x = β∗(1) and x = β∗(0), recalling that g∗ is C1 elsewhere (cf. Proposition
3.1-i)), g′∗ = 0 on (−∞, β∗(1)) ∪ (β∗(0),+∞) and β∗(g∗(x)) = x, we find

Uxxx(x, c) = φ′′′λ (x)

∫ 1

g∗(x)∨c

G(β∗(y), y)

φλ(β∗(y))
dy − φ′′λ(x)

G(x, g∗(x))

φλ(x)
g′∗(x)1{c<g∗(x)} (A-18)

for a.e. x ∈ R which shows

∀c ∈ [0, 1] : Uxxx( · , c) ∈ L∞loc(R). (A-19)

Now fix c̄ ∈ [0, c∗) and take `∗(c̄) solving (4.37). Since by definition V `∗(`∗(c̄), c̄) = U(`∗(c̄), c̄)−
P0 it suffices to show that V `∗

x ( · , c̄) ≤ Ux( · , c̄) on R to verify the claim. The latter trivially
holds for x ≤ `∗(c̄) by (4.36) and (4.37), hence it remains to prove it for x > `∗(c̄).

From (4.36) it follows that LXV `∗(x, c̄)− λV `∗(x, c̄) = 0 for x > `∗(c̄) and it is not hard to
verify by direct derivation of the latter that

LXV `∗
x (x, c̄)− (λ+ θ)V `∗

x (x, c̄) = 0 for x > `∗(c̄) (A-20)

as well. On the other hand, from (A-1) one obtains that L( · , c̄) is differentiable for a.e. x ∈ R,
in particular with the exception of x = β∗(c̄) and x = β∗(1) (the latter by non differentiability
of g∗ at that point). Then by (A-19), we obtain Lx(x, c̄) = (LX − (λ+ θ))Ux(x, c̄) a.e. x ∈ R
and with

Lx(x, c̄) :=


−λΦ(c̄) for x > β∗(c̄)

−λΦ(g∗(x))− (λ+ θ)(g∗(x)− c̄)
+
[
θµ− k

(
g∗(x)

)
x
]
g′∗(x) for a.e. x ≤ β∗(c̄).

(A-21)

Notice that since β∗ is strictly decreasing, g′∗ is bounded on R and Lx( · , c̄) is locally bounded
on R with

∣∣Lx( · , c̄)
∣∣ ≤ C(1 + |x|) for x ∈ R and a suitable constant C > 0.

Define

τ∗` (x, c̄) := inf{t ≥ 0 Xx
t ≤ `∗(c̄)} x ∈ R, (A-22)

fix x > `∗(c̄) and denote τ∗` = τ∗` (x, c̄) for simplicity. Take R > 0 arbitrary and fixed such
that −R < β∗(1) and R > β∗(0), and denote τR := inf{t ≥ 0 : |Xx

t | ≥ R}. Since Uxx(·, c̄) is
continuous and Uxxx(·, c̄) locally bounded, then we use an extension of Itô’s formula based on
preliminary mollification of Ux (cf. [11, Ch. 8, Sec. VIII.4, Thm. 4.1]) to obtain

V `∗
x (x, c̄)− Ux(x, c̄) = E

[
e−(λ+θ)(τ∗` ∧τR)

(
V `∗
x

(
Xx
τ∗` ∧τR

, c̄
)
− Ux

(
Xx
τ∗` ∧τR

, c̄
))]

+ E

[∫ τ∗` ∧τR

0
e−(λ+θ)sLx

(
Xx
s , c̄)ds

]
≤ E

[
e−(λ+θ)(τ∗` ∧τR)

(
V `∗
x

(
Xx
τ∗` ∧τR

, c̄
)
− Ux

(
Xx
τ∗` ∧τR

, c̄
))]

(A-23)

where the inequality is due to (A-2), (A-3) and (A-4). In order to evaluate the last expression
in the right-hand side of (A-23) notice that on the set {τR < τ∗` } one has either Xx

τR
= −R

which implies V `∗
x

(
−R, c̄

)
−Ux

(
−R, c̄

)
= 0 by (4.36), or Xx

τR
= R which, along with (4.36) and

(A-12), implies instead
∣∣V `∗
x

(
R, c̄

)
− Ux

(
R, c̄

)∣∣ ≤ D(1 + |φ′λ(R)|) for a suitable constant D > 0.
Hence, noting that V `∗

x

(
Xx
τ∗`
, c̄
)
− Ux

(
Xx
τ∗`
, c̄
)

= 0, P-a.s. by the smooth fit condition (4.37), we
get

V `∗
x (x, c̄)− Ux(x, c̄) ≤ D(1 + |φ′λ(R)|)E

[
e−(λ+θ)τR1{τR<τ∗` }1{Xx

τR
=R}

]
for x > `∗(c̄) (A-24)

Since R 7→ φλ(R) is strictly convex and decreasing (cf. Section B), the function R 7→ φ′λ(R) is
negative and increasing, which means R 7→ D(1 + |φ′λ(R)|) is non-negative and decreasing. By
taking limits as R → ∞ in (A-24), and recalling also the discussion above, we conclude that
V `∗
x (x, c̄)− Ux(x, c̄) ≤ 0 for x ∈ R. The proof is complete since c̄ was arbitrary.
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B Some Facts on the Ornstein-Uhlenbeck Process

Recall the Ornstein-Uhlenbeck process X of (2.1). It is well known that X is a positively
recurrent Gaussian process (cf., e.g., [3], Appendix 1, Section 24, pp. 136-137) with state space
R and that (2.1) admits the explicit solution

Xx
t = µ+ (x− µ)e−θt +

∫ t

0
σeθ(s−t)dBs. (B-1)

We introduced its infinitesimal generator LX in (3.6); the characteristic equation LXu = λu,
λ > 0, admits the two linearly independent, positive solutions (cf. [14], p. 280)

φλ(x) := e
θ(x−µ)2

2σ2 D−λ
θ

((x− µ)

σ

√
2θ
)

(B-2)

and

ψλ(x) := e
θ(x−µ)2

2σ2 D−λ
θ

(
− (x− µ)

σ

√
2θ
)
, (B-3)

which are strictly decreasing and strictly increasing, respectively. In both (B-2) and (B-3) Dα

is the cylinder function of order α (see [2], Chapter VIII, among others) and it is also worth
recalling that (see, e.g., [2], Chapter VIII, Section 8.3, eq. (3) at page 119)

Dα(x) :=
e−

x2

4

Γ(−α)

∫ ∞
0

t−α−1e−
t2

2
−xtdt, Re(α) < 0, (B-4)

where Γ(·) is Euler’s Gamma function.
We denote by Px the probability measure on (Ω,F) induced by the process (Xx

t )t≥0, i.e. such
that Px( · ) = P( · |X(0) = x), x ∈ R, and by Ex[ · ] the expectation under this measure. Then,
it is a well known result on one-dimensional regular diffusion processes (see, e.g., [3], Chapter I,
Section 10) that

Ex[e−λτy ] =


φλ(x)

φλ(y)
, x ≥ y,

ψλ(x)

ψλ(y)
, x ≤ y,

(B-5)

with φλ and ψλ as in (B-2) and (B-3) and τy := inf{t ≥ 0 : Xx
t = y} the hitting time of Xx

at level y ∈ R. Due to the recurrence property of the Ornstein-Uhlenbeck process X one has
τy <∞ Px-a.s. for any x, y ∈ R.

It is also useful to recall here some convergence and integrability properties of X.

Lemma B.1. One has
lim inf
t↑∞

e−λt|Xx
t | = 0, a.s.

Proof. Define Ξ := lim inft↑∞ e
−λt|Xx

t | and notice that clearly Ξ ≥ 0 a.s. We now claim (and
prove later) that lim inft↑∞ e

−λtE
[
|Xx

t |
]

= 0 to obtain by Fatou Lemma

0 ≤ E
[
Ξ
]
≤ lim inf

t↑∞
e−λtE

[
|Xx

t |
]

= 0; (B-6)

that is, E
[
Ξ
]

= 0 and hence Ξ = 0 a.s. by nonnegativity of Ξ.
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To complete the proof we have thus only to show that lim inft↑∞ e
−λtE

[
|Xx

t |
]

= 0. By (B-1)
and Hölder inequality one has

E
[
|Xx

t |
]
≤ µ+ e−θt|x− µ|+ e−θtE

[∣∣∣ ∫ t

0
eθsdBs

∣∣∣2] 1
2

(B-7)

= µ+ e−θt|x− µ|+ e−θt
1

2θ
(e2θ − 1)

1
2 ,

where also Itô isometry has been used. It is now easily checked that (B-7) implies the claim.

Lemma B.2. Fix x ∈ R, and set τR := inf{t ≥ 0 : |Xx
t | ≥ R}, R > 0, then the family

{e−λτR |Xx
τR
| : R > 0} is uniformly integrable.

Proof. It suffices to show that {e−λτR |Xx
τR
| : R > 0} is uniformly bounded in L2(Ω,P). With

no loss of generality we take x ∈ (−R,R) so that we can write τR = τ+
R ∧ τ

−
R P-a.s. with

τ+
R := inf{t ≥ 0 : Xx

t ≥ R} and τ−R := inf{t ≥ 0 : Xx
t ≤ −R}. From recurrence of X we get

E
[
e−2λτR |Xx

τR
|2
]

= R2
(
E
[
e−2λτ+R1{τ+R<τ

−
R }

]
+ E

[
e−2λτ−R 1{τ−R<τ

+
R }

])
(B-8)

≤ R2
[
ψ2λ(x)
ψ2λ(R) + φ2λ(x)

φ2λ(−R)

]
.

As R→∞ the functions φ2λ(−R) and ψ2λ(R) diverge to infinity with a super quadratic trend,
hence there exists a constant C(x) > 0 depending only on x ∈ R such that

sup
R>0

E
[
e−2λτR |Xx

τR
|2
]
≤ C(x).
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