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Introduction

The theory of interacting particle systems is a fast growing area in modern probability
and infinite dimensional analysis with various applications in, e.g., mathematical physics,
theoretical biology, ecology, social sciences and economy. The aim is to describe the time
evolution of a huge collection of interacting entities. Such entities are called (microscopic)
particles and are considered, depending on the particular choice of model, as molecules,
cells , plants or animals , humans and agents of a market. The collection of all particles,
which is typically of order 10* — 10?3, is called microscopic state. Each particle from
this state can, in principle, be described by a physical /ecological /biological mechanism.
A detailed understanding of such mechanism yields the possibility to describe the time
evolution of the microscopic state by solutions to certain systems of equations. Neverthe-
less, the complex structure of each particle makes it practically impossible to determine
all parameters involved. Moreover, due to the huge number of particles it is hopeless to
solve or even provide reasonable simulations for such large systems of equations. As a
simplification each particle is therefore modelled as a random process. The parameters
of such processes should be chosen in such a way that they fit with the experimental
data. Moreover, the huge number of particles is described by statistical properties such
as expectations, correlations and particle densities. A mathematical realization of above
ideas leads, in the simplest case, to the description of a microscopic state in terms of a
Markov process.

In this thesis we study certain classes of particle systems in the framework of Markov
processes and are mainly focused on their statistical description. The methods used in this
work are at present already well-developed but still leave several challenging problems un-
solved. The aim of this thesis is to broaden the collection of available techniques used for
the analysis of interacting particle systems. We provide a complete and self-contained ap-
proach by semigroup methods which includes an extension to time-inhomogeneous Markov
processes. This methods are used for the construction of so-called birth-and-death pro-
cesses, where each particle from the microscopic state may randomly disappear and new
particles may randomly appear.

Classical birth-and-death dynamics are described by a system of ordinary differential
equations, also known as Kolmogorov’s differential equations, and are usually studied by
semigroup methods on (weighted) spaces of summable real-valued sequences, cf. Feller,
Kato [Kath4l, [Fel68, [Fel71, [HP74]. More recent attempts study such equations on the
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spaces (P for p € [1,00), see Arlotti, Banasiak [BA06] and others [BLMO0G, [TV06]. In
contrast to many real world models, see e.g. the Bolker, Dieckmann, Law, Pacala model
[BP97, BP99, IDLO0, DLO5] (short BDLP), such equations do not include the positions of
the described particles. Other models coming from ecology and the modelling of mutations
can be found in [NeuOll, BCF*14, [KM66, SEWO05, [FFH™ 15| and references therein.

The simplest possibility to include spatial structure is to assign to each particle a fixed
site of a graph (e.g. from the lattice Z?). This are the so-called lattice models. For such
models a rigorous study by semigroup methods is adequate and a detailed presentation can
be found in the classical book of Liggett [Lig05] and references therein. Several models,
such as the BDLP model, require that the positions of the particles are not a priori fixed.
This means that Z? should be replaced by a continuous location space, e.g. R%.

For the modelling of birth-and-death processes in continuum the theory of pure point
processes is commonly used. Such processes share several properties with the processes
associated to lattice models, but also include numerous unexpected features and require
essentially different techniques for their mathematical treatment. Taking into account
that they describe real-world particles it leads to the natural assumption that all parti-
cles are indistinguishable and any two particles cannot occupy the same position in the
location space, say for simplicity R?. A microscopic state v is then, by definition, a linear
combination of point-masses ¢,, where z € R? is the position of a particle in the system.
Here we encounter two different cases which, as we shall see later on, have to be treated
by different techniques. A microscopic state which is given by a finite linear combina-
tion of point masses is called finite state, see chapter 2. Microscopic states being linear
combinations of point masses d, with infinitely many different positions = € R? are called
infinite states and are considered in the chapters three and four. The Markov dynam-
ics of finite states can be analysed by a measure-valued generalization of Kolmogorov’s
differential equations. This equations have been first analysed by Feller [Fel40] and have
been afterwards further investigated in the next 60 years, cf. [FMSI14] and many others.
A summary with applications to interacting particle systems is provided in the book of
Chen [Che04]. For the considerations in this thesis it is reasonable to identify v with a
subset of R?, i.e. we consider the microscopic state as a (finite or infinite) collection of
positions = € R

Stochastic birth-and-death processes in continuum are heuristically described by a
Markov (pre-)generator on a proper set of functions F. The general form of such operator
(in the one-component case) is given by the heuristic expression

(LF)(y) = ) d(x,Y\o)(F(Y\x) = F(v)) + fb(x, VNF(vz) = F(y)dz, (1)

where v € E. The state space (= configuration space) E is assumed to be either the space
of all finite configurations
Lo ={n <R[ |n] < oo}
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or the space of all locally finite configurations
I'={ycR?||yn K| <o forall compacts K = R?}.

Here and in the following we write | A| for the number of elements in A = R?. For simplicity
of notation we write y\z, 7 U x instead of v U {x} and ~\{z}, respectively. The birth-
and-death Markov process (X;):>0 © E associated to the operator L, provided it exists,
therefore consists of two elementary events. Namely, the death of particles (y —> v\x)
and birth of particles (y — ~ u x). The death intensity d(z,v) > 0 determines the
probability that a point x € v disappears from the configuration v. The birth intensity
b(z,7) > 0 determines the probability for a new point z € R? to appear. In general both
intensities depend on the present microscopic state v of the process.
Solutions to the (backward) Kolmogorov equation on functions F' : E — R
OF;

-~ L Fili—o = Fo (2)

are related to the Markov process (X;)i>o by
Ft(W/) = ]EW(FO(Xt))? v E E7 t >0,

where E, denotes the expectation w.r.t. the probability measure P, for which P. (X, =
7v) = 1 holds. Here we encounter a fundamental difference in the theory of finite birth-
and-death systems (E = I'y) and infinite systems (E = I'). For finite systems equation
can be solved in spaces of continuous bounded functions, see Kolokoltsov [Kol06] and
chapter 2 of this thesis. Hence we are able to construct a birth-and-death Markov process
starting from any initial point n € I'y. However, for infinite systems we cannot expect to
solve equation in any space of continuous functions and hence obtain a process for any
initial configuration v € I', ¢f. Kondratiev, Skorokhod [KS06]. Note that any stochastic
process having cadlag paths, is necessarily contained in a proper subspace of I'.
The adjoint Cauchy problem

? .
% = L*py,  fueli=0 = o (3)

is known as the (forward) Kolmogorov equation and describes the distribution of the
process X;. Because of the Markovian property of the operator L we expect that solutions
to can be constructed in the class of probability measures on E. In the physical
literature, is referred to the Fokker-Planck equation and probability measures 1 on E

are called states of the system. Functions F' : E — R are hence called observables and
expectations

(F, ) = JF(’Y)th(’Y)
E
are considered as measurable quantities of the particle system.
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Dynamics of finite systems

The study of birth-and-death processes with state space £ = I'y has been initiated by
Preston [Pre75]. In particular, it was shown that under some conditions the processes are
temporally ergodic. Later on the problem for convergence to equilibrium was studied by
Lotwick, Silvermann and Mgller |[LS81 [Mgl89]. A necessary condition for the existence
of a process with state space I'g is given by

o)1= Y d(ea) + [ blzsmds <, (1)

TEN Rd
The first term describes the intensity that a particle from the configuration 7 dies, whereas
the integral in the second term is the intensity for the birth of a new particle. The value
q(n) is the cumulative intensity of the process in the state n € T'g. The corresponding
transition function is given by

Q0. 4) = Y d(e. e Lala\a) + | o)Ly o x)d,

zen

Rd
1, neA : :
where 14(n) := 0. n¢A and the operator given by can be rewritten to
(LF)(n) = J(F(S) — F(n)Q(n,d§), neT. (5)
To

Hence the process described by the operator L is a pure jump Markov process and tech-
niques coming from the theory of Markov chains are applicable. Such approach has been
investigated in the last 20 years, a comprehensive summary of the obtained results can
be found in [Che04]. Such processes can be also obtained as unique solutions to certain
stochastic equations, cf. Bezborodov [Bezlbal, [Bez15h].

More recent problems in the theory of birth-and-death processes on I'y deal with
various scaling limits. In this thesis we only consider the so-called mean-field limit, for
which the particles in the limiting description are distributed according to a Poisson
measure. The mean-field limit is also known as the mesoscopic limit and can be obtained
by various kinds of scalings, e.g. Vlasov and Lebowitz-Penrose to mention the most
common ones. The limiting equation, or kinetic equation,

o

o (z) = v(pe)(x), pilico = po, T eR?

is then (in general) a non-linear integro-differential equation for the approximate density
of the particle system. The solution operator associated to above equation, provided it
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exists, preserves in many cases positivity. Hence it may determine a non-linear Markov
process, cf. Kolokoltsov [Kol07, Kol10l [Kol13]. The BDLP model given by d(z,n\z) =
m+ Y, a (zx—y)and b(z,n) = >, a™(x — y) yields the kinetic equation

yen\x yen

%(m) = —mp(x) — pi(x) JCL— (z —y)p(y)dy + J@Jr (z = y)pi(y)dy.

R4 R4

Here m > 0 is the mortality rate, 0 < a~ € L}(R?) the competition and 0 < a* € L}(R?)
the dispersion kernel, see chapter 3. A detailed analysis of such type of equations can be
found in [FKT15], see also the references therein.

Let k,r € N, F(()Sk) ={ncR?||p| <k}and K : [y x B(Féﬁk)) —> R, a transition
kernel with K (n,F(()Sk)) < o for all n € I'y. Eibeck, Wagner [EWO01, [EW03| discussed
existence, uniqueness and in particular the mesoscopic scaling for the (pre-)generator
given by

(LF)() = ) Lig<r(€) J (F'(\E v ¢) = F(n)) K (&, d]). (6)

[
K (=)

In the corresponding dynamics each group ¢ < 7 of at most r particles may disappear and
simultaneously a new group of at most k particles ( € F(()Sk) appear somewhere in R?. The
distribution of the new particles and the intensity of this event are both described by the
transition kernel K (&, d(¢). The term r = 0 corresponds to the pure birth of a finite group
of particles ( € I’égk) whereas the part k = 0 corresponds to the death of the subgroup of
particles € € . All other terms describe merging, splitting or jumps of groups of particles.

Considering above generator only for the cases £ = 0 and r = 0 yields

(LE)(n) = Y Lig<r(©) K (& D) (F(1\E) = F(n)) + J (F(n v <) — Fn)K(J,d]).

§cn X
(=)

In contrast to such operator does not include the BDLP model.

This problem was also studied by Belavkin, Kolokoltsov [BK03] and the research con-
tinued in the series of works [Kol03], [Kol04al, [Kol04b| [Kol04c, [Kol06] leading to satisfactory
results for the mesoscopic scaling described by Markov (pre-)generators given by

LF)m) = 3 1ger(©) f (F(\E © C) — F(n)K(€ 1, dC). (7)

£
K r(<h)

It is worth to stress the important difference to @ which lies in the appearance of the
additional dependence on 7 in the transition function K(&,n,d§). Such dependence in-
cludes a wide class of interacting particle systems which could not be considered by @
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Particular examples such as kinetic equations of statistical mechanics, namely the one
of Landau and Vlasov but also the Boltzmann and Smoluchovski equations have been
considered in [Kol06]. The Replicator dynamics from the theory of evolutionary games
is also discussed. The BDLP model was treated by stochastic differential equations in
[EMO4].

Dynamics of infinite systems

The construction of birth-and-death processes with state space I' and associated Markov
(pre-)generator (1)) is challenging task of modern probability and is only partially solved at
present. One of the main difficulties lies in the necessity to control the number of particles
in a bounded region of R?. Markov processes on I' given by the operator L as in have,
in general, infinite intensity in the sense that is not fulfilled. Hence the representation
is no longer valid and most of the developed techniques for birth-and-death processes
on [’y are not applicable in this case.

A pure probabilistic approach by stochastic differential equations has been developed
by Garcia, Kurtz [GK06]. Namely, for d(z,+\z) = 1 and a birth intensity with

‘b(ﬂj‘,’}/ Y y) - b(x77)| < a(l’,y), T,y € Rd

such that a satisfies some additional continuity condition, existence and uniqueness has
been established and under additional conditions ergodicity for the processes was shown.
Unfortunately several models from mathematical biology and ecology, see eg. [FFH™15,
KK16], do not satisty these conditions.

A different, functional analytic, approach to the construction of the processes is related
to the construction of solutions to either or ([3), respectively. Trying to solve one
immediately arrives at serious obstacles. The reason is that any known perturbation
theory for such operators is not applicable and (in general) any two different states on T’
are orthogonal. It was proposed to investigate instead the statistical dynamics, i.e. the
Fokker-Planck equation , on the space of so-called sub-Poissonian probability measures,
cf. [KKO02, [FKO09, KKMO08|, FKK10, FKO13]. The notion of correlation functions turned
out to be adequate for the analysis of . Therefore most modern results obtained for
infinite systems are mainly based on the study of correlation functions. One possible
definition of a correlation function is given below, details can be found in chapters three
and four.

A probability measure (state) p on I' is said to have correlation function k,, = (k,ﬁ”));;ozo
if for any symmetric bounded function G™ : R — R, with compact support the relation

1
f Z G(n)($1a>$n)dﬂ(7) = m f G(n)(xla7xn>kl(LN)($laaxn)dxldxn

r {z1,.2n}cy Rdn
(8)



is satisfied. The value kﬁ")(xl, ..., x,) describes the (non-normalized) probability density
to find particles in the positions zy, ..., x,. Setting

ku(n) -= i
0, otherwise

yields a measurable function k, : I'y — R,. Conversely, any measurable function G :
Iy, — R can be decomposed into its components G™ : (R")" — R, n > 0, where
G™ is symmetric and measurable. Denote by Bys(T'g) the collection of bounded functions
G : Ty —> R such that there exist a compact A = RY, N € N with G(n) = 0 whenever
In| > N or n n A® # . This space can be identified with the collection of all finite
sequences of bounded, measurable, symmetric functions (G (”))ﬁfzo having compact support
in (R?)". Definition suggests to consider for any G € Bys(I'y) the K-transform given
by

o0
(KG)(V) = ZG<77) = 2 G(n)(xlv"wxn)v vel,
ncy n=0{x1,...,zn}cy
where @ means that the summation is taken only over all finite subsets of 7. Such
functions F' = KG are known as additive type observables in statistical mechanics, see
[Bog62], and we call functions G in such a case quasi-observables. The function K'G then
satisfies
(KG)(v) = (KG) (v n A)
and |(KG)(y)| < A(1+]ynA])"N for some constant A = A(G) > 0, i.e. it is a polynomially
bounded cylinder function. Denote by FP(I') := K Bys(I'g) the image of the K-transform,
then for any F € FP(T)
(K" F)(n) = D (=)™ F(¢)
£cn
is the inverse transformation to K. The Lebesgue-Poisson measure on I'y is defined by

|
A=6g+ ) Hdﬁ%,
n=1" "

where d™z is the restriction of the Lebesgue measure to F(()n) ={neTy| |n| = n}, see
chapter 3. Taking the sum from n = 0 to o in yields the equivalent definition of a
correlation function

| KGne) = [ Gmmmarm. 6 e Buro).

By definition, the correlation function k, : I'g — R satisfies k,(J) = 1 and is positive
definite in the sense that for any G € Bys(T'g) such that KG > 0 one has

fmm@mmxmzo
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The correlation function k,, is said to be sub-Poissonian (with bound f) if it satisfies for
some constant C'(u) > 0 the Ruelle bound

ku(n) < C(p)e’™, neT,.

A state p on I is said to be sub-Poissonian (with bound f) if it has a correlation function
k, satisfying above Ruelle bound for 8. A function k : I'y — R satisfying the Ruelle
bound is the correlation function of a unique measure p on I' if and only if £ is positive
definite and satisfies the normalisation condition k(&) = 1.

Suppose that the states p; in are sub-Poissonian, then using relation we can
rewrite (3) into an initial value problem for correlation functions given by
% = L%y, ky|mo = ko, (9)
see [FKOQ9, [FKO13]. The operator L” can be computed from L and we expect that
solutions to @ are positive definite and hence provide an evolution of states. Since
any function k : Ty — R can be decomposed into its symmetric components (k™)%_,
the initial value problem @ is simply a system of function-valued differential equations.
Surprisingly, it is possible to apply for such equations different kinds of perturbation
methods to study existence, uniqueness and properties of solutions. The Ruelle bound
suggests to study equation @ on a weighted space of bounded functions, but for technical
reasons it is simpler to study first the "pre-dual” equation on the space of integrable
quasi-observables. Below we give a brief description of this scheme, details can be found
in chapter 3.

Let L := K 'LK be defined on By,(T'y). For G € By,(I'y) and any function k which
satisfies the Ruelle bound also

f(tin)k(n)dA(n) - f Gn) (LA k) () dA(m)

F() 1—‘0

holds. Therefore solutions to

% = LGy, Gili—o = Gy (10)
provide by duality solutions to @ Using perturbation theory for analytic semigroups
Finkelshtein, Kondratiev, Kutoviy [FKKI12] constructed solutions to and hence to
@D for general birth-and-death intensities. The mesoscopic limit was also studied by
semigroup methods. Particular examples of above approach can be found in [FKKZ14,
FKKO15, [FKKK15L [FEH™ 15, [KK16], see also the references therein. Ergodicity has been
established for the Glauber dynamics in [KKMI0|, whereas ergodicity for the equilibrium
Glauber process was studied in [KLO05]. A solution to (9 in general does not need to be
positive definite and hence provide a solution to (3]). For such property additional analysis
is required and was only achieved for a few models, see e.g. [KKPO0S, KKMO0S, KK16].
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Description of results

Evolution equations in scales of Banach spaces

Solving evolution equations given by an unbounded (linear) operator A(t) is an important
but also challenging task of applied mathematics. For many models of interacting particle
systems, e.g. birth-and-death processes on I', the operator A(t) can be realized as a
bounded linear operator on a suitable chosen scale of Banach spaces B = (B,), with
B, < B, for ¢ < a. Namely, for all ¢/ < « and t > 0 we have A(t) € L(B.,B,),
see for the precise definition. Here L(B.,B,) denotes the space of all bounded
linear operators from B, to B,. The aim of the first chapter is to develope methods for
the study of the related evolution equations by means of semigroup techniques but also
beyond such.

The first section deals with evolution equations associated to an operator A(t) acting
as a bounded linear operator in a scale of Banach spaces. We introduce the notion of
forward and backward evolution systems in scales of Banach spaces and relate them with
their ”generator” through solutions to the forward equation

0
ult) = At)u(t), u(s) = u., te[s x)

and backward equation

%v(s) = —A(s)v(s), v(t) =v, se]0,t],

respectively. It turns out that above equations are well-posed (in a scale of Banach
spaces) if and only if there exists a forward and backward evolution system with generator
A(t). The assumption that A(t) is a bounded linear operator in a scale of Banach spaces
is sufficient to guarantee that the associated forward and backward evolution systems
are continuous in the uniform operator topology on L(B,,B,), whenever o/ < «. In
particular, any strongly continuous semigroup (7°(¢)):>o with generator A acting as a
bounded linear operator in the scale of Banach spaces B, is continuous in the uniform
operator topology on L(B,,B,) for all o’ < a. Thus instead of working with unbounded
operators in one Banach space, one can try to realize the involved operators as bounded
linear operators in a suitable chosen scale of Banach spaces and use the methods developed
in the first chapter. In such a case one does not need to take care of the domain of A(t),
which is in general hard to handle.

Based on the methods from [Paz83) [Kat70, Kat73] we provide a sufficient condition for
above equations to be well-posed. The construction of the evolution systems is based on
an approximation by piecewise constant operators A, (t). Similar constructions in triples
of Banach spaces can be found in [Kol13, [KPASS].
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Stability of the solutions, that is continuous dependence on initial conditions and on
the generator A(t), is proved and existence and uniqueness for the adjoint equations is
investigated. The obtained results share some similarities with those provided in [Cap02].

The last two sections go beyond semigroup methods and study linear and non-linear
perturbations of above equations by an operator B(t) on B. The linear case is treated
in the second section. In such a case it is assumed that B(t) is an Ovcyannikov-type
operator, by which we mean that there exists M > 0 such that for all o/ < a and ¢t > 0:
B(t) € L(B,,B,) and its operator norm satisfies

M

_a/

B(t a’ag
B o <

Rxistence, uniqueness and stability of (local) solutions is proved for the perturbed forward
equation

9
ot
and backward equation

%m@:-ﬁu@+B@DM@,Mﬂ=vusét

(t) = (A(t) + B(t))u(t), u(s) =wus, t>s

with initial conditions ug,v; € By. A time-independent version of this result can be
found in [Fin15]. Applications to birth-and-death processes are considered e.g. in [FK13,
BKKKI13| [KK16], whereas applications to partial differential equations with A(¢) = 0 are
well-studied and can be found in [Nir72, Nis77, [Zab89l [Tig08, Tig11].

The striking point in the analysis of such equations is that the obtained solutions
cannot be localized in one fixed Banach space. More precisely for any o > o’ we can find
T(a/,a) > 0 such that u(t) € B, for any t € [s,T(a/,«)). Such property resembles some
sort of worsening, see |[Liu91], and is one of the main reasons why we cannot expect that
methods by semigroups on Banach spaces are applicable. Nevertheless, it is possible to
derive a criterion for which global solutions exist, i.e. T'(a/, «) is unbounded in . Having
this in mind we prove a comparison principle on Banach lattices which can be used to
prove for a certain class of birth-and-death models existence of global solutions with above
mentioned worsening property. Such approach was used for the BDLP model in [KK16].

The generalization of above statements to the non-linear equation

0
) = A@)u(t) + B(t, u(t)), u(0) = uo

is considered in the last section. Here B(t,u) is a time-dependent non-linear operator
acting as a continuous operator in a scale of Banach spaces. Existence and uniqueness
was established by Safonov [Saf95] in the case A(t) = 0. Stability of the solution wrt.

A(t) and B(t,u) is proved in the last section of the first chapter and can be used for the
Vlasov scaling, see ”Epistatic mutation selection model” in chapter 3.

12



Dynamics of finite systems

The aim of the second chapter is to provide a complete and self-contained analysis of (one
and two-component) birth-and-death processes with state space 'y or T'Z, respectively.
We extend known results to time-dependent (pre-)generators given in the one-component

case, see , by

LOF)) = 3 [(FOe o0 — Fn)Kilén, o). (11

§enpy

The transition function

Qtn, A) =Y j Lo(\E U QK (E,7,dC), £ 0, neTy

§C77F0

yields for above operator a similar form as in and hence several well-known results for
pure jump processes and Markov chains can be applied.

Based on the classical works [Fel40), [GS75, [FMS14] we study in the first section the
evolution system U(s,t) on an abstract locally compact Polish space E associated to the
(pre-)generator of a pure Markov jump process

(L(t)F)(x) = f (F(y) — F@)Q(t,0,dy), zeE, t >0,

The operator L(t) is assumed to satisfy a Foster-Lyapunov type condition, see [MT93].
We assume that the transition function Q(t, z, dy) is weakly continuous and satisfies some
additional technical conditions. It is shown that in such a case there exists an associated
conservative Feller evolution system U(s, t) on the space of continuous bounded functions.
Hence by [Casl1] Uf(s,t) is associated to a (minimal) Hunt process with state space E. For
a countable state space E such result was obtained by martingale techniques in [ZZ87].
We show that U(s,t) provides existence and uniqueness of solutions to the Kolmogorov
equations and establish the relation to the jump process by the associated Martingale
problem.

Above results are applied in the second section to the operator L(t) given by and
to several examples from ecology, i.e. the BDLP and Dieckmann-Law model with time-
dependent and non-translation invariant interaction kernels. The adjoint evolution system
U*(t, s) provides by U*(t,s)u for a certain class of initial states p on I'y an evolution of
states and hence weak solutions to

0

= | Fne(dn) = JL(t)F (m) e (dn),

To To
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where F': [y — R is continuous and bounded. Sufficient conditions for which L'(Ty, d\)
is invariant for U*(t,s) are given. By construction, the restriction U*(t,s)|r1(r,,ax) be-
comes strongly continuous.

Afterwards we turn to the analysis of the time-homogeneous case and provide an
equivalent construction for the associated evolution of states. Such evolution is given
by a strongly continuous semigroup on the space of finite Borel measures and is used to
characterise the conservativeness property.

The second part of this chapter deals with the precise relation between states on I'y
and their correlation measures. Given a state p on I'g, the correlation measure p, on I'y

is defined by

pu(A) = f (K1) (m)du(n).

o

In such a case we can rewrite the Fokker-Planck equation (3)) to an equation for correlation
measures

opy  ~
a_tt = LAptu pt’tzo = o, (12>

where LA can be formally constructed by the duality

f LG(m)o(dn) = f G(n)E2 pldn).

To To

If v is given by a density function R, that is of the form p(dn) = R(n)dA(n). Then
pu(n) = ku(n)dA(n) and k, is the correlation function for the measure . In such a case
the simple identity

k() = f R(n v €)dA(©)

holds. It will be shown that the evolution system U(s,t) associated to the operator L(t)

provides solutions to

0G ~
a—tt = L(t)Gy, Gili=o = Gy

and by duality an evolution of correlation measures, i.e. a weak solution to .

The last part of the second chapter is devoted to the converse statement. Here we
consider only the time-homogeneous case with operator L given by . We construct
a semigroup T2 (t) associated to the operator L on a weighted space of integrable cor-
relation functions. The most important step is to show that T(t) preserves positive
definiteness, i.e. let k, be the correlation function of some state p on I'y. We will show
that T2 (t)k, is again the correlation function of a state y; on I'y.

14



Dynamics of infinite systems

In the last two chapters of this thesis we develope semigroup methods for one and two-
component birth-and-death processes on I" and I'?, respectively. Below we describe for
simplicity only the one-component case with generator L given by . Let mg be the
Poisson measure on I', which is defined as the unique measure having Laplace transform

2 f(@)

Je’m drg(y) = exp | €° J(ef(z) — 1)dx

r R4

for every continuous function f with compact support. Solutions to are constructed
on the Banach space &g of functions F' for which the series

- X 6 = (KG)()

n€y

converges 7g-a.e.. This is the same as to demand that
|F|le, := |G| + Z J GO (21, ..., z)|dws - - dan = J|G(77)|€M|d)\(77)
o

is finite. Let L5 := L(Ty, e’I'ld)), it is shown that (L, FP(T)) is a (pre-)generator on &z
if and only if (L, By (o)) is a (pre-)generator on L. Using similar methods to [FKK12],
we are able to show that under some type of Lyapunov condition the latter operator
is in fact a (pre-)generator on Lz. As a consequence, the closure of (L, FP(I")) is the
generator of an analytic semigroup of contractions. Let T'(¢) be the associated semigroup
on &g and f(t) the semigroup on Lg. Properties such as stability w.r.t. initial conditions
Fy in (2) and continuous dependence on the intensities d(z,vy\z) and b(x,~) are studied
by standard semigroup methods. Further analysis is concerned with the construction and
the properties of an associated evolution of states.

The space €3 is chosen in such a way that its dual space can be identified with the
space of all sub-Poissonian functions, i.e. any functional ¢ : £5 — R is represented by a
sub-Poissonian function k, via

(F) = f G(n)ko(n)dA(n)

To

0
1 n
k:(O) Z ; f G(n .T]_,. .. ;xn)ké )(331,. .. 7l‘n)dx1 .. dmn
n=1 Rdn

Solutions to @ are then given by the action of the adjoint semigroup f(t)*kg =: k; and
hence satisfy the Ruelle bound for some constant C; > 0

kt(n)(xl, o ty) S n > 0.

15



The adjoint semigroup 7'(t)* on &5 satisfies for any KG = F' € &3 the relation

Ty F) = [ OGN = | Goh(narm)

To

oo
1 n
= G(O)kéo) + Z gt J G(”)(xl, . ,xn)k,g )(xl, oy @y )dry - - day,.
n!
n=1
Rdn

Suppose k; is positive definite and hence corresponds to a state py on I'. Then we are
able to prove that also k; is positive definite. This yields the existence and uniqueness of
a solution (u)i>o to the Fokker-Planck equation . Following the approach proposed in
[KKMOS] we see that for any initial state 1o with sub-Poissonian correlation function kg
there exists a Markov function associated to the operator L. It is worth to mention, that
we establish uniqueness to in the class of weak solutions. It is shown that if the initial
condition is regular enough, then (u;):>¢ is in fact a strong solution and strong uniqueness
holds.

Vlasov scaling is shown for one and two-component systems. The kinetic equation
for the approximate densities is, by construction, a system of two coupled non-linear
integro-differential equations. Using the results obtained in the first chapter we are able
to extend above results to the case of time-dependent intensities. In such a case the
associated evolution systems will act as bounded linear operators in a suitable chosen
scale of Banach spaces.

For ergodicity we suppose that the cumulative death intensity >, d(z,n\z) is bounded

Ten
away from zero on ['g\{&}. Under this condition we prove the existence of a unique
invariant measure py,, such that the corresponding evolution of states is ergodic with
exponential rate, i.e.

H:ut - /fLiané';," S CeigtH,uo - luinVHS;? t Z 0

holds for some constants C, e > 0 and any (admissible) initial state .

Examples for the modelling of tumour growth are considered in the end of each chap-
ter. In the one-component case (chapter 3) we consider first a model describing the (free)
proliferation of tumour cells. We will construct the evolution of correlation functions
and show that they are not sub-Poissonian. This model is exactly solvable and serves
as a guiding example for further investigation. In the remaining parts we apply above
results to the BDLP model and Glauber dynamics with time-dependent and space inho-
mogeneous potentials. We study also the Dieckmann-Law model with time-homogeneous
intensities and provide for all such models ergodicity. The Epistatic mutation selection
model is one particular example of a model with non-linear Kolmogorov operator L. We
consider a generalization for time-dependent intensities and construct a (local) evolution
of correlation functions. Several two-component interacting birth-and-death models are
considered in the end of the last chapter.
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Weak-coupling limits

The last section is devoted to a particular case of the so-called random evolution frame-
work, cf. [Pin91,[SHS02]. In such a framework one is typically interested in the description
of a stochastic process, usually referred as the system, in the presence of another stochas-
tic process. The latter process is seen as the driving process for the system and can be
interpreted as the environment influencing the system. For the realization of above scheme
we consider a two-component birth-and-death process with (pre-)generator L = L° + L.
In this work we consider two different cases.

In the first case we suppose that the system is given by a Markov process with state
space I'y. Its generator L° is assumed to be given by the heuristic form

(L5F) () = Y f (F(rm\& 0 €) — Fly,m)K (1, m, OdA(m),

£y,

where K : I' x I'g x I'g x 'y — R, is measurable and integrable in ¢. The environment
is, e.g., the equilibrium diffusion process with generator L” and invariant Gibbs measure
liny. In such a case the operator L¥ is symmetric on L*(T', dpiny) and there exists an
associated ergodic Markov semigroup, cf. [AKR98a, [AKRI8b|. Solutions to the Fokker-
Planck equation

opy

ot = (LS)*Pt + LEPn ptli=0 = po

on LT x Ty, d(piny®N)) describe the evolution of densities of the coupled particle system.
Suppose that K(v,&,n,() is for any &, n integrable in (v,() w.r.t. i, ® A\. The weak-
coupling limit, in probability theory also known as averaging, is obtained from solutions
to the scaled Fokker-Planck equation

s
ot

by taking the limit p; — p,, € — 0. We show that such limit exists and p, solves

*k £ 1 £ £
= (LS) Py + ELEpt, Pt‘t:O =po € Ll(FO,d)\)
Py = _
é‘_tt = L*ptu Pt|t=0 = Po

on L'(Ty,d\), where L is obtained from with r = o0 and K(,n, () replaced by

F<€7 n, C) = J K(fy’ 57 n, C)duln\/(f}/)

The mathematical realization of this scheme mainly relies on the results obtained in the
second chapter. It is shown for the BDLP model how this abstract statement can can be
applied.
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The second case is devoted the extension of above scheme to infinite systems. We
suppose that L¥ is given by , i.e. independent of v* and only acts on the variable ~~.
Likewise we assume that the operator L° is given by

(LSF)(7) = ), d°(z, 4 \a,y ) (F(yN\z,v7) = F(7))
¥ j b(2, 7 7 )E (v y) — Fly))da

and hence only acts on the variable y*. We are interested in the limit ¢ — 0 of solutions
to the Fokker-Planck equation

a 15 1 €

= JF(V)dut (7) = J (LSF(V) + ELEF(W)) di(v), FeFP(?) (13)
T2 T2

with v = (y",v7) € I'? and initial condition p having sub-Poissonian correlation function.

Suppose that L¥ and L® satisfy the conditions for which an evolution of states has been

constructed in the third chapter. Moreover, assume that Y. d¥(x,n7\z) is bounded away
TENT

from zero on I'g\{J}. The environment process is then ergodic with exponential rate. Let

Miny be its invariant measure and define averaged intensities by

d(e, 1) = f 05 (2,7 4 )i (1)

r
ba,7*) = 809 i ()
r
For such averaged intensities we define a new Markov (pre-)generator given by

= ¥ AN (F() — Fo) + [y ) FO o) - Pl

reyt R

This (pre-)generator acts on functions F' € FP(I'). Let uo be any initial state with sub-
Poissonian correlation function and denote by uf the solution to . Moreover, let pug
be the marginal of 1 onto its first component and 1, the solution to the Fokker-Planck
equation associated to L with initial state i . We will show that for any F € FP(T')

| Pemsauir —>f R (1), & — 0

2

holds.
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Chapter 1

Evolution equations in scales of
Banach spaces

Let B = (Ba, | - |a)a=ay be a scale of Banach spaces, that is for any o/, a0 > ay: o/ < «
Bo < Ba, |-l <o (1.1)

Denote by iye € L(By,B,) the corresponding embedding operator. Here and in the
following L(B,/,B,) stands for the space of all bounded linear operators from B,/ to B,,.
We let x = y, x € By, y € B, stand for i = y. A bounded linear operator L in
the scale B is, by definition, a collection of bounded linear operators from B, to B,, i.e.
L =(Lyo)a<a € L(By,B,), satisfying for o/ < a < o’

La/a” = iaa’/La’a = Laa”ia/a' (12)

By L € L(B) we indicate that L is a bounded linear operator in the scale B. Let (L, )nen <
L(B) be a sequence of operators in the scale B and L € L(B). We say that L, converges
to L in the strong topology if for all &/ < « and all = € B,

(Lp)aa® — Lygxr, n — 0

holds. The sequence converges, by definition, in the uniform topology if L, — L,
n — oo holds for any o < « in the uniform operator topology on L(B,,B,). A family of
bounded linear operators (L(t));>0 < L(B) is said to be strongly continuous if ¢ — L(t)
is continuous in the strong topology. We say that (L(t)):>¢ is continuous (w.r.t. the
uniform topology) if t — L(t) is continuous in the uniform topology on L(B). For two
operators L, K € L(B) the composition LK € L(B) is defined by

(LK)O/Q = LBQKO/@, (13)
where € (o/, ). It is worth noting that definition (|1.3]) does not depend on 3, see (1.2]).

In the following we omit the subscripts o’a when no confusion can arise. For any two

20



families of operators (L(t))i>o0, (K(t))>0 < L(B) the product (L(t)K(t)):>o is (strongly)
continuous, provided both factors are (strongly) continuous.
One of the aims of this chapter is to study existence, uniqueness and properties of
solutions to the abstract Cauchy problem
ou
ot
Here (L(t))>0 = L(B) is assumed to be at least strongly continuous. We distinguish
between two kinds of solutions to above Cauchy problem. First we construct solutions by
means of evolution systems, in such a case the solution u is defined on [s, 00). In the second

case, which is used for perturbations of the operator (L(t)):>o, u is said to be a solution
in the scale B to (1.4) if w € [ CY[0,T(¢/,));B,) for some continuous function

a>a!

T(a/,a) > 0 and u satisfies for any a > o/ equation (1.4) on B, for s <t < T(a/, ).
Such a solution is (in general) only defined on the interval [s,s + T(¢/,«)) and is said
to depend continuously on its initial data if there exists C(¢,/,«) > 0 such that for all
o <a

() = L)u(t), uls)=zeBuy, t>s. (1.4)

[u(®)o < Ct o, a)|z|o, s<t<T(d )
holds. Moreover, it is shown that if L, (t) — L(t), n — oo is fulfilled for any ¢ > 0 in the
uniform topology, then for any o/ < o, z € By and s > 0
un(t) — u(t), s<t<s+T(d,a)

holds in B,. Above results are extended in the third section to the non-linear version of
(1.4), i.e. to the non-linear Cauchy problem

0

a—?(t) — A(t)u(t) + B(t, u(t)), u(0) =z € By, (1.5)

where (A(t))t>0 < L(B) and B(t,u) is a non-linear operator acting in the scale B.

1.1 Linear evolution equations

Let E = (E4)asa, be a scale of Banach spaces such that for any o/ < «
Eo c By, [l <1 o

is fulfilled and suppose that E has dense embeddings, i.e. E, c E, is dense for all o/ < «.
Such scale of Banach spaces serves as a pre-dual scale of Banach spaces and we are mainly
interested in the Cauchy problem formulated on the dual scale of Banach spaces.
Hence we preserve the notation B for the dual scale of Banach spaces introduced later on.
The notation for L(E) and convergence of sequences in L(E) are defined in the same way
as for a scale with property (L.I). We denote by | - |, the operator norm on L(E,)
and if o’ < a by || - |aer the norm in L(E,,E,). The following definition summarizes the
main objects of investigation for this section.
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Definition 1.1.1. Fiz a > o, a family of bounded linear operators (U, (t,s))o<s<t on
L(E,) is said to be a forward evolution system if it satisfies the following properties:

1. Forall0<s<r<t

Ua(s,8) =1, Uy(t,r)Uys(r,s) = Uu(t, s).

2. Uy(t, s) is strongly continuous on E,.

A family of bounded linear operators (V,(s,t))o<s<t on L(E,) is said to be a backward
evolution system if it satisfies:

1. Forall0<s<r<t

Val(s,s) =1, Vy(s,m)Vu(r,t) = Vy(s,t).

2. Vi, (s,t) is strongly continuous on E,.

A forward evolution system (U(t,s))s<t in the scale E is, by definition, a collection of
forward evolution systems (Uy(t, $))asay, Such that for any o/,a > a, with o/ < « the
space B, is invariant for Uy (t,s) and

Ua/(t, S)|]Ea = Ua(t7 S).
A backward evolution system (V (s, t))s<; in the scale E is defined in the same way.

Here and in the following we omit the subscript « if no confusion may arise. The
relation of forward and backward evolution systems U (¢, s), V (¢, s) in the scale E with an
infinitesimal operator (generator) is described in the next definition.

Definition 1.1.2. Let A = (A(t))i>0 < L(E) be strongly continuous. A forward evolution
system U(t, s) in the scale E is said to have generator A if for any o < a and x € E,, the
evolution U(t, s)x is continuously differentiable in E. and satisfies

0
5 Ut s)z = AU (¢, 5) (1.6)
%U(t, ) = —U(t, s)A(s)a (L.7)

in Eo. A backward evolution system V(s,t) in the scale E is said to have generator A if
for any o/ < o and x € E,, the evolution V (s,t)x is continuously differentiable in B, and
satisfies

0
&V(S, t)x =V(s,t)A(t)x

%V(s,t):c = —A(s)V (s, t)x

in Ey. The cases s =t should be understood as right or left derivative correspondingly.
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In applications the generator A(t) is typically known on a subclass of elements D,/ (t)
E. and one studies the closure of (A(t), D(t)) in E,. Above definition implies A(t) acts
as a bounded linear operator from E, to E, and hence E, < D.(t) holds for all o/ < «,

t > 0. Strong continuity and the uniform boundedness principle imply that for any o > av,
and T'> 0

sup [U(t,8)|rE.) = Mi(e, T) (1.8)
0<s<t<T
and for o, < o < «
sup | A()awr = Ma(a, o/, T) (1.9)
0<t<T

are finite. The next lemma collects some basic properties for forward and backward
evolution systems in the scale E.

Lemma 1.1.3. Let U(t,s) and V(s,t) be forward (backward) evolution systems in the

scale E. Denote by A = (A(t))i>0 < L(B) their generators. Then the following assertions
hold:

1. U(t,s) and V(s,t) are uniquely determined by A.
2. The evolution systems are continuous in the uniform topology on L(E).

3. Suppose A = (A(t))i>0 is continuous in the uniform topology. Then U(t,s) and
V(s,t) are continuously differentiable in the uniform topology on L(E).

4. Let (7(t, s) be another forward evolution system with generator A and suppose that

both operators A and A are continuous in the uniform topology. Then for any o/ < «
and T >0

|U(t,5) = U(t,8)aer < M(c/, T)N(a, T) f [A(r) = A(r) acedr

is satisfied, where the constants are given by M(o/,T) := sup |U(t,5)|rE,,) and
0<s<t<T

N(a,T):= sup [U(t,8)|re.).

0<s<t<T

5. Let ‘7(8, t) be another backward evolution system with generator A and suppose that

both operators A and A are continuous in the uniform topology. Then for any o' < «
and T > 0

[V (s,8) = V(s,8)|aar < M(c/, T)N(ex, T) f |A(r) = A(r)|aadr
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is satisfied, where the constants are given by M(o/,T) := sup |V (s,t)|rE,,) and
0<s<t<T

N(a,T):= sup |"7(5,t)HL(Ea)-

0<s<t<T

Proof. We are going to prove the assertions only for the forward evolution system, the
proof for the backward evolution system can be done in the same manner.

1. Let U(t,s) and U(t,s) be two forward evolution systems with the same generator
A. Forany o < a and z € E, let o’ € (/,a), then U(r,s)z € Eq is continuously
differentiable. Hence the composition U (t, 1")(7 (r,s)z belongs to E,» and is continuously
differentiable in E,, with derivative given by

?(U(t,r)f](r,s)x) =0, 0<s<r<t.
or

Integrating from s to ¢ yields U(¢t, s)z = U(t, s)x, and since E has dense embeddings the

assertion is proved.
2. Let o/ <a,r€eE, and fix T'> 0. Then for any 0 < s <t/ <t<T

¢
Ut,s)x —U(t', s)x = JA(T)U(T, s)xdr,
t/
and forany 0 < ¢’ <s<t<T

Ult,s)x —U(t,s)r = — J U(t,r)A(r)zdr

S/

hold in E,. Hence by (1.8)) and (|1.9) we obtain
Ut 5)e — U(Y, )l < Ma(a, o', T)My (o, T) et — ¥)

and
|U(t, 8)x — U(t, s )| o < My(o, T)Mo(cr, o, T) || o(s — 5).

The assertion follows from

U, 5) = U, s )aor < U, 5) = U, 8)|aar + U, 5) = U, 5") |aar

3. Fix ¢ < a and let x € E,, then

Ult,s)x =z + JA(T)U(T, s)zdr = x + JU(t,T)A(r)xdr
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holds in E,,. The assumptions and part 2. imply that A(r)U(r,s) and U(t,r)A(r) are
continuous in (r,s) and (r,t) w.r.t. the uniform topology on L(E,, E./).
4. The equality

Ut,s)—Ult,s) = f U(t,r)(A(r) — A(r)U(r, s)dr

s

holds in the uniform topology on L(E) and by (1.8)), (1.9) we obtain the assertion. O

In many applications it is important to check whether A = (A(t));>o is the genera-
tor of a forward or backward evolution system. For a > ay let E,, := [J E., then

o' >a
(A(t), Eaq )i>0 is a family of (possibly unbounded) linear operators on E,. A sufficient
condition for the existence of forward and backward evolution systems on the scale E is
given in the statement below. Its proof is based on the classical construction for a pair of

Banach spaces presented in [Paz83)|.

Theorem 1.1.4. Let (A(t))i>0 < L(E) be continuous in the uniform topology and suppose
that the condition below is satisfied.

(a) For any o > a, and t > 0 the operator (A(t), B ) is closable and the closure is the
generator of a Cy-semigroup (S{(s))sso on Eo. For any o/ < a, s >0 andt >0
the space B, is invariant for S (s) and S (s)|g, = S&(s) holds.

If the condition

(b) For all a > v, there exist constants M(«) > 1 and w(«) € R such that

w(a) i S
152 () - S2 (51) | ey < M(a)e =1

holds, where n €N, s1,...,8, >0 and 0 <t; < --- <t, are arbitrary.

is satisfied, then there exists a forward evolution system U(t,s) in the scale E such that
A is its generator and for all o > ay and 0 < s <t

Ut 9)ugeay < M) (1.10)
15 satisfied. If instead the condition

(b)) For all a > v, there exist constants M(«) > 1 and w(«a) € R with

155 (1) - S5, (sn)|oea) < Ma)e =

holds, where n €N, s1,...,8, >0 and 0 <t; <--- <t, are arbitrary.
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is satisfied, then there exists a backward evolution system V (s, t) in the scale E such that
A is its generator and for all o > oy and 0 < s <t

1V (s, )| pgay < M()e*™@9) o >a,, 0<s<t

is satisfied.

Lemma 1.1.5. Condition (a) from Theorem is equivalent to the existence of a
family of Cy-semigroups (S(s))s>o having the following properties:

1. For any o < a andt > 0 the space E, is invariant for S (s) and S (s)|g,, = S*(s)
holds.

2. Forany o < a,t >0 andx € E, the evolution Sf‘/(s)x 15 continuously differentiable
i K, such that

%sg’(s)x = A()ST (s)r = S (s)A(t)z

15 fulfilled in E,.

Proof. Suppose that condition (a) holds and let (A (t), D(Aw(t))) be the closure of
(A(t),Eyy ) in Ey Then for x € Eyy < D(Ay(t)) we obtain that

jal
ésg’(sm = Aw ()5 (s)z = S (s) Aw(t)

holds in E, .. Let @ > o” > & be such that x € E,. Then A, (t)r = A(t)x € E, and
S (5) A (t)z = S (s)A(t)x € Ey are fulfilled. Moreover, by S (s)z = S (s)z € Eqr it
follows that

Ag(1)SY (s)z = A(t)SY (s)x € Ey

are fulfilled, i.e. property 2. holds. Conversely, let (A, (t), D(Ax(t))) be the generator of
the semigroup (S (s)),>o with the properties 1. and 2. Then by property 2. the operator
(A (t), D(Ax(t))) is an extension of (A(t),E, ) and by property 1. E, . is invariant for
S¢'(s). Since Eyy < Ey is dense, it is also a core for (Ay (t), D(Aw(t))). O

Now we are ready for the proof of Theorem [1.1.4

Proof. (Theorem [1.1.4))
Fix T' > 0 and define for n € N piecewise constant operators A,(t) by setting ¢} = %T
and

{An(t) —A(tr), t<t<tr,, k=0,...n-1
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Moreover, for any o > «, let U2(t, s) be given by

U2(t,s) == St~ ), hEeststn :
St — ]SO k)SE(H, — ), k> 1 SE<th,, F <s <y,
(1.11)
where S%(1, k) := S%_l (%) e %H (%) is time ordered in such a way that smaller times

stand to the right. From [Paz83| Chapter 5, Theorem 3.1] it follows that for any a > a
there exists a forward evolution system U,(¢, s) on E, such that

lim UZ(t,s) = Ua(t,s) (1.12)
n—0o0

holds strongly in E, and uniformly on compacts. This evolution systems satisfies by
Lemma the properties , and for ¢t = s (1.6). Property for s <t
follows by [Paz83, Chapter 5, Theorem 4.3] if we show that for any o/ < « the space E,
is invariant for Uy (¢, s) and the restriction is strongly continuous w.r.t. | - |,. Thus let
o < aand z € E,, then UY (¢, 8)x —> Uy(t,s)z in Ey and US(t,s)z —> U,(t,s)z in
E, hold. By U (t,8)x = US(t,s)z and | - |or < || - [« We see that U, (t, 8)x = Uy(t, s)z is
fulfilled. Thus E, is invariant for Uy (¢, s) and by U,(t, s)x = Uy (t, s)x it is also strongly

continuous w.r.t. || - ||o. For the construction of the backward evolution system, let
oy = {55169 §<ssish,
St,”(tln+1 —5)Sy (1, k)st};(t —ty), k>t <t <ty tf <s <t
(1.13)
where SY(l k) = Sin | (). o (%) is now time ordered in the opposite direction.
Repeating above arguments including the ones in [Paz83, Chapter 5, Theorem 3.1] and
[Paz83, Chapter 5, Theorem 4.3] yields the assertion. O
In the following we relate the constructed evolution systems to the Cauchy problems
0
au(t) = At)u(t), u(s)=xek,, t>s (1.14)
and
0
%v(s) = A(s)v(s), v(t)=z€ek,, 0<s<t. (1.15)

For equation (|1.14]) we use the terminology of E,-valued solutions and adapt such def-
inition to equation . Let o/ < «, a function u is said to be a E,-valued solution
to if ue C([s,0);E,) n C'((s,20);Ey) and u satisfies in E,, cf. [Paz83,
Chapter 5, Theorem 4.3]. A function v is a E,-valued solution to equation if
v e C([0,t];E,) n C'((0,t); E,) and v satisfies in E,. The next theorem was
proved in [Paz83] for the forward evolution system U(t,s) on a pair of Banach spaces.
The proof can be adapted to this case.
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Theorem 1.1.6. Suppose that the same conditions as in Theorem|[I.1.4] are fulfilled. Then
for every x € E,, equation (1.14)) has a unique E,-valued solution, given by u(t) = U(t, s)z
and equation (1.15)) has a unique E,-valued solution, given by v(s) = V(s,t)z.

Note that the differentiability at ¢t = s follows from A(t) € L(E) and was not stated
in [Paz83]. The notion of E,-valued solutions depends a priori on the choice of ¢/ < a.
However, in the case of Theorem this notion is satisfied for any such o/, hence we
may omit the subscript o in the definition as above. The next statement relates the
constructed forward and backward evolution systems to solutions of the dual Cauchy
problems given below. Denote by B = (E*),=q, =: E* the dual scale of Banach spaces,
ie. B, = E? where E? is the dual Banach space to E,. For z € E, and z* € B,
let (x,x*) = x*(x) be the dual pairing and denote by U(s,t)* and V (¢, s)* the adjoint
operators defined on the scale B. This operators satisfy

V(t,r)*V(r,s)* =V(t,s)*, U(s,r)*U(r,t)* = Ul(s,t)*,

and hence V (¢, s)* is a forward evolution system whereas U(s, t)* is a backward evolution
system on the scale B. Using (1.6 and (1.7)), it follows that they satisfy for any o’ < «
and x* € B, the equations

a—i (x,U(s,t)*z*) = —(A(s)x,U(s,t)*z*), xek,, se[0,t)
% (x,V(t,s)*x*) = (At)z,V (t,s)*z*), zeR,, te]s, 0).

Denote by o(B,/,E.) the smallest topology on B, for which all linear functionals z* :
E., — R are continuous.

Theorem 1.1.7. Suppose that the same conditions as for Theorem |1.1.4] are satisfied.
Let o < « and x* € By be arbitrary. Then the following holds:

1. Lett > 0 and (u*(s))sefo,g < Bar be continuous w.r.t. 0(By,Eqr) such that

% (x,u*(s)) = —(A(s)x,u*(s)), u*(t)=2z% xe€k,, se]l0,t) (1.16)

is satisfied. Then u*(s) = U(s,t)*x* holds for any s € [0, t].
2. Let s > 0 and (v*(t))te[s,c0) be continuous w.r.t. o(By,Eq) such that

é {x,v*(t)) = (A(t)x,v*(t)), v*(s)=2x" z€k,, t>s (1.17)

is satisfied. Then v*(t) = V(t,s)*x* holds for any t € [s, ).

28



Proof. Uniqueness for ([1.17)) was proved in [Kol13], so let us prove uniqueness for (|1.16]).
Let u*(s) € B, be any solution to (1.16)), fix s € [0,¢) and x € E,. For r € [s,t] let
g(r) :={U(r,s)z,u*(r)). Then for § > 0 sufficiently small and r € [s,¢) we obtain

g(r+6)—g(r) _ <U(r +0,8)x — Ul(r, S)I,u*(fr)>+<U('r 6.8, u*(r+0) — u*(r)>.

) ) 4]

We have U(r, s)x,U(r+4, s)x € E, and hence A(r)U(r, s)x € E,. The first term therefore
tends to (A(r)U(r, s)x,u*(r)), when § — 0. For the second term we get

u*(r+6) —u*(r)

KU(r +6,5)z, ; > +{AMU(r, s)z, u*(r>>‘
< KU(r 6,5y, LUt 5(; - ”*(T)> - <U(r, 5y, LT +9) —u(r) >‘ (1.18)

J
u*(r +0) —u*(r)

(oo, OO ayu o)

The second term tends to zero, since u* is a solution to ((1.16). The first term ((1.18) is
bounded by

u*(r 4+ 6) —u*(r)
)

\U(r +0,8)z —Ul(r,s)|g,, - (1.19)

B,/

By (1.16]) w is bounded w.r.t. | - |, in §. The strong continuity of U(r, s)
implies that (1.19) tends to zero. Altogether we have shown that ¢’(r) = 0, which readily
implies the assertion by

(r,u*(s)) = g(s) = g(t) = U, s)x,u*(t)) = UL, s)x, 2%).
U

The next statement is an immediate consequence of duality and previous considera-
tions.

Theorem 1.1.8. Let (A(t))i>0 = L(E) be a family of operators in the scale E and
(A(t)*)t>0 = L(B) the collection of adjoint operators in the scale B. Then t — A(t)
is continuous in the uniform topology if and only if t —> A(t)* is continuous in the uni-
form topology. In such a case the forward and backward evolution systems V(t,s)* and
U(s,t)* are continuous w.r.t. the uniform topology in the scale B.
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1.2 Perturbation by linear operators

Let B = (Ba)a>a, be any scale of Banach spaces with property (1.1)). The aim of this
section is to prove existence and uniqueness of solutions in the scale B to the Cauchy
problem

0

ot
where (A2 (t));>0 = L(B) is continuous in the uniform topology and (B2 (t))i>o = L(B) is
strongly continuous in the scale. A similar version for the time-homogeneous case can be
found in [Finl5]. For this section we suppose that there exists a forward evolution system
(VA(t, 8))o<s<t = L(B) such that for any = € By and o/ < a the evolution VA (¢, s)x € B,
satisfies for all 0 < s < ¢

(t) = A2(H)u(t) + BA(u(t), u(s) =z € By, (1.20)

0

avA(t, s)z = AB(VA(L, s)z, (1.21)
a(—ZVA(t,s)x = —VA(t,5)A%(s)x (1.22)

in B,.

Remark 1.2.1. Above assumption is fulfilled if e.g. B = E* for some scale of Ba-
nach spaces as in the previous section, A(t) satisfies the conditions of Theorem and

AD(t) = A(t)*, see Theorem[1.1.8,

We will prove that solutions to determine for any o’ < « a collection of solution
operators (Wuq(t, s))o<s<i<T(ar.a) O L(By, By), where T'(o/,a) > 0 is continuous and
given in the statement below. This operators satisfy, by construction, for any o < a < o”,
reBy and 0 <t — s <min{T(c/, "), T(a, "), T(, )}

Waalt,s)x = Waan(t, s)x = Waar(t, s)x.
Hence we omit the subscripts o/« below.
Theorem 1.2.2. Suppose that there exist constants A > 1 and w € R such that for all
o <«
VAL, 8)|awa < A9 0<s<t (1.23)

holds. Let (B2(t));>0 = L(B) be strongly continuous in t such that there exists an in-
creasing continuous function M(«) satisfying for all o/ < «

M(e)

A
HB (t)Ha’a< —

t>0. (1.24)

Define T'(o/, &) = #f\?(/a)' Then there ezists a unique family of operators (W (t,s))o<s<t

with the properties:
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1. W(t,s) e L(By,B,) for any o < a and 0 <t—s<T(,a) such that

T( )
T ) — (t—s)

W (¢, ) |ara < ()
is satisfied. Moreover, for any x € By and o/ < «, (s,t) —> W(t,s)z € B, is
continuous for 0 <t —s <T(d,a).

2. For any o < «a and x € By, W(t, s)x is continuously differentiable in B, such that
forall0 <t—s<T(d, )

%W(t, s)z = (A(t) + B2(t))W (t, s)z, (1.25)
%W(t, s)z = =W (t, s)(A%(s) + B2(s))x (1.26)

hold in B,,.

3. Fir s >0, o < «a, x € By and suppose that there exists T > 0 and a function
uweC([s,s +T);B,) nC*(s,s +T);B,) such that for alls <t <s+T

%u(t) — (A2 D) + BA())ult), uls) = x (1.27)

is satisfied. Then u(t) = W (t, s)x holds for any s <t < s+ min{T,T(c/, a)}.
Proof. Define a sequence of operators (W, (t,s))o<s<: = L(B) by Wy(t,s)z = VA(t,s)x
and

t
Wi (t, s)z = JVA(t,T)BA(T)Wn<T, s)xdr (1.28)

for z € B,/. Then for any o/ < o, n > 0 and x € B, the function W, (t, s)z is continuous
in B, and satisfies

wlt—s t—s "
HWn(tv S)$“a S ||x||a/6 ) (T(Oé’,a)) ‘

Infact,letaj:=o/+jo‘2_no‘/,j=0,...,2nandfors§t1§-~-§tn§t

Qntty, ..ty 8)x = VAt 1) B2(t1) - - VA (tan—s, tan—1) B> (tan_1) V> (tan, 5)x.
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Then by ([1.23)) and ([1.24) we obtain

[W(t, s)ala < JHVA(tﬂ”)BA(r)Wn('f’, §)[adr

t tn—1
SJ J |Qn(t,t1,. .. ty, S)x|odt, ... dt;

f 1_[ 042]_,_1 .. dtl
=0
)"

t tn
(2n)" f
(a—a)n
t—s)" (2M(a)nA s [(26AM (a)(t —s)\"

g a(_) < [ @fare )( a(_)(i, >> :

< Anew(t—s) Hx

o

(
/w(tfs)(
< fafe-9 O

where we have used a variant of the Stirling formula, namely

lg@)”, n>1.

n! n -

Choose ¢ € (0,1), then we obtain for any 0 <t — s < ¢T(/, @)
[Wa(t, 8)|a < |2]aeg"

e¢]
and hence the series >, W, (t, s)x =: W (t, s)x converges uniform. Since ¢ was arbitrary,

n=0
it follows that W (¢, s)z is continuous in (¢, s) with t — s < T'(a/, ) and satisfies

lis & t—s \"
Wt s)ela < ) [Waltss)ela < et S ( )

n=0 n=0

w(t—s) (o, )
T(a/,a) — (t—s)

= |#lare

Next we show that W (t, s) is differentiable. Take a; := o/ + jQ‘E‘n;Jf“{), j=0,...,2(n+1),
then we obtain for s < r < ¢ that

VA7) B2 (r)W(r, s)x)|o < et (AM (a ))”“2(()7_21,) ( ;!S)n (?énjal,iin |

< a0 — sy (£) AL o 1 1y

n (v — /) H1

n n+1
- el fo - oy 2 (AR ) ()

% a— o n

s de AM () t—s \"
< =9z o - n(T ))

o (o,

32



is satisfied. So for any s <r <t and ¢ € (0,1) such that |t — s| < ¢T'(¢/, ) the series

0

Z (t,7) B2 (r)W,(r, s)x

is uniformly convergent. For t—s < T'(o/, ) we find o € (¢, ) such that t—s < T'(</, "),
hence W (r, s)x € By is continuous. Since VA(t, s)B2(r) € L(B,», B,) is strongly contin-
uous it follows that

W(t,s)x = Wy(t, s)x + i W, (t,s)x

At s)z+ ). f VAL, 7)B2(r)W_y (r, s)xdr

= VA(t, s)r + JVA(t, r)B2(r)W (r, s)zdr

s

is fulfilled. Hence W (t, s)x is differentiable w.r.t. ¢ in B, and differentiating above equal-
ity, see (L.21)), yields (1.25). The sequence (W, (¢, s)z),en also satisfies the relation

Whia(t, s)x = JWn(t,r)BA(r)VA(r, s)xdr
and a repetition of above arguments, shows that (W (¢, s)z)o<s<; also satisfies
W (t,s)x = VA(t,s)x + JW(t,T)BA(T)VA(T, s)zdr.

The integrand on the right-hand side is continuous w.r.t. (¢,r,s) in B, and hence
W (t,s)x € B, is differentiable. Namely, for t — s < T'(a/, @) there exists o” € (¢, @) such
that t—s < T'(o, ) < T'(e/, ) holds. Repeating the arguments from above and differen-
tiating the right-hand side yields (L.26). For the last assertion let w(t) := W (¢, s)x — u(t),
where s < ¢ < s+ min{T,T(a/,a)}. Then w(s) = 0 and w solves (L.27). It is therefore
sufficient to show that w = 0. Applying for u yields that for s <t < s+ T

u(t) = VA(t, s)x + JVA(t, ) B2 (r)u(r)dr

s
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holds in B,» and any " > a.. Hence for any s <t < s +min{7, T(c/, )}

t

w(t) = J VA(t,7)B2(r)w(r)dr

S

holds in B,~. Define a; := =0,...,2nand C, := sup |[W(r,s)x—u(r)|. <

re(s,t]
oo. It follows for s <t¢t, <. <t; <t and
Q(t,tr, ... t,) :== VA(t,t1)B2(ty) - - VA (tp_1, tn) B2 (tn) (1.29)
that
(e M Oé” n 2n n
1Q(t, 1, ... t)w(ty)]ar < A" t”ﬁlw(tn)la (1.30)

holds. Hence we obtain the estimate

[w(t)]|ar _J J |Q(t, t1, ... tn, s)w(ty)|ardt, ... dt

//
g( 2”)[ fw@ ") Jao(t) fadlty
o — o

< Caew(t—s) (t — ‘S)nnn (QAM( ))
n:

o — «

<C ew(tfs) (QQAM(O/,)(t _ 8)>n

o — «

where we have assumed w.l.g. that w > 0. This implies w(t) = 0 in B,» — B, for

o — «
S §t<s+min{T,T(a/,Q)7m}'
e o

Applying above arguments to o’ = a + 1 shows for any o < «a, z € B, that is
unique on [s,s + Ty(a/, a)q] for any ¢ € (0,1) and Ty(o/, ) := min{T(/, ), m}
Changing s to s + To(a/, )q and iterating this procedure yields the assertion. Such an
iteration is possible since w(s + ¢Tp(o/, @) = 0 € B,. O

For o/ < o and s < ¢ let

a(t,s,a) :==inf {8 > o | W(t,s)x € Bg},
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then a(s,s,a’) = o’ andif s <t < s+T(/, ) also a(t, s,a’) < « follows. The continuity
of T'(«/, a) implies that there exists 8 € (¢/, ) such that s <t < s+ T(a/, ) and hence
W(t,s) € Bg, which implies that «a(t,s,o’) < § < « is fulfilled. Uniqueness therefore
implies that for any s <7 <t, 0<s<r <s+7T(a,a) and t < min{s + T(a/, ), r +
T(a(r,s,a'),a)}

W(t,s)x = W(t,r)W(r,s)z

holds for all x € B,/ .

Remark 1.2.3. Above proof shows that if B® is continuous in the uniform topology, then
W (t,s) is also continuously differentiable in the uniform topology.

A global solution to (1.20) is, by definition, a function u : Ry — (J B, such that

a>a!

for all T > 0 there exists a > o and u|jo ) is a solution to (1.20) in B,.

Corollary 1.2.4. Let o > a,. and suppose that there exists a sequence (c;)j>o such that
a; < a1, ap = o and

2 O‘J“ e (1.31)

a]+1

is satisfied. Then for any x € B, there exists a unique global solution to gien by
W (t,s)x. In particular, if M(«) is bounded by M* > 0, then the assertions of Theorem
hold for T(d/,a) = 2?;}0;[/* and W (t, s)x provides for every x € By, o > «, the
unique global solution to @ .

Proof. Let x € B/, then W(¢, s)x is the unique solution to on [s,s + T(ap, ay))

in B,,. Fix ¢ € (0,1), then W(t,s + ¢T (ap,a1))W (s + ¢T(ap, 1), s)z yields the unique

solution on [s + ¢7T'(a, 1), s + q(T (g, o) + T'(a1, a2))] in B,,. By iteration we obtain

the unique solution on [s,s + ¢(T' (g, 1) + -+ + T(an, ant1))] in ]B% v for any N € N.
0

Such iteration yields a global solution since Y Ty, aj+1) = 525 Z ‘;j[(*; +0;J = o0. For
=0 ’

the second assertion consider a;; = o’ + j, then
Qi1 — Oy 1
M(aj1) — M*

implies ({1.31)). O

Below we provide stability of the evolution system W (¢, s) w.r.t. the operators A% (t)
and B2(t). For any n € N, let (A% (t));>0 be continuous in the uniform topology in the
scale B and (V/2(t, s))o<s<: the associated forward evolution systems. Suppose that there
exists constants A > 1 and w € R such that

>0

VA S) |wa < A9 0<s<t o <a, neN (1.32)
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holds. Let (B2(t))i>0 = L(B) be strongly continuous in ¢ for any n € N such that there
exists an increasing continuous function M («) independent of n and it satisfies

IBA(0) e < 21

~a—a

o <a, t>0, neN, (1.33)

Theorem 1.2.5. Suppose that there exist operators A2 (t), VA(t,s), B2(t) which satisfy
the conditions of Theorem[1.2.9 with M () as in (1.33). Assume that for any T > 0 and
o <a

sup |BS(t) — BA(t)|wa — 0, n— (1.34)
te[0,T]
and
sup |A2(t) — A2(t)|ara — 0, n — © (1.35)
te[0,T]
are satisfied. Let T(o/, ) 1= 26‘1143/([1(/&). Then for any n € N there exist evolution systems

Wn(t,s) and W (t, s) corresponding to (A5 (t), B2 (t)) and (A2 (t), BA(t)) respectively, with
the properties stated in Theorem . Moreover, for any o < o, v € By and q € (0,1)
the convergence

W"(t,s)x — W(t,s)x, n— w

holds in B, uniformly on compacts such that 0 <t —s < ¢T'(d/, ).

Proof. The same arguments as in the proof of Lemma together with ((1.35)) show
that

HVnA(t’ 5) - VA(ta S)Ha’a - 07 n — oo (136)

holds uniformly on compacts for 0 < s < ¢t. Therefore without loss of generality we can

assume that V2 (¢, s) satisfies (1.32) with the same constants. Estimates (1.32)) and (1.33)
together with Theorem imply that W"(t,s), W(t, s) exist and by (1.28)) are given by
0¢]

o0

Wi(t,s) = >, Wi(t,s) and W"(t,s) = >, W}(t,s), respectively. Moreover, from (1.32))
k=0 k=0

and ((1.33)) it follows

k
t—s
Wn(t e < wt—s) (2
H k( 7S)H >e€ (T(Oé/,Oé))

and hence the series converges uniformly for 0 < ¢t — s < ¢T(/, ) and w.r.t. n. Thus it
suffices to show W} (t,s) — Wi(t,s), n — oo in L(B,/,B,) for any k € N. For k = 0 this
follows from ((1.36)) and for & > 1 by induction and ([1.34)). O
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Clearly it is not necessary to assume that and hold for each T" > 0.
Since, in general, we only obtain the existence of a local solution it is enough to check the
convergence on any interval [s,s + ¢T'(¢/, )], s > 0 and g € (0,1).

Suppose that B is a scale of Banach lattices. Namely, for each a@ > a, the space B,
is a Banach lattice, that is B, is an ordered Banach space and the order is compatible
with the norm. For convenience of the reader a precise definition is given in the appendix
A.1. The order is also assumed to be compatible with the scale B, i.e. for all o/ < o and
x,y € By

T<ayST=ay,

where <, denotes the order on B, and <, the order on B,,. Thus we can omit the de-
pendence on «. For details, additional properties and perturbation theory for semigroups
on Banach lattices we refer to [BAOG].

Given C € L(B), we say that C is positive if for each o/ < o, x € By: > 0
implies C'x > 0. The next theorem establishes a comparison principle for the constructed
solutions. Such principle can be used to construct global solutions, see [KK16].

Theorem 1.2.6. Suppose that A>(t) and VA(t,s) are given as in Theorem and
VA(t, s) is positive. Let (B5(t))i0, (B2 (t))=0 = L(B) be two positive operators. Assume
that t — Bj.A(t) € L(B) are strongly continuous in the scale B for j = 0,1 and there exit
continuous increasing functions My(a)), Myi(«) > 0 satisfying for all ' < o and t >0

M;(a)
A j :
HB] (t)HO/Oé < a—o’ J=0L
Denote by (Wo(t, s))o<s<t the forward evolution system corresponding to A®(t)+ Bg(t) and
by (Wi (t, s))o<s<t the forward evolution system corresponding to A2 (t) + B&(t) — B2(t).
Suppose that W1(t, s) is positive, then for any o < a <" and 0 <z € By

WE(t, s)x < Wy(t,s)z (1.37)
holds for all s <t < s+ min{%A(Moo(‘;)‘iMl(a)), 26;1’;‘//1_1?&,,) }
Proof. The proof of Theorem |1.2.2{ implies for s <t < s+ zeA(MOCE;)‘iMl(a)) and w(t) :=

Wo(t, s)x — Wi(t, s)x that
w(t) = JVA(t, T)B()A(r)w(r)dr + JVA(t, r)BE(r)Wi(r, s)xdr

s s
t

> f VAt 1) BA (r)w(r)dr

s

37



holds in B,», where we have used (|1.25)) and that all operators are positive. Iterating this
inequality yields for any n € N in B~

t tn—1
Wolt, s) — Wit s)z > J . J Qb e, o, $Yo(t)dt -ty = T,

where Q(t,t1,...,t,8) 1= VA(t,t1)BR(t1) - VA(fao1, 1) BA(tn). Let oy 1= o+ 522,
j=0,....2n, Cq = sup |w(r)|a, then by (1.30)

re(s,t]

Lo < Co) (2€AM1<0‘")<t - S))n.

o — o

/

Hence if s <t < s+ min { 2€A(MO°E;)°;M1(Q)), erM’l((la,,) }, then I, — 0, n — o0 in B,,. [

1.3 Perturbation by non-linear operators

In this section we prove existence, uniqueness and stability of solutions to the non-linear
Cauchy problem ([1.5)), i.e. to

2
ot
Let B = (Bo)ac[as,a*] be a scale of Banach spaces with B, < B, and |- |4 < | - [|o for

o/ < a. It is worth noting that we have to consider here a scale for which the index « is
also bounded from above.

() = A()u(t) + Blu(t),t), u(0) = a.

Existence and uniqueness

Fix z € B,, and let A > 0. First we are going to prove the existence of mild solutions.
The following summarizes our main assumptions for this purpose.

Al. There exists an evolution system of bounded linear operators (U(t,s)),_ _,_a*—ay
SSSti<———
in the scale B such that for 0 < s <r <t (in the sense of (1.3)))

Ut,t)=1, U(t,n)U(r,s)=U(t,s)
and (t,s) —> U(t, s) € L(B,B,) is strongly continuous for all a, < o < a < a*.

A2. There exist constants C; > 0 and 3 € [0, %) such that for all o, < o < a < a*

Ci

Ut a’ag—a
Ut oo < 7

t>s>0.
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A3. For all a € (ay, a*] there exists C'(x, a) > 0 such that for all 0 < s, <

U(t,0) — U(s,0)2]. < Cla,a)|t - s|.

For the non-linear part B(u,t) we suppose the following:
B1. There exists r > 0 such that for all o/, o with a, < o' < o < a*

™ — o,

A

BY (z) x lo, ) 5 (u,t) — B(u,t) € B,

is continuous, where B (z) := {y € By | |2 — y|o < 7}

B2. There exists a constant Cy > 0 such that for all o/,a with o, < o < a < aF,

t € [0, a*;a*) and any u,v € BY ()

&

|B(u,t) — B(v,t)]o < m”u — 0|

B3. There exists a constant C3 > 0 such that for all ¢ € [0, M%”*) and all @ € (ay, a*]

Cs
_&*.

B(x,t)|s <
B, 1)l < -

Remark 1.3.1. Usually non-linearities C(u,t) are considered to be locally Lipschitz con-
tinuous. The ezistence of mazimal solutions is shown in this case, cf. [Paz83] and ref-
erences therein. Such non-linearities can be also taken into account in our setting, if we
define B(u,t) := B(u,t) + C(u,t) and check that B satisfies assumptions B1 — B3.

Given z € B,, and «ag € [ov, a*), a solution to

u(t) = U(t,0)x + JU(t, s)B(u(s), s)ds. (1.38)

0

in the scale (B, )ae[ag,o*] 1S a function u : [0, @) —> B« such that for all a € (v, a*|

a — O
g 50y € € ([0.557) iBa).

|u(t) — x||o <7 and u solves (1.38]) in B,. The idea for the proof of the next statement

is based on the work [Saf95] and provides a generalization of this work.
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Theorem 1.3.2. Under conditions A1 — A3 and B1 — B3 with x € B, , for each oy €
(o, @) there exists A\g > 0 and, provided X > X\g, a unique solution u., in the scale
Ba, || - [a)aclag,a*] to (1.38). Moreover, each two solutions ua, and ua, with a, < ag <
a; < o and A > max{g(ap), A(aq)} satisfy for any a € [aq, a*)

o —

A

Uao (1) = Ua, (t), 0< 1<

Proof. Fix © € B,, and ap € (a4, a*). For 7 > 0 define S7 as the Banach space of

all functions u : [0, @

uljo,r(a)) € C([0,T(a)); By) with T'(a) = *520 satisfies

—> B, such that for each a € (ag,a*] the restriction

[ul™ =" sup (o —ao =) |u(t)]a < o
0St<T(?<)]
ae(ag,a

Define the non-linear integral operator

t

T (u)(t) := fU(t, s)B(u(s), s)ds, (1.39)

0

then we will show the existence of a unique solution to u = U(-,0)x + Tu. Now fix

76(571_6)7let

JU—— { QNHI=BCICy APy (e — ap)? 227 C01Cs
=8 7 A+ |2]as) v
C(x)(a" —ag) 2O (- + O(2))(a* — ag) P(1 + \fﬁ\a*)}
r (1—~)r

where C'(x) := C(x, o). Define

M(u) :==  sup sup (o —ag — At)Y|B(u(t), 7)]a,
0<r< a*;ao 0§<t<T(?;)]
=1 = ag(ag,a

and

S, = {u e S'(\)

=l < M) < (S Cw) (@0 - a1+ el
(1.40)

Lemma 1.3.3. U(-,0)z € S,.
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Proof. Observe first that U(-,0)x € S7, then by A3 we see that for o € (ap,a*) and
0<t<T(a)

[02,0)2 = ol < [U(1,0)2 — el < Cat < C) 252,
SO
U, 0)x —z|© < C’(x)a* ; a0 r% <7 (1.41)
For M(U(-,0)z) < (=%— + C(2))(a* — ag)?(1 + |2]a,) it suffices to show that for all

) — Q%

0§T§@7ae(ao,a*] and all 0 <t < T'(«) we have

f(t)=p(t)”g(t)s( G +c<x>> (0 — o) (1 + [2]ay).

g — Oy
where p(t) := a —ap — At and ¢g(t) := |B(U(t,0)x, 7). The assumptions on B imply
that f is continuous in ¢ and using
A
(Df)(t) = limsup Jls) = 1)
s\t s—t
we obtain
(DA)(t) = =vAp(t)" " g(t) + p(t)"(Dg)(t).

Nowsetaza'+@,then0§t<T(a’)<T(a) and for t < s < T()

&
mHU(S, 0)1’ — U(t, O)xHa/
and thus dividing by s — t and letting s \, ¢ we conclude

CyC(x)  217PCLC(x)
=) =

9(s) —g(t) <[BU(s,0)x,7) = BU(t,0)x, 7)|a <

(Dg)(t) <
From
p()(Df)(t) < —AAf(t) + 217PCC () p(t) P

< A (E) + A < Gy C(x)) (@ —ag)" (1 + [2/a,)

g — Oy

we conclude that if f(¢) > (% + C(x))(a* — ap)?(1 + ||z]ay), then (Df)(t) < 0. But

since M(z) < (=% + C(2))(a* — ag) (1 + |o]a,) implies
10 (22 + o) @ - a1+ lall)
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We conclude (D f)(t) < 0, which shows
Cs

Qp — Oy

MU(,0)2) < ( ; 0<x>) (@ — ) (L + Jelay). (1.42)
Lemma 1.3.4. U(-,0)z + T (u) € S; whenever ue S,.

Proof. Take u € S, fix @ € (g, a*] and 0 < ¢t < T'(«). For « = o/ + p ) with p(t) a
before we get 0 <t < T'(«/) < T(«). Hence

T w0}l < J V(8. B(u(s).8)lals < s f IB(u(s). )|
2501 f s < 200 M (u) (o — cg — M)
) p(t)? (1=)A
C p(t) 7
< 97148 3 * _ an)(1
¢ <a0_a* +c<m>) (@ = a0)(1-+ el ) 5
27_1+601 03 1-8
*—ag) (1
< (28 o) @ - a1 )
yields
_2TC (G s
* (1 )
T < Tt (2 + €)@ = a1+ fola)
Using implies

[U(,0)a + T (w) — 2 < U, 00z — 2| + [ T (u)|©

z)(a* — ag g rcloN 3 -
< Clallerzo)  Z 0 (G o) 00 - a1+ fola)

Qp — Oy
0
<r—<r.
- A
For the second condition we have to show

M@mﬁn+Tm»§< Cs

Qp — Qg

+C@)) 0" = (Lt fola,)
Similar to the proof of Lemma it suffices to show that for all 0 < 7 < T'(a*),
a € (ap,a*] and 0 <t < T'(a) we have

Cs

Qp — Oy

7t) = plt)g(t) < ( n c<:c>> (0 — o) (1 + [2]ay).
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where g(t) :== |B(U(t,0)z + T (u))(t), 7)|o. Again we obtain
(DF)(t) = =yAp(t)" " g(t) + p(t)(Dg)(t).
Now set a = o/ + @ and o’ = o + %. We see that o = o + %,
0<t<T()<T(")<T(a)

and hence for t < s € T(«/)

g(s) —g(t)

< (a5, 0 = U, 0l + (o= g T (5) = T Ol
418, A1-8C, -

SO |U(s,0)x — U(t, 0)xq + PO tf [(U(s,7) — Ut, 7)) B(u(r), 7)|ardT
400, AC

\Cy
< et U 0) = Ut 0l + =5 JBW@JmMr

We conclude that

4C1Cy
i 1B, Dl

< APCL,O(x)p(t) TP+ AC Cop(t) T M (u) (o) — g — M)
<APCC()p(t) M

(Dg)(t) < 47 PCop(t)™PC(x) +

Cs

Qp — Oy

+fMQQMW%*( +cw0«f—%wu+mmn

holds and finally
p(t)(Df)(t) < —yAf(t) + 47PCHC () p(t)*
© i C@) @ - a1+ el

Qg — Oy

+ 227701 Cy (

0 — Oy

< —VAf() + YA <a . O(x)) (@ = ag) (1 + []ay)-

The assertion follows immediately as in Lemma [1.3.3] [

Let u € SY"5()), fix a € (ag,a*] and set a = o' + @ with p(t) as before, and
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0 <t<T(a). Then

(@ =a0=7 | [Utsyutnts) < Do ag— 207 [ ful)lds

< 2°Cp(t)~"* J(O/ — ag — As)" OB s

0

2°C _ _ _
< T =g = 20
27CY _
= muuu(vﬂ B)
implies that
. ()
27C _
[utsnas < 2o, (1.43)
0
Analogously to ((1.43) one shows that for u,v € S,
|B(u(-),) = Bu(-), )| < 271700 fu — o] ). (1.44)
Now let u,v € S, then by (1.43) and ([1.44)) we arrive at
27C _
|7 () = T()]" < mHB(U('), ) = B(u(), )0+
22180 C A
< Iy — )| < 22w — o]0,
(v = B)A A

Setting u® = U(-,0)z € S, and u**Y) = U(-,0)z + T (u®) for k € Ny, Lemma and
1.3.4 imply u® € S,. The estimate |[u*™1) — u®)|0) < (%)k [u® — 4@ ™) shows that

(u®)}>0 is a Cauchy-sequence and thus there is a limit u = klim u® in S7. Since for any
= —00

a € (ag,a*],te [0,T(a)) and k € N: |u¥)(t) — x|, < r, passing to the limit k — oo yields
|u(t) — o < r. Hence u is a solution to (1.38)) in the scale (Ba)ae[ag,a*]-
For uniqueness let u, v be two solutions to (|1.38)) in the scale (Ba)ac[ag,a*]- Then by

(@ = ag = At) [lu(t)[o < (@ = o = A)u(t) = 2o + (@ = g = A)7|z]a

< (aF = ag)"r + (" — ag)7|[z]a,

and similar estimate for v we get u,v € S7. By (1.43)) and (1.44]) we obtain

A
Ju =07 = | T () = T()| 7 < Plu = 0],

which implies u = v. The last claim is a consequence of the next lemma.
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Lemma 1.3.5. Let o, < ap < oy, denote by u,, and u,, the corresponding unique so-
lutions in the scales (Ba)ac[ag,a*] Tespectively (Ba)ae[ar,a*] with A > max{o(ag), Ao(o)}.
Then for each « € (ay, a*], we have

ua0|[07a77;1) = Uq, -

Proof. The collection of functions Ua0|[0 ooy, 0 € (a1, a*] is a solution in the scale
(DN

(Ba)aefar,a*] and applying the uniqueness property for u,, we obtain the assertion. [
O
Remark 1.3.6. Suppose that U(t,0) satisfies the inequality

|U(t,0)z — U(s, 0)z] < C(2)|t — 5

with a constant C(x) > 0 independent of a. Then we can choose ay = v, in the main
statement.

Let us now show existence and uniqueness of classical solutions to equation
Therefore, let (Eq, || - [[a)ac[as,a*] be another scale of Banach spaces with B, < E, con-
tinuously embedded and || - |[o < | - |- The next condition relates the evolution system
to its infinitesimal generator A(t).

A4. There exists a family of linear operators (A(t)) such that for all o/ < «

*_
tE[O,%)

lo, %) 5t A(t) € LBy, Ey)

is strongly continuous. Moreover, the map (t,s) — U(t, s) € L(By, E,) is strongly
continuously differentiable with derivatives

oU ¥ — o

- = <s<
pn (t,s) = A(t)U(t,s), 0<s<t< )\
and
oU a* —
= — <s< .
s —(t, s) U(t,s)A(s), 0<s<t< 3

The case s = t should be understood as right or left derivative correspondingly.

Note that, in the case E, = B, conditions Al and A4 imply condition A3.

Definition 1.3.7. A function u : [0, %) — Bx is called classical B-valued solution

Y
to (1.5)) if for each o € (v, &*] the restriction
O — Oy QO — Oy
g e € C* ([o - ) ;Ea> AC ([0 . ) ;]Bsa> (1.45)

satisfies |u(t) — x||o <7, and it is a classical solution to ((1.5]) in E,.
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The next lemma shows that in the framework of scales of Banach spaces the concepts
of mild and classical B-valued solutions coincide. A summary of the classical concepts of
B-valued solutions can be found in [Paz83].

Lemma 1.3.8. Let x € B,, and u : [0, O‘#{%“*) —> Byx. Then u is a classical B-valued

solution to (1.5)) if and only if u is a solution to (1.38)) in the scale (Ba)ac[ag,a*]-
Proof. Suppose that u is a classical B-valued solution to (1.5). Then for all 0 < s <t <

= and each a € (ay, a*]

S W )uls)) = Ut ) Blu(s). o)

holds in E,. Hence integrating over s yields . For the converse let v be given with
(T45). Fix a € (as, a*], t € [0,252) and let o/ € (v, a) such that 0 < ¢ < 5% < o=
Then v(s) € B, for s € [0,t] and we get that the mapping (¢,s) —> U(t, s)v(s) € E, is
continuous and continuously differentiable in ¢ for fixed s € [0,¢]. Thus

t
[o, a _AO‘) St f U(t, s)v(s)ds € B,

t

is continuously differentiable with derivative v(t) + A(t) § U (¢, s)v(s)ds. Let u solve (1.38),
0

then applying above argumentation to v(s) := B(u(s), s) yields differentiability and dif-

ferentiating (|1.38)) yields ({1.5). O

Corollary 1.3.9. Assume that conditions A1 — A4 and B1 — B3 are satisfied and let
x € B,,. Then for any ag € (cu, a*) the solution given by Theorem yields a unique
classical B-valued solution in the scale (Eq)ae[ag,a*] to (1.5]).

Stability with respect to parameters
For the whole section we suppose that the conditions below are satisfied.

1. There exist z,,z € B,, with x,, — x as n — o0.

0§S§t<a*+ﬂ* and (Un(t, 8))0§s§t<a*+a* forn e

N satisfying properties A1 and A2 with constants C; > 0 and 3 € [0, %) independent
of n e N.

2. There exist evolution systems (U (s, t))

3. For any a € (au, a*) there exist a constant C(«) > 0 such that for all 0 < s, < %

U, (t,0)x, — Upn(s,0)z, )0 < C(a)|t — s|.
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4. There exist operators B and B, satisfying properties B1 — B3 with constants
A, 1, Cy, C3 > 0 independent of n € N.

5. For all o/ < o and each z € B, we have
Un(t,s)z = U(t,s)z, n— (1.46)
in B, uniformly on compacts in (¢, s). If in addition ||z — 2|, < r, then we have
B, (z,t) = B(z,t), n—
in B, uniformly on compacts in ¢.

If for instance A, (t) — A(t) in L(B,,B,) and A4 is satisfied for A(t) and A,(t), n € N,
then ((1.46]) holds.

Theorem 1.3.10. For each ag € (o, a*) there exist Ao > 0 and provided A > Xy, there
exist unique solutions u to (1.38)) and u, to

un(t) = Upn(t,0)z, + JUn(t, $) By (un(s), s)ds (1.47)

in the scale (Ba)ae[ag,ax]. Moreover, for any a € (oo, *] and T € (0, *5*)

up(t) = u(t), n— o (1.48)
holds uniformly on [0,T] in B,.

The rest of this section is devoted to the proof. By definition of Ay in Theorem [1.3.2
we can chose \g to be independent of n € N, which implies the first assertion. Denote by
u, u, the corresponding solutions and by 7, the non-linear integral operator given as in
(1.39) with B and U replaced by B,, and U,,.

Lemma 1.3.11. |7,(U.(-,0)2,) | is uniformly bounded in n € N.

Proof. An analogous estimate to ((1.42) shows that there is C' > 0 such that

sup sup (o —ag— )| Bp(Un(+,0)z,, 7)o < C, neN.
0<T< a¥—ag 0<t<T(a)
DY a€(ag,a*]
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Let a € (049, a*], t € [0,T(a)), p(t) = a—ap— At and define o by the relation o = a’—i—%,
then ¢ < “5¢. Hence the estimate

t

(a0 — ap — At)? JUn(t, $)Bn(Un(s,0)z,, s)ds

0 «
t t
_ _ Y
<0 (a (aoioo/)/;t) J]Bn(Un(s, 0)2n, 8)|ards < CC12°p(t)7 7 f(o/ —ap— As) ds

0 0

CC’12Bp(t)7*5 1— 2771+B001 1—

I S S v MY T T — B

M-y TS Sy (e

U

implies the assertion.
Fix a € (ag,a*], T € (0,T()) and denote by (u*))zey the sequence defined by u(® =

U(-,0)z, utt) = U(-,0)2 + T (u®). Similarly let (u')rex be given by ul” = U,(-,0)z,
and uF ™ = U, (-,0)zn + T (u). For v e (8,1 — 3) we obtain

L 2\
-3 (3) o

and

By Lemma |l.3.11] and
Ju(t) = wa()a < (@ —=ao = M) (Ju® =l + [u® (&) = P (#)]o + Juy? —u| ),

which implies that the first and last term tend to zero uniformly in n as k — oo. Thus it
suffices to show for each k

[u® () = ufP (O)]a — 0, n— o0
uniformly on [0,7]. However this is a consequence of the below lemma.

Lemma 1.3.12. Let v,,v : [0, @) —> B, be two functions with the properties that
for each v € (g, a*] and all n € N:

1. fop(t) — 2plly <7 and |v(t) — x|, <7 for all 0 <t < #5720,
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2. vn\[()’%),v\[o’%) e C([0,5™);B,) and v,(0) = x,, v(0) = .
3. For each 0 <T < *5* the convergence
[on(t) =v(®)], =0, n— o0
holds uniformly on [0,T].
Then for each v € (g, a*] and T € (0,T(v))
|U,(t,0)x,, + To(v,)(t) — U(t,0)x — T (v)(t)][, = 0, n—0

uniformly on [0,T].
Proof. Consider

[Un(t, 0)n + Tn(vn)(t) = U, 0) = T (0) (1)

< U, 0)zn = U, 0)2]ly + [Ta(0n)(t) = T (0) ()]
< (Un(t,0) = U, 0)zly + |Un(t, 0)(zn — 2)]+

+ | Ta(@)(@) = T ()]s + | Ta(v)(t) = Ta(on) ()],
=L +L+ 13+ 1,

Take € > 0, then we find ny(e) € N such that for all n > ny and t € [0, 7]
I = [(Un(t,0) = U(t,0))x|, <e.

For Iy and n > ny, where n; = ny(¢) is sufficiently large, we obtain

4 |
(v — )P

It remains to estimate I3, I4. For I3 we get

C
1y — e, < ————¢.

Iy = Un(t,5) (@n = 2)], < )

I3 < JII(Un(tS) —U(t, s))B(v(s),s)|vds + J [Un(t, 8)(Bn(v(s),s) = B(u(s), s))|ds

=Ji + Ja.

Take ap < o/ < o” < v such that T' < a’;ao, then v, (t),v(t) € By for t € [0,T] and hence

the set Kr = {B(v(s),s) | s € [0,T]} < By~ is compact. For large n, i.e. for n > ny we
obtain that

t

Jp < f sup |[(U,(t,s) — U(t,s))z|,ds < eT.

ZEKT
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Similarly for Jy the set Kr = {v(s)|s € [0,7]} < B, is compact. Thus there exists
d € (0,1) such that |v(t) — x| < (1 —0)r for t € [0,T]. Let ng > ny be such that
|z — x,|| < dr for ng > ng, then

[o(t) — zpllo < |v(t) = 2| + |2 — zp|or < (1= 0)r + 6r =1

Hence by assumption 5. there exists ny > n3 such that

t
C
Jo < m J |B,(v(s),s) — B(v(s), 8)|lards
0
C: t C,T
— (V—Oz”)lfﬂ ZS;;(% H n(Z,S) (Z7 8>||a dS — (V—O&”)lfﬂg

Concerning I, we obtain

[T (vn) () = Ta(v) (D], < f [Un(t, 8)(Bn(vn(s), 8) = Bu(v(s), s)|»ds

t

Ch Cy J
< [vn(s) = v(s)ardls
_ AM\B n _ ~N\1-p8
(v—a")B (a" — o) )
Ch Cs

= T n - )
(l/ _ Oé”)ﬁ (a// _ Oé’)lfﬁ SS[%E] HU (8) U(S)”

which shows the assertion. O]
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Chapter 2

Markov evolutions on I

This chapter is devoted to the construction and study of birth-and-death Markov evolu-
tions in continuum with the additional constraint that for any moment of time ¢ > 0 the
number of particles remains finite. For shorthand notation we call such Markov evolu-
tions: finite evolution, finite process or simply finite system. In the first section we discuss
Markov jump processes on arbitrary locally compact Polish spaces. These results are af-
terwards applied (sections two and three) to (finite) birth-and-death Markov evolutions
with the location space R

2.1 General Markov jump processes

Let E be a locally compact Polish space and denote by B(E) the Borel-o-algebra on E.
Denote by BM (F) the Banach space of all bounded measurable functions and by C,(F)
the subspace of all continuous bounded functions. A pure jump process is determined by
its (infinitesimal) transition function, i.e. a function @ : Ry x E x B(E) — R, with the
following properties:

1. Forallt >0,z € E, A— Q(t,z,A) is a finite Borel measure with Q(t, z, {z}) = 0.
2. For all Ae B(E), (t,z) — Q(t,x, A) is measurable.
3. For all T"> 0 and all compacts B < E

sup  Q(t,xz, F) < . (2.1)
(t,2)e[0,T]x B

Let BM,,.(E) be the space of locally bounded measurable functions and C'(FE) be the
space of continuous functions. Define for any F' : F — R

(QU)F)(x) = fF@)Q(t,x,dy), >0, ve B,

E
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whenever it makes sense, i.e. S|F )Q(t,z,dy) < oo for all t > 0, x € E. Then

Q(t) : BM(E) — BM,(E) is a well-defined positive linear operator and ¢(t,z) :=
(Q()1)(z) = Q(t,z, E) is locally bounded. If Q(-)Cy(E) < C(Ry x E), i.e. for any
F € Cy(F) the function Q(-)F is jointly continuous in (¢, z), then we say that @ is jointly
continuous. This simply means that, by definition, Q(¢,x,dy) is weakly continuous in
(t,z). In such a case is automatically satisfied.

We briefly recall the results obtained in [Fel40, FMS14]. Let @ be a transition function.

— i r,x)dr
For 0 <s<t,xe Eand Ae B(E) let PO(s,z;t, A) := d(x, Ae yatr) ,and for n > 1
t r
(n+1) ~Ja(raydr (n)
P (s,z;t,A):== | e s P (r,y;t, A)Q(r, x,dy) |dr. (2.2)
s E

Here 6(z, A) := 1a(x) = §,(A). Then P(s,z;t,A) = Z P (s, z;t, A) is a sub-Markov

transition function. Moreover, for fixed A € B(E) and x e E it is absolutely continuous
in s and ¢, respectively such that P(s,z;t, A) — d(z, A) holds uniformly in A € B(E)
whenever s — t~ or t — s*. For any A € B(E) it is a.e. differentiable in s € [0,¢] and
satisfies

0P(s,xz;t, A)

s = q(s,x)P(s,x;t, A) — fP(s,y;t, A)Q(s, z,dy). (2.3)

E
Likewise, for any compact A c E it is differentiable for a.a. t € [s,0) and satisfies

0 t, A
P(&;;t; ) _ fQ(t’y)P(S’ z;t,dy) + JQ(@% A)P(s,x,t,dy). (2.4)
A E

It follows from [FMSI14] that P is the minimal solution to (2.3) and (2.4). Moreover, if
P(s,z;t, E) = 1, then this solution is also unique.
The main point of our interest is to study the (sub-)Markovian evolution system

U(s,t)F(x) := JF(y)P(s,m;t,dy), 0<s<t (2.5)

on the space of bounded measurable functions and extensions of it. Such an evolution
system is a family of positive bounded linear operators such that U(s,s)F = F and
U(s,r)U(r,t)F = U(s,t)F for 0 < s < r < t. In the framework of general linear
evolution equations discussed in the first chapter, above evolution system satisfies the
backward evolution property. For F'€ BM(E) let

L(t)F(z) = f (F(y) — F(2))Q(t,x,dy), >0 (2.6)

E
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be the (formal) generator of U(s,t). Since in general U(s,t)F' is not continuous w.r.t. the
norm on BM(E) or Cy(E), we cannot expect that some extension of L(t) is a generator.
One possibility to overcome this problem is to restrict U (s, t), provided it is possible, to the
space of continuous functions vanishing at infinity. Another possibility is to characterize
U(s,t) by its strict generator, cf. [Casll]. It is also possible to consider other topologies
which leads, e.g., to the concept of mw-semigroups (in our case to m-evolution systems),
cf. [Pri99]. For our needs it is sufficient to consider only the weaker concept of pointwise
generator, for the precise meaning see the Proposition below.

Denote by C the collection of compact sets on £ and by C; the collection of compacts

in R, x E. For a given non-negative function Ve C(F) let |F|y := sup l‘f‘(f()l) and denote

by BMy (E) the space of all measurable functions for which |F HV is ﬁmte Denote by
Cy(E) := BMy(F) n C(E) its closed subspace of continuous functions. Below we state
the main result for this section.

Proposition 2.1.1. Assume that there exists a continuous function V : E — R, such
that (t,x) —> Q(t)F(z) is continuous for any F € Cy(FE). Moreover, suppose that there
exists a continuous function ¢ : Ry — R, such that the properties below are satisfied.

1. For all T > 0 there exists a(T) > 0 such that q(t,z) < a(T)V(z) holds for all
te[0,T] and z € E.

2. The Foster-Lyapunov estimate

JV(y)Q(t,x, dy) < e()V(z) + gt )V (z), t>0, € E (2.7)

E
is satisfied.

3. Foralle >0, BeC and T > 0 there exists A € C such that
T
erxA dr<e, z€eB (2.8)
0

is fulfilled.

Then U(s,t) is a conservative Feller evolution system, i.e. U(s,t)1 =1 and (s,t,z) —>
U(s,t)F(z) is continuous for any F € Cy(E). Moreover, U(s,t) can be extended to
BMy (E) so that

t

c(r)dr
U OFy <Ry, 0<s<t (2.9)

The relation to the Kolmogorov equations is given by the statements below:
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(a) For any F' € BM(E), t >0 and x € E, [0,t] 5 s —> U(s,t)F(x) is continuously
differentiable and a solution to

%U(S,t) F(z) = —L(s)U(s, ) F(x). (2.10)

If in addition F € Cy(E), then s —> U(s,t)F(x) is absolutely continuous and

satisfies (2.10) a.e.

(b) Let F e BM(E). Then for anyx € E, s >0, [s,0) 3t +— U(s,t)F(x) is absolutely
continuous and satisfies for a.a. t > s

0

%U(s, t)F(x) = U(s,t)L(t)F(z). (2.11)

(c) Let V(s,t) be a Feller evolution system on Cy(E). If for any F € Cy(E), V(s,t)F
is a solution to ([2.10) or (2.11)), then V(s,t) = U(s,t) holds.

The time-homogeneous case was, e.g., treated in [Che04] [Kol06]. Condition (2.7)) can
be reformulated to

[ -vinat.ea <oy, 120 ver

E

A transition function () with property is said to have the localization property.
Property (c) means that U(s,t) is the unique Feller evolution system associated with the
operator L(t). The rest of this section is devoted to the proof of above statement.

Suppose from now on the conditions given in Proposition to be satisfied and let
a € (0,1). Applying the iteration (2.2)) to (¢(t, z), aQ(t, z,dy)) yields the sub-probability
function given by

o0
P,(s,z;t,dy) = 2 P (s, x:t, dy). (2.12)
n=0

Let U,(s,t)F(x) := § F(y)P™ (s, z;t,dy), then Uy(s,t)F(z) := i a"U™ (s, t)F(x) de-

fines an evolution system. We will call U, (s, t) the regularized evolution system associated
to Q. Clearly, above series converges uniformly in (s,t,z). The next lemma establishes
the Feller property for U,(s,t), whereas the limit @ — 1 will be considered at the end of
this section.

Lemma 2.1.2. (Uy(s,t))o<s<t is a Feller evolution on Cy(E).
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Proof. 1t suffices to show that for any n > 0 and each F' € Cy(E) the function U™ (s, t)F(x)

t

—{q(r,z)dr
is continuous in all variables. Since U (s,t)F(x) = F(x)e b , by Lemma [A.2.1| this
clearly holds for n = 0. Assume the assertion holds for some n > 0. By (2.2) we get

t ™
U@“%&wF@>=JJ?_y“”“aﬂMvjﬂw@xxnadwdr (213)
s F
S:q(‘r,a:)d‘r

By induction hypothesis e > (U™ (r,t)F)(y) is continuous in all variables. More-
over, due to |U™ (r,t)F(y)| < | F|. this function is bounded and hence by Lemma

we see that also

@mwﬂfémemewmmma@>
E

is continuous. Thus Lemma yields the continuity of U™V (s, ) F(x) in the variables
(s,t, ). O

The next result studies stability of the Feller evolution U,(s,t) with respect to Q.
That is given a sequence of transition functions (Q););en, We are interested in conditions
such that U, (s, t)F —> U,(s,t)F as j — o, where U, ;(s,t) are the regularized evo-
lution systems defined as in (2.12)). For functions f € Cy(E x E) let (Q(t)f(z,-))(y) :=

gf(x, w)Q(t,y, dw).

Lemma 2.1.3. Let (Qj)jen be a family of transition functions and assume that Q); is
weakly continuous for any j € N. Moreover, suppose that the following conditions below
are satisfied.

1. Let q¢;(t,x) := Q;(t,z, E), then sup g;(t,x) < o holds for all B € C;.
i>1
(t,x)eB

2. For any f € Cy(E x E) the convergence
(Q;(0)f (z,))(x) — (Q) f(z,))(x), j— 0 (2.14)

is uniform in (t,x) € B for any B € C;.
Then for any 0 < s <t and F € Cy(E)

Ua7j(8,t)F - Ua(sat)F7 ] — O (2.15)
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holds uniformly on compacts. If instead of (2.14) the stronger convergence in the total
variation norm holds, i.e.

sup HQj(t,l‘,')—Q(t,:E,~)H _>O7 ]_’OO
(t,2)€[0,T]x B

for any T > 0, then the convergence (2.15)) is uniform on any A € Cy and on |F|, < 1.

Proof. Since @), Q); are transition functions, it follows that U, ;(s,t) and U,(s, t) are Feller
evolution systems on C,(E) obtained by

Unj(s,t)F Z )F(x)

and

x) = Z a"U™ (s, t)F(z).

Since | U™ (s, t)F(z)], |U;n)(s, t)F(z)] < ||F| s the convergence of the series is also uniform
in j > 1. As a consequence it is enough to show for any 0 < s < ¢, any compact B < F,
n >0 and F € Cy(F)

lim sup ]U (s, 0)F(x) — U™ (s,8)F(x)| = 0. (2.16)

J—™% zeB

For n = 0 this follows from (2.14)) and
|@m@wF@y—M®@wFung|ijmmmw—ﬂn@mw

Assume that (2.16]) holds for one n > 0, proceeding by induction we obtain for z € B,0 <
s <tand F e Cy(F)

U (s, t)F(w) = UMD (s, ) F2)| < I + I + I
where we have used ([2.13)) and

™ ™
—$qj(r,z)dr —$q(r,z)dr
S —_ 6 S

I = U™ (r, ) F(y)|Q; (r, 2, dy)dr

§q(7’,x)d7

I = j f — U R Qi e, dy)dr

I = f f‘ TGO () F(y) (@ . dy) — Qo dy)) e
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The first integral can be estimated by using |U](n)(7", O F(y)| < |F|w and gj(r,z) < ¢* :=

sup  sup Q,(1,z, E) for each r € [s,t], which yields
J21 (1,x)€[s,t]xB

I < |Flo qu(r, x) J(qj(T, x) — q(7,x))dr|dr

<|Fle(t—s)*q"  sup |g;(r,2) —q(r,2)|.
(T,x)€ls,t] x B

To estimate I, we need the following lemma.

Lemma 2.1.4. For anye >0, T > 0 there exists a compact A < E and jo > 1 such that
T
fQj(t,x,Ac)dt <e, x€B, j>j.
0

Proof. Since () has the localization property we can find a compact A; < E such that

T € B.

T
|z apar<,
0

[0}

Choose compacts A, Ay  E such that Ay € Ay © Ay c A < A, since (Ay)° and (A)° are
closed there exists a continuous function ¢ with ]1(;’1)5 <p< ]1(; o We obtain
2

[ @t amae < [y ygar < [ [, mana
0 0 0 F

and by (2.14)) there exists jo > 1 such that for j > jo, z € B and t € [0,T]

| et < o+ etz

E

Therefore the assertion follows from

T T
€ [
| [ewasttaana <5+ [ [ewmaeea
0 F 6E'
T T
e [ ° €
<S4 | Qe (o< S+ [ Qe apdr <
J
0 0
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Take A < E and j, > 1 as in above lemma, then for any j > jo and x € B

I < f f U (1, 6)F(y) — U (r, ) F()|Q; (. 2, dy)dr + 2] F. f Q;(r,z, A%)dr
s A S

t
<" [[sup W (0 F(@) - O OFWldr + 21 | Qy(riz, 4dr
ye

t

<q f sup [U" (r, ) F(y) = U™ (r, ) F(y)|dr + 2| Fl e
ye

The integrand tends for each fixed r € [s,t] to zero as j — oo and since

sup U™ (r, ) F(y) — U™ (r, ) F(y)] < 2| F|0
ye

also the integral tends to zero. Altogether this shows the assertion for I,. For the last

. _S (7—1 )dT . .
integral observe that (r,z,y) — e S M) (r,t)F(y) is continuous and moreover

bounded by |F|,. Therefore by (2.14]) for any r € [s, ]

T

- T,2)dT
Fi(r,s,t) :== sup fe §q( ) U(")(r,t)F(y)(Qj(r,x,dy) —Q(r,z,dy))| >0, j—
zeB
E

and since Fj(r, s,t) < 2| F|»q* we obtain the assertion by dominated convergence. The
second assertion can be proved very similarly, here only I3 should be estimated again. []

As a consequence we can show that U, (s, t) satisfies a Chernoff product formula. That
is U,(s,t) can be approximated by evolution systems U, ,(s,t) with piecewise constant
(in time) transition functions @,. More precisely, take for any n € N a sequence 0 =

t8 < 1" < 4™ with sup (11, — 1) > 0 as n — o0 and 1" — o0, k — o for all
k>0

n € N. Define piecewise constant transition functions by
Qu(t, z,dy) = Q™ z,dy), 1" <t <t k>0,

then @, is weakly continuous in « for any fixed ¢ > 0 and n > 1. Denote by U, (s, t) the
regularized Feller evolutions on Cy(E) constructed above, cf. Theorem For fixed
r > 0 set Q"(z,dy) := Q(r,z,dy), then Q" is a weakly continuous transition function
and its associated regularized Feller evolution on Cy(FE) can be represented by a Feller
semigroup T, ,(t).
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Lemma 2.1.5. Let F € Cy(F) and for 0 < s <t choose mg, my > 1 such that

1 <5<t <™ <t <™ (2.17)

0 m mi+1°

Then

Usn(s,t)F(z) =T

e (th) . —s)-- T, o (¢ = t9)F = Ua(s,)F, n—o0 (218
holds uniformly on compacts.

Proof. First observe that for any compact B ¢ E, T > 0 and f € Cy(E x E) Lemma
A.2.2| implies that F(r,z) := § f(z,y)Q(r, z,dy) is continuous. Therefore
E

ff(x,w@n(r,x,dy) . f o 9)0(r 2. dy), 1 — o0

E

holds uniformly in (x,r) € B x [0, T] and hence (2.14]) follows. Applying Lemma we
obtain for all F' e Cy(E) and 0 < s < t: Uy (s, t)F — Uy(s,t)F as n — oo uniformly on
compacts. By the evolution system property it follows that

Uam(s, t) = Ua(s, t523+1) . Ua(t(n) t)

mi?

holds. For each pair rq < r with £ <rg<nr < tfﬂl for some m > 1, by (2.2)) and
(2.13)) it follows that U, (ro,71) =T o (r1 — o) and hence

Ua,n(s; t) = Toc,tg,?g (t£:3+1 - S) ttt Ta,t%? (t - t,f,gf)
implies the assertion. [

As a corollary of Lemma we can show a time-homogenization principle. Heuris-

tically it states that if Q(¢,z,dy) — Q(z,dy) when ¢t — o0, then U,(s,t)F can be approx-
imated by T’ (t — s)F' where T',(t) is the regularized Feller semigroup on Cj(E) associated
with Q(z,dy).

Corollary 2.1.6. For e > 0 define rescaled Q-functions by

t
Q:(t,x,dy) = Q <—,x,dy) , t>0, zeE, ¢>0.
5
Denote by (Une(s,t))i>s>0 the associated reqularized evolution systems on Cy(E). Assume
that there exists a weakly continuous transition function Q(z,dy) with the properties:

1. For any compact B < E one has sup sup q(t,z) < 0.
t>0 zeB
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2. Q has the localization property, that is for alle > 0 and all B € C there exists A€ C
such that HILBQllAc o, < € is fulfilled.

3. For all f e Cy(FE x E), any compact B< E, T >0 and § > 0

sup_sup |[(Q(t) f(z,))(z) — (Qf (x,))(x)| =0, &—0

S <4< T zeB
E— —E&

holds.

Denote by (T o(t))iz0 the reqularized Feller semigroup on Cy(E) constructed as above and
associated with Q(z,dy). Then for any compact B < E, F € Cy(E) and 0 < s <t

sup |Uac(s,t)F(x) — Ta(t —s)F(x)] — 0, ¢ >0

zeB

holds.

Proof. If we assume in (2.14]) instead of uniform convergence on [0,7] x B, uniform
convergence on [, T] x B for any § > 0, then Lemma still holds with (2.15)) for any
0<s<tand F e Cy(E). O

In the following we consider the limit & — 1 and deduce from that U(s,t)1 = 1.

Theorem 2.1.7. The evolution system U(s,t) is conservative and can be extended to
BMy(E) so that

tc(r)dr
U OFy <Py, 0<s<t

Proof. Denote by Ty, ,(t) the regularized semigroups with piecewise constant (in the time
variable) transition functions, see Theorem and by T,.(t) their counterparts with
a = 1. Then T,,(t)V(z) < T,(t)V(xz). The moment condition (2.7) and the results
obtained in [Che04) [Kol06] imply that for any » > 0, x € E and t > 0

T.(t)V(x) < eV (z).

Now given 0 < s < t and n € N we can find mgy, m; > 0 with (2.17). For m > 0 let
Vin(x) := V(x) A m, then V,,, € Cy(F) and hence

Uain(5:)Vin(2) = T, oo (tyd = )+ T, o (8 = £0)) Vi ()
< Ty (g = ) - Ty (¢ = t5)V ()

< V(@) exp (e(ti)(t = 10)) + -+ () ()1 — 5))
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Letting n — o0 yields

t

Ua(8,)Vin(x) < V(z)exp Jc(r)dr

S

The sequence (U, (8, t)Vin(x))men is increasing and bounded, so by monotone convergence
it follows that

t

fV(x)Pa(s,x;t,dy) < V(x)exp Jc(r)dr (2.19)

E s

is satisfied. The right-hand side is increasing in «, hence taking the limit a — 1 yields
that U(s,t) can be extended to BMy(FE). By [Fel40] the evolution system U(s,t) is
conservative if and only if for any s <t, z € F

t
qu(r, y)P(")(s,x; r,dy)dr — 0, n — oo,
s B

Let T' > 0 such that [s,t] < [0,T], then by ¢(r,y) < a(T)V(y) for r € [s,t] and (2.19)
with a =1

fJQ(T, y)P(s,z;r,dy)dr < a(T)V(x) Jtexp fc(T)dT dr < o0

P™) (s, z;r,dy).
[

follows. The assertion follows from the representation P(s,z;r, dy) =

3
Lbgs

The next result shows that U(s,t) is differentiable in s.
Theorem 2.1.8. For any F ' € BM(E), t > 0 and x € E, [0,t] 5 s —> U(s,t)F(x) is

continuously differentiable and a solution to

%U@ﬂﬂ@z—L@U@wﬂ@.

Moreover, for any F € Cy(F) the function U(s,t)F(x) is absolutely continuous in s and

solves above equation a.e.. Let V (s,t) be a Feller evolution system on Cy(E) and assume
that V (s, t)F is a solution to (2.10) for any F € Cy(E), then V(s,t) = U(s,t) is fulfilled.
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Proof. By (22.3) we obtain for any A € B(F) and 0 < s <t

t

P(s,z;t, A) = d(z, A) + Jq(r, x)P(r,z;t, A)dr — JJP(r,y;t,A)Q(r,x,dy)dr
s E

s

and hence for any F'e BM(F) and z € F

t

U(s,t)F(x) = F(x) + fq(r, x)U(r,t)F(z)dr — JJU(T, O F(y)Q(r, z,dy)dr

s

follows. Clearly q(r,z)U(r,t)F(x) and by Lemma [A.2.2| also § U(r,t)F(y)Q(r, z,dy) are
E

continuous in r, which implies that L(r)U(r,t)F(x) is continuous in (r,t). Therefore
U(s,t)F(x) = F(z) — JL(T’)U(T, t)F(x)dr (2.20)

implies (2.10). If F € Cy(E), then U(s, t)F(z) is bounded and measurable in (s, ). Hence
by L(r)U(r,t)F(z) is well-defined and integrable w.r.t. 7. In view of it follows
that s — U(s, t)F(z) is absolutely continuous and satisfies for any z € E.

Now let V (s, t) be a Feller evolution on Cy(E) which satisfies (2.10). By [CasI1, Chapter
2, Theorem 2.9] V(s,t) is given by

Vs, t)F(x) = fF(y)]B(s,x;t,dy), relE, 0<s<t,

E

where P is a transition probability function. Moreover, this evolution system satisfies
for any F' € Cy(F) and hence by approximation also for any F' € BM (E). Therefore
for any F' = 14, A € B(FE) it solves equation which is simply . The minimality
of P implies P < P and hence U(s,t)F < V(s,t)F. Since U(s, t) is conservative it follows

~

that P(s,x;t,dy) is the unique solution to (2.3), i.e. P(s,xz;t,dy) = P(s,x;t,dy). ]

Theorem 2.1.9. Let F € BM(FE), then for any x € E and s > 0, [s,0) 2 t —
U(s,t)F(x) is absolutely continuous and satisfies for a.a. t > s

0
<U(s.)F(2) = U(s, ) L()F (2).

Let V(s,t) be a Feller evolution system on Cy(E) and assume that V (s, t)F is for any
F € Cy(E) a solution to (2.11)), then V (s,t) = U(s,t) holds.
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Proof. Forall 0 < s<r <t<T

| atrepPisaity) <o) [ViPsait ) <a@V@e™ 22y
E E
and implies for any 0 < s <t and compact A ¢ FE
t t
P(s,x;t,A) = 6(x, A) — ffq(r, y)P(s,x;r,dy)dr + JJQ(T’, y, A)P(s,x;r, dy)dr.
s A s B
By this implies
t t
Us.0F (@) = Fa) - [ [ a0 Po)Pls.imdyiar + | [ Q0)F()P(s,mir.dypar
s B s B

and hence
U(s,t)F(x) = F(x) + JJL(T)F(y)P(s, x;r, dy)dr

holds. The first assertion is proved. Uniqueness follows by the same arguments as for
(2.10)). O

Remark 2.1.10. [t is worth noting that in the time-homogeneous case (2.10) and (2.11))
are equivalent and less restrictive conditions are sufficient to show that U(s,t) is an Feller
evolution, see [Kol00].

Since U(s,t) is given by a transition probability function we see that for each z € F
and s > 0 there exists a probability space (€2, F*, P, ,) and a conservative Markov process
(X (t))+>s on this space such that

U(s,t)F(x) = Es . (F(X(t)), FeCyE), t>s.

This process is considered w.r.t. its natural filtration defined by 2 = o (X(t) | s <t < 7)
for s < 7. Note that this process is, by construction, a pure jump process. The next
statement completes the proof of Proposition [2.1.1]

Corollary 2.1.11. The following statements are true:

1. Let F e BM(E). Then for any fized s > 0
M p(t) := F(X(t) — F(X(s)) — fL(r)F(X(r))dr, t>s

is a martingale with respect to (F})i>s and Py .
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2. Foranya>0,ze E and 0 <s<T

P, ( sup V(X (1)) > ) < V()

te[s, T
holds.
3. U(s,t) is a Feller evolution system.

Proof. 1. Let 0 < s < 7 <t, then by the Markov property we obtain

Es,m<Ms,F(t)|]:f> - Ms,F(T) = Es,x<Mr,F(t)|}—f) = ET,X(T)(MT,F(t))

t

= Er x(n) (F(X(1))) = Er x(r) (F(X(s))) — JET,X(T)(L(T>F<X(T)>)dr

= E; x(r)(F(X(1))) — Erx() (F(X(s))) — J %EﬂX(T)(F(X(T)))dT —0.

Here we have used that

Er x((L(r)F(X(r))) = (U(7,r)L(r) F)(X(7)) = %U(ﬂ r)E(X (7).

2. Let B, :={xe E | V(z) <n}, fix s >0 and define a family of stopping times
T, i=1nf{t > s | X; ¢ E,}.

Let ¢, € C(E) be such that 15 < ¢, < 15  , and define a new transition function by
Qn(t, z,dy) := v, (2)Q(t,x,dy). Then

Ln()F(x) := —en(2)q(t, ©) F(z) + JF(y)SOn(I)Q(t,w,dy) = @n(x) L) F(x)

determines a bounded linear operator on Cy(E) and BMy (E). Hence there exists an
associated conservative Feller evolution system U, (s,t) on Cy(E). This evolution system
can be extended to BMy (E). Let (X}')i>o be the corresponding Markov process, and
denote by (F7,)i=s its associated natural filtration. By construction it follows for x € E,

and n > 1 that these processes satisfy

(Xt)t<7—n = (th>t<7_n (222)
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- §c(7")dr

V(z).

in the sense of finite dimensional distributions. Fix s > 0 and define g(¢,z) := e
A short computation shows that

pr (t,z) + L(t)g(t,x) <O0.

Then

t
0

M, (s,t) == g(t, X"(t)) — g(s, X"(s)) — J (5 + Ln(r)) g(r, X" (r))dr, t>s

S
is a F,-martingale w.r.t. Py,. Fix x € E,, n > 1, hence by Dynkin’s formula

tATR

Esx(g(t Aoy Xi0r)) = 9(8,2) + Eg J (a_ar + Ln(r)> g(r, XM)dr | < g(s,z) (2.23)

S

—{c(o)do
holds. Here % acts only on the first variable of g. Let M} := e V(X)) 1i<r,, we

will show that (M), is a supermartingale. Fix s <r <t. On {r > 7,,} € F}, we have
M} = M = 0 and hence obtain

» —

On {r < 7,} we have by the Markov property and ([2.23))

do
E&I(Mﬂfin) =e ET,XMV(X;L)ILKM) <E;x» (g(t A TTL’XZLATTL))
< g, X! =glr AT, X, ) = M.

TATn

Applying Doob’s inequality yields

—
=
&

Poa( sup g(t, X(1)) = @) = Pou( sup M > a) < ~E,. (M) =
s<t<T s<t<T a a
t<tn

As a consequence we obtain
§er)a
P, | sup V(X(t)) >a | <P, | sup g(t,X(t)) > ae >
s<t<T s<t<T
t<tn t<Tn
{ c(r)dr
< V(x)es
o a



Since (X):>s is conservative it follows 7,, — o0 when n — co. The assertion follows by
monotone convergence and n — 0.

3. For any F' € Cy(F), x € E,, and n > 1 it follows by (2.22))

|]Es,ac(F(Xt)) - Es,m(F(th)>| = |Es,x(F<Xt)ﬂTn§t) - ]Es,x(F(XZL)ILTnStN
< 2| F||ooPs (70 < ).

tc r)dr
P..(r <1) <Py, (sup V(X(r) > n) < Vi) etnar

s<r<t

and the continuity of V' we see that U, (s,t)F(z) — U(s,t)F(x) uniformly on compacts
which implies the assertion. O

We close this section with the relation to the evolution of measures. Let M(FE) be the
space of all finite, signed Borel measures on E equipped with the total variation norm.
Define bounded linear operators (U*(¢, s))o<s<: on M(E) by

U*(t, s)u(dz) = JP(s,y;t,dx)u(dy)

Then U*(t,t) = idary, U*(t,7)U*(r,s) = U*(t,s) holds for 0 < s <r <t and

f F(y)U* (1, $)u(dy) = f U(s,)F(y)u(dy). F e Co(E), ue M(E).

E E

Previous considerations show that U*(¢, s)u is the unique weak solution to the Fokker-
Planck equation

= [ Fwu ot - [ LorwUe )

E E

where € M(E) is such that § V(z)|u|(dz) < .
E

2.2 Dynamics on the space of finite configurations

In this section we review known results for the space of finite subsets of R?. The aim is
to provide a general framework for birth-and-death dynamics in continuum such that the
corresponding equations can be studied in the remaining sections.
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2.2.1 One-component case

The configuration space I'y is the space of all finite subsets of R?, i.e
Lo = {ncR*| || < oo},

where |n| denotes the number of elements in the set . This space has a natural decom-

position into n-particle spaces, 'y = |_| F ) where F(" (ncRY| |n=n}), n>1
and in the case n = 0 we set F = {@} For a compact A = R? let

Ca={nely|nc A}

and FA ={nely (n) | n = A}. Denote by (Rd)" the space of all sequences (z1,...,x,) €
(RH)™ with x; # z; for i # j. F( ") can be identified with (Rd) via the symmetrization
map

symn:(]Rd) —>F( ) (@1, ) — {x1, 2}

which defines a topology on F(()n). Namely, a set A < F(()n)

is open if and only if sym!(A)
(R4 is open On I'y we deﬁne the topology of disjoint unions, i.e. a set A < Iy is open

iff An F(() is open in F ) for all n € N. Then [y is a locally compact Polish space.
Let B(I'g) stand for the Borel o-algebra on I'y. With respect to this topology for each
f € Cy(RY) the function

n— (o) =) f(x)

€N

is continuous. Therefore convergence of a sequence (1, )nen < I'o to n € T'g can be rewritten
to: there exists N € N such that for all n. > N: n, = {z{, ... 2™}, n = {z1,..., 2} and

:v;n)—>mj, n— oo, Vje{l,... I}

is fulfilled. For given § > 0, N € Ny and a compact A = R? the set
B={nely|Vo#y zyen: [x—yl =0, [n| <N} (2.24)

is compact. Conversely, for any compact set A < I'y there exist §, N, A such that A is
contained in a compact B defined above. Denote by dz the Lebesgue measure on R? and
by d®"z the product measure on (R?)". The image measure of d®"z on I'") via sym,, is
then denoted by d™z. The Lebesgue-Poisson measure is defined by



Given a measurable function G : I'y x 'y — R, then

fZG &,M\&)dA(n fj (&, m)dA(€)dA(n) (2.25)

o SN Lo To
holds, provided one side of the equality is finite for |G|. Here and in the following we

0

write n\z, n U z, instead of n\{z} and n U {x}. The decomposition I'y = | | F(()”) implies
n=0

that any measurable function G : I'y — R can be represented as a sequence of symmetric

measurable functions (G™)*_,, where G™ : (R)" — R. Such functions are uniquely

determined on the off-diagonal part (R4)” and integration w.r.t. to the Lebesgue-Poisson
measure is simply determined by the identity

fG( )dA(n) )+ Z ! f Nay, - an)day - - da,.

To (R)n

A set M < Ty is said to be bounded if there exists N € N and a compact A — R¢ such that
M c {nely||n] < N}. Forany e 'gtheset {nely|nné# &} belongs to B(I'y) and
A{neTy|nn&+# }) =0holds. A function G is said to have bounded support if there
exists N € N and a compact A = R? such that G is supported on a bounded set. Denote
by Bys(I'g) the space of all (measurable) bounded functions having bounded support. For
a given measurable function f : R — R the Lebesgue-Poisson exponential is defined by

- [[ @)

zen

and satisfies the combinatorial formula

Slea(f;€) = ea(l + fin).

§cn

For computations we will use the identity

fex(f;n)dk(n)=e><p Jf(l“)dw :

whenever f e L*(RY).

2.2.2 Two-component case

This part provides a short extension to the two-component configuration space I'Z, see
[Fin13, [FKO13] and the references therein. We suppose that two different particles cannot
occupy the same location z € R? and therefore define the two-component state space by

F(2) = {(77+777_) € F[) X FO | 77+ ﬁn_ = @}
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Here and in the following we simply write 7 instead of (n™,1n~) € I'Z if no confusion may
arise. Set operations £ < n, £ U n and n\¢ are defined component-wise, i.e. by £é* < ¥,
etc. For n e I'2 we let || := |n*| + |n~|. The space I's has the natural decomposition

0
r2= || o5,
n,m=0
where F(()"’m) ={(nt,n )< RIx R | n* nn~ =&, [n*t| =n, |n~| =m}. The topology

on T{"™ and I'2 is defined in the same way as for T and T'y. It is not difficult to see that

this topology is the same as the subspace topology of the product topology on I'y x I'y.
In particular T'? is a Polish space. A set A < I'3 is compact if it is contained in a set of
the form

B:={nelg|ntn <A, | <N, Ve £y, zyen”on : [z—yl>d}  (2.26)

for a compact A © RY, N € Nand § > 0. Conversely, the set B defined as above is compact
as well. The Lebesgue-Poisson measure A\* on I'Z is defined as the restriction of A® X to
['3. Since no confusion may arise we use the same notation A for the Lebesgue-Poisson
measure A2 on I'2 and A on ['y. We see that

AQA{(n",n7)eToxTo [ 0" nn” # }) =0
holds. Hence integrals w.r.t. integrable functions G : T2 — R can be also written as
[ ctmar = [ [ e mmerne),
r2 To To

Similarly to (2.25)) the two-component Lebesgue-Poisson measure satisfies for any mea-
surable function G : T3 x I'a — R

f S G (& M)A () = f j G, mANE)AN() (2.27)

&cn
g r3r3

provided one side of the equality is finite for |G|. A set M < I'Z is called bounded if there
exist a compact A < R? and N € Nj such that

M < {(n",n")elg | nt <A, In] <N}

A function G is said to have bounded support if it is supported on a bounded set. Denote

by Bys(T'2) the space of all bounded, measurable functions having bounded support. We

say that H : T3 — R is locally integrable if it is integrable for any bounded set. This

is the same as regarding that the integral { G(n)|H (n)|d\(n) is finite for all non-negative
I

functions G € By, (T'3).
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2.2.3 Description of the dynamics

General Markov birth-and-death processes on Iy or '3 respectively are given by a Markov
(pre-)generator of the form

(LHF)m) =Y f (F\E © C) — F)Ki(€.n.dC), neE, t20, (2.28)

éeng

where E is either T'y or I'2. Such Kolmogorov operator includes death, birth and jumps
of groups of particles. In this generality it is also possible that particles switch their type,
that is elementary events of the form

(" n7) — "\z,n~ vx)and (n",n7) — (n" vx,n \z)

are also included in the dynamics described by L(t). Then, under some conditions given
in the next section, the operator L(t) can be rewritten to

L(t)F(n) = f (F(€) — F(n)Q(t, . d¢)

E

and hence should determine a pure jump process on E. The construction of such process
is closely related to the construction of solutions (F});>0 < Cp(E) to

ok,
ot

It is the same as to solve the Fokker-Planck equation

= L()F,, Fli—o = Fp. (2.29)
U _

Fral L(t)* e, puele—0 = po (2.30)

on the space of probability measures on E. Here L(t)
duality pairing

* is the adjoint operator w.r.t. the

(F ) = JF(n)du(n)

Functions F' are called observables, whereas probability measures yu states of the systems.
Therefore we will refer to solutions (F});>o and (p);>0 as the evolution of observables or
states, respectively.

2.3 Time-inhomogeneous dynamics

In this section we provide general conditions for K; such that the operator L(t) given
by (2.28)) is associated with a Feller evolution system. Afterwards we study solutions
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to the Fokker-Planck equation and relate them to the so-called evolution of cor-
relation functions, cf. [KK02, [FKO09]. For simplicity of notation all considerations are
formulated only for the one-component case (E = I'g above). The extension to multi-
component systems is straightforward and will be performed for particular examples in
the last section.

2.3.1 Evolution of observables and states

Consider the Kolmogorov operator L(t) given by (2.28)), we say that K} satisfies the usual
conditions if the conditions given below are satisfied.

1. For all n,§ e 'y and t > 0: K;(§,n,-) > 0 is a finite, non-atomic Borel measure.
2. For all A e B(I'y), the map (¢,&,n) — K(&,n, A) is measurable.
For t >0, ne g and A e B(I'g) define Q(t,n,dw) by
At A) = Y, [ Ll © O, 40) (231)
genp,
The cumulative intensity is defined by q(t,n) := Q(¢t,n,T9) = >, Ki(§,n, o). We will
work with the following conditions: !

(A) For any ¢ > 0, T > 0 and any compact B < I’y there exists another compact A < T’y
such that

T
JQT’/],ACdT<€ neB
0

is satisfied.

(B) There exist continuous functions V' : 'y — R, and ¢: R, — R, such that

3 [ VO O n.40) < eV ) + alt)V(n), 20, neTy  (232)

£y,

holds.

(C) For any F € C(I'g) with sup 1|F( ()‘) < w

— ¥ [P v R0

gy,

1S continuous.
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(D) For any T' > 0 there exists a(7") > 0 such that ¢(t,n) < a(T)V(n) holds for all
nelyandte|0,T]

(E) For any T" > 0 there exists b(T") > 0 such that ¢(t,n) > b(T)q(T,n) holds for all
nelyandte|0,T].

As in the previous section let BMy (T'g) stand for the Banach space of all measurable

functions F' equipped with the norm |F|y = sup % Denote by Cy(I'y) the closed
nelo
subspace of all continuous functions for which | - [ is finite. Then condition (D) simply

states that for any F' € Cy (I'g) the action L(¢)F, cf. (2.28)), is continuous in (¢, 7).

Proposition 2.3.1. Let K; be a transition function with the usual conditions and assume
that conditions (A) — (D) hold. Then there exists a unique associated conservative Feller
evolution U(s,t) on Cy(Ty). This evolution system can be extended to BMy(L'y) so that

§c(r)dr
U(s, ) F(n)| < |FllvV(n)es . (2.33)

Moreover the following assertions are true:
1. For any F e BM(Ty), t >0 andne Ty, U(s,t)F(n) is a solution to

%U(s,t)F(n) = —L(s)U(s,t)F(n), se]0,t).

2. Let F e BM(L'y). Then for any s >0 and ne 'y, U(s,t)F(n) is a solution to

%U(s,t)F(n) =U(s,t)L(t)F(n), a.a. t>s.

Proof. For each n € T’y and £ < n the map ¢ — n\& U ( is measurable, hence the integral
in (2.31)) is well-defined. For fixed A it is measurable as a combination of measurable oper-
ations. Clearly @) is o-additive in the last argument. The assertion follows by Proposition

and the identity
QU)F(n) = f FEOQ(, ) = ¥ f F(n\é v QK€ m,d0)

To S

for any F' € Cy(Iy). O

Recall that for any bounded measurable function F, i.e. F'e BM(I'y), and any finite
Borel measure € M(T'y) the duality is defined by

(Fy ) = JF(n)du(n)-
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Let C be a bounded linear operator on BM(I'y). The adjoint operator C* on M(I'y)
w.r.t. this duality is defined by

<CF7:U>:<F>C*:U>> FEBM(FO)v NEM(FO)a

provided, of course, it exists. Let C’ be the norm-adjoint operator on BM(Iy)*. Any
p € M(Ty) defines by F —— (F, ) an element in BM(T'y)*. The adjoint operator C*
exists on M(I'g) if and only if C” leaves M(I'y) invariant. In such a case C* is given by
C* = C'| m(ry)- In particular, for any n e I'y and A € B(I'y)

(C%0y)(A) = (L, C%6y) = (C1a, 0p) = (CLa)(0) (2.34)

holds. The considerations of the first section imply that U(s,t)F is given by a transition
probability function P(s,n;t,dw), that is

U(s,t)F(n) — fF(w)P(s, 0t dw) (2.35)

To

holds. The adjoint evolution system on M(I'y) is given by

U*(t, 5)u(A) = fP<s,n;t,A>du<dn>.

To

The action of the adjoint evolution U*(t,s)u provides a weak solution to the Fokker-
Planck equation (2.30). In particular, if conditions (A) — (D) are satisfied, then U(t, s)*
is unique with such property.

Here and in the following we identify the space of densities L'(T'g,d\) with its image
in M(T'y) given by the (isometric) embedding

L'(To,dX) 3 R —> RdA e M(T).

The next theorem states conditions for which U*(t, s) leaves the space of densities invariant
and its restriction to L!(T, d)) is strongly continuous.

Theorem 2.3.2. Assume that Ky(&,n,d(¢) satisfies the usual conditions, is absolutely
continuous with respect to the Lebesque-Poisson measure and the conditions (A) — (E)
hold. Then U*(t,s) leaves L'(Ty,d\) = M(Ty) invariant and is strongly continuous on
LY (Tg,dN).

Proof. Denote by K,(&,n,¢) = %{ZS‘K) and let L*(t) be the adjoint operator with respect
to the duality of BM(Ty) and M(Tg). Then L*(t) is given by L*(t) = —q(t,-) + Q(¢)
with (—q(t,-)R)(n) = —q(t,n)R(n) and

QU)R(M) = Y me\g O QK(CE L G ENQ), (2.36)

genpy,
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see . For t > 0 let
D(L*(t)) ={Re Ll(Fo,d)\) | q(t, )R € Ll(FO,dA)} (2.37)

—{q(rm)dr
First observe that W*(t,s)R(n) = e §q ! R(n) is a positive contraction operator and
Q(t) is positive. In order to apply [ALMKI14, Theorem 2.1] it is enough to show that for

a.a. t > s and all R e L'(Ty,d\): W*(t,s)R € D(L*(t)) and
JIQ(T)W*O% $)R|pdr < [Rfpx — [W*(t, 5) R 2.

The first property follows by property (E) from

Ff at)|W* (1, 5) R (1) [dA(n) < f a(t, m)e O RO AN () < —b(t)|£”L15)e'

For the second property let R € L'(Ty,d)\) and note that

j|cz DIdA() < f 4(r, )| R(m) ()

Io
holds. Altogether this 1mphes

t t .
N [ —Ya(rm)dr
QU)W (r, s)R|rdr < [ | q(r,m)e > | B (n)|dA(n)dr
J
s s I'g

T

" 0 —$q(rm)dr %
-~ | Jae ST R AAm)dr = |R|p — Wt $)R] 1.

s I'g

Hence by [ALMKI14, Theorem 2.1] there exists a strongly continuous evolution family
(V*(t, 8))o<s<t on L*(Ty,d)). The construction of V*(¢,s) coincides with the construc-
0
tion of U*(t, s) restricted to L'(Ty,d\), i.e. U*(t,s)R = Y, UZ(t,s)R with Ui (t,s)R =
n=0
—§q(m7)d7“

e s and
t

U (1, 5)R = j U2 (. 0)Q(r)W* (1. 5) Rdr,

cf. [Fel40], Section 3, Theorem 1]. O]

Remark 2.3.3. For the application of [ALMK1J), Theorem 2.1] it is necessary to show
that t — Q(t)R € L'(Ty,d\) is measurable. Since L'(Ty,d\) is separable, strong mea-
surability and weak measurability coincide, which is the reason why we have to restrict the
evolution to the space of densities.
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2.3.2 Evolution of quasi-observables and correlation measures

In [KK02, [FKOQ09] an alternative approach for the study of birth-and-death dynamics
with state space I'; i.e. all locally finite configurations, has been proposed. In particular
the notion of correlation functions and quasi-observables was introduced and the relation
to the evolution of observables and states has been pointed out. For dynamics with state
space I' this relation is only informal and should be realized for particular models. In the
following we prove such relations for the evolution of observables, states, quasi-observables
and correlation functions on the state space I'g given by the operator L(t) defined in ([2.28]).
Define for any measurable function G : I'y — R the K-transform by

KoG(n) := Z G(§), nely.
&en
Its inverse is again defined for any measurable function and it is given by
Ky'Gn) = Y, (=D)"G(€), neTo.
£cn

Let ¢ : Tg —> [1,0) be continuous, define g := ¢ and @, ;1 := Kop,, n > 0. Denote by
L,, the Banach space L*(T'y, p,d\) equipped with the norm

Il = | Imlenarm

o

and by M, the Banach space of all Borel measures p equipped with the norm

\mM,:fwamwwm.

To

Here |p| is the total variation of p, i.e. |p| = p™ + p~ in the Hahn-Jordan decomposition.
The embeddings £,, = M,, are continuous and since ¢,, < ¢, 41 we obtain |-|ae, < ||| A0

and hence M, ;1 € M,. Let M, := (| M, and equip it with the locally convex
n>0

Hausdorff topology determined by the family of seminorms (| - || a1, )n>0- A linear operator
A: My —> My is continuous if for any n > 0 there exist m > 0 and ¢ > 0 such that

[Aplm, < clplmn: p € M. (2.38)

In above considerations we can replace M,, always by L,. Let IC,, stand for the Banach
space of all continuous functions with norm

G
Gl = sup WL
nelo Pn(N)
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Then | e <1 ke and hence K, < K, holds. In analogy to M, and L, define

Ks = | Ky, then K, K;* are linear operators from Ky, to Ky. For G € K, p € M,, and
n>0

k € L, denote by (G,p) := § G(n)p(dn) and (G, k) := § G(n)k(n)dA(n) the associated
r r

dual pairings of functions Witlol measures. i

Lemma 2.3.4. The following assertions are satisfied:

(a) For anyn > 0: K, Kgl : K, — K11 are bounded linear operators satisfying

| Kol Licn sy < 1 and |Kg  Lge, pnpn) < 1.

(b) For anyn >0, G e K, and p € M, the operators

(Kgp)(A JZ 14(€)dp(n

Ecn

and

(55)0(4) = [ 3 14€)(-1) "ol

gcn
To
are bounded linear operators M, .1 —> M,, and satisfy
(KoG, p) = (G, Kip), (Ki'G,p) = (G, (K;")*p). (2.39)

Moreover for any p € M, o: (Ko ') Kip = p = Ki(Ky')*p holds. The restrictions
K| am,, and (Ky')*|m,, are continuous as operators My, —> M.

(¢c) For any n > 0 the restrictions K&, (Ky')* : L1 — L, are given by
(K5 n) = [ ko are)
1)

and
(K k() = f (—1)¥k(n U E)AN(E).

To

Proof. (a) Follows immediately by the definition of the norms | - ||, , n > 1.
(b) Formulas ([2.39) follow from the definition of the operators K¢, (K;')* and

(KoY Kip=p=Ki(Kg)*p
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is a simple computation. Let p € M,,,1, then by |K®p| < Kf|p| it follows that
p P p +1, Y [P olpP

1K plm, < Json(n)KEprl(dn) = fsonﬂ(n)lp(dn) = [ pllry s

Fo FO

holds and hence K§ : M, 1 — M,, is bounded. The continuity of K{|m, : Moy —
M, follows by above estimate and (2.38). The same arguments apply to (K;*)*.
(c) Again we show only the assertion for K. Take k € L£,.1, then for p := kdA

(K2p)(A) = f S LA k(m)dA()

To &cn

holds. If M(A) = 0, then )] 14(£) = 0 for a.a. n € I'y and hence Kip(A) = 0. The
&cn
representation formula for K can be computed directly by (2.25)), which yields

KoGky = | 3 Ge)kmarm)

Ty &7

| j G(f)k(nuf)dA(f)dA(n)=fG<s> f k(o ©)dA(n) | dA).
J

T'o g To 0

By |plm, = |lk|z, it follows that K : L,41 — L, is continuous for all n > 0. The
formula for (K;')*k can be proved in the same way. [

As proposed in [FKOQ09] the evolution of observables, see (2.29), can be formally
rewritten to the Cauchy problem

0Gy

(3(‘, :z(t)Gt, Gt|t:07 (240)

where ZAL(t) = Ky 'L(t)Ko. The solution should be therefore given by
U(s,)G(n) := K;'U(s,t)KoG(n), neTy, 0< s <t (2.41)

Here and in the following we will say that U(s,t) is the evolution of quasi-observables.
The next lemma states some basic properties for the operators U(s,t) and L(t).

Lemma 2.3.5. Let L(t) be the Kolmogorov operator given by (2.28). Suppose that K,
satisfies the usual conditions and there exists n > 1 such that conditions (A) — (D) are
satisfied for V := ¢,. Then the following statements are true:
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(a) For any G € K, U(s,t)K;'G € Kpyr and
t
05,08 Gl < exp | [ et)ar |16l 052t (242)

(b) ﬁ(s,t) K1 — Kt is a bounded linear operator with
¢

006G, < exp | [ elr)ar |16l 0<s <t

s

A~

Moreover, if KoG > 0, then KoU(s,t)G > 0 holds.

(c) For any G e K,_1, 0< s <r <t, U(s,r) is well-defined on elements U(r,t)G and
satisfies

U(s,s)G =G, U(s,r)U(r,t)G =U(s,t)G.
(d) Assume that there exist n, <mn and k : Ry — R, such that
q(t, 1) @n, (n) < £()pn(n), =0, nelo (2.43)
holds. Then L(t) : K,, — K, and f/(t) : Kny—1 — Ky are bounded linear

operators.

Proof. (a) Observe that ﬁ(s,t K;'G = K;'U(s,t)G, and since U(s,t) : K, — K,
ﬁ

A~

is bounded, cf. Proposition [2.1.1} we see that U(s,t)K;" : K, —> K,41 is bounded.
Moreover, implies (2.42).
(b) The first property follows immediately from (a) and the second from
KoU(s,1)G = U(s, t) KoG.
(c) U(s,s)G = G is obvious and for the second observe
U(s, )G = K;'U(s, ) KoG = K;'U(s, 1)U (r, t) KoG.
Then U(r,t)KoG € K,, and hence by (a) ﬁ(s,r)Ko_lU(s, t)KoG € K, 41, which implies
U(s, )G = U(s,r)U(r,t)G.
(d) Conditions and imply for all F € IC,,,
[LEOF )] < q(t,n)[Fn)| + Q) F(n)|

< | Flu, a(tm)gns 1) + | Flic, Y f s (\E U O K€, dC)

§C77F0

<[ Flk., (@t,n)en,(n) + c()n, () + gt 1) Pn, (1))
< [ Flk,, on(n) (26(t) + c(t)) .
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Let G € K,,_1, then K,G € K,, and by
LG )| < gt )| KoG )| + Q) KoG ()|
< |KoGliena(t m)gn(n) + | KoGli, Y j on(E U OKL(E,7,d0)

§<np,

< [KoGlic, (24(t; n)pn(n) + c(t)en(n))
holds. Hence L(t)KoG is well-defined on K,_; and therefore L(t)G = Kj'L(t)KoG is

well-defined. Similar arguments can be used to show that L(t)K;'G is well-defined for

any G € K,,. The next Proposition shows that U(s, #)G is in fact a solution to the Cauchy
problem ([2.40)).

Proposition 2.3.6. Suppose that the same conditions as for Lemma are fulfilled.
Then for any n € Ty and G € K,,_1 the evolution U(s,t)G(n) is absolutely continuous in
s > 0 and satisfies for a.a. s € [0,t)

a(—lﬁ(s,t)G(n) = —L(5)U(s,t)G(n). (2.44)

Proof. Take G € K,_1, then KoG € K,, and hence by Proposition 2.3.1 U(s, t)KoG(n) is
absolutely continuous in s. The definition of K;' therefore implies that U(s,t)G(n) is
absolutely continuous in s and

L 0(s.0G(n) = K3 LU (s, D KoGlr)

holds. Previous considerations imply that E(S)Ko_lU(S,t)KOG = f/(s)ﬁ(s,t)G is well-
defined and hence ([2.44) holds. O

As it was proposed in [KK02, [FKO09] the Cauchy problem ([2.30]) can be rewritten to
the Cauchy problem

0
L= AW pilieo = o (2.45)

on correlation measures. The operator L>(t) is determined by the relation

(L(t)G, p) = (G, L>(t)p)

or equivalently by
LA(t) := KXL(t)(KE)™

Thus let us define the linear operator U2(t, s) by

UA(t,s) := KXU*(t,s)(K3) ™" (2.46)
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By Lemma [2.3.4L(b) it follows that U2(t,s) : M1 —> M, is bounded and for any
p €M, weget US(t,s)Kip = KiU*(t,s)p € M,_,. For pe M, 1 we get

U (t,s)p = KgU*(t,s)(K5) " p = KgU*(t,r)U*(r, s)(K5) "'p
and since U*(r, s)(K¥)tp e M, it follows U2 (¢, r)KFU*(r,s)(K§) 1p e M, _,. That is
U(s. 8)p = p and UA(L U (r,5)p = U (1, 5)p.

If in addition K;(§,n,d¢) = K(&,n,()dA(C) for some measurable function K;(¢,n,() > 0
and condition (E) holds, then U2 (¢, s) is a bounded linear operator from £, to £,_;.

2.3.3 Examples: Ecological models

In this part we study two particular models, which have applications in ecological sciences.
To simplify the proofs we consider first the case of a Markov (pre-)generator describing
only the death of particles.

Lemma 2.3.7. Consider the operator L(t) given by

(LIOF)(n) = Y (F(\E) = F(n))Del&m). tel,

§cn

where (t,€,n) —> Dy(&§,n) > 0 is assumed to be continuous. Then condition (A) and the
usual conditions holds. Moreover, (t,n) — L(t)F(n) is continuous for any F € C(T'y).

Proof. The associated function is given by K;(&,n,d¢) = Dy(€,1)dx(d¢) and thus satisfies
the usual conditions. The characterization of convergence in I'y and continuity of D; imply
that for each F' € C(T'g) also L(t)F(n) is continuous in (¢,7). Concerning (A), fix € > 0,
T > 0 and a compact B < I'y. Then there exist 6z > 0, Nz € N and a compact Az = R?
such that for each ne B

Inl < N, nc Ag, Ve,yen, v #y: |[v—y|>dp (2.47)

holds. Let A < I'y be a compact of the form (2.24) with §, N, A as in (2.47). Then for
each n € B and £ < 7 we obtain that (2.47)) also holds for 7\ instead of 7. Hence n\¢ € A
and thus Q(t,n, A°) = 0 for any t € [0,T]. ]

The BDLP-model

In [BP97, BP99, [DL00, DLO5] the so called Bolker-Dieckmann-Law-Pacala model (short
BDLP-model) was introduced to study spatial patterns for certain ecological systems.
Elements x € n are interpreted as plants and the configuration n € I'y describes therefore
the whole ecological system. The BDLP-model is based only on the two elementary

80



events  — n U x (branching of plants) and n — n\z (death of plants). The branching
is assumed to be density independent, that is any plant at position z € n creates with
intensity 0 < A € C(R, x R?) a new plant at position y € R%\n and the spatial probability
distribution for the new plant is given by a*(z,y)dy, where at € C(R¢ x R?). Moreover,
each plant at position x € 1 has an individual lifetime independent of the other plants.
Such lifetime is described by the intensity 0 < m € C(R, x R%). The competition between

different plants is assumed to be of additive type and hence of the form >} a~(z,y), where
yen\z

0 <a~ e C(R? x RY) is the competition kernel. Above description is summarized in the

form of the following Markov (pre-)generator

(LOF)m) =Y, | mlt,a) + Y a”(z,y) | (F(n\x) = F(n)

zen yen\x
+ At ) f a*(z,y)(F(n v y) — F(n)dy.

Such model has been analysed in the time-homogeneous case in [FM04]. In applications
one is often interested in a® being of the form

1
|z — y|o’

a*(2,y) ~ 2 —y| - oo

or

—v]z—y|*
)

at(x,y) ~e |z — y| — o0.

Theorem 2.3.8. Suppose that m, \,a” are continuous and bounded, a™ is continuous

with 1 = § a™(z,y)dy and for any compact A = R? there exists a* > 0 with a* € L*(R?)
Rd

such that

a*(z,y) <a*(y), zeh, yeR’
holds. Then conditions (A) — (D) hold for V(n) = |n| + |n|*.

Proof. Let B < I'y be a compact and take Ng € N, Az < R? and d > 0 like in ([2.24)).
Let A < TI'y be another compact defined by (2.24) with Ny := N+ 1, Ap < A4 and
d4 € (0,0p), then B < A holds. We obtain for z € Ag and n € B

f Lac(n v y)a™(z,y)dy < f a(z,y)dy + f a”(z,y)dy,

Rd Aix B5A (77)

where B;s,(n) = {w e R |y e n: |w—y| < da}. Since n € B and dp > 4
we obtain Bs,(n) = || Bs,(y) © A% where A% := {w e R? | d(w,Ap) < 5} with

yen
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d(w,Ap) :=inf {|w—wu| | ue Ag}. Let ¢ > 0 be such that a*(z,y) < ¢ for all z € Ag and
y e A% then

| Lot onat @y < | ')y + Nacls,

R e,
is satisfied, where |Bs,| is the Lebesgue volume of Bs, = {w € R? | |w| < §4}. Condition

(A) now follows from above estimate, Lemma and X € (R, x R?). Condition (B)
follows from

(LOV)() = Y Ata) +2) ) D) a (z,y)

xEn zen yen\x

+20n] Y (At 2) = m(t,x) = 2n[ Y, Y a”(x,y)

TEN x€N yen\z

< max{[[ Ao, 2[a” oo + 2[Alloc + 2[m[o}V ().

Condition (D) is fulfilled due to

q(t,n) = Zm(t,x) + Z A(t, z) + Z Z a” (z,y)

TEN TEN zE€N yen\x
< max{[[m[o + Ao, @™}V ().

For condition (C) it is enough to show that for any continuous function F' such that
[E) < [Flv (1 +Inl+nf*) also (t,1) — 3 A(t,2) § a*(z,y)F(nwy)dy is continuous.

xEN R4
Since A(t,x) is continuous it is enough to show that the integral is continuous. But this
follows from dominated convergence and the condition imposed on a™. O

Above statement implies the following a priori estimate for the evolution of states.

Let p be a probability measure with § (1 + || + [7|*)u(dn) < . Then
1)

f (L++ 0] + ) U*(E, 8)pu(cly) < e f (L -+ (] + [nf2) ()

FO 1—\O

holds, ¢ := max{||A|wx, 2[|a™ | + 2| Allec + 2||m [ }. Such estimate has been used in [FM04]
for a certain scaling which lead to the well-known mesoscopic equation

opt

D) = —mlt,0hpt) ~ [0 + [ @ N3,

R4 R4

see also chapter 3 for details.
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Dieckmann-Law model

In contrast to the BDLP-model we discuss here one possible extension for which the
branching mechanism includes interactions of the plants. For simplicity we suppose that
all intensities are translation invariant. A plant at location x € 7 shall now have the
modified branching intensity given by

At)+ > bz —y), t>0,

yen\z

where 0 < bt € Cy(RY). The location of the offspring is described by the probability
densitiy a®(x — y). The modified Markov (pre-)generator is therefore given by

(LOF)) = | mt)+ D a~(z—y) |(Fn\x) - F(n))

Ten yen\z
+ 2 A1) J(F(n uw) — F(n)a*(z — y)dw
+>, 2, b —y) J(F(n vw) — F(n))a™(z — w)dw,
zEN yen\z Rd

where m, A € C(R,) and a~ € Cy(R?). We assume that a~ — b™ is a stable potential. By
definition this means that there exists a constant b > 0 such that

N N @z —y)— bt (@ —y)) = ~blgl. neTlo

zen yen\z

Let Et(n) = > > b (x—y)and E~(n) = >, >, a (z —y), that it above condition is
€N yen\z €N yen\z
equivalent to

ET(n) <blnl+E~(n), neTy.

Theorem 2.3.9. Suppose that for any compact A = RY there exists a* € L'(R?) which
satisfies
at(z —w) <a*(w), rel, weR?

Then conditions (A) — (D) are satisfied for V(n) := |n|+|n|?. Moreover, for anyn > 1 and

state p with § |n|"u(dn) < oo, the evolution of states satisfies § |n|"U*(t, s)u(dn) < co. If
Fo F0
in addition m(t), A(t) > 0 for all t > 0, then condition (E) holds and U*(t,s) leaves the

space of densities invariant.
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Proof. Condition (A) will be shown for a more general case later on. Concerning condition

(B) we have
(L@ - ) < (b+ At) —m(t))|n]
and by (|n| +1)* — [n[* = 2| = 1, (In| — 1)* — |n|* = —2[n] also
(L@ 1*) () < 2AE) + 67 o0 + 20 = 2m(t)) [n]* + (A(E) = [0 ]|o) |-
Altogether this yields
L) < Inltb+ 20(0) = m(t) = [ L) + AW + [ Lo + 26— 2m(0).
ie. is satisfied. Since

q(t,n) = (m(t) + AX@®))n| + E*(n) + E~(n)
< (la”lloo + 16* loo)In? + [n] sup (m(t) + (1))

te[0,T7]

also (D) holds. For property (C) it is enough to show that z — { F(nuy)a™(z — y)dy
Rd

is continuous for any continuous function F with |F(n)| < ¢(1 + |n| + |n|?), n € Ty and

some constant ¢ > 0. But this follows immediately by dominated convergence and the

assumptions on a®. Property (E) is a direct consequence of the continuity of m and A.

For the remaining assertion it suffices to show that for any n > 1 there exist a continuous

function ¢, : R, — R, such that

(L@ -[")(n) < cal®)n]", t=0.

n—1 n—1

We have (|| +1)" —[n[* = 3 ())Inl's ([l =1)" = [n[* = X (7)(=1)""[n|* < 0 and since

(L(t)| - |")(&F) = 0 we can assume w.l.g. that |n| > 0. Hence

(L) Z()\m g()wwmﬂ+mew>
X (" 3 () E ) - )
<hmo (") thJm%wm+am>
w (") E - Bl
<2 + 5+ [ ol + bl
implies the assertion. 0
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Remark 2.3.10. The proof shows that U*(t,s) maps the space of probability measures
with the constraint § |n|"u(dn) < oo continuously on itself. Moreover, using Corollary

To
[2.7.11 one can show that

. oy SO0 =mr)ar
| e e syutan) < o [ lutan)
Fo F0

and
t
~ ) S -m)dr
J(nl + [ )U*(t, s)u(dn) < eI I=)E=s)es Jln\u(dn)
To Fo
4 eIt lor2b)(p=s) 2 YOO N f [nl* ()
To

are valid.

Generalized Dieckmann-Law model

Assume that any plant at position x € n may create any number k£ € N of new plants.
Their locations are, for any fixed ¢ > 0, distributed according to the probability measure

a*(t,x —y)---a”(t,x —yr)dys - dys.

Therefore the (pre-)generator is assumed to be given by

(LOF)n) = ) | mlt.e)+ Y a (L —y) | (F(n\x) — F(n))

en yen\z

FINAD) [ (FoQ) - Faela® (o - 50N
e ro\(2)

PN N ey [ (F00O - P (te - ) Q).
FERyEnE YE)

The factor % is a normalization factor since we have

| erta*ta = 9:0an0) =

1)
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Theorem 2.3.11. Let 0 < m,\,a~, bt € Cy(R; x RY) with a™(t,-) being a probability

density for all t > 0. Suppose that for any compact A < R? and T > 0 there exists

a* € L*(RY) which satisfies
at(t,r — a*(y), zeA, tel0,T], yeR™ (2.48)

Moreover, assume that b* (t,x

)
(A) — (D) are satisfied for V(n
Proof By § IClex(a*(t,

| + |n]>.

y) <
< a (t,z) holds for all x € R? and t > 0. Then conditions
) =
—);¢)dA(¢) = e we obtain

T\
LH)V(n) =D (2= e At x) — 2m(t, x))
—i—Z Z (2—e D (t,z —y) —2a (t,x — y))
TN yen\x
+2[n] Y (At @) —m(t,2)) + 20| ) Y (0 (te —y) —a (L —y))
TEN TEN yen\x

< 2([A\los + M)V (1),

which implies condition (B) Condition (D) follows from

t,m) = Zm(t,x)

zen xen zen yEH\x TEN yen\x
< ([mllss + [Alo)nl + (la™ oo + 167 oo) 1]

tm— tx—

In order to see (C), observe that the assertion is clear for the contribution from the terms
of the operator L(t) describing the death of plants. Because A and b are continuous it
suffices to show for any F' € Cy(I'y),n, — n,t, — t and z, € n,,r € n with x,, > «

J F(n, v Qex(a (tn, — ,); QO)dN(C) — J Fnpu Qex(a™(t,- —x);)dN(), n — .
Lo\ T\

Since the integrand is continuous it converges for each ¢ € ')\ and by with
compacts K = {t, | n > 1} v {t}, B = {z,, | n > 1} u {z} we obtain by dominated
convergence the assertion. Therefore it remains to show property (A). Take 7" > 0 and
fix a compact B < I'y. Hence there exists Az © R? compact, Nz € N and d5 > 0 such
that for any n € B holds. Condition (A) was shown for the death of plants, so let
us focus on the terms contributing to the birth. Due to the continuity of A, b* the sum

2 A(t,x) + Z b (t,x —y)

zEN yen\z
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is uniformly bounded on [0, 7] x B. Hence it is enough to estimate the integral. Take a
compact set A < 'y with the characteristics Ny > Np, 04 < dp, Ap < Ay, ie. (2.24)
and set

Bs,(n) = {fero | { < UBéA(OC)}>

zen

where B;, (z) = {y e R? | |x — y| < §4}. Then we obtain for ne€ B and x € n, so x € Ap

f 1ae(n U Qex(a* (1,2 — )5 O)AA(C)

To\J
< f . N J . J ex(@ (b — Y O)ANC) = Iy + I + Iy + I
[{I>Na—=Np  Bs,(M\& Tac\J C(a)

where C(04) = {C el | Jw # 2z, w,ze€ (: |w—z| < da}. For the first integral we obtain
uniformly in ¢ € [0,7],7€ B and z € n

J (Sda*(?/)dy)
R I
|¢[>Na—Np n=Ns—Np+1 '

and similarly for the third

n

I3 < f ex(@”‘;()@“((bii fa*(y)dy = exp fa*(y)dy -1

Lac \D A% A%

This two terms tend uniformly in n € B and ¢ € [0, 7] to zero as Ng — o0 and Ay — R%.
Denote by ¢ > 0 a constant for which

at(t,z—w)<e¢, tel0,T], zeAp, we AP

with A% = {w e R? | d(w, Ag) < dp} holds, where d(w, Ag) := inf{d(w,u) | ue Ag}. For
I, we obtain with |Bs,| the Lebesgue volume of a ball with radius d4 in R?, since for any
w,z€n with w # z: Bs,(w) n Bs,(2) = &

0 2\ 7
I = j w(a*(t?:v—-);odA(()s(Z ﬂ) _ (el — 1yhl.

—
Bs ,()\@ "=
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Finally due to C(04) — & as 04 — 0 we have shown that for all 7" > 0, all compacts
B c F and € > 0 there is a compact A < E such that

Q(t,n, A°) <e, te[0,T], ne B,
which is stronger then (A). O

Remark 2.3.12. Condition (2.48)) is for instance satisfied if there exist strictly positive
continuous functions \,C' >0 and R >0, a > g such that

o(t)

CD S By e

|| > R

holds.

Remark 2.3.13. In the time-homogeneous case weaker conditions are sufficient to prove
the Feller property.

2.4 Time-homogeneous dynamics

In this section we analyse the time-homogeneous case. Although the results obtained in
the last section apply to this case, several technical steps can be avoided and additional
(stronger) results can be proved.

Suppose from now on that K(§,n,d() is independent of ¢ > 0 and satisfies the usual
conditions. Let L be the Kolmogorov operator given by , ie.

LP)m) = Y, [(Fe 0O - Fu)K(En.do), neTo (2.49)

sy

and let Q(n,dw) be the infinitesimal transition function given by (2.31). Then the re-
sults of the first section imply that there exists a semigroup (7°(t)):>o of bounded linear
operators on BM (Ty). In particular, T'(¢) is represented by a (sub-)probability function

P(t,n,dn) by
T F(n) = f F()P(t,n,d), ¢ >0, Fe BM(Ty), (2.50)
o
see (2.5) and (2.35)). This semigroup satisfies for all € I’y
T(t)F(n) — F
LE () — i TOF) = Flo

t—0 t

: (2.51)

repeat e.g. the arguments in the proof of Theorem m The adjoint semigroup 7'(¢)* on
M(Ty) is thus given by

T(t)* u(A) = J P(t,n, A)du(n), t>0, AeB(Ty). (2.52)

o
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2.4.1 Evolution of observables and states

We want to give a characterization of conservativeness for T'(¢). For this purpose we first
provide an equivalent construction of the semigroup 7'(¢) and its adjoint semigroup 7'(t)*
on M(Ty). Let L* be the adjoint operator on M(I'y). Then L* is given by

(L*p)(dn) = —q(n)p(dn) + Qu(dn), (2.53)

where for any measurable set A < I

Q) = [ Q. Adut = [ X [ 14t L QK€ . d0)dutn)

To §C77F0

Both operators —q and @ are well-defined on the domain, cf. ([2.37),
DL = e MTa) | [atnlul(an <
o

Moreover, (—q, D(L*)) is the generator of an analytic semigroup given by (e *u)(dn) =
et (dn), that is

(e7"p)(A) = Jetq(”)u(dn), A e B(T).

The operator L* satisfies for any 0 < p € D(L*) the relation L*u(Iy) = 0, i.e.

J a(n)(dn) = (Qu)(To)

To

holds. By [TV06, Theorem 2.1] there exists an extension (G, D(G)) of (L*, D(L*)) which
is the generator of a sub-stochastic semigroup (T'(t)*)i=o on M(Iy). Namely, T(t)* is a
strongly continuous semigroup such that it leaves the cone of positive measures invariant
and satisfies |7'(¢)* ptl| amer) < |t mrg) for any 0 < € M(I'y). This semigroup is minimal
in the sense that, given any other sub-stochastic semigroup U(t)* with generator being

an extension of (L*, D(L*)), then T'(t)* < U(t)*.
Lemma 2.4.1. The semigroup T(t)* coincides with the semigroup given by (2.52)).

Let R(\; —q) be the resolvent operator for (—¢q, D(L*)), it can be realized as a bounded
linear operator on BM (I'y) and likewise on M(I'y), i.e.

_ F)
A+ q(n)
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and

R(A; —q)u(A) =J . p(dn), pe M(To)

J A+ q(n)

hold. For simplicity we preserve the notation R(\, —q) for both realizations. Hence we
obtain

QRO =a)n(4) = | QU AR ~0)(dn) = | Qo A) ()
and )
ROS=0QF() = 5o | F)Qn ).

1)

This implies the relations

(Fy RN —q)p) = (RN —q) Fy

and
<Fa QR()U _q):u> = <R()‘7 _Q)QFa ,u>

Note that we use the notation @) for the corresponding operator on functions F' and
measures u at the same time.

Proof. (Lemma [2.4.1])
The construction of T'(¢)*, c¢f. [ALMKII1, Theorem 2.1], shows that (G, D(G)) satisfies
for any e M(Ty) and A > 0

R\ G)u = lim R(A, —q) D (QR(\; —q))*n (2.54)

in the total variation norm. Fix A > 0 and define on M(I'g) a bounded linear operator
by

o]

R\ )p = Je”T(t)*udt.

The semigroup T'(t)* is continuous w.r.t. the topology o(M(Ty), BM(T'g)) and hence the
integral is well-defined w.r.t. this topology. Then ([2.52)) yields

RMM=JﬁO£JM%% (2.55)

o
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8

where P A& ) = (e MP(t,¢,-)dt. Due to [Che04, Theorem 2.16] P is the unique mini-
0

mal solution to the equation

1 1

N X

P, A) = f PONE AQ, o).

o

Such a minimal solution can be constructed as follows, cf. [Che04, Theorem 2.21]. Set

O (N, n,A) = ﬁ(n)én(fl) and for n > 0

P, 5, 4) = [P veum.ac) (2.56)

To

1
A+ q(n)

~ ~ w -~
Then P(\,7n, A) is given by P(A\,n, A) = >} P™(\,n, A). Hence by (2.55) we get

n=0
ZJ Y\, Ap(dn) = ZR(”
nO

where R (\)u(A S P™(\,n, A)p(dn). Therefore, in view of ([2.54), it suffices to
show for any n > 0, p € M(Fo) and A € B(I'y) that

R (N u(A) = R(\; —q)(QR(\; —q))"u(A)

holds. For n = 0 this follows from

RO u(A) = j

To

1
A+ q(n)

Ta(n)u(dn) = R(A; —q)p(A).

Assume that this assertion holds for some n > 0. The induction hypothesis and ([2.34)
imply the relation

PO (A, 7, 4) = fﬁ%,f,A)an(dg) — (R™(N)5,)(A)

= RN =) (QR(X; —q))"0,(A) = (R(X; —q)@)"R(A; =) Ta(n).
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Finally by (2.34)) and (2.56)) this yields

n+1 _ 1 D(n
RV (A)u(4) —Jm f PO, &, )Q(n, de)u(dn)

To

0 . )
_ lf ppme f (R(A; —g)Q)"R(X; —q)14()Q(n, d€) ()

0 o

- f(R(A; —)Q)" ' R(A; —¢)La(n)p(dn)

J
1)

= R\ —q)(QR(X\; —q))" u(A).

]

Theorem 2.4.2. Suppose that K(§,n,d() satisfies the usual conditions. Then the follow-
ing assertions are equivalent:

1. The operator (G, D(G)) is the closure of (L*, D(L*)).

2. The semigroup (T'(t)*)i>o is stochastic, i.e.
1Tl meroy = lrlmgy, 0 < e M(To).

3. The semigroup (T'(t))i>0 on observables is conservative, i.e. T(t)1 =1, t > 0.
4. The transition probability function satisfies P(t,n,To) =1 for allt > 0 and n € Ty.

If in addition, K(&,n,d¢) = K(&,n,()dN(C) for some measurable function K(&,n,(), then
T(t)* leaves the space of densities L*(Ty,d\) invariant.

Proof. The equivalence of the last 3 assertions follows by (2.50) and (2.52)). Assume that
(G, D(@)) is the closure of (L*, D(L*)), then it is well-known that 7T'(¢)* is stochastic,
cf. [TV06]. Hence by Lemma T'(t)* is stochastic. Conversely, suppose that T'(¢)*
is stochastic. Then |T'(¢)* | o) = |t pmrg) for any 0 < v e M(T). Hence [ALMKII],
Corollary 3.6] implies condition 1. in this case. If K(&,n,d() = K(&,n,¢)dA(n), then by
T(t)* = T(t)* and T(t)*L*(Ty, dA\) = L'(Tg, d)) it leaves the space of densities invariant.

L

Suppose now that K(&,n,d¢) = K(&,n,()dA(¢) holds. Then L* restricted to densities
is given by L*R(n) = —q(n)R(n) + QR(n), where

QRO = 3] | R ORE1E U O,

§C77F0
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Above theorem implies that T'(¢)* leaves the space of densities invariant. Therefore we
are able consider the Cauchy problem on densities L'(Ty, d\)
OR,

E = L*Rt, Rt|t=0 = R() € D(L*) (257)

If one of the equivalent statements in Theorem is satisfied, then for each Ry € D(L*)
above Cauchy problem has a unique solution given by the semigroup 7'(t)*Ry = R;. The
following lemma is used later on to show that a given evolution (R;):>o is a solution to

the Cauchy problem ([2.57)).

Lemma 2.4.3. Suppose that one of the equivalent statements in Theorem[2.4.3 is satisfied
and let (G*, D(G*)) be the adjoint operator to (G, D(G)) on L*(T'y,d\). Then for any
F e D(G*)

LF =G*F

holds, where LF is defined by (12.49).
Proof. Take R e D(L*) < D(G) and F € D(G*), then

(G*F,R) = (F,GR) = (F, L*R)

holds. By
3 [ 1R 0 0 — Fnl(€.n.d0) < |Fle2ato). e To
ECWFO
and R e D(L*), (2.25) is applicable which yields {F, L*R) = (L F, R). O

Therefore we see that (G*, D(G*)) = (L, D(L)) where
D(L) = {F € L®(Ty,d\) | LF € L*(Ty,d\)} (2.58)

is the maximal domain for L.

2.4.2 Evolution of quasi-observables and correlation functions

The aim of this part is to provide another technique for the existence and uniqueness of
the time-homogeneous Cauchy problems (2.29) and (2.30). Namely semigroups for the

evolution of quasi-observables

0G A
0—; = LGy, Gilimo = Gy
and evolution of correlation functions
ok
= = L% Kili=o = ko (2.59)
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The general form of the operators L and L2, cf. [FKO09] and [FKOI3], suggests to
consider the operator L given by

L0 = = 3 [ ko ODENE OO + X, [ K€ v OBIEnE INC),

§C77F §C77F

where B, D are measurable, B(§,n\¢,&) = 0 and D(&,n\&, &) > 0 for all n € 'y and
¢ < n. For a continuous function V' : T'y — (0, 0) let Ly stand for the Banach space of
equivalence classes of functions k& with the norm

IEley == Jlk(nNV(n)d/\(n)
o
o 1
Oy © Z”_ f K™ (zq, )|V (@, 2n)day - - day,,
B Rd)n

where k = (K™)*_, and V = (V(” )%, is the decomposition into their components on
(RTy» =~ 1\,

Remark 2.4.4. Let A < R? be a compact and Dy > 0 such that V() > = > 0 for

D
nc< A. Then for any n e N !
1
HkHﬁv = E J |k(n)<x17 T 7'rn)|v(n)<x1= SR 7xn>dx1 - day,
> = n' D” f|k”) Ty, xy)|dxy - - day,.
implies
Jlk‘(”)(xl, o a)|da - dan < 0D K| (2.60)

A

In particular, if V' is bounded away from zero on Iy, say constant, then each k € Ly is
necessarily integrable and hence might correspond to a density of a measure on I'y.

We consider the Cauchy problem for L® on the Banach space Ly. Define M () :=
3 D(E,7\¢, &) > 0 and the domain

3=/
D(LA) :={ke Ly | M-ke Ly}
Then (—M, D(L?)) is the generator of an analytic semigroup (of angle %) given by

(e™k)(n) = e ™MW k(n), nely, t>0.
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The operator L* admits the decomposition L2 = —M + L2, where

@0 ==Y [ Koo ODEREONO + 3 [ ke v OBEME QINC)

SCﬁro\g §C77F0

Define the auxiliary function ¢(n) given by

1 1
) = 5 DIV (Z ID(C, €\, n\€)> 0 > f IB(C,n\E OV (n\E U Q)dA(Q).

&en (g £y,
Theorem 2.4.5. Suppose that there exists a constant a € (0,2) such that
c(n) <aM(n), nelo (2.61)

holds. Then (L*, D(L?)) is the generator of an analytic semigroup (T>(t))so of contrac-
tions.

Proof. Define a new operator B2 on D(L?) by

B ) = f Ky 0 QIDE ME OIAQ) + Y j ENE U OB, \E OlAAQ).

SCUFO\Q écnpo

then for 0 < k € D(L?) we obtain by (2.25)

f BAE()V (n)dA(n) =

r

M (n)k(n)V (n)dA(n) +J (Z > D(ﬁ,n\C\f,C)V(n\C)) k(n)dA(n)

To ¢enéen\¢

e

of f f Ky 0 O1B(E 7. OV (1 0 €)ANC)AAE)A(n)

T'oIoI'o

r

MOV ()ax) + [ KV () (Z 3 D(f,n\s\c,<>V‘§?;§>)dA<n>
o ¢enéen\¢

KOV (o) (Z | B(g,n\c,o%ﬁdwg))dxm)

2) ()

= [ KV tetn) = M)AAm) < (@ = 1) [ V)M ()aA),

1) To
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where we have used the identity

DT IDERNEG OV = D V(Q) (Zw(ac\g,n\m).

¢engen\¢ ¢en §¢

This identity follows by the substitution ( — n\(. Let r € (0,1) be such that a < 1+r <
2, then for any 0 < k € D(L?)

f <—M(77) + %Bf) k() V(n)dA(n) < 0

To

holds. By [TV06, Theorem 2.2] it follows that (—M + B#, D(L?)) is the generator of a
sub-stochastic semigroup U2 (¢) on Ly. Then by [AR91, Theorem 1.1] also (L, D(L?))
is the generator of an analytic Cp-semigroup T2(t) and by [AR91, Theorem 1.2] this
semigroup satisfies |[T2(t)k| < U2(t)|k|. This shows that for any ¢ > 0

|72tk 2, < JUA(t)\kl(n)V(n)dA(n) < f!k(n)lv(ﬁ)d/\(n) = [kl -
Fo 1—‘0
m
Let Ky be the dual space to Ly,. This space can be identified with the collection of
all equivalence classes of functions G equipped with the norm

G ()]
Gllk, = esssup ——-.
(Gl =30 Ve

In the following we want to give sufficient conditions so that T2 (¢) provides an evolution
of densities. For this purpose suppose that the operator L is given by

= Y e, n\o)(Fin\a) = F@) + | dan) (Bl o 2) - Fn))da

€N Rd

with measurable intensities d(z,n\z),b(x,n) > 0 and
Jb(x, n)de <o, nely
R4

holds. This operator is a particular example of (2.49)) with

K(&,1,¢) = 1ro(¢)Irw (€ Zd z,7\z) + Lpo (€)1pa (¢ Zb z,n).

zeé xeC
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It is not difficult to see that K (&, n,)dA(¢) satisfies the usual conditions. Hence there
exists a (minimal) semigroup (7'(t)):>o on BM (I'y) associated with the operator L and the

adjoint semigroup (7' (¢)*);>o is strongly continuous on L'(T'g,d)\). The same computations
as in [FKK12] yield

L2k = = 3 | by o m) (0 . 0 7\ ) (©OdAG)

xenF

+ 3 [ HC Um0, ) aNO)

xenF

For any G € Bys(I'g) we have
(G,L*k) = (LG, k)

and L := Ky 'LK, is given by

= 2, G(&) Y (B d(w, - v n\x)) (n\é)

gcn z€
+; j (€ 0 2)(Kyb(z, - L €)(1)\E)da
Can

Thus condition (2.61)) can be restated to

Zv Z]K Ld(z,- v n\z)|(n\€) +ZJ (€U x)|K7'(x, - U &)|(n\&)da

écn ze {Can

<a- ) d(x,n\z)V(n).

TEN
The cumulative intensity is given by
= Z d(x,n\x) + Jb(x, n)dzx.
TEN Rd

Theorem 2.4.6. Suppose that (2.61)) is satisfied for V(n) = Kop(n) with ¢ : Ty —
[1,00). Moreover, assume that there exists a constant C > 0 for which

3M(1 + q(n)) < Ce(n), nely

holds and assume that one of the equivalent conditions of Theorem[2.4.9 s fulfilled. Then
for any ko € Ly

(K572 (ko = T()* (K2)'ko, >0 (2.62)
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holds. In particular let kg € Ly be such that Ry = (KF) 'ko is a probability density on
[y, then
Ry := (KX)'T2(t) ko

1s again a probability density on T'y.

Proof. By Lemma the function (KF)™'T2(t)ko € L, is continuous in ¢ > 0. Since
L, < L*(Ty,d)) is continuously embedded it is also continuous on L'(I'g,d\) in ¢ > 0.
Moreover,

| i) T Ormlarm < [ [T ok o elarEam

To T'oTo
J|TA Yeo(n)] D a(§)dA(n
£cn
c f TS k()] Y (€)dNm) = CIT (ko] ey <
o &cn

implies that (KF)™1T*(t)ko € D(L*). If we show for any F' € D(L), see (2.58), the
identity

(F, (K52 () ko) = (F, (Kg)1k0>+J<LF, (KM T2(s)ko)ds, t >0, (2.63)

then (K&)™1T2(t)ko is a weak solution to the Cauchy problem and hence is
proved, cf. [Bal77]. So let F' € D(L), then we can find a function G such that F' = K\G
and |G(n)| < 2 for some constant ¢ = ¢(G) > 0. Fix any k € Ly, then (K¢) 'k e L,
and Y |G(€)| < ¢(G)3M. Therefore we obtain

gcn

| [ k001X i601axeaxm) < (@) [ | 3k o larEarm

To T'o cen To T'o
f > 38l E(n)[dA(n)
Ty &7
< Cc(G) k] 2y
and hence by
(G, k) = (KoG, (Kg) "'k (2.64)
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holds. Using ([2.25) we obtain

(G, LAkY = (LG, k) = (KoLG, (KX)™'k) = (LKoG, (KZ)™"k. (2.65)
Since
KoLG() = LK) = — Y dw ) (KoGl- 0 2)) (1)) + [ o) (oG- 0 2))(n)d

identity (2.25)) is applicable provided

j f k(0 G (MANE)AA(n) <

o To
is satisfied, where

UG () == Y d(w,n\x) (Ko|G|(- v @) (n\e) + Jb(:v, 1) (Kol G|(- v 2)) (n)de.

xen Rd

But this follows from [(G)(n) < 2¢(G)3Mg(n) and

| | o @ marearm < 2e(c fk ) 3a(€)a(m)

I'oTo gcn
< 2¢(G )C”kHEv‘
Applying (2.64) and (2.65) to k = T (t)ko yields (2.63) and hence the assertion. O

2.4.3 Examples: Tumour development models

The aim is to describe the development of brain tumours. Reasonable models, including
effects like increased speed of propagation of tumour cells, require to introduce at least two
type of cells and study the interactions between these cells, see [FFHT15] and references
therein. Here we assume for simplicity that the tumour cells have only two possible states
and consider therefore I'? as the state space of the Markov dynamics. A configuration
n = (n™,n7) € I'? is then considered as the collection of tumour cells. The cells = are
said to be in the so-called proliferating state. The Markov evolution for this type of cells
is assumed to be given by the Markov (pre-)generator

(L-F)(n) = Y, m(@)(F(y*. 0 \x) — F(n))

xeEN™

+ 2 Aa) JC“ (@, y)(F(n",n~ vy) — F(n))dy

TENT Rd
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with continuous bounded non-negative functions m, A and a* > 0 continuous with 1 =
§ a™(z,y)dy for all x € R% Since proliferation is a local interaction we may assume
Rd

that a*(z,-) is fast decaying or even has compact support for any z € R? The rate
m(z) is typically small compared with A(z) and hence the number of cells n~ will grow
exponentially in ¢t > 0. This reflects the steady growth of the number of tumour cells.
Due to competition and other biological effects such cells have the possibility to change
their type, i.e. a cell z € n~ becomes an element of " and vice versa. The corresponding
Markov operator for this elementary events is given by the general form

(AF)(n) = Y plz, 0 \a)(F(n* v z,n\z) — F(n))

+ > e\, ) (Fh\a,n™ v x) = F(n)).

zent

Here p(z,n",n \x),q(z,n*,n"\z) > 0 are assumed to be continuous and bounded. For
the dynamics of the cells n* we assume that each cell moves according to a random walk
independently of each other. Such motion is described by the operator

(L)) = 3 s(w) f (2, y) (Pl \e U yon™) — Fn)dy

with 3¢ > 0 continuous and bounded and ¢(z,y) > 0 continuous such that 1 = § ¢(z, y)dy
R4

for all x € RY. In comparison to a™ we may assume that c(z,-) has only polynomial

decay when |y| — oo. This resembles the observations that small tumour patters can be

observed far away from the main tumour pattern. The overall Markov dynamics is then

described by the sum of above operators, i.e. let

l;::: 1;_ +‘l;+ +‘/4.

The interplay of this two types of cells can be described heuristically in the following way.
A cell z € n~ has two options. On the one-hand side it will produce several new cells
and then die due to its natural death rate m(z) > 0. On the other-hand it may also
change its type and start immediately moving within the brain. With high probability
this jumps will be far compared to the distance of proliferation. After a certain time
this moving cell will reach a substantially less dense region and hence will change its
type back to the proliferating state. Such microscopic dynamics may cause the creation
of new tumour patterns for which the distance to the old pattern is large compared to
proliferation length. An important technical obstacle is related to real measurements of
tumour cells. Namely, it is only possible to observe tumour patters larger then some
minimal size. Such minimal size is related to the technical equipment being used. Since
the moving cells n* form only a small part of the tumour, the treatment is essentially
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restricted to the treatment of the proliferating cells n~. One goal is to determine the front
wave propagation, derive reasonable extremal statistics, and consequently predict the size
and possible locations of a significantly wider amount of tumour cells. We expect that
this kind of insights will lead to a better understanding of the microscopic structure of
tumours and hence to new therapeutic treatments of tumours. Applying [Kol06] for the
Lyapunov function V' (n) = [n*| + [~ yields.

Theorem 2.4.7. Suppose that for any compact A = R there exists a* € L*(RY) for which
a*(z,y), c(r,y) <a*(y), zel, yeR?

holds. Then there ezist a conservative Feller semigroup (T'(t))>0 with property (2.50)).
This semigroup is related to the operator L by the identity (2.51)). The adjoint semigroup
(T(t)*)i>0 on M(T2) leaves the space of densities invariant and is given by (2.52)).
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Chapter 3

Markov evolutions on [’

In this chapter we first present the main results for one-component birth-and-death
Markov evolutions and study afterwards various applications in mathematical biology,
in particular models describing the stochastic behaviour of cells within an organism.

3.1 Preliminaries

3.1.1 Harmonic analysis on I
Let I' be the space of all locally finite configurations on R?, that is
I={ycR?||ynA| <o, YAcR?compact},

where |y n A| denotes the number of points inside A. The topology on I' is defined as the
smallest topology such that all maps

v — > f(z)

TEY

are continuous, where f is continuous with compact support, cf. [AKR98a]. This topology
is metrizable in such a way that I' becomes separable and complete, i.e. I' is a Polish
space, cf. [KK06] and the references therein. Let B(I") stand for the Borel-o-algebra on
I". Then B(T") is generated by sets of the form

{vel||ynA|l=n},

where n > 0 and A = R? runs over all compacts. For a compact A = R? define

o0
FAZZ{’)/EF|’)/CA}=|_|FE\TL),
n=0
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where Fg\n) ={yelr||ynAl =n}forn>1and FE\O) = {}. Define pp : I' — 'y by
pA(Y) := 7 := 7N A and sets A € B(T') of the form A = p*(A’) for some A’ € B(T,) are
called cylinder sets. Let B,y (I') be the algebra of cylinder sets, i.e.

Bun(D) = | Jpx (B(T)),
A

where the union runs over all compacts A = R%. The Poisson measure 75 is defined for
B € R as the unique Borel probability measure on I' having Laplace transform

2 f(@)
Je’m drg(y) = exp | €° f(ef("”) — 1)dx

r R4

for all continuous functions f with compact support. In the following we recall basic
notions of harmonic analysis on the configuration space I'. For more detailed information
and proofs we refer to [KK02].

A function F' : T' — R is called cylinder function if F'(vy) = F(ya) holds for all
v € I' and some compact A = R?. Therefore F is a cylinder function if and only if it is
measurable w.r.t. Bey(I'). Let 1 be a Borel probability measure on I', v is said to be locally
absolutely continuous w.r.t. to ms if for each compact A = R? the measure p* := upy*
defined on (', B(T'x)) is absolutely continuous w.r.t. w4 := mgp,'. This definition is in
fact independent of 3, therefore we will simply say that u is locally absolutely continuous
w.r.t. to the Poisson measure. The measure p is said to have finite local moments if for
all compacts A c R? and n > 1

f [y~ Al"dp(y) < .
r

Define for any G € Bys(I'y) the K-transform by
(KG)(y) = > G(n).
nEy

here n € v means that the sum runs only over all finite subsets n of v. Then KG
is a polynomially bounded cylinder function, i.e. there exists a compact A < R? with
(KG)(y) = (KG)(y n A) and constants C' > 0 and N € N with

(KG)N < CL+ynADY, yel.

The K-transform K : Bys(I') — FP(I') := K(Bys(I'g)) is a positivity preserving isomor-
phism with inverse given by

(KT F)(n) := Y (-1 F(€), neTo.

£cn
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For any Borel probability measure p, which has finite local moments and is locally
absolutely continuous w.r.t. the Poisson measure, we define the correlation function
k, : Ty — R, by the relation

| K6t = [ Gmtnara

o

Above relation is assumed to hold for all functions G' € Bys(I'y). The correlation function is
uniquely determined by above relation and is locally integrable. Conversely suppose that
for a given measure p there exits a (locally integrable) correlation function k,. Then 4 is
locally absolutely continuous w.r.t. the Poisson measure and has finite local moments. For
such a measure ;1 and correlation function k, the K-transform can be uniquely extended
to a linear contraction operator K : L*(Tg, k,d\) — L*(I",du) such that

KG(y) = ) G(n)

ncy

holds for p-a.a. vy € T and any G € L'(T'g, k,d\). Here and in the following we use
for simplicity the notation L'(T'o, k,d\) =: Ly, and if k,(n) = €I then we also write
L instead of L,s1. The next statement was proved, e.g., in [KK02] and establishes the
precise relation between correlation functions and Borel probability measures on I'.

Theorem 3.1.1. The following two assertions hold:
1. Let v be a Borel probability measure on I' with correlation function k,. Then

k., (&) =1 and k, is positive definite, i.e. for any G € By (I'y) with KG >0

fﬂ@@@MMmzo

To

holds.

2. Conversely, let k : Ty —> R be positive definite such that k() = 1 holds. Suppose
that there exist 5 € R and a constant C(k) > 0 such that

K™ (2, ... 2,) < C(K)e

holds. Then there exists a unique probability measure p on I' with k as its correlation
function.

Denote by Ps the space of all probability measures p such that for each i there exists
a correlation function k, and this function satisfies for some constant C' (1) > 0

ku(n) < C(p)e’™, neTy. (3.1)
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Let K be the Banach space of equivalence classes of functions k : I'y — R equipped

with the norm ()|
_ n
|Ellxc, = ess:grpo TR

Then we can identify L3 with Kz and the duality is given by
(G k) = J (n)dA(),

where G € L5 and k € Kg. The main part of the construction of an evolution of states is
related to the proof that a given function k is in fact positive definite.

3.1.2 Markov dynamics on I

Let L be a Markov (pre-)generator on I', the precise form of L will be specified in the
next section. The aim is to construct a semigroup T'(t) associated to the (backward)
Kolmogorov equation on observables F': I' — R

oF;
ot

The adjoint semigroup 7'(¢)* then yields solutions to the forward Kolmogorov equation,
in the physical literature also known as the Fokker-Planck equation

0

E fF (V) dpe(y) = J(LF YV dpe(7),  peli=o = po, (3.3)

r T

where F' e FP(I'). In [KKO02, [FKO09] it was proposed to study above Cauchy problems
in terms of the operators L := K;' LK, and L defined by the relation

= LF;, Fli—o = Fo. (3-2)

JiG(n)k( )dA(n) JG () L2k(n)dA(n), G € By(T). (3.4)
r To
Solutions to the Cauchy problem
oG
ot

are then called quasi-observables (evolution of quasi-observables). Solutions to (3.2)) are
formally related to (3.5) by the relation F;, = KG;. We expect that solutions to the
Cauchy problem

L= LGy, Gilieo = Gy (3.5)

ok
att == LAkft, kt|t 0o — k'[) (36)

are positive definite and hence determine uniquely a family of probability measures (g )>0
such that k; is the correlation function for u;. In such a case (p)i>o should be a solution
to (3.3]). This general scheme will be realized for a particular choice of the operator L.
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3.1.3 General description of Vlasov scaling

The subsequent overview is a short summary of the general scheme proposed in [FKKI0],
for particular examples see also [FKK11, [FKK13bl BKK15] and references therein. The
aim is to construct for a given Markov (pre-)generator L on I' a certain scaling L,,, such
that the following scheme holds. Let T2 (t) = e'ln be the heuristic representation of
the scaled evolution of correlation functions, see . The particular choice of L — L,
should preserve the order of singularity, that is the limit

n~ TR (e — T2k, n — o (3.7)

should exist and the evolution T?(t) should preserve Lebesgue-Poisson exponentials.
Namely, if ro(n) = ex(po; 1), then T2 (t)ro(n) = ex(ps; 1) holds. The function p; solves in
such a case the non-linear integro-differential equation
opt

= v(p). 3.8
ot (pt) (3.8)
For many particular models v(p) can be computed explicitly. Equation (3.8)) is the
so-called mesoscopic limit or the kinetic description for the density of the particle sys-

tem. Instead of investigating the limits (3.7)), we define renormalized operators L%, :=

n,ren

n~MLAnM and study the behaviour of its associated semigroups T,fren(t) when n — oo.
In such a case one can compute a limiting operator

L2, — L8, n— o (3.9)

n,ren

and show that L$ is associated to a semigroup T2 (t). This semigroup should satisfy

TA (1) — TE(t) = etV (3.10)

3.2 Main results

We present here the main results for general birth-and-death Markov evolutions. The
proofs will be given (for the two-component case) in the next chapter.

3.2.1 Description of model
Consider a birth-and-death Markov (pre-)generator L given by

(LF)(v) = Y d(z,y\x)(F(y\z) — F(7)) + fb(rc, VN (yvz)—F(y)de.  (3.11)

Here d(xz,v\z) € [0,0] is the so-called death-intensity and b(z,~y) € [0,00] the birth
intensity of the birth-and-death process given by the operator L. For such intensities we
suppose that the following condition is satisfied.

106



(A) There exists a measurable set I', = T' such that for all z € R?
R x Ty 3 (2,7) — d(z, 7\2), b(z, ) € [0, 0) (3.12)

are measurable and for any compact A = R? and bounded set M < T’y

Jj(d(m,n) + b(z,n))dA(n)dx < (3.13)
A M

is fulfilled. Moreover, any measure p € Pj is supported on I'y, i.e. p(I'y) = 1.

3.2.2 Evolution of observables

For any function F' € FP(T') there exists a unique element G € Bys(I'g) such that F' = KG.
For such F' and G define the norm

IFle, := |G, = f G ()P MdA(n),
To

which then satisfies

1Pl e < | KIGI)AmA() = [ 16N = [Pl
r

To

Let &g stand for the completition of FP(I') w.r.t. the norm | - |l¢,. This space can be
identified with the range of the K-transform on Lg, i.e.

Es =~ Ran(K) = {KG e LY(T',dns) | G € Lg}

holds. A sequence KG,, € £ converges to KG if and only if G,, — G in Lz as n — .
For any F' € £3 we can associate a unique function G € L. This is expressed by ' = KG.
A similar construction has been used in [FKKZ12]. Let 5’ < /3, then L3 < Lg is dense
and hence by

[Fle, = 1Glle, < 1Gles = 1F e,

this implies that £ — &g is continuously and dense embedded.

Remark 3.2.1. Decompose KG € Eg into its positive and negative part, that is KG =
F, — F_ with Fy,F_ > 0, Then Fy do not need to belong to Es, i.e. be of the form
F, = KGy for some Gy € Lg. Therefore £5 is not a vector lattice w.r.t. the natural
order on functions.

107



Define the cumulative death intensity by

= > d(z,1\z)

TEN
and introduce ¢(L, 8;1) = ¢(n) given by

}:J‘ﬁﬁukfld@; U7Axﬂ()dA@'+wzﬂ§S~[ MK b(x, - 0 \x)[(§)AA(E).

menF a:enr

Note that ¢(L, 3;n) is sub-linear in the operator L. Define on Bys(I'g) a new operator
L= Ky 'LK, and denote by 1* the function given by

1 =0
17(n) = oln:{’ i

0, otherwise

The next statement shows that the Cauchy problems (3.2) on &3 and (3.5) on Lz are in
fact equivalent.

Theorem 3.2.2. Assume (A) and that c(B;n) is locally integrable, then the following
assertions are equivalent:

(a) The closure (L,D(L)) of (L,FP(T')) is the generator of an analytic semigroup
(T'(t))e>0 on Ez such that T(t)1 = 1 holds and T(t) is a contraction operator for
each t > 0.

~

(b) The closure (L,D(L )) f (L, Bps(I'0)) is the generator of an analytic semigroup
(T(t))t>0 on Lg such that T'(t)1* = 1* holds and T'(t) is a contraction operator for
each t > 0.

This semigroups are for any KG € &3 related by
T()KG = KT(H)G, t>0
and the corresponding generators are related by

D(L) = KD(L) = {KGe&; | Ge D(L L)}

and LKG = KLG for G e D(f/) The next proposition provides existence and uniqueness
of solutions to the Kolmogorov equation ({3.2]).

Proposition 3.2.3. Suppose that the intensities satisfy (A) and there exists § € R and a
constant a = a(L, ) € (0,2) such that

(L, B;m) < a(L, B)M(n), nelo (3.14)

holds. Then following assertions are true:
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(a) Condition (b) and therefore (a) of previous theorem are satisfied.

(b) Suppose that there exists 5, < [* with B € (B, f*) such that for all B’ € (B, 5*)

condition (3.14)) is satisfied. For ' € (Ba, ) let (T (t))i>0 be the semigroup gen-
erated by the closure of (L, FP(I')) on Lg. Then Ez is invariant for T(t) and
T(t) = Tg/ (t)|g5 holds.

It should be noted that the upper bound 2 for a(L, 3) in (3.14) is the best possible.
Namely, there exists a model such that a(5) > 2 and equation ({3.5) has for every G € L
a unique solution, but such solutions do not form a strongly continuous semigroup on Lg.

Remark 3.2.4. Let dy, by and ds, by be two pairs of birth-and-death intensities for which
condition (A) holds and denote by Ly and Lo, respectively their associated generators.
Then

c(Ly + Ly, B;n) < c(Ly, B;n) + c(Lg, B;1)

holds and hence if condition (3.14) is satisfied for Ly and L, it is also satisfied for the
sum L1 + Lo.

Concerning continuous dependence on the intensities d(x, v\z) and b(x, ) we can prove
the following. Let d,(z,v\z),d(x,y\z), b,(x,7),b(z,7) € [0, 0] be given and assume that
they satisfy condition (A). In such a case there exists a common set I'y, (independent
of n € N) such that condition (A) holds for above intensities. Denote by L, and L the
associated Markov (pre-)generators and set

calim) =+ 3 [ PG, 0 1) — Ko, 0 ) (€ANE)

xenFO

b e 3 [ PG bl ) = Ky e, 0 )l (EAAE)

xenFO

and M,(n) := >, d,(z,n\zx) > 0.

zen

Theorem 3.2.5. Suppose that the conditions below are fulfilled.
1. There exists f € R and a constant a(B) € (0,2) such that
(L, B;n) < a(B)Mn(n), ne€lo, n>1
holds.
2. There exist constants A >0, N € N and 7 > 0 such that
do(z,m) < AL+ [n))Ne™™, neTy, zeR?

holds.
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3. ¢cu(B;m) — 0, n — o holds for allneTy.

Then (3.14) is satisfied, let T(t), T, (t) be the semigroups on Eg associated to L and Ly,
respectively. Then for any F € &g

T.t)F — T(t)F, n— w©

holds uniformly on compacts in t > 0.

3.2.3 Evolution of states

Suppose that conditions (A) and are fulfilled. Let (L,D(L)) be the closure of
(L, FP(I')) in 3. Denote by T'(t) the semigroup generated by (L, D(L)). We suppose to
show that under additional conditions the adjoint semigroup preserves positivity. Let £F
be the dual space to &g, then each functional £ € £F can be represented by k¢ € Kp, i.e.

UKG) ={G, k)

and HﬁHgg = |kelxc, holds. Let (T'(t)*);>0 be the adjoint semigroup on &5 and (f(t)*)tzo
be the adjoint semigroup on Kg. Likewise we see that

(T)*O)(KG) = (G, T(t)*ky), KGeEs, t>0 (3.15)
and HT(t)*EHgg = Hf(t)*kgﬂ;cﬁ are satisfied. Since T'(t)1 =1, ¢ > 0, it follows that

(T()*0)(1) = £(1) = ke(D)

holds, which resembles the preservation of mass property. Thus we restrict all further
considerations to the case k¢(¥) = 1. The general case can be obtained by normalization.
Let us start with the notion of solutions to the Fokker-Planck equation (3.3)).

Definition 3.2.6. A family of Borel probability measures ()0 < Pp is said to be a
weak solution to (3.3)) if for any F € FP(I'): t —> (LF, ) is locally integrable and

satisfies

(Fypyy = (F, poy + f(LF, psyds, t>0. (3.16)

Remark 3.2.7. Let (pu)i>0 < Ps, then for any F € FP(L') and t > 0 we get F €
LT, dp) and by (3.1)

f ILE()|dp(7) < f ILG(1)| Ky, (m)dA () < C) f ILG(n)[e”dA(n)

also LF € LY(T, duy), where we have used F = KG, G € By, (Ty) < D(f/)

110



Uniqueness is stated in the next theorem.

Theorem 3.2.8. (Uniqueness)
Suppose that (A) and (3.14) are satisfied. Then equation (3.3) has at most one solution
(pt)i>0 < Pg such that its correlation functions (ki)i>o satisfy

sup |k, < oo, VT >0.
te[0,T']

Let us now focus on existence of solutions to (3.3). For a given initial state po € Pg
with correlation function k,,, the evolution T'()*uo =: p; € £ is uniquely determined

by f(t)*kuo =: k,, € Kg, see (3.15)). For existence it suffices to show that k,, is positive
definite. This resembles in proving that T'(¢)* is positivity preserving. For this purpose
additional conditions are needed.

(B) There exist constants A > 0, 7 > 0 and N € N such that

b(z,n) +d(z,n) < AL+ [p))Ve " zeRY nel,. (3.17)

(C) There exists 5 with 5" + 7 < 8 such that there exists a constant a(f’) > 0 with
c(Bsm) < a(B)M(n), neTo.

The crucial step in proving the positivity preservation property is identifying it with a
certain evolution of states. For such reason we approximate L by operators Ls which fit
into the setting of the second chapter. Let (Rs)s=o be a sequence of continuous integrable
functions with 0 < Rs < 1 and Rs(z) / 1 as § — 0 for all z € R We will call such
sequence of functions "localization sequence”. Define a new birth intensity by bs(z,n) :=

Rs(x)b(x,n) for all z € R? and n € T'y. Then by (3.17) this intensities satisfy for all § > 0

fb(;(x,n)dx <o, nel.

Rd

The considerations of the second chapter imply for each n € I'y the existence of an associ-
ated (minimal) birth-and-death process (1;);>0 starting from n with state space I'g. The
following is our last assumption for existence of an evolution of states.

(D) There exists a localization sequence (Rs)s=o such that the associated (minimal)
birth-and-death process is conservative, i.e. has no explosion starting from any
initial point n € T'.

The next proposition is the main result for this section. Note that, Pg < Pg < &F.
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Proposition 3.2.9. (Ezxistence)

Suppose that (A) — (D) and are fulfilled. Then T (t)*Ps < Pg. In particular for
any o € Py there exists exactly one solution (ut)i>0 < Pg to given by T'(t)* o = fuq-
If conditions (B) and (C) hold for all T > 0, then T'(t)*Pg < Pg is satisfied.

Continuity with respect to initial data establishes in the following estimate
IT@) pollex = 1K licy < [Kuollics = luollex, =0,

where f(t)*kuo = k,, € K3 is the correlation function corresponding to the evolution of
states py = T(t)*po € Pz. Continuity in ¢ > 0 (in general) only holds in the topology
o(&5,Ez). However, if we suppose that jio € £ holds, then

IT@) 1o = pollex = K = Fuollics, =0

and the evolution k,, is in fact continuous in the norm. Because £z is not a Banach
lattice w.r.t. the natural order on functions we are not able to show that 7'(¢) is positivity
preserving. Above statement only implies for all 0 < F' € €3 and p € Py that

jT@memmozo

holds. The construction of the Markov function has been proposed in [KKMAO0S].

Corollary 3.2.10. Suppose that (3.14) and (A) — (D) hold for any 7 > 0 in (3.17). Then

for any p € Pg there exists a Markov function (X} )i>o on the configuration space I' with
the initial distribution p associated with the generator L.

3.2.4 Ergodicity
F(y)du(y). The next statement provides
T(t)*)i>o0-

Proposition 3.2.11. Suppose that conditions (A) — (D), (3.14)) and ‘i|nf M(n) > 0 are
n|>1

For a given measure p € Pg let (F), :=

N He—

ergodicity for the semigroups (7'(t)):>0 and

fulfilled. Then there exists a unique invariant measure [Liny € Pg, i.e€.

fbmwmmxwzo,VFewa>

and T(t)* tiny = Hiny hold for allt > 0. Moreover, there exist constants C,e > 0 such that
the assertions below are satisfied:
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1. For each F € &g
ITOF = (Fpylles < Ce™F = (Fpy ey 20
holds.

2. For any po € Py let py = T(t)* o € Pg, then
[t = prinvllex < Ce | po — finv[ex, ©=0

holds. If conditions (B) and (C) hold for any 7 > 0, then above claim also holds for
u e 'Pg.

The aggregation model is one particular example for which the cumulative death
intensity is not bounded away from zero, i.e. the condition inf M (n) > 0 is not satisfied,

[n|>1
cf. [FKKZ14].

3.2.5 Vlasov scaling
Suppose we have given scaled intensities d,,(z,7), b,(x,v) € [0,00] which all satisfy con-

dition (A). Let

LaF() = Y (a1 \0)(FO\) — FO) + [ bl ) (Pl ) = F2))da,

TEY Rd

define En = K;'L,K, and the operator zmen = anan—l with R,G(n) := al"G(n).

Introduce for n > 1

ea(Bim) =+ Y f Ky (. - 0 7\0) (E)n9ePEdA(e)

xenro

re?Y f K5 b, - U n\a)| (€)n e EldA(€)

a:enFO

and M,(n) := > d,(x,n\x). For passing to the limit n — o0 we need the following

zEen
conditions given below:

(V1) There exists a(3) € (0,2) such that

Cn(ﬁv 77) S a(/B)Mn(n>7 ne Fo, neN

holds.
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(V2) For all £ € I'y and z € R? the following limits exist in £5 and are independent of &
lim nl'l(Kytd,(z,- U €)) = lim nll(K;d,(z, ) =: DY

n—0o0 n—o0
lim nl'l(Ky b, (x,- U €)) = lim n'l(K; b, (z,-) = BY
n—00 n—0

(V3) Let My (n) :== >, D.(&), then there exists o > 0 such that either

zent
M,(n) <oMy(n), nely, neN

or
M,(n) > oMy(n), nely, neN

are satisfied.

Remark 3.2.12. A collection of particular examples satisfying condition (V2) can be
found in [FKK10, FFH"15]. For many particular models M, is monotone in n € N and
hence condition (V3) is satisfied.

The next statements realizes the general approach for Vlasov scaling on the level of quasi-
observables and correlation functions. It is a refinement of the result proved in [FKKI12]
where only strong solutions have been considered and is stated here only for completeness.

Theorem 3.2.13. Suppose that conditions (V1) — (V3) are fulfilled. Then the following
assertions hold:

(a) For any n > 1 the closure (f/n,ren, D(En,ren)) of (En,ren, Bys(Tg)) is the generator of
an analytic semigroup (T, ren(t))i>0 of contractions on Lg.

(b) There exists an analytic semigroup (fv(t))tzo of contractions on Lg such that for
any G € Lg

Tpoen)G — TV ()G, n— o0

holds uniformly on compacts int > 0. The space Bys(T'y) is a core for the generator
(Lv. D(Lv)) of (T" (t))ezo-

(¢) For any ro € Kg the unique weak solution to
%«;, ki) = LngenGy kienys  Kinlio =70, G € Byy(Ty)
is given by k., = fn,ren(t)*ro, and the unique weak solution to
%«;, rey = (LyG, 1), Telimo =710, G € Byy(To) (3.18)
is given by ry = fv(t)*rg.
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(d) Let ro(n) = [] po(x) and py € L*(R?) with |po|r> < €®. Assume that p; € L*(R?)

€N
with | p;| L < € is a classical solution to

%(x) - Jek(ﬂﬂf)Df(ﬁ)dA(&)pt(ﬂf) + Jex(pt;f)BX(é“)dA(i) (3.19)

Fo F0

and initial condition p;li—o = po. Thenry(n) := ][ pi(x) is a weak solution to (3.18)).

zen

Remark 3.2.14. For many particular models we also can show the convergence in (V2)
in the operator norm of L(Lg, La), cf. [FEHT15]. In such a case similar statements hold
without condition (V3). Condition (V3) can also be replaced by

dn(z,n) < AL+ [n))Ve™, neTy, zeR?
for all n € N and some constants A >0, N € N and 7 > 0.

Property (d) is known as the Chaos preservation property and the integro-differential
equation for p; is the same as in . The last statement also provides uniqueness of
solutions to the integro-differential equation (3.19). Namely, for any initial condition
po € L*(R?) with |pg|r= < e there exists at most one classical solution p; € L*(R?) with
lpe|ze < €. Tt is also possible to rewrite above result in terms of observables and states,
the precise statement is given below.

Proposition 3.2.15. Suppose that conditions (V1) — (V3) are satisfied. Then the fol-
lowing holds:

(a) For F = KG € &g the relations
Tpoen()KG := KT ()G, t>0, neN

and

TV KG :=T" ()G, t>0

define analytic semigroups of contractions on Eg. The generators are given by
(K Ly yen, KD(Lpyen)) and (K Ly, KD(Ly)).

(b) Above semigroups satisfy for any F € &g
Trxen ) F — TV (#)F, n— o

holds uniformly on compacts int > 0.
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(¢) Let ro and ry be as in Theorem then for any F € &5

f Thven(8)F (1) (1) —> f TV (1) F (y)dmy (7) = f F(y)dm(7), n— o

holds uniformly on compacts in t > 0.

For F' = K@ it follows that

f Ty ven(8)F () (1) = f G0 B en (£)r0) (1) AN (),

r To

but 7, nren(t)70 does not need to be positive definite and hence correspond to a probability
measure on I'. In fact, we can expect for chaotic initial conditions only that the evolution
ry is positive definite.

3.2.6 Extension to time-inhomogeneous intensities

For t > 0 let d(t,z,7),b(t,z,v) € [0,0] be given and suppose that there exists I'y
(independent of ¢ > 0) such that condition (A) is satisfied for any fixed ¢ > 0. We are
going to apply the results obtained in the first chapter for which we suppose that the
following conditions hold:

(H1) There exist 8, < f* such that for all 5 € (8,4, f*) and ¢t > 0 there exists a constant
a(L(t); B) € (0,2) satisfying

c(L(t), B;m) < a(L(t), B)M(t,n), nely, t>0,

where M (t,n) = >, d(t,z,n\z).

zen

(H2) There exist constants A > 0 and N € N such that
d(t,z,n) < A(L+[n)™, neTo, xR’ >0
holds.

(H3) Forany ', 5 € (Bx, 8*) with 5/ < [ the operator t — L(t) € L(Es, Ey) is continuous
in the uniform operator topology.

Note that by (H1) and (H2) it follows that L(t) € L(E) where £ = (£3)ge(s,,5+) s a scale
of Banach spaces. Property (H3) states that L = (L(t));>¢ is continuous in the uniform
topology in the scale £.
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Theorem 3.2.16. Suppose that conditions (H1) — (H3) are fulfilled. Then there ezist a
forward evolution system (U(t, s))o<s<t and a backward evolution system (V (s,t))o<s<t in
the scale € having generator (L(t))i>o € L(E).

Above statement implies that the corresponding forward and backward evolution equa-
tions are well-posed on any g, see Theorem [1.1.6]

Theorem 3.2.17. Suppose that conditions (H1), (H3) and
b(t,z,n) +d(t,z,n) < A1+ n))Y, nely t>0 (3.20)

hold. Moreover, assume that for any fized t > 0 condition (D) holds for the operator L(t).
Then U*(s,t) and V*(t,s) are both positivity preserving.

In the case of above statement the adjoint evolution systems U*(s,t) and V*(¢,s)
provide for each p € Pz unique solutions to the time-dependent Fokker-Planck equations

2 [ s utie) = [ L PG s ). F e FPD
and ;
afF(V)V*(t’ s)u(dy) = JL(t)F(v)V*(t, s)u(dy), FeFP(I),

r r

see Theorem [1.1.7] The next statement provides Vlasov scaling. For any n > 1 let
dn(t, z,Y\z), b, (t, z,v) € [0,0] be given and define

calt, Bim) =+ 3 f Ky du(t, 2, 0 1\)| (€)nle P (€)

xenro

# e 3 | 1K btz 0 )| e AN )

xenFO

Instead of the conditions (V1) — (V3) we suppose that the conditions given below are
satisfied.

(W1) There exist S, < p* such that for any 8 € (f54,8*) and any ¢t > 0 there exists
a(t, B) € (0,2) satisfying

cn(t, Bim) < alt, B)Mn(t,n), nely, neN,
where M, (t,n) := > d,(t,z,n\x).

zen
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(W2) There exist constants A > 0 and N € N such that
dn(t,z,n) < AL+ )Y, >0, nely, zeR?
holds.

(W3) For all £ € Ty and x € R? the following limits exist in the operator norm L(Lg, Ls)
for any 8" < 8 with f’, 5 € (B4, 8*) and are independent of &.

lim nl'l(Kytd, (t, z,- U €)) = lim nll(Kjtd, (t,z,-)) =: DY(t,)
n—0o0

n—o0
lim nl'l(K b, (t, 2, - U €)) = lim n'l(K;tb,(t, 2, ) =: BY(t,).
n—00 n—aw

Moreover, above limits are uniform on any compact in ¢t > 0.
For n > 1let L,(t) := Kyt L, (t) Ko, fzwen(t) := RyLn(t)R,-1 and denote by £ the scale
of Banach spaces given by £ = (L3)ge(s,,8+)-

Theorem 3.2.18. Suppose that conditions (W1) — (W3) are satisfied and assume that
the operators Ly, ven(t) are continuous in the uniform topology on L(L) int > 0. Then the
following statements are satisfied:

(a) There exist forward and backward evolution systems ﬁwen(t,s) and ‘A/n’ren(s,t), re-

spectively having generator En,ren(t) e L(L).

(b) There exist forward and backward evolution systems ﬁv(t, s) and XA/V(s,t), respec-
tively such that R R
Upren(t, 8) — UV (t,s), n— o

and ~ R
Vn,ren(syt) I Vv<87t), n — o0

holds uniformly on compacts in t > 0 in the uniform topology on L(L). The gener-
ators satisfy Ly yen(t) — Ly (t) as n — oo w.r.t. the uniform operator topology on
L(L) and uniformly on compacts in t > 0.

(¢) For any r € Kg the unique weak solution to the backward equation with s € [0,1)
P .
%<G> ks,n> = _<Ln,ren(8)G7 ks,n>> ks,n|s=t =T, Ge Bbs(FO)

is gien by ks, = Amen(s, t)*r and the unique weak solution to the forward equation
with t € s, 00)

P .
E<Ga k:t,n> = <Ln,ren(t)Ga kt,n>7 kt,n|t=s =T, Ge Bbs(PO)

is given by kin = Vi (t, s)*r. The same assertions hold with Ln ren(t) Teplaced by
Ly (t) and U yen(s,t)* ,Vn ren(t, 8)* replaced by UV(s,t) ,Vv(t,s)
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(d) Letr(n) =[] p(x) and p € L*(R?) with |p|l» < . Assume that p, € L*(R?) with

TEN
lpslLe < €° is a classical solution to the backward equation s € [0, )

0ps
0s

(x) = Jex(ps;§)D¥(S,£)d>\(§)ﬂs($) - fex(ps;E)BxV(S,f)d/\(f)

FO 1—‘0

and initial condition psls—y = p. Then rs(n) := [ ps(z) is a weak solution to
TEN

0 ~
%<Gv TS> = _<LV<S)G7 Ts>7 Ts|s:t =T, G e Bbs(F0)~

Assume that p; € LP(R?) with |pllr= < € is a classical solution to the forward
equation with t € [s,o0)

0

Pr@) = - [xlpnODY CONO(@) + [ exlps ) BY (1. ANE)

Fo 1—‘O

and initial condition pili—s = p. Then ri(n) :== ] pi(x) is a weak solution to
€N

0 ~
E<G, 7'75> = <LV(t)G, 7’t>, rt|t:s =T, G € Bbs(ro).

3.3 Finite system in ergodic environment

The main aim for this section is to describe the behaviour of a system with state space I'y
evolving in the presence of an equilibrium, ergodic environment, which is described by a
Markov process with the state space I' and an associated invariant measure p. This situa-
tion is a particular case of so-called random evolution framework, see e.g. [Pin91l [SHS02].
Examples for such environments have been constructed e.g. in [AKR98a, [AKRI8b| [KL05].
There (via the Dirichlet forms technique) the existence of a Markov semigroup T (t) on
L?(T",du) has been shown, where 1 is the unique invariant measure and 7% () is symmet-
ric on L*(T',du). As a consequence this semigroup can be extended to all LP(T', du) with
1 < p < o and for p = 1 this extension, also denoted by T(t), gives the evolution of
densities. More precisely, if R € L*(T",du) and the environment is in the initial state Rd,
then the time evolution is given by Rydu, where Ry = TF(t)R. Above extension T(t) is
ergodic on L*(T, du), i.e., T*(t)R — { R(v)du(y), t — o in L*(T", du). Denote by L* its
r

generator. We will study the evolution of a system described by the Kolmogorov operator

(L5F) ) = Y f(Fw, ML Q) = Flyym)E (7,7, C)dA(Q).

genr,
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The kernel K(v,&,m,() > 0 depends on the present microscopic state v € I' of the
environment. Therefore, solutions to the Fokker-Planck equation

0
(?—ptt = (LS)*,Ot + LEpta Ptlt=0 = po,

on the space L}(T'" x Ty, d(u ® \)) describe the evolution of densities of the joint Markov
process for the system and environment. Here (L°)* stands for the adjoint operator on
densities p(v,7n), which depends on v as a parameter but acts only on the variable 7.
Similarly, L¥ acts only on the first variable 7. The weak-coupling limit is obtained via
an approximation p;, where p; solves the rescaled version of the Fokker-Planck equation

i

*k € 1 £ £
= = (L)i+ ZLPpf, pilimo = po € L (T, dN).

Thus we will seek for the limit p; — p, when € — 0. In such a case we prove that p, solves
the Fokker-Planck equation for a finite system determined by the averaged (pre-)generator

L) = ) [P 0 O - PR (Em OO,

ECWFO
where K (&,1,¢) = § K(v,£,1,¢)du(y). The aim is to realize this approach and show for
r

one specific example how this can be applied.

3.3.1 Weak-coupling limit

Let us start with the main assumption on the environment process on I:

(E) There exists a probability measure p on I' and a positive semigroup of contractions
TE(t) on LY(T,du), which is assumed to be Ll-ergodic, i.e., for each R e L*(I",dpu)

JITE(t)R —(Ry,|dpu — 0, t — co.
r

Here (R), = § Rdu denotes the average of R with respect to p.
r

Denote by (L¥, D(L¥)) its generator. It is well-known that £, := L'(I' — L*(Ty, d\), dp)
can be identified with L'(T"' x Ty, d(1z ® \)) and the subspace

D:{f:ZRkpk

k=1

neN,R,e LNT,dp), pr € Ll(PO,d)\)} c L,
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is dense. Since T (¢) is positive it can be uniquely extended to £, cf. [Gra04], such that
for fe D

T = TE Rk)

HM3

One has [(TF(t) f) (-, )| L2 ro.an < TH(t )Hf( Y)| 1(ro,an) for all f € D, thus this extension
will be a positive strongly continuous semigroup of contractions which shall be again
denoted by TF(t). For convenience we also denote the generator of the extended semigroup
by (LY, D(L¥)). This generator can be characterized by the relation

1=

LPf =
k

where f € D with R, € D(L¥). For f € D we obtain

1

IT2() f = {Foule, < Z | TP () Ry, — Ryl pr e am o i ro.any = 0, & — o0
1

and since T (t) is a semigroup of contractions and D dense this implies for each f € L,

IT%(t) f = {oule, — 0, t— 0
Note that (f),.(n) := Sf v,m)du(7y) is simply the projection of £, onto L'(I'g, d).

For the descrlptlon of the system process we suppose that K is measurable with respect
to all variables and

| [ KOnem0m©n6) <. vemers 3.21)
I' Ty
holds. Let us outline the construction of the evolution of densities on £, = L'(I" x

Lo, d(® A)). First of all, the Markov (pre-)generator L is assumed to be given by
BFovn) = 3 [P 0 = PO K en OO, (322)
genp,
It can be rewritten as
L¥F(v,1) = J(F(%w) — F(y,1)Q(y,n, dw),
o

where

Qo A) = X [ 1€ 0 OK (6.1, 0AN).

£y,
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Define ¢(v,n) = Q(v,n,To) = X § K(7,&n,()dX(C), then the adjoint operator on

§cnlo
densities p € £, is given by

(L*)*p(v,m) = —a(v,m)p(v.n) + (B*p)(v,m),

where

B o))=Y f (11N U OK (3,6 m\é L G E)AA(Q). (3.23)

£y,
We are interested in the asymptotic regime ¢ — 0 for solutions p; to the Cauchy problems
i
ot

on L£,. Typically, it is hard to construct solutions to (3.24]) in this generality. Let us
define approximations (L§)* by setting Ks(v,&,n,¢) := e %MK (vy,£,1,¢). Then Lf is
defined by (3.22) with K replaced by K5 and (L§)* is its adjoint given by

1
= (L2)"pi + —L"pi, pfli=o = po € L'(To, ) = Ly, (3.24)

(L§)*p(v,m) = —q(y,m)e " p(y,n) + (Bip)(v,m).

The operator Bj is simply given by (cf. (3.23))

Bp) = Y f P 1\E © Qe IOMEO K (¢ i\e U ¢, E)AN(C).

£,

Because of

|B5ple, < JJ J Do m\E U Qe OO (v, ¢, n\E L ¢, €)ANC)dA(n)dp(v)

I I T &7

_ f J (s m) e gy, m)dA(m)dpa(y)

I' To

1
< —|plcz,

the operator B} is bounded on £, and hence so is (L5)*. Let us fix the notation for the
limiting objects when ¢ — 0 and § — 0. Define the averaged functions K and K by

K€, 0) = JK(% 7, C)du() (3.25)
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and

K5(¢,n,¢) == f e MM K (7, €,m, Q)du(v). (3.26)
T

The results obtained in the second chapter show that there exist semigroups T(t) and T's(t)
given by the associated transition probability functions P and Ps which are determined
by

=3 [(Fa¢ 00 - Fa)R(En 0N

ECWF

and

LaF() = 3 [ (FOe 0 ©) = PRl . aNQ),

anFO

cf. (2.50) and (2.51). The adjoint semigroups on L'(T'g,d\) are denoted by T(t)* and
T's(t)* respectively. The corresponding generators are simply given by

Tep)n) = T mp(n) + 3 f (1€ L ORS(C1\E U € E)ANQ)

€C77F0

where G5(n S 5(€,m,O)dA(C). The same holds for L™ with K replaced by K.
T

Proposition 3.3.1. Assume that condition (3.21) satisfied. Then for any € > 0 the
operator (L3)* + L is the generator of a sub-stochastic semigroup T.s(t) on L,. For
any § > 0 and any p € L*(Ty,dN)

lim T 5(t)p = T5(t)"p (3.27)
holds uniformly on compacts in t > 0. Assume that T(t)* is stochastic, then for any

pPE Lt (Fo, d)\)

lim Ts(1)*p = T(t)*p (3.28)

holds uniformly on compacts in t > 0.
Above assumption for T'(¢)* being stochastic has been characterized in Theorem [2.4.2

Proof. The operator —LE is for any € > 0 the generator of the semigroup TF (g) on L,.
Since (Lg)* is bounded on £, also the sum (L§)* + }:LE is the generator of a semigroup
T.5(t). Due to the Trotter product formula this semigroup is sub-stochastic. So let us
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show ({3.27)), which holds true if we can apply [Kur73, Theorem 2.1]. Therefore observe
that for pe £, and A > 0

o0 o0
—\E _ < —s|mE (S _
M=, < [ |17 (5) o=, as
0 L, 0

Since T (t) is ergodic on £, it follows that for fixed s > 0 the integrand tends to zero as
A — 0. Due to [{p),llz, < |p|z, and the contraction property of T(t) the integrand is

bounded by 2 p||z,e™* and hence dominated convergence implies for all p € £,

0]
Pp = }\13(1) Afe_AtTE(t)pdt =P
0
The operator P is a projection on £, with range Ran(P) =~ L'(I'y,d)). Following the
notion of [Kur73] Cp := P(LE)*p = Lyp is defined on L*(Iy,d)) and is additionally
bounded, which implies . For the second assertion observe that by Theorem m

Dom = peL%ro,dA)\ [anlotmiar < =

is a core for T(t)*, since T(t)* is stochastic. For any p € Dom it holds
=S %k
|Lsp =L p|

< f ()1 [5(n) — a(m)|dA(n)

# | 30 [Inte © OIREC e © €.0) = Rcme o IO

o $5T,

and by and for any 6 > 0 we obtain
[K5(Cn\ew €)= K(CmEu ¢ Q) < f 1= e MO K (7, ¢ i\é ¢ E)dp().
r

Since the integrand is bounded by 2K (v,(,n\§ v (,§) and tends to zero for any v € I,
dominated convergence yields that |Ks((,n\¢ u (,&) — K(¢,n\é w (,{)] > 0asd — 0

for any 7 € T, £ <  and ¢ € Ty. Finally due to [K;(¢,7\§ v ¢,€) — K(¢,1\§ v ¢, ()] <
2K (¢, n\& U ¢, €) the second term tend to zero as § — 0. For the first term observe

g —aml < Y j Es(€,m.C) — K(€ 0, OlAAQ),

£y,

then above argument implies G5(n) — q(n) for all n € T'y as § — 0. The assertion follows
from s < g and dominated convergence. O
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3.3.2 Example: Medical treatment of tumours

We aim to describe the (stochastic) behaviour of tumours cells influenced by an injection
of a certain medicine. The distribution of the medicine within the organism is assumed
to be diffusive and hence is modelled by an equilibrium diffusion process on I' for a
given invariant (Gibbs) measure p. For the construction of equilibrium diffusions and
ergodicity see [AKR98al, [AKRO8b]. The behaviour of the tumour cells is modelled by a
birth-and-death process on I'y with Markov (pre-)generator

(LEF)(vm) = ). [ mla, )+ ), a (@ —y) | (F(v,n\z) = F(y,m))

ven yena
+ M@, ) f a* (@ —y)(Flrn o) — F(y,m)dy.

The statistical dynamics for such model (without the presence of an environment) has
been analysed, e.g., in [FM04, FKK09, FKKKI15, [KK16] and in the second chapter. The
proliferation of cells is described by the probability density a* and competition of tumour
cells by the kernel a= > 0. The influence of the medicine on the tumour enters through the
mortality m(z,~) > 0 and proliferation intensity A(z,7) > 0. After scaling the averaged
dynamics will be given by the generator

(LF)(n) =Y, | mlz) + ), a (z—y) | (F(n\x) = F(n))

en yen\x
+ 23@) [ at @ )P0 ow) - Fo)dy,

where m(z) = {m(z,v)du(y) and A(z) = {A(x,7)du(y) are the averaged intensities.
r r

Proceeding as in the previous section denote by T. 5(t) the scaled semigroup on densities
L, and by T(t)* and Ts5(t)* the semigroups on L'(T'y, d)\) defined by the adjoint operator

L of T respectively their counterparts scaled by 6 > 0. The next result states conditions

for which these semigroups exist and (3.27)) holds.

Theorem 3.3.2. Assume that all intensities a*, m, \ are non-negative, measurable, that
a® is a probability density and that m(x,-), \(x,-) are integrable with respect to p for any
x € RY. Then the semigroups T. 5(t), Ts(t)* and T(t)* exist and (3.27) holds.
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Proof. First of all
g(v,m) =Y mlx, )+, D a (@ —y) + D Ax,7)

TEN zEN yen\z TEM
-3 [ KGen0n©
genr,

for any n € I'y and hence

f f K (7.6, Q)M du(y) < j a(rm)du(y) < o

I' o r

implies ([3.21). The existence of the semigroup T'(t) and Ts(t) has been established in the
previous chapter. The considerations of the previous sections imply the existence of the

semigroups and property (3.27)) follows from Proposition [3.3.1] O

The reader may wonder why such weak assumptions are sufficient for existence and
convergence of the semigroups. The crucial point here is that we consider an approxima-
tion by bounded linear operators and hence for each 4 > 0 no additional conditions are
needed. In order to pass to the limit § — 0 additional assumptions are necessary, which
are given below. This statement is a particular case of the BDLP-model considered in the
second chapter, see also [Kol06].

Theorem 3.3.3. Assume that the conditions of previous theorem are fulfilled. If i, \, a~
are bounded, then T(t)* is stochastic and hence holds. If m, \,a~ are locally
bounded, then T(t)* is still stochastic, provided there exists a continuous function ¢ :
R? — [1,0) with ¢(z) — oo when |z| — © and ¢ > 0 such that

Az)(a® = p)(x) < cp(x) + p(z)m(z), =eR? (3.29)
holds.

As a concrete case we can take p = 7, that is the Poisson measure with intensity
z > 0. Let us take for the interactions

m(w,y) = mo + ) Kz —y)

Yyey
and
Az,7) = do + Y 0(x — )
Yyey
with A\g > mg, 0 < K, € L*(R?) and (¢) < (k). Then m = mg+ 2 § x(y)dy = mo + z{(k)

]Rd
and A = Ao + 2z § ¥(y)dy = Ao + (¥). Define

Rd

B(2) = (Ao + 2(¥) — mg — 2(K)),
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then for the function V(1) = 1 + |n| a short computation yields

(LV)(n) < B(z)n]

and therefore an a priori estimate on the evolution of densities, provided a~ is bounded

More precisely, let 0 < p € LT, dX) with §(1+|n|)p(n)dA(n) < oo and § p(n)dA(n) =
Fo FO

then the evolution of densities for the averaged system is given by p, = T'(t)*p and by the
Gro nwall inequality we have

Jlnlpt(n)dA(n) < P J nlp(n)dA(n), t>0.

Without medical treatment, i.e. z = 0, the number of tumour cells will grow exponentially
in time. But due to the influence of the medicine such growth may be prevented or even
exponential decay may be observed.

3.4 Examples

In this section we apply the main results to several stochastic birth-and-death processes
on I' describing the behaviour of cells within organisms.

3.4.1 Free cell-proliferation

In this part we investigate a model for the proliferation of cells. It is assumed that each
cell has an exponential distributed lifetime with parameter m > 0. Moreover, each cell
has another exponential distributed time, the so-called proliferation time, with parameter
A > 0. The corresponding elementary event is the splitting of a cell at position x € ~ into
two new cells. The position of the new cells is determined by the probability distribution

a(x — 1, ¢ — y2)dyr1dys

and a > 0 is assumed to be symmetric in both variables. The Markov (pre-)generator is
hence assumed to be given by

= m Y (F(Y\r) - F(v))

TeY

+)‘ZJJ (z =y, 2 —y2) (F(Y\r Uy U ya) — F(7))dyrdys

IE’}’Rd Rd

This model is exactly solvable and we construct the evolution of correlation functions
explicitly. The analysis of this model will serve as a guiding example. Above model is
very similar to the contact model, cf. [KS06l, [KKPO0S].
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Theorem 3.4.1. For G € Bys(I'y) the operator L=1Ly+Bis given by

EvG)(n) = —(m + NnlG) +A2f r—yCaoydy  (3.30)

xean

with B given by
(BG)(n) = )\Z J J — 1,2 —y2)G(N\z LU Y1 U yo)dy. (3.31)
mean Rd

Here b > 0 describes the effective proliferation and is given by

b@)—fa@wﬁy+fa@mﬂy

R4 R4

For k : Ty —> R such that |k(n)| < |n|'C" for some constant C > 0 the operator L* is
given by
L* = Ly + B*,

where L is given by the same expression as lA}V and B> by

(B2E)(n) = X Z Z J a(x —y1,x — yo)k(n U x\y;\y2)dz. (3.32)

YIEN YyaEn\y1 pg

Proof. Using the K—transform we obtain for x € ~
(KG)(Y\x) = (KG)(7) = = ). G(pux)
neEY\z
and therefore for the first part

m Y (KG)(Y\x) = (KG)(7)) = —m >, > G(nux)

xey €Y nEy\v

——m Y 3160 = —mK (- 1))

ne€y wen

Applying the inverse K —transform we arrive at the expression —m|n|G(n) reflecting the
natural death of each cell. For the cell-division we first note that for x € v and yy,y; ¢ v

(KG)(\z vy vyr) — (KG)(7)
= >, (Guy) +Guy) +Glnuy vy) —Gur)).

n€Y\z
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Therefore the birth-part is given by

3| [ ale = - ) G o i) + G U ) + Glae o 1) — Gl dnde

ZEET]Rd Rd

In the first two terms of the second part the integration over y; and y, respectively can
be carried out, which gives together with the substitution y;,y, — y

WY [ [ ate = g = ) (G0 o) + GO o ) dind

TEN R Rd
—AZJ G(n\z v y)dy.
wEWRd

Altogether we obtain formulas (3.30) and (3.31). For G € Bys(Tg) and k as described
above, the operator L* is uniquely determined by the pairing

|Eemrmarm - [ cmwsnmam.

The negative multiplication part will therefore not change and for the second part we get

JZ [~ w6 Svavkmarm)

=\ JRJ Jb(m —y)G(n v y)k(n v x)dydxd(n)
—Ajze]j v gk U P\g)deGn)dA().
Finally "’
| Boymrmarm)
~ j ) | [ et =z = )G 0 O p)ddyak(n)arm)
=\ J J f Ja(m —y1, T — y2)G(n Uy U ye)k(n U x)dzdy dy.dA(n)
= A Jy; yzgylﬂi T =y, @ = y2)k(n U x\y1\y2)dx G (n)dA(n),
proves the assertion. O
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The next statement shows that the results stated in the previous section are not
applicable in this case.

Theorem 3.4.2. The function c(a;n) is given by

clayn) = (m+3X\)|n| + Ae™® Z Z f (x —y1,x — yo)dx

Y1EN y2en\y1 Rd
If in addition the expression
6 = min { sup Ja(m —y,x)dz, sup fa(x, r —y)dx (3.33)
yeRd e yeRd

is finite, then for each o/ < « the operator L acts as a bounded operator from L, to Ly
and L* is bounded from Ko to Ko. In this case the estimate

m + 3\ 4\0e=
el — o) e(a—o)?

(3.34)

|L]| iarzy = 1L i hea) <

holds.

Proof. The function c(a;n) is given by c(a;n) = e~ LAe () which implies the par-
ticular form for ¢(«;n). For the second assertion observe that

2 X Ja(x_yl’x_w)dxzz )y Ja(x_(yZ_yl),$)d$

YIEN Yy2En\y1 pg Y1EN Y2€n\y1 pg

Z Z f a(x,x — (y2 —y1))dx

Y1EN Y2€1\Y1 g

and hence

Z Z fa(w — 1, — yo)da < 0|n|*.

YIEN Y2€n\y1 pg

The assertion now follows from the estimates

and

for any o < a. O
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The operator Lisasumofa particle number preserving part EV and an upper diagonal
part B. Rewrite this number preserving part Ly in the form

(EvG)(n) = ~(m = NGl + A Y | b =) (G 0 w) ~ Gln) dy,
xEURd
This operator is well-defined on the domain
D(Ly)={GeL,|]| |Ge Ly}

and satisfies by previous theorem |Ly |q0r < 6?2:1’\,).

Cauchy problem

Let us construct solutions to the

oG

&tt = LvGy, Gilio = Go. (3.35)

For any 0 < G € D(Ev)
j EvGn)ePdA(y) = (A — m) f G(n)lnle™dA ()

and hence if A < m, then (Ly,D(Ly)) is the generator of an analytic semigroup of
contractions on Lo. If A = m, then (Ly,D(Ly)) admits an extension, which is the
generator of an substochastic semigroup, cf. [TV06]. For this particular model it is also
possible to construct solutions in the case m < A which shall be done in the following.
Let G = (G™)*_; be the decomposition of a measurable function G : Ty — R into its
components and set for n € N

(DG (1, ..., 20) = —(m = NG (21, ..., 20) + (A.G) ™V (21, ..., )

where

(AnG)(”)(:El, e Tp) = A Z Jb(:ﬁk—y) (G(”)(ml, e Ty Yy X)) — G(”)(.:El, . ,xn)) dy.
k=12,

Here 2, means that integration over the variable z; should be omitted. For each n € Ny
the operator LV is diagonal, i.e. it acts only on G(™. The equation

oG™
ot

has a solution ng) = e*(m*’\)”th(n), were Ht(n) solves

DG, Gy = G

é’t

= AH™M, H™ |y =G,
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The operator A, describes for each cell a Random walk in continuous time. The jumping
times are independent and exponentially distributed with parameter 2\ and the proba-
bility of a cell located at z € R? to jump in the region dy is given by

1

éb(x —y)dy.

The next lemma was proved in [KKPOS].

Lemma 3.4.3. The operator D, is a bounded linear operator on L'((RY)™) and L*((R%)")
for any n > 1 and the corresponding semigroup is a positive contraction semigroup.

Let Gy = (G)nen be measurable such that cach component GJ" is integrable. Then
e m=ntetAn gt — othnGl") ig well-defined and the vector Gy = (ePrG{™)% is the
unique component-wise solution to . This solution, if Gy € L,, evolves in the scale
of Banach spaces £, with a(t) = a + (m — A\)t, i.e. Gy € Ly, which follows from

oe) 6—(m—)\)nt€a(t)n LA ()
HGtHLa(t) = Z o f e Gy (21, ..., ) |dey ... day,
n=0 (Rd)n

O an
e n
<> al f GS (1, 2y |day . day = |G .-
n=0 (Rd)n

The presence of the perturbation B implies that the solution cannot satisfy G € L) for
t > 0 and any «(t). Since B sends functions of n+ 1 variables to functions of n variables it
is not helpful to discuss a solution formula, though it is possible. More precise results will
be investigated in terms of correlation functions. Let ky = (k(()"))j‘fzo be non-negative and
measurable such that k{” € L*((R9)"), then (ePk™)*_, is the unique component-wise
solution to
ok A
Pl Lok, kili—o = ko.
Denote by B2 the operator given by taking functions from n variables to functions

with n + 1 variables, i.e.

n+1ln+1

(B,%Hk:(”))(xl, ey Tp1) = A Z Z Ja(x — Ty, T — Ij)k(”)(xl, ey Ty Tjy Ty Ty )d
k=1 =1
j#k RY
The solution to (3.6]) is then given by

t

kt(n+1) _ 6—(m—A)(n+1)t€tAn+1k,(()nﬂ) n Je—(m—k)(n+1)<t—s)e(t—S>An+1Bﬁrlkg")ds. (3.36)

0

The next statement establishes asymptotic clustering for the evolution of correlation func-
tions constructed above.
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Theorem 3.4.4. For each ky > 0 measurable, such that k:[()n) e L*((RH™), there exist a
unique solution k; > 0, given recursively by formula . If 0 is finite, then for each
initial condition satisfying ko(n) < |n|!C'" for some constant C' > 0, this solution obeys
the bound

k() < |n|l(C + t)lnl(l + g)lnl,{(t)lnle—(m—/\)\nlt

with rk(t) = max{1, \, \e(™ N If there exists 6 > 0 such that a(z,y) > o > 0 for some
a > 0 and all |z|, ly| <6, then for each ko(n) = O the solution k, satisfies for any n € T
with

Ve,yen, c#y: |[x—y| <o
the estimate

k() > pimle= =Mkl ¢ > 1,

1

— LA
where = min{C, 2| Bs|\at} with T = {)\m ,AS>M

and |Bs| is the Lebesgque volume
1 A< m

of the ball Bs of radius 6.

Proof. For the bound from above we proceed by induction on the number of cells ||. The
first correlation function is given by

kgl) _ 6—(m—)\)t6tA1k((]1)
and hence by positivity of (e/41);5¢ and e!1C = C
KD < om0V < (O 4 1)(1+ O)r(t)e VL

For n — n + 1 we get with || =n+1

t
klgn-‘rl) < 6—(m—)\)(n+1)t(n+ 1>‘On+1 +J‘6—(m—)\)(n+1)(t—s)e(t—s)An+1BA k:g”)ds

n+1
0
< ef(mf)\)(nﬁl)t(n + 1>!Cm+1
t

+(1+6)"(n+ 1)!)\nfe(m)‘)("+1)(ts)(0 + 5)"k(s)"e” (M Ans s
0
< ef(mf)\)(n+1)t(n+ 1>!Cn+1

+ (Tl + 1)!/1(t)n+1(1 + 0)n+1 ((C + t>n+1 o Cn+1) e*(M*)\)(nJrl)t
< (n+ DIC+ )™ 1+ 0)" k(t) e (MmN

Here we used the fact that for s < ¢ we have k(s) < k(t). For the second part let
kS = €7 then e4nky = C™ and therefore k") = =M=Vt > Be=(m=Nt For n — n + 1
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and ¢t > 1 we obtain

t
k£n+1) > e —(m—A)(n+1) tchrl + 2|B ‘)\aﬁnf (m— )\)(nJrl)(tfs)(n + 1) —(m—2A) nsn'ds

0
t

S - (m-X)(n+Dt Je(m—)\)sds (n +1)12|Bs|ras"

0
> e—(m—)\)(n+1)t6n+1(n + 1)|

]

Above estimates show that if the probability distribution a has no hard core, i.e. a(0) >
0 for continuous distributions, then the system will consist of clusters. Appearance of such
clusters is caused by properties of the operator B2. The part L{ contains information
about asymptotic behaviour, speed of propagation etc., whereas B2 contains information
about correlations of the system. Assume for simplicity that in the cell-division the
position of the new cells are independent of each other. Then we may write a(x,y) =
c(z)c(y) for some symmetric function 0 < ¢ € L'(RY) normalized to 1. If for example c
is continuous and non-vanishing, then previous assumptions are satisfied and we get the
bound

Brple”(m=nt < kﬁ")

The same results have been shown in [KKPOS8] for the case a(x,y) = ¢(x)d(y), where each
cell creates a new cell and its location is described by the kernel c. In contrast to this
model, the old cell will not die. Clearly such models should have the same qualitative
properties.

Vlasov Scaling

Following the general scheme of Vlasov scaling described before, we scale the potentials
by a — %a and accelerate the birth by a factor n. Clearly, since the birth only consists
of the a-part, this will not change the operator itself, i.e. L, = L. The operator on
quasi-observables is then given by Lysen = RuLR, -1, where R,G(n) = n"G(n). In this
case we obtain Ln ren = LV + 1B and the operator can be defined on the same domain
for all n > 1. The evolution of scaled correlation functions is then determined by the
Cauchy problem

Okpy

ot

LA
= Lk + BTk, knli—0 = To.
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For every collection of L*-functions (r(()k))fzo above Cauchy problem has the solution &, ;

given by its components

t
1
k;gffl) _ 6—(m—)\)(k:+1)t6tAk+1T(()k‘i'l) + ﬁJ6—(m—A)(k+1)(t—s)e(t—s)AkHBkAHkgk)d&

0
This solution satisfies for any k£ > 1

ER) o (m=Nkt gt A (F)

n,t 0 » n—

in L°((R%)*). In particular if r(()k) (1, ..., 2k) = po(x1) - - - po(z), then

e—(m—A)’“etA’“T(()k) (T1,- -, k) = pe(21) - - - pe(n)

where p; is the classical solution to

0
0—’; = —(m 4+ Npt +b*pr, pilimo = po-

3.4.2 Local regulation of cell-proliferation

As we have seen for the free-proliferation model the correlation functions kf”) behave
like n!, see Theorem [3.4.4] and hence the main results cannot be applied. From a cell-
biological point of view it is reasonable to introduce some type of competition between
cells. Such competition will regulate the local density of the cell-system and hence it will
be reasonable to expect in such a case an evolution of correlation functions in the Banach
space Kg for some 8 > 0. The regulation of the system can be achieved by introducing
so-called fecundity or establishment effects, see [FKK13a]. Such effects resemble the needs
of resources for proliferation. The intensity for the creation of a new cell therefore should
depend on all neighbouring cells and be small in dense regions. In this work we follow
an alternative approach and introduce additional competition, i.e. the death intensity
depends on neighbouring cells and will be large in dense regions. Such competition is
usually described by a pair interaction function ¢(x,y) > 0 and hence the relative energy

E(z,7) == Y ¢(x,y) € [0,].

The function ¢ is assumed to be non-negative and integrable in y. For the fulfilment of
condition (A) it will be sufficient to find I'y, < I' such that p € Pg is supported on Iy,
and F(x,7) is finite for each v € 'y, and each x € R If ¢(z, ) is compactly supported
for any x € RY, then above condition is clearly satisfied. More generally suppose that for
any x € R there exists C, > 0 such that

p(2,y) < Cogly), =,yeR? (3.37)
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holds for a fixed integrable function ¢ : R — R,. Let

Ty = {’YEF 2.19() <OO}

and p € Pg with correlation function k, € Kg. Then

| Satwautn = [ sy < il | sway

TEY Rd Rd

implies p(I'x,) = 1. Here and in the following we always suppose that either ¢(z,-) is
compactly supported or condition ([3.37)) holds.

Time-inhomogeneous BDLP-model

Consider the Markov (pre-)generator given by

(LIOF)(y) = ) | mlt,2) + A~ (L) Y, a”(2y) | (F(y\e) = F(7)) (3.38)

zey yey\x
+ DN (60) @) PO o y) - PO

where a > 0 are assumed to be bounded and for all z € R?
1= fcﬁ(x,y)dy = Ja‘(w,y)dy
Rd Rd

holds. The intensities m, AT, A\~ > 0 are supposed to be bounded and t — m(t, -), A (¢, -)
are continuous w.r.t. the supremum norm. A short computation yields

(LG () ==Y mt,2)Gn) =Y. > A~ (t.x)a™(2,9)G(n)

TEN TEN yen\z
-3 S A (2 (5, 9)GONa)
zEN yen\z
YN () [ @ @Gl v )y + X () [ ot )G oy
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and

(LAWK () = = Y mlt,2)k(n) = Y5 >, A~ (tx)a” (a,y)k(n)

zen zen yen\z

= f A (ty)a (v, z)k(n v y)dy

+2 f A (ty)at (y o)k(ie o y)dy + 30 Y AT (Ey)a® (v, 2)k()\a).
mean xEN yew\w

Therefore we obtain

c(Bim) =), (m(t, z) + ¢ J At y)a (y, x)dy + fﬁ(t, y)a* (y, fﬂ)dy)

zen

Rd Rd
+ YN (La)a (zy) e P Y Mt y)at(y, o)
€N yen\r z€N yen\z
and M(n) = > m(t,x) + > > A (t,z)a (z,y).
TEN zE€N yen\x

Theorem 3.4.5. Suppose that there exists b > 0 and ¥ > 0 such that for allne Ty, t >0

DDA y)at (y,x) bl +9 ) DT A (L a)a (x,y) (3.39)

TEeN yen\x TN yen\z
holds. Assume that there exists q € (0,1) such that

gm(t,z) — § A (t,y)a* (y,2)dy — &

¥ < inf &
serd § A= (t,y)a(y,z)dy
R4

(3.40)

holds. Let B, :=log(?) and

gm(t,x) = § A (t,y)a* (y,2)dy — &

£* :=log | inf R ,
weRd § A= (t,y)a(y,z)dy

t>0 R

then all conditions of Theorem are satisfied.
See also [Rue70] for conditions of the form (3.39)).
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Proof. Condition (3.20) and (D) for any ¢ > 0 are clearly satisfied. It is not difficult to
see that for any 5 € (B, 5*) the operator L(t) act in the scale of Banach space £ and
t —> L(t) € L(L) is continuous in the uniform topology, cf. [FK13]. For condition (H1)

let 5 € (ﬁ*vﬁ*)a then

n) < Z m(t,x) + e’ J A (t,y)a™ (y,x)dy + J)\Jr(t,y)cﬁ(y,x)dy +be ™’

zeN

(1+e” ZZ)\tx ,Y)

zEN yen\z

Rd

and 1 + ¥e=” < 2 holds by B, < 5. We get for the other term

m(t,z) + e’ J)\(t, y)a~ (y,z)dy + J M (t,y)at (y, x)dy + be™?

Rd Rd
b b
m(t.) + [ A ()at . 0)dy + o+ gmlt) = [ A (g)at )y -
R4 Rd
= (14 ¢)m(t,x) < 2m(t,x)
and hence (H1) holds with a(3) := 1 + max{q, Je"}. O

Remark 3.4.6. If instead of (3.40) the weaker condition

gm(t,z) — § AT (t,y)at (y,z)dy — &

¥ < inf R
t:[eoR;] S AT (tv y)ai (y, $)dy
, R

holds for all T > 0, then we still can construct the associated forward and backward
evolution systems and show that their adjoints are positivity preserving. But in such a
case we cannot choose * to be independent of T > 0.

Let us continue with the Vlasov scaling. The time-homogeneous case was considered
in [FKK13b]. The renormalized operator is given by

(Lnsen(G) () = = Y m(t,2)G(n) = D) > A (t,2)a™ (z,9)G(n\z)

TEN xenyen\x
YN (e J 2, 9)G\e U y)dy
TEN
——ZZ)\ (t,7)a Z)\+tx J z,9)G(n U y)dy.
TEN yen\g; xen

R4
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Given the same conditions as in the previous theorem it is not difficult to see that (W1)
— (W3) are satisfied. The kinetic description for the density is therefore given for ¢t > 0
by the the backward equation with s € [0,t), z € R?

a;: (z) = m(s,x)ps(x) + ps() f A (s,y)a” (y, z)ps(y)dy — f A (s,9)a™ (y, x)ps(y)dy

Rd Rd
ps|s=t = Pt

and for s > 0 by the forward equation t € [s, ), x € R?

%(1’) = —m(t,z)p(x) — pi() f A (t,y)a™ (y, ) pe(y)dy + JA*(t, y)a* (y, z)pi(y)dy

pt|t=s = Ps-

For the analysis of such equations we refer to |[JZ09, [Yag09, (Gar11, FKT15] and references
therein.

Remark 3.4.7. Suppose that a*™(x,y) = a*(y,z) holds, then by

D2 A Eyatay) = 3 ) A (ta)at (x.y)

z€en yen\z zEN yen\z

we can rewrite condition (3.39) to

DU At a)at (zy) <blpl+9 ) > A (L w)a (x,y).

zen yen\z zEN yen\z

Regulation by Glauber-type death
Suppose that the Markov (pre-)generator is given by

(LE)(y) = ) (m+ e"C7D) (F(y\x) = F(7)) (3.41)

TEY

+ 2| D e-n) o @-u)Foow - Pe)de,
z€y \yer\x Rd
where E(z,y\z) = Y, ¢(x —y), ¢,at,b" > 0 are assumed to be symmetric, integrable

yev\z

and bounded and m > 0. Hence we obtain for v n (n\z) = &

d(z,y U n\z) = m + eZE L)
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and hence
(Ko 'd(z, - v n\x))(§) = 0Flm 4 ey (e#57) — 1;¢).

Likewise we obtain

b(x,yun\zr) = ZZb+w y)a +22b+w y)at (z —y)

YEY wey\y YEY wen\z
+22b+w y)a Z Zb+w y)at(z —y)
yen\z wey yen\r wen\z\y

and hence

(Kq'b(x,- um\a))(€) =08 Y7 YT bH(w —y)a(z —y)

yen\z wen\z\y

+ 1 (€) Y D, b (w—y)at (w— )

weg yen\z

+ 1 (§) ), D) b (w—y)at(z —y)
ye€ wen\z

+1r(§)), Y, bHw—y)a*(z—y).
ye§ wel\y

This implies for € R

c(Bin) = (m+ P} a™))nl + k(B p) Y eFem)

+ O D at @ —y)+ ) D, (b at) (@ —y)
TN yen\x zen yen\x

+e Py Y D bw—yat(z—y)

z€n yen\z wen\r\y
and M(n) = mln| + 3] eP@"\2) where k(83, ¢) := exp (eﬁ § (e?l® — 1)dx>.
zEN R4

Theorem 3.4.8. Suppose that there exist constants 0 < b <m+1,9 >0 and ¢ > 0 such

that
GHY D a @—y)+ ), Y b eat)@—y) <blpl+9Y ] D ple -

zEen yen\x zEN yen\z zen yen\r

holds and ¢ — b* is a stable potential. Moreover, assume that for all n € Ty and all
z,y, w e R?

b (w —yla’(z —y) < co(x —w)p(x —y)
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15 fulfilled. If in addition there exists 5 < log <%<1a_f>> with

max {1, v, 26_60} + k(B ¢) < 2, (3.42)
then (3.14) and (A) — (D) hold for T = |¢]e.
Proof. We obtain

c(Bim) < (m+ W X))l + 5B, p) Y eFE)

T€eN

ol + 9> D el@—y)+ePed D DT el —y)p(w - x).

xen yen\x zen yen\z wen\z\y

AT IS 3 YRECIEI RIS 3 YD S Ca et

zEN TEN yen\z €N yen\z wen\z\y

it follows that
c(Bin) < (m+ e’ )a*) + (b—1))|n| + (k(B, ) + max{1,9,2e ’c}) Z E@n\e)

TEN

and hence (C) holds. Condition ({3.14)) is satisfied for

5<b+3§a+> N b;Ll

a(f) := max {1 +e ,k(B, ) + max{l, v, 26_60}} :

Condition (D) clearly holds since all potentials are assumed to be positive and bounded
(take e.g. V(n) =1+ |n|). Condition (B) follows from

d(z,m) + bz, m) = m+ PEN) L XN b (y —w)at (x - y)
YEN wen\x
<m+ = 4 a0 |67 ||l (n] — 1).
0

For the Vlasov scaling we scale the potentials by a™ — a*, b* — 107 o 1o

and the birth part by n. This leads to
1 X X
ca(Bim) = (m+ 2B ah)) | + k(B 0) Y en )

TEN
1 1
F Y N a4 3N B et )
zEN yen\x zEeN yen\x

e B
T X Vly—wal(w—y)

z€n yen\z wen\z\y
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and M, (n) = m|n| + kn(8, @) 3 enZ@ma) where k, (8, ) = exp <neﬁ §( en?@ — 1)d )

zEN R4
Theorem 3.4.9. Suppose that the same conditions as in previous theorem with
max{1,v,2e "c} + exp (e”‘PHW+B<go>) <2

instead of (3.42)) are satisfied. Then conditions (V1) — (V3) are satisfied and the kinetic
equation for the cell density is given by

0
(6/::( z) = —mp(z) — Pt(ﬂf)e(@*pt)(@ + (a+ # (b7 py)) (), Ptli=0 = po.

Proof. Condition (V1) can be shown in the same way as in the case n = 1. Let us show
condition (V2) for the death. Observe that after taking the limit n — oo we arrive at

DY (n) = m0" + ex(p(z — -);n).
Observe that

€%E(x,n\x)e>\ ((eicp(zf-) _ 1) n; 5) — ex(p(x — )75)‘
ex((e%”“’°-—1)7ué> ~exlple = ):8)|
ex(p(x —); ).

The second term tends to zero in Lg w.r.t. &, so let us consider the first term. The
e 1) n < oz —y)efT Y plr —y) < p(z — y)e?™Y) and

< e%E(fﬂﬂ?\@

n ‘1 E(a\c)

estimates (e

- 1
‘(ew . 1) — oz — y)‘ < Zpla —y)2erY)
n

imply for all z,y € R?

e (5577 = 1) mig) = ealolw = ;9|
<>, ( (e@ - 1) n— o — y)‘ ex(p(z —)e? ) E\y)

yeE
eH‘)OHOO

HWHOO Doz (p(x = )e?"): E\y).

yes

This shows that

J

o

< |9000+”<¢> exp (€6+Hs0\|oo<<p>) ]

A B, ((e%wz )n g) — ex(ip(z — ) €)| PElAN(€)
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Convergence for the birth can be shown by similar estimates to [FK13|, which yields

BY(n) = Lray(n) > D b"(w—y)a™(z —y).

yen wen\y

This implies My (n) = m|n| < M,(n) and hence condition (V3) holds. O

3.4.3 Ergodic cell-systems

The two previous models satisfied the condition |i‘n>f1 M (n) > 0 and hence were ergodic.
"

However, the unique invariant measure for this models was pi,, = dg. In this part we
discuss models with non-trivial invariant measures.

Time-inhomogeneous Glauber dynamics

Suppose that the Markov (pre-)generator is given by

LOF)) = SO\~ FO) + 2(0) [ e BN E( U o) - F)da,

ey Rd

where 0 < z € Cy(Ry) and Ey(z,v) = >, ¢(t,z —y) with p(t,z —y) = p(t,y —x) >0
yey
such that t — (¢, ) is continuous in the supremum norm | - |, and L'-norm | - |;. A

short computation yields

c(L(t), B;n) = Il + z(t)(t, B)e™? ) e~ Frlm

zen

Rd
one possible sufficient condition for the evolution of states.

and M (n) = |n| where k(t, ) = exp (eﬁ § [emeta) — 1|d:1:). The next statement provides

Theorem 3.4.10. Suppose that C, := sup § o(t,x)dx is finite and there exist § € R
t>0 Rd

such that

|2]loe ™ exp (eﬁCLp) <1
holds. Then there exist B, < [B* with B € (Bs, *) and condition (H1) holds for all
B" € (B, B*). Moreover, condition (H3) and (3.20)) are satisfied.

Proof. Because of ¢(L(t), 8;n) < (1 + |z|we™ exp (e°C,))|n| the first assertion follows
by the continuous dependence of a(8) = 1+ |z]we ™ exp (¢’C,) on B. Condition ([3.20)
follows readily by ¢ > 0 and (H3) was proved in [FK13]. O
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Given above conditions it is not difficult to see that after scaling ¢ — %gp also
conditions (W1) — (W3) are satisfied. The backward equation for the cell density is for
s € [0,t) given by

0ps
0s

(2) = ps(x) = 2(s)e” D ploy = py
and the forward equation for ¢ € [s, c0)

o

ot (JZ) = _pt(x) + Z(t)e_(%t*pt)(x)v pt|t=s = Ps-

In order to obtain ergodicity we suppose that ¢ and z do not depend on the time ¢ > 0.

Theorem 3.4.11. Suppose that there exist 5 € R such that

ze Pexp | €’ f le=?@ —1|dz | < 1 (3.43)
R4

holds. Then there ezists a unique invariant (Gibbs) measure and the evolution of states
1s ergodic with exponential rate.

Remark 3.4.12. The assumption, ¢ is integrable and bounded, is only necessary for the

Viasov scaling. For the evolution of states, it suffices to assume that § |1 — e ?@|dz is
Rd
finite.

Above statement was proved in [KKMI10] for the stronger condition

V2

1
ze Pexp | ef J 11— e ?@de | < —.
R4

Taking e ? = { (1 — e=?@)dz yields by (3-43) the well-known condition
R4
1
§(1—e¢@)da

R4

z <

Ergodicity for individual based models

Consider the evolution of cells within the organism described by the generator L either
given by (3.38)) or (3.41)) respectively. Suppose that new cells are created by an external

source, e.g. produced by undifferentiated cells. The distribution of the new cells is
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assumed to be uniformly in the space R%. Hence the stochastic dynamics can be described
by the Markov (pre-)generator

(LF)() = (LoF)(7) + = f (F(y v ) — Fy))d,

]Rd
where z > 0.

Theorem 3.4.13. Suppose that the conditions of Theorem|[3.4.5 or Theorem[3.4.8 respec-
tively for the generators Ly are fulfilled. Then there exists zg > 0 such that for z < zy the
conditions (3.14)) and (A) — (D) are satisfied. In particular there exists a unique invariant
measure [Lin, # 0z and the evolution of states is ergodic with exponential rate.

Proof. Clearly it is enough to show that condition (3.14)) holds. We obtain
(L, B;n) < (Lo, Bim) + ze™” < al(Lo, B) + ze”

and hence condition (3.14)) holds for all z < 2z with zy := (2 — a(Lg, 8))e” > 0. O

3.4.4 Epistatic mutation-selection balance model

In [KM66] a model for the dynamics of mutation-selection for an infinite-population was
proposed. The mathematical analysis, in the language of interacting particle systems in
continuum, can be found in the recent works [SEWO05, [KKOO08, KKMP13]. Below we
consider a generalization to time-dependent coefficients.

Let X be a complete, separable metric space and o be a o-finite Borel measure on X.
Elements of X describe potential mutations and for A < X the value o(A) is the rate
at which spontaneously a mutant allele arises from A. Such allele is characterized by its
position z € A. The space of genotypes I'y is identified with the space of all locally finite
subsets of X, i.e. v = {z, | n € N} e I'y if for any compact K < X: v K contains only
finitely many potential mutations. The topology is defined as the weakest topology such

that
y— Y f(z)

TeY

is continuous for any continuous function f having compact support. For additional
properties see [AKRIS8a].
For each genotype v € 'y we assign a "selection cost” functional

a(t,7) = Yhita)+ 5 D w(t.w)

zEY €Y yey\z

with non-negative, measurable functions h,v > 0 and (¢, z,y) = ¥(t, y, ).
Denote by pu; the state of the population at time ¢, that is p; is a Borel probability
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measure on ['y. Then u; shall satisfy for a suitable collection of functions F': 'y — R
the equation

LBy = (L F. )y — (O )y + Fp@(t ) (340

with initial condition j|—¢ = po and the Markov (pre-)generator

<L@wa=1ﬁqux>Fw»Muwamm,verx

In the particular case a = 1 and ® independent of ¢ in [SEWO05] a solution was constructed
by the Feynmann-Kac formula and its behaviour for ¢ — oo was studied. Uniqueness of the
solution g, could only be proved for the case 1) = 0. For particular functions ¢ = ¥(z,y),
the results obtained in [KKOOQS8] show that the limiting measure will be a Gibbs measure
with energy ®(v). In this work we provide existence and uniqueness of (local) solutions
to the associated hierarchical equations of correlation functions and derive its kinetic
description. Therefore our existence and uniqueness result extends the one from [SEW05]
and the kinetic description was not analysed by the authors there. We suppose from now
on that the following conditions are fulfilled:

1. h > is continuous from R, to L'(X,0) n L*(X,0) and ¢» > 0 is continuous from
R, to L'(X?,0%?%) n L®(X?, 0%?).

2. a > 0 is continuous and bounded in its arguments (¢, z).

3. For any T' > 0
sup fzﬁ(t,x,y)da(y) < 0.

(t,x)e[0,T] XXX

Correlation functions k, can be defined in the same way as for X = R? where g x =
{nc X | |n| <o}, cf. [KKO02, [FKO09]. Let p; be a solution to (3.44]) and assume that it
has correlation functions k;. Then k; satisfies for any G € Bys(I'y x)

%<G, k) = (G, L*(t, k)k), (3.45)
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where L2(t, k)k = —AS(t)k + AR (t)k + B2(t, k)k is given by

AOA(t)k:(n) — ) + Jh k(nu x)o(dr)
+3 wa(t, z,y)k(n vz v y)o(dz)o(dy)

AB(t) ijtxy (nuy)o(dy) +Z (t,2)k(n\z)

TEN 5 TEN

BA(t, k) = Jh(t, ) kW (z)o(dz) + %ff@b(t, z, )k (z,y)o(dz)o(dy).

X

Conversely, let k; be a solution to (3.45]) and assume that there exist probability measures
e such that k; is the correlation function to p;. Then (u;); solves also (3.44). As for
X = R? let K, be the Banach space of all equivalence classes of functions k with finite

norm
[kl = ess sup [k(n)le*", a>0.

nelo, x

Theorem 3.4.14. For any 0 < o, < a* and € € (0, ) there exist A(a*, i, ko) = A > 0
such that for any ko € K, _. there exists a unique classical K-valued solution k; to

ok
a_tf = LAt ke, Kilemo = Ko

with 0 < ¢ < ©5%%,

Proof. Since AZ(t) is a sum of a multiplication operator and a bounded operator, it is not
difficult to see that for any ao > 0 there exists a unique evolution family (U, (¢, s))o<s<t <
L(K,) with the properties:

1. U(t, s) satisfies Uy(t, 5)|s,, = Ux(t,s) whenever o/ < av.
2. For s(r) := e § h(r,x)o(dz) + S § § (r, 2, y)o(dz)o(dy)
X XX

t

|Ua(t, 8)| L) < exp J%(r)dr

S

3. For any T'> 0 and o/ < « there exists C(a/, a, T) > 0 such that
|Ua(t, 0)k — Ua(s,0)k|x, < C(o,a,T)|k|x,,, 0<s,t<T.
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Moreover, it is strongly continuously differentiable in L(/C,/, K, ) with strong deriva-
tives
0 A
gUa(t, s)k = —Ag(t)Us(t, s)k
and 5
a—Ua(t, s) = Uy(t,s)AS (s)k.
s

Therefore conditions A1 — A4 hold with § = 0 and any A > 0. Now let C(k,t) :=
AR (t)k + BA(t, k)k, then it can be easily checked that C(k,t) satisfies B1 — B3 with r > 0
arbitrary,

Cy = 2r(a™ — o) sup e Jh(t x)o(dx)
0<t<7*
2a
ff@/} (t,z,y)o(dz)o(dy)
1

+e e aly + e e sup  sup Jw (t,z,y)o(dy)

reX 0 a*—a*

+2r(a® —ay)  sup
<< 2o

and Cj := Cy. The assertion now follows from Theorem [1.3.2] and Corollary [I.3.9 with
E, = K,. U

Rescale the potentials ¢ — €%, h — eh and a — £ 'a, where ¢ > 0 and denote by
L2(t,-) the associated operator on correlation functions. Afterwards define the renormal-
ized operator

L2, (6 k)k(n) == eMLE (¢, e k) (e E) (n) = —AS.()k + AD.()k + BA(t, k)k

g,ren

with ®_(t,n) =€ >, h(t,z) + 2>, > ¥(t,z,y) and

TEen ZEN yen\z

A (Dk(n) = )+ | h(t,2)k(n v x)o(dx)

N%

+5 fjw(t, z,y)k(n vz v y)o(dr)o(dy)

Aﬁg( =—52Jwtwy (nuz)o(de) —I—Z (t,x)k(n\z).

yen zen
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Denote by

[\DI»—t

L3 (6, k)k(n) = — f Bt 2)k(n o 2)o(dz f f bt y)k(n U @ U y)o(dr)o(dy)

+ ) alt, 2)k(\z) + B2 (¢, k)k(n)

the pointwise limit when € — 0. An application of Theorem [1.3.10] yields

Theorem 3.4.15. There exist A > 0 and for € € (0, 1] unique classical K-valued solutions
kie and 1y to

Oky .
(»/3; = LgAren(ta kt,s)kt,sa kt,a‘tzo = kO € ,Coz*fa

and

or
a—tt = L‘A/(t,rt)rt, Tt’tzo =To € ICa*—E' (346)

Moreover, for any a € (ay, a*| and T € (0, a—)\a*>
kt,é‘ d Tt7 E — 0
in KCo uniformly on [0,T].

Take k0(77) = Hp(](m)a Po € LOO(Xa U)? let pt(m) = po(t) +
€N
[T pe(z) is the unique solution to ({3.46)).

zen

a(s,x)ds, then r(n) =

O ey
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Chapter 4

Markov evolutions on I'?

In this chapter we present and prove the main results for two-component Markov birth-
and-death evolutions. Examples from mathematical biology are presented in the last
section.

4.1 Preliminaries

4.1.1 Harmonic analysis on I

For two-component systems the state space is defined as the direct product of two copies
of I'
I?:={(y"7) el xT 7" ny” =g},

, cf. [FKO13]. For simplicity of notation we write v := (y*,77) and if necessary write
r instead of {z}, hence v*\z,v* U x are well-defined set-operations. Likewise we use for
n € T'2 the notation n = 7 and ~\n by which we mean that n* < v+, n~ <y~ and y"\n™,
7~ \n~. The restriction of the product topology on I" x I' topologizes I'? in such a way that
it becomes a Polish space. I'? equipped with this topology becomes a Polish space. The
Poisson measure 7, g is defined for a, 8 € R as the unique measure having the Laplace
transform

X fl@) X g(@)
Je“”* es”  dmap(y) =exp | e* J(ef(’“") —1)dz |exp | €° J(eg(’“") —1)dzx |,

2 R4 R4

where f,g : R? — R are continuous with compact support. Hence it is simply the
restriction of 7, ® 75 to I'2. Notions of cylinder sets, local absolute continuity w.r.t. the
Poisson measure and finite local moments are adapted to I'? in the obvious way. For
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G € Bys(T3) define the K-transform by

(KG)(v) = ), G(n), (4.1)

n€y

where 1 € v means that the sum only runs over all finite subsets 1 of 4. Then KG is a
polynomially bounded cylinder function, i.e. there exists a compact A = R? and constants
C >0, N e Nsuch that (KG)(y*,77) = (KG)(v* nA,7v~ n A) and

(KG) ()| < CA+ v nA[+ ]y~ nADY, yel®

holds. The K-transform K : By, (I'3) — FP(I'?) := K(Bys(I'3)) is a positivity preserving
isomorphism with inverse given by

(K™'F)(n) == Y (-1)"¥IF(¢), nels.

§cn

Denote by K, the restriction of K determined by evaluating IKG only on I'2 for G €
Bys(T2). Tts inverse is then denoted by K. Given a probability measure x4 on I'? with
finite local moments the correlation function k,, : I' — R for y is defined by the relation

| K60aut) = [ G, mare) (42)

I

provided it exists. In such a case k, is locally integrable and p is locally absolutely continu-
ous w.r.t. the Poisson measure. Conversely, let k, be a locally integrable correlation func-
tion associated to a probability measure p. Then p has finite local moments and is locally
absolutely continuous w.r.t. the Poisson measure. In such a case the K-transform can be
uniquely extended to a bounded linear operator K : L}(I'3, k,d\) — L'(I'?, dy) such that
IKG| 112,00 < HGHLI(Fgmd,\) and holds for p-a.a. v € I'%. Let Ly, := LY (T3, k,d\)
and for k,(n) := el 1Bl we also write Ly, = Lq 5. The next statement shows a one-to-
one correspondence between certain classes of probability measures on I'? and correlation
functions.

Theorem 4.1.1. The following assertions are satisfied.

1. Let pu be a probability measure on I'? having finite local moments and correlation
function k. Then k, (&) = 1 and k, is positive definite, i.e. for any G € Bys(I'?)
with KG > 0:

fG(n)km)dA(n) >0

holds.
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2. Conversely, let k : T2 — R be locally integrable, positive definite and satisfies
k(&) = 1. Suppose there exist o, B € R and C(u) > 0 such that for all n,m >0

l{:("’m)(xl, T YLy Ym) < C’(,u)eomeﬁm, L1, Ty YLy Um € RY (4.3)

holds. Then there exists a unique probability measure p on I'? with k as its correla-
tion function.

For given o, 8 € R let P, 3 be the space of all probability measures j such that for
each p there exists an associated correlation function £, and this function satisfies for
some constant C'(u) > 0

ku(n) < Cu)eem el peT?

see (4.3). Let K,p stand for the Banach space of all equivalence classes of functions
k: T2 — R equipped with norm

HkH/caB = esssup ]Ig(n)|e*a\n+\676|n*|'
7 nel3

Working with the measure i € P, g it is often important to apply Fubini’s theorem which
yields for any G € L,

J]KG(V)du(v) = JJKG(W, ) dp(y" 7).

rr

4.1.2 Markov dynamics on I'?

Let L be a a Markov (pre-)generator on I'?] the precise form will be given in the next
section. The corresponding Markov process can be constructed by solving the (backward)
Kolmogorov equation on observables F' € FP(I'?)

OF,
6_tt — LF,, F)i_o = F,. (4.4)

Formally it is the same as investigating solutions to the forward Kolmogorov equation
(Fokker-Planck equation)

0

& [ Fonam) = [@peame), mheo = so (4.5

2 2

Here (11¢)>0 is a flow of Borel probability measures on I'2. As in the one-component case
it is possible and, indeed, it was proposed in [FKO13] to study above Cauchy problems
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in terms of the evolution of quasi-observables and correlation functions. Define for this
purpose the operators L := IK"'LIK and L® by the relation

f EG(m)k(n)dA(n) = f G(n) L2 k(n)dA(n), G € Buu(T2). (4.6)

In such a case we study the Cauchy problem for quasi-observables

0 ~

th - LGt, Gt’t:o - GO (47)
and for correlation functions

0

k= L%, k=0 = ko. (4.8)

Solutions to are formally related to by the relation F; = IKG,; and we expect
that solutions to the Cauchy problem are positive definite and hence determine
uniquely a family of probability measures (p):>o such that k; is the correlation function
for us. As a result, (1:):>0 should be a solution to .

4.1.3 General description of Vlasov scaling

Let us briefly fix the notation for Vlasov scaling in the two-component case. Let L be
a Markov (pre-)generator on I'?, the aim is to find a scaling L, such that the following
scheme holds. Let T2(t) = e'“n be the (heuristic) representation of the scaled evolution
of correlation functions, see . The particular choice of L. — L,, should preserve the
order of singularity, that is the limit

n~MTA Mk — T2k, n—0 (4.9)

should exist and the evolution T2 (¢) should preserve Lebesgue-Poisson exponentials, i.e.

if 70(n) = e(oE,n™)ex(pSin®), then T2(ro(n) = ex(pF,n )ea(pin®). In such a case
pE. p? satisfy a system of non-linear integro-differential equations

opf E S

= vg(py, P} (4.10)

ot

op;
—F=us(p, ). (4.11)

ot
The functionals vg, vs can be computed explicitly for a large class of models. Instead of
investigating the limit (4.9), we define renormalized operators L., := n~ M LA and

study the behaviour of the semigroups T3, (t) when n — oo, In such a case one can
compute a limiting operator

LS., — LY (4.12)

n,ren
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and show that L% is associated to a semigroup T2 (¢). The limit (4.9) is then obtained
by showing the convergence

T2 (1) — T3 (1) (4.13)

n,ren

in a proper sense.

4.1.4 Description of model

In this chapter we discuss a general two-component model given by the formal Kolmogorov

operator
(LF)(7) = (LYF)(v) + (LPF)(%),

where
WA = % ey ) - F) (4.14)
+ [ G v - P
and
W) = % e G ) - F0) (4.15)
+ [P F6T o) - Fa)ds,

The functions d”, d° are the so-called death intensities and b¥, b° > 0 the birth intensities
of the birth-and-death process given by the operator L. All intensities are assumed to be
non-negative. As in the one-component case we suppose that above intensities satisfy the
condition given below.

(A) There exists a measurable set I', = I'? such that for all z € R?
RYx T2 5 (2,7) — d(z,7\z), b(z,7) € [0, 0) (4.16)

are measurable and for any compact A = R? and bounded set M < T'2

J J (d5(z,m) + dB(z,m) + b (@) + BB (@ m))dA(n)dz <00 (4.17)

holds. Moreover, any measure u € P, 5 is supported on I'Z..
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4.2 Evolution of observables

Similar to the one-component case, let &, g be the completition of FP(I'?) w.r.t. to the
norm

IPle.., = 16l = [ 1G@)e 1% axm),
g
where F' = KG' € FP(I®). Then | F|i(r2dn, ,) < [F|e, , and each F € &, 3 is uniquely
determined by an element G' € L, g for which we use the notation F' = KG. For any

o < aand ' < f the dense embedding L, 3 < L p implies that &, s is continuously
embedded into £y g. Introduce the cumulative death intensity by

M(n):= > d®(@ "0 \e) + . d(@,n \e,n)

TENT zent

and set c(L, a, B;n) = c(n) = c(a, B;n) by

o(L,a, i) = Y. fe“'“'eﬁ'f'mo-ldE(x,- Ot U\ (€)AA(E)

xen*F(Q)
+ Z €a‘£+‘em£_‘|]}<alds($, SU 77+\$, CU U7)|(f)d>\(§)
men*rg
+ 6_5 Z Jea§+|eﬁ|§||Kale(x7 CU 77+’ CU 77_\1')|(5)d)\(€)
xen—Fg
+e @ Z ea‘§+‘66‘§7‘|]}<51b5($, CU 77-&-\1‘7_ U 77_)|(§)d)\(§)
zent

2
F(J

Define on By, (I'2) the operator L := Kg ' LKy, sce (7). Denote by 1* the function given
Lo nf=0

. Using the methods proposed in [FKKI12, [FKO13|] we
0, otherwise

by 1%(n) = 0 =

can compute L. Tt has the form L = A + B. The latter operators are well-defined for
functions G € By,(T'3) and are given by (AG)(n) = —M (n)G(n), where

M) = Y, d%,n*n\e)+ Y d(z,n \e,n7) >0

TENT zent
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and by

== >.G(©)

DKy dE(z, v Er -0 € \))(1\E)

£ zeg™

=GO Y (K 'd¥ (- v €\, U E))(M\E)
€S wegt

s f (€%, 6 L) (K0P (x, - u €, U E))(\E)da
§<Npa

+2 f oz, ) (K0 (@, v EF U ET))(n\E)da
§<Npa

Lemma 4.2.1. Suppose that condition (A) is fulfilled and c(«
Then (L, FP(T?)) is a well-defined operator on €5 and (L, By,
operator on Lg .

Proof. Let F = KG € FP(I'?), then by

| 1P amas() < | KIZGI0dmas() = [ B2 la)

2 2
r2 r 2

B;m) is locally integrable.
s(T2)) is a well-defined

it is enough to show that (L, Bys(I'2)) is a well-defined operator on L, p. For each G €
Bys(T'%) we have

| icmmarm

_ f f GO o )| (e, mdA()dz + j j GO 2)|dB (e, p)dA(n)de

and in view of (4.17) the latter expression is finite. It remains to show that (B, Bys(T'2))
is a well-defined operator on L, 5. Define a new (positive) operator B’ on By(I'3) by

(BG)(n ;0 27|1K51dE(a:,‘U§+7'U§_\$)|(7}\§)
+ éc@fgg Ky d (2, v €F\a, - v €7)[(n\€)
+§n J (5,6 U)Ky W (e, U €5, L E)|(N\E)de
+Zf F Uz K W, U U E)|(\E)da

SCan
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Then |BG| < B'|G| and by property (2.27) it follows that for any 0 < G € By,,(T'3)

J B'G(n)e P aA () = f (e Bin) — M)G)e NG (4.18)

3 3
holds. The assertion is therefore proved. [

Below we show that the closure of (L, FP(I'?)) is the generator of a strongly continuous
semigroup.

Theorem 4.2.2. Suppose that (A) is satisfied and assume that c(«, 5;1) is locally inte-
grable. Then the following assertions are equivalent:

(a) The closure (L,D(L)) of (L, FP(T?)) is the generator of an analytic semigroup
(T'(t))e>0 of contraction on &, such that T(t)1 =1 holds.

(b) The closure (L,D(L)) of (E,BbS(F(Q))) is the generator of an analytic semigroup
(T'(t))e>0 of contractions on L, g such that T(t)1* = 1* holds.

Proof. Tt holds that 1* € By (I'2), L1* = 0 and since K1* = 1 also 1 € FP(I'2) and
L1 =0 hold.
(b) = (a) : Define on &, s a family of operators (7'(t));>0 by the relation

THKG = KT(#)G, KG ey (4.19)

and hence ~
ITOKG|e, , = TG0y < |Glica s

The strong continuity follows from
ITOKG - KGle, , = TG = Cle,

and since (f(t))tzo satisfies the semigroup property, so does (7'(t));>0. Hence T'(t) is a
Co-semigroup on &, g. For a given pair of functions KG,Kh € &, s
Tt KG — KG
t

—Kh, t—0

holds in &, s if and only if
TG -G
t
holds in £, 3. This is possible if and only if G € D(f/) and LG = h. Therefore the
generator of (T'(t)):>o is given by LKG = KLG and

—h, t—0

D(L) = KD(L) = {KG € &, 5 | Ge D(L)}.
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To show that FP(T'?) < &, is a core it suffices to show that closure of FP(I'?) in £,
with respect to the graph norm

IKGL = |KGle, 5 + [LKG]e,

A~

coincides with D(L). So let KG € D(L), since By,(I'2) is a core for D(L) there exists
a sequence (Gp)nen © Byps(T'2) such that G,, — G and EGn — IG. By definition of
the norm in &, g this implies KG,, — KG and LKG,, — LKG in &, 3 and hence with
respect to the graph norm | - |;. The resolvent R(\; L) for L is given by

0 ee}
R(\; L)KG = f e MT(H)KGAt = Je‘”]Kf(t)Gdt — KR(\: L)G
0 0

and hence (7T'(t))¢>o is analytic.
(a) = (b) : Since T(t)KG € &, for all G € L, 3 there exists a linear operator T'(t) on

L. p such that KT'(t)G = T(t)KG, G € L,p, t > 0. The definition of the norm in &,
and the same arguments as above imply the assertion. O]

The next Proposition provides existence and uniqueness of solutions to the Kolmogorov
equation (4.4)).

Proposition 4.2.3. Suppose that (A) is satisfied and assume that there exists f € R and
a constant a = a(a, B) € (0,2) such that

c(a, Bin) < ala, B)M(n), ne T (4.20)
holds. Then the following assertions are true:
(a) Condition (b) and therefore (a) of Theorem [{.2.9 are satisfied.

(b) Suppose that there exist a, < o and [, < * with a € (a4, a*) and 5 € (B4, B*)
such that for all ' € (ay, @) and B’ € (B4, B*) condition is satisfied. Denote
by To 5 (t) the associated semigroup on Ey g, then for any a > o' and > [ the
space Eq 5 1s invariant for Ty g (t) and T(t) = Tos pr(t)le, , holds.

A~

Proof. (a) Set D(L) :== {G € Lop | M -G € L,p}. Then, since M > 0, the operator

~
T

(A, D(L)) is the generator of an analytic (of angle %), positive Cy-semigroup (e™");xq
on L,s, see [ENO0Q]. Let B’ be given as in the proof of Lemma m Then, since
|BG| < B'|G], it is enough to show that (A + B, D(L)) is resolvent positive, cf. [AR91]
Theorem 1.1]. To this end we show that (A + B’, D(L)) is the generator of a positive

semigroup. We will prove afterwards that (L, D(L)) is the closure of (L, Bys(L'y)).
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So fix r € (0, 1), cf. (4.20), such that

ala, B) < 14+r <2.

For each 0 < G € D(f/), see (4.18)), we obtain

f B'G )P laA () = f (clae, B: 1) — M(n)G () e ()

g I3

< (afa ) = 1) [ MG e A < v [ MGe e lanm

and hence

f <A + %B’> G(n)e®m P g (n) < 0

2
1—‘O

holds. Therefore by [TV06, Theorem 2.2] the operator (A + B’ ,D(E)) is the generator
of a sub-stochastic semigroup (U(s))s>o and by [AR9I, Theorem 1.1, Theorem 1.2] also
(A+ B,D(L)) = (L,D(L)) is the generator of an analytic semigroup (7'(s))s>¢ such that

T(s)G| < U(s)|G], G € Lagp.

A~

Since U(s) is a contraction operator, so is T'(s). The next lemma completes the proof of
assertion (a).

Lemma 4.2.4. By (I'2) is a core for the generator (L, D(L)) on Lop.

Proof. Let G € D(L), A, < I'2 an increasing sequence of bounded sets with | J A, = I'2

n>1

and let G, (n) := 14,(n)1ig1<n(n)G(n). Then |G| < |G|, G, — G a.e. and by dominated
convergence also LG, — LG as n — o almost everywhere. Moreover, by

ILG,| < M|G,| + B'|Gy| < (M + B)|G| € LY(T'2,d\)

and dominated convergence we obtain LG, — LG in L, p. Therefore By(T3) < D(ZA})
is dense in the graph norm. O]

(b) Let ¢ < « and B’ < f such that also holds for (o/,f’). Denote by
(fa/ﬁ/(s))szo the corresponding semigroup on L, s constructed in (a). Let (ZAL, Da/ﬁ/(z))
be the generator of fa/ﬁ/(t). By previous construction it is simply given by the action of
the operator L on the domain

~

Da’,ﬂ’(L) = {G € £a1761 | M- -Ge £O/,ﬁ’}'
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We have to show that L, g is invariant for Thy 5 (s) and

T(8)G = Ta ()G, G€Lop, s>0. (4.21)
To this end we define a linear isomorphism

S:Lap—> Lap, (SG)(n)= e(Oé—o/)ln*Ie(ﬁ—ﬁ’)lflg(m

with inverse S~! given by

(S71@)(n) = e (@M le=B=Fnl G (p)).
Define on L, g a new operator by lAll .= SLS1 equipped with the domain

Do g(Ly) = {G € Loy | S'Ge D)} = {G e Ly | MST'G € Lo 4},

Since

HMS_IGH@,B _ Je‘(“‘a/)’“e_(ﬂ‘ﬂ'”"'M(n)]G(nﬂea”+eﬁ”_d)\(n) — ||MGH£QI,B/
I3
we obtain Dy 5/( 1) ={G e Lypg | M-G e Lyp} = Dy ﬁ/(L). Let us show that

(Ll, D, @/(Ll)) is the generator of a Co-semigroup on Lo g. The definition of 5 and S -1
implies L, = A + B, where A is the same as for L and By is given by

(B1G)(n) =
— Zgg (a=a") [ \*| g (B=B)In\¢™ | Z‘ B (z, - w €T U E\T))(N\E)
§S&n €€~
—;G (a=a)In*\EF] (B=B) I~ \¢™ | Zg: ¥z, o ENT, - U ET))(N\E)
<n reE+
—(8-8") ZJ (7,67 U x)ele MBI ISP (2, U €))(n\€)da
§<pa
@) 3" f U 3, €7) el B8\ K15 (- U €))(5\E)d
§<Npa

Define analogously to B’ the positive operator Bj such that |B;G| < B}|G|, then for any
non-negative function G € D, 5 (L1) we obtain

| BrGme e anm) = [ (eta. g - M@ G )
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The same arguments as for the construction of 7'(t) show that (A + B Da/ﬁ/(f/l)) is the

generator of a sub-stochastic semigroup and hence (Ll, D, ”3/(L1)) is the generator of a
Co-semigroup. Now [Paz83 Chapter 4, Theorem 5.5, Theorem 5.8] implies that £, s is

invariant for fa/ﬂ/(t) and the restriction to £, 3 is a Cy-semigroup given by

Top(t) := Torpr ()] s
The generator of Taﬁ( t) is given by the part of (L Dy g (L )) in £, g, that is by

Da/”@»/([;)’gaﬁ : {GE Da ﬁ/( )ﬁﬁaﬂ | LGE ﬁag}
—{G€Lop | M-GeLuyp, LGE Lyop).

Condition therefore implies D(z) c Da/ﬂ/(i)]%ﬁ and hence (ZAL D xgz(A)|E 5)
is an extension of (Z D(z)) Denote by R(A; E) the resolvent for (L D(L )) and by
R(\; L) the resolvent for (L Dy g (L L) L.). For sufficiently large A > 0 it follows that
R(\,L)G e D(L) < Dy s(L )]ga”@, for any G € L, 3 and thus

RO\ L)G — R L)G = RO LY(A—L) = (A= L)R(\; L)G = 0,

where we have used that for elements in D(f/) the action of the generators is given by the
formulas for L = A + B and hence coincide. O]

For one-component models, i.e. b¥ = 0 = d¥, a similar construction was already done
in [FKK12]. The main assumption was that each term in ¢(ev, 8;7) is bounded by 3M ()
and it was not clear whether f(t) is a contraction operator for ¢ > 0. The next example
shows that the constant 2 in (4.20)) is optimal.

Theorem 4.2.5. The constant 2 in condition (4.20)) is optimal in the sense that it cannot
be increased.

Proof. 1t suffices to find a model with a(«, §) > 2 and show that the Cauchy problem ({4.7))
does not admit a solution in £, 3. Take d¥ = 1, b¥ = 2z > 0 constant and b° = d° = 0,
then condition can be restated to z < € and a € R is arbitrary. The evolution
equation is in this case exactly solvable and hence has for every initial condition G
the solution (Gy):>o given by

Gi(n) = eI fG(nt nmuE e (2(1—e ")) dNET), neTy,

see [Finll] for the one-component case. If condition is satisfied, then G; € L, .
Suppose that a(a, 3) > 2, i.e. z > €” and let ¢y > 0 such that (1 — e~*)z > € for all
t > to and hence

z1—e e +e ) >z(1—ee? > 1.
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Take 0 < G € L, 3 such that G ¢ L,z for any 5/ > . The unique solution G, is then
positive and satisfies

Gl = [ [ 1G017 0 € Jeate1 = e ) e A Jaxt)

rzrlo

= f NGt )ea(z(1—e7);67) D el lan(mT, &)
B g

= JG(n*,ﬁ) ((e’ﬁ +ez(1— e’t))‘g_‘ eo‘|”+|eﬁ|§_|d)\(n+,§’) = 0.
3

]

Let d%,d% dE df b5 b% bE bE € [0,00] be birth-and-death intensities which satisfy

) n’ YY) Y Yn

condition (A). As in the one-component case, introduce ¢, (a, 8;1) by

2 Jea'ﬁleﬁlﬁ"moldE(x, ot un\e) = Kotdy (z ot u T \a) [ (€)dA(E)

zen— Fg

+ >0 | e PN S (@, wp P\ - ) = Kt (- w P\, - U )|(£)AE)
mEr]‘*’Fg
+e P3| e (2, ot o \e) — Ko E (- u L U \a)[()AA(E)

TENT 1_,(2)

+e Z €a|£+|€6|£_||ﬂ<albs(x7 tV 77+\LU, Y 777) - K81b§($7 "V 77+\LU, "V U7>’(f)d)‘(£)

ren+ 2
0

and M,(n) = > d¥(x,nt,n\z) + Y. d>(x,n"\xz,n7). Denote by L,, the Kolmogorov

TENT zent
operators associated to the intensities d”,d”,b% bF. The next statement implies the

n)>-n’'n) - n -’

continuous dependence of the constructed semigroups 7,,(f) w.r.t. above intensities.
Theorem 4.2.6. Suppose that the following conditions are satisfied:

1. There exist a, f € R and a constant a(a, B) € (0,2) such that
C(Lmaaﬂ;n) < a(avﬁ)Mn(n)v ne FS? n=1

holds.
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2. There exist constants A >0, N € N and 7 > 0 such that
2 (z,n) +dy(z,n) < AL+ |n))¥e™, nelf, zeR?
holds.

3. co(a, B;m) —> 0, n — o0 holds for all n e T3.

Then (4.20)) is satisfied. Let T(t), T, (t) be the semigroups on E, g associated to L and L,
respectively. Then for any F € €,

T.t)F — T{t)F, n— w©
holds uniformly on compacts int > 0.

Proof. Since |c(Ly, o, B;m) — ¢(L, o, Bin)| < cule, Bin) —> 0, n — 0 and |M,(n) —
M(n)| < cula, B;m) — 0 it follows that

(L@, Bin) = lim (L, Bin) < ala, ) lim Mo () = a(a, §)M (1)

and hence holds. Let T'(t) and T,(¢) be the semigroups on &, s generated by the
closure of (L, FP(I'?)) and (L, FP(I'?)) respectively. By Trotter-Kato approximation it
suffices to show L,F — LF for any F € FP(I'?). This is equivalent to L,G —> LG for
any G € Bys(I'3). Therefore

\ﬂﬂ—fG@ﬁSJ%mﬁmW%MWWWWHMW
3
and the integrand tends to zero. Since c¢,(a, B;n) < a(w, B)(M(n) + My(n)) and by
M(n) = lim M,(n) < Aln|N*tem" it follows that c,(a, 8;n) < 2a(a, B)Aln|N*te™ and
n—0o0

hence the assertion is satisfied by dominated convergence. O

4.3 Evolution of correlation functions

Suppose that condition (A) and (4.20)) are fulfilled. Denote by f(t)* the adjoint semigroup
on K, and by (L*, D(L*)) its generator. This is, by definition, the adjoint operator to
(L,D(L)), i.e. (LG,k) ={G,L*k) for G e D(L) and k € D(L*).

Remark 4.3.1. Let o/ < « and ' < 8 be such that condition (4.20) holds for o, 5" and
a, 5. Let (T p/(s))s>0 be the analytic semigroup constructed in Theorem 4.221. Then by
(4.21) for any Ge Lopg < Lo p and k€ Ky g < Ko p we obtain

(G, To g (t)°k) = (Toy 5 ()G, Ky = (T()G, k) = (G, T(t)*k)
and hence f(t)*k = fa/ﬁ/ (t)*k holds.
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Because of the relation it is reasonable to consider the linear operator L given
(L)) == X | ko OEG Pz, o™, u ™ \2))()dA(E)
= > | B UK ¥ (@, - P\, U n))(E)AA(E)

+ D | R oty v\ (KT (- u L u T \a))(©)AAE)

+ 2 | Bt o N U)K (- up e, U ))(€)AA(E).

We will consider this operator on the maximal domain
D(L?) ={ke Kuop | Lk € Ko}
Below we will need the additional conditions:
(B’) There exist constants A > 0, N € N and 7 > 0 such that
d*(x,n) + d¥(z,n) < AQ + )N zeR? nel?
holds.

(C) There exist o, ' € R with o/ + 7 < o, f' +7 <  and a constant a(a/, §’) > 0 such
that the condition below is satisfied

(o, B5m) < ale!,8)M(n), neTg.
Lemma 4.3.2. Suppose that (4.20) and (A) are fulfilled, then (ZA}*, D(ZA}*)) = (L?, D(L?)).

If in addition conditions (B’) and (C) hold, then L* considered as an operator Ko 5 —>
Kep is bounded. In particular Ko g = D(L?) holds.

Proof. Tt is not difficult to see that for any G € D(L) and k € D(L*)

f G(n)(E*k)(n)dA(n) = j (EG) (mk(n)dA(n) = f Gn)(LAR)(n)dA (D).

I3 rg I3
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see (2.27). Thus L% = L*k Ko and hence D(L*) ¢ D(L™). Conversely let k €
D(L?), then for any G € D(L) above equality implies k € D(L*). For the second assertion

observe that for k € Ky g
[LAk(n)] < [k, cla!, B5m)e T le? I
< |kl a(a’,5/)M(n)e*(a*a’)ln*Ief(ﬁfﬁ/)\n*\ea\nﬂeﬁIn*I

< |kl ,ale, 5/)A‘n’N+le—(a—a’—7)ln+Ie—(ﬁ—ﬁ’—f)\n*\ea\nﬂeb’\n*\’

B/
B/

hence the assertion follows by (|n™| + |~ |)¥ 1 < 2N(|nT N+ + |n~ |V,

et < (%)ae_a, a,r >0, b>0

and

N N+1_,—(N+1 N N+1_,—(N+1
L P (I Pl L A Ch ) A B
~ (a—o —T)NHL (8= —7)N+

]

Since L, g is not reflexive, f(t)* does not need to be strongly continuous. In fact it is
continuous only w.r.t. the topology o((La5)*, Ka ) = 0(Kas, Lap). Here 0(Kq g, Lag) is
the smallest topology such that all linear functionals £, 3 3 G — (G, k) are continuous,
where k € K, 5. It is well-known that T(t)* is strongly continuous on K s = D(L?) and

its restriction T(£)® := A(t)*\,C@B is a Cy-semigroup with generator Lk = L2k,

D(L®) = {ke D(L*) | LAk e K2,,}.

Hence we obtain existence and uniqueness of strong solutions to on the Banach
space ICSB. Unfortunately this space depends on the generator and does not provide
uniqueness for the weak solutions. Another possibility is to change the topology on K, 5.
Let C(Kag,La,s) =: C be the topology of uniform convergence on compact subsets of
L. . A basis of neighbourhoods around 0 is given by sets of the form

{keKap | sup KG, k)| < e},
GeK

with € > 0 and compact K < L, g, see [WZ02, WZ06, Lem10] and the references therein.
The semigroup (f(t)*)tzo becomes continuous w.r.t. C and its generator w.r.t. C is exactly
the adjoint operator (L, D(L?)), cf. [WZ06, Theorem 1.4]. The next theorem is our
main result for this section, it provides existence, uniqueness and regularity of solutions

to the Cauchy problem (4.8) on /C, 5.
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Theorem 4.3.3. Suppose that (4.20)) and (A) are satisfied. Then for any ko € Ko p the
equation

(G k) = (G ko) + J (LG, k>ds, G e D(D) (4.22)

A~

has a unique solution given by k, = T(t)*ko. This means that k; is continuous w.r.t. to
the topology C and satisfies (4.22)). Moreover, t — (G, k;) is continuously differentiable
and solves the Cauchy problem

d A ~
&<G, kft> = <LG, kft>, kt|t=0 = kfo, G e D(L) (423)

Assume that (B’) and (C) are fulfilled. Then the following assertions are true:
1. If ko € Ko pr, then ki is continuous w.r.t. to the norm in K, .

2. If ko e Ko g and o' +217 < o, '+ 27 < f3, then k; is also continuously differentiable
w.r.t. to the norm in K, g and the unique classical solution to (4.8]).

Proof. Existence and uniqueness for the Cauchy problem follows from [WZ00, The-
orem 2.1} and Theorem [4.2.3] A direct proof can be achieved by the arguments provided in
the proof of Theorem [1.1.7, Since f(t)* is continuous w.r.t. o(Ko g, Lag), t — <ZALG, ki)
is continuous and hence (4.22)) implies (4.23)).

1. If kg € Ko g, then by Lemma [4.3.2] L%k € Ko,5 and hence ko € D(L?) = K 5 which
implies the assertion.

2. Suppose that o/ + 27 < «, §/ 4+ 27 < § and let o” € (', ), 5" € ((',) be such
that o + 7 < a’, a"+7 <aand f/ +7 < ", 8" +7 < B. By Lemma [£.3.2] the op-
erator L2 is bounded as Ko g — Kor gr and Kor gr — Ko 5. Therefore kg € D(L?) and
L2kg € Konpr = D(L?). Thus ko € D(EQ) implies that k; is continuously differentiable
w.r.t. the norm in K, g and it is a classical solution to . O

We close this section with one sufficient condition for the evolution f(t)*ko to satisty
the generalized Ruelle bound given below. Let E : I'2 — R, be measurable such that

E(n) +E() <Enu§), nné=0a, n,§el}] (4.24)

holds. In particular this implies E(¢) < E(n) for € = n € I'2. In applications such function
is chosen to be growing at infinity, e.g. for non-negative potentials ¢1, ¢o, ¢3 of the form

E)= > > édile—y)+ >, > dale—y)+ D>, D ¢slz—y).

zent yent\z zen~ yen~\z zent yen—
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We will say that the correlation function k € K, 5 satisfies the generalized Ruelle bound
if
k()| < Cecn™ Bl le=Em) — p e 2

holds for some constant C' > 0. The grand canonical Gibbs measure with activity z > 0

and pair potential ¢ is an example of a measure with such decay of correlations, cf.
[KKKO04].

Remark 4.3.4. Suppose that k, is the correlation function for some probability measure
w on % an k, satisfies the generalized Ruelle bound. For i€ Z% let

1 1
Z{TGRd|’ik—§<Tk§ik+§, k’=1,...,d},
define |v;| :== |y n Q;| and set

= {7 T? []7f| < n(max{1,log(lli|«)})?, Vi e 2%}.

Suppose that the functional E is of the form

E@m= ), Y, dl@-y)

ze(ntun™) ye(ntun~ )\z

= D by 2> Dda-y)+ > D> da—y)

zent yent\x xent yen~ yen~ yen~\x

where ¢ is symmetric, integrable and superstable in the sense of Ruelle, cf. |[Rue70/. Then
in [KKKO0J)J (for the one-component case) it was shown that u(|J U,) = 1. In fact, it

n>1
should be not difficult to adapt such result for the two-component case.

Define for «, 5 € R a function cgec(c, 5;1) by

Cdec(aaﬁ;n) =
2 [ ot o IS IO
TENT 1‘3
+ 2 f G, v\, - ) (€)et e lemHOdA(g)
x€n+r(2)
+e P 2 E(n)—E(ntn \:v)J“K le(I unt,-un \z)|(€)e a\&ﬂeﬁ\ﬁ‘\efE(ﬁ)d)\(é)
zeEN— To
Z B —Em\z.n™) J“K WSz, - oz, - U n7)|(€)eE el e EOgN(€).
zent Ty
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Denote by B, sz the Banach space of functions G with norm

G llage i= [ GO e e Bar(y)
g
We identity the dual Banach space B}, 5 p with the space of functions & having finite norm
15| a,5,6 := esssup |k(n)|e_a‘"+‘e_6|"7|eE(”).
nEFg
Then k satisfies the generalized Ruelle bound if k € B}, ; 5. The next theorem gives one
sufficient condition that the evolution k; = f(t)*ko satisfies the generalized Ruelle bound.

Theorem 4.3.5. Let (A) be satisfied and suppose that there ezists agec(a, B) € (0,2) such
that

Cdec(()éyﬁ;n) S adec(avﬁ)M(n)7 ne Fg

holds. Then (L, DB(L)) is the generator of an analytic semigroup of contractions (fB(t))tZO
on Ba g g, where

DB(L) = {G € Bapp | M-GeBapr}.
This semigroup satisfies similar statements to Theorem |4.2.5 and|].3.5
Suppose that (4.20) holds. Then for every ko € B, 5  the unique weak solution to (4.22)
is given by fB(t)*kO =k = f(t)*k;o and hence satisfies ky € B, 5 .

Proof. Denote by B’ the positive operator defined in the proof of Theorem [4.2.3] For

~

every 0 < G € DB(L) by property (4.24) and a short computation we see that

| G 0Ny < [(eala,Bin) - MG I e Eax)

2
I3 I

is satisfied. The same arguments as for the proof of Theorem show that f,, D5(L
is the generator of an analytic semigroup T%(t) on B, 3 and Theorems {4.2.3 and |4.3.3

hold for this semigroup. Fix ko € B 5 5, then TB(t)*ky is the unique weak solution to
in B 5 . Since ko € B% 5 5 © Kq 3 is continuously embedded T(t)*kq is the unique
weak solution to in Kqp. Let us show thatAfB (t)ko is also a weak solution in
IEQ”B. Because of L, 3 < B, sr we see that (L, DB(L)) is an extension of (L, D(L)) and
TE(t)*ko € B 3, © Koy is continuous w.r.t. 0(Ka,s,La). Because of

(T8 () ko(m)| < e PP P TE (1) ko g < €M Ko,

we get by [WZ06, Lemma 1.10] that it is also continuous w.r.t. C(K,p,Lapg). As a
consequence TB(t)*ky is also a weak solution to ([#.22) in K, and uniqueness implies
T(t)*ko = TB(t)*ko. O
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4.4 Evolution of states

Suppose that (A) and are satisfied. Let T'(t) be the semigroup on &, 3 generated
by the closure of (L, FP(I'?)). Let £ ; be the dual Banach space to &5 and T'(t)* the
adjoint semigroup on &7 5. A functional £ € £ ; is called positive if for any 0 < KG € &, 5
the action satisfies K(KG) > 0. Let K 5 < lCa 3 stand for the cone of all positive definite
functions in /C, g.

Lemma 4.4.1. For any linear functional { € 8;?5 there exists a unique function ky € Ky 5
such that

UKG) = (G, k), KGeEars (4.25)

and HEHg* = ||kelk, , hold. The functional { is positive if and only if k, € K 5. In such
a case £ 35 given by

(KG) = (G, k) = k(D)NKG, gy, KG e FP(I'?)
with (e € Pap associated to the correlation function @k@

Proof. Let £ € £} 5, then U(G) = ((KG) defines an element in LY 5= Kap. Hence there
exists a unique element k; € ICy, 5 such that 2(6‘) = (G, k¢) and

[llex, = sup JUKG)| =  sup (G ko)l = [kl ,

IKGle,, ,=1 Gllzy 5=

holds. For KG > 0 we get ((KG) = (G, k;) > 0 if and only if &, is positive definite. The
last assertion is a consequence of Theorem [£.1.1] O

As a consequence for any ¢ € & 5 the action T'(t)*( is represented by f(t)*k'g € Kap,
ie. for any KG e &,

(T(t)*0)(KG) = UT(H)KG) = (T(t)G, ko) = (G, T(t)*ke).
holds. From f(t)ﬂ* = 1* we obtain f(t)*ko(@) = ko(g) and by K1* = 1€ &,
(T(t)*0) (1) = T(t)* k(D) = k(D). (4.26)

Therefore the semigroup (T'(t)*):>0 is conservative on £ 5. Let us start with the notion
of solutions to the Fokker-Planck equation (4.5)).

Definition 4.4.2. A flow of Borel probability measures (iit)t>0 < Pap is said to be a weak
solution to (A.5) if for any F € FP(I?), t —> (LF, ;) is locally integrable and satisfies

(F, ) = (F, o) + J<LF, pHds, ¢ > 0. (4.27)
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Uniqueness is stated in the next theorem, its proof is achieved by showing that any
solution to the Fokker-Planck equation (4.5)) yields a weak solution to ({4.8]).

Theorem 4.4.3. (Uniqueness) Suppose that (A) and are fulfilled. Then equation
has at most one solution ()0 < Pag such that its correlation functions (ki)i>o
satisfy

sup ||ke|k, , < oo, VT >0.

te[0,T7]
Proof. Let (ut)i>0 < Pap be a solution to , and denote by (ki)i>0 © Ko p the as-
sociated correlation functions. Let F' € ]-“’P(FQ) and G € Bbs(FZ) c D(L) such that
F = KG. Then by ki(n) < [kix, e le#| it follows that G, LG € L, 5 < Ly,. Since

K : L, — LYT? dy,) is continuous it follows that F = KG, LKG = KLG belong to
LY(T?, dyy) for any ¢t > 0. Moreover,

(LF, )y = (KLG, ) = (LG, k;)

and hence t —> (LG, k;) is locally integrable. This show for any G € Bys(T3)
(G, k) = (G, ko) + J@G, k>ds, t>0.

Hence k; is continuous w.r.t. o(K, 3, Lap) and since k; is norm-bounded on [0, T'] [WZ0G,
Lemma 1.10] 1mphes that k; is also contlnuous w.r.t. the topology C It remains to show

that (k;)i>o solves ) for any G € D(L ) To this end let G € D(L L), then there exists
G, € Bys(T'%) such that G — G and LG, — LG in L, p. Passing in

(G ke = (G ko) + f@@n, ko>ds

to the limit n — oo shows (4.22)). As a consequence (k;);>o is a weak solution to (4.22)). [

Remark 4.4.4. Let ky € K, 5 be positive definite and suppose that k; := f(t)*ko € Kap is
positive definite. Then (k;)i>o is a weak solution to and for each t > 0 there exists
a unique iy € Pop having correlation function k. By (G, ki) = (F, ) and <EG, ki) =
(LF, ) it follows that (pu)i>o0 is a weak solution to .

Above considerations show that for existence of weak solutions to , it suffices
to show that f(t)* preserves the cone of positive definite functions. The main idea for
the proof of positive definiteness is to approximate the evolution k;, = ’f(t)*k:o by an
auxiliary evolution ﬁ;(t)*ko and prove that 7, 5(t)*ko is positive definite. Such idea was
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proposed in [KK16|, where the authors proved for the BDLP-model positive-definiteness
of a local evolution. Let (Rs)s=o be a sequence of continuous integrable functions with
0 < Rs <1and Rs(x) / 1 as § — 0 for all z € R%. Define new birth intensities by
bs(x,m) := Rs(x)b%(z,n) and b¥ (x,n) := Rs(x)b¥(z,n) for all 2 € R? and n € T'2. In the
following we simply say that (Rs)s=o is a localization sequence. In such a case the overall
birth intensity is finite, i.e. for any n e 'z and § > 0

J (b5 (z,n) + bf (z,m)) da < o0 (4.28)

Rd

holds. The considerations of the second chapter imply for each n € T'Z the existence of
an associated (minimal) birth-and-death process (1;);>0 associated to Ls starting from
n with the state space ['2. Here Ls is obtained from L by replacing b%,b¥ with b5, bF.
The following are the main assumptions for the existence of weak solutions to the Fokker-
Planck equation.

(B) There exist constants A > 0, 7 > 0 and N € N such that for all x € R? and n e I'

d%(z,n) + d®(z,n) + b°(2,n) + b"(x,n) < AL+ |n)Ne™. (4.29)

(D) There exists a localization sequence (Rs)s-o such that the (minimal) birth-and-
death process associated to Ls is conservative, i.e. has no explosion starting from
any initial point n € 2.

The next proposition is the main result. It provides positivity of the semigroups con-
structed above. Note that Puo g < Pag < & 5

Proposition 4.4.5. (Existence) Suppose that (A) — (D) and (4.20)) are fulfilled. Then
T(t)*Pu g < Pap holds. In particular for any puo € Po g there exists exactly one solution

(pt)i>0 < Pap to (A.5) given by T(t)*uo = . If conditions (B) and (C) hold for all
7> 0, then T(t)*Pas € Pag-

Existence of an associated Markov function is stated in the next corollary.

Corollary 4.4.6. Suppose that (A) — (D) hold for any 7 > 0 and assume that (4.20))
holds. Then for any p € P g there exists a Markov function (X[')i>o on the configuration
space I'? with the initial distribution p associated with the generator L.

The rest of this section is devoted to the proof of Proposition [£.4.5, Consider a linear

operator Zs = —Ds+Qs on L' (T'2 d)\), where the first operator is a multiplication operator
given by the function Ds(n) = M(n)+ § b5 (z,n)dz+ § ¥ (x,n)dz. The integrals are finite
R4 R4

171



due to (4.28)). The operator Qs is given by

QsR(n) = f 45 (&, ) R(n* 1~ U x)da + fd%,n)f%(n* U 2,97 )dz

R4 R4
+ 05 @ o \e) Ry \e) + ) b5 (P \e, T ) R\, ).
xenT zent
The operator Zs is considered on the domain
D(Zs) = {Re LY(I'3,d)\) | DsR e L' (T3, d\)}.
The results of the second chapter imply that for any Ry € D(Zs) the Cauchy problem

5

M LR, Rl =Ry (4.30)
admits a minimal solution given by a Cy-semigroup (S5(t))s>o on L'(T'3,d\). Condition
(D) implies that (Zs, D(Zs)) is closable and the closure is the generator of the Cy-semigroup
(Ss(t))i>0. Therefore, for any Ry € D(Zs) there exists exactly one solution to and
this solution is given by Ss(t)R. For technical reasons we will also need the adjoint
semigroup on L*(T3,d\). Let (Js, D(Js)) be the adjoint operator to (Zs, D(Zs)) on
L*(T2,d\). The following lemma is proved in the same way as Lemma [2.4.3]

Lemma 4.4.7. For any F € D(Js) it holds that JsF = LsF.

IAJemma 4.4.8. For any 0 > 0 Theorem |4.2.5 and |4.3.5 hold with L replaced by Ls. Let
T5(t) and T5(t)* be the semigroups on L, g and K, g, respectively. Then for any G € L,

Ts(t)G — T(t)G, §—0
is satisfied.

Proof. Let 25 = K,'LsKy = A + Bs, where A is given as before and Bj is obtained
from B by multiplication of the terms for the birth by Rs(z). This operator is defined
on D(L) for any & > 0 and since Ry < 1 Theorem [4.2.3 and [4.3.3| can be applied to Lj,

which yields the first assertion. For the second assertion observe that for G € D(L) and
0 < hs(z) :=1— Rs(x) <1 we obtain

|LsG — LG|c. , <

#1601 S o) [ IG5 w0 €70, 0 €)1 e larGan(e

re€t

¥ j GO S hs(w) j Kg 55z, U €, 0 £\a)|(m)eE et 1A B () dA(E).
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The integrand tends for each £ € I'Z to zero as § — 0, hence by dominated convergence

LsG — LG. Trotter-Kato approximation therefore implies Tj(t) — T'(t) strongly on
,Cayg. [l

Let B, s be the Banach space of all equivalence classes of functions G with norm
G, = [ 16 er(Rain® Jes s Je e lax (),
I3

Likewise let B}, 5 be the Banach space of all equivalence classes of functions k with norm

k
] 55, = esssup bl
7 ner? ex(Ra; nt)ea(R; - )ecln* sl

The same arguments as for the proof of Theorem [4.2.3|and [4.3.3|show that we can replace
Lo 5, Kap also by B, g and B, 5. Denote by Us(t) and U;()* the corresponding semigroups
on B, and B} 5, respectively. Let (1/';5, DE (E)) be the generator of Us(t). The proofs of
Theorem 4.2.3] and [4.3.3| show that

DB(L) = {G € Bus | M-GeBag).

Thus the Cauchy problem

0 ~ ~

a<G, uly = (LsG,uly, ulli—o = up, VG € DB(L) (4.31)
has for every ug € B, 5 a unique weak solution in B}, 5 given by Us(t)*uo.

Lemma 4.4.9. Let ko € B}, 5, then fg(t)*k:o = Us(t)*ko.

Proof. First observe that Bj ; © K, continuously and hence ky € K, . In particular
ud = Us(t)*ky and K := f;(t)*ko are well-defined. Moreover, since also L, < By g
continuously we obtain D(L) < DB(L), i.e. (Ls, DB(L)) is an extension of (Ls, D(L)).
Therefore (u);>o is also a weak solution to and thus by uniqueness u! = k?,
t>0. O]

Lemma 4.4.10. Let kq € BY, 5 be positive definite. Denote by u) € B 5 the unique weak
solution to (4.31)), then ul is positive definite for anyt > 0.
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Proof. Define for any u € B ; a lincar operator Hu(n) := §(—=1)Flu(n v £)dA(£). Then

2
F0

‘Hu is well-defined and satisfies for any C',,C_ > 0

J]Hu ) em A ) nyu (nu &)l laxnE)dr(n)

rzr2

JZ OO ) ar ) = [+ 071+ € ) ar()
£C77 F(Q)
<l , 1+ 0010+ O M ey (R e (R A ).
I3

ile. H: Bzﬂ — Liog(C) log(c_) 1s continuous. Let G' € B, g be arbitrary, then for any
u € B, 5 we get by Fubini’s theorem and (22.27)

oG Huy = [ Y Gie f 1)<l  OdAC)A(n)

gcn
F%

_ f J 1)llu(n U € U O)AAQ)AA(E)AA(n)

81‘2 F2

- f -1ty 0 AN = [ GEu(NE) = (G

¢cn

— e

r2 r2
and thus
(KoG, Huy = (G, u) (4.32)
holds. We can apply Fubini’s theorem and since
[ [ [1e@iut o ¢ orranearm
rgrgrs
< Julg e80T [[|GOIeE M ey (R € en(Rai € )ANE)
g
is satisfied, where (R;) := { Rjs(x)dx. For the same u and G € DB(E) we obtain by
Rd

and KOE(SG = L(;]K()G
(LsG,u) = (Ko LsG, Hu) = {LsKoG, Hu). (4.33)
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Now let Us(t)*ko = uj € B 5, then
t
(G,uly = (G, up) + J<E5G, ulyds, Ge DB(E).

0

Observe that condition (B) implies Kiog(2)10g(2) < DB5(L). Hence by (4.32) and (&.33) it
follows for R? := Hul € LY(T'2,d\), t > 0 that

(KoG, R = (KoG, Ro) + J<L5]K0G, ROds, G € Kiog@)10s(2)

holds. For any F € D(Js) < L*(Ty,d)\) we get |K 'F(n)| < ||F|z=2" and hence
D(T5) © KoKiog(2),l0g(2)- Thus we can find G € Kiog(2) 10g(2) such that KoG = F € D(Js).
Lemma [4.4.7] therefore implies

<R@%%RR®+ﬂ%RR%h Fe D).

Since ko € B, 5 we get by Theorem ml) that u{ is continuous in ¢ > 0 w.r.t. the norm
in B ;. Because M : B ; — L'(I',d\) is continuous, R} = Huf is continuous w.r.t.
t > O on LY(TZ d)). Hence (R9)i>0 is a weak solution to (4.30). The main result from
[Bal77] therefore implies RS = Ss5(t)Ry > 0. Finally, for any G € By, (T'2) with KG > 0
we get

(G,udy = (KoG, RO >0, t>0.

We are now prepared to complete the proof of positive definiteness.
Proof. (Proposition 4.4.5)) Let g € P g with correlation function kg € K./ . Define
kos(n) == ko(nex(Rs;n*)ex(Rs;n™), 6 >0, neTy,

then ko5 € B 5 and it is positive definite, cf. [Finl3, Finll]. By Lemma we

get ﬁ;(t)*kw = Us(t)*kos € B} 3 and by Lemma {4.4.10| the latter expression is positive
definite. Let G € Bys(I'2) be such that KG > 0. Then it suffices to show that

(G, Ts(t)*kos) —> (G, T(t)* ko), & — 0.
To this end observe that
(G, Ts(t)*kos) = (T5(t)*G = T()G, ko sy + (T(t)G, ko g)-
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The first term can be estimated by
IT5(6)G = T()G| £, 5 [ Kol s

and hence tends by LemmaA to zero. The second term tends by dominated conver-
gence to (T'(t)G, ko) = (G, T(t)*ko), which implies that T'(t)*ko is positive definite.

If conditions (B) and (C) hold for all 7 > 0, then kg 5(n) := e~ ky(n) belongs to Ku_s5_s
for any 6 > 0. Consequently, above considerations imply that f(t)*k(w € K, p is positive
definite. Taking the limit 6 — 0 yields the assertion. O

Remark 4.4.11. Suppose instead of (B) the following to be satisfied: There exist A > 0,
N eN and vy, >0, vy, 15 > 0 such that for all x € R? and n € I%:

b5 () + b7 (2, 1) < A(1 + [n|)N el
d®(z,m) < A1+ [p)N eV
d®(z,m) < A(1+ [n])Ver2".

Then for any positive definite ko € Ko g the evolution f(t)*k‘o 18 positive definite, provided
(C) holds for o + vy <, ' + vy < .

4.5 Ergodicity
Let 1 € Pop and denote by k, its correlation function. Then L, 5 < Li, and hence

Eap < LYT?,du). Therefore, for any F € &, 5 we see that (F), := § F(y)du(y) =
2

§ G(n)k,(n)dX(n) is well-defined. The next statement provides ergodicity for the semi-
1‘*2

0

groups (1'(t))e>0 and (T'()*)eo.
Proposition 4.5.1. Suppose that (A) — (D), (4.20) and |i‘n>f1 M(n) > 0 are fulfilled.
nl>

Then there exists a unique invariant measure [y, € Pog. Namely, pin, satisfies

| 1P ) = 0. Fe R (4.34)

l“2

and T(t)* ftiny = finy for all t > 0. Moreover, there ezist constants C' > 0 and & > 0 such
that the following assertions hold:

1. For each F € &, 3

[T E = CF) i

ga,ﬁ S C@iEtHF - <F>/‘Liango¢,ﬂ7 t Z 0 (435)

holds.
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2. For any po € Po g let py = T(t)* 1o € Pop, then
H:ut - ,uinVHS:ﬂ < Ce_EtHMO - Mianf):ﬂ) t> 0
holds. If conditions (B) and (C) hold for each T > 0, then above claim is also true
for g € P g.

The rest of this section is devoted to the proof of above proposition. Let ICil ={ke
Kag | KO =0}, K24 = {k € Kag | k = k1*, k € R} and denote by 1*(n) = 07 I+,
Multiplication by 1* respectively 1—1* defines projection operators 1* : K, g — ng, 5 and
(1-1%) :Kpp — IC?B These projections are orthogonal in the sense that 1*(1 —1*) =
(1 —1*)1* = 0. Hence we obtain the decomposition

ICa“B = IC(OJ(75 @ IC(ilﬂ
Define the linear operator Sk() = 0 and for n # &

M0 =~ g7 D | v O e Ut o) )

TET T2\ ()
——2 | koo e onta o )EE)
””E" T2\{z}
T 2 j 0t o€ U E\D) (KW, Ut U \a) (E)AA(E)

+—Zf (" U €N 0 )G - U\, L)) (AN

x€n+

ie. Sk(n) = WLAk(n) + k(n). The next theorem provides existence and uniqueness
of solutions to the equation L2k = 0, i.e. for correlation functions. For one-component
systems a similar result was proved for the case k = 1 in [FKO13].

Theorem 4.5.2. The equation

L%y = 0, k() =1 (4.36)
has a unique solution ki, € Ko p. This solution is given by
ki = 1% + (1 — S)"1S1%, (4.37)
xX E X
where S1*(n) = ]lrgl)( ol Z Zs(xg Lpo y(n)ol Ty ZE(xg The equation
zent Ten—
LA, =0, Ki(2) =&

has for every k € R exactly one solution given by k& = kkiyy.

mv
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Proof. Let k € K, 3, then
M(n)|Sk(n)| < (ala, B) = DM (e 1™ k], ,

and hence by (4.20) |S| Lk, 5 < 1. Moreover, since S : Kflﬁ — IC?B it follows that 1—5
is invertﬂale in Kf% Any solution k € IC,, 5 to (4.36]) is also the solution to M (S —1)k = 0.
Letting k = k — 1* yields by M1* =0

0=M(S—1)k+MS1*
and hence (4.36|) is equivalent to
(1—9)k =51% k:=k—1*

Since 1 — S is invertible on ICC%IB we obtain

k=(1-5)"s1"
0

For individual-based models, i.e. b%(z, &) = bF(z, &) = 0, the invariant state is
simply kiny () = 1*(n). Such correlation function corresponds to the probability measure
iny = Ofzp on I'?. The next step is to establish ergodicity for the semigroups 7'(t) on

quasi-observables and T (t)* on correlation functions. Such ergodicity has been established
for the (one-component) Glauber dynamics, see [KKM10]. Our approach is based on the
ideas of this work. Let L) 5:= {G' € L, 3 | G = k1*, k€ R} and

5,1/3 ={GeLl,s|G(D) =0}

Then any G € L, p admits a unique decomposition G = 1*G + (1 — 1*)G = Gy + G
where Go € L), ; and G, € ﬁilﬁ, ie. Log= Eg{’ﬁ@ﬁfiﬂ. The projection onto L9, 4 is given
by the multiplication with the function 1*(n) = 0, i.e.

1*: Lo — L0 5 G— 1I*G =0MGOY, GOUeR.

Thus by M () = 0 and L = L(1 — 1*) the action of the operator L = A + B can be
represented in the form

L=1*B(1—1% +A(1—1%) + (1 —1*)B(1 — 1%).
Therefore £§1ﬁ is invariant for A and (1 — 1*)B. Note that
L'BG() = 1°(n) [ G(@, 0 (. 2 + 1°(0) [ Gla, (o, )
R4 Rd
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is a positive operator. Denote by By : Eilﬁ — £ng, ByG = 1*BG and by Lq;
Eglﬁ — Eilﬁ, L11G = AG + (1 — 1*)BG the restrictions to £§33, therefore we obtain

LG = By (1 —1%)G + Liy(1 - 19G, G e Lag. (4.38)
Moreover, since D(L ) {GeLog|M-Ge Lyp}and LD, D(L) it follows that
D(Ly;) = (A) N E The next theorem provides mformatlon about ker(z) and the

resolvent set p(L ) on Ea 8-

Theorem 4.5.3. Let

wWp = sup {w € [O, %]

then the following statements hold:

ala, B) <1+ cos(w)} ) (4.39)

1. The point A = 0 is an eigenvalue for (i, D(z)) with eigenspace Egﬁ and eigenvector
1*.

2. Let Ao := (2 — a(a, B)) M, > 0, where M, := |mf M(n) > 0. Then

= {AeC | Re(\) > —A}\{0}

nimfrec

belong to the resolvent set p(L ) ofL on L 5.

and

org()] < 5+ (0

Proof. Let (Ay, D(L11)) be the restriction of (A, D(L)) to 215 and denote by | - Hﬁzlﬁ the

norm on L— This restriction is simply given by AG = A;(1 — 1*)G. Moreover for any
)\—u+zw u>0 weR

’ G ‘ < &] < |G| min N
A+ M)~/ (u+ M2 +w? ~ A" /M2 + w?

implies that A € p(A;) and

|R(\; A )GH£>1 < min ( (4.40)

G| 1.
5 ﬁ) Gz

Let us show that for A = u + iw, u > 0, w € R the operator A — Ly; is invertible, i.e.
A € p(L11). Due to the decomposition

(A= L) = (1— (1= 1*)BR(O\ A)(A — Ay) (4.41)
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it suffices to show that (1 — (1 — 1*)BR(A; A;)) is invertible on £§15 We obtain therefore
R(\;Lyy) = ROy A)(1— (1—1%)BR(X Ay)) 7 (4.42)
In fact (1 — (1 — 1*)BR(A; Ay)) is invertible provided for any G € £§1ﬁ
|1 =1 BROA A 21 < ql iG] gz

for some constant g € (0,1). But this simply means that (1—1%)B is relatively bounded to
A; with constant q. Now let B’ be the positive operator defined in the proof of Theorem
[1.2.3] then |BG| < B'|G| and B|G|(&) = 1*B|G|() = 1*B'|G|(&) > 0. Therefore we
obtain for ¢ := a(a, ) —1 < 1

1= 1BGl 2, = | BGI e A

r2\{z}
< f B|G|(n)e 1 lax(n) — B|G|(2)
< j (o B3 ) — M(m)IGm)]e e dA ()
< (ale, ) — 1) j M ()G )|t An ()
a0 [ M@IGE T A = gl
r2\{z}

and hence our claim. In particular we obtain for A = u + iw, u > 0, w € R by (4.42)) and
(4.40) for A € p(Ln),

min (ﬁ,\/ﬁ)
2— CL(O{,ﬂ)

IROG Lin)Glz, < Il

and for A = jw, we R

-1
4 M2+ w?
For A = u + 1w, 0 > u > —)\y and w € R write
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Then by |u| < A and —L4— L < 4 <1 we obtain A € p(Ly;) and

«/Mf Tw? ul\ 7'
| RO L) G gz, < 0 ala ) <1 - u) IGI,

Therefore I; belongs to the resolvent set of Li;. For Iy let A = u + 1w € Iy and u < 0,
then there exists w € (0,wy) such that |arg(A)| < § + w and hence

|w| = | tan(arg(A))|[u] = cot(w)lul
This implies for n # &
A+ M) = (u+ M(®5)* +w? > (u+ M(n))* + cot(w)*u’.

M(n)
" T+cot(w)?

|/\+M(77)|2 > M(U)2 (( COt(W)Z ) N COt(W)Q )

The right-hand side is minimal for the choice u =

which yields

1 + cot(w)? (1 + cot(w)?)?
= MO = MO cos()®

Then by

|1 =19)BROA AG 21 < al AR ANG 20 < — ]Gl 21

cos( )

and (4.39) ¢ = a(a, ) — 1 < cos(w). By (4.41) we obtain I < p(L1;) and for each
A = u +iw such that 7 < [arg(\)| < § +w, A # 0 for some w € (0, wy)

V(U + M) + w? !
q
" cos(w)

(1 o cosq(w ) '

where we have used |w| > % in the last estimate. For the first claim let ¢ € D(L) be an
eigenvector to the eigenvalue 0. The decomposition ¢ = 1% + (1 — 1*)1) = 1pg + ¢y with
Yo € L) 5 and 1y € Eaﬁ A D(L) = D(Ly) yields by (#.33)

0=L¢:FBM+LWMGQ%@53

IR(A; Ln)GHgaz}B < HGHgg}ﬁ

(1-——2- )—1
HGHL>1 <Aoo

<
Al

HGH£>1 :

Hence L1191 = 0 and since 0 € p(Lq;) also 11 = 0. For the second statement let A € I U I,
and H = Hy+ Hy € L, ;&® /ngﬁ Then we have to find G € D(L) such that

(A\—L)G = H.
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Using again the decomposition of ZA}, above equation is equivalent to the system of equa-
tions

MGy — 1*BG, = Hy
(A= Ly1)G, = Hy

Since A € I} U Iy = p(Lq1) the second equation has a unique solution on L glven by
G1 = R(\; Ly11)H;. Therefore G is given by

1
Gy = X (Ho + ]l*BR()\, Lll)Hl) .

Remark 4.5.4. The proof shows that for any e > 0 there ezists w = w(e) € (0,%) such
that

Y(e) = {)\EC larg(A + Ao — )| < g +w} c 1 ulyu{0}
and there ezists M () > 0 such that
M(e)
RO )6z, < 2

for all X € (e)\{0}. Moreover, (L11, D(L11)) is a sectorial operator of angle wy on 5515
Denote by T(t) the bounded analytic semigroup on ﬁilﬁ given by (in the uniform operator
topology)

~

T(t) = f ¢'R(C; Lyy)dC, ¢ >0, (4.43)

[

i

see [Paz83]. Here o denotes any piecewise smooth curve in

{rec g0l <5+ 0

2
running from coe™® to coe for 6 e (5,5 +wo).

The 55’6 part of T(t) is given by (1 — 1%)T (t)(l 1*), hence has generator (1 —
]1*)E(1 —1%) = Ly, and therefore coincides with (T'(¢))yso. This yields the decomposition

T(t) = 1* + 1*T(t)(1 — 1*) + T(t)(1 — 1*), t > 0. (4.44)

T(1)(
and by duality we see that the adjoint semigroup (7()* )i>0 on K, g admits the decom-
position

Tt)* = 1%+ (1 — 19T @)*1* + T(t)*(1 — 1*), t >0, (4.45)

where T(t)* ¢ LK} 5) is the adjoint semigroup to (T(t));=0. The next lemma provides a
construction of the hmltlng projection operators, when ¢t — 0.
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Lemma 4.5.5. Define a linear operator SG := B+ (1=1%)G on Lo, then S Log—
L p is bounded and for any G € Loz and k € Ko

(8G, kY = (G, Sk). (4.46)

The operators, cf. (4.37),
P*:=1*+ (1 - 9)"'S1*

and R R R
P:=1*+1*S(1-95)"
are projections on Ko g and L, g respectively, such that

(PG, k) = (G, P*k).

Proof. First observe that M (n) > 0 for any 1 # ¢ and since B : D(L ) N E— — L, 518

well-defined, so is S. The inequalities

J|SG |ea|n*| Ain~lax(n J' (1—1%)—(n) e@ln*leﬁln*IdA(n)

. ‘G(Uﬂ oe’r]+ n-
< j (e ) = M) e 7 )
(o}
< (afa 8) = 1) [ |Gl e lar(y)

2
1—‘0

imply that S is bounded with norm HgGHgaﬁ < (a—1)|G|c, , and property (4.46)) is a
consequence of the definition of S and a short computation. Because of | - we have
a —1 < 1 and hence P is well-defined. The second part is a consequence of | and
the representation formulas for P and P*. n

Since P projects, by definition, onto 53,5 it follows that PG = (@G, %>]1* for some
ke Ka,p. Therefore we obtain

(1*, k) (G, k) = (PG, k) = (G, P*k)

and hence N R R
k(D)k(n) = P*k(n) = P*(1%k)(n).

The right-hand-side depends only on the value k(&), hence we can divide by k(&) # 0
which yields L
k= P*1* = kiyy
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and therefore R
PG(n) = (G, kin)1*(n), €T},

The adjoint operator P* is then given by
P*k(n) = k(@)kin (1) = (LK) (n)kin (n), 1 € T, (4.47)
By T(t)1* = 1* this formulas yield
P=T(@t)P = PT(t)
and P2 = P. In the same way (P*)2 = P* and
T(t)*P* = P*T(t)* = P*. (4.48)

A~

Now we are prepared to prove Proposition , i.e. ergodicity of the semigroups T'(¢)
and T'(t)*.

Proof. (Proposition [4.5.1)
The spectral properties stated in Remark the representation formula (4.43)) and
(4.44), (4.45)) imply that for any ¢ > 0 there exists C'(¢) > 0 such that for any ¢t > 0
|(1 = 19T )G, < Cle)e X |Ce, . GeLZ
and hence by duality
IT(t) Kk, < Cle)e " K]k, .. ke KT
repeat e.g. the arguments in [KKM10]. Let k € K, 3, by (4.47)) we obtain
D * >1
=Pk = (1= 1%)k - ki € K2,

Using (4.48)) we see that

IT@)*k = Pklx, , = IT(0)*(k = P*E)|x, , < Cle)e X |k = P*k|,,  (4.49)

holds. Let 1o € Po g, 11t € Pap the associated evolution of states and k,, € K, its
correlation function for ¢ > 0. Then for any £ > 0

H,Ut - Ninv”é‘;“ = Hkut - iHVH/CaB
< C(e)e” ™™ kuy — kinvlos = Ce)e™ ™ o — prinyex
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holds and hence k;,, is a limit of positive definite functions. Thus there exists a unique
measure iy, € Pa s having ki, as its correlation function. It follows for any G € By (T'3)

0= fG@)LAkmv(n)dA(n) _ f EG (ki (m)dA () = fLKGmclum(v)

and hence (4.34]). Since f(t)*kim, = kiny it follows that T'(¢)* finy = finy. It Temains to
show the estimate (4.35)). Observe that by duality and (4.49) we obtain

|Tos(t)G = PGlc, , < Cle) % |G = PG, - (4.50)
Because of IK1* = 1 this implies

|Tas(KG = (G leny = [Tapt)G = PG,
and hence by (4.50) the convergence (4.35)). O

Remark 4.5.6. Let ¢ € 5* and take ky € Ko p5 determined by - Define liny by
Uiy (KG) = (G, kiny 0(1), where ki 18 the unique correlation function associated to the
mvariant measure finy. Then

IT(#)*0 = linvllgx , < Cle)e™ 070 — liny g,

holds. That is (T'(t)*):>o is ergodic on E 5.

4.6 Vlasov scaling

Consider for n € N scaled intensities d2, dZ, b, bE > 0 and suppose they satisfy condition
(A). Let L,, = LY + L where

LyF(y Z dy, (2,7 \)(F(y" v \a) = F(v",77))
n [Vt ) E G v) - Pl e

and

LIOF(y) = Y] di(z,vN\e ) (F(y\2,77) = F(y",77))

zeyt

n f b (.t ) (F (7 v, y) — Flyt oy ))da.

Rd
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Introduce

agin)i=+ X [ IR ot o)l 7 lane

TEN™ Fg
S 1Kg S (@, - o\, - o) (€l e A ¢)
75577+F2
+e Z f]K Wz, Ut o \a)|(€)nlélelE P TN (€)
zen— To
+e Z Jy]Kolb;f(:c,- Unt\x, - unT)|(€)nlleE P TN (€)
men+F0

and M, (n) :== > dZ(z,n*,n7"\2) + > d5(x,n"\z,n~). We will suppose the following
TENT zent

conditions to be satisfied:

(V1) There exists a(a, 3) € (0,2) such that for all n € ['Z and n e N

cnla, B5m) < ala, B) My (n)
is satisfied.

(V2) For all £ € T2 and z € R? the following limits exist in £, 4 and are independent of ¢

lim nll(Kg'dy (- 0 €)) = lim n (K5 dy(x, ) = DP
lim all(Kg dy (2, - v €)) = lim nM(KG ) (x, ) = D}
lim all(Ko 67 (2, 0 €©)) = lim nM(KG b7 (2, ) = BYP
lim all(KG 6 (- 0 €)) = lim all(KG 16 (x, ) = By

(V3) Let My(n) := >, D3(&) + 3. DE(Z), then there exists o > 0 such that either

or

My (n) < oMy(n), nels, neN

are satisfied.
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Define Zn = Ky 'L, K, and the renormalized operators ZA}nyren = RnEan—l7 where
R.G(n) = alMG(n). Then we get Lyen = A, + B, with (A,G)(n) = —M,(n)G(n),

where
= > A2zt \e) + Y di (e, \e,nT) 20

TENT zent

and

_Zg( |77\5‘2 Kytd2(z,- v et - u e \2)(n\é)

£&n zel™

— Y GO Y (K (2, U €\, 0 E0))(n\E)
£sn zelt

N Znn\gf (€5, U)Ky bE (2, - U EF, - U E))(\E)dx
£cn

+ 3l f G(E" 0w, )G W (@, €Y, U E))(\E)da
£cn

by

n,ren

In analogy to L?, cf. Lemma u define a linear operator L2

(L2 k) = — Y f (0 E)n (K dB (. - o \2)) (€)AN(E)

TENT F2

=S J (n © &l (K5 S (x,- L\, - U ) (E)AAE)

xe?ﬁ 2
0

+ 2 f it o€ n~ v\ (Ko7 (2, - w oty - o \a)) (E)AA(E)

TEMN™ Fg

+ 2 f’f(n+ O €N, U €K g (- 0 P\, U ))(€)AN(E).

zent r2

We obtain for any G € By (I'5), k € Ko 3 and ne N

<ETL,T'3HG’ k> = <G7 nrenk>

The next theorem provides existence and uniqueness of an evolution of quasi-observables
and correlation functions for any fixed n € N.

Theorem 4.6.1. Suppose that condition (V1) is satisfied. Then for any fized n € N the
following assertions are true:
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~

1. The closure of (zmen’ Bys(T'2)) is given by (Ly ren, D(En,ren)), where
D(Lpen) = {G € Los | My, Ge Laogs).
It is the generator of an analytic Cy-semigroup (fn,ren<s))320 of contractions on L.

2. Let fnyren(t)* be the adjoint semigroup. The generator is given by (L5 o, D(Li1en))
with the (mazimal) domain

D<LA ) {k € ’Caﬁ ‘ Lﬁrenk € ICCV 5}

n,ren

For anyn e N and kg € K, g, there ezists a unique weak solution to

0

§t<G ktn> <LnrenG ktn> ktn|t 0 — k07 GE D( nren)

given by ki, = fmen(t)*ko.

The case n = 1 is covered by the results obtained in Theorem 4.3.3, Following the
arguments there, it is not difficult to adopt the proofs to this case. In the next step we
construct the limiting dynamics when n — o0. Condition (V2) suggests to consider the
limit

En,renG — EvG, n — 0.

The operator Ly := Ay + By is given by AyG(n) = =My (n)G(n), where

n) = >, D)+ >, DIF(D)

zent zeN™
ByG(n)=— >, G(&) X, DY5(m\&) — >, G(&) D, DYF(\E)
§+§Z+ et §+§Z+ xeb—
# 3 [t va B + Y, [ Glete vnBLE s
§<Npa §<Npa

In the next theorem we establish existence and uniqueness of the dynamics described by
the limiting operator Ly. Therefore let D(Ly) :={G € Los | My - G € L, 3}, define

cv(a, Bim) =
+ JDVS (€)]e”E TP an(e JIBVS (©)le 7 lax(g)
xeznl'*' x;:‘*'

+ 3 [ IDEE©eE e Tar©) + e YT [ [BYE(©)[enl TeE Tan ()

TENT F% TENT F%
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and finally

w30 =— Y [k ogprs@ae - Y f k(y © ©)DYE(E)AA(E)
zen+1ﬁ(2) ‘Ten_rg
£ 3 (ke o et it o e B ©ane)
:cen"‘f%
£ 3 [k ot e o B EEANE).

Theorem 4.6.2. Assume that conditions (V1), (V2) are satisfied. Then the following
assertions are true:

1. The operator (ZA}V,D(ZALV)) is the generator of an analytic semigroup (fv(t))tzo of
contractions on Lq .

2. Let (fv(t)*)tzo be the adjoint semigroup on K, g, then for any ro € Ko 5 there exists

a unique solution r, = TV (t)*rg to the Cauchy problem

0 ~ ~
a<G, Tt> = <LvG, Tt>, rt|t:0 =Ty, Ge D(Lv> (451)

3. Letro(n) = T p§(x) I1 p5'(x) and pf, p € L*(RY) with | p§] = < e, [pf]r <

zent TENT
e, Assume that (p?, pF) is a classical solution to

L () = - | reieenel DL OO @)
r3
i J” ex(p51 €% )en(pF €7) BYE(€)dA(E)
r3
%f(x) = — JP ex(p: € )ea(pr;€7) DY (E)AA(E) oy ()
3
i J” ex(pF1 €% )en(pF; €7) BYS(€)AA(E)
r3

with initial conditions pli—o = p3, pFli=o = p& and |pf| e < e® and |pF|re < €°.
Then ri(n) := [ p?(x) T1 pE(x) is a weak solution to ([.51) in K, p.

zent TENT
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Proof. By conditions (V1) and (V2) it follows

ev(a, Bin) < lim ey (a, Bin)
< a(, B) lim M,(n) = a(a, 3) My (n).

Define a positive operator By, on D(zv) by

B,Gn)= > G©) Y DY\l + > G(&) Y IDYEm\Q)

¢tent relt ¢tent e~
§T&n™ §T&n™

3 [er vn B + Y [ Gl e v ldr

§<Npa §<Npa

Then it is not difficult to see that for any 0 < G € D(Ev)

f B Gn)e " el () = j (ev (0 Bim) — My ()G (m)et 1?1 ()

2 2
2 2

)—1) JMV aln*leﬁln’\d)\(n)

is fulfilled. The same arguments as in the proof of Theorem yield existence, ana-
Iyticity and the contraction property of the semigroup 7 (¢). For the last assertion we
only show that r; is continuous w.r.t. C. The other assertions are simple computations,
see e.g. [FKOI3]. First observe that by |ri(n)| < e lefn"| the function r, is norm-
bounded and hence it suffices to show that it is continuous w.r.t. o(KCo g, La,3). But this
function is continuous in ¢t > 0 for any n and hence the assertion follows by dominated
convergence. ]

Theorem 4.6.3. Suppose that conditions (V1) — (V3) are fulfilled. Then fn,ren(t) —
TV (t) holds strongly in L, s and uniformly on compacts in t > 0.

Proof. We are going to apply [FKKI12, Lemma 4.3] and Trotter-Kato approximation. Fix
A > 0 and denote by R(\; A,) and R(A, Ay) the resolvent for A. and Ay, respectively.
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Then it follows that |R(X; An)|iz, s 1R Av) Lo, < 3

IBoR(A; A)Glz, s = f|BnR()\; A)G(n) e P TN ()
2

< f (cal, B37) — Ma()|RON; An)G )| P ldA ()

< (a(a, 8) — 1) %

g

< (a(e, B) = )]Gz,

(G ()] 1" ldA (n)

and likewise

IBy RO\ Av)Ce, , < f (cv (s Bim) — My(n) RO\ Av)Gm)]e? 1 1A ()

< (a(e, B) = D|Gle,

hold. Since M, — My as n — oo, it is easy to show by dominated convergence that
R(\; A,) — R(\; Ay) holds strongly in £, 3 as n — co. Hence it remains to show the
convergence

B.R(\; A)G — ByR(\ Av)G, n— . (4.52)
To do so, suppose that M, (n) < oMy (n) holds, then we estimate by

HBnR()\; An)G - BVR()\; AV)GHﬁa,B
< [(By = Bv)R(A Av)Gllz, 5 + | Ba(R(X; An) — R(X; Av))G| ., -

For the first term we obtain
(B, ~ Br)ROCAVG e, = [ 108, = BrIRO NG| e ax(m
I3

< J %eamﬂem”'Hn(n)d)\(n)
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where

H,(n) =

+ > | K (- ot o \e) (©nl = DYE ()]t e ldA¢)
TEN™ 12

*ZﬁlKlﬁa:unﬂx\dm@mwflwﬂawm*&fdMa
went Ly

+€_sz Ko 05 (2, Ut on™ O \e)(E)nll = BYF(€) el e TaN(€)

e ), f K05 (2, 0 \a, - 0 )(€)nl = BYS (€)' 1e?1dA(€).

zent

I3
The L, s convergence in condition (V2) implies that H,, tends to zero and because of
Ho(n) < eala, B;m) + ev(a, f;m) < ala, ) (Mn(n) + My (1)) < aa, 5)(1 + o) My (1)

dominated convergence implies | (B, — By)R(\; Av)G|, , — 0, n — co. For the second

term we obtain
IBa(R(X Au) = ROG AV))Gle.
J]B (A5 An) — R(X; Ay))G () |e! TP T ()
| My (1) — M,(n)| e""”ﬂeﬁ'”_'d)\(n)

§f<< B = M) =R GO+ Ay ()

1’\2

B ‘Mv(ﬁ) - Mn(n)| ea|n+|eﬂ|7f|
1JM' O Mo ()00 + My () no

and observe that by (V2) the integrand tends to zero. Because of
My (n) = Ma(m)] . Mv(n) M, (n)
A+ M)A+ My(n)) = A+ My(n) A+ My(n)
we can apply dominated convergence and obtain therefore the assertion in the case M, <
oMy, . For the other case we estimate by
ngn}%(k§f4n)(;"'lgvfg(A;f4V)(;H£aﬁ
< [(Bn = Bv)R(X; An)Glle, 5 + [ By (R(A; An) — R(A; Av))Glle,

<l+4o

M, (n)

and apply similar arguments to deduce the assertion.
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Remark 4.6.4. The proof shows that condition (V3) can be replaced by
dy!(z,0) + dy(2,m) < AL+ [)¥e™, zeR?, nelf, neN

for some constants A >0, N € N and 7 > 0.

4.7 Extension to time-inhomogeneous intensities

For t > 0 let d°(t,x,),dE(t, z,),b%(t,x,7),b"(t,2,7v) € [0,0] be given and suppose
that there exists ['2 (independent of ¢ > 0) such that condition (A) is satisfied for any
fixed ¢ > 0. We suppose that the following conditions hold:

(H1) There exist a, < o* and 5, < B* such that for all a € (., a*), B € (Bs, 5*) and
t > 0 there exists a constant a(L(t), «, 5) € (0,2) which satisfies

c(L(t), o, Bim) < a(L(t), o, B)M(t,m), n€To, £ =0,

where M(t,n) = > d®(t,z,n",n"\x) + X d*(t,z,n"\z,n").

zen— zent
(H2) There exist constants A > 0 and N € N such that
A3t z,n) +dP(t,z,n) < AQ+ )N, nel2 zeR? t>0
holds.

(H3) For any o/, € (a, ™), B/, 58 € (B4, 8*) with ¢/ < o and ' < § the map ¢t —
L(t) € L(Ey 3, Ea pr) is continuous in the uniform operator topology.

Consider a scale of Banach spaces given by £ = (€,3)ac(ax.0*) and extend the notions
Be(Bx,B*)
introduced in the first chapter to this case in the obvious way.

Theorem 4.7.1. Suppose that conditions (H1) — (H3) are satisfied. Then there exist a
forward evolution system (U(t,s))o<s<t and a backward evolution system (V(s,t))o<s<t in
the scale € having generator (L(t))i>o € L(E).

Proof. We are going to apply Theorem [1.1.4] Let o < o, 8’ < f and F = KG € &,,
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then

ILO)Fle, 0 = LG,

< fc(Mt),a’,ﬁ';n>|G<n)|e“’"*eﬂ""'dMn)
rg
< a(L(t),a, B f M(t,n)|G(n)]e~ " 1P 1N (n)
r3
< Aa(L(t),d, B') f NG ()| e~ em e e =B=FIm Il Ig \ ().

I3

B

Hence there exists a constant A = A(t, o, &/, 5, f’) > 0 satisfying
IL@)Fle, , < AlF e, ;-

Thus L(t) is bounded from &, 5 to &, 3 and by (H3) it is also continuous in the uniform
topology w.r.t. ¢ > 0. Condition (a) follows from Proposition and condition (b)
from the contraction property of the semigroups. [

Note that Theorem [1.1.4] was proved for a one-parameter scale of Banach spaces. The
generalization for two-parameter scales of Banach spaces (as used above) is a straight-
forward repetition of the arguments there. The next statement shows the positivity
preservation property of the adjoint evolution systems.

Theorem 4.7.2. Suppose that conditions (H1), (H3) are satisfied and assume that there
exists A > 0 such that for anyne T3 andt >0

d(t,x,n) + d°(t, x,m) + b5(t, z,m) + b (t,2,m) < AL+ ) (4.53)

holds. If for any fized t > 0 condition (D) holds for the operator L(t), then U*(s,t) and
V*(t, s) are positivity preserving.

Proof. Let U(t,s) and V(s,t) be the evolution systems constructed in Theorem [£.7.1]

A~

and U(t,s), V(s,t) the associated evolution systems for quasi-observables. The adjoint
evolution systems then satisfy for F' = KG € FP(I'?)

(F U (s, 1)y = (G, U*(s, t)hy)

and
(P VAt s)uy = (G, V*(t, 5)k,,

where p1 € P, g has correlation function k,. Thus it suffices to show that U *(s,t)k, and
V*(t,s)k, are positive definite. Let U,(t,s) and V,(s,t) be the approximations defined
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in the proof of Theorem [1.1.4] see|1.12] By Proposition 4.4.5[and (L.11)), (1.13)) it follows
for G € By (T2) with KG >0

(Un(t,8)G, k> = (G, U (s, t)k,) > 0

and

Va5, )G, kyy = (G, V(L 8)k,) > 0.
Letting n — oo yields
0 < lim (Un(t, $)G, k) = (U(t, $)G, k) = (G, U* (s, )k,
and R
(G, V*(t,s)k,) > 0.
]

The adjoint evolution systems U*(s,t) and V*(¢, s) are positivity preserving and pro-
vide for each u € P, 3 unique solutions to the time-dependent Fokker-Planck equations

[ Py s. tntan) = —JL(S)F(V)U*(S,W(dv), Fe FP(I?)
and )
S [ o esn@) = [ LoFO @@, FeFpa2)

The last statement provides Vlasov scaling. For any n > 1, let d,(t,z,v\z),b,(t,z,7) €
[0, 0] be the scaled birth-and-death intensities. Define

en(t o Bim) == ) f Ko 'l (t,x, - ont - on\a)|(§)nflel e ©€)

TENT F2

+ Z Kg'dS(t, x,- o nt\a, - o n)|(E)nlle€ TP AN (¢)
1‘677+F2
re? Y f\]K (- Ot e\ | (€)nl€le €A T (¢)

TENT T,

e Y IKG B (¢, 2, u oz, - w )|l TdN (g).

zent To

Instead of the conditions (V1) — (V3) we suppose that the conditions given below are
fulfilled:
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(W1) There exist a, < a*, B, < * such that for any « € (ay,a*), 5 € (Bs, 5%) and any
t > 0 there exists a(t, «, §) € (0,2) such that

cn(t o, Bim) < a(t,a, B)My(t,m), nely, neN

holds, where M,(t,n) == 3 dy(t,x,n*,n"\x) + X di(t,z,n"\z,n7).

wen~ went
(W2) There exist constants A > 0 and N € N such that for all n e N
dZ(t,z,m) +d5(t,x,n) < A+ [n)N, t>0, nel2 zeR?
holds.

(W3) Forall £ € T2 and = € R? the following limits exist in the operator norm L(L, 5, Lar g,
for any o/ < a and ' < 8 with o/, @ € (o, @*), ', B € (B, B*) such that

lim nl(KgdZ (t 2, 0 €)) = lim (K5 d2 (¢, 2, ) = DYt )
Jim n(Kg S (t, 2, 0 €) = lim nl(Kg'dS(t,,)) = DYS(t. )
lim (K B2 (1,2, 0 €) = lim nM(KG 0208, 2, ) =2 BYP (1. )
lim (KBS (1,2, 0 €)) = lim (K5 '65(t,,)) = BYS(t,)

Moreover, above limits are uniform on any compact in ¢ > 0 and are independent
of .

For n > 1, let f/n(t) = KL, (t) Ko, ./[:n,ren<t) = ann(t)Rnfl and denote by L the scale

of Banach spaces given by £ = (L4 3) ac(ay.a®) -
Be(Bx,B%)

Theorem 4.7.3. Suppose that conditions (W1) — (W38) are satisfied and assume that
the operators (Lyren(t))i>0 are continuous in the uniform topology on L(L). Then the
following statements are satisfied:

(a) There exist forward and backward evolution systems ﬁn’ren(t,s) and YA/n,ren(s,t), re-
spectively having generator Ly yen(t) € L(L).

(b) There exist forward and backward evolution systems UV (t,s) and VY (s,t), respec-
tively such that

Upyen(t,8) — UV (t,5), 1 — 0V pen(s, 1) — VV(s,1), n— o

hold uniformly on compacts in t > 0 in the uniform topology on L(L). The gener-

ators satisfy Ly en(t) — Ly(t) as n — o w.r.t. the uniform operator topology on

L(L) and uniformly on compacts in t > 0.
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(¢) For any r € K, p the unique weak solution to the backward equation
! ~
3_<G7 ks,n> = _<Ln,ren(5>G7 ks,n>7 ks,n’s:t = 7”, S € [07 t) G € Bbs(rg)
0s
is gwen by ks, = ﬁn,ren(s, t)*r and the unique weak solution to the forward equation
0 ~
§<Ga kt,n> = <Ln,ren(t)Ga kt,n>7 kt,n|t=s =T, te [S, OO); Ge Bbs(F(Q))
is given by ki, = Anﬁren(t, s)*r. The same assertions hold with En,ren(t) replaced by
Ly (t) and Uy ren(8,1)*, Varen(t, 8)* replaced by UY (s, 8)*, VV (¢, s)*.
(@) Letr(n) = TT p5(x) TT p°(x) and pS, pP € L=(RA) with " 1= < ¢ and |p 1= <

TENT xent

e“. Assume that p3, pF e L(R?) with |pZ|» < €8, |pS|lr» < e is a classical so-

lution to the backward equation with 0 < s <t

aapsf(iﬂ) = fex(pf;5*)@@5;6‘)D¥’E(S>5)d/\(5>pf($)
i3
- f‘ix(ﬂf;5*)@(05;5‘)B¥’E(s’f)d/\(f)
3
%(:v) = Jex(pfsﬁ)ex(pf;6‘)D¥’S(S,§)dk(£)p5(w)
i3
— f@k(pf; EN)ex(pls €7)BY P (s,€)dA(€)
3

and initial condition psls—s = p. Then ri(n) = [ p3(x) T1 p¥(z) is a weak
zent TENT
solution to

’3 ~
é@h@z—@ﬁ$@&%¢$ﬁ=nsemﬁ,GEBMQ)

Assume that p?, pF € L®(RY) with |pF| 1o < €°, |pf]lr» < e is a classical solution
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to the forward equation t € [s, o0)

&‘pf [ S. e+ E.¢e—\NnV,E E
2 (@) == [ exlp: € )ea(p s €)D" (1, E)dA(E) i’ ()
3
-
+ | ea(pr; €0)eal(prs €7)BLP (1, €)dA(€)
r3
5Pf [ S. e+ E. =\ V.S s
= (@) = ex(pyi € )ea(pys€7) D7 (1, )ANE) oy (x)
3
-
+ | ea(pf; €0 ealpr; €7) B (t,£)AN(E)
r3

and initial condition p;li—s = p. Then r¢(n) := ] pf(x) [] pF(z) is a weak solu-
zent TENT
tion to

0 ~
a(G, ry = Ly ()G, 1), Tilims =7, t€[s,0), G e By(T3).

Proof. Assertion (a) follows from (W1), (W2) and Theorem [.1.4, Conditions (W1) —
(W3) imply Ly en(t) — Ly (#) uniformly on compacts in the uniform topology in the
scale £. Hence Theorem implies the existence of the evolution systems uv (t,s) and
‘A/V(s, t) and in view of Lemma assertion (b) is proved. Assertion (c) is an immediate
consequence of Theorem m Finally, assertion (d) can be proved in the same way as in
the time-homogeneous case. [

4.8 Weak-coupling limit

In this part we establish the weak-coupling limit for two coupled general birth-and-death
dynamics. Let L = L° + L¥ be the corresponding Markov (pre-)generator and suppose
that L¥ does not depend on 7*, i.e. is given by

(LPF)(7) = Zﬁ d”(z,y \z)(F(y",7"\2) = F(v*,77)) (4.54)
+ [ F6 i va) - POt e

The dynamics of the system shall be given by the general form (4.15)). We suppose that
the birth-and-death intensities satisfy:
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(A”) Condition (A) holds for a set ['2 = I'f x I';; such that any u € P, is supported on
I'Y and any p € Pj is supported on I';.

Let u € P,p, the marginals ™ and g~ on I' are for A € B(I') given by pu*(A) :=
p((AxT)nT?) and pu=(A) := u((T' x A) nT?). This definitions are equivalent to

| Potiaun = [ Pot)awtn, FeFp)

r? r
Let k, be the correlation function for . Then for any G € Bys(I'y) let (G ® 1%)(n) :=
1*(n~)G(n*), we obtain in such a case

JKG )t ( JJK (G T%)(v)du(y)

=JG(77+)1*(77 JG W, D)dAM").

Therefore k, (-, ) is the correlation function for the marginal p*. A similar argument
shows that k, (&, -) is the correlation function for the marginal 1. Introduce the functions

cp(gin) = Y. J K5 a5 0\l IaA(E)

+e? Z J|K W (z, - un~\z)|(£7)ePTdN(ET).

TENT
g
and

cste i) = 3] [ IG5, 0 o)l (@E 7 g

$e77+ 2
0

+e | IKG W (- up - o)A ().

zent To
Suppose that the conditions given below are fulfilled.

(E1) There exists a constant 0 < ag(f) < 2 satisfying

ce(B;m) < ap(B)Me(n™), n~ €Ty,

where Mg(n™) = Y, d¥(z,n"\x).

TENT
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(E2) The death intensity is strictly bounded away from zero, i.e. ‘ in‘f Mpg(n~) > 0 holds.
n-[21

(E3) There exist constants A > 0, N € N and v* > 0 such that for all z € R and n~ € Iy
d”(w,n™) + 05 (@, 7)) < AQL+ [ [)Ne I
holds.
(E4) There exists 8 with 3 + vF < 8 and ag(f’) > 0 satisfying
cp(Bin”) < ap(B)Mg(n™), n~ €l
(S1) There exists a constant 0 < ag(a, #) < 2 such that

csa, B3m) < as(o, B)Ms(n), nelf

holds, where Ms(n) = Y, d°(z,n"\z,n7).

zent

(S2) There exist constants A > 0, N € N and v° > 0 such that for all x € R? and n e I'
@ (a,7) + () < AL+ [n]) Ve,

(S3) There exists o’ with o/ + v° < «, 8 from (E4) satisfies 8’ + max{r®, v*} < 8 and
there exists a constant ag(o’, ') > 0 satisfying

cs(a/, B'5m) < as(o, B)Ms(n), n el

(L) There exists a localization sequence (Rjs)s=o such that the (minimal) birth-and-death
process associated to L§ and L5 + LL§ is conservative, i.e. it has no explosion for
any starting point and any 6 > 0, € > 0.

Here L§ and LE are given by (4.15) and (4.56) with b°(x,n) and b¥(x,7n) replaced by
Rs(x)b%(x,n) and Rs(z)bP(x,n). Above conditions and the ergodicity statement of the
third chapter imply that the evolution of the environment is ergodic. This ergodicity can
be extended to the two-component state space for which the precise statement is given
below.

Theorem 4.8.1. The closure (LY, D(LF)) of the operator (LY, FP(T')) is the generator of
an analytic semigroup (TF(t));>o of contractions on Ez. The adjoint operator (T (t)* )0
on &5 satisfies TE(t)*Pg < Pg and there exists a unique invariant measure pu* such that
forall Fe&yp

IT*(OF = (F)sgpelens < Ce™|Fle,

for some constants C, \g > 0 independent of F' and t > 0.
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Define for all z € R and 4* € I" new intensities b(x, n") and d(z,n") by

Be.yt) = J b (7 7 ) () (4.55)
i [ @@t )anto) (4.56)

and let
casn) = 3 [ 1K e o \a)l(€)e an(e)

xen+F0

et ) f Ky b, u o \o)[(€F)e TN (Er).

x€n+ro

Above intensities are well-defined for 4+ € I'Y. Define for above intensities the averaged
Kolmogorov operator

= Y Ao M) (P \e) — F(r)) + j5<x,v+><Fw U z)— F(y*))dz

reyt Rd

(4.57)

and the averaged cumulative death intensity by M(n*) := 3] d(x,n"\x). The next
zent

statement 1s the main result for this section.

Proposition 4.8.2. Suppose that conditions (A’), (E1) — (E4), (S1) — (S3), (L) are
fulfilled and assume that the following conditions are satisfied:

1. There exists a constant a(a) € (0,2) such that
c(asn®) <al@)M(n®), n* el (4.58)
holds.

2. There exists a localization sequence such that the (minimal) birth-and-death process
assoctated to the operator Ls 1s conservative.

3. There exist A> 0, N e N and v > 0 such that
d(z,n®) + bz, ") < AL+ [nt])Ne!
holds for all x € R% and n* € T.
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4. o given in (S3) satisfies o/ + max{V,v°} < a and there exists a(a’) > 0 such that
e(ayn™) <ala)M(n*), n* el
holds.
Then the following assertions are true:

1. For any e > 0 the operator (L + L¥ , FP(I?)) is closable and the closure is the
generator of an analytic semigroup (T°(t))i>0 of contractions on E,p. The adjoint
semigroup yields for any o € Py g the unique solution to the Fokker-Planck equa-
tion for the Kolmogorov operator L + XL given by T=(t)* o = .

2. The operator (L, FP(T')) is closable and the closure is the generator of an analytic
semigroup (Uy(t))i>0 of contractions on E,. The adjoint semigroup yields for any
i € Py the unique solution to the Fokker-Planck equation for the operator L given

by Uoc(t)*/l = Hy.
3. For any F € &,

T*(t)F — U,(t)F, ¢ —0 (4.59)
holds uniformly on compacts in t > 0.

4. For any po € Po p let ug be the marginal on its first component, let T, = Uy (t)* ug
and 1§ := T¢(t)*y. Denote by uy™" its marginal on its first component, then for
any F € &,

JF(’Y+) —’J N)da,(v"), e—0
r

holds uniformly on compacts int > 0.

Remark 4.8.3. Instead of condition (A’) we also can suppose that (A) holds for the
operators L° + 1LE and L.

The rest of this section is devoted to the proof of above statements. Let
0" ® Ly :={G e Loy | Gln) =0"1G(n) = 0"G(Z, 1)}

and

Lo®0 :={Ge Log|Gn) =0"1G(n) =0"G(n*, &)}

be the closed subspaces of functions in one variable. Multiplication by 07" and 017!,
respectively defines projection operators on £, g. The range of these operators is precisely
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0*®L, and L,®0~. Moreover this spaces can be identified with £, and L respectively,
i.e.

ﬁ+ . O+ ®£5 — 557 ﬁ_;,_G(’f]_) = G(@7n_)

and

P i L,®0" — L., P-GOy*)=GCn" @)
are isometric isomorphisms with inverses given by
P'G(n) = 0" lG ()
P='G(n) = 0" IG(n*).

Given a bounded linear operator C' on L, g, we will say that C leaves Lg-invariant if it
leaves 0" ® L3 invariant. In such a case the restriction to Lg is defined by

Cle, = P,CP;". (4.60)
The same notation shall be used for £, and P_ respectively. Let
X = {G1 ®G2 ’ G1 S £a, G2 € ,Cﬁ} (e ,Caﬁ

where (G ® G2)(n) := G1(n*)G2(n~). Then lin(X) < L, 3 is dense, where lin denotes
the linear span of a given subset of £, 3. Given bounded linear operators A; on £, and
A on Lg, the product 41 ® Ay on L, 5 is defined as the unique linear extension of the

operator
(Al ®A2)G(n) = A1G1(7’]+)A2G2(7’]+), GelX.

This definition satisfies (A, ® A2)G |z, , = [A1G1]|z. [ A2G2 ||z, and hence such extension
exists. For A, being the identity operator we use the notation A; ® 1 and for A; being
the identity we use the notation 1 ® A, respectively. The next statement extends above
definition to strongly continuous semigroups.

Theorem 4.8.4. The following assertions are satisfied:
(a) Let (An, D(Ay)) be the generator of a Co-semigroup (T,(t))i>0 on L, and define
D .= {Gl ®G2 ’ G1 € D(Aa>, G2 € ,Cﬁ}

Then T,(t) ® 1 is a Cy-semigroup on Lo z. Let (Anp, D(Aap)) be its generator.
Then lin(D) < L, p is dense and a core for (Aas, D(Aa,p)) where

A, 3(G1®Gy) = AG1 ® Gy, G1®GyeD.

(b) Let (T, 5(t))i>0 be a Cy-semigroup on Loz and (As s, D(Aapg)) its generator. Sup-
pose that T, (t) leaves L, invariant and let Ty (t) := T 5(t)|z., . Then (Ta(t))eso is
a Co-semigroup on L, and its generator is given by A, = P_A,3P-" and

D(A,) = {G e Ly | P7'G e D(Ayp), AasP'Ge Lo®07}.
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A similar result holds true, if we exchange the components £, and Ls. Above state-
ment is not difficult to prove, the details can be found in the appendix. Define the operator
L= K, 'LK, = LS+ LE on quasi-observables. Then LF = Ag + Bg is given by

(AgG)(n) = —Mg(n~)G(n)

with
Mp(n™) =Y d®(z,n"\2) >0, 5~ el

TENT

and

(BeG)(m) == Y, Gn*,&7) Y, (Ky'd(w,- v €\e) (7 \&7)

&~ rel~
. ‘f<9(n*,€\Jﬁﬂ(ﬂkle(w,-L)fD(ﬁ\&)dw
E-Cn

The generator for the system is similarly given by LS = Ags + Bg, where

(AsG)(n) = —Ms(n)G(n)

with
Ms(n) = >, d*(z,n",n"\x) 20, nel}
and
(Bs@)(n) == D, G(&) D, (Ky'd¥(w,- v EN\a,- v E7))(n\&) (4.61)
EGn et
+2J' 02, €K (- U €T, L €))(\E)da

€Can

Assumption (E1) and Theorem imply that (LZ, D(LF)) is the generator of an ana-
lytic semigroup of contractions on L, g, where

D(L®) ={G € Lop | Mg -G € Lo g).

Here and in the following we will use the notation (fE (t))e>o for the semigroup generated
by (L¥, D(L")). Define the operator (L”|,, Ds(L")) by

Ds(LP) ={Ge Ly | Mg-Ge Ly},
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ZE\cB = Aglcy + Beley, (Aple,G) (™) = —Mge(n~)G(n~) and

(Bele,G)(n) == D G(E7) Y, (Kg'dP(w,- v €\a))(n7\E7) (4.62)

&—gn— rel™
.S J (6 U ) (K0P (x,- &) \e)da
£ N Ra

Then, using again (E1) and Theorem 3.2.3|it follows that (EE|LB, Dy(LP)) is the generator
of an analytic semigroup (TﬂE (t))t=0 of contractions on Lpg.

Lemma 4.8.5. Let R
D:={G1®Gye X | Gy Dy(LP)},

then 1in(D) < D(LE) is a core and TE(t) = 1 ® fﬁE(t) Here 1 denotes the identity
operator on L. Moreover, for G € D it holds that

LPG(n) = Gi(n*)(L")2,Ga) (") (4.63)

Proof. Property (4.63) is evident and by Theorem M( ) it is enough to show TZ(t) =
1 ®Tﬁ (t). For any G € D the action (1 ®T5 (t))G = G1 ® T} (t)G5 is a solution to the

Cauchy problem

P ~
—Gy = LGy, Gilimo =G
ot

on L, g, see (4.63). Since for G e D D(L*) this Cauchy problem has the unique solution
given by G, = T"(t)G, it follows that (1QT4 (t))G = T"(t)G. Again by Theorem (4.8.4(a)
D < L, is dense and hence TZ(t) = 1® fﬁE(t) O

Using the duality

<G k?> J d)\( ), GEEQ, keng

we can compute the adjoint operator to LE |25, which is given by

LP k) == 3 [k v €Ky o )€ )ANE)

TENT To

s f (7 \e 0 &) (Kg 0 (, - L \a)) (€7)dN(ET).

TEN Py
The operator will be considered on the maximal domain

Dﬁ(LE7A|IC5) = {k € ’C,B | LE7A|/Cﬁk € Kﬁ}

205



and by Lemma [4.3.2 it follows that (LE[%  D(LE|%))) = (LP2c,, Ds(LEAk,)). A
function ki, € Dg(L"%[x,) is called invariant if it satisfies the equation

LE’A|IC5kinv = 07 kinv(@) = 1.
An application of Proposition [3.2.11| implies the next statement.
Lemma 4.8.6. There exists a unique probability measure u® € Py with
JLEF(’V)duE(v) =0, F'eFP(D).
r

The associated correlation function ki, € Kg is invariant and the semigroup fﬁE(t) s
ergodic on Lg. Namely, there exist constants Ao > 0, C' > 0 such that for all G € L3

ITF ()G = (G, kine )0, < Ce™ |G = (G, Km0 2,
holds.
Define a projection operator P Log— Lo®@0 by
PG(r) = [ Gln* & b (€ )NE O, (.64
To

Then P leaves L invariant and the restriction to £ is given by f)|£ﬁG(77*) = (G, kin )0l |,
This can also be rewritten to

P=1®P|, (4.65)

The next statement extends the ergodicity to the semigroup fE(t) defined on L, g, i.e.
proves Theorem [4.8.1]

Theorem 4.8.7. For any G € L, 3 the following estimate holds
[T5(1)G ~ PGlc,,, < Ce™(Gle, . (4.66)

Let (T(t))i>0 be the associated semigroup on E, 5 and pig € Pos g with correlation function
ko € Ko pr. Then there exists a unique solution (jit)e>o to the Fokker-Planck equation with
generator LE given by T (t)*uo. Let ug (dy") be the marginal of g, then

|75 10 — 15 @ 1”lex, < Ce™™pgllex .
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Proof. Since T (t) is a contraction operator it is enough to show only for the dense
set of functions given by lin(X’). So let G = Z G1G? € lin(X) with N € N. From (4.64),
ie. it follows that
PG = i Gl P|:,G?
n=1

and by Lemma [4.8.5
TP()G = Y G TH (G2
n=1

Thus we obtain

N
IT#()G = PGle, , < D 1Gule|T5 ()G = Ple, G,

n=1

N
<2067 3 G2, [ G2

n=1

Now observe that

ag = { 2 Gl ®G2 | Gl)neN < La, (G )TLEN < £57 2 HGl HﬁaHGZHEB < OO}

n=1

cf. [Rya02]. Using this representation we obtain

|G|, , = inf {2 1GL G2y | DI NG |GE s < 0, G = Gi@Gi} -

n=1 n=1 n=1
0 N
Let G = Y GL®G? e L,p and set Gy := >, GL®G? € lin(X). Above estimate implies
n=1 n=1

|TE(t)Gy — PGy, , < 2Ce™G .,

Taking the limit N — oo yields (4.66)). Denote by P* the adjoint operator to P which is
given by R
P*k(n) = k(n", &)kinv (7).
Hence we obtain by (4.66) and duality for any k € Iy 5
|T#(6)*k = P*k|, , < Ce ™|k — P*k|x.,,

Given pg € Py g with correlation function kg € K, g, Proposition yields the ex-
istence of a unique solution (y);>0 to the Fokker-Planck equation for L¥ and p, has
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correlation function k, = T°F (t)*ko. Because of k; — P*ky when t — 0, P*k is posi-
tive definite and hence the correlation function for some probability measure. For any
G € Bys(T) it holds that

JKG (v") = JKGW*)duo(v)

. fG<n+>o'"'ko<n>dA<n> - j G0 ko™, @A)

r2 o

and hence for any G € By (T3)

| KGO © 1)) = [ [KGGH S0

- j f G 1 Yo (™ @)k (7 )AA () AA )

T'oTo

is satisfied. Therefore the probability measure p ® u” has correlation function pr ko. O

The next lemma is one necessary condition for the application of [Kur73, Theorem
2.1], which shall be applied later on.

Lemma 4.8.8. D(L5) n D(L?) is a core for the operator (LE, D(LE)), where

D(L%) = {G€ Lop | Ms -G € Lag).

Proof. Let G € D(L¥) and for A > 0 define Gy := AR()\; Ag)G = HM G e D(L%) n

D(EE) Then we have to show that Gy — G and LFG, — LEG, when A\ — . The
convergence (G, — G is evident and the second one follows from

|ILEGy — LPGc, , < |As(AR(N; As) — 1)Gz., + | Be(AR(\; As) — )Gz,
< ap(B)|Me(AR(X; As) — 1)G .,

Ms(n)Mge(n~)
:G;E(ﬁ) 2 >\+MS(77)

|G ()] e eI ()

and dominated convergence. O]

Condition (S1) implies that (LS, D(LS)) and is the generator of an analytic semigroup

of contractions (T (t))e>0 on L, g, see Theorem |.2.3| In the following we are going to
construct a semigroup for the limiting dynamics, that is the dynamics after taking the
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limit ¢ — 0. The definition of the K-transform applied for k(1) = 0" k(™) yields for
x¢ntand nt ey

f @ (e, 7)) = f ST (=) (e, b (€)ANET) (4.67)

T I ¢ <€
Jbs(x nt, vy )du®( f Z DT (2,7, ¢ ) b (€7)dA(E). (4.68)
r Iy 6 <€

We obtain by (4.67) and (4.68))
Ky''d(z,- unf\a) (") = > (~1ln< st(ﬂf, ¢t unt\a,y)def(v7)

¢tcgt

f Z |§+\C+|+|E \¢™ ‘ds(x C+ U77+\.CIZ ™ ) 1nv(€_)d>\(£_)

(teet
T

— [0 w0 ) O (€ )ANE)
and likewise 0
Ky Ba, on\a)(€) = [(6155 0\, )k (€ )NE)
Therefore we obtain O

o) <+ 3 1RG0 e i € )N

erTiJr 2
0

+e @ Z f ’]Kalbs(l', Y §+\$7 ')’(g)eamﬂkinxfi)d)‘(é)’
zerﬁrg

< as(a, B)||kinv |, Ms(n™, &) < o

Lemma 4.8.9. The operator (ﬁzS,Ran(ﬁ) N D(ZS)) is closable and the closure is the

generator of an analytic semigroup of contractions on L, ® 0™, where P was defined in
(£.64).

Proof. The projection operator P satisfies Ran(P) = £,®0~. Given G(n*)0l" | we obtain
Mg(n*,n7)G ()l = Mg(n*, @)G(n*)0""| and hence

Ran(P) n D(L) = {G = Gy ®0™ | Gy € Do(Ms(-, &)} = P-'Do(Ms(-, &),  (4.69)
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where D, (Ms(-, &) = {G € L, | Ms(-, @G € L,}. For G(n) = G1(n™)0" | with
G1€ D, (Ms(-, D)) we obtain

LG =~ ) Gu(€") D) (Ky'd*(z,- v €N, )™\ )

etent zett
+ 2 JGl(F U)K 0% (x, - 0 €, ) (T, T )da
5+C77+]Rd

Applying the operator P yields

PLSG(n) =
_ ol Z Gi(€) ZJ Kotd®(z,- 0 €N\a, ) (0\ET, € ) ki (€7)AN(ET)
Etent zelt

AR fgl uzf 0 0% (- LT ) (TN € hiny (€7)dA(ET)da.

tonty
§tam To

As a consequence by ({4.55), (4.56)), (4.67) and we arrive at
PLSG(n) = = M(n*)G1(n* )0
=0 Y Gu(€R) Q) (B (e, v ENa)) ()

Eren zelt
N CIO R e
Erentyp

Similar _arguments as for Theorem “ 4.2.3| together with the assumptlon (4.58) imply that
(PLS P 1D(LS|£ )) is the generator of an analytic semigroup (Ua(t) ® 07 )0 of con-
tractions on L, ® 0, where D(L5|z,) = {G € Lo | M - G € L,}. Because of ¢(a;n™) <
|Kin| ka5 (a, B)Ms(n™, &) we obtain

(PL®, P='Byy(Ty)) < (PL®, P='Do(Ms(-, @))) < (PL¥, P='D(L..)).

Hence it is enough to show that (JSES,]S:IBbS(FO)) = (IBZALS, 13:10(35|,;a)). However,
this can be shown by the same arguments as in Lemma [4.2.4] O]

Let Uy(t) := (ﬁa(t) ®07)(t)|., then it has the generator (LS|, D(LS|z.)), where
) 2 (K, v €0\ (")

relt

Z
Z f (K Bz, 0 €))7\ )de

Rd

L9, G(
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The next statement establishes the weak-coupling limit for quasi-observables and corre-
lation functions.

Theorem 4.8.10. For every ¢ > 0 the operator (L° + %lA}E,D(ES) n D(L®)) is the
generator of an analytic semigroup of contractions on L, 5. Let T¢(t) be the semigroup
generated by L° + %LE. Then for any G € L,

T*(t)P7'G — P'U, ()G, € —0 (4.70)
and for any k € Kq
| cn@@mpar @i — | 66 (Tu0°k6.2)) )N, = -0

To

(4.71)
holds uniformly on compacts int > 0.

Proof. For e > 0 and n € T'3 we get

aEg(ﬁ) Mg(n™)

esa Bin™) + —en(Bi7) < asla, B)Ms(n) +

1
< max {as(9),as(a M) (Msto) + 201zl )
Theorem and conditions (E1), (S1) imply that (LS + %zE, D(L%) ~ D(LE)) is the

generator of an analytic semigroup of contractions on £, 5. Applying [Kur73, Theorem

2.1] yields (4.70) and hence
(PTG, T(t)*k) = (T°(t)P=' G, k) — (P10 ()G, k)

holds uniformly on compacts in ¢ > 0. The convergence (|4.71]) now follows from

(BOL()C k) = f U (8)G k(™ )dA()

_ JG(H+) (ﬁa(t)*k(-,g)) (") dA(n ™).

To

In view of Proposition the assertions of Proposition are proved.
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4.9 Examples

The birth-and-death intensities in the examples given below consist of terms

E(z,v%) = ) ez —y), zeR’ yrel.

yevyt

Here ¢ is a symmetric, non-negative integrable function. To assure condition (A) or (A’)
respectively, we always suppose that either ¢ is compactly supported or condition (3.37))
is satisfied.

4.9.1 Two interacting Glauber dynamics
Suppose that the death intensities are given by
dE(x> P)/+a 7_\1') = €xp (—SEwS ([L’, ’7+))
d*(x,7 " \w,v7) = exp (=sByr(2,77))

where s € [0, 1] and ¢, ¢ are symmetric, non-negative and integrable. The birth inten-
sities are assumed to be of the form

b"(z,7) = 2" exp (—(1 — ) Eys(z,7")) exp (—Eyz(z,77))
b (z,7v) = 2% exp (—(1 — 5)Eys (a:,fy’)) exp (—E¢s (q:,*y*)) ,

where 27,25 > 0 and ¢, ¢° are assumed to be non-negative, symmetric and integrable.
For f:RY— R, let Ef(z,7*) := >, f(zr —y) and
yeyt
C(f) := J]e_f(x) — 1|dz. (4.72)
R4

Evolution of states

The cumulative death intensity is given by

M(n) = Z exp (—sEys(z,n")) + Z exp (—sEye(z,17))

TENT zent

and we obtain
Kg'dP (- wn*s 0 \o)l(€) = 0 exp (=sBys (e%)) ex (Je™") — 1];¢*)

Ko'd¥(z,- un\z,- un)|(€) = 0 Texp (—sEye(z,17)) e (IefswE(“') - 1|;€’) .

212



For the birth intensities it follows that

Ky 0" (z, - v, - u T \2)|(€)
_ B (=B s@n®) o= Fym@n™\e) <|ef(1fs>w5(x~> _1; £+> ex <|67¢E<x7-) 1y, 57>

and

Ko '0% (2, - v P\a, - u 7€)
_ S =8By p @) g~ Eys (@t \o) o (|e—<1fs>wE<x7-> 1, 57> ex <|€f¢5(m~> _1; é—+)

hold. Hence we obtain for any «, 5 € R

c(a, Bym) =
+exp (eC(sy”)) Z e~ Bus @) 4 exp (e’C(sy®)) Z e~ Eyr (@)
xeENT :E€77+
+ e P2F exp (e*C((1 - 5)¢S)) exp (650(¢E)) Z e~ (=) Bys(@n®) o= Eyp@n™\z)
TENT
+e 2% exp (e’C((1 — s)v")) exp (e*C(¢°)) 2 e~ (19 Byp(@n™) = Bys(@n\a)
zent

The next theorem provides an evolution of states.

Theorem 4.9.1. Let ¢°, ¥ % F be symmetric, non-negative and integrable and as-
sume that the paramters satisfy the relations

e C(sY%) | =B E e C(1=5)97) e C(67) _ o (4.73)

e C¥P) 4 g=a, 8,7 C((1-9)9") e*C (%) 9 (4.74)

Then conditions (A) — (D) are satisfied for 7 =0 and (4.20)) holds. If in addition s = 0,
then there exists a unique tnvariant measure fin, € Pop and the dynamics described by
the operator L 1is ergodic with exponential rate.

Proof. Conditions (A), (B), (D) are obvious and (C) follows from the representation for

¢(n). Tn view of s € [0, 1], {73) and [74) condition (E:20) holds for
ala, B) = max{eeo‘c(ws) + e B F e Cl1=9)9%) (P C(6")
eeBC(swE) 4 e_azseeﬁc((l_s)’/’E)eeac(¢s)}'

If s =0, then M(n) = |n| which yields ergodicity. O
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In the case s = 0 conditions (4.73]) and (4.74)) simplify to
2B CW?) " C") o of (4.75)

55 oPOWT) e C(6%) _ o (4.76)

Of particular interest is the special case ¢° = 0 = ¢, also known as the Widom-Rowlinson
model. The non-equilibrium dynamics for this model has recently been analysed in
[FKKO15], but without conditions and only existence of a local evolution of
correlation functions could have been shown. Conditions and are satisfied
for e~ = C(¢%) and e = C(yF) if

E 1

27 < and z° <

1
eC(yF) eC (¢

are satisfied.

Vlasov scaling

For simplicity we consider the case s = 0, hence the death intensities need not to be
scaled, i.e. are given by

d”(z, v,y \2) =1 =d%(z,7v"\z,77).

The scaled birth intensities are given by
E FE 1 + 1 _
bn(xufy) =z exXp __Edls(I?’y ) exXp ——Ed)E(.Z’,’)/ >
n n

1 1
by (z,) = 2% exp (——EwE(w,v‘)) exp (——E¢s (fvﬁ*)) :
n n

This yields for the death intensities

For the birth intensities we get

Kooy (- o™ w7 \2)|(€)
— ZEe_%EwS(x7n+)€_%E¢E($v"77\I)€)\ (}eiiws(xf) _ 1

;§+> ex (‘e’%d)E(z*') ~1

;5’)
and

Kg by (2, - v\, - o 7))

— ZSe_%ElﬂE(x’ni)e_%E¢S(x7n+\x)€)\ (‘eiin(zi) _ 1

§§7> ex (‘e*%‘bs(‘“') -1

;5*)-
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Moreover we have M(n) = |n| = |n*| + |n~|. Therefore for o, 5 € R (where we put in
addition the factor n in front of the birth-terms)

cnlex, B5m) < [
+ e 2 exp (*(W?)) exp (e7(07)) In~| + e exp (e”(W")) exp (¢*(6%)) In*|
Thus condition (V1) is satisfied with

ala,B) =1+ max{e5zEe€a<ws>e€ﬁ<¢E>,eazseeﬁ<w’3>eea<¢s>}

provided we suppose that
2P exp (e“(z/JS}) exp (6’8<¢E>> <éf
25 exp (e?WP)) exp (e*(¢”)) < e

holds. Suppose that 1, F ¢% ¢¥ are in addition bounded, then condition (V2) is not
difficult to see, cf. [FK13, [FFHT15]. This yields

DYF(n) = 0" = DY (n)
and

ey (=08 =)&) en (=" (x — );€7) = By (n)
ey (P (@ =)&) ex (—¢°(x —);€T) = BY (),

and hence also (V3) holds. Therefore all previous results can be applied and we obtain
the mesoscopic limit equations, cf. (4.10) and (4.11]), given by

opy LGP pE) () (55 (@)
pn (x) = —p; ( )+ “Fe P )T) e P (4.77)
op; (@505 (@) o~ (WE %) (@)
E(SE) = —py (T ( ) + Z e Pi Pt . (478)

Here and in the following * denotes the usual convolution of functions on R

Weak-coupling limit
Suppose that s = 0 and ¥° = 0 holds, then we have
d¥(z,7" y\e) = 1= d%(z, 7\, v 7).
The birth intensities are given by
b (z,7) = 2" exp (—Eye(2,77))
b (z,7) = 2% exp (—Eye(z,~v7)) exp (—Eys(z,77)) .
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Therefore we obtain Mg(n~) = [n~|, Ms(n) = |n*| and for o, 5 € R
ce(Bin) < (1+ BzEexp( °C(6M)) In|
cs(a, Bim) < (L+ e 2% exp ("C(17)) exp (eC(¢%))) |
follows. Suppose that
2Pexp (PC(¢7)) < €”

25 exp (PO () exp (e*C(4°)) < e (4.79)
are fulfilled. Then conditions (E1) — (E4) and (S1) — (S3) are satisfied. Because of
bP(x,n) < zF and b°(x,n) < 2 for all € I'2 condition (L) holds e.g. for Rs(z) := e~ 01,

The unique invariant measure for the environment is given by the Gibbs measure gy,
with activity z” and potential ¢¥. Let

o) = [’y i) = 1

r

J dpiny (7)) = 2% exp (—E¢s(x, fy+)) Je_EwE (I’Wi)d,uinv('}/_).
r r

<

Then b(z, ") < 1 and with M(z) := {e P2 ) dp, (y7) < 1 we get
r

cain™) = It + e 2 exp (e*C(6%)) ), exp (—Eys(,77)) A(x).

zent
< (T4 e *2%exp (e*C(6%))) In*].
Thus condition holds since by
2Sexp (e*C(¢°%)) <e
Hence we have shown that Proposition 4.8.2is applicable. The limiting dynamics is given
by the averaged operator

(LE)(v*) = Y (F(y"\a) = F(h)) + 2° JX(%)GE“>S(”““’”+)(F(7+ U x) = F(y7))de.

That is by a Glauber dynamics with potential ¢° and activity z5X. The mesoscopic
equation is in such a case given by

P
L) = () + 2 A(x)e @),

This equation can be obtained from (4.77)) and :4.78). Namely, suppose that p”
solution to the stationary version of equation (4.77)), i.e.

pP(x) = 2P~ @M@ g8 zeR?

holds. By e~ VERpE) (@) = A(x) we obtain from (4.78) above averaged kinetic equation.
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4.9.2 BDLP-dynamics in Glauber environment

Let us consider death intensities given by

d®(z, "y \a) = 1
d*(x, v\, y7) = m* + Z a (x—y)+ Z ol —y),

yeyt\z yeEY™

where m® > 0 and 0 < a™, ¢ € L*(R?) are symmetric. The birth intensities are assumed
to be of the form

where 2F > 0 and 0 < ¢, a™,b" € L} (R?) are symmetric.

Evolution of states
We have
Ko'd®(z,-un®, - un\x)(€) = 01

and

Ko'd®(z, - wn\e, - un )(€) = 08m® + 08 0 a~(z—y) + 0 Y d(z—y)

yenT\x yen—
+ 05 e (67) Z a(z—y) + 0 L) (€) Z P(x —y).
yegt yeg—

Likewise we obtain
Kale<x’ ] 7]+’ ) 7]7\‘1’) (5) — zEewa(zvn_\x)e)\ (e*¢($*') _ 1’ 57) 0‘£+|
and

Ko 'b¥(w,- on\e, - o )(©) =08 Y at (@ —y)+ 0 Y bH(z—y)

yenTt\z yen—

+ 0 My (€) D] at (@ —y) + 08 pw (67) D) b (x — ).

yegt yeg—
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This yields
cla, Bim) = ||+ 2Pe” Z 1 exp (7C(1))

+ (m® + e*a™) + gy + (a) + 0F)) In”|

+Z Z a’(a:—y)—i—e’o‘z Z a®

zent yent\z zent yent\z
+ YD b=y +e ™ > D> b —y)
zent yen— xzent yen—

Theorem 4.9.2. Suppose that a*,b", ¢ are bounded and there exist 0 € (0,e*) and b > 0

such that
YD at@-y) <0 D a(w—y)+ byt (4.80)

zent yent\x zen™ yent\z

is satisfied. Moreover, assume that for some ¥ € (0,¢e*) and

96 > b* (4.81)
e’ > zF exp (e’C(1)) (4.82)
m® > e“a" ) + e’ (p) + (aTH + (bt + e (4.83)

hold. Then conditions (A) — (D) are satisfied with 7 = 0 and (4.20) holds. In particular
the evolution of states is ergodic with exponential rate.

Proof. Above conditions imply
c(o, Bim) < (1+ e exp (PC())) In~|
+ (mS +e*a" )+ PPy + <a+> + <b+> +e % ) In*|

1+96 Z Z 1—1—196 ZZgbx—

zent yent\z zent yen~
Since Mg(n~) = |n~| and
Ms(n) =mIn* |+ > > a(@—y)+ >, D élz—y)
zent yen~\z zent yen~

condition (C) is satisfied. Condition (B) holds since all potentials are bounded and (D)
is obvious. Condition (4.20]) holds with

ala,B) =1+ max{ BB C) go—a ge—o e*a”) + €ﬁ<¢> +<{aty+ b + e_o‘b}'

mS

Ergodicity now follows from M (n) > |n~| + m®|n*|. O
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Vlasov scaling

Suppose that a®,b", ¢,v are bounded and (4.80) — (4.83)) with 2" W) < B instead of
(4.82) hold. Scaling of the potentials by % yields for the death
d"(z, 7"y \e) = 1
_ 1 _ 1
Bl ) =mS T N aw—y) + Y o)

yeyt\z yeY~

For the birth we obtain

1
by, (z,7) = 2% exp (——Ew(x, 7))
n
s 1 . 1 N
bie,y) =~ D at (@ —y) + ~ Db ().
yevyt yeEY™
We have together with the factor n in front of the terms contributing to the birth
- - -1 T, \T
cnla, Bim) < |n |+ZE6 B 2 e~ Bul@n™\ )exp (66<¢>)

TENT

+ (m® + e*a™) + 7 {gy + {aT) + (b)) ']

—l—%z Z a‘(m—y)—i—%e_az Z at(z —y)

zent yent\z zent yent\z
1 1,
o2 -y e ) )b (w—y)
zent yen~ zent yen~

and

Mn(n)=|n‘|+msln+|+%2 > a‘(fv—y)+%2 > bz —y).

zent yenT\z zent yen~

Hence condition (V1) is satisfied. Concerning condition (V2) observe that
Ky'd?(z,-unt, - un\a)(€) = 01

and

Ko dS (e, o\, 0 )€ = 0m® 4 08 S (e —y) + 0 S (e )

yent\z yen~
1 .- _ 1 _
+ EOK Tray(€4) Y, a (w—y) + golmﬂrm (€) D. dlz—y).
yegt yes—
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Taking n — oo yields DY*¥(n) = 0" and

DY (n) = 0"m® 4+ 0 11ra) (67) Y. a™ (@ —y) + 0 ey (€7) D dla — ).

yegt yeg—

For the birth intensity of the environment we obtain
Kg"0E (- o, U \a)(€) = 2Pe FR e, (i) 1)

and hence
BF(n) = 2Pex (—i(w = ):€7) 071
Similarly for the birth intensity of the system

K55, e o )(©) = 08 S at (@ —y) + 08 Y b )

yent\x yen—

+ %0'§_|]1F<1)(§+) dat(x—y)+ %ofwm(g) PIACEE

yeg™ yeg—

yields
By (n) = 0 ey (%) > at (= y) + 08 0y (67) D) bF (z — ).
yegt yeg™

This implies conditions (V2) and (V3). The kinetic equation is therefore given by

ook
ot

S
%(93) == (m® + (¢ +p) (@) p} () — pj (x)(a™ » p{ ) (@) + (a* * p})(x) + (b = pf’)(2).

(z) = — pF(z) + 2P~ W*rl)@)

Weak-coupling limit

Suppose that the same as for the evolution of states are satisfied. By previous computa-
tions we get Mg(n~) = [n~|,

ce(Bin7) < (L+eP2Fexp (°C(W))) In"|

and hence (E1) — (E4) hold. For the system observe that

Ms(n) =m®ln*|+ Y, >, a(w=y)+ >, >, dlz—y)

zent yent\z zent yen~
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and

cs(a, fim) = (m® + e*(a™) + X(g) + (a*) + b)) In”|

+Z Z a_(:v—y)+e_a2 2 at

zent yentiz zent yent\z
+ D b=y +e ™ ) D b —y)
zent yen— xzent yen~

Then (S1) — (S3) are satisfied and (L) is not difficult to see. The unique invariant measure
for the environment is the Gibbs measure i, with activity z¥ and potential 1. The
averaged intensities are therefore given by

Ao’y =m 4 Y a -y + | 3 o p)dumlr)

yeyt\z T ver™
and
b(z,n") = Z at(x—y) + f Z b (z — y)dpin (7).
yeyt T ver~
Let X(':C) = IS; Z_ b* (‘r - y)d,uinv(fy_) and m(x) = IS Z_ ¢(x - y)dﬂinv(’y_% then

<2 [ [[oo — g)e By (77) < 50

I' rd

and A(z) < 2b*). Tt follows

M) =mIntl+ > > a (x—y)+ ), m(x)

zent yent\z zent

and we only have to show . By (4.80 -
e(asn™) = (m® +e*a™) +ah)) Int| + Z Z a (r—y)+e® Z Z at

zent yentiz zent yent\z
+ 2 m(z) +e @ Z )

zent zent

< (M4 e™a )+ ) +be ) In+ (L+0e7) Y D) a
zent yent\z
+ Z m(z) +e @ Z A(z)

zent zent
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condition (4.58)) is satisfied, provided there exists ¢ € (0, 1) with
be™® + Az)e ™ + e*a™) + (a*) < q(m® + m(x))

for a.a. x € R% This is in particular satisfied if there exist x € (0, e®) with A < xim. The
averaged (pre-)generator is given by

(LE)(v) = 3, [m® +mlx)+ Y] a (@ —y) |(F(y"\e) = F(11)

xeyt yeyt\z
+ Z+ Jcﬁ(rc —y)(F(y"vy) = F(y"))dy + JX(?J)(F(V+ vy) — F(y"))dy.

The mesoscopic equation is in such a case given by

Pu2) = —(m® + Tx)7ila) — x) 0™+ D)) + (a* = 7)(x) + Alr).

4.9.3 Density dependent branching in Glauber environment

Suppose that the death intensities are given by
d®(z, 7"y \a) = 1
d*(x, 7 \z,77) = mT exp (Bys (2,7\2)) ,
where m® > 0. The birth intensities are given by
bE (z,v) = 2 exp (—E¢E(x,7_))
b2, ) = D exp (—Eys(y, 7)) at(z —y)

yeyt
with 2% > 0 and a™, ¢¥, ¢°, ¥ symmetric, non-negative and integrable.
Evolution of states

Similar to previous models we obtain

Kg'd®(x,- un*, - on\x)|(€) = 01
Kg'd(, 0 \z, - L) [(€) = 0 ImSeas 07y (07670 _q;¢7)

|]K61bE(x’, unt,-unT\@)|(€) = O\£+\ZE€—E¢E(ocm*\ac)eA (|67¢E(:v7-) _ 1,;{)
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and

K50 (2, v\, - w7)I(€) =
£ Lrn(€7) Y] at(@—yle 0 e, (] 07 1)
yeg™
+ ket 2 at(z—y)ey (‘eﬂbE(y*-) _ 1|;§f) o~ Buryn™)
yen*t\z
The cumulative death intensity is given by M(n) = || + m® 3 €Zes@7%) and we

zent

obtain for o, f € R

clar, B5m) = 7| +m® exp (e2C(—¢%)) Y. ePos )

zent

+ 2% Pexp (P C(0")) Z e~ Fer (@ \®)

TENT

+ exp (e’C (")) Z fa*(x —y)e Purwm)qy

$En+Rd

+e “exp (’C(v7)) 2 Z at(z —y)e Bur @),

zent yent\z

Theorem 4.9.3. Suppose that 0 # ¢°,a* are bounded, there exist constants k > 0 and
b > 0 such that for all n*t € Ty

Do D at@w—y) <9 Y, > e —y) + by’ (4.84)

zent yent\z zent yent\z
and the parameters satisfy the relations

e’ > 2P exp (e°C(¢"))
peC(—s®) , maxida®) + ;76_“7?96_"} POWE)
m

Then conditions (A) — (D) hold with 7 = |¢°| ., and (4.20)) is satisfied. The corresponding
evolution of states is ergodic with exponential rate and the invariant measure is given by
O @ u¥, where p¥ be the unique Gibbs measure with activity z¥ and potential ¥ .

2>
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Proof. We obtain

c(n) < |n | (1+ 2Fe P exp (eBC(¢E))) + e “exp (eBC’(wE)) Z Z at(z—vy)

zent yent\z

Iy exp (PCWR)) +mexp (°C(~9%) 3] eFes o)
zent

<|n7| (1 + 2Fe Pexp (eBC(qu))) + In*] (<a+> + e_o‘b) exp (eBC’(iﬁE))
+m® exp (eaC’(—ng)) Z ePos@n™\e) 4 o~ exp (eﬁC(wE)) 9 Z Z % (x — )

zent zent yent\z
<In7| (1 + zFe P exp (eﬁC(ng)))
+ (mseeac(’d)s) + max{{a®) + be™?, ﬁefa}eeﬁc(d’E» Z eFos @)

zent

This shows condition (C) with constant

+ —« -«
a(a, ) = max {1 + zEe"BeeﬁcwE), e C(=4”) + maxi(a’) + 26 e }eeﬁcwE)} .
m

Conditions (B) and (D) are not difficult to see. Finally for any cylinder function F'

PGz et - [LEr @ a6 =0

r2 r

and hence dx ® p is the invariant measure. m

Vlasov scaling

Scaling all potentials by & gives d(z, 7,7 \z) = 1,

1
d°(z,v"\z,7") = m%exp (—%s(%*ﬁ\fﬂ))
n
and for the birth intensities
1
bE(a:,fy) = Pexp <——E¢E(LU7’)/))
n

b5 (2, ) = % > exp (—%%z(%v)) a*(z —y).

yeyt
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Therefore, after scaling of the birth by n, M,(n) = |n~| + ms 3 e%E¢S(fU77I+\I) and

zent

el B5m) < 0| +mS exp (€2(6%)) Y. enfostentio)

zent
+ 2B b exp (eﬂ<¢E>) Z **E¢E(wn \2)
xeEN™
+ exp (eﬁ<wE>) Z (Z+ (Qf — y)e_%EwE (y:ni)dy
x€n+Rd

+—eXp 'B<¢E> 2 Z e nEwE(yn )

zent yent\z

Suppose that 0 # ¢°,a™, ¢¥,¢F at are bounded, (4.84)) holds and the parameters satisfy
the stronger relations

e’ > zF exp (e(¢"))
2 > 66a<¢s> _|__ max{<a+> +geia7/l9€7a}ee,8<wE>
m

Then conditions (V1) — (V3) are satisfied. This yields the kinetic equations

a E
(f; (x) = — pf(x) + 2P @72

S
%t(x) = — m®pf ()@ D@y (aF « pf)(x)e(WTHDI@),

Weak-coupling limit

Suppose that the same conditions as for the evolution of states are fulfilled. Observe that
Mg(n™) =n~|, Ms(n) =m® >} e Eys(@n™\) \We have

zent
ce(Bin™) = In"| + 2" exp Z o~ Eor (@ \)
xen™
csla, B;m) = m® exp (eC(—¢%)) Z o Eos (@nt\a)
zent
+ exp (650(¢E)) Z at ([E . y)ewaE(yyﬂ_)dy
x€n+Rd

+ e exp Z Z wE(yJ/_).

zent yent\z
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Conditions (E1) — (E4), (S1) — (S3) and (L) can be checked in the same way as above.
Let p* be the invariant measure for the environment, then

d(z,v") = m%exp (Eys(z,7"\2))
and with \(y) := Sexp( Eye(y,v7))dpf(v7) <1

=) My)at(z —y).

yeyt
Hence we obtain

=+ZJX(y)a y)dy + e Z Z Ay —v)

zent zent yent\z

Rd
+me”” Z eZos (@n™\2)
zent
and M(n) =mS 3 %s@"@) Tt follows by ([1.84) and A(y) < 1
zent
clasnt) < (<a+> + be’o‘) In*| + e Z Z 5 (x —y) + mSe" Z o5 @n™\x)
zent yent\z zen™t
max {{a") +be”* de™*}  ap g5\ r
< < 3 +e M(n).

Hence Proposition is applicable and the averaged (pre-)generator is given by

(LF)(v") =m® Y Bt (F(y ) = F(7))

reyt

3 @) [ @@ - )EGT U9 - POy
zeyt Rd
The mesoscopic equation associated to this microscopic model is then

Tw) = @20 & (X (o -y

R4

4.9.4 Two interacting BDLP-models
Suppose that the death intensities are given by

APz, "y \e) = mP + )

yey\z
A N\ey ) =mS+ D b(r—y)+ Y ¢ (z—y)
yeyt\z yey~
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The birth intensities are assumed to be given by

v (z,7) = Z at(zx—y)+ 2

yey—
W)= Y b @—y)+ > ¢ (z—y).
yeyt YEY™

Suppose that z,m®, m¥ > 0 and a*, b*, p* are non-negative, symmetric and integrable.

It can be shown that

c(a, B;m) = (m® +e*b7) + ™) + b*) + (™)) In"]
+ (m¥ + ePla™) + (™) + ze‘fB) In7|

DD N ) R S N G B N SRR G

zen~ yen~\z zent yent\z xenT yen~

+e P Z Z at(z —y)+e Z Z bt (x —y)
zENT yENT\z zent yent\z

+e Y Y et —y)
zent yen~

and Mp(n™) =mPln~|+ X X a (z—y),
TENT yEN T\
Ms(n) =mSInt[+ > Y b(@—y)+ Y, > o (z—y).
zent yent\z xenT yen—

Theorem 4.9.4. Suppose that a*,b*, o are bounded and there exist constants by, by > 0
and 91,199,935 > 0 such that

Z Z b+(x—y)§1912 Z b (z—y) + bi|n™|

zent yent\z zent yent\z
Z Z a*(r —y) < s Z Z a (z—y) +bafn|,
TENT yENT\x zENT YenT\z

and ot < W30~ hold. Moreover, assume that the parameters satisfy the relations ¥, V3 <
e®, ¥y < P,

m® > b7 + Py + ey + (b 4 (pT)
mP > ePla™) + e P(by + 2) + (a™).

Then conditions (A) — (D) hold for 7 =0 and (4.20)) is fulfilled. The dynamics described

by the operator L is ergodic with exponential rate and non-degenerated invariant measure.
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Proof. Tt follows that

c(o, Bim) < (m® + ey + P )+ bT) + ™) + bie™*) In”|
+ (mE +eflay+aty+ (2 + bg) Y In7|

(1 + e @ Z Z b (x—vy (1—|—e_f8192)2 Z a

zent yent\z zENT yenT\z
(1 +dge @ Z Z o (x —
zent yen—
The same arguments as before imply (B) — (D) and (4.20)). O

Suppose that the conditions given above are fulfilled. Then (V1) — (V3) are satisfied
and after Vlasov scaling we arrive at the kinetic equations

COL () = — mPpE (@) — ()™ » pE)(a) + (0" » pE)(@) + -
D () = — (m® + (™ + pE)@) () — E )0 + 1))
S ) (0) + (07« ) o).

The unique invariant measure for L¥ is given by 7 - and hence the averaged intensities
. m
are given by

A7) =m® + —x(pTy+ Y, ba—y

yeyt\z

- N b (a—y +<¢+>—

yeyt

Proposition [4.8.2]is applicable if
e ) + (<<p+>i + b1> e+ Ty <m” + <¢*>i.
m¥ mF
Applying the Vlasov scaling to the averaged system yields the kinetic equation

P10y = — (m + Z507) pula) = )6 (@) + (07 » p)(a) + )

Such equation can be also obtained by simply setting pZ = ~% in the coupled system of
equations.
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Appendix

A.1 Banach lattice

Here we give the definition of a Banach lattice, see e.g. [BAOG]. Let X be a real vector
space.

Definition A.1.1. A partial order (simply order) on X is a relation” <" on X x X such
that the following are fulfilled for all x,y,z € X

1. x <ux.
2. If x <y andy < x, then x = y.

3. Ife <yandy < z, then x < z.

An upper bound for a set A < X is an element z* € X such that a < x* for all
a € A. A lower bound is then an element z, € X such that x, < a for all a € A. The
supremum sup(A) of A is the last upper bound of A, i.e. given any other upper bound
x* € X of A, then sup(A4) < z*. The infimum inf(A) of the set A is defined in the same
way. We should emphasize that in general the supremum and infimum do not have to
exist. A vector space X equipped with a partial order ” <” is called lattice if for every
two elements z,y € X the supremum sup({z,y}) and infimum inf({z, y}) exist.

Definition A.1.2. A vector space X equipped with an partial order” <" is called ordered
vector space if its vector structure is compatible with the order” <", i.e.

(a) v <y impliesz + 2z <y+z forall x,y,z€ X.
(b) x <y implies ax < ay for alla >0 and x € X.
If the ordered vector space X is also a lattice, then it is called vector lattice.

For a vector lattice X it is possible to define for any x € X its positive, negative part
and absolute value by

xy :=sup {z,0}, z_ :=sup {—=x,0}
and |x| := sup {z, —z}. By [BAO6, Proposition 2.46] above operations satisfy the relations

r=x;—z_and |z| =2, +z_.
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Definition A.1.3. A norm | - | on the vector space X is called lattice norm if |x| < |y|
implies |z <yl

A.2 Basic lemmas

Set A := {(s,t) e Ry x R, | s < t}, the next two lemmas should be well-known and are
included here only for convenience.

Lemma A.2.1. Let f; : A x Ry x E — R be a family of measurable functions indexed
by j € M, where M is an arbitrary non-empty index set, such that

1. f; is bounded on compacts uniformly in j € M.

2. The map (s,t,x) —> fi(s,t,r,x) is continuous uniformly in j € M for fized r €
[s,¢].

t
Then (s, t,x) —> § f;(s,t,r,z)dr is continuous uniformly in j € M.

s

Proof. Let (s,t),(sn,t,) € A and z,z, € E be such that s, — s, t, —> ¢t and z, — z as
n — 0. We find T > 0 and a compact B < E such that s, s,,t,t, € [0,7] and z,z, € B

for n € N. Let f* := sup sup fi(t1,ta, t3,x) < o0, then for any n € N
JjeM (t1,t2,t3,x)€Aﬁ[0,T]2X[O,T]XB

and j e M

t tn
ij (87 t,r, J})dT - ij (Sm ln, T, xn)dr

T
<|s—=sulf*+ [t =t f" + J |fi(s,t,m, ) — fi(Sp,tn, ry2,)|dr
0

For each r € [0,T] the integrand on the right-hand-side tends to zero as n — oo, and since
Ifi(s,t,m ) — fi(Snstn, 7, 2,)| < 2f* dominated convergence yields the assertion. O

The next lemma will show continuity in the case where instead of dr there is an
arbitrary kernel H(t,z,dy). In such a case we will need that E is locally compact.

Lemma A.2.2. Let E be a locally compact Polish space,

fi{ls,r,t)eR3 |s<r<t}xExE-—R
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be continuous and bounded, and let H : I x E x B(E) — R, be a weakly continuous
kernel, i.e. for all F € Cy(E), Ry x E 5 (r,x) —> § F(y)H(r,z,dy) is continuous. Then
E

(5,7 ) — f F(s, oty y) H(r, . dy)
E

1S continuous.

Proof. Let s, <r, <t, besuch that s,, - s,r, — r,t, — t and x,, > x as n — . Fix
e > 0 and take A ¢ E compact with H(r,z, A°) < e. Since F is a locally compact space
we can find another compact A; ¢ E with A ¢ A; < A;. Portmanteau implies then
limsup H(ry,,x,, (A1)¢) < H(r,z,(A;)°) < H(r,z, A°) < e. The function f restricted

n—0o0

to the compact {(s,,7n,tn) | n € N} U {(s,r,t)} x {x, | n € N} U {z} x A is uniformly
continuous and hence we obtain for sufficiently large n

ff<sn,rn,tmxn,y)H(rn,xn,dy) _ f (st y) H(r 2, dy)
FE E

< [ 15 tos ) — F(5, 12, )| H (v, 0, )
)

. ff<s,r,t,a:,y>H<rn,xn,dy> _ f sty y) Hr, . dy)
E FE

< H(rp,vn, Ar)e + 2| fI|H(rp, 7y, (A1)°) + €
< H(rp,xn)e + 2| fle +e.

Due to the weak continuity of H the function H(r,z) := H(r,z, E) is continuous and
hence H(ry,x,) is uniformly bounded in n € N, which shows the assertion. O

A.3 Proof of Theorem 4.8.4

(a) Clearly T, (t) ® 1 is a bounded linear operator on L, 3. Let M > 1 and w € R be
such that [T, (t)|rc.) < Me*', then [T, (1) @ 1|z, ) < Me*'. For G = G1 ® Gy € X we
obtain

[(Ta(t) @ 1)G = Gz, 5 = |Galles[Ta(O)Gr = Gilc,

and hence it is strongly continuous on X. Since X" is dense in L, g it follows that it is
strongly continuous on the whole space £, 3. Take G = G; ® Gy € D, then

(T, @1)G -G (To(t)G: — Gy
t B ( t

)®G2—>AaG1®G2, t—0
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shows that lin(D) ¢ D(A, ) and A, 3G = A,G1 ® G. For the last assertion it suffices
to show that

G:= {G1®G2 | Gie () D(AD), Ggezﬁ} =D
n>1

is a core for (A, 5, D(Anp)). For Gi®Gs € G we get (T, (1) ®1)(G1®G2) = T, (t)G1 R Gy
and hence lin(G) is invariant for 7, (¢) ® 1. Moreover, we see that

X clin(G) < Lag

and hence L, 5 = X < lin(G) = L, 3, which shows that lin(G) = L, s is dense.
(b) Let M > 1 and w € R be such that |T,, 5(t)[ iz, ,) < Me**, then T,(t) is clearly a
bounded linear operator on £, and it holds that

IT0(t)Gllea < |Tas®) PGz, , < Me*|PZ' Gz, , = MG,
The semigroup property is evident and strong continuity follows from
ITo(t)G = Glle, = |P-(Tup(®)P'C — PT'G) |z, < |Tas() PTG~ PTG, ,

and the strong continuity of (7, 5(t))i>0. Since (Tn5(t))i>0 leaves L, invariant it fol-
lows by definition that T, (¢) leaves £, ® 0~ invariant. The space £, ® 0~ is a closed
subspace and hence the restriction T, 5(f)|,.g0- is the generator of a Ch-semigroup on
L, ®07. The generator is in such a case given by the £, ® 0~-part of A, g, that is by
(Aaslea@os D(Aap)lcago-, Where Aq glr,g0-G = AapG, G € D(Aqp)|c.go- and

D(Aup)|cogo- = {G € D(Aup) " Lo ®0™ | AypG e Log®0}.
Since T,(t) = IS,Ta,g(t)ZS:l it follows that A, = ﬁ—Aa,ﬁ|La®o— P~' and

D(Ay) = P_D(Aup)|rugo- = {G € Lo | PTG € D(Aap), AasP 'Ge Lo @07},
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