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Introduction

The theory of interacting particle systems is a fast growing area in modern probability
and infinite dimensional analysis with various applications in, e.g., mathematical physics,
theoretical biology, ecology, social sciences and economy. The aim is to describe the time
evolution of a huge collection of interacting entities. Such entities are called (microscopic)
particles and are considered, depending on the particular choice of model, as molecules,
cells , plants or animals , humans and agents of a market. The collection of all particles,
which is typically of order 104 ´ 1023, is called microscopic state. Each particle from
this state can, in principle, be described by a physical/ecological/biological mechanism.
A detailed understanding of such mechanism yields the possibility to describe the time
evolution of the microscopic state by solutions to certain systems of equations. Neverthe-
less, the complex structure of each particle makes it practically impossible to determine
all parameters involved. Moreover, due to the huge number of particles it is hopeless to
solve or even provide reasonable simulations for such large systems of equations. As a
simplification each particle is therefore modelled as a random process. The parameters
of such processes should be chosen in such a way that they fit with the experimental
data. Moreover, the huge number of particles is described by statistical properties such
as expectations, correlations and particle densities. A mathematical realization of above
ideas leads, in the simplest case, to the description of a microscopic state in terms of a
Markov process.

In this thesis we study certain classes of particle systems in the framework of Markov
processes and are mainly focused on their statistical description. The methods used in this
work are at present already well-developed but still leave several challenging problems un-
solved. The aim of this thesis is to broaden the collection of available techniques used for
the analysis of interacting particle systems. We provide a complete and self-contained ap-
proach by semigroup methods which includes an extension to time-inhomogeneous Markov
processes. This methods are used for the construction of so-called birth-and-death pro-
cesses, where each particle from the microscopic state may randomly disappear and new
particles may randomly appear.

Classical birth-and-death dynamics are described by a system of ordinary differential
equations, also known as Kolmogorov’s differential equations, and are usually studied by
semigroup methods on (weighted) spaces of summable real-valued sequences, cf. Feller,
Kato [Kat54, Fel68, Fel71, HP74]. More recent attempts study such equations on the
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spaces `p for p P r1,8q, see Arlotti, Banasiak [BA06] and others [BLM06, TV06]. In
contrast to many real world models, see e.g. the Bolker, Dieckmann, Law, Pacala model
[BP97, BP99, DL00, DL05] (short BDLP), such equations do not include the positions of
the described particles. Other models coming from ecology and the modelling of mutations
can be found in [Neu01, BCF`14, KM66, SEW05, FFH`15] and references therein.

The simplest possibility to include spatial structure is to assign to each particle a fixed
site of a graph (e.g. from the lattice Zd). This are the so-called lattice models. For such
models a rigorous study by semigroup methods is adequate and a detailed presentation can
be found in the classical book of Liggett [Lig05] and references therein. Several models,
such as the BDLP model, require that the positions of the particles are not a priori fixed.
This means that Zd should be replaced by a continuous location space, e.g. Rd.

For the modelling of birth-and-death processes in continuum the theory of pure point
processes is commonly used. Such processes share several properties with the processes
associated to lattice models, but also include numerous unexpected features and require
essentially different techniques for their mathematical treatment. Taking into account
that they describe real-world particles it leads to the natural assumption that all parti-
cles are indistinguishable and any two particles cannot occupy the same position in the
location space, say for simplicity Rd. A microscopic state γ is then, by definition, a linear
combination of point-masses δx, where x P Rd is the position of a particle in the system.
Here we encounter two different cases which, as we shall see later on, have to be treated
by different techniques. A microscopic state which is given by a finite linear combina-
tion of point masses is called finite state, see chapter 2. Microscopic states being linear
combinations of point masses δx with infinitely many different positions x P Rd are called
infinite states and are considered in the chapters three and four. The Markov dynam-
ics of finite states can be analysed by a measure-valued generalization of Kolmogorov’s
differential equations. This equations have been first analysed by Feller [Fel40] and have
been afterwards further investigated in the next 60 years, cf. [FMS14] and many others.
A summary with applications to interacting particle systems is provided in the book of
Chen [Che04]. For the considerations in this thesis it is reasonable to identify γ with a
subset of Rd, i.e. we consider the microscopic state as a (finite or infinite) collection of
positions x P Rd.

Stochastic birth-and-death processes in continuum are heuristically described by a
Markov (pre-)generator on a proper set of functions F . The general form of such operator
(in the one-component case) is given by the heuristic expression

pLF qpγq “
ÿ

xPγ

dpx, γzxqpF pγzxq ´ F pγqq `

ż

Rd

bpx, γqpF pγ Y xq ´ F pγqqdx, (1)

where γ P E. The state space (= configuration space) E is assumed to be either the space
of all finite configurations

Γ0 “ tη Ă Rd
| |η| ă 8u
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or the space of all locally finite configurations

Γ “ tγ Ă Rd
| |γ XK| ă 8 for all compacts K Ă Rd

u.

Here and in the following we write |A| for the number of elements in A Ă Rd. For simplicity
of notation we write γzx, γ Y x instead of γ Y txu and γztxu, respectively. The birth-
and-death Markov process pXtqt≥0 Ă E associated to the operator L, provided it exists,
therefore consists of two elementary events. Namely, the death of particles (γ ÞÝÑ γzx)
and birth of particles (γ ÞÝÑ γ Y x). The death intensity dpx, γq ≥ 0 determines the
probability that a point x P γ disappears from the configuration γ. The birth intensity
bpx, γq ≥ 0 determines the probability for a new point x P Rd to appear. In general both
intensities depend on the present microscopic state γ of the process.

Solutions to the (backward) Kolmogorov equation on functions F : E ÝÑ R

BFt
Bt

“ LFt, Ft|t“0 “ F0 (2)

are related to the Markov process pXtqt≥0 by

Ftpγq “ EγpF0pXtqq, γ P E, t ≥ 0,

where Eγ denotes the expectation w.r.t. the probability measure Pγ for which PγpX0 “

γq “ 1 holds. Here we encounter a fundamental difference in the theory of finite birth-
and-death systems pE “ Γ0q and infinite systems pE “ Γq. For finite systems equation
(2) can be solved in spaces of continuous bounded functions, see Kolokoltsov [Kol06] and
chapter 2 of this thesis. Hence we are able to construct a birth-and-death Markov process
starting from any initial point η P Γ0. However, for infinite systems we cannot expect to
solve equation (2) in any space of continuous functions and hence obtain a process for any
initial configuration γ P Γ, cf. Kondratiev, Skorokhod [KS06]. Note that any stochastic
process having càdlàg paths, is necessarily contained in a proper subspace of Γ.

The adjoint Cauchy problem

Bµt
Bt
“ L˚µt, µt|t“0 “ µ0 (3)

is known as the (forward) Kolmogorov equation and describes the distribution of the
process Xt. Because of the Markovian property of the operator L we expect that solutions
to (3) can be constructed in the class of probability measures on E. In the physical
literature, (3) is referred to the Fokker-Planck equation and probability measures µ on E
are called states of the system. Functions F : E ÝÑ R are hence called observables and
expectations

xF, µty :“

ż

E

F pγqdµtpγq

are considered as measurable quantities of the particle system.
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Dynamics of finite systems

The study of birth-and-death processes with state space E “ Γ0 has been initiated by
Preston [Pre75]. In particular, it was shown that under some conditions the processes are
temporally ergodic. Later on the problem for convergence to equilibrium was studied by
Lotwick, Silvermann and Møller [LS81, Møl89]. A necessary condition for the existence
of a process with state space Γ0 is given by

qpηq :“
ÿ

xPη

dpx, ηzxq `

ż

Rd

bpx, ηqdx ă 8. (4)

The first term describes the intensity that a particle from the configuration η dies, whereas
the integral in the second term is the intensity for the birth of a new particle. The value
qpηq is the cumulative intensity of the process in the state η P Γ0. The corresponding
transition function is given by

Qpη,Aq “
ÿ

xPη

dpx, ηzxq1Apηzxq `

ż

Rd

bpx, ηq1Apη Y xqdx,

where 1Apηq :“

#

1, η P A

0, η R A
and the operator given by (1) can be rewritten to

pLF qpηq “

ż

Γ0

pF pξq ´ F pηqqQpη, dξq, η P Γ0. (5)

Hence the process described by the operator L is a pure jump Markov process and tech-
niques coming from the theory of Markov chains are applicable. Such approach has been
investigated in the last 20 years, a comprehensive summary of the obtained results can
be found in [Che04]. Such processes can be also obtained as unique solutions to certain
stochastic equations, cf. Bezborodov [Bez15a, Bez15b].

More recent problems in the theory of birth-and-death processes on Γ0 deal with
various scaling limits. In this thesis we only consider the so-called mean-field limit, for
which the particles in the limiting description are distributed according to a Poisson
measure. The mean-field limit is also known as the mesoscopic limit and can be obtained
by various kinds of scalings, e.g. Vlasov and Lebowitz-Penrose to mention the most
common ones. The limiting equation, or kinetic equation,

Bρt
Bt
pxq “ vpρtqpxq, ρt|t“0 “ ρ0, x P Rd

is then (in general) a non-linear integro-differential equation for the approximate density
of the particle system. The solution operator associated to above equation, provided it
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exists, preserves in many cases positivity. Hence it may determine a non-linear Markov
process, cf. Kolokoltsov [Kol07, Kol10, Kol13]. The BDLP model given by dpx, ηzxq “
m`

ř

yPηzx

a´px´ yq and bpx, ηq “
ř

yPη

a`px´ yq yields the kinetic equation

Bρt
Bt
pxq “ ´mρtpxq ´ ρtpxq

ż

Rd

a´px´ yqρtpyqdy `

ż

Rd

a`px´ yqρtpyqdy.

Here m ą 0 is the mortality rate, 0 ≤ a´ P L1pRdq the competition and 0 ≤ a` P L1pRdq

the dispersion kernel, see chapter 3. A detailed analysis of such type of equations can be
found in [FKT15], see also the references therein.

Let k, r P N, Γ
p≤kq
0 “ tη Ă Rd | |η| ≤ ku and K : Γ0 ˆ BpΓp≤kq0 q ÝÑ R` a transition

kernel with Kpη,Γ
p≤kq
0 q ă 8 for all η P Γ0. Eibeck, Wagner [EW01, EW03] discussed

existence, uniqueness and in particular the mesoscopic scaling for the (pre-)generator
given by

pLF qpηq “
ÿ

ξĂη

1|ξ|≤rpξq

ż

Γ
p≤kq
0

pF pηzξ Y ζq ´ F pηqqKpξ, dζq. (6)

In the corresponding dynamics each group ξ Ă η of at most r particles may disappear and
simultaneously a new group of at most k particles ζ P Γ

p≤kq
0 appear somewhere in Rd. The

distribution of the new particles and the intensity of this event are both described by the
transition kernel Kpξ, dζq. The term r “ 0 corresponds to the pure birth of a finite group

of particles ζ P Γ
p≤kq
0 whereas the part k “ 0 corresponds to the death of the subgroup of

particles ξ P η. All other terms describe merging, splitting or jumps of groups of particles.
Considering above generator only for the cases k “ 0 and r “ 0 yields

pLF qpηq “
ÿ

ξĂη

1|ξ|≤rpξqKpξ,HqpF pηzξq ´ F pηqq `

ż

Γ
p≤kq
0

pF pη Y ζq ´ F pηqqKpH, dζq.

In contrast to (1) such operator does not include the BDLP model.
This problem was also studied by Belavkin, Kolokoltsov [BK03] and the research con-

tinued in the series of works [Kol03, Kol04a, Kol04b, Kol04c, Kol06] leading to satisfactory
results for the mesoscopic scaling described by Markov (pre-)generators given by

pLF qpηq “
ÿ

ξĂη

1|ξ|≤rpξq

ż

Γ
p≤kq
0

pF pηzξ Y ζq ´ F pηqqKpξ, η, dζq. (7)

It is worth to stress the important difference to (6) which lies in the appearance of the
additional dependence on η in the transition function Kpξ, η, dξq. Such dependence in-
cludes a wide class of interacting particle systems which could not be considered by (6).
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Particular examples such as kinetic equations of statistical mechanics, namely the one
of Landau and Vlasov but also the Boltzmann and Smoluchovski equations have been
considered in [Kol06]. The Replicator dynamics from the theory of evolutionary games
is also discussed. The BDLP model was treated by stochastic differential equations in
[FM04].

Dynamics of infinite systems

The construction of birth-and-death processes with state space Γ and associated Markov
(pre-)generator (1) is challenging task of modern probability and is only partially solved at
present. One of the main difficulties lies in the necessity to control the number of particles
in a bounded region of Rd. Markov processes on Γ given by the operator L as in (1) have,
in general, infinite intensity in the sense that (4) is not fulfilled. Hence the representation
(5) is no longer valid and most of the developed techniques for birth-and-death processes
on Γ0 are not applicable in this case.

A pure probabilistic approach by stochastic differential equations has been developed
by Garcia, Kurtz [GK06]. Namely, for dpx, γzxq “ 1 and a birth intensity with

|bpx, γ Y yq ´ bpx, γq| ≤ apx, yq, x, y P Rd

such that a satisfies some additional continuity condition, existence and uniqueness has
been established and under additional conditions ergodicity for the processes was shown.
Unfortunately several models from mathematical biology and ecology, see eg. [FFH`15,
KK16], do not satisfy these conditions.

A different, functional analytic, approach to the construction of the processes is related
to the construction of solutions to either (2) or (3), respectively. Trying to solve (2) one
immediately arrives at serious obstacles. The reason is that any known perturbation
theory for such operators is not applicable and (in general) any two different states on Γ
are orthogonal. It was proposed to investigate instead the statistical dynamics, i.e. the
Fokker-Planck equation (3), on the space of so-called sub-Poissonian probability measures,
cf. [KK02, FKO09, KKM08, FKK10, FKO13]. The notion of correlation functions turned
out to be adequate for the analysis of (3). Therefore most modern results obtained for
infinite systems are mainly based on the study of correlation functions. One possible
definition of a correlation function is given below, details can be found in chapters three
and four.

A probability measure (state) µ on Γ is said to have correlation function kµ “ pk
pnq
µ q

8
n“0

if for any symmetric bounded functionGpnq : Rd ÝÑ R` with compact support the relation

ż

Γ

ÿ

tx1,...,xnuĂγ

Gpnqpx1, . . . , xnqdµpγq “
1

n!

ż

Rdn

Gpnqpx1, . . . , xnqk
pnq
µ px1, . . . , xnqdx1 ¨ ¨ ¨ dxn

(8)
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is satisfied. The value k
pnq
µ px1, . . . , xnq describes the (non-normalized) probability density

to find particles in the positions x1, . . . , xn. Setting

kµpηq :“

#

k
pnq
µ px1, . . . , xnq, η “ tx1, . . . , xnu, |η| “ n

0, otherwise

yields a measurable function kµ : Γ0 ÝÑ R`. Conversely, any measurable function G :
Γ0 ÝÑ R can be decomposed into its components Gpnq : pRdqn ÝÑ R, n ≥ 0, where
Gpnq is symmetric and measurable. Denote by BbspΓ0q the collection of bounded functions
G : Γ0 ÝÑ R such that there exist a compact Λ Ă Rd, N P N with Gpηq “ 0 whenever
|η| ą N or η X Λc ‰ H. This space can be identified with the collection of all finite
sequences of bounded, measurable, symmetric functions pGpnqqNn“0 having compact support
in pRdqn. Definition (8) suggests to consider for any G P BbspΓ0) the K-transform given
by

pKGqpγq :“
ÿ

ηŤγ

Gpηq “
8
ÿ

n“0

ÿ

tx1,...,xnuĂγ

Gpnqpx1, . . . , xnq, γ P Γ,

where Ť means that the summation is taken only over all finite subsets of γ. Such
functions F “ KG are known as additive type observables in statistical mechanics, see
[Bog62], and we call functions G in such a case quasi-observables. The function KG then
satisfies

pKGqpγq “ pKGqpγ X Λq

and |pKGqpγq| ≤ Ap1`|γXΛ|qN for some constant A “ ApGq ą 0, i.e. it is a polynomially
bounded cylinder function. Denote by FPpΓq :“ KBbspΓ0q the image of the K-transform,
then for any F P FPpΓq

pK´1F qpηq “
ÿ

ξĂη

p´1q|ηzξ|F pξq

is the inverse transformation to K. The Lebesgue-Poisson measure on Γ0 is defined by

λ “ δH `
8
ÿ

n“1

1

n!
dpnqx,

where dpnqx is the restriction of the Lebesgue measure to Γ
pnq
0 “ tη P Γ0 | |η| “ nu, see

chapter 3. Taking the sum from n “ 0 to 8 in (8) yields the equivalent definition of a
correlation function

ż

Γ

KGpγqdµpγq “

ż

Γ0

Gpηqkµpηqdλpηq, G P BbspΓ0q.

By definition, the correlation function kµ : Γ0 ÝÑ R` satisfies kµpHq “ 1 and is positive
definite in the sense that for any G P BbspΓ0q such that KG ≥ 0 one has

ż

Γ0

Gpηqkµpηqdλpηq ≥ 0.
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The correlation function kµ is said to be sub-Poissonian (with bound β) if it satisfies for
some constant Cpµq ą 0 the Ruelle bound

kµpηq ≤ Cpµqeβ|η|, η P Γ0.

A state µ on Γ is said to be sub-Poissonian (with bound β) if it has a correlation function
kµ satisfying above Ruelle bound for β. A function k : Γ0 ÝÑ R` satisfying the Ruelle
bound is the correlation function of a unique measure µ on Γ if and only if k is positive
definite and satisfies the normalisation condition kpHq “ 1.

Suppose that the states µt in (3) are sub-Poissonian, then using relation (8) we can
rewrite (3) into an initial value problem for correlation functions given by

Bkt
Bt
“ L∆kt, kt|t“0 “ k0, (9)

see [FKO09, FKO13]. The operator L∆ can be computed from L and we expect that
solutions to (9) are positive definite and hence provide an evolution of states. Since
any function k : Γ0 ÝÑ R can be decomposed into its symmetric components pkpnqq8n“0,
the initial value problem (9) is simply a system of function-valued differential equations.
Surprisingly, it is possible to apply for such equations different kinds of perturbation
methods to study existence, uniqueness and properties of solutions. The Ruelle bound
suggests to study equation (9) on a weighted space of bounded functions, but for technical
reasons it is simpler to study first the ”pre-dual” equation on the space of integrable
quasi-observables. Below we give a brief description of this scheme, details can be found
in chapter 3.

Let pL :“ K´1LK be defined on BbspΓ0q. For G P BbspΓ0q and any function k which
satisfies the Ruelle bound also

ż

Γ0

ppLGqpηqkpηqdλpηq “

ż

Γ0

GpηqpL∆kqpηqdλpηq

holds. Therefore solutions to

BGt

Bt
“ pLGt, Gt|t“0 “ G0 (10)

provide by duality solutions to (9). Using perturbation theory for analytic semigroups
Finkelshtein, Kondratiev, Kutoviy [FKK12] constructed solutions to (10) and hence to
(9) for general birth-and-death intensities. The mesoscopic limit was also studied by
semigroup methods. Particular examples of above approach can be found in [FKKZ14,
FKKO15, FKKK15, FFH`15, KK16], see also the references therein. Ergodicity has been
established for the Glauber dynamics in [KKM10], whereas ergodicity for the equilibrium
Glauber process was studied in [KL05]. A solution to (9) in general does not need to be
positive definite and hence provide a solution to (3). For such property additional analysis
is required and was only achieved for a few models, see e.g. [KKP08, KKM08, KK16].
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Description of results

Evolution equations in scales of Banach spaces

Solving evolution equations given by an unbounded (linear) operator Aptq is an important
but also challenging task of applied mathematics. For many models of interacting particle
systems, e.g. birth-and-death processes on Γ, the operator Aptq can be realized as a
bounded linear operator on a suitable chosen scale of Banach spaces B “ pBαqα with
Bα1 Ă Bα for α1 ă α. Namely, for all α1 ă α and t ≥ 0 we have Aptq P LpBα1 ,Bαq,
see (1.2) for the precise definition. Here LpBα1 ,Bαq denotes the space of all bounded
linear operators from Bα1 to Bα. The aim of the first chapter is to develope methods for
the study of the related evolution equations by means of semigroup techniques but also
beyond such.

The first section deals with evolution equations associated to an operator Aptq acting
as a bounded linear operator in a scale of Banach spaces. We introduce the notion of
forward and backward evolution systems in scales of Banach spaces and relate them with
their ”generator” through solutions to the forward equation

B

Bt
uptq “ Aptquptq, upsq “ us, t P rs,8q

and backward equation

B

Bs
vpsq “ ´Apsqvpsq, vptq “ vt, s P r0, ts,

respectively. It turns out that above equations are well-posed (in a scale of Banach
spaces) if and only if there exists a forward and backward evolution system with generator
Aptq. The assumption that Aptq is a bounded linear operator in a scale of Banach spaces
is sufficient to guarantee that the associated forward and backward evolution systems
are continuous in the uniform operator topology on LpBα1 ,Bαq, whenever α1 ă α. In
particular, any strongly continuous semigroup pT ptqqt≥0 with generator A acting as a
bounded linear operator in the scale of Banach spaces B, is continuous in the uniform
operator topology on LpBα1 ,Bαq for all α1 ă α. Thus instead of working with unbounded
operators in one Banach space, one can try to realize the involved operators as bounded
linear operators in a suitable chosen scale of Banach spaces and use the methods developed
in the first chapter. In such a case one does not need to take care of the domain of Aptq,
which is in general hard to handle.

Based on the methods from [Paz83, Kat70, Kat73] we provide a sufficient condition for
above equations to be well-posed. The construction of the evolution systems is based on
an approximation by piecewise constant operators Anptq. Similar constructions in triples
of Banach spaces can be found in [Kol13, KPA88].
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Stability of the solutions, that is continuous dependence on initial conditions and on
the generator Aptq, is proved and existence and uniqueness for the adjoint equations is
investigated. The obtained results share some similarities with those provided in [Cap02].

The last two sections go beyond semigroup methods and study linear and non-linear
perturbations of above equations by an operator Bptq on B. The linear case is treated
in the second section. In such a case it is assumed that Bptq is an Ovcyannikov-type
operator, by which we mean that there exists M ą 0 such that for all α1 ă α and t ≥ 0:
Bptq P LpBα1 ,Bαq and its operator norm satisfies

}Bptq}α1α ≤
M

α ´ α1
.

Rxistence, uniqueness and stability of (local) solutions is proved for the perturbed forward
equation

B

Bt
uptq “ pAptq `Bptqquptq, upsq “ us, t ≥ s

and backward equation

B

Bs
vpsq “ ´pApsq `Bpsqqvpsq, vptq “ vt, s ≤ t

with initial conditions us, vt P Bα1 . A time-independent version of this result can be
found in [Fin15]. Applications to birth-and-death processes are considered e.g. in [FK13,
BKKK13, KK16], whereas applications to partial differential equations with Aptq “ 0 are
well-studied and can be found in [Nir72, Nis77, Zab89, Tiğ08, Tığ11].

The striking point in the analysis of such equations is that the obtained solutions
cannot be localized in one fixed Banach space. More precisely for any α ą α1 we can find
T pα1, αq ą 0 such that uptq P Bα for any t P rs, T pα1, αqq. Such property resembles some
sort of worsening, see [Liu91], and is one of the main reasons why we cannot expect that
methods by semigroups on Banach spaces are applicable. Nevertheless, it is possible to
derive a criterion for which global solutions exist, i.e. T pα1, αq is unbounded in α. Having
this in mind we prove a comparison principle on Banach lattices which can be used to
prove for a certain class of birth-and-death models existence of global solutions with above
mentioned worsening property. Such approach was used for the BDLP model in [KK16].

The generalization of above statements to the non-linear equation

B

Bt
uptq “ Aptquptq `Bpt, uptqq, up0q “ u0

is considered in the last section. Here Bpt, uq is a time-dependent non-linear operator
acting as a continuous operator in a scale of Banach spaces. Existence and uniqueness
was established by Safonov [Saf95] in the case Aptq “ 0. Stability of the solution wrt.
Aptq and Bpt, uq is proved in the last section of the first chapter and can be used for the
Vlasov scaling, see ”Epistatic mutation selection model” in chapter 3.
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Dynamics of finite systems

The aim of the second chapter is to provide a complete and self-contained analysis of (one
and two-component) birth-and-death processes with state space Γ0 or Γ2

0, respectively.
We extend known results to time-dependent (pre-)generators given in the one-component
case, see (7), by

pLptqF qpηq “
ÿ

ξĂη

ż

Γ0

pF pηzξ Y ζq ´ F pηqqKtpξ, η, dζq. (11)

The transition function

Qpt, η, Aq “
ÿ

ξĂη

ż

Γ0

1Apηzξ Y ζqKtpξ, η, dζq, t ≥ 0, η P Γ0

yields for above operator a similar form as in (5) and hence several well-known results for
pure jump processes and Markov chains can be applied.

Based on the classical works [Fel40, GS75, FMS14] we study in the first section the
evolution system Ups, tq on an abstract locally compact Polish space E associated to the
(pre-)generator of a pure Markov jump process

pLptqF qpxq “

ż

E

pF pyq ´ F pxqqQpt, x, dyq, x P E, t ≥ 0.

The operator Lptq is assumed to satisfy a Foster-Lyapunov type condition, see [MT93].
We assume that the transition function Qpt, x, dyq is weakly continuous and satisfies some
additional technical conditions. It is shown that in such a case there exists an associated
conservative Feller evolution system Ups, tq on the space of continuous bounded functions.
Hence by [Cas11] Ups, tq is associated to a (minimal) Hunt process with state space E. For
a countable state space E such result was obtained by martingale techniques in [ZZ87].
We show that Ups, tq provides existence and uniqueness of solutions to the Kolmogorov
equations and establish the relation to the jump process by the associated Martingale
problem.

Above results are applied in the second section to the operator Lptq given by (11) and
to several examples from ecology, i.e. the BDLP and Dieckmann-Law model with time-
dependent and non-translation invariant interaction kernels. The adjoint evolution system
U˚pt, sq provides by U˚pt, sqµ for a certain class of initial states µ on Γ0 an evolution of
states and hence weak solutions to

B

Bt

ż

Γ0

F pηqµtpdηq “

ż

Γ0

LptqF pηqµtpdηq,
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where F : Γ0 ÝÑ R is continuous and bounded. Sufficient conditions for which L1pΓ0, dλq
is invariant for U˚pt, sq are given. By construction, the restriction U˚pt, sq|L1pΓ0,dλq be-
comes strongly continuous.

Afterwards we turn to the analysis of the time-homogeneous case and provide an
equivalent construction for the associated evolution of states. Such evolution is given
by a strongly continuous semigroup on the space of finite Borel measures and is used to
characterise the conservativeness property.

The second part of this chapter deals with the precise relation between states on Γ0

and their correlation measures. Given a state µ on Γ0, the correlation measure ρµ on Γ0

is defined by

ρµpAq :“

ż

Γ0

pK1Aqpηqdµpηq.

In such a case we can rewrite the Fokker-Planck equation (3) to an equation for correlation
measures

Bρt
Bt
“ rL∆ρt, ρt|t“0 “ ρ0, (12)

where rL∆ can be formally constructed by the duality
ż

Γ0

pLGpηqρpdηq “

ż

Γ0

GpηqrL∆ρpdηq.

If µ is given by a density function R, that is of the form µpdηq “ Rpηqdλpηq. Then
ρµpηq “ kµpηqdλpηq and kµ is the correlation function for the measure µ. In such a case
the simple identity

kµpηq “

ż

Γ0

Rpη Y ξqdλpξq

holds. It will be shown that the evolution system Ups, tq associated to the operator Lptq
provides solutions to

BGt

Bt
“ pLptqGt, Gt|t“0 “ G0

and by duality an evolution of correlation measures, i.e. a weak solution to (12).

The last part of the second chapter is devoted to the converse statement. Here we
consider only the time-homogeneous case with operator L given by (1). We construct
a semigroup T∆ptq associated to the operator L∆ on a weighted space of integrable cor-
relation functions. The most important step is to show that T∆ptq preserves positive
definiteness, i.e. let kµ be the correlation function of some state µ on Γ0. We will show
that T∆ptqkµ is again the correlation function of a state µt on Γ0.
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Dynamics of infinite systems

In the last two chapters of this thesis we develope semigroup methods for one and two-
component birth-and-death processes on Γ and Γ2, respectively. Below we describe for
simplicity only the one-component case with generator L given by (1). Let πβ be the
Poisson measure on Γ, which is defined as the unique measure having Laplace transform

ż

Γ

e

ř

xPγ
fpxq

dπβpγq “ exp

¨

˝eβ
ż

Rd

pefpxq ´ 1qdx

˛

‚

for every continuous function f with compact support. Solutions to (2) are constructed
on the Banach space Eβ of functions F for which the series

F pγq “
ÿ

ηŤγ

Gpηq “ pKGqpγq

converges πβ-a.e.. This is the same as to demand that

}F }Eβ :“ |Gp0q| `
8
ÿ

n“1

eβn

n!

ż

Rdn

|Gpnqpx1, . . . , xnq|dx1 ¨ ¨ ¨ dxn “

ż

Γ0

|Gpηq|eβ|η|dλpηq

is finite. Let Lβ :“ L1pΓ0, e
β|¨|dλq, it is shown that pL,FPpΓqq is a (pre-)generator on Eβ

if and only if ppL,BbspΓ0qq is a (pre-)generator on Lβ. Using similar methods to [FKK12],
we are able to show that under some type of Lyapunov condition the latter operator
is in fact a (pre-)generator on Lβ. As a consequence, the closure of pL,FPpΓqq is the
generator of an analytic semigroup of contractions. Let T ptq be the associated semigroup

on Eβ and pT ptq the semigroup on Lβ. Properties such as stability w.r.t. initial conditions
F0 in (2) and continuous dependence on the intensities dpx, γzxq and bpx, γq are studied
by standard semigroup methods. Further analysis is concerned with the construction and
the properties of an associated evolution of states.

The space Eβ is chosen in such a way that its dual space can be identified with the
space of all sub-Poissonian functions, i.e. any functional ` : Eβ ÝÑ R is represented by a
sub-Poissonian function k` via

`pF q “

ż

Γ0

Gpηqk`pηqdλpηq

“ Gp0qk
p0q
` `

8
ÿ

n“1

1

n!

ż

Rdn

Gpnqpx1, . . . , xnqk
pnq
` px1, . . . , xnqdx1 ¨ ¨ ¨ dxn

Solutions to (9) are then given by the action of the adjoint semigroup pT ptq˚k` “: kt and
hence satisfy the Ruelle bound for some constant Ct ą 0

k
pnq
t px1, . . . , xnq ≤ Cte

βn, n ≥ 0.
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The adjoint semigroup T ptq˚ on E˚β satisfies for any KG “ F P Eβ the relation

T ptq˚`pF q “

ż

Γ0

pT ptqGpηqk`pηqdλpηq “

ż

Γ0

Gpηqktpηqdλpηq

“ Gp0qk
p0q
` `

8
ÿ

n“1

1

n!

ż

Rdn

Gpnqpx1, . . . , xnqk
pnq
t px1, . . . , xnqdx1 ¨ ¨ ¨ dxn.

Suppose k` is positive definite and hence corresponds to a state µ0 on Γ. Then we are
able to prove that also kt is positive definite. This yields the existence and uniqueness of
a solution pµtqt≥0 to the Fokker-Planck equation (3). Following the approach proposed in
[KKM08] we see that for any initial state µ0 with sub-Poissonian correlation function k0

there exists a Markov function associated to the operator L. It is worth to mention, that
we establish uniqueness to (3) in the class of weak solutions. It is shown that if the initial
condition is regular enough, then pµtqt≥0 is in fact a strong solution and strong uniqueness
holds.

Vlasov scaling is shown for one and two-component systems. The kinetic equation
for the approximate densities is, by construction, a system of two coupled non-linear
integro-differential equations. Using the results obtained in the first chapter we are able
to extend above results to the case of time-dependent intensities. In such a case the
associated evolution systems will act as bounded linear operators in a suitable chosen
scale of Banach spaces.

For ergodicity we suppose that the cumulative death intensity
ř

xPη

dpx, ηzxq is bounded

away from zero on Γ0ztHu. Under this condition we prove the existence of a unique
invariant measure µinv such that the corresponding evolution of states is ergodic with
exponential rate, i.e.

}µt ´ µinv}E˚β ≤ Ce´εt}µ0 ´ µinv}E˚β , t ≥ 0

holds for some constants C, ε ą 0 and any (admissible) initial state µ0.
Examples for the modelling of tumour growth are considered in the end of each chap-

ter. In the one-component case (chapter 3) we consider first a model describing the (free)
proliferation of tumour cells. We will construct the evolution of correlation functions
and show that they are not sub-Poissonian. This model is exactly solvable and serves
as a guiding example for further investigation. In the remaining parts we apply above
results to the BDLP model and Glauber dynamics with time-dependent and space inho-
mogeneous potentials. We study also the Dieckmann-Law model with time-homogeneous
intensities and provide for all such models ergodicity. The Epistatic mutation selection
model is one particular example of a model with non-linear Kolmogorov operator L. We
consider a generalization for time-dependent intensities and construct a (local) evolution
of correlation functions. Several two-component interacting birth-and-death models are
considered in the end of the last chapter.
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Weak-coupling limits

The last section is devoted to a particular case of the so-called random evolution frame-
work, cf. [Pin91, SHS02]. In such a framework one is typically interested in the description
of a stochastic process, usually referred as the system, in the presence of another stochas-
tic process. The latter process is seen as the driving process for the system and can be
interpreted as the environment influencing the system. For the realization of above scheme
we consider a two-component birth-and-death process with (pre-)generator L “ LS `LE.
In this work we consider two different cases.

In the first case we suppose that the system is given by a Markov process with state
space Γ0. Its generator LS is assumed to be given by the heuristic form

pLSF qpγ, ηq “
ÿ

ξĂη

ż

Γ0

pF pγ, ηzξ Y ζq ´ F pγ, ηqqKpγ, ξ, η, ζqdλpηq,

where K : Γˆ Γ0 ˆ Γ0 ˆ Γ0 ÝÑ R` is measurable and integrable in ζ. The environment
is, e.g., the equilibrium diffusion process with generator LE and invariant Gibbs measure
µinv. In such a case the operator LE is symmetric on L2pΓ, dµinvq and there exists an
associated ergodic Markov semigroup, cf. [AKR98a, AKR98b]. Solutions to the Fokker-
Planck equation

Bρt
Bt
“ pLSq˚ρt ` L

Eρt, ρt|t“0 “ ρ0

on L1pΓˆΓ0, dpµinvbλqq describe the evolution of densities of the coupled particle system.
Suppose that Kpγ, ξ, η, ζq is for any ξ, η integrable in pγ, ζq w.r.t. µinv b λ. The weak-
coupling limit, in probability theory also known as averaging, is obtained from solutions
to the scaled Fokker-Planck equation

Bρεt
Bt
“ pLSq˚ρεt `

1

ε
LEρεt , ρεt |t“0 “ ρ0 P L

1
pΓ0, dλq

by taking the limit ρεt ÝÑ ρt, εÑ 0. We show that such limit exists and ρt solves

Bρt
Bt
“ L

˚
ρt, ρt|t“0 “ ρ0

on L1pΓ0, dλq, where L is obtained from (7) with r “ 8 and Kpξ, η, ζq replaced by

Kpξ, η, ζq :“

ż

Γ

Kpγ, ξ, η, ζqdµinvpγq.

The mathematical realization of this scheme mainly relies on the results obtained in the
second chapter. It is shown for the BDLP model how this abstract statement can can be
applied.

17



The second case is devoted the extension of above scheme to infinite systems. We
suppose that LE is given by (1), i.e. independent of γ` and only acts on the variable γ´.
Likewise we assume that the operator LS is given by

pLSF qpγq “
ÿ

xPγ`

dSpx, γ`zx, γ´qpF pγ`zx, γ´q ´ F pγqq

`

ż

Rd

bSpx, γ`, γ´qpF pγ` Y x, γ´q ´ F pγqqdx

and hence only acts on the variable γ`. We are interested in the limit εÑ 0 of solutions
to the Fokker-Planck equation

B

Bt

ż

Γ2

F pγqdµεtpγq “

ż

Γ2

ˆ

LSF pγq `
1

ε
LEF pγq

˙

dµεtpγq, F P FPpΓ2
q (13)

with γ “ pγ`, γ´q P Γ2 and initial condition µ0 having sub-Poissonian correlation function.
Suppose that LE and LS satisfy the conditions for which an evolution of states has been
constructed in the third chapter. Moreover, assume that

ř

xPη´
dEpx, η´zxq is bounded away

from zero on Γ0ztHu. The environment process is then ergodic with exponential rate. Let
µinv be its invariant measure and define averaged intensities by

dpx, γ`q :“

ż

Γ

dSpx, γ`, γ´qdµinvpγ
´
q

bpx, γ`q :“

ż

Γ

bSpx, γ`, γ´qdµinvpγ
´
q.

For such averaged intensities we define a new Markov (pre-)generator given by

pLF qpγ`q :“
ÿ

xPγ`

dpx, γ`zxqpF pγ`zxq ´ F pγ`qq `

ż

Rd

bpx, γ`qpF pγ` Y xq ´ F pγ`qqdx

This (pre-)generator acts on functions F P FPpΓq. Let µ0 be any initial state with sub-
Poissonian correlation function and denote by µεt the solution to (13). Moreover, let µ`0
be the marginal of µ0 onto its first component and µt the solution to the Fokker-Planck
equation associated to L with initial state µ`0 . We will show that for any F P FPpΓq

ż

Γ2

F pγ`qdµεtpγ
`, γ´q ÝÑ

ż

Γ

F pγ`qdµtpγ
`
q, εÑ 0

holds.
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Chapter 1

Evolution equations in scales of
Banach spaces

Let B “ pBα, } ¨ }αqαąα˚ be a scale of Banach spaces, that is for any α1, α ą α˚: α
1 ă α

Bα1 Ă Bα, } ¨ }α ≤ } ¨ }α1 . (1.1)

Denote by iα1α P LpBα1 ,Bαq the corresponding embedding operator. Here and in the
following LpBα1 ,Bαq stands for the space of all bounded linear operators from Bα1 to Bα.
We let x “ y, x P Bα1 , y P Bα stand for iα1αx “ y. A bounded linear operator L in
the scale B is, by definition, a collection of bounded linear operators from Bα1 to Bα, i.e.
L “ pLα1αqα1ăα P LpBα1 ,Bαq, satisfying for α1 ă α ă α2

Lα1α2 “ iαα2Lα1α “ Lαα2iα1α. (1.2)

By L P LpBq we indicate that L is a bounded linear operator in the scale B. Let pLnqnPN Ă
LpBq be a sequence of operators in the scale B and L P LpBq. We say that Ln converges
to L in the strong topology if for all α1 ă α and all x P Bα1

pLnqα1αx ÝÑ Lα1αx, nÑ 8

holds. The sequence converges, by definition, in the uniform topology if Ln ÝÑ L,
nÑ 8 holds for any α1 ă α in the uniform operator topology on LpBα1 ,Bαq. A family of
bounded linear operators pLptqqt≥0 Ă LpBq is said to be strongly continuous if t ÞÝÑ Lptq
is continuous in the strong topology. We say that pLptqqt≥0 is continuous (w.r.t. the
uniform topology) if t ÞÝÑ Lptq is continuous in the uniform topology on LpBq. For two
operators L,K P LpBq the composition LK P LpBq is defined by

pLKqα1α :“ LβαKα1β, (1.3)

where β P pα1, αq. It is worth noting that definition (1.3) does not depend on β, see (1.2).
In the following we omit the subscripts α1α when no confusion can arise. For any two
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families of operators pLptqqt≥0, pKptqqt≥0 Ă LpBq the product pLptqKptqqt≥0 is (strongly)
continuous, provided both factors are (strongly) continuous.

One of the aims of this chapter is to study existence, uniqueness and properties of
solutions to the abstract Cauchy problem

Bu

Bt
ptq “ Lptquptq, upsq “ x P Bα1 , t ≥ s. (1.4)

Here pLptqqt≥0 Ă LpBq is assumed to be at least strongly continuous. We distinguish
between two kinds of solutions to above Cauchy problem. First we construct solutions by
means of evolution systems, in such a case the solution u is defined on rs,8q. In the second
case, which is used for perturbations of the operator pLptqqt≥0, u is said to be a solution
in the scale B to (1.4) if u P

Ş

αąα1
C1pr0, T pα1, αqq;Bαq for some continuous function

T pα1, αq ą 0 and u satisfies for any α ą α1 equation (1.4) on Bα for s ≤ t ă T pα1, αq.
Such a solution is (in general) only defined on the interval rs, s ` T pα1, αqq and is said
to depend continuously on its initial data if there exists Cpt, α1, αq ą 0 such that for all
α1 ă α

}uptq}α ≤ Cpt, α1, αq}x}α1 , s ≤ t ă T pα1, αq

holds. Moreover, it is shown that if Lnptq ÝÑ Lptq, nÑ 8 is fulfilled for any t ≥ 0 in the
uniform topology, then for any α1 ă α, x P Bα1 and s ≥ 0

unptq ÝÑ uptq, s ≤ t ă s` T pα1, αq

holds in Bα. Above results are extended in the third section to the non-linear version of
(1.4), i.e. to the non-linear Cauchy problem

Bu

Bt
ptq “ Aptquptq `Bpt, uptqq, up0q “ x P Bα1 , (1.5)

where pAptqqt≥0 Ă LpBq and Bpt, uq is a non-linear operator acting in the scale B.

1.1 Linear evolution equations

Let E “ pEαqαąα˚ be a scale of Banach spaces such that for any α1 ă α

Eα Ă Eα1 , } ¨ }α1 ≤ } ¨ }α
is fulfilled and suppose that E has dense embeddings, i.e. Eα Ă Eα1 is dense for all α1 ă α.
Such scale of Banach spaces serves as a pre-dual scale of Banach spaces and we are mainly
interested in the Cauchy problem (1.4) formulated on the dual scale of Banach spaces.
Hence we preserve the notation B for the dual scale of Banach spaces introduced later on.
The notation for LpEq and convergence of sequences in LpEq are defined in the same way
as for a scale with property (1.1). We denote by } ¨ }LpEαq the operator norm on LpEαq
and if α1 ă α by } ¨ }αα1 the norm in LpEα,Eα1q. The following definition summarizes the
main objects of investigation for this section.
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Definition 1.1.1. Fix α ą α˚, a family of bounded linear operators pUαpt, sqq0≤s≤t on
LpEαq is said to be a forward evolution system if it satisfies the following properties:

1. For all 0 ≤ s ≤ r ≤ t

Uαps, sq “ 1, Uαpt, rqUαpr, sq “ Uαpt, sq.

2. Uαpt, sq is strongly continuous on Eα.

A family of bounded linear operators pVαps, tqq0≤s≤t on LpEαq is said to be a backward
evolution system if it satisfies:

1. For all 0 ≤ s ≤ r ≤ t

Vαps, sq “ 1, Vαps, rqVαpr, tq “ Vαps, tq.

2. Vαps, tq is strongly continuous on Eα.

A forward evolution system pUpt, sqqs≤t in the scale E is, by definition, a collection of
forward evolution systems pUαpt, sqqαąα˚ such that for any α1, α ą α˚ with α1 ă α the
space Eα is invariant for Uα1pt, sq and

Uα1pt, sq|Eα “ Uαpt, sq.

A backward evolution system pV ps, tqqs≤t in the scale E is defined in the same way.

Here and in the following we omit the subscript α if no confusion may arise. The
relation of forward and backward evolution systems Upt, sq, V pt, sq in the scale E with an
infinitesimal operator (generator) is described in the next definition.

Definition 1.1.2. Let A “ pAptqqt≥0 Ă LpEq be strongly continuous. A forward evolution
system Upt, sq in the scale E is said to have generator A if for any α1 ă α and x P Eα the
evolution Upt, sqx is continuously differentiable in Eα1 and satisfies

B

Bt
Upt, sqx “ AptqUpt, sqx (1.6)

B

Bs
Upt, sqx “ ´Upt, sqApsqx (1.7)

in Eα1. A backward evolution system V ps, tq in the scale E is said to have generator A if
for any α1 ă α and x P Eα the evolution V ps, tqx is continuously differentiable in Eα1 and
satisfies

B

Bt
V ps, tqx “ V ps, tqAptqx

B

Bs
V ps, tqx “ ´ApsqV ps, tqx

in Eα1. The cases s “ t should be understood as right or left derivative correspondingly.
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In applications the generator Aptq is typically known on a subclass of elements Dα1ptq Ă
Eα1 and one studies the closure of pAptq, Dα1ptqq in Eα1 . Above definition implies Aptq acts
as a bounded linear operator from Eα to Eα1 and hence Eα Ă Dα1ptq holds for all α1 ă α,
t ≥ 0. Strong continuity and the uniform boundedness principle imply that for any α ą α˚
and T ą 0

sup
0≤s≤t≤T

}Upt, sq}LpEαq “: M1pα, T q (1.8)

and for α˚ ă α1 ă α

sup
0≤t≤T

}Aptq}αα1 “: M2pα, α
1, T q (1.9)

are finite. The next lemma collects some basic properties for forward and backward
evolution systems in the scale E.

Lemma 1.1.3. Let Upt, sq and V ps, tq be forward (backward) evolution systems in the
scale E. Denote by A “ pAptqqt≥0 Ă LpBq their generators. Then the following assertions
hold:

1. Upt, sq and V ps, tq are uniquely determined by A.

2. The evolution systems are continuous in the uniform topology on LpEq.

3. Suppose A “ pAptqqt≥0 is continuous in the uniform topology. Then Upt, sq and
V ps, tq are continuously differentiable in the uniform topology on LpEq.

4. Let rUpt, sq be another forward evolution system with generator rA and suppose that

both operators A and rA are continuous in the uniform topology. Then for any α1 ă α
and T ą 0

}Upt, sq ´ rUpt, sq}αα1 ≤Mpα1, T qNpα, T q

t
ż

s

}Aprq ´ rAprq}αα1dr

is satisfied, where the constants are given by Mpα1, T q :“ sup
0≤s≤t≤T

}Upt, sq}LpEα1 q and

Npα, T q :“ sup
0≤s≤t≤T

}rUpt, sq}LpEαq.

5. Let rV ps, tq be another backward evolution system with generator rA and suppose that

both operators A and rA are continuous in the uniform topology. Then for any α1 ă α
and T ą 0

}V ps, tq ´ rV ps, tq}αα1 ≤Mpα1, T qNpα, T q

t
ż

s

}Aprq ´ rAprq}αα1dr
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is satisfied, where the constants are given by Mpα1, T q :“ sup
0≤s≤t≤T

}V ps, tq}LpEα1 q and

Npα, T q :“ sup
0≤s≤t≤T

}rV ps, tq}LpEαq.

Proof. We are going to prove the assertions only for the forward evolution system, the
proof for the backward evolution system can be done in the same manner.
1. Let Upt, sq and rUpt, sq be two forward evolution systems with the same generator

A. For any α1 ă α and x P Eα let α2 P pα1, αq, then rUpr, sqx P Eα2 is continuously

differentiable. Hence the composition Upt, rqrUpr, sqx belongs to Eα2 and is continuously
differentiable in Eα1 with derivative given by

B

Br
pUpt, rqrUpr, sqxq “ 0, 0 ≤ s ≤ r ≤ t.

Integrating from s to t yields rUpt, sqx “ Upt, sqx, and since E has dense embeddings the
assertion is proved.
2. Let α1 ă α, x P Eα and fix T ą 0. Then for any 0 ≤ s ≤ t1 ≤ t ≤ T

Upt, sqx´ Upt1, sqx “

t
ż

t1

AprqUpr, sqxdr,

and for any 0 ≤ s1 ≤ s ≤ t ≤ T

Upt, sqx´ Upt, s1qx “ ´

s
ż

s1

Upt, rqAprqxdr

hold in Eα1 . Hence by (1.8) and (1.9) we obtain

}Upt, sqx´ Upt1, sqx}α1 ≤M2pα, α
1, T qM1pα, T q}x}αpt´ t

1
q

and
}Upt, sqx´ Upt, s1qx}α1 ≤M1pα

1, T qM2pα, α
1, T q}x}αps´ s

1
q.

The assertion follows from

}Upt, sq ´ Upt1, s1q}αα1 ≤ }Upt, sq ´ Upt1, sq}αα1 ` }Upt1, sq ´ Upt1, s1q}αα1 .

3. Fix α1 ă α and let x P Eα, then

Upt, sqx “ x`

t
ż

s

AprqUpr, sqxdr “ x`

t
ż

s

Upt, rqAprqxdr
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holds in Eα1 . The assumptions and part 2. imply that AprqUpr, sq and Upt, rqAprq are
continuous in pr, sq and pr, tq w.r.t. the uniform topology on LpEα,Eα1q.
4. The equality

Upt, sq ´ rUpt, sq “

t
ż

s

Upt, rqpAprq ´ rAprqqrUpr, sqdr

holds in the uniform topology on LpEq and by (1.8), (1.9) we obtain the assertion.

In many applications it is important to check whether A “ pAptqqt≥0 is the genera-
tor of a forward or backward evolution system. For α ą α˚ let Eα` :“

Ť

α1ąα

Eα1 , then

pAptq,Eα`qt≥0 is a family of (possibly unbounded) linear operators on Eα. A sufficient
condition for the existence of forward and backward evolution systems on the scale E is
given in the statement below. Its proof is based on the classical construction for a pair of
Banach spaces presented in [Paz83].

Theorem 1.1.4. Let pAptqqt≥0 Ă LpEq be continuous in the uniform topology and suppose
that the condition below is satisfied.

(a) For any α ą α˚ and t ≥ 0 the operator pAptq,Eα`q is closable and the closure is the
generator of a C0-semigroup pSαt psqqs≥0 on Eα. For any α1 ă α, s ≥ 0 and t ≥ 0
the space Eα is invariant for Sα

1

t psq and Sα
1

t psq|Eα “ Sαt psq holds.

If the condition

(b) For all α ą α˚ there exist constants Mpαq ≥ 1 and ωpαq P R such that

}Sαtnpsnq ¨ ¨ ¨S
α
t1
ps1q}LpEαq ≤Mpαqe

ωpαq
n
ř

j“1
sj

holds, where n P N, s1, . . . , sn ≥ 0 and 0 ≤ t1 ≤ ¨ ¨ ¨ ≤ tn are arbitrary.

is satisfied, then there exists a forward evolution system Upt, sq in the scale E such that
A is its generator and for all α ą α˚ and 0 ≤ s ≤ t

}Upt, sq}LpEαq ≤Mpαqeωpαqpt´sq (1.10)

is satisfied. If instead the condition

(b’) For all α ą α˚ there exist constants Mpαq ≥ 1 and ωpαq P R with

}Sαt1ps1q ¨ ¨ ¨S
α
tnpsnq}LpEαq ≤Mpαqe

ωpαq
n
ř

j“1
sj

holds, where n P N, s1, . . . , sn ≥ 0 and 0 ≤ t1 ≤ ¨ ¨ ¨ ≤ tn are arbitrary.
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is satisfied, then there exists a backward evolution system V ps, tq in the scale E such that
A is its generator and for all α ą α˚ and 0 ≤ s ≤ t

}V ps, tq}LpEαq ≤Mpαqeωpαqpt´sq, α ą α˚, 0 ≤ s ≤ t

is satisfied.

Lemma 1.1.5. Condition (a) from Theorem 1.1.4 is equivalent to the existence of a
family of C0-semigroups pSαt psqqs≥0 having the following properties:

1. For any α1 ă α and t ≥ 0 the space Eα is invariant for Sα
1

t psq and Sα
1

t psq|Eα “ Sαt psq
holds.

2. For any α1 ă α, t ≥ 0 and x P Eα the evolution Sα
1

t psqx is continuously differentiable
in Eα1 such that

B

Bs
Sα

1

t psqx “ AptqSα
1

t psqx “ Sα
1

t psqAptqx

is fulfilled in Eα1.

Proof. Suppose that condition (a) holds and let pAα1ptq, DpAα1ptqqq be the closure of
pAptq,Eα1`q in Eα1 Then for x P Eα1` Ă DpAα1ptqq we obtain that

B

Bs
Sα

1

t psqx “ Aα1ptqS
α1

t psqx “ Sα
1

t psqAα1ptqx

holds in Eα1 . Let α ą α2 ą α1 be such that x P Eα. Then Aα1ptqx “ Aptqx P Eα1 and
Sα

1

t psqAα1ptqx “ Sα
1

t psqAptqx P Eα1 are fulfilled. Moreover, by Sα
1

t psqx “ Sα
2

t psqx P Eα2 it
follows that

Aα1ptqS
α1

t psqx “ AptqSα
1

t psqx P Eα1

are fulfilled, i.e. property 2. holds. Conversely, let pAα1ptq, DpAα1ptqqq be the generator of
the semigroup pSα

1

t psqqs≥0 with the properties 1. and 2. Then by property 2. the operator
pAα1ptq, DpAα1ptqqq is an extension of pAptq,Eα1`q and by property 1. Eα1` is invariant for
Sα

1

t psq. Since Eα1` Ă Eα1 is dense, it is also a core for pAα1ptq, DpAα1ptqqq.

Now we are ready for the proof of Theorem 1.1.4

Proof. (Theorem 1.1.4)
Fix T ą 0 and define for n P N piecewise constant operators Anptq by setting tnk “

k
n
T

and
#

Anptq “ Aptnkq, tnk ≤ t ă tnk`1, k “ 0, . . . , n´ 1

AnpT q “ ApT q.
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Moreover, for any α ą α˚ let Uα
n pt, sq be given by

Uα
n pt, sq :“

#

Sαtnj pt´ sq, tnj ≤ s ≤ t ≤ tnj`1

Sαtnk pt´ t
n
kqS

α
n pl, kqS

α
tnl
ptnl`1 ´ sq, k ą l, tnk ≤ t ≤ tnk`1, t

n
l ≤ s ≤ tnl`1

,

(1.11)

where Sαn pl, kq :“ Sαtnk´1

`

T
n

˘

¨ ¨ ¨Sαtnl`1

`

T
n

˘

is time ordered in such a way that smaller times

stand to the right. From [Paz83, Chapter 5, Theorem 3.1] it follows that for any α ą α˚
there exists a forward evolution system Uαpt, sq on Eα such that

lim
nÑ8

Uα
n pt, sq “ Uαpt, sq (1.12)

holds strongly in Eα and uniformly on compacts. This evolution systems satisfies by
Lemma 1.1.5 the properties (1.7), (1.10) and for t “ s (1.6). Property (1.6) for s ă t
follows by [Paz83, Chapter 5, Theorem 4.3] if we show that for any α1 ă α the space Eα
is invariant for Uα1pt, sq and the restriction is strongly continuous w.r.t. } ¨ }α. Thus let
α1 ă α and x P Eα, then Uα1

n pt, sqx ÝÑ Uα1pt, sqx in Eα1 and Uα
n pt, sqx ÝÑ Uαpt, sqx in

Eα hold. By Uα1

n pt, sqx “ Uα
n pt, sqx and } ¨ }α1 ≤ } ¨ }α we see that Uαpt, sqx “ Uα1pt, sqx is

fulfilled. Thus Eα is invariant for Uα1pt, sq and by Uαpt, sqx “ Uα1pt, sqx it is also strongly
continuous w.r.t. } ¨ }α. For the construction of the backward evolution system, let

Vnps, tq :“

#

Stnj pt´ sq, tnj ≤ s ≤ t ≤ tnj`1,

Stnl pt
n
l`1 ´ sqS

α
n pl, kqStnk pt´ t

n
kq, k ą l, tnk ≤ t ≤ tnk`1, t

n
l ≤ s ≤ tnl`1,

(1.13)

where Sαn pl, kq :“ Sαtnl´1

`

T
n

˘

¨ ¨ ¨Sαtnk`1

`

T
n

˘

is now time ordered in the opposite direction.

Repeating above arguments including the ones in [Paz83, Chapter 5, Theorem 3.1] and
[Paz83, Chapter 5, Theorem 4.3] yields the assertion.

In the following we relate the constructed evolution systems to the Cauchy problems

B

Bt
uptq “ Aptquptq, upsq “ x P Eα, t ą s (1.14)

and

B

Bs
vpsq “ Apsqvpsq, vptq “ x P Eα, 0 ≤ s ă t. (1.15)

For equation (1.14) we use the terminology of Eα-valued solutions and adapt such def-
inition to equation (1.15). Let α1 ă α, a function u is said to be a Eα-valued solution
to (1.14) if u P Cprs,8q;Eαq X C1pps,8q;Eα1q and u satisfies (1.14) in Eα1 , cf. [Paz83,
Chapter 5, Theorem 4.3]. A function v is a Eα-valued solution to equation (1.15) if
v P Cpr0, ts;Eαq X C1pp0, tq;Eα1q and v satisfies (1.15) in Eα1 . The next theorem was
proved in [Paz83] for the forward evolution system Upt, sq on a pair of Banach spaces.
The proof can be adapted to this case.
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Theorem 1.1.6. Suppose that the same conditions as in Theorem 1.1.4 are fulfilled. Then
for every x P Eα equation (1.14) has a unique Eα-valued solution, given by uptq “ Upt, sqx
and equation (1.15) has a unique Eα-valued solution, given by vpsq “ V ps, tqx.

Note that the differentiability at t “ s follows from Aptq P LpEq and was not stated
in [Paz83]. The notion of Eα-valued solutions depends a priori on the choice of α1 ă α.
However, in the case of Theorem 1.1.6 this notion is satisfied for any such α1, hence we
may omit the subscript α1 in the definition as above. The next statement relates the
constructed forward and backward evolution systems to solutions of the dual Cauchy
problems given below. Denote by B “ pE˚αqαąα˚ “: E˚ the dual scale of Banach spaces,
i.e. Bα “ E˚α where E˚α is the dual Banach space to Eα. For x P Eα and x˚ P Bα
let xx, x˚y “ x˚pxq be the dual pairing and denote by Ups, tq˚ and V pt, sq˚ the adjoint
operators defined on the scale B. This operators satisfy

V pt, rq˚V pr, sq˚ “ V pt, sq˚, Ups, rq˚Upr, tq˚ “ Ups, tq˚,

and hence V pt, sq˚ is a forward evolution system whereas Ups, tq˚ is a backward evolution
system on the scale B. Using (1.6) and (1.7), it follows that they satisfy for any α1 ă α
and x˚ P Bα1 the equations

B

Bs
xx, Ups, tq˚x˚y “ ´xApsqx, Ups, tq˚x˚y, x P Eα, s P r0, tq

B

Bt
xx, V pt, sq˚x˚y “ xAptqx, V pt, sq˚x˚y, x P Eα, t P rs,8q.

Denote by σpBα1 ,Eα1q the smallest topology on Bα1 for which all linear functionals x˚ :
Eα1 ÝÑ R are continuous.

Theorem 1.1.7. Suppose that the same conditions as for Theorem 1.1.4 are satisfied.
Let α1 ă α and x˚ P Bα1 be arbitrary. Then the following holds:

1. Let t ą 0 and pu˚psqqsPr0,ts Ă Bα1 be continuous w.r.t. σpBα1 ,Eα1q such that

B

Bs
xx, u˚psqy “ ´xApsqx, u˚psqy, u˚ptq “ x˚, x P Eα, s P r0, tq (1.16)

is satisfied. Then u˚psq “ Ups, tq˚x˚ holds for any s P r0, ts.

2. Let s ≥ 0 and pv˚ptqqtPrs,8q be continuous w.r.t. σpBα1 ,Eα1q such that

B

Bt
xx, v˚ptqy “ xAptqx, v˚ptqy, v˚psq “ x˚, x P Eα, t ą s (1.17)

is satisfied. Then v˚ptq “ V pt, sq˚x˚ holds for any t P rs,8q.
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Proof. Uniqueness for (1.17) was proved in [Kol13], so let us prove uniqueness for (1.16).
Let u˚psq P Bα1 be any solution to (1.16), fix s P r0, tq and x P Eα. For r P rs, ts let
gprq :“ xUpr, sqx, u˚prqy. Then for δ ą 0 sufficiently small and r P rs, tq we obtain

gpr ` δq ´ gprq

δ
“

B

Upr ` δ, sqx´ Upr, sqx

δ
, u˚prq

F

`

B

Upr ` δ, sqx,
u˚pr ` δq ´ u˚prq

δ

F

.

We have Upr, sqx, Upr`δ, sqx P Eα and hence AprqUpr, sqx P Eα1 . The first term therefore
tends to xAprqUpr, sqx, u˚prqy, when δ Ñ 0. For the second term we get

ˇ

ˇ

ˇ

ˇ

B

Upr ` δ, sqx,
u˚pr ` δq ´ u˚prq

δ

F

` xAprqUpr, sqx, u˚prqy

ˇ

ˇ

ˇ

ˇ

≤
ˇ

ˇ

ˇ

ˇ

B

Upr ` δ, sqx,
u˚pr ` δq ´ u˚prq

δ

F

´

B

Upr, sqx,
u˚pr ` δq ´ u˚prq

δ

F
ˇ

ˇ

ˇ

ˇ

(1.18)

`

ˇ

ˇ

ˇ

ˇ

B

Upr, sqx,
u˚pr ` δq ´ u˚prq

δ

F

` xAprqUpr, sqx, u˚prqy

ˇ

ˇ

ˇ

ˇ

.

The second term tends to zero, since u˚ is a solution to (1.16). The first term (1.18) is
bounded by

›

›

›

›

u˚pr ` δq ´ u˚prq

δ

›

›

›

›

Bα1
}Upr ` δ, sqx´ Upr, sq}Eα1 . (1.19)

By (1.16) u˚pr`δq´u˚prq
δ

is bounded w.r.t. } ¨ }Bα1 in δ. The strong continuity of Upr, sq
implies that (1.19) tends to zero. Altogether we have shown that g1prq “ 0, which readily
implies the assertion by

xx, u˚psqy “ gpsq “ gptq “ xUpt, sqx, u˚ptqy “ xUpt, sqx, x˚y.

The next statement is an immediate consequence of duality and previous considera-
tions.

Theorem 1.1.8. Let pAptqqt≥0 Ă LpEq be a family of operators in the scale E and
pAptq˚qt≥0 Ă LpBq the collection of adjoint operators in the scale B. Then t ÞÝÑ Aptq
is continuous in the uniform topology if and only if t ÞÝÑ Aptq˚ is continuous in the uni-
form topology. In such a case the forward and backward evolution systems V pt, sq˚ and
Ups, tq˚ are continuous w.r.t. the uniform topology in the scale B.
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1.2 Perturbation by linear operators

Let B “ pBαqαąα˚ be any scale of Banach spaces with property (1.1). The aim of this
section is to prove existence and uniqueness of solutions in the scale B to the Cauchy
problem

B

Bt
uptq “ A∆

ptquptq `B∆
ptquptq, upsq “ x P Bα1 , (1.20)

where pA∆ptqqt≥0 Ă LpBq is continuous in the uniform topology and pB∆ptqqt≥0 Ă LpBq is
strongly continuous in the scale. A similar version for the time-homogeneous case can be
found in [Fin15]. For this section we suppose that there exists a forward evolution system
pV ∆pt, sqq0≤s≤t Ă LpBq such that for any x P Bα1 and α1 ă α the evolution V ∆pt, sqx P Bα
satisfies for all 0 ≤ s ≤ t

B

Bt
V ∆
pt, sqx “ A∆

ptqV ∆
pt, sqx, (1.21)

B

Bs
V ∆
pt, sqx “ ´V ∆

pt, sqA∆
psqx (1.22)

in Bα.

Remark 1.2.1. Above assumption is fulfilled if e.g. B “ E˚ for some scale of Ba-
nach spaces as in the previous section, Aptq satisfies the conditions of Theorem 1.1.4 and
A∆ptq “ Aptq˚, see Theorem 1.1.8.

We will prove that solutions to (1.20) determine for any α1 ă α a collection of solution
operators pWα1αpt, sqq0≤s≤tăT pα1,αq on LpBα1 ,Bαq, where T pα1, αq ą 0 is continuous and
given in the statement below. This operators satisfy, by construction, for any α1 ă α ă α2,
x P Bα1 and 0 ≤ t´ s ă mintT pα1, α2q, T pα, α2q, T pα1, αqu

Wα1αpt, sqx “ Wα1α2pt, sqx “ Wαα2pt, sqx.

Hence we omit the subscripts α1α below.

Theorem 1.2.2. Suppose that there exist constants A ≥ 1 and ω P R such that for all
α1 ă α

}V ∆
pt, sq}α1α ≤ Aeωpt´sq, 0 ≤ s ≤ t (1.23)

holds. Let pB∆ptqqt≥0 Ă LpBq be strongly continuous in t such that there exists an in-
creasing continuous function Mpαq satisfying for all α1 ă α

}B∆
ptq}α1α ≤

Mpαq

α ´ α1
, t ≥ 0. (1.24)

Define T pα1, αq :“ α´α1

2AeMpαq
. Then there exists a unique family of operators pW pt, sqq0≤s≤t

with the properties:
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1. W pt, sq P LpBα1 ,Bαq for any α1 ă α and 0 ≤ t´ s ă T pα1, αq such that

}W pt, sq}α1α ≤ eωpt´sq
T pα1, αq

T pα1, αq ´ pt´ sq

is satisfied. Moreover, for any x P Bα1 and α1 ă α, ps, tq ÞÝÑ W pt, sqx P Bα is
continuous for 0 ≤ t´ s ă T pα1, αq.

2. For any α1 ă α and x P Bα1, W pt, sqx is continuously differentiable in Bα such that
for all 0 ≤ t´ s ă T pα1, αq

B

Bt
W pt, sqx “ pA∆

ptq `B∆
ptqqW pt, sqx, (1.25)

B

Bs
W pt, sqx “ ´W pt, sqpA∆

psq `B∆
psqqx (1.26)

hold in Bα.

3. Fix s ≥ 0, α1 ă α, x P Bα1 and suppose that there exists T ą 0 and a function
u P Cprs, s` T q;Bαq X C1pps, s` T q;Bαq such that for all s ≤ t ă s` T

B

Bt
uptq “ pA∆

ptq `B∆
ptqquptq, upsq “ x (1.27)

is satisfied. Then uptq “ W pt, sqx holds for any s ≤ t ă s`mintT, T pα1, αqu.

Proof. Define a sequence of operators pWnpt, sqq0≤s≤t Ă LpBq by W0pt, sqx “ V ∆pt, sqx
and

Wn`1pt, sqx :“

t
ż

s

V ∆
pt, rqB∆

prqWnpr, sqxdr (1.28)

for x P Bα1 . Then for any α1 ă α, n ≥ 0 and x P Bα1 the function Wnpt, sqx is continuous
in Bα and satisfies

}Wnpt, sqx}α ≤ }x}α1eωpt´sq
ˆ

t´ s

T pα1, αq

˙n

.

In fact, let αj :“ α1 ` j α´α
1

2n
, j “ 0, . . . , 2n and for s ≤ t1 ≤ ¨ ¨ ¨ ≤ tn ≤ t

Qnpt, t1, . . . , tn, sqx :“ V ∆
pt, t1qB

∆
pt1q ¨ ¨ ¨V

∆
pt2n´2, t2n´1qB

∆
pt2n´1qV

∆
pt2n, sqx.
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Then by (1.23) and (1.24) we obtain

}Wnpt, sqx}α ≤
t
ż

s

}V ∆
pt, rqB∆

prqWnpr, sqx}αdr

≤
t
ż

s

¨ ¨ ¨

tn´1
ż

s

}Qnpt, t1, . . . , tn, sqx}αdtn . . . dt1

≤ Aneωpt´sq}x}α1
p2nqn

pα ´ α1qn

t
ż

s

¨ ¨ ¨

tn´1
ż

s

n´1
ź

j“0

Mpα2j`1qdtn . . . dt1

≤ }x}α1eωpt´sq
pt´ sqn

n!

p2MpαqnAqn

pα ´ α1qn
≤ }x}α1eωpt´sq

ˆ

2eAMpαqpt´ sq

α ´ α1

˙n

,

where we have used a variant of the Stirling formula, namely

1

n!
≤

´ e

n

¯n

, n ≥ 1.

Choose q P p0, 1q, then we obtain for any 0 ≤ t´ s ≤ qT pα1, αq

}Wnpt, sq}α ≤ }x}α1eωpt´sqqn

and hence the series
8
ř

n“0

Wnpt, sqx “: W pt, sqx converges uniform. Since q was arbitrary,

it follows that W pt, sqx is continuous in pt, sq with t´ s ă T pα1, αq and satisfies

}W pt, sqx}α ≤
8
ÿ

n“0

}Wnpt, sqx}α ≤ }x}α1eωpt´sq
8
ÿ

n“0

ˆ

t´ s

T pα1, αq

˙n

“ }x}α1e
ωpt´sq T pα1, αq

T pα1, αq ´ pt´ sq
.

Next we show that W pt, sq is differentiable. Take αj :“ α1 ` j α´α1

2pn`1q
, j “ 0, . . . , 2pn` 1q,

then we obtain for s ≤ r ≤ t that

}V ∆
pt, rqB∆

prqWnpr, sqx}α ≤ eωpt´sqpAMpαqqn`1 2pn` 1q

α ´ α1
pt´ sqn

n!

p2pn` 1qqn

pα ´ α1qn
}x}α1

≤ eωpt´sq}x}α1pt´ sq
n
´ e

n

¯n pAMpαqqn`1

pα ´ α1qn`1
p2pn` 1qqn`1

“ eωpt´sq}x}α1pt´ sq
n2AMpαq

α ´ α1
n

ˆ

2eAMpαq

α ´ α1

˙nˆ
n` 1

n

˙n`1

≤ eωpt´sq}x}α1
4eAMpαq

α ´ α1
n

ˆ

t´ s

T pα1, αq

˙n
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is satisfied. So for any s ≤ r ≤ t and q P p0, 1q such that |t´ s| ≤ qT pα1, αq the series

8
ÿ

n“0

V ∆
pt, rqB∆

prqWnpr, sqx

is uniformly convergent. For t´s ă T pα1, αq we find α2 P pα1, αq such that t´s ă T pα1, α2q,
hence W pr, sqx P Bα2 is continuous. Since V ∆pt, sqB∆prq P LpBα2 ,Bαq is strongly contin-
uous it follows that

W pt, sqx “ W0pt, sqx`
8
ÿ

n“1

Wnpt, sqx

“ V ∆
pt, sqx`

8
ÿ

n“1

t
ż

s

V ∆
pt, rqB∆

prqWn´1pr, sqxdr

“ V ∆
pt, sqx`

t
ż

s

V ∆
pt, rqB∆

prqW pr, sqxdr

is fulfilled. Hence W pt, sqx is differentiable w.r.t. t in Bα and differentiating above equal-
ity, see (1.21), yields (1.25). The sequence pWnpt, sqxqnPN also satisfies the relation

Wn`1pt, sqx “

t
ż

s

Wnpt, rqB
∆
prqV ∆

pr, sqxdr

and a repetition of above arguments, shows that pW pt, sqxq0≤s≤t also satisfies

W pt, sqx “ V ∆
pt, sqx`

t
ż

s

W pt, rqB∆
prqV ∆

pr, sqxdr.

The integrand on the right-hand side is continuous w.r.t. pt, r, sq in Bα and hence
W pt, sqx P Bα is differentiable. Namely, for t´ s ă T pα1, αq there exists α2 P pα1, αq such
that t´s ă T pα2, αq ă T pα1, αq holds. Repeating the arguments from above and differen-
tiating the right-hand side yields (1.26). For the last assertion let wptq :“ W pt, sqx´uptq,
where s ≤ t ă s ` mintT, T pα1, αqu. Then wpsq “ 0 and w solves (1.27). It is therefore
sufficient to show that w “ 0. Applying (1.27) for u yields that for s ≤ t ă s` T

uptq “ V ∆
pt, sqx`

t
ż

s

V ∆
pt, rqB∆

prquprqdr
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holds in Bα2 and any α2 ą α. Hence for any s ≤ t ă s`mintT, T pα1, αqu

wptq “

t
ż

s

V ∆
pt, rqB∆

prqwprqdr

holds in Bα2 . Define αj :“ α` j α
2´α
2n

, j “ 0, . . . , 2n and Cα :“ sup
rPrs,ts

}W pr, sqx´uprq}α ă

8. It follows for s ≤ tn ≤ ¨ ¨ ¨ ≤ t1 ≤ t and

Qpt, t1, . . . , tnq :“ V ∆
pt, t1qB

∆
pt1q ¨ ¨ ¨V

∆
ptn´1, tnqB

∆
ptnq (1.29)

that

}Qpt, t1, . . . , tnqwptnq}α2 ≤ Aneωpt´tnq
Mpα2qnp2nqn

pα2 ´ αqn
}wptnq}α (1.30)

holds. Hence we obtain the estimate

}wptq}α2 ≤
t
ż

s

¨ ¨ ¨

tn´1
ż

s

}Qpt, t1, . . . , tn, sqwptnq}α2dtn . . . dt1

≤
ˆ

AMpα2q2n

α2 ´ α

˙n
t
ż

s

¨ ¨ ¨

tn´1
ż

s

eωpt´tnq}wptnq}αdtn . . . dt1

≤ Cαe
ωpt´sq pt´ sq

n

n!
nn

ˆ

2AMpα2q

α2 ´ α

˙n

≤ Cαe
ωpt´sq

ˆ

2eAMpα2qpt´ sq

α2 ´ α

˙n

,

where we have assumed w.l.g. that ω ≥ 0. This implies wptq “ 0 in Bα2 ãÑ Bα for

s ≤ t ă s`min

"

T, T pα1, αq,
α2 ´ α

2eAMpα2q

*

.

Applying above arguments to α2 “ α ` 1 shows for any α1 ă α, x P Bα1 that (1.27) is
unique on rs, s ` T0pα

1, αqqs for any q P p0, 1q and T0pα
1, αq :“ mintT pα1, αq, 1

2eAMpα`1q
u.

Changing s to s ` T0pα
1, αqq and iterating this procedure yields the assertion. Such an

iteration is possible since wps` qT0pα
1, αqq “ 0 P Bα1 .

For α1 ă α and s ≤ t let

αpt, s, α1q :“ inf tβ ≥ α1 | W pt, sqx P Bβu ,

34



then αps, s, α1q “ α1 and if s ≤ t ă s`T pα1, αq also αpt, s, α1q ≤ α follows. The continuity
of T pα1, αq implies that there exists β P pα1, αq such that s ≤ t ă s ` T pα1, βq and hence
W pt, sq P Bβ, which implies that αpt, s, α1q ≤ β ă α is fulfilled. Uniqueness therefore
implies that for any s ≤ r ≤ t, 0 ≤ s ≤ r ă s ` T pα1, αq and t ă mints ` T pα1, αq, r `
T pαpr, s, α1q, αqu

W pt, sqx “ W pt, rqW pr, sqx

holds for all x P Bα1 .

Remark 1.2.3. Above proof shows that if B∆ is continuous in the uniform topology, then
W pt, sq is also continuously differentiable in the uniform topology.

A global solution to (1.20) is, by definition, a function u : R` ÝÑ
Ť

αąα1
Bα such that

for all T ą 0 there exists α ą α1 and u|r0,T s is a solution to (1.20) in Bα.

Corollary 1.2.4. Let α1 ą α˚ and suppose that there exists a sequence pαjqj≥0 such that
αj ă αj`1, α0 “ α1 and

8
ÿ

j“0

αj`1 ´ αj
Mpαj`1q

“ 8 (1.31)

is satisfied. Then for any x P Bα1 there exists a unique global solution to (1.20) given by
W pt, sqx. In particular, if Mpαq is bounded by M˚ ą 0, then the assertions of Theorem
1.2.2 hold for T pα1, αq “ α´α1

2eAM˚ and W pt, sqx provides for every x P Bα1, α1 ą α˚ the
unique global solution to (1.20).

Proof. Let x P Bα1 , then W pt, sqx is the unique solution to (1.20) on rs, s ` T pα0, α1qq

in Bα1 . Fix q P p0, 1q, then W pt, s ` qT pα0, α1qqW ps ` qT pα0, α1q, sqx yields the unique
solution on rs ` qT pα0, α1q, s ` qpT pα0, α1q ` T pα1, α2qqs in Bα2 . By iteration we obtain
the unique solution on rs, s ` qpT pα0, α1q ` ¨ ¨ ¨ ` T pαN , αN`1qqs in BαN for any N P N.

Such iteration yields a global solution since
8
ř

j“0

T pαj, αj`1q “
1

2eA

8
ř

j“0

αj`1´αj
Mpαj`1q

“ 8. For

the second assertion consider αj “ α1 ` j, then

αj`1 ´ αj
Mpαj`1q

≥ 1

M˚
ą 0

implies (1.31).

Below we provide stability of the evolution system W pt, sq w.r.t. the operators A∆ptq
and B∆ptq. For any n P N, let pA∆

n ptqqt≥0 be continuous in the uniform topology in the
scale B and pV ∆

n pt, sqq0≤s≤t the associated forward evolution systems. Suppose that there
exists constants A ≥ 1 and ω P R such that

}V ∆
n pt, sq}α1α ≤ Aeωpt´sq, 0 ≤ s ≤ t, α1 ă α, n P N (1.32)
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holds. Let pB∆
n ptqqt≥0 Ă LpBq be strongly continuous in t for any n P N such that there

exists an increasing continuous function Mpαq independent of n and it satisfies

}B∆
n ptq}α1α ≤

Mpαq

α ´ α1
, α1 ă α, t ≥ 0, n P N. (1.33)

Theorem 1.2.5. Suppose that there exist operators A∆ptq, V ∆pt, sq, B∆ptq which satisfy
the conditions of Theorem 1.2.2 with Mpαq as in (1.33). Assume that for any T ą 0 and
α1 ă α

sup
tPr0,T s

}B∆
n ptq ´B

∆
ptq}α1α ÝÑ 0, nÑ 8 (1.34)

and

sup
tPr0,T s

}A∆
n ptq ´ A

∆
ptq}α1α ÝÑ 0, nÑ 8 (1.35)

are satisfied. Let T pα1, αq :“ α´α1

2eAMpαq
. Then for any n P N there exist evolution systems

W npt, sq and W pt, sq corresponding to pA∆
n ptq, B

∆
n ptqq and pA∆ptq, B∆ptqq respectively, with

the properties stated in Theorem 1.2.2. Moreover, for any α1 ă α, x P Bα1 and q P p0, 1q
the convergence

W n
pt, sqx ÝÑ W pt, sqx, nÑ 8

holds in Bα uniformly on compacts such that 0 ≤ t´ s ≤ qT pα1, αq.

Proof. The same arguments as in the proof of Lemma 1.1.3 together with (1.35) show
that

}V ∆
n pt, sq ´ V

∆
pt, sq}α1α ÝÑ 0, nÑ 8 (1.36)

holds uniformly on compacts for 0 ≤ s ≤ t. Therefore without loss of generality we can
assume that V ∆pt, sq satisfies (1.32) with the same constants. Estimates (1.32) and (1.33)
together with Theorem 1.2.2 imply that W npt, sq,W pt, sq exist and by (1.28) are given by

W pt, sq “
8
ř

k“0

Wkpt, sq and W npt, sq “
8
ř

k“0

W n
k pt, sq, respectively. Moreover, from (1.32)

and (1.33) it follows

}W n
k pt, sq}α1α ≤ eωpt´sq

ˆ

t´ s

T pα1, αq

˙k

and hence the series converges uniformly for 0 ≤ t ´ s ≤ qT pα1, αq and w.r.t. n. Thus it
suffices to show W n

k pt, sq ÝÑ Wkpt, sq, nÑ 8 in LpBα1 ,Bαq for any k P N. For k “ 0 this
follows from (1.36) and for k ≥ 1 by induction and (1.34).
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Clearly it is not necessary to assume that (1.34) and (1.35) hold for each T ą 0.
Since, in general, we only obtain the existence of a local solution it is enough to check the
convergence on any interval rs, s` qT pα1, αqs, s ≥ 0 and q P p0, 1q.

Suppose that B is a scale of Banach lattices. Namely, for each α ą α˚ the space Bα
is a Banach lattice, that is Bα is an ordered Banach space and the order is compatible
with the norm. For convenience of the reader a precise definition is given in the appendix
A.1. The order is also assumed to be compatible with the scale B, i.e. for all α1 ă α and
x, y P Bα1

x ≤α1 y ô x ≤α y ,

where ≤α denotes the order on Bα and ≤α1 the order on Bα1 . Thus we can omit the de-
pendence on α. For details, additional properties and perturbation theory for semigroups
on Banach lattices we refer to [BA06].

Given C P LpBq, we say that C is positive if for each α1 ă α, x P Bα1 : x ≥ 0
implies Cx ≥ 0. The next theorem establishes a comparison principle for the constructed
solutions. Such principle can be used to construct global solutions, see [KK16].

Theorem 1.2.6. Suppose that A∆ptq and V ∆pt, sq are given as in Theorem 1.2.2 and
V ∆pt, sq is positive. Let pB∆

0 ptqqt≥0, pB
∆
1 ptqqt≥0 Ă LpBq be two positive operators. Assume

that t ÞÝÑ B∆
j ptq P LpBq are strongly continuous in the scale B for j “ 0, 1 and there exit

continuous increasing functions M0pαq,M1pαq ą 0 satisfying for all α1 ă α and t ≥ 0

}B∆
j ptq}α1α ≤

Mjpαq

α ´ α1
, j “ 0, 1.

Denote by pW0pt, sqq0≤s≤t the forward evolution system corresponding to A∆ptq`B∆
0 ptq and

by pW1pt, sqq0≤s≤t the forward evolution system corresponding to A∆ptq `B∆
0 ptq ´B

∆
1 ptq.

Suppose that W1pt, sq is positive, then for any α1 ă α ă α2 and 0 ≤ x P Bα1

W∆
1 pt, sqx ≤ W0pt, sqx (1.37)

holds for all s ≤ t ă s`min
!

α´α1

2eApM0pαq`M1pαqq
, α2´α

2eAM1pα2q

)

.

Proof. The proof of Theorem 1.2.2 implies for s ≤ t ă s ` α´α1

2eApM0pαq`M1pαqq
and wptq :“

W0pt, sqx´W1pt, sqx that

wptq “

t
ż

s

V ∆
pt, rqB∆

0 prqwprqdr `

t
ż

s

V ∆
pt, rqB∆

1 prqW1pr, sqxdr

≥
t
ż

s

V ∆
pt, rqB∆

1 prqwprqdr
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holds in Bα2 , where we have used (1.25) and that all operators are positive. Iterating this
inequality yields for any n P N in Bα2

W0pt, sqx´W1pt, sqx ≥
t
ż

s

¨ ¨ ¨

tn´1
ż

s

Qpt, t1, . . . , tn, sqwptnqdtn ¨ ¨ ¨ dt1 “: In,

where Qpt, t1, . . . , tn, sq :“ V ∆pt, t1qB
∆
1 pt1q ¨ ¨ ¨V

∆ptn´1, tnqB
∆ptnq. Let αj :“ α ` j α

2´α
2n

,
j “ 0, . . . , 2n, Cα :“ sup

rPrs,ts

}wprq}α, then by (1.30)

}In}α2 ≤ Cαe
ωpt´sq

ˆ

2eAM1pα
2qpt´ sq

α2 ´ α

˙n

.

Hence if s ≤ t ă s`min
!

α´α1

2eApM0pαq`M1pαqq
, α2´α

2eAM1pα2q

)

, then In ÝÑ 0, nÑ 8 in Bα2 .

1.3 Perturbation by non-linear operators

In this section we prove existence, uniqueness and stability of solutions to the non-linear
Cauchy problem (1.5), i.e. to

B

Bt
uptq “ Aptquptq `Bpuptq, tq, up0q “ x.

Let B “ pBαqαPrα˚,α˚s be a scale of Banach spaces with Bα1 Ă Bα and } ¨ }α ≤ } ¨ }α1 for
α1 ă α. It is worth noting that we have to consider here a scale for which the index α is
also bounded from above.

Existence and uniqueness

Fix x P Bα˚ and let λ ą 0. First we are going to prove the existence of mild solutions.
The following summarizes our main assumptions for this purpose.

A1. There exists an evolution system of bounded linear operators pUpt, sqq
0≤s≤tăα˚´α˚

λ

in the scale B such that for 0 ≤ s ≤ r ≤ t (in the sense of (1.3))

Upt, tq “ 1, Upt, rqUpr, sq “ Upt, sq

and pt, sq ÞÝÑ Upt, sq P LpBα1 ,Bαq is strongly continuous for all α˚ ≤ α1 ă α ≤ α˚.

A2. There exist constants C1 ą 0 and β P r0, 1
2
q such that for all α˚ ≤ α1 ă α ≤ α˚

}Upt, sq}α1α ≤
C1

pα ´ α1qβ
, t ≥ s ≥ 0.
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A3. For all α P pα˚, α
˚s there exists Cpx, αq ą 0 such that for all 0 ≤ s, t ≤ α´α˚

λ

}Upt, 0qx´ Ups, 0qx}α ≤ Cpx, αq|t´ s|.

For the non-linear part Bpu, tq we suppose the following:

B1. There exists r ą 0 such that for all α1, α with α˚ ≤ α1 ă α ă α˚

Bα1

r pxq ˆ

„

0,
α˚ ´ α˚

λ

˙

Q pu, tq ÞÝÑ Bpu, tq P Bα

is continuous, where Bα1

r pxq :“ ty P Bα1 | }x´ y}α1 ≤ ru.

B2. There exists a constant C2 ą 0 such that for all α1, α with α˚ ≤ α1 ă α ă α˚,
t P r0, α

˚´α˚
λ
q and any u, v P Bα1

r pxq

}Bpu, tq ´Bpv, tq}α ≤
C2

pα ´ α1q1´β
}u´ v}α1 .

B3. There exists a constant C3 ą 0 such that for all t P r0, α
˚´α˚
λ
q and all α P pα˚, α

˚s

}Bpx, tq}α ≤
C3

α ´ α˚
.

Remark 1.3.1. Usually non-linearities Cpu, tq are considered to be locally Lipschitz con-
tinuous. The existence of maximal solutions is shown in this case, cf. [Paz83] and ref-
erences therein. Such non-linearities can be also taken into account in our setting, if we
define B̃pu, tq :“ Bpu, tq ` Cpu, tq and check that B̃ satisfies assumptions B1 – B3.

Given x P Bα˚ and α0 P rα˚, α
˚q, a solution to

uptq “ Upt, 0qx`

t
ż

0

Upt, sqBpupsq, sqds. (1.38)

in the scale pBαqαPrα0,α˚s is a function u :
”

0, α
˚´α0

λ

¯

ÝÑ Bα˚ such that for all α P pα0, α
˚s

u|
r0,

α´α0
λ
q
P C

´”

0,
α ´ α0

λ

¯

;Bα
¯

,

}uptq ´ x}α ≤ r and u solves (1.38) in Bα. The idea for the proof of the next statement
is based on the work [Saf95] and provides a generalization of this work.
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Theorem 1.3.2. Under conditions A1 – A3 and B1 – B3 with x P Bα˚, for each α0 P

pα˚, α
˚q there exists λ0 ą 0 and, provided λ ą λ0, a unique solution uα0 in the scale

pBα, } ¨ }αqαPrα0,α˚s to (1.38). Moreover, each two solutions uα0 and uα1 with α˚ ă α0 ă

α1 ă α˚ and λ ą maxtλ0pα0q, λpα1qu satisfy for any α P rα1, α
˚q

uα0ptq “ uα1ptq, 0 ≤ t ă
α ´ α1

λ
.

Proof. Fix x P Bα˚ and α0 P pα˚, α
˚q. For γ ≥ 0 define Sγ as the Banach space of

all functions u :
”

0, α
˚´α0

λ

¯

ÝÑ Bα˚ such that for each α P pα0, α
˚s the restriction

u|r0,T pαqq P Cpr0, T pαqq;Bαq with T pαq “ α´α0

λ
satisfies

}u}pγq “ sup
0≤tăT pαq
αPpα0,α

˚s

pα ´ α0 ´ λtq
γ
}uptq}α ă 8.

Define the non-linear integral operator

T puqptq :“

t
ż

0

Upt, sqBpupsq, sqds, (1.39)

then we will show the existence of a unique solution to u “ Up¨, 0qx ` T u. Now fix
γ P pβ, 1´ βq, let

λ0 :“ max

"

22γ`1´βC1C2

γ ´ β
,
41´βC2pα

˚ ´ α0q
β

γp1` }x}α˚q
`

22`γC1C2

γ
,

Cpxqpα˚ ´ α0q

r
`

2γ´1`βC1p
C3

α0´α˚
` Cpxqqpα˚ ´ α0q

1´βp1` }x}α˚q

p1´ γqr

*

where Cpxq :“ Cpx, α0q. Define

Mpuq :“ sup
0≤τ≤α

˚´α0
λ

sup
0≤tăT pαq
αPpα0,α

˚s

pα ´ α0 ´ λtq
γ
}Bpuptq, τq}α,

and

Sx :“

"

u P Sγpλq

ˇ

ˇ

ˇ

ˇ

}u´ x}p0q ă r, Mpuq ≤
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q

*

.

(1.40)

Lemma 1.3.3. Up¨, 0qx P Sx.
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Proof. Observe first that Up¨, 0qx P Sγ, then by A3 we see that for α P pα0, α
˚q and

0 ≤ t ă T pαq

}Upt, 0qx´ x}α ≤ }Upt, 0qx´ x}α0 ≤ Cpxqt ≤ Cpxq
α ´ α0

λ
,

so

}Up¨, 0qx´ x}p0q ≤ Cpxq
α˚ ´ α0

λ
≤ r

λ0

λ
ă r. (1.41)

For MpUp¨, 0qxq ≤ p C3

α0´α˚
` Cpxqqpα˚ ´ α0q

γp1 ` }x}α˚q it suffices to show that for all

0 ≤ τ ≤ α˚´α0

λ
, α P pα0, α

˚s and all 0 ≤ t ă T pαq we have

fptq “ ρptqγgptq ≤
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α˚q
γ
p1` }x}α˚q,

where ρptq :“ α ´ α0 ´ λt and gptq :“ }BpUpt, 0qx, τq}α. The assumptions on B imply
that f is continuous in t and using

pDfqptq “ lim sup
sŒt

fpsq ´ fptq

s´ t

we obtain
pDfqptq “ ´γλρptqγ´1gptq ` ρptqγpDgqptq.

Now set α “ α1 ` ρptq
2

, then 0 ≤ t ă T pα1q ă T pαq and for t ă s ă T pα1q

gpsq ´ gptq ≤ }BpUps, 0qx, τq ´BpUpt, 0qx, τq}α ≤
C2

pα ´ α1q1´β
}Ups, 0qx´ Upt, 0qx}α1

and thus dividing by s´ t and letting sŒ t we conclude

pDgqptq ≤ C2Cpxq

pα ´ α1q1´β
“

21´βC2Cpxq

ρptq1´β
.

From

ρptqpDfqptq ≤ ´γλfptq ` 21´βC2Cpxqρptq
γ`β

≤ ´γλfptq ` γλ
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q

we conclude that if fptq ą p C3

α0´α˚
` Cpxqqpα˚ ´ α0q

γp1 ` }x}α˚q, then pDfqptq ă 0. But

since Mpxq ≤ p C3

α0´α˚
` Cpxqqpα˚ ´ α0q

γp1` }x}α˚q implies

fp0q ≤
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q.
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We conclude pDfqptq ≤ 0, which shows

MpUp¨, 0qxq ≤
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q. (1.42)

Lemma 1.3.4. Up¨, 0qx` T puq P Sx whenever u P Sx.

Proof. Take u P Sx, fix α P pα0, α
˚s and 0 ≤ t ă T pαq. For α “ α1 ` ρptq

2
with ρptq as

before we get 0 ≤ t ă T pα1q ă T pαq. Hence

}T puqptq}α ≤
t
ż

0

}Upt, sqBpupsq, sq}αds ≤ C1

pα ´ α1qβ

t
ż

0

}Bpupsq, sq}α1ds

≤ 2βC1Mpuq

ρptqβ

t
ż

0

pα1 ´ α0 ´ λsq
´γds ≤ 2βC1Mpuq

ρptqβ
pα1 ´ α0 ´ λtq

1´γ

p1´ γqλ

≤ 2γ´1`βC1

ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q

ρptq1´γ´β

p1´ γqλ

≤ 2γ´1`βC1

p1´ γqλ

ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
1´β
p1` }x}α˚q

yields

}T puq}p0q ≤ 2γ´1`βC1

p1´ γqλ

ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
1´β
p1` }x}α˚q.

Using (1.41) implies

}Up¨, 0qx` T puq ´ x}p0q ≤ }Up¨, 0qx´ x}p0q ` }T puq}p0q

≤ Cpxqpα˚ ´ α0q

λ
`

2γ´1`βC1

p1´ γqλ

ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
1´β
p1` }x}α˚q

≤ r
λ0

λ
ă r.

For the second condition we have to show

MpUp¨, 0qx` T puqq ≤
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α˚q
γ
p1` }x}α˚q.

Similar to the proof of Lemma 1.3.3 it suffices to show that for all 0 ≤ τ ≤ T pα˚q,
α P pα0, α

˚s and 0 ≤ t ă T pαq we have

fptq “ ρptqγgptq ≤
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α˚q
γ
p1` }x}α˚q,
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where gptq :“ }BpUpt, 0qx` T puqqptq, τq}α. Again we obtain

pDfqptq “ ´γλρptqγ´1gptq ` ρptqγpDgqptq.

Now set α “ α1 ` ρptq
2

and α2 “ α1 ` ρptq
4

. We see that α “ α2 ` ρptq
4

,

0 ≤ t ă T pα1q ă T pα2q ă T pαq

and hence for t ă s P T pα1q

gpsq ´ gptq

≤ C2

pα ´ α2q1´β
}Ups, 0qx´ Upt, 0qx}α2 `

C2

pα ´ α2q1´β
}T puqpsq ´ T puqptq}α2

≤ 41´βC2

ρptq1´β
}Ups, 0qx´ Upt, 0qx}α1 `

41´βC2

ρptq1´β

s
ż

t

}pUps, τq ´ Upt, τqqBpupτq, τq}α2dτ

≤ 41´βC2

ρptq1´β
}Ups, 0qx´ Upt, 0qx}α1 `

4C1C2

ρptq

s
ż

t

}Bpupτq, τq}α1dτ.

We conclude that

pDgqptq ≤ 41´βC2ρptq
´1`βCpxq `

4C1C2

ρptq
}Bpuptq, tq}α1

≤ 41´βC2Cpxqρptq
´1`β

` 4C1C2ρptq
´1Mpuqpα1 ´ α0 ´ λtq

´γ

≤ 41´βC2Cpxqρptq
´1`β

` 22`γC1C2ρptq
´γ´1

ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q

holds and finally

ρptqpDfqptq ≤ ´γλfptq ` 41´βC2Cpxqρptq
β`γ

` 22`γC1C2

ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q

≤ ´γλfptq ` γλ
ˆ

C3

α0 ´ α˚
` Cpxq

˙

pα˚ ´ α0q
γ
p1` }x}α˚q.

The assertion follows immediately as in Lemma 1.3.3.

Let u P Sγ`1´βpλq, fix α P pα0, α
˚s and set α “ α1 ` ρptq

2
with ρptq as before, and
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0 ≤ t ă T pαq. Then

pα ´ α0 ´ λtq
γ

›

›

›

›

›

›

t
ż

0

Upt, squpsqds

›

›

›

›

›

›

α

≤ C1

pα ´ α1qβ
pα ´ α0 ´ λtq

γ

t
ż

0

}upsq}α1ds

≤ 2βC1ρptq
γ´β

t
ż

0

pα1 ´ α0 ´ λsq
´pγ`1´βqds}u}pγ`1´βq

≤ 2βC1

pγ ´ βqλ
ρptqγ´β}u}pγ`1´βq

pα1 ´ α0 ´ λtq
´γ`β

“
2γC1

pγ ´ βqλ
}u}pγ`1´βq

implies that
›

›

›

›

›

›

‚
ż

0

Up¨, squpsqds

›

›

›

›

›

›

pγq

≤ 2γC1

pγ ´ βqλ
}u}pγ`1´βq. (1.43)

Analogously to (1.43) one shows that for u, v P Sx

}Bpup¨q, ¨q ´Bpvp¨q, ¨q}pγ`1´βq ≤ 2γ`1´βC2}u´ v}
pγq. (1.44)

Now let u, v P Sx, then by (1.43) and (1.44) we arrive at

}T puq ´ T pvq}pγq ≤ 2γC1

pγ ´ βqλ
}Bpup¨q, ¨q ´Bpvp¨q, ¨q}pγ`1´βq

≤ 22γ`1´βC1C2

pγ ´ βqλ
}u´ v}pγq ≤ λ0

λ
}u´ v}pγq.

Setting up0q “ Up¨, 0qx P Sx and upk`1q “ Up¨, 0qx` T pupkqq for k P N0, Lemma 1.3.3 and

1.3.4 imply upkq P Sx. The estimate }upk`1q ´ upkq}pγq ≤
`

λ0

λ

˘k
}up1q ´ up0q}pγq shows that

pupkqqk≥0 is a Cauchy-sequence and thus there is a limit u “ lim
kÑ8

upkq in Sγ. Since for any

α P pα0, α
˚s, t P r0, T pαqq and k P N: }upkqptq´x}α ă r, passing to the limit k Ñ 8 yields

}uptq ´ x}α ≤ r. Hence u is a solution to (1.38) in the scale pBαqαPrα0,α˚s.
For uniqueness let u, v be two solutions to (1.38) in the scale pBαqαPrα0,α˚s. Then by

pα ´ α0 ´ λtq
γ
}uptq}α ≤ pα ´ α0 ´ λtq

γ
}uptq ´ x}α ` pα ´ α0 ´ λtq

γ
}x}α

≤ pα˚ ´ α0q
γr ` pα˚ ´ α0q

γ
}x}α˚

and similar estimate for v we get u, v P Sγ. By (1.43) and (1.44) we obtain

}u´ v}pγq “ }T puq ´ T pvq}pγq ≤ λ0

λ
}u´ v}pγq,

which implies u “ v. The last claim is a consequence of the next lemma.
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Lemma 1.3.5. Let α˚ ă α0 ă α1, denote by uα0 and uα1 the corresponding unique so-
lutions in the scales pBαqαPrα0,α˚s respectively pBαqαPrα1,α˚s with λ ą maxtλ0pα0q, λ0pα1qu.
Then for each α P pα1, α

˚s, we have

uα0 |r0,α´α1
λ
q
“ uα1 .

Proof. The collection of functions uα0 |r0,α´α1
λ
q
, α P pα1, α

˚s is a solution in the scale

pBαqαPrα1,α˚s and applying the uniqueness property for uα1 we obtain the assertion.

Remark 1.3.6. Suppose that Upt, 0q satisfies the inequality

}Upt, 0qx´ Ups, 0qx}α ≤ Cpxq|t´ s|

with a constant Cpxq ą 0 independent of α. Then we can choose α0 “ α˚ in the main
statement.

Let us now show existence and uniqueness of classical solutions to equation (1.5).
Therefore, let pEα,~ ¨ ~αqαPrα˚,α˚s be another scale of Banach spaces with Bα Ă Eα con-
tinuously embedded and ~ ¨ ~α ≤ } ¨ }α. The next condition relates the evolution system
to its infinitesimal generator Aptq.

A4. There exists a family of linear operators pAptqq
tPr0,

α˚´α˚
λ

q
such that for all α1 ă α

„

0,
α˚ ´ α˚

λ

˙

Q t ÞÝÑ Aptq P LpBα1 ,Eαq

is strongly continuous. Moreover, the map pt, sq ÞÝÑ Upt, sq P LpBα1 ,Eαq is strongly
continuously differentiable with derivatives

BU

Bt
pt, sq “ AptqUpt, sq, 0 ≤ s ≤ t ă

α˚ ´ α˚
λ

and

BU

Bs
pt, sq “ ´Upt, sqApsq, 0 ≤ s ≤ t ă

α˚ ´ α˚
λ

.

The case s “ t should be understood as right or left derivative correspondingly.

Note that, in the case Eα “ Bα conditions A1 and A4 imply condition A3.

Definition 1.3.7. A function u : r0, α
˚´α˚
λ
q ÝÑ Bα˚ is called classical B-valued solution

to (1.5) if for each α P pα˚, α
˚s the restriction

u|
r0,

α´α˚
λ

q
P C1

´”

0,
α ´ α˚
λ

¯

;Eα
¯

X C
´”

0,
α ´ α˚
λ

¯

;Bα
¯

(1.45)

satisfies }uptq ´ x}α ≤ r, and it is a classical solution to (1.5) in Eα.
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The next lemma shows that in the framework of scales of Banach spaces the concepts
of mild and classical B-valued solutions coincide. A summary of the classical concepts of
B-valued solutions can be found in [Paz83].

Lemma 1.3.8. Let x P Bα˚ and u : r0, α
˚´α˚
λ
q ÝÑ Bα˚. Then u is a classical B-valued

solution to (1.5) if and only if u is a solution to (1.38) in the scale pBαqαPrα˚,α˚s.

Proof. Suppose that u is a classical B-valued solution to (1.5). Then for all 0 ≤ s ă t ă
α´α˚
λ

and each α P pα˚, α
˚s

B

Bs
pUpt, squpsqq “ Upt, sqBpupsq, sq

holds in Eα. Hence integrating over s yields (1.38). For the converse let v be given with
(1.45). Fix α P pα˚, α

˚s, t P r0, α´α˚
λ
q and let α1 P pα˚, αq such that 0 ≤ t ă α1´α˚

λ
ă

α´α˚
λ

Then vpsq P Bα1 for s P r0, ts and we get that the mapping pt, sq ÞÝÑ Upt, sqvpsq P Eα is
continuous and continuously differentiable in t for fixed s P r0, ts. Thus

”

0,
α ´ α˚
λ

¯

Q t ÞÝÑ

t
ż

0

Upt, sqvpsqds P Bα

is continuously differentiable with derivative vptq`Aptq
t
ş

0

Upt, sqvpsqds. Let u solve (1.38),

then applying above argumentation to vpsq :“ Bpupsq, sq yields differentiability and dif-
ferentiating (1.38) yields (1.5).

Corollary 1.3.9. Assume that conditions A1 – A4 and B1 – B3 are satisfied and let
x P Bα˚. Then for any α0 P pα˚, α

˚q the solution given by Theorem 1.3.2 yields a unique
classical B-valued solution in the scale pEαqαPrα0,α˚s to (1.5).

Stability with respect to parameters

For the whole section we suppose that the conditions below are satisfied.

1. There exist xn, x P Bα˚ with xn Ñ x as nÑ 8.

2. There exist evolution systems pUps, tqq
0≤s≤tăα˚´α˚

λ

and pUnpt, sqq0≤s≤tăα˚´α˚
λ

for n P

N satisfying properties A1 and A2 with constants C1 ą 0 and β P r0, 1
2
q independent

of n P N.

3. For any α P pα˚, α
˚q there exist a constant Cpαq ą 0 such that for all 0 ≤ s, t ≤ α´α˚

λ

}Unpt, 0qxn ´ Unps, 0qxn}α ≤ Cpαq|t´ s|.
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4. There exist operators B and Bn satisfying properties B1 – B3 with constants
λ, r, C2, C3 ą 0 independent of n P N.

5. For all α1 ă α and each z P Bα1 we have

Unpt, sqz Ñ Upt, sqz, nÑ 8 (1.46)

in Bα uniformly on compacts in pt, sq. If in addition }z ´ x}α1 ≤ r, then we have

Bnpz, tq Ñ Bpz, tq, nÑ 8

in Bα uniformly on compacts in t.

If for instance Anptq Ñ Aptq in LpBα1 ,Bαq and A4 is satisfied for Aptq and Anptq, n P N,
then (1.46) holds.

Theorem 1.3.10. For each α0 P pα˚, α
˚q there exist λ0 ą 0 and provided λ ą λ0, there

exist unique solutions u to (1.38) and un to

unptq “ Unpt, 0qxn `

t
ż

0

Unpt, sqBnpunpsq, sqds (1.47)

in the scale pBαqαPrα0,α˚s. Moreover, for any α P pα0, α
˚s and T P p0, α´α0

λ
q

unptq Ñ uptq, nÑ 8 (1.48)

holds uniformly on r0, T s in Bα.

The rest of this section is devoted to the proof. By definition of λ0 in Theorem 1.3.2
we can chose λ0 to be independent of n P N, which implies the first assertion. Denote by
u, un the corresponding solutions and by Tn the non-linear integral operator given as in
(1.39) with B and U replaced by Bn and Un.

Lemma 1.3.11. }TnpUnp¨, 0qxnq}pγq is uniformly bounded in n P N.

Proof. An analogous estimate to (1.42) shows that there is C ą 0 such that

sup
0≤τ≤α

˚´α0
λ

sup
0≤tăT pαq
αPpα0,α

˚s

pα ´ α0 ´ λtq
γ
}BnpUnp¨, 0qxn, τq}α ≤ C, n P N.
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Let α P pα0, α
˚s, t P r0, T pαqq, ρptq “ α´α0´λt and define α1 by the relation α “ α1` ρptq

2
,

then t ă α1´α0

λ
. Hence the estimate

pα ´ α0 ´ λtq
γ

›

›

›

›

›

›

t
ż

0

Unpt, sqBnpUnps, 0qxn, sqds

›

›

›

›

›

›

α

≤ C1
pα ´ α0 ´ λtq

γ

pα ´ α1qβ

t
ż

0

}BnpUnps, 0qxn, sq}α1ds ≤ CC12βρptqγ´β
t
ż

0

pα1 ´ α0 ´ λsq
´γds

≤ CC12βρptqγ´β

λp1´ γq
pα1 ´ α0 ´ λtq

1´γ ≤ 2γ´1`βCC1

λp1´ γq
pα0 ´ α˚q

1´β

implies the assertion.

Fix α P pα0, α
˚s, T P p0, T pαqq and denote by pupkqqkPN the sequence defined by up0q “

Up¨, 0qx, upk`1q “ Up¨, 0qx ` T pupkqq. Similarly let pu
pkq
n qkPN be given by u

p0q
n “ Unp¨, 0qxn

and u
pk`1q
n “ Unp¨, 0qxn ` Tnpupkqn q. For γ P pβ, 1´ βq we obtain

}upkq ´ u}pγq ≤
8
ÿ

j“k

}upj`1q
´ upjq}pγq ≤

8
ÿ

j“k

ˆ

λ0

λ

˙j

}up1q ´ up0q}pγq

“

8
ÿ

j“k

ˆ

λ0

λ

˙j

}T pUp¨, 0qxq}pγq

and

}upkqn ´ un}
pγq ≤

8
ÿ

j“k

ˆ

λ0

λ

˙j

}TnpUnp¨, 0qxnq}pγq.

By Lemma 1.3.11 and

}uptq ´ unptq}α ≤ pα ´ α0 ´ λtq
´γ

`

}upkq ´ u}pγq ` }upkqptq ´ upkqn ptq}α ` }u
pkq
n ´ un}

pγq
˘

,

which implies that the first and last term tend to zero uniformly in n as k Ñ 8. Thus it
suffices to show for each k

}upkqptq ´ upkqn ptq}α Ñ 0, nÑ 8

uniformly on r0, T s. However this is a consequence of the below lemma.

Lemma 1.3.12. Let vn, v : r0, α
˚´α0

λ
q ÝÑ Bα˚ be two functions with the properties that

for each ν P pα0, α
˚s and all n P N:

1. }vnptq ´ xn}ν ă r and }vptq ´ x}ν ă r for all 0 ≤ t ă ν´α0

λ
.
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2. vn|r0, ν´α0
λ
q
, v|

r0,
ν´α0
λ
q
P Cpr0, ν´α0

λ
q;Bνq and vnp0q “ xn, vp0q “ x.

3. For each 0 ă T ă ν´α0

λ
the convergence

}vnptq ´ vptq}ν Ñ 0, nÑ 8

holds uniformly on r0, T s.

Then for each ν P pα0, α
˚s and T P p0, T pνqq

}Unpt, 0qxn ` Tnpvnqptq ´ Upt, 0qx´ T pvqptq}ν Ñ 0, nÑ 0

uniformly on r0, T s.

Proof. Consider

}Unpt, 0qxn ` Tnpvnqptq ´ Upt, 0qx´ T pvqptq}ν
≤ }Unpt, 0qxn ´ Upt, 0qx}ν ` }Tnpvnqptq ´ T pvqptq}ν
≤ }pUnpt, 0q ´ Upt, 0qqx}ν ` }Unpt, 0qpxn ´ xq}ν`
` }Tnpvqptq ´ T pvqptq}ν ` }Tnpvqptq ´ Tnpvnqptq}ν
“ I1 ` I2 ` I3 ` I4.

Take ε ą 0, then we find n0pεq P N such that for all n ≥ n0 and t P r0, T s

I1 “ }pUnpt, 0q ´ Upt, 0qqx}ν ≤ ε.

For I2 and n ≥ n1, where n1 “ n1pεq is sufficiently large, we obtain

I2 “ }Unpt, sqpxn ´ xq}ν ≤
C1

pν ´ α˚qβ
}xn ´ x}α˚ ≤

C1

pν ´ α˚qβ
ε.

It remains to estimate I3, I4. For I3 we get

I3 ≤
t
ż

0

}pUnpt, sq ´ Upt, sqqBpvpsq, sq}νds`

t
ż

0

}Unpt, sqpBnpvpsq, sq ´Bpvpsq, sqq}νds

“ J1 ` J2.

Take α0 ă α1 ă α2 ă ν such that T ă α1´α0

λ
, then vnptq, vptq P Bα1 for t P r0, T s and hence

the set KT “ tBpvpsq, sq | s P r0, T su Ă Bα2 is compact. For large n, i.e. for n ≥ n2 we
obtain that

J1 ≤
t
ż

0

sup
zPKT

}pUnpt, sq ´ Upt, sqqz}νds ă εT.
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Similarly for J2 the set KT “ tvpsq|s P r0, T su Ă Bα1 is compact. Thus there exists
δ P p0, 1q such that }vptq ´ x}α1 ă p1 ´ δqr for t P r0, T s. Let n3 ≥ n2 be such that
}x´ xn} ă δr for n3 ≥ n2, then

}vptq ´ xn}α1 ≤ }vptq ´ x}α1 ` }x´ xn}α1 ă p1´ δqr ` δr “ r.

Hence by assumption 5. there exists n4 ≥ n3 such that

J2 ≤
C2

pν ´ α2q1´β

t
ż

0

}Bnpvpsq, sq ´Bpvpsq, sq}α2ds

≤ C2

pν ´ α2q1´β

t
ż

0

sup
zPKT

}Bnpz, sq ´Bpz, sq}α2ds ≤
C2T

pν ´ α2q1´β
ε.

Concerning I4 we obtain

}Tnpvnqptq ´ Tnpvqptq}ν ≤
t
ż

0

}Unpt, sqpBnpvnpsq, sq ´Bnpvpsq, sq}νds

≤ C1

pν ´ α2qβ
C2

pα2 ´ α1q1´β

t
ż

0

}vnpsq ´ vpsq}α1ds

“
C1

pν ´ α2qβ
C2

pα2 ´ α1q1´β
T sup
sPr0,T s

}vnpsq ´ vpsq}α1 ,

which shows the assertion.
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Chapter 2

Markov evolutions on Γ0

This chapter is devoted to the construction and study of birth-and-death Markov evolu-
tions in continuum with the additional constraint that for any moment of time t ≥ 0 the
number of particles remains finite. For shorthand notation we call such Markov evolu-
tions: finite evolution, finite process or simply finite system. In the first section we discuss
Markov jump processes on arbitrary locally compact Polish spaces. These results are af-
terwards applied (sections two and three) to (finite) birth-and-death Markov evolutions
with the location space Rd.

2.1 General Markov jump processes

Let E be a locally compact Polish space and denote by BpEq the Borel-σ-algebra on E.
Denote by BMpEq the Banach space of all bounded measurable functions and by CbpEq
the subspace of all continuous bounded functions. A pure jump process is determined by
its (infinitesimal) transition function, i.e. a function Q : R`ˆE ˆBpEq ÝÑ R` with the
following properties:

1. For all t ≥ 0, x P E, A ÞÝÑ Qpt, x, Aq is a finite Borel measure with Qpt, x, txuq “ 0.

2. For all A P BpEq, pt, xq ÞÝÑ Qpt, x, Aq is measurable.

3. For all T ą 0 and all compacts B Ă E

sup
pt,xqPr0,T sˆB

Qpt, x, Eq ă 8. (2.1)

Let BMlocpEq be the space of locally bounded measurable functions and CpEq be the
space of continuous functions. Define for any F : E ÝÑ R

pQptqF qpxq :“

ż

E

F pyqQpt, x, dyq, t ≥ 0, x P E,
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whenever it makes sense, i.e.
ş

E

|F pyq|Qpt, x, dyq ă 8 for all t ≥ 0, x P E. Then

Qptq : BMpEq ÝÑ BMlocpEq is a well-defined positive linear operator and qpt, xq :“
pQptq1qpxq “ Qpt, x, Eq is locally bounded. If Qp¨qCbpEq Ă CpR` ˆ Eq, i.e. for any
F P CbpEq the function Qp¨qF is jointly continuous in pt, xq, then we say that Q is jointly
continuous. This simply means that, by definition, Qpt, x, dyq is weakly continuous in
pt, xq. In such a case (2.1) is automatically satisfied.

We briefly recall the results obtained in [Fel40, FMS14]. Let Q be a transition function.

For 0 ≤ s ≤ t, x P E and A P BpEq let P p0qps, x; t, Aq :“ δpx,Aqe
´
t
ş

s
qpr,xqdr

, and for n ≥ 1

P pn`1q
ps, x; t, Aq :“

t
ż

s

e
´
r
ş

s
qpτ,xqdτ

¨

˝

ż

E

P pnqpr, y; t, AqQpr, x, dyq

˛

‚dr. (2.2)

Here δpx,Aq :“ 1Apxq “ δxpAq. Then P ps, x; t, Aq “
8
ř

n“0

P pnqps, x; t, Aq is a sub-Markov

transition function. Moreover, for fixed A P BpEq and x P E it is absolutely continuous
in s and t, respectively such that P ps, x; t, Aq Ñ δpx,Aq holds uniformly in A P BpEq
whenever s Ñ t´ or t Ñ s`. For any A P BpEq it is a.e. differentiable in s P r0, ts and
satisfies

BP ps, x; t, Aq

Bs
“ qps, xqP ps, x; t, Aq ´

ż

E

P ps, y; t, AqQps, x, dyq. (2.3)

Likewise, for any compact A Ă E it is differentiable for a.a. t P rs,8q and satisfies

BP ps, x; t, Aq

Bt
“ ´

ż

A

qpt, yqP ps, x; t, dyq `

ż

E

Qpt, y, AqP ps, x, t, dyq. (2.4)

It follows from [FMS14] that P is the minimal solution to (2.3) and (2.4). Moreover, if
P ps, x; t, Eq “ 1, then this solution is also unique.

The main point of our interest is to study the (sub-)Markovian evolution system

Ups, tqF pxq :“

ż

E

F pyqP ps, x; t, dyq, 0 ≤ s ≤ t (2.5)

on the space of bounded measurable functions and extensions of it. Such an evolution
system is a family of positive bounded linear operators such that Ups, sqF “ F and
Ups, rqUpr, tqF “ Ups, tqF for 0 ≤ s ≤ r ≤ t. In the framework of general linear
evolution equations discussed in the first chapter, above evolution system satisfies the
backward evolution property. For F P BMpEq let

LptqF pxq “

ż

E

pF pyq ´ F pxqqQpt, x, dyq, t ≥ 0 (2.6)
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be the (formal) generator of Ups, tq. Since in general Ups, tqF is not continuous w.r.t. the
norm on BMpEq or CbpEq, we cannot expect that some extension of Lptq is a generator.
One possibility to overcome this problem is to restrict Ups, tq, provided it is possible, to the
space of continuous functions vanishing at infinity. Another possibility is to characterize
Ups, tq by its strict generator, cf. [Cas11]. It is also possible to consider other topologies
which leads, e.g., to the concept of π-semigroups (in our case to π-evolution systems),
cf. [Pri99]. For our needs it is sufficient to consider only the weaker concept of pointwise
generator, for the precise meaning see the Proposition below.

Denote by C the collection of compact sets on E and by C1 the collection of compacts
in R`ˆE. For a given non-negative function V P CpEq let }F }V :“ sup

xPE

|F pxq|
1`V pxq

and denote

by BMV pEq the space of all measurable functions for which }F }V is finite. Denote by
CV pEq :“ BMV pEq X CpEq its closed subspace of continuous functions. Below we state
the main result for this section.

Proposition 2.1.1. Assume that there exists a continuous function V : E ÝÑ R` such
that pt, xq ÞÝÑ QptqF pxq is continuous for any F P CV pEq. Moreover, suppose that there
exists a continuous function c : R` ÝÑ R` such that the properties below are satisfied.

1. For all T ą 0 there exists apT q ą 0 such that qpt, xq ≤ apT qV pxq holds for all
t P r0, T s and x P E.

2. The Foster-Lyapunov estimate
ż

E

V pyqQpt, x, dyq ≤ cptqV pxq ` qpt, xqV pxq, t ≥ 0, x P E (2.7)

is satisfied.

3. For all ε ą 0, B P C and T ą 0 there exists A P C such that

T
ż

0

Qpr, x, Acqdr ă ε, x P B (2.8)

is fulfilled.

Then Ups, tq is a conservative Feller evolution system, i.e. Ups, tq1 “ 1 and ps, t, xq ÞÝÑ
Ups, tqF pxq is continuous for any F P CbpEq. Moreover, Ups, tq can be extended to
BMV pEq so that

}Ups, tqF }V ≤ e

t
ş

s
cprqdr

}F }V , 0 ≤ s ≤ t. (2.9)

The relation to the Kolmogorov equations is given by the statements below:
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(a) For any F P BMpEq, t ą 0 and x P E, r0, ts Q s ÞÝÑ Ups, tqF pxq is continuously
differentiable and a solution to

B

Bs
Ups, tqF pxq “ ´LpsqUps, tqF pxq. (2.10)

If in addition F P CV pEq, then s ÞÝÑ Ups, tqF pxq is absolutely continuous and
satisfies (2.10) a.e.

(b) Let F P BMpEq. Then for any x P E, s ≥ 0, rs,8q Q t ÞÝÑ Ups, tqF pxq is absolutely
continuous and satisfies for a.a. t ≥ s

B

Bt
Ups, tqF pxq “ Ups, tqLptqF pxq. (2.11)

(c) Let V ps, tq be a Feller evolution system on CbpEq. If for any F P CbpEq, V ps, tqF
is a solution to (2.10) or (2.11), then V ps, tq “ Ups, tq holds.

The time-homogeneous case was, e.g., treated in [Che04, Kol06]. Condition (2.7) can
be reformulated to

ż

E

pV pyq ´ V pxqqQpt, x, dyq ≤ cptqV pxq, t ≥ 0, x P E.

A transition function Q with property (2.8) is said to have the localization property.
Property (c) means that Ups, tq is the unique Feller evolution system associated with the
operator Lptq. The rest of this section is devoted to the proof of above statement.

Suppose from now on the conditions given in Proposition 2.1.1 to be satisfied and let
α P p0, 1q. Applying the iteration (2.2) to pqpt, xq, αQpt, x, dyqq yields the sub-probability
function given by

Pαps, x; t, dyq “
8
ÿ

n“0

αnP pnqps, x; t, dyq. (2.12)

Let Unps, tqF pxq :“
ş

E

F pyqP pnqps, x; t, dyq, then Uαps, tqF pxq :“
8
ř

n“0

αnU pnqps, tqF pxq de-

fines an evolution system. We will call Uαps, tq the regularized evolution system associated
to Q. Clearly, above series converges uniformly in ps, t, xq. The next lemma establishes
the Feller property for Uαps, tq, whereas the limit αÑ 1 will be considered at the end of
this section.

Lemma 2.1.2. pUαps, tqq0≤s≤t is a Feller evolution on CbpEq.
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Proof. It suffices to show that for any n ≥ 0 and each F P CbpEq the function U pnqps, tqF pxq

is continuous in all variables. Since U p0qps, tqF pxq “ F pxqe
´
t
ş

s
qpr,xqdr

, by Lemma A.2.1 this
clearly holds for n “ 0. Assume the assertion holds for some n ≥ 0. By (2.2) we get

U pn`1q
ps, tqF pxq “

t
ż

s

ż

E

e
´
r
ş

s
qpτ,xqdτ

pU pnqpr, tqF qpyqQpr, x, dyqdr. (2.13)

By induction hypothesis e
´
r
ş

s
qpτ,xqdτ

pU pnqpr, tqF qpyq is continuous in all variables. More-
over, due to |U pnqpr, tqF pyq| ≤ }F }8 this function is bounded and hence by Lemma A.2.2
we see that also

ps, t, xq ÞÝÑ

ż

E

e
´
r
ş

s
qpτ,xqdτ

pU pnqpr, tqF qpyqQpr, x, dyq

is continuous. Thus Lemma A.2.1 yields the continuity of U pn`1qps, tqF pxq in the variables
ps, t, xq.

The next result studies stability of the Feller evolution Uαps, tq with respect to Q.
That is given a sequence of transition functions pQjqjPN, we are interested in conditions
such that Uα,jps, tqF ÝÑ Uαps, tqF as j Ñ 8, where Uα,jps, tq are the regularized evo-
lution systems defined as in (2.12). For functions f P CbpE ˆ Eq let pQptqfpx, ¨qqpyq :“
ş

E

fpx,wqQpt, y, dwq.

Lemma 2.1.3. Let pQjqjPN be a family of transition functions and assume that Qj is
weakly continuous for any j P N. Moreover, suppose that the following conditions below
are satisfied.

1. Let qjpt, xq :“ Qjpt, x, Eq, then sup
j≥1

pt,xqPB

qjpt, xq ă 8 holds for all B P C1.

2. For any f P CbpE ˆ Eq the convergence

pQjptqfpx, ¨qqpxq ÝÑ pQptqfpx, ¨qqpxq, j Ñ 8 (2.14)

is uniform in pt, xq P B for any B P C1.

Then for any 0 ≤ s ≤ t and F P CbpEq

Uα,jps, tqF ÝÑ Uαps, tqF, j Ñ 8 (2.15)
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holds uniformly on compacts. If instead of (2.14) the stronger convergence in the total
variation norm holds, i.e.

sup
pt,xqPr0,T sˆB

}Qjpt, x, ¨q ´Qpt, x, ¨q} Ñ 0, j Ñ 8

for any T ą 0, then the convergence (2.15) is uniform on any A P C1 and on }F }8 ≤ 1.

Proof. Since Q,Qj are transition functions, it follows that Uα,jps, tq and Uαps, tq are Feller
evolution systems on CbpEq obtained by

Uα,jps, tqF pxq “
8
ÿ

n“0

αnU
pnq
j ps, tqF pxq

and

Uαps, tqF pxq “
8
ÿ

n“0

αnU pnqps, tqF pxq.

Since |U pnqps, tqF pxq|, |U
pnq
j ps, tqF pxq| ≤ }F }8 the convergence of the series is also uniform

in j ≥ 1. As a consequence it is enough to show for any 0 ≤ s ≤ t, any compact B Ă E,
n ≥ 0 and F P CbpEq

lim
jÑ8

sup
xPB

|U
pnq
j ps, tqF pxq ´ U pnqps, tqF pxq| “ 0. (2.16)

For n “ 0 this follows from (2.14) and

|U
p0q
j ps, tqF pxq ´ U

p0q
ps, tqF pxq| ≤ }F }8

t
ż

s

|qjpr, xq ´ qpr, xq|dr.

Assume that (2.16) holds for one n ≥ 0, proceeding by induction we obtain for x P B, 0 ≤
s ≤ t and F P CbpEq

|U
pn`1q
j ps, tqF pxq ´ U pn`1q

ps, tqF pxq| ≤ I1 ` I2 ` I3 ,

where we have used (2.13) and

I1 “

t
ż

s

ż

E

ˇ

ˇ

ˇ

ˇ

ˇ

e
´
r
ş

s
qjpτ,xqdτ

´ e
´
r
ş

s
qpτ,xqdτ

ˇ

ˇ

ˇ

ˇ

ˇ

|U
pnq
j pr, tqF pyq|Qjpr, x, dyqdr

I2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
ż

s

ż

E

pU
pnq
j pr, tqF pyq ´ U pnqpr, tqF pyqqe

´
r
ş

s
qpτ,xqdτ

Qjpr, x, dyqdr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I3 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
ż

s

ż

E

e
´
r
ş

s
qpτ,xqdτ

U pnqpr, tqF pyqpQjpr, x, dyq ´Qpr, x, dyqqdr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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The first integral can be estimated by using |U
pnq
j pr, tqF pyq| ≤ }F }8 and qjpr, xq ≤ q˚ :“

sup
j≥1

sup
pτ,xqPrs,tsˆB

Qjpτ, x, Eq for each r P rs, ts, which yields

I1 ≤ }F }8

t
ż

s

qjpr, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r
ż

s

pqjpτ, xq ´ qpτ, xqqdτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dr

≤ }F }8pt´ sq2q˚ sup
pτ,xqPrs,tsˆB

|qjpτ, xq ´ qpτ, xq|.

To estimate I2 we need the following lemma.

Lemma 2.1.4. For any ε ą 0, T ą 0 there exists a compact A Ă E and j0 ≥ 1 such that

T
ż

0

Qjpt, x, A
c
qdt ≤ ε, x P B, j ≥ j0.

Proof. Since Q has the localization property we can find a compact A1 Ă E such that

T
ż

0

Qpt, x, Ac1qdt ≤
ε

2
, x P B.

Choose compacts A,A2 Ă E such that A1 Ă
˝

A2 Ă A2 Ă
˝

A Ă A, since p
˝

A2q
c and p

˝

Aqc are
closed there exists a continuous function ϕ with 1

p
˝

Aqc
≤ ϕ ≤ 1

p
˝

A2qc
. We obtain

T
ż

0

Qjpt, x, A
c
qdt ≤

T
ż

0

Qjpt, x, p
˝

Aqcqdt ≤
T
ż

0

ż

E

ϕpyqQjpt, x, dyqdt

and by (2.14) there exists j0 ≥ 1 such that for j ≥ j0, x P B and t P r0, T s
ż

E

ϕpyqQjpt, x, dyq ≤
ε

2T
`

ż

E

ϕpyqQpt, x, dyq.

Therefore the assertion follows from

T
ż

0

ż

E

ϕpyqQjpt, x, dyqdt ≤
ε

2
`

T
ż

0

ż

E

ϕpyqQpt, x, dyqdt

≤ ε

2
`

T
ż

0

Qpt, x, p
˝

A2q
c
qdt ≤ ε

2
`

T
ż

0

Qpt, x, Ac1qdt ≤ ε.
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Take A Ă E and j0 ≥ 1 as in above lemma, then for any j ≥ j0 and x P B

I2 ≤
t
ż

s

ż

A

|U
pnq
j pr, tqF pyq ´ U pnqpr, tqF pyq|Qjpr, x, dyqdr ` 2}F }8

t
ż

s

Qjpr, x, A
c
qdr

≤ q˚
t
ż

s

sup
yPA

|U
pnq
j pr, tqF pyq ´ U pnqpr, tqF pyq|dr ` 2}F }8

t
ż

s

Qjpr, x, A
c
qdr

≤ q˚
t
ż

s

sup
yPA

|U
pnq
j pr, tqF pyq ´ U pnqpr, tqF pyq|dr ` 2}F }8ε.

The integrand tends for each fixed r P rs, ts to zero as j Ñ 8 and since

sup
yPA

|U
pnq
j pr, tqF pyq ´ U pnqpr, tqF pyq| ≤ 2}F }8

also the integral tends to zero. Altogether this shows the assertion for I2. For the last

integral observe that pr, x, yq ÞÝÑ e
´
r
ş

s
qpτ,xqdτ

U pnqpr, tqF pyq is continuous and moreover
bounded by }F }8. Therefore by (2.14) for any r P rs, ts

Fjpr, s, tq :“ sup
xPB

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

E

e
´
r
ş

s
qpτ,xqdτ

U pnqpr, tqF pyqpQjpr, x, dyq ´Qpr, x, dyqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0, j Ñ 8

and since Fjpr, s, tq ≤ 2}F }8q
˚ we obtain the assertion by dominated convergence. The

second assertion can be proved very similarly, here only I3 should be estimated again.

As a consequence we can show that Uαps, tq satisfies a Chernoff product formula. That
is Uαps, tq can be approximated by evolution systems Uα,nps, tq with piecewise constant
(in time) transition functions Qn. More precisely, take for any n P N a sequence 0 “

t
pnq
0 ≤ t

pnq
k ă t

pnq
k`1 with sup

k≥0
pt
pnq
k`1 ´ t

pnq
k q Ñ 0 as n Ñ 8 and t

pnq
k ÝÑ 8, k Ñ 8 for all

n P N. Define piecewise constant transition functions by

Qnpt, x, dyq “ Qpt
pnq
k , x, dyq, t

pnq
k ≤ t ă t

pnq
k`1, k ≥ 0,

then Qn is weakly continuous in x for any fixed t ≥ 0 and n ≥ 1. Denote by Uα,nps, tq the
regularized Feller evolutions on CbpEq constructed above, cf. Theorem 2.1.2. For fixed
r ≥ 0 set Qrpx, dyq :“ Qpr, x, dyq, then Qr is a weakly continuous transition function
and its associated regularized Feller evolution on CbpEq can be represented by a Feller
semigroup Tα,rptq.
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Lemma 2.1.5. Let F P CbpEq and for 0 ≤ s ≤ t choose m0,m1 ≥ 1 such that

tpnqm0
≤ s ă t

pnq
m0`1 ă ¨ ¨ ¨ t

pnq
m1
≤ t ă t

pnq
m1`1. (2.17)

Then

Uα,nps, tqF pxq “ T
α,t
pnq
m0

pt
pnq
m0`1 ´ sq ¨ ¨ ¨Tα,tpnqm1

pt´ tpnqm1
qF Ñ Uαps, tqF, nÑ 8 (2.18)

holds uniformly on compacts.

Proof. First observe that for any compact B Ă E, T ą 0 and f P CbpE ˆ Eq Lemma
A.2.2 implies that F pr, xq :“

ş

E

fpx, yqQpr, x, dyq is continuous. Therefore

ż

E

fpx, yqQnpr, x, dyq ÝÑ

ż

E

fpx, yqQpr, x, dyq, nÑ 8

holds uniformly in px, rq P Bˆ r0, T s and hence (2.14) follows. Applying Lemma 2.1.3 we
obtain for all F P CbpEq and 0 ≤ s ≤ t: Uα,nps, tqF Ñ Uαps, tqF as n Ñ 8 uniformly on
compacts. By the evolution system property it follows that

Uα,nps, tq “ Uαps, t
pnq
m0`1q ¨ ¨ ¨Uαpt

pnq
m1
, tq

holds. For each pair r0 ă r1 with t
pnq
m ≤ r0 ă r1 ≤ t

pnq
m`1 for some m ≥ 1, by (2.2) and

(2.13) it follows that Uα,npr0, r1q “ T
α,t
pnq
m
pr1 ´ r0q and hence

Uα,nps, tq “ T
α,t
pnq
m0

pt
pnq
m0`1 ´ sq ¨ ¨ ¨Tα,tpnqm1

pt´ tpnqm1
q

implies the assertion.

As a corollary of Lemma 2.1.3 we can show a time-homogenization principle. Heuris-
tically it states that if Qpt, x, dyq Ñ Qpx, dyq when tÑ 8, then Uαps, tqF can be approx-
imated by Tαpt´sqF where Tαptq is the regularized Feller semigroup on CbpEq associated
with Qpx, dyq.

Corollary 2.1.6. For ε ą 0 define rescaled Q-functions by

Qεpt, x, dyq “ Q

ˆ

t

ε
, x, dy

˙

, t ≥ 0, x P E, ε ą 0.

Denote by pUα,εps, tqqt≥s≥0 the associated regularized evolution systems on CbpEq. Assume
that there exists a weakly continuous transition function Qpx, dyq with the properties:

1. For any compact B Ă E one has sup
t≥0

sup
xPB

qpt, xq ă 8.
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2. Q has the localization property, that is for all ε ą 0 and all B P C there exists A P C
such that

›

›1BQ1Ac
›

›

8
ă ε is fulfilled.

3. For all f P CbpE ˆ Eq, any compact B Ă E, T ą 0 and δ ą 0

sup
δ
ε
≤t≤T

ε

sup
xPB

|pQptqfpx, ¨qqpxq ´ pQfpx, ¨qqpxq| Ñ 0, εÑ 0

holds.

Denote by pTαptqqt≥0 the regularized Feller semigroup on CbpEq constructed as above and
associated with Qpx, dyq. Then for any compact B Ă E, F P CbpEq and 0 ă s ≤ t

sup
xPB

|Uα,εps, tqF pxq ´ Tαpt´ sqF pxq| ÝÑ 0, εÑ 0

holds.

Proof. If we assume in (2.14) instead of uniform convergence on r0, T s ˆ B, uniform
convergence on rδ, T s ˆB for any δ ą 0, then Lemma 2.1.3 still holds with (2.15) for any
0 ă s ≤ t and F P CbpEq.

In the following we consider the limit αÑ 1 and deduce from that Ups, tq1 “ 1.

Theorem 2.1.7. The evolution system Ups, tq is conservative and can be extended to
BMV pEq so that

}Ups, tqF }V ≤ e

t
ş

s
cprqdr

}F }V , 0 ≤ s ≤ t.

Proof. Denote by Tα,rptq the regularized semigroups with piecewise constant (in the time
variable) transition functions, see Theorem 2.1.5 and by Trptq their counterparts with
α “ 1. Then Tα,rptqV pxq ≤ TrptqV pxq. The moment condition (2.7) and the results
obtained in [Che04, Kol06] imply that for any r ≥ 0, x P E and t ≥ 0

TrptqV pxq ≤ ecprqtV pxq.

Now given 0 ≤ s ă t and n P N we can find m0,m1 ≥ 0 with (2.17). For m ≥ 0 let
Vmpxq :“ V pxq ^m, then Vm P CbpEq and hence

Uα,nps, tqVmpxq “ T
α,t
pnq
m0

pt
pnq
m0`1 ´ sq ¨ ¨ ¨Tα,tpnqm1

pt´ tpnqm1
qVmpxq

≤ T
t
pnq
m0

pt
pnq
m0`1 ´ sq ¨ ¨ ¨Ttpnqm1

pt´ tpnqm1
qV pxq

≤ V pxq exp
´

cptpnqm1
qpt´ tpnqm1

q ` ¨ ¨ ¨ ` cptpnqm0
qpt

pnq
m0`1 ´ sq

¯

.
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Letting nÑ 8 yields

Uαps, tqVmpxq ≤ V pxq exp

¨

˝

t
ż

s

cprqdr

˛

‚.

The sequence pUαps, tqVmpxqqmPN is increasing and bounded, so by monotone convergence
it follows that

ż

E

V pxqPαps, x; t, dyq ≤ V pxq exp

¨

˝

t
ż

s

cprqdr

˛

‚ (2.19)

is satisfied. The right-hand side is increasing in α, hence taking the limit α Ñ 1 yields
that Ups, tq can be extended to BMV pEq. By [Fel40] the evolution system Ups, tq is
conservative if and only if for any s ă t, x P E

t
ż

s

ż

E

qpr, yqP pnqps, x; r, dyqdr ÝÑ 0, nÑ 8.

Let T ą 0 such that rs, ts Ă r0, T s, then by qpr, yq ≤ apT qV pyq for r P rs, ts and (2.19)
with α “ 1

t
ż

s

ż

E

qpr, yqP ps, x; r, dyqdr ≤ apT qV pxq

t
ż

s

exp

¨

˝

r
ż

s

cpτqdτ

˛

‚dr ă 8

follows. The assertion follows from the representation P ps, x; r, dyq “
8
ř

n“0

P pnqps, x; r, dyq.

The next result shows that Ups, tq is differentiable in s.

Theorem 2.1.8. For any F P BMpEq, t ą 0 and x P E, r0, ts Q s ÞÝÑ Ups, tqF pxq is
continuously differentiable and a solution to

B

Bs
Ups, tqF pxq “ ´LpsqUps, tqF pxq.

Moreover, for any F P CV pEq the function Ups, tqF pxq is absolutely continuous in s and
solves above equation a.e.. Let V ps, tq be a Feller evolution system on CbpEq and assume
that V ps, tqF is a solution to (2.10) for any F P CbpEq, then V ps, tq “ Ups, tq is fulfilled.
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Proof. By (2.3) we obtain for any A P BpEq and 0 ≤ s ≤ t

P ps, x; t, Aq “ δpx,Aq `

t
ż

s

qpr, xqP pr, x; t, Aqdr ´

t
ż

s

ż

E

P pr, y; t, AqQpr, x, dyqdr

and hence for any F P BMpEq and x P E

Ups, tqF pxq “ F pxq `

t
ż

s

qpr, xqUpr, tqF pxqdr ´

t
ż

s

ż

E

Upr, tqF pyqQpr, x, dyqdr

follows. Clearly qpr, xqUpr, tqF pxq and by Lemma A.2.2 also
ş

E

Upr, tqF pyqQpr, x, dyq are

continuous in r, which implies that LprqUpr, tqF pxq is continuous in pr, tq. Therefore

Ups, tqF pxq “ F pxq ´

t
ż

s

LprqUpr, tqF pxqdr (2.20)

implies (2.10). If F P CV pEq, then Ups, tqF pxq is bounded and measurable in ps, tq. Hence
by (2.7) LprqUpr, tqF pxq is well-defined and integrable w.r.t. r. In view of (2.20) it follows
that s ÞÝÑ Ups, tqF pxq is absolutely continuous and satisfies (2.10) for any x P E.
Now let V ps, tq be a Feller evolution on CbpEq which satisfies (2.10). By [Cas11, Chapter
2, Theorem 2.9] V ps, tq is given by

V ps, tqF pxq “

ż

E

F pyq rP ps, x; t, dyq, x P E, 0 ≤ s ≤ t,

where rP is a transition probability function. Moreover, this evolution system satisfies
(2.20) for any F P CbpEq and hence by approximation also for any F P BMpEq. Therefore
for any F “ 1A, A P BpEq it solves equation (2.10) which is simply (2.3). The minimality

of P implies P ≤ rP and hence Ups, tqF ≤ V ps, tqF . Since Ups, tq is conservative it follows

that P ps, x; t, dyq is the unique solution to (2.3), i.e. P ps, x; t, dyq “ rP ps, x; t, dyq.

Theorem 2.1.9. Let F P BMpEq, then for any x P E and s ≥ 0, rs,8q Q t ÞÝÑ
Ups, tqF pxq is absolutely continuous and satisfies for a.a. t ≥ s

B

Bt
Ups, tqF pxq “ Ups, tqLptqF pxq.

Let V ps, tq be a Feller evolution system on CbpEq and assume that V ps, tqF is for any
F P CbpEq a solution to (2.11), then V ps, tq “ Ups, tq holds.
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Proof. For all 0 ≤ s ≤ r ≤ t ă T

ż

E

qpr, yqP ps, x; t, dyq ≤ apT q

ż

E

V pyqP ps, x; t, dyq ≤ apT qV pxqe

t
ş

s
cprqdr

(2.21)

and (2.4) implies for any 0 ≤ s ≤ t and compact A Ă E

P ps, x; t, Aq “ δpx,Aq ´

t
ż

s

ż

A

qpr, yqP ps, x; r, dyqdr `

t
ż

s

ż

E

Qpr, y, AqP ps, x; r, dyqdr.

By (2.21) this implies

Ups, tqF pxq “ F pxq ´

t
ż

s

ż

E

qpr, yqF pyqP ps, x; r, dyqdr `

t
ż

s

ż

E

QprqF pyqP ps, x; r, dyqdr

and hence

Ups, tqF pxq “ F pxq `

t
ż

s

ż

E

LprqF pyqP ps, x; r, dyqdr

holds. The first assertion is proved. Uniqueness follows by the same arguments as for
(2.10).

Remark 2.1.10. It is worth noting that in the time-homogeneous case (2.10) and (2.11)
are equivalent and less restrictive conditions are sufficient to show that Ups, tq is an Feller
evolution, see [Kol06].

Since Ups, tq is given by a transition probability function we see that for each x P E
and s ≥ 0 there exists a probability space pΩ,F s,Ps,xq and a conservative Markov process
pXptqqt≥s on this space such that

Ups, tqF pxq “ Es,xpF pXptqq, F P CbpEq, t ≥ s.

This process is considered w.r.t. its natural filtration defined by F sτ “ σ pXptq | s ≤ t ≤ τq
for s ≤ τ . Note that this process is, by construction, a pure jump process. The next
statement completes the proof of Proposition 2.1.1.

Corollary 2.1.11. The following statements are true:

1. Let F P BMpEq. Then for any fixed s ≥ 0

Ms,F ptq :“ F pXptqq ´ F pXpsqq ´

t
ż

s

LprqF pXprqqdr, t ≥ s

is a martingale with respect to pF st qt≥s and Ps,x.
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2. For any a ą 0, x P E and 0 ≤ s ă T

Ps,x

˜

sup
tPrs,T s

V pXptqq ≥ a

¸

≤ V pxq
e

T
ş

s
cprqdr

a

holds.

3. Ups, tq is a Feller evolution system.

Proof. 1. Let 0 ≤ s ≤ τ ≤ t, then by the Markov property we obtain

Es,xpMs,F ptq|F sτ q ´Ms,F pτq “ Es,xpMτ,F ptq|F sτ q “ Eτ,XpτqpMτ,F ptqq

“ Eτ,XpτqpF pXptqqq ´ Eτ,XpτqpF pXpsqqq ´
t
ż

τ

Eτ,XpτqpLprqF pXprqqqdr

“ Eτ,XpτqpF pXptqqq ´ Eτ,XpτqpF pXpsqqq ´
t
ż

τ

B

Br
Eτ,XpτqpF pXprqqqdr “ 0.

Here we have used that

Eτ,XpτqpLprqF pXprqqq “ pUpτ, rqLprqF qpXpτqq “
B

Br
Upτ, rqF pXpτqq.

2. Let En :“ tx P E | V pxq ă nu, fix s ≥ 0 and define a family of stopping times

τn :“ inftt ≥ s | Xt R Enu.

Let ϕn P CpEq be such that 1En ≤ ϕn ≤ 1En`1
and define a new transition function by

Qnpt, x, dyq :“ ϕnpxqQpt, x, dyq. Then

LnptqF pxq :“ ´ϕnpxqqpt, xqF pxq `

ż

E

F pyqϕnpxqQpt, x, dyq “ ϕnpxqLptqF pxq

determines a bounded linear operator on CbpEq and BMV pEq. Hence there exists an
associated conservative Feller evolution system Unps, tq on CbpEq. This evolution system
can be extended to BMV pEq. Let pXn

t qt≥0 be the corresponding Markov process, and
denote by pF st,nqt≥s its associated natural filtration. By construction it follows for x P En
and n ≥ 1 that these processes satisfy

pXtqtăτn “ pX
n
t qtăτn (2.22)
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in the sense of finite dimensional distributions. Fix s ≥ 0 and define gpt, xq :“ e
´
t
ş

s
cprqdr

V pxq.
A short computation shows that

B

Bt
gpt, xq ` Lptqgpt, xq ≤ 0.

Then

Mnps, tq :“ gpt,Xn
ptqq ´ gps,Xn

psqq ´

t
ż

s

ˆ

B

Br
` Lnprq

˙

gpr,Xn
prqqdr, t ≥ s

is a F st,n-martingale w.r.t. Ps,x. Fix x P En, n ≥ 1, hence by Dynkin’s formula

Es,xpgpt^ τn, Xn
t^τnqq “ gps, xq ` Es,x

¨

˝

t^τn
ż

s

ˆ

B

Br
` Lnprq

˙

gpr,Xn
r qdr

˛

‚≤ gps, xq (2.23)

holds. Here B

Br
acts only on the first variable of g. Let Mn

t :“ e
´
t
ş

s
cpσqdσ

V pXn
t q1tăτn , we

will show that pMn
t qt≥s is a supermartingale. Fix s ≤ r ≤ t. On tr ≥ τnu P F sr,n we have

Mn
t “Mn

r “ 0 and hence obtain

Es,xpMn
t |F sr,nq “Mn

r “ 0.

On tr ă τnu we have by the Markov property and (2.23)

Es,xpMn
t |F sr,nq “ e

´
t
ş

s
cpσqdσ

Er,Xn
r
pV pXn

t q1tăτnq ≤ Er,Xn
r
pgpt^ τn, X

n
t^τnqq

≤ gpr,Xn
r q “ gpr ^ τn, X

n
r^τnq “Mn

r .

Applying Doob’s inequality yields

Ps,xp sup
s≤t≤T
tăτn

gpt,Xptqq ≥ aq “ Ps,xp sup
s≤t≤T

Mn
t ≥ aq ≤ 1

a
Es,xpMn

s q “
V pxq

a
.

As a consequence we obtain

Ps,x

¨

˝ sup
s≤t≤T
tăτn

V pXptqq ≥ a

˛

‚≤ Ps,x

¨

˝ sup
s≤t≤T
tăτn

gpt,Xptqq ≥ ae
´
T
ş

s
cprqdr

˛

‚

≤ V pxq
e

T
ş

s
cprqdr

a
.
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Since pXtqt≥s is conservative it follows τn ÝÑ 8 when n Ñ 8. The assertion follows by
monotone convergence and nÑ 8.
3. For any F P CbpEq, x P En and n ≥ 1 it follows by (2.22)

|Es,xpF pXtqq ´ Es,xpF pXn
t qq| “ |Es,xpF pXtq1τn≤tq ´ Es,xpF pXn

t q1τn≤tq|

≤ 2}F }8Ps,xpτn ≤ tq.

By

Ps,xpτn ≤ tq ≤ Ps,x
ˆ

sup
s≤r≤t

V pXprqq ≥ n

˙

≤ V pxq

n
e

t
ş

s
cprqdr

.

and the continuity of V we see that Unps, tqF pxq ÝÑ Ups, tqF pxq uniformly on compacts
which implies the assertion.

We close this section with the relation to the evolution of measures. LetMpEq be the
space of all finite, signed Borel measures on E equipped with the total variation norm.
Define bounded linear operators pU˚pt, sqq0≤s≤t on MpEq by

U˚pt, sqµpdxq “

ż

E

P ps, y; t, dxqµpdyq.

Then U˚pt, tq “ idMpEq, U
˚pt, rqU˚pr, sq “ U˚pt, sq holds for 0 ≤ s ≤ r ≤ t and

ż

E

F pyqU˚pt, sqµpdyq “

ż

E

Ups, tqF pyqµpdyq, F P CbpEq, µ PMpEq.

Previous considerations show that U˚pt, sqµ is the unique weak solution to the Fokker-
Planck equation

B

Bt

ż

E

F pyqU˚pt, sqµpdyq “

ż

E

LptqF pyqU˚pt, sqµpdyq,

where µ PMpEq is such that
ş

E

V pxq|µ|pdxq ă 8.

2.2 Dynamics on the space of finite configurations

In this section we review known results for the space of finite subsets of Rd. The aim is
to provide a general framework for birth-and-death dynamics in continuum such that the
corresponding equations can be studied in the remaining sections.
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2.2.1 One-component case

The configuration space Γ0 is the space of all finite subsets of Rd, i.e.

Γ0 “ tη Ă Rd
| |η| ă 8u,

where |η| denotes the number of elements in the set η. This space has a natural decom-

position into n-particle spaces, Γ0 “
8
Ů

n“0

Γ
pnq
0 , where Γ

pnq
0 “ tη Ă Rd | |η| “ nu, n ≥ 1

and in the case n “ 0 we set Γ
p0q
0 “ tHu. For a compact Λ Ă Rd let

ΓΛ “ tη P Γ0 | η Ă Λu

and Γ
pnq
Λ “ tη P Γ

pnq
0 | η Ă Λu. Denote by ČpRdqn the space of all sequences px1, . . . , xnq P

pRdqn with xi ‰ xj for i ‰ j. Γ
pnq
0 can be identified with ČpRdqn via the symmetrization

map

symn : ČpRdqn ÝÑ Γ
pnq
0 , px1, . . . , xnq ÞÝÑ tx1, . . . , xnu,

which defines a topology on Γ
pnq
0 . Namely, a set A Ă Γ

pnq
0 is open if and only if sym´1

n pAq Ă
ČpRdqn is open. On Γ0 we define the topology of disjoint unions, i.e. a set A Ă Γ0 is open

iff A X Γ
pnq
0 is open in Γ

pnq
0 for all n P N. Then Γ0 is a locally compact Polish space.

Let BpΓ0q stand for the Borel-σ-algebra on Γ0. With respect to this topology for each
f P CbpRdq the function

η ÞÝÑ xf, ηy :“
ÿ

xPη

fpxq

is continuous. Therefore convergence of a sequence pηnqnPN Ă Γ0 to η P Γ0 can be rewritten

to: there exists N P N such that for all n ≥ N : ηn “ tx
pnq
1 , . . . , x

pnq
l u, η “ tx1, . . . , xlu and

x
pnq
j ÝÑ xj, nÑ 8, @j P t1, . . . , lu

is fulfilled. For given δ ą 0, N P N0 and a compact Λ Ă Rd the set

B “ tη P ΓΛ | @x ‰ y, x, y P η : |x´ y| ≥ δ, |η| ≤ Nu (2.24)

is compact. Conversely, for any compact set A Ă Γ0 there exist δ,N,Λ such that A is
contained in a compact B defined above. Denote by dx the Lebesgue measure on Rd and
by dbnx the product measure on pRdqn. The image measure of dbnx on Γ

pnq
0 via symn is

then denoted by dpnqx. The Lebesgue-Poisson measure is defined by

λ “ δH `
8
ÿ

n“1

1

n!
dpnqx.
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Given a measurable function G : Γ0 ˆ Γ0 ÝÑ R, then
ż

Γ0

ÿ

ξĂη

Gpξ, ηzξqdλpηq “

ż

Γ0

ż

Γ0

Gpξ, ηqdλpξqdλpηq (2.25)

holds, provided one side of the equality is finite for |G|. Here and in the following we

write ηzx, η Y x, instead of ηztxu and η Y txu. The decomposition Γ0 “
8
Ů

n“0

Γ
pnq
0 implies

that any measurable function G : Γ0 ÝÑ R can be represented as a sequence of symmetric
measurable functions pGpnqq8n“0, where Gpnq : pRdqn ÝÑ R. Such functions are uniquely

determined on the off-diagonal part ČpRdqn and integration w.r.t. to the Lebesgue-Poisson
measure is simply determined by the identity

ż

Γ0

Gpηqdλpηq “ Gp0q `
8
ÿ

n“1

1

n!

ż

pRdqn

Gpnqpx1, ¨ ¨ ¨ , xnqdx1 ¨ ¨ ¨ dxn.

A set M Ă Γ0 is said to be bounded if there exists N P N and a compact Λ Ă Rd such that
M Ă tη P ΓΛ | |η| ≤ Nu. For any ξ P Γ0 the set tη P Γ0 | ηXξ ‰ Hu belongs to BpΓ0q and
λptη P Γ0 | ηX ξ ‰ Huq “ 0 holds. A function G is said to have bounded support if there
exists N P N and a compact Λ Ă Rd such that G is supported on a bounded set. Denote
by BbspΓ0q the space of all (measurable) bounded functions having bounded support. For
a given measurable function f : Rd ÝÑ R the Lebesgue-Poisson exponential is defined by

eλpf ; ηq :“
ź

xPη

fpxq

and satisfies the combinatorial formula
ÿ

ξĂη

eλpf ; ξq “ eλp1` f ; ηq.

For computations we will use the identity

ż

Γ0

eλpf ; ηqdλpηq “ exp

¨

˝

ż

Rd

fpxqdx

˛

‚,

whenever f P L1pRdq.

2.2.2 Two-component case

This part provides a short extension to the two-component configuration space Γ2
0, see

[Fin13, FKO13] and the references therein. We suppose that two different particles cannot
occupy the same location x P Rd and therefore define the two-component state space by

Γ2
0 “ tpη

`, η´q P Γ0 ˆ Γ0 | η
`
X η´ “ Hu.
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Here and in the following we simply write η instead of pη`, η´q P Γ2
0 if no confusion may

arise. Set operations ξ Ă η, ξ Y η and ηzξ are defined component-wise, i.e. by ξ˘ Ă η˘,
etc. For η P Γ2

0 we let |η| :“ |η`| ` |η´|. The space Γ2
0 has the natural decomposition

Γ2
0 “

8
ğ

n,m“0

Γ
pn,mq
0 ,

where Γ
pn,mq
0 “ tpη`, η´q Ă Rd ˆ Rd | η` X η´ “ H, |η`| “ n, |η´| “ mu. The topology

on Γ
pn,mq
0 and Γ2

0 is defined in the same way as for Γ
pnq
0 and Γ0. It is not difficult to see that

this topology is the same as the subspace topology of the product topology on Γ0 ˆ Γ0.
In particular Γ2

0 is a Polish space. A set A Ă Γ2
0 is compact if it is contained in a set of

the form

B :“ tη P Γ2
0 | η

`, η´ Ă Λ, |η| ≤ N, @x ‰ y, x, y P η` Y η´ : |x´ y| ≥ δu (2.26)

for a compact Λ Ă Rd, N P N and δ ą 0. Conversely, the set B defined as above is compact
as well. The Lebesgue-Poisson measure λ2 on Γ2

0 is defined as the restriction of λ b λ to
Γ2

0. Since no confusion may arise we use the same notation λ for the Lebesgue-Poisson
measure λ2 on Γ2

0 and λ on Γ0. We see that

λb λptpη`, η´q P Γ0 ˆ Γ0 | η
`
X η´ ‰ Huq “ 0

holds. Hence integrals w.r.t. integrable functions G : Γ2
0 ÝÑ R can be also written as

ż

Γ2
0

Gpηqdλpηq “

ż

Γ0

ż

Γ0

Gpη`, η´qdλpη`qdλpη´q.

Similarly to (2.25) the two-component Lebesgue-Poisson measure satisfies for any mea-
surable function G : Γ2

0 ˆ Γ2
0 ÝÑ R

ż

Γ2
0

ÿ

ξĂη

Gpξ, ηzξqdλpηq “

ż

Γ2
0

ż

Γ2
0

Gpξ, ηqdλpξqdλpηq (2.27)

provided one side of the equality is finite for |G|. A set M Ă Γ2
0 is called bounded if there

exist a compact Λ Ă Rd and N P N0 such that

M Ă tpη`, η´q P Γ2
0 | η

˘
Ă Λ, |η| ≤ Nu.

A function G is said to have bounded support if it is supported on a bounded set. Denote
by BbspΓ

2
0q the space of all bounded, measurable functions having bounded support. We

say that H : Γ2
0 ÝÑ R is locally integrable if it is integrable for any bounded set. This

is the same as regarding that the integral
ş

Γ2
0

Gpηq|Hpηq|dλpηq is finite for all non-negative

functions G P BbspΓ
2
0q.
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2.2.3 Description of the dynamics

General Markov birth-and-death processes on Γ0 or Γ2
0 respectively are given by a Markov

(pre-)generator of the form

pLptqF qpηq “
ÿ

ξĂη

ż

E

pF pηzξ Y ζq ´ F pηqqKtpξ, η, dζq, η P E, t ≥ 0, (2.28)

where E is either Γ0 or Γ2
0. Such Kolmogorov operator includes death, birth and jumps

of groups of particles. In this generality it is also possible that particles switch their type,
that is elementary events of the form

pη`, η´q ÞÝÑ pη`zx, η´ Y xq and pη`, η´q ÞÝÑ pη` Y x, η´zxq

are also included in the dynamics described by Lptq. Then, under some conditions given
in the next section, the operator Lptq can be rewritten to

LptqF pηq “

ż

E

pF pξq ´ F pηqqQpt, η, dξq

and hence should determine a pure jump process on E. The construction of such process
is closely related to the construction of solutions pFtqt≥0 Ă CbpEq to

BFt
Bt

“ LptqFt, Ft|t“0 “ F0. (2.29)

It is the same as to solve the Fokker-Planck equation

Bµt
Bt
“ Lptq˚µt, µt|t“0 “ µ0 (2.30)

on the space of probability measures on E. Here Lptq˚ is the adjoint operator w.r.t. the
duality pairing

xF, µy :“

ż

E

F pηqdµpηq.

Functions F are called observables, whereas probability measures µ states of the systems.
Therefore we will refer to solutions pFtqt≥0 and pµtqt≥0 as the evolution of observables or
states, respectively.

2.3 Time-inhomogeneous dynamics

In this section we provide general conditions for Kt such that the operator Lptq given
by (2.28) is associated with a Feller evolution system. Afterwards we study solutions
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to the Fokker-Planck equation (2.30) and relate them to the so-called evolution of cor-
relation functions, cf. [KK02, FKO09]. For simplicity of notation all considerations are
formulated only for the one-component case (E “ Γ0 above). The extension to multi-
component systems is straightforward and will be performed for particular examples in
the last section.

2.3.1 Evolution of observables and states

Consider the Kolmogorov operator Lptq given by (2.28), we say that Kt satisfies the usual
conditions if the conditions given below are satisfied.

1. For all η, ξ P Γ0 and t ≥ 0: Ktpξ, η, ¨q ≥ 0 is a finite, non-atomic Borel measure.

2. For all A P BpΓ0q, the map pt, ξ, ηq ÞÝÑ Ktpξ, η, Aq is measurable.

For t ≥ 0, η P Γ0 and A P BpΓ0q define Qpt, η, dωq by

Qpt, η, Aq “
ÿ

ξĂη

ż

Γ0

1Apηzξ Y ζqKtpξ, η, dζq. (2.31)

The cumulative intensity is defined by qpt, ηq :“ Qpt, η,Γ0q “
ř

ξĂη

Ktpξ, η,Γ0q. We will

work with the following conditions:

(A) For any ε ą 0, T ą 0 and any compact B Ă Γ0 there exists another compact A Ă Γ0

such that
T
ż

0

Qpr, η, Acqdr ă ε, η P B

is satisfied.

(B) There exist continuous functions V : Γ0 ÝÑ R` and c : R` ÝÑ R` such that

ÿ

ξĂη

ż

Γ0

V pηzξ Y ζqKtpξ, η, dζq ≤ cptqV pηq ` qpt, ηqV pηq, t ≥ 0, η P Γ0 (2.32)

holds.

(C) For any F P CpΓ0q with sup
ηPΓ0

|F pηq|
1`V pηq

ă 8

pt, ηq ÞÝÑ
ÿ

ξĂη

ż

Γ0

F pηzξ Y ζqKtpξ, η, dζq

is continuous.
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(D) For any T ą 0 there exists apT q ą 0 such that qpt, ηq ≤ apT qV pηq holds for all
η P Γ0 and t P r0, T s.

(E) For any T ą 0 there exists bpT q ą 0 such that qpt, ηq ≥ bpT qqpT, ηq holds for all
η P Γ0 and t P r0, T s.

As in the previous section let BMV pΓ0q stand for the Banach space of all measurable

functions F equipped with the norm }F }V “ sup
ηPΓ0

|F pηq|
1`V pηq

. Denote by CV pΓ0q the closed

subspace of all continuous functions for which } ¨ }V is finite. Then condition (D) simply
states that for any F P CV pΓ0q the action LptqF , cf. (2.28), is continuous in pt, ηq.

Proposition 2.3.1. Let Kt be a transition function with the usual conditions and assume
that conditions (A) – (D) hold. Then there exists a unique associated conservative Feller
evolution Ups, tq on CbpΓ0q. This evolution system can be extended to BMV pΓ0q so that

|Ups, tqF pηq| ≤ }F }V V pηqe
t
ş

s
cprqdr

. (2.33)

Moreover the following assertions are true:

1. For any F P BMpΓ0q, t ą 0 and η P Γ0, Ups, tqF pηq is a solution to

B

Bs
Ups, tqF pηq “ ´LpsqUps, tqF pηq, s P r0, tq.

2. Let F P BMpΓ0q. Then for any s ≥ 0 and η P Γ0, Ups, tqF pηq is a solution to

B

Bt
Ups, tqF pηq “ Ups, tqLptqF pηq, a.a. t ≥ s.

Proof. For each η P Γ0 and ξ Ă η the map ζ ÞÝÑ ηzξY ζ is measurable, hence the integral
in (2.31) is well-defined. For fixed A it is measurable as a combination of measurable oper-
ations. Clearly Q is σ-additive in the last argument. The assertion follows by Proposition
2.1.1 and the identity

QptqF pηq :“

ż

Γ0

F pξqQpt, η, dξq “
ÿ

ξĂη

ż

Γ0

F pηzξ Y ζqKtpξ, η, dζq

for any F P CbpΓ0q.

Recall that for any bounded measurable function F , i.e. F P BMpΓ0q, and any finite
Borel measure µ PMpΓ0q the duality is defined by

xF, µy “

ż

Γ0

F pηqdµpηq.
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Let C be a bounded linear operator on BMpΓ0q. The adjoint operator C˚ on MpΓ0q

w.r.t. this duality is defined by

xCF, µy “ xF,C˚µy, F P BMpΓ0q, µ PMpΓ0q,

provided, of course, it exists. Let C 1 be the norm-adjoint operator on BMpΓ0q
˚. Any

µ P MpΓ0q defines by F ÞÝÑ xF, µy an element in BMpΓ0q
˚. The adjoint operator C˚

exists on MpΓ0q if and only if C 1 leaves MpΓ0q invariant. In such a case C˚ is given by
C˚ “ C 1|MpΓ0q. In particular, for any η P Γ0 and A P BpΓ0q

pC˚δηqpAq “ x1A, C
˚δηy “ xC1A, δηy “ pC1Aqpηq (2.34)

holds. The considerations of the first section imply that Ups, tqF is given by a transition
probability function P ps, η; t, dωq, that is

Ups, tqF pηq “

ż

Γ0

F pωqP ps, η; t, dωq (2.35)

holds. The adjoint evolution system on MpΓ0q is given by

U˚pt, sqµpAq “

ż

Γ0

P ps, η; t, Aqdµpdηq.

The action of the adjoint evolution U˚pt, sqµ provides a weak solution to the Fokker-
Planck equation (2.30). In particular, if conditions (A) – (D) are satisfied, then Upt, sq˚

is unique with such property.
Here and in the following we identify the space of densities L1pΓ0, dλq with its image

in MpΓ0q given by the (isometric) embedding

L1
pΓ0, dλq Q R ÞÝÑ Rdλ PMpΓ0q.

The next theorem states conditions for which U˚pt, sq leaves the space of densities invariant
and its restriction to L1pΓ0, dλq is strongly continuous.

Theorem 2.3.2. Assume that Ktpξ, η, dζq satisfies the usual conditions, is absolutely
continuous with respect to the Lebesgue-Poisson measure and the conditions (A) – (E)
hold. Then U˚pt, sq leaves L1pΓ0, dλq ĂMpΓ0q invariant and is strongly continuous on
L1pΓ0, dλq.

Proof. Denote by Ktpξ, η, ζq “
dKtpξ,η,dζq

dλpζq
and let L˚ptq be the adjoint operator with respect

to the duality of BMpΓ0q and MpΓ0q. Then L˚ptq is given by L˚ptq “ ´qpt, ¨q ` Qptq
with p´qpt, ¨qRqpηq “ ´qpt, ηqRpηq and

QptqRpηq “
ÿ

ξĂη

ż

Γ0

Rpηzξ Y ζqKtpζ, ηzξ Y ζ, ξqdλpζq, (2.36)
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see (2.25). For t ≥ 0 let

DpL˚ptqq “ tR P L1
pΓ0, dλq | qpt, ¨qR P L

1
pΓ0, dλqu. (2.37)

First observe that W ˚pt, sqRpηq “ e
´
t
ş

s
qpr,ηqdr

Rpηq is a positive contraction operator and
Qptq is positive. In order to apply [ALMK14, Theorem 2.1] it is enough to show that for
a.a. t ą s and all R P L1pΓ0, dλq: W

˚pt, sqR P DpL˚ptqq and

t
ż

s

}QprqW ˚
pr, sqR}L1dr ≤ }R}L1 ´ }W ˚

pt, sqR}L1 .

The first property follows by property (E) from
ż

Γ0

qpt, ηq|W ˚
pt, sqRpηq|dλpηq ≤

ż

Γ0

qpt, ηqe´bptqpt´sqqpt,ηq|Rpηq|dλpηq ≤ }R}L1

bptqpt´ sqe
.

For the second property let R P L1pΓ0, dλq and note that
ż

Γ0

|QprqRpηq|dλpηq ≤
ż

Γ0

qpr, ηq|Rpηq|dλpηq

holds. Altogether this implies
t
ż

s

}QprqW ˚
pr, sqR}L1dr ≤

t
ż

s

ż

Γ0

qpr, ηqe
´
r
ş

s
qpτ,ηqdτ

|Rpηq|dλpηqdr

“ ´

t
ż

s

ż

Γ0

B

Br
e
´
r
ş

s
qpτ,ηqdτ

|Rpηq|dλpηqdr “ }R}L1 ´ }W ˚
pt, sqR}L1 .

Hence by [ALMK14, Theorem 2.1] there exists a strongly continuous evolution family
pV ˚pt, sqq0≤s≤t on L1pΓ0, dλq. The construction of V ˚pt, sq coincides with the construc-

tion of U˚pt, sq restricted to L1pΓ0, dλq, i.e. U˚pt, sqR “
8
ř

n“0

U˚n pt, sqR with U˚0 pt, sqR “

e
´
t
ş

s
qpr,ηqdr

R and

U˚n`1pt, sqR “

t
ż

s

U˚n pr, tqQprqW
˚
pr, sqRdr,

cf. [Fel40, Section 3, Theorem 1].

Remark 2.3.3. For the application of [ALMK14, Theorem 2.1] it is necessary to show
that t ÞÝÑ QptqR P L1pΓ0, dλq is measurable. Since L1pΓ0, dλq is separable, strong mea-
surability and weak measurability coincide, which is the reason why we have to restrict the
evolution to the space of densities.
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2.3.2 Evolution of quasi-observables and correlation measures

In [KK02, FKO09] an alternative approach for the study of birth-and-death dynamics
with state space Γ, i.e. all locally finite configurations, has been proposed. In particular
the notion of correlation functions and quasi-observables was introduced and the relation
to the evolution of observables and states has been pointed out. For dynamics with state
space Γ this relation is only informal and should be realized for particular models. In the
following we prove such relations for the evolution of observables, states, quasi-observables
and correlation functions on the state space Γ0 given by the operator Lptq defined in (2.28).

Define for any measurable function G : Γ0 ÝÑ R the K-transform by

K0Gpηq :“
ÿ

ξĂη

Gpξq, η P Γ0.

Its inverse is again defined for any measurable function and it is given by

K´1
0 Gpηq “

ÿ

ξĂη

p´1q|ηzξ|Gpξq, η P Γ0.

Let ϕ : Γ0 ÝÑ r1,8q be continuous, define ϕ0 :“ ϕ and ϕn`1 :“ K0ϕn, n ≥ 0. Denote by
Ln the Banach space L1pΓ0, ϕndλq equipped with the norm

}k}Ln :“

ż

Γ0

|kpηq|ϕnpηqdλpηq

and by Mn the Banach space of all Borel measures ρ equipped with the norm

}ρ}Mn :“

ż

Γ0

ϕnpηq|ρ|pdηq.

Here |ρ| is the total variation of ρ, i.e. |ρ| “ ρ` ` ρ´ in the Hahn-Jordan decomposition.
The embeddings Ln ĂMn are continuous and since ϕn ≤ ϕn`1 we obtain }¨}Mn ≤ }¨}Mn`1

and hence Mn`1 Ă Mn. Let M8 :“
Ş

n≥0

Mn and equip it with the locally convex

Hausdorff topology determined by the family of seminorms p} ¨ }Mnqn≥0. A linear operator
A :M8 ÝÑM8 is continuous if for any n ≥ 0 there exist m ≥ 0 and c ą 0 such that

}Aρ}Mn ≤ c}ρ}Mm , ρ PM8. (2.38)

In above considerations we can replace Mn always by Ln. Let Kn stand for the Banach
space of all continuous functions with norm

}G}Kn :“ sup
ηPΓ0

|Gpηq|

ϕnpηq
.
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Then } ¨ }Kn`1 ≤ } ¨ }Kn and hence Kn Ă Kn`1 holds. In analogy to M8 and L8 define
K8 :“

Ť

n≥0

Kn, then K0, K
´1
0 are linear operators from K8 to K8. For G P Kn, ρ PMn and

k P Ln denote by xG, ρy :“
ş

Γ0

Gpηqρpdηq and xG, ky :“
ş

Γ0

Gpηqkpηqdλpηq the associated

dual pairings of functions with measures.

Lemma 2.3.4. The following assertions are satisfied:

(a) For any n ≥ 0: K0, K
´1
0 : Kn ÝÑ Kn`1 are bounded linear operators satisfying

}K0}LpKn,Kn`1q ≤ 1 and }K´1
0 }LpKn,Kn`1q ≤ 1.

(b) For any n ≥ 0, G P Kn and ρ PMn`1 the operators

pK˚
0 ρqpAq :“

ż

Γ0

ÿ

ξĂη

1Apξqdρpηq

and

pK´1
0 q

˚ρpAq :“

ż

Γ0

ÿ

ξĂη

1Apξqp´1q|ηzξ|dρpηq

are bounded linear operators Mn`1 ÝÑMn and satisfy

xK0G, ρy “ xG,K
˚
0 ρy, xK

´1
0 G, ρy “ xG, pK´1

0 q
˚ρy. (2.39)

Moreover for any ρ PMn`2: pK´1
0 q˚K˚

0 ρ “ ρ “ K˚
0 pK

´1
0 q˚ρ holds. The restrictions

K˚
0 |M8

and pK´1
0 q˚|M8

are continuous as operators M8 ÝÑM8.

(c) For any n ≥ 0 the restrictions K˚
0 , pK

´1
0 q˚ : Ln`1 ÝÑ Ln are given by

pK˚
0 kqpηq “

ż

Γ0

kpη Y ξqdλpξq

and

pK´1
0 q

˚kpηq “

ż

Γ0

p´1q|ξ|kpη Y ξqdλpξq.

Proof. (a) Follows immediately by the definition of the norms } ¨ }Kn , n ≥ 1.
(b) Formulas (2.39) follow from the definition of the operators K˚

0 , pK´1
0 q˚ and

pK´1
0 q

˚K˚
0 ρ “ ρ “ K˚

0 pK
´1
0 q

˚ρ
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is a simple computation. Let ρ PMn`1, then by |K˚
0 ρ| ≤ K˚

0 |ρ| it follows that

}K˚
0 ρ}Mn ≤

ż

Γ0

ϕnpηqK
˚
0 |ρ|pdηq “

ż

Γ0

ϕn`1pηq|ρ|pdηq “ }ρ}Mn`1

holds and hence K˚
0 : Mn`1 ÝÑ Mn is bounded. The continuity of K˚

0 |M8
: M8 ÝÑ

M8 follows by above estimate and (2.38). The same arguments apply to pK´1
0 q˚.

(c) Again we show only the assertion for K˚
0 . Take k P Ln`1, then for ρ :“ kdλ

pK˚
0 ρqpAq “

ż

Γ0

ÿ

ξĂη

1Apξqkpηqdλpηq

holds. If λpAq “ 0, then
ř

ξĂη

1Apξq “ 0 for a.a. η P Γ0 and hence K˚
0 ρpAq “ 0. The

representation formula for K˚
0 can be computed directly by (2.25), which yields

xK0G, ky “

ż

Γ0

ÿ

ξĂη

Gpξqkpηqdλpηq

“

ż

Γ0

ż

Γ0

Gpξqkpη Y ξqdλpξqdλpηq “

ż

Γ0

Gpξq

¨

˝

ż

Γ0

kpη Y ξqdλpηq

˛

‚dλpξq.

By }ρ}Mn “ }k}Ln it follows that K˚
0 : Ln`1 ÝÑ Ln is continuous for all n ≥ 0. The

formula for pK´1
0 q˚k can be proved in the same way.

As proposed in [FKO09] the evolution of observables, see (2.29), can be formally
rewritten to the Cauchy problem

BGt

Bt
“ pLptqGt, Gt|t“0, (2.40)

where pLptq :“ K´1
0 LptqK0. The solution should be therefore given by

pUps, tqGpηq :“ K´1
0 Ups, tqK0Gpηq, η P Γ0, 0 ≤ s ≤ t. (2.41)

Here and in the following we will say that pUps, tq is the evolution of quasi-observables.

The next lemma states some basic properties for the operators pUps, tq and pLptq.

Lemma 2.3.5. Let Lptq be the Kolmogorov operator given by (2.28). Suppose that Kt

satisfies the usual conditions and there exists n ≥ 1 such that conditions (A) – (D) are
satisfied for V :“ ϕn. Then the following statements are true:
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(a) For any G P Kn, pUps, tqK´1
0 G P Kn`1 and

}pUps, tqK´1
0 G}Kn`1 ≤ exp

¨

˝

t
ż

s

cprqdr

˛

‚}G}Kn , 0 ≤ s ≤ t. (2.42)

(b) pUps, tq : Kn´1 ÝÑ Kn`1 is a bounded linear operator with

}pUps, tqG}Kn`1 ≤ exp

¨

˝

t
ż

s

cprqdr

˛

‚}G}Kn´1 , 0 ≤ s ≤ t.

Moreover, if K0G ≥ 0, then K0
pUps, tqG ≥ 0 holds.

(c) For any G P Kn´1, 0 ≤ s ≤ r ≤ t, pUps, rq is well-defined on elements pUpr, tqG and
satisfies

pUps, sqG “ G, pUps, rqpUpr, tqG “ pUps, tqG.

(d) Assume that there exist n˚ ă n and κ : R` ÝÑ R` such that

qpt, ηqϕn˚pηq ≤ κptqϕnpηq, t ≥ 0, η P Γ0 (2.43)

holds. Then Lptq : Kn˚ ÝÑ Kn and pLptq : Kn˚´1 ÝÑ Kn`1 are bounded linear
operators.

Proof. (a) Observe that pUps, tqK´1
0 G “ K´1

0 Ups, tqG, and since Ups, tq : Kn ÝÑ Kn
is bounded, cf. Proposition 2.1.1, we see that pUps, tqK´1

0 : Kn ÝÑ Kn`1 is bounded.
Moreover, (2.9) implies (2.42).
(b) The first property follows immediately from (a) and the second from

K0
pUps, tqG “ Ups, tqK0G.

(c) pUps, sqG “ G is obvious and for the second observe

pUps, tqG “ K´1
0 Ups, tqK0G “ K´1

0 Ups, rqUpr, tqK0G.

Then Upr, tqK0G P Kn and hence by (a) pUps, rqK´1
0 Ups, tqK0G P Kn`1, which implies

pUps, tqG “ pUps, rqpUpr, tqG.

(d) Conditions (2.43) and (2.32) imply for all F P Kn˚
|LptqF pηq| ≤ qpt, ηq|F pηq| ` |QptqF pηq|

≤ }F }Kn˚qpt, ηqϕn˚pηq ` }F }Kn˚
ÿ

ξĂη

ż

Γ0

ϕn˚pηzξ Y ζqKtpξ, η, dζq

≤ }F }Kn˚ pqpt, ηqϕn˚pηq ` cptqϕn˚pηq ` qpt, ηqϕn˚pηqq
≤ }F }Kn˚ϕnpηq p2κptq ` cptqq .
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Let G P Kn´1, then K0G P Kn and by (2.32)

|LptqK0Gpηq| ≤ qpt, ηq|K0Gpηq| ` |QptqK0Gpηq|

≤ }K0G}Knqpt, ηqϕnpηq ` }K0G}Kn
ÿ

ξĂη

ż

Γ0

ϕnpηzξ Y ζqKtpξ, η, dζq

≤ }K0G}Kn p2qpt, ηqϕnpηq ` cptqϕnpηqq

holds. Hence LptqK0G is well-defined on Kn´1 and therefore pLptqG “ K´1
0 LptqK0G is

well-defined. Similar arguments can be used to show that pLptqK´1
0 G is well-defined for

any G P Kn. The next Proposition shows that pUps, tqG is in fact a solution to the Cauchy
problem (2.40).

Proposition 2.3.6. Suppose that the same conditions as for Lemma 2.3.5 are fulfilled.
Then for any η P Γ0 and G P Kn´1 the evolution pUps, tqGpηq is absolutely continuous in
s ≥ 0 and satisfies for a.a. s P r0, tq

B

Bs
pUps, tqGpηq “ ´pLpsqpUps, tqGpηq. (2.44)

Proof. Take G P Kn´1, then K0G P Kn and hence by Proposition 2.3.1 Ups, tqK0Gpηq is

absolutely continuous in s. The definition of K´1
0 therefore implies that pUps, tqGpηq is

absolutely continuous in s and

B

Bs
pUps, tqGpηq “ ´K´1

0 LpsqUps, tqK0Gpηq

holds. Previous considerations imply that pLpsqK´1
0 Ups, tqK0G “ pLpsqpUps, tqG is well-

defined and hence (2.44) holds.

As it was proposed in [KK02, FKO09] the Cauchy problem (2.30) can be rewritten to
the Cauchy problem

Bρt
Bt
“ L∆

ptqρt, ρt|t“0 “ ρ0 (2.45)

on correlation measures. The operator L∆ptq is determined by the relation

xpLptqG, ρy “ xG,L∆
ptqρy

or equivalently by
L∆
ptq :“ K˚

0LptqpK
˚
0 q
´1.

Thus let us define the linear operator U∆pt, sq by

U∆
pt, sq :“ K˚

0U
˚
pt, sqpK˚

0 q
´1. (2.46)
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By Lemma 2.3.4.(b) it follows that U∆pt, sq : Mn`1 ÝÑ Mn´1 is bounded and for any
ρ PMn we get U∆pt, sqK˚

0 ρ “ K˚
0U

˚pt, sqρ PMn´1. For ρ PMn`1 we get

U∆
pt, sqρ “ K˚

0U
˚
pt, sqpK˚

0 q
´1ρ “ K˚

0U
˚
pt, rqU˚pr, sqpK˚

0 q
´1ρ

and since U˚pr, sqpK˚
0 q
´1ρ PMn it follows U∆pt, rqK˚

0U
˚pr, sqpK˚

0 q
´1ρ PMn´1. That is

U∆
ps, sqρ “ ρ and U∆

pt, rqU∆
pr, sqρ “ U∆

pt, sqρ.

If in addition Ktpξ, η, dζq “ Ktpξ, η, ζqdλpζq for some measurable function Ktpξ, η, ζq ≥ 0
and condition (E) holds, then U∆pt, sq is a bounded linear operator from Ln`1 to Ln´1.

2.3.3 Examples: Ecological models

In this part we study two particular models, which have applications in ecological sciences.
To simplify the proofs we consider first the case of a Markov (pre-)generator describing
only the death of particles.

Lemma 2.3.7. Consider the operator Lptq given by

pLptqF qpηq “
ÿ

ξĂη

pF pηzξq ´ F pηqqDtpξ, ηq, t P I,

where pt, ξ, ηq ÞÝÑ Dtpξ, ηq ≥ 0 is assumed to be continuous. Then condition (A) and the
usual conditions holds. Moreover, pt, ηq ÞÝÑ LptqF pηq is continuous for any F P CpΓ0q.

Proof. The associated function is given by Ktpξ, η, dζq “ Dtpξ, ηqδHpdζq and thus satisfies
the usual conditions. The characterization of convergence in Γ0 and continuity of Dt imply
that for each F P CpΓ0q also LptqF pηq is continuous in pt, ηq. Concerning (A), fix ε ą 0,
T ą 0 and a compact B Ă Γ0. Then there exist δB ą 0, NB P N and a compact ΛB Ă Rd

such that for each η P B

|η| ≤ NB, η Ă ΛB, @x, y P η, x ‰ y : |x´ y| ≥ δB (2.47)

holds. Let A Ă Γ0 be a compact of the form (2.24) with δ,N,Λ as in (2.47). Then for
each η P B and ξ Ă η we obtain that (2.47) also holds for ηzξ instead of η. Hence ηzξ P A
and thus Qpt, η, Acq “ 0 for any t P r0, T s.

The BDLP-model

In [BP97, BP99, DL00, DL05] the so called Bolker-Dieckmann-Law-Pacala model (short
BDLP-model) was introduced to study spatial patterns for certain ecological systems.
Elements x P η are interpreted as plants and the configuration η P Γ0 describes therefore
the whole ecological system. The BDLP-model is based only on the two elementary
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events η ÞÝÑ η Y x (branching of plants) and η ÞÝÑ ηzx (death of plants). The branching
is assumed to be density independent, that is any plant at position x P η creates with
intensity 0 ≤ λ P CpR`ˆRdq a new plant at position y P Rdzη and the spatial probability
distribution for the new plant is given by a`px, yqdy, where a` P CpRd ˆ Rdq. Moreover,
each plant at position x P η has an individual lifetime independent of the other plants.
Such lifetime is described by the intensity 0 ≤ m P CpR`ˆRdq. The competition between
different plants is assumed to be of additive type and hence of the form

ř

yPηzx

a´px, yq, where

0 ≤ a´ P CpRd ˆ Rdq is the competition kernel. Above description is summarized in the
form of the following Markov (pre-)generator

pLptqF qpηq “
ÿ

xPη

¨

˝mpt, xq `
ÿ

yPηzx

a´px, yq

˛

‚pF pηzxq ´ F pηqq

`
ÿ

xPη

λpt, xq

ż

Rd

a`px, yqpF pη Y yq ´ F pηqqdy.

Such model has been analysed in the time-homogeneous case in [FM04]. In applications
one is often interested in a` being of the form

a`px, yq „
1

|x´ y|α
, |x´ y| Ñ 8

or
a`px, yq „ e´ν|x´y|

α

, |x´ y| Ñ 8.

Theorem 2.3.8. Suppose that m,λ, a´ are continuous and bounded, a` is continuous
with 1 “

ş

Rd
a`px, yqdy and for any compact Λ Ă Rd there exists a˚ ≥ 0 with a˚ P L1pRdq

such that
a`px, yq ≤ a˚pyq, x P Λ, y P Rd

holds. Then conditions (A) – (D) hold for V pηq “ |η| ` |η|2.

Proof. Let B Ă Γ0 be a compact and take NB P N, ΛB Ă Rd and δB ą 0 like in (2.24).
Let A Ă Γ0 be another compact defined by (2.24) with NA :“ NB ` 1, ΛB Ă ΛA and
δA P p0, δBq, then B Ă A holds. We obtain for x P ΛB and η P B

ż

Rd

1Acpη Y yqa
`
px, yqdy ≤

ż

ΛcA

a`px, yqdy `

ż

BδA pηq

a`px, yqdy,

where BδApηq :“ tw P Rd | Dy P η : |w ´ y| ă δAu. Since η P B and δB ą δA
we obtain BδApηq “

Ů

yPη

BδApyq Ă ΛδB
B where ΛδB

B :“ tw P Rd | dpw,ΛBq ≤ δBu with
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dpw,ΛBq :“ inf t|w´u| | u P ΛBu. Let c ą 0 be such that a`px, yq ≤ c for all x P ΛB and
y P ΛδB

B , then
ż

Rd

1Acpη Y yqa
`
px, yqdy ≤

ż

ΛcA

a˚pyqdy `NBc|BδA |

is satisfied, where |BδA | is the Lebesgue volume of BδA “ tw P Rd | |w| ≤ δAu. Condition
(A) now follows from above estimate, Lemma 2.3.7 and λ P CbpR` ˆ Rdq. Condition (B)
follows from

pLptqV qpηq “
ÿ

xPη

λpt, xq ` 2
ÿ

xPη

ÿ

yPηzx

a´px, yq

` 2|η|
ÿ

xPη

pλpt, xq ´mpt, xqq ´ 2|η|
ÿ

xPη

ÿ

yPηzx

a´px, yq

≤ maxt}λ}8, 2}a
´
}8 ` 2}λ}8 ` 2}m}8uV pηq.

Condition (D) is fulfilled due to

qpt, ηq “
ÿ

xPη

mpt, xq `
ÿ

xPη

λpt, xq `
ÿ

xPη

ÿ

yPηzx

a´px, yq

≤ maxt}m}8 ` }λ}8, }a
´
}8uV pηq.

For condition (C) it is enough to show that for any continuous function F such that
|F pηq| ≤ }F }V p1` |η| ` |η|2q also pt, ηq ÞÝÑ

ř

xPη

λpt, xq
ş

Rd
a`px, yqF pηY yqdy is continuous.

Since λpt, xq is continuous it is enough to show that the integral is continuous. But this
follows from dominated convergence and the condition imposed on a`.

Above statement implies the following a priori estimate for the evolution of states.
Let µ be a probability measure with

ş

Γ0

p1` |η| ` |η|2qµpdηq ă 8. Then

ż

Γ0

p1` |η| ` |η|2qU˚pt, sqµpdηq ≤ ept´sqc
ż

Γ0

p1` |η| ` |η|2qµpdηq

holds, c :“ maxt}λ}8, 2}a
´}8` 2}λ}8` 2}m}8u. Such estimate has been used in [FM04]

for a certain scaling which lead to the well-known mesoscopic equation

Bρt
Bt
pxq “ ´mpt, xqρtpxq ´

ż

Rd

a´py, xqρtpyqdyρtpxq `

ż

Rd

a`py, xqλpt, yqρtpyqdy,

see also chapter 3 for details.
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Dieckmann-Law model

In contrast to the BDLP-model we discuss here one possible extension for which the
branching mechanism includes interactions of the plants. For simplicity we suppose that
all intensities are translation invariant. A plant at location x P η shall now have the
modified branching intensity given by

λptq `
ÿ

yPηzx

b`px´ yq, t ≥ 0,

where 0 ≤ b` P CbpRdq. The location of the offspring is described by the probability
densitiy a`px´ yq. The modified Markov (pre-)generator is therefore given by

pLptqF qpηq “
ÿ

xPη

¨

˝mptq `
ÿ

yPηzx

a´px´ yq

˛

‚pF pηzxq ´ F pηqq

`
ÿ

xPη

λptq

ż

Rd

pF pη Y wq ´ F pηqqa`px´ yqdw

`
ÿ

xPη

ÿ

yPηzx

b`px´ yq

ż

Rd

pF pη Y wq ´ F pηqqa`px´ wqdw,

where m,λ P CpR`q and a´ P CbpRdq. We assume that a´ ´ b` is a stable potential. By
definition this means that there exists a constant b ≥ 0 such that

ÿ

xPη

ÿ

yPηzx

pa´px´ yq ´ b`px´ yqq ≥ ´b|η|, η P Γ0.

Let E`pηq “
ř

xPη

ř

yPηzx

b`px´ yq and E´pηq “
ř

xPη

ř

yPηzx

a´px´ yq, that it above condition is

equivalent to
E`pηq ≤ b|η| ` E´pηq, η P Γ0.

Theorem 2.3.9. Suppose that for any compact Λ Ă Rd there exists a˚ P L1pRdq which
satisfies

a`px´ wq ≤ a˚pwq, x P Λ, w P Rd.

Then conditions (A) – (D) are satisfied for V pηq :“ |η|`|η|2. Moreover, for any n ≥ 1 and
state µ with

ş

Γ0

|η|nµpdηq ă 8, the evolution of states satisfies
ş

Γ0

|η|nU˚pt, sqµpdηq ă 8. If

in addition mptq, λptq ą 0 for all t ≥ 0, then condition (E) holds and U˚pt, sq leaves the
space of densities invariant.
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Proof. Condition (A) will be shown for a more general case later on. Concerning condition
(B) we have

pLptq| ¨ |qpηq ≤ pb` λptq ´mptqq|η|
and by p|η| ` 1q2 ´ |η|2 “ 2|η| ´ 1, p|η| ´ 1q2 ´ |η|2 “ ´2|η| also

pLptq| ¨ |2qpηq ≤ p2λptq ` }b`}8 ` 2b´ 2mptqq|η|2 ` pλptq ´ }b`}8q|η|.

Altogether this yields

LptqV pηq ≤ |η|pb` 2λptq ´mptq ´ }b`}8q ` |η|
2
p2λptq ` }b`}8 ` 2b´ 2mptqq,

i.e. (2.32) is satisfied. Since

qpt, ηq “ pmptq ` λptqq|η| ` E`pηq ` E´pηq

≤ p}a´}8 ` }b`}8q|η|2 ` |η| sup
tPr0,T s

pmptq ` λptqq

also (D) holds. For property (C) it is enough to show that x ÞÝÑ
ş

Rd
F pη Y yqa`px´ yqdy

is continuous for any continuous function F with |F pηq| ≤ cp1 ` |η| ` |η|2q, η P Γ0 and
some constant c ą 0. But this follows immediately by dominated convergence and the
assumptions on a`. Property (E) is a direct consequence of the continuity of m and λ.
For the remaining assertion it suffices to show that for any n ≥ 1 there exist a continuous
function cn : R` ÞÝÑ R` such that

pLptq| ¨ |nqpηq ≤ cnptq|η|
n, t ≥ 0.

We have p|η| ` 1qn´ |η|n “
n´1
ř

l“0

`

n
l

˘

|η|l, p|η| ´ 1qn´ |η|n “
n´1
ř

l“0

`

n
l

˘

p´1qn´l|η|k ≤ 0 and since

pLptq| ¨ |nqpHq “ 0 we can assume w.l.g. that |η| ą 0. Hence

pLptq| ¨ |nqpηq ≤ λptq
n´1
ÿ

l“0

ˆ

n

l

˙

|η|l`1
`

n´1
ÿ

l“0

ˆ

n

l

˙

|η|lpE`pηq ` p´1qn´lE´pηqq

“ λptq
n
ÿ

l“1

ˆ

n

l ´ 1

˙

|η|l `
n
ÿ

l“1

ˆ

n

l ´ 1

˙

|η|l´1
pE`pηq ´ p´1qn´lE´pηqq

≤ |η|nλptq
n
ÿ

l“1

ˆ

n

l ´ 1

˙

`

n´1
ÿ

l“1

ˆ

n

l ´ 1

˙

|η|np}b`}8 ` }a
´
}8q

`

ˆ

n

n´ 1

˙

pE`pηq ´ E´pηqq|η|n´1

≤ 2npλptq ` }b`}8 ` }a
´
}8qn ¨ |η|

n
` bn|η|n

implies the assertion.
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Remark 2.3.10. The proof shows that U˚pt, sq maps the space of probability measures
with the constraint

ş

Γ0

|η|nµpdηq ă 8 continuously on itself. Moreover, using Corollary

2.1.11 one can show that

ż

Γ0

|η|U˚pt, sqµpdηq ≤ ebpt´sqe

t
ş

s
pλprq´mprqqdr

ż

Γ0

|η|µpdηq

and

ż

Γ0

p|η| ` |η|2qU˚pt, sqµpdηq ≤ epb´}b
`}8qpt´sqe

t
ş

s
p2λprq´mprqqdr

ż

Γ0

|η|µpdηq

` ep}b
`}8`2bqpt´sqe

2
t
ş

s
pλprq´mprqqdr

ż

Γ0

|η|2µpdηq

are valid.

Generalized Dieckmann-Law model

Assume that any plant at position x P η may create any number k P N of new plants.
Their locations are, for any fixed t ≥ 0, distributed according to the probability measure

a`pt, x´ y1q ¨ ¨ ¨ a
`
pt, x´ ykqdy1 ¨ ¨ ¨ dyk.

Therefore the (pre-)generator is assumed to be given by

pLptqF qpηq “
ÿ

xPη

¨

˝mpt, xq `
ÿ

yPηzx

a´pt, x´ yq

˛

‚pF pηzxq ´ F pηqq

`
1

e

ÿ

xPη

λpt, xq

ż

Γ0ztHu

pF pη Y ζq ´ F pηqqeλpa
`
pt, x´ ¨q; ζqdλpζq

`
1

e

ÿ

xPη

ÿ

yPηzx

b`pt, x´ yq

ż

Γ0ztHu

pF pη Y ζq ´ F pηqqeλpa
`
pt, x´ ¨q; ζqdλpζq.

The factor 1
e

is a normalization factor since we have

ż

Γ0

eλpa
`
pt, x´ ¨q; ζqdλpζq “ e.
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Theorem 2.3.11. Let 0 ≤ m,λ, a´, b` P CbpR` ˆ Rdq with a`pt, ¨q being a probability
density for all t ≥ 0. Suppose that for any compact Λ Ă Rd and T ą 0 there exists
a˚ P L1pRdq which satisfies

a`pt, x´ yq ≤ a˚pyq, x P Λ, t P r0, T s, y P Rd. (2.48)

Moreover, assume that b`pt, xq ≤ a´pt, xq holds for all x P Rd and t ≥ 0. Then conditions
(A) – (D) are satisfied for V pηq “ |η| ` |η|2.

Proof. By
ş

Γ0zH

|ζ|eλpa
`pt, x´ ¨q; ζqdλpζq “ e we obtain

LptqV pηq “
ÿ

xPη

`

p2´ e´1
qλpt, xq ´ 2mpt, xq

˘

`
ÿ

xPη

ÿ

yPηzx

`

p2´ e´1
qb`pt, x´ yq ´ 2a´pt, x´ yq

˘

` 2|η|
ÿ

xPη

pλpt, xq ´mpt, xqq ` 2|η|
ÿ

xPη

ÿ

yPηzx

pb`pt, x´ yq ´ a´pt, x´ yqq

≤ 2p}λ}8 ` }m}8qV pηq,

which implies condition (B). Condition (D) follows from

qpt, ηq “
ÿ

xPη

mpt, xq `
e´ 1

e

ÿ

xPη

λpt, xq `
ÿ

xPη

ÿ

yPηzx

a´pt, x´ yq `
e´ 1

e

ÿ

xPη

ÿ

yPηzx

b`pt, x´ yq

≤ p}m}8 ` }λ}8q|η| ` p}a´}8 ` }b`}8q|η|2.

In order to see (C), observe that the assertion is clear for the contribution from the terms
of the operator Lptq describing the death of plants. Because λ and b` are continuous it
suffices to show for any F P CV pΓ0q, ηn Ñ η, tn Ñ t and xn P ηn, x P η with xn Ñ x
ż

Γ0zH

F pηn Y ζqeλpa
`
ptn, ¨ ´ xnq; ζqdλpζq Ñ

ż

Γ0zH

F pη Y ζqeλpa
`
pt, ¨ ´ xq; ζqdλpζq, nÑ 8.

Since the integrand is continuous it converges for each ζ P Γ0zH and by (2.48) with
compacts K “ ttn | n ≥ 1u Y ttu, B “ txn | n ≥ 1u Y txu we obtain by dominated
convergence the assertion. Therefore it remains to show property (A). Take T ą 0 and
fix a compact B Ă Γ0. Hence there exists ΛB Ă Rd compact, NB P N and δB ą 0 such
that for any η P B (2.47) holds. Condition (A) was shown for the death of plants, so let
us focus on the terms contributing to the birth. Due to the continuity of λ, b` the sum

ÿ

xPη

¨

˝λpt, xq `
ÿ

yPηzx

b`pt, x´ yq

˛

‚
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is uniformly bounded on r0, T s ˆ B. Hence it is enough to estimate the integral. Take a
compact set A Ă Γ0 with the characteristics NA ą NB, δA ă δB, ΛB Ă ΛA, i.e. (2.24)
and set

BδApηq “

#

ξ P Γ0 | ξ Ă
ď

xPη

BδApxq

+

,

where BδApxq “ ty P Rd | |x´ y| ă δAu. Then we obtain for η P B and x P η, so x P ΛB

ż

Γ0zH

1Acpη Y ζqeλpa
`
pt, x´ ¨q; ζqdλpζq

≤

¨

˚

˝

ż

|ζ|ąNA´NB

`

ż

BδA pηqzH

`

ż

ΓΛc
A
zH

`

ż

CpδAq

˛

‹

‚

eλpa
`
pt, x´ ¨q; ζqdλpζq “ I1 ` I2 ` I3 ` I4

where CpδAq “ tζ P Γ0 | Dw ‰ z, w, z P ζ : |w´ z| ă δAu. For the first integral we obtain
uniformly in t P r0, T s, η P B and x P η

I1 ≤
ż

|ζ|ąNA´NB

eλpa
˚; ζqdλpζq “

8
ÿ

n“NA´NB`1

˜

ş

Rd
a˚pyqdy

¸n

n!

and similarly for the third

I3 ≤
ż

ΓΛc
A
zH

eλpa
˚; ζqdλpζq “

8
ÿ

n“1

1

n!

¨

˚

˝

ż

ΛcA

a˚pyqdy

˛

‹

‚

n

“ exp

¨

˚

˝

ż

ΛcA

a˚pyqdy

˛

‹

‚

´ 1.

This two terms tend uniformly in η P B and t P r0, T s to zero as NA Ñ 8 and ΛA Ñ Rd.
Denote by c ą 0 a constant for which

a`pt, z ´ wq ≤ c, t P r0, T s, z P ΛB, w P ΛδB
B

with ΛδB
B “ tw P Rd | dpw,ΛBq ≤ δBu holds, where dpw,ΛBq :“ inftdpw, uq | u P ΛBu. For

I2 we obtain with |BδA | the Lebesgue volume of a ball with radius δA in Rd, since for any
w, z P η with w ‰ z: BδApwq XBδApzq “ H

I2 “

ż

BδA pηqzH

eλpa
`
pt, x´ ¨q; ζqdλpζq ≤

˜

8
ÿ

n“1

cn|BδA |
n

n!

¸|η|

“ pec|BδA | ´ 1q|η|.
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Finally due to CpδAq Ñ H as δA Ñ 0 we have shown that for all T ą 0, all compacts
B Ă E and ε ą 0 there is a compact A Ă E such that

Qpt, η, Acq ă ε, t P r0, T s, η P B,

which is stronger then (A).

Remark 2.3.12. Condition (2.48) is for instance satisfied if there exist strictly positive
continuous functions λ,C ą 0 and R ą 0, α ą d

2
such that

a`pt, xq ≤ Cptq

pλptq ` |x|2qαptq
, |x| ≥ R

holds.

Remark 2.3.13. In the time-homogeneous case weaker conditions are sufficient to prove
the Feller property.

2.4 Time-homogeneous dynamics

In this section we analyse the time-homogeneous case. Although the results obtained in
the last section apply to this case, several technical steps can be avoided and additional
(stronger) results can be proved.

Suppose from now on that Kpξ, η, dζq is independent of t ≥ 0 and satisfies the usual
conditions. Let L be the Kolmogorov operator given by (2.28), i.e.

pLF qpηq “
ÿ

ξĂη

ż

Γ0

pF pηzξ Y ζq ´ F pηqqKpξ, η, dζq, η P Γ0 (2.49)

and let Qpη, dωq be the infinitesimal transition function given by (2.31). Then the re-
sults of the first section imply that there exists a semigroup pT ptqqt≥0 of bounded linear
operators on BMpΓ0q. In particular, T ptq is represented by a (sub-)probability function
P pt, η, dηq by

T ptqF pηq “

ż

Γ0

F pξqP pt, η, dξq, t ≥ 0, F P BMpΓ0q, (2.50)

see (2.5) and (2.35). This semigroup satisfies for all η P Γ0

LF pηq “ lim
tÑ0

T ptqF pηq ´ F pηq

t
, (2.51)

repeat e.g. the arguments in the proof of Theorem 2.1.8. The adjoint semigroup T ptq˚ on
MpΓ0q is thus given by

T ptq˚µpAq “

ż

Γ0

P pt, η, Aqdµpηq, t ≥ 0, A P BpΓ0q. (2.52)
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2.4.1 Evolution of observables and states

We want to give a characterization of conservativeness for T ptq. For this purpose we first
provide an equivalent construction of the semigroup T ptq and its adjoint semigroup T ptq˚

on MpΓ0q. Let L˚ be the adjoint operator on MpΓ0q. Then L˚ is given by

pL˚µqpdηq “ ´qpηqµpdηq `Qµpdηq, (2.53)

where for any measurable set A Ă Γ0

pQµqpAq “

ż

Γ0

Qpη,Aqdµpηq “

ż

Γ0

ÿ

ξĂη

ż

Γ0

1Apηzξ Y ζqKpξ, η, dζqdµpηq.

Both operators ´q and Q are well-defined on the domain, cf. (2.37),

DpL˚q “

$

&

%

µ PMpΓ0q

ˇ

ˇ

ˇ

ˇ

ż

Γ0

qpηq|µ|pdηq ă 8

,

.

-

.

Moreover, p´q,DpL˚qq is the generator of an analytic semigroup given by pe´tqµqpdηq “
e´tqpηqµpdηq, that is

pe´tqµqpAq “

ż

A

e´tqpηqµpdηq, A P BpΓ0q.

The operator L˚ satisfies for any 0 ≤ µ P DpL˚q the relation L˚µpΓ0q “ 0, i.e.
ż

Γ0

qpηqµpdηq “ pQµqpΓ0q

holds. By [TV06, Theorem 2.1] there exists an extension pG,DpGqq of pL˚, DpL˚qq which

is the generator of a sub-stochastic semigroup prT ptq˚qt≥0 on MpΓ0q. Namely, rT ptq˚ is a
strongly continuous semigroup such that it leaves the cone of positive measures invariant
and satisfies }rT ptq˚µ}MpΓ0q ≤ }µ}MpΓ0q for any 0 ≤ µ PMpΓ0q. This semigroup is minimal
in the sense that, given any other sub-stochastic semigroup Uptq˚ with generator being

an extension of pL˚, DpL˚qq, then rT ptq˚ ≤ Uptq˚.

Lemma 2.4.1. The semigroup rT ptq˚ coincides with the semigroup given by (2.52).

Let Rpλ;´qq be the resolvent operator for p´q,DpL˚qq, it can be realized as a bounded
linear operator on BMpΓ0q and likewise on MpΓ0q, i.e.

Rpλ;´qqF pηq “
F pηq

λ` qpηq
, F P BMpΓ0q
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and

Rpλ;´qqµpAq “

ż

A

1

λ` qpηq
µpdηq, µ PMpΓ0q

hold. For simplicity we preserve the notation Rpλ,´qq for both realizations. Hence we
obtain

QRpλ;´qqµpAq “

ż

Γ0

Qpη,AqpRpλ;´qqµqpdηq “

ż

Γ0

Qpη, Aq
1

λ` qpηq
µpdηq

and

Rpλ;´qqQF pηq “
1

λ` qpηq

ż

Γ0

F pωqQpη, dωq.

This implies the relations

xF,Rpλ;´qqµy “ xRpλ;´qqF, µy

and
xF,QRpλ,´qqµy “ xRpλ,´qqQF, µy.

Note that we use the notation Q for the corresponding operator on functions F and
measures µ at the same time.

Proof. (Lemma 2.4.1)

The construction of rT ptq˚, cf. [ALMK11, Theorem 2.1], shows that pG,DpGqq satisfies
for any µ PMpΓ0q and λ ą 0

Rpλ;Gqµ “ lim
nÑ8

Rpλ,´qq
n
ÿ

k“0

pQRpλ;´qqqkµ (2.54)

in the total variation norm. Fix λ ą 0 and define on MpΓ0q a bounded linear operator
by

Rpλqµ “

8
ż

0

e´λtT ptq˚µdt.

The semigroup T ptq˚ is continuous w.r.t. the topology σpMpΓ0q, BMpΓ0qq and hence the
integral is well-defined w.r.t. this topology. Then (2.52) yields

Rpλqµ “

ż

Γ0

pP pλ, ξ, ¨qµpdξq, (2.55)
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where pP pλ, ξ, ¨q “
8
ş

0

e´λtP pt, ξ, ¨qdt. Due to [Che04, Theorem 2.16] pP is the unique mini-

mal solution to the equation

pP pλ, η, Aq “
1

λ` qpηq
δηpAq `

1

λ` qpηq

ż

Γ0

pP pλ, ξ, AqQpη, dξq.

Such a minimal solution can be constructed as follows, cf. [Che04, Theorem 2.21]. Set
pP p0qpλ, η, Aq “ 1

λ`qpηq
δηpAq and for n ≥ 0

pP pn`1q
pλ, η, Aq “

1

λ` qpηq

ż

Γ0

pP pnqpλ, ξ, AqQpη, dξq. (2.56)

Then pP pλ, η, Aq is given by pP pλ, η, Aq “
8
ř

n“0

pP pnqpλ, η, Aq. Hence by (2.55) we get

RpλqµpAq “
8
ÿ

n“0

ż

Γ0

pP pnqpλ, η, Aqµpdηq “
8
ÿ

n“0

RpnqpλqµpAq,

where RpnqpλqµpAq “
ş

Γ0

pP pnqpλ, η, Aqµpdηq. Therefore, in view of (2.54), it suffices to

show for any n ≥ 0, µ PMpΓ0q and A P BpΓ0q that

RpnqpλqµpAq “ Rpλ;´qqpQRpλ;´qqqnµpAq

holds. For n “ 0 this follows from

Rp0qpλqµpAq “

ż

Γ0

1

λ` qpηq
1Apηqµpdηq “ Rpλ;´qqµpAq.

Assume that this assertion holds for some n ≥ 0. The induction hypothesis and (2.34)
imply the relation

pP pnqpλ, η, Aq “

ż

Γ0

pP pnqpλ, ξ, Aqδηpdξq “ pR
pnq
pλqδηqpAq

“ Rpλ;´qqpQRpλ;´qqqnδηpAq “ pRpλ;´qqQqnRpλ;´qq1Apηq.
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Finally by (2.34) and (2.56) this yields

Rpn`1q
pλqµpAq “

ż

Γ0

1

λ` qpηq

ż

Γ0

pP pnqpλ, ξ, AqQpη, dξqµpdηq

“

ż

Γ0

1

λ` qpηq

ż

Γ0

pRpλ;´qqQqnRpλ;´qq1ApξqQpη, dξqµpdηq

“

ż

Γ0

pRpλ;´qqQqn`1Rpλ;´qq1Apηqµpdηq

“ Rpλ;´qqpQRpλ;´qqqn`1µpAq.

Theorem 2.4.2. Suppose that Kpξ, η, dζq satisfies the usual conditions. Then the follow-
ing assertions are equivalent:

1. The operator pG,DpGqq is the closure of pL˚, DpL˚qq.

2. The semigroup pT ptq˚qt≥0 is stochastic, i.e.

}T ptq˚µ}MpΓ0q “ }µ}MpΓ0q, 0 ≤ µ PMpΓ0q.

3. The semigroup pT ptqqt≥0 on observables is conservative, i.e. T ptq1 “ 1, t ≥ 0.

4. The transition probability function satisfies P pt, η,Γ0q “ 1 for all t ≥ 0 and η P Γ0.

If in addition, Kpξ, η, dζq “ Kpξ, η, ζqdλpζq for some measurable function Kpξ, η, ζq, then
T ptq˚ leaves the space of densities L1pΓ0, dλq invariant.

Proof. The equivalence of the last 3 assertions follows by (2.50) and (2.52). Assume that

pG,DpGqq is the closure of pL˚, DpL˚qq, then it is well-known that rT ptq˚ is stochastic,
cf. [TV06]. Hence by Lemma 2.4.1 T ptq˚ is stochastic. Conversely, suppose that T ptq˚

is stochastic. Then }T ptq˚µ}MpΓ0q “ }µ}MpΓ0q for any 0 ≤ ν PMpΓ0q. Hence [ALMK11,
Corollary 3.6] implies condition 1. in this case. If Kpξ, η, dζq “ Kpξ, η, ζqdλpηq, then by

T ptq˚ “ rT ptq˚ and rT ptq˚L1pΓ0, dλq Ă L1pΓ0, dλq it leaves the space of densities invariant.

Suppose now that Kpξ, η, dζq “ Kpξ, η, ζqdλpζq holds. Then L˚ restricted to densities
is given by L˚Rpηq “ ´qpηqRpηq `QRpηq, where

QRpηq “
ÿ

ξĂη

ż

Γ0

Rpηzξ Y ζqKpζ, ηzξ Y ζ, ξqdλpζq.
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Above theorem implies that T ptq˚ leaves the space of densities invariant. Therefore we
are able consider the Cauchy problem on densities L1pΓ0, dλq

BRt

Bt
“ L˚Rt, Rt|t“0 “ R0 P DpL

˚
q. (2.57)

If one of the equivalent statements in Theorem 2.4.2 is satisfied, then for each R0 P DpL
˚q

above Cauchy problem has a unique solution given by the semigroup T ptq˚R0 “ Rt. The
following lemma is used later on to show that a given evolution pRtqt≥0 is a solution to
the Cauchy problem (2.57).

Lemma 2.4.3. Suppose that one of the equivalent statements in Theorem 2.4.2 is satisfied
and let pG˚, DpG˚qq be the adjoint operator to pG,DpGqq on L8pΓ0, dλq. Then for any
F P DpG˚q

LF “ G˚F

holds, where LF is defined by (2.49).

Proof. Take R P DpL˚q Ă DpGq and F P DpG˚q, then

xG˚F,Ry “ xF,GRy “ xF,L˚Ry

holds. By

ÿ

ξĂη

ż

Γ0

|F pηzξ Y ζq ´ F pηq|Kpξ, η, dζq ≤ }F }L82qpηq, η P Γ0

and R P DpL˚q, (2.25) is applicable which yields xF,L˚Ry “ xLF,Ry.

Therefore we see that pG˚, DpG˚qq “ pL,DpLqq where

DpLq “ tF P L8pΓ0, dλq | LF P L
8
pΓ0, dλqu (2.58)

is the maximal domain for L.

2.4.2 Evolution of quasi-observables and correlation functions

The aim of this part is to provide another technique for the existence and uniqueness of
the time-homogeneous Cauchy problems (2.29) and (2.30). Namely semigroups for the
evolution of quasi-observables

BGt

Bt
“ pLGt, Gt|t“0 “ G0

and evolution of correlation functions

Bkt
Bt
“ L∆kt, kt|t“0 “ k0. (2.59)
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The general form of the operators pL and L∆, cf. [FKO09] and [FKO13], suggests to
consider the operator L∆ given by

pL∆kqpηq “ ´
ÿ

ξĂη

ż

Γ0

kpη Y ζqDpξ, ηzξ, ζqdλpζq `
ÿ

ξĂη

ż

Γ0

kpηzξ Y ζqBpξ, ηzξ, ζqdλpζq,

where B,D are measurable, Bpξ, ηzξ, ξq “ 0 and Dpξ, ηzξ,Hq ≥ 0 for all η P Γ0 and
ξ Ă η. For a continuous function V : Γ0 ÝÑ p0,8q let LV stand for the Banach space of
equivalence classes of functions k with the norm

}k}LV :“

ż

Γ0

|kpηq|V pηqdλpηq

“ |kp0q|V p0q `
8
ÿ

n“1

1

n!

ż

pRdqn

|kpnqpx1, . . . , xnq|V
pnq
px1, . . . , xnqdx1 ¨ ¨ ¨ dxn,

where k “ pkpnqq8n“0 and V “ pV pnqq8n“0 is the decomposition into their components on
ČpRdqn – Γ

pnq
0 .

Remark 2.4.4. Let Λ Ă Rd be a compact and DΛ ą 0 such that V pηq ≥ 1
DΛ

ą 0 for
η Ă Λ. Then for any n P N

}k}LV ≥
1

n!

ż

Λn

|kpnqpx1, ¨ ¨ ¨ , xnq|V
pnq
px1, . . . , xnqdx1 ¨ ¨ ¨ dxn

≥ 1

n!

1

Dn
Λ

ż

Λn

|kpnqpx1, ¨ ¨ ¨ , xnq|dx1 ¨ ¨ ¨ dxn.

implies
ż

Λn

|kpnqpx1, ¨ ¨ ¨ , xnq|dx1 ¨ ¨ ¨ dxn ≤ n!Dn
Λ}k}LV . (2.60)

In particular, if V is bounded away from zero on Γ0, say constant, then each k P LV is
necessarily integrable and hence might correspond to a density of a measure on Γ0.

We consider the Cauchy problem for L∆ on the Banach space LV . Define Mpηq :“
ř

ξĂη

Dpξ, ηzξ,Hq ≥ 0 and the domain

DpL∆
q :“ tk P LV | M ¨ k P LV u.

Then p´M,DpL∆qq is the generator of an analytic semigroup (of angle π
2
) given by

pe´tMkqpηq “ e´tMpηqkpηq, η P Γ0, t ≥ 0.
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The operator L∆ admits the decomposition L∆ “ ´M ` L∆
1 , where

pL∆
1 kqpηq “ ´

ÿ

ξĂη

ż

Γ0zH

kpη Y ζqDpξ, ηzξ, ζqdλpζq `
ÿ

ξĂη

ż

Γ0

kpηzξ Y ζqBpξ, ηzξ, ζqdλpζq.

Define the auxiliary function cpηq given by

cpηq “
1

V pηq

ÿ

ξĂη

V pξq

˜

ÿ

ζĂξ

|Dpζ, ξzζ, ηzξq|

¸

`
1

V pηq

ÿ

ξĂη

ż

Γ0

|Bpζ, ηzξ, ξq|V pηzξ Y ζqdλpζq.

Theorem 2.4.5. Suppose that there exists a constant a P p0, 2q such that

cpηq ≤ aMpηq, η P Γ0 (2.61)

holds. Then pL∆, DpL∆qq is the generator of an analytic semigroup pT∆ptqqt≥0 of contrac-
tions.

Proof. Define a new operator B∆
1 on DpL∆q by

pB∆
1 kqpηq “

ÿ

ξĂη

ż

Γ0zH

kpη Y ζq|Dpξ, ηzξ, ζq|dλpζq `
ÿ

ξĂη

ż

Γ0

kpηzξ Y ζq|Bpξ, ηzξ, ζq|dλpζq,

then for 0 ≤ k P DpL∆q we obtain by (2.25)
ż

Γ0

B∆
1 kpηqV pηqdλpηq “

´

ż

Γ0

MpηqkpηqV pηqdλpηq `

ż

Γ0

¨

˝

ÿ

ζĂη

ÿ

ξĂηzζ

|Dpξ, ηzζzξ, ζq|V pηzζq

˛

‚kpηqdλpηq

`

ż

Γ0

ż

Γ0

ż

Γ0

kpη Y ζq|Bpξ, η, ζq|V pη Y ξqdλpζqdλpξqdλpηq

“ ´

ż

Γ0

MpηqkpηqV pηqdλpηq `

ż

Γ0

kpηqV pηq

¨

˝

ÿ

ζĂη

ÿ

ξĂηzζ

|Dpξ, ηzξzζ, ζq|
V pηzζq

V pηq

˛

‚dλpηq

`

ż

Γ0

kpηqV pηq

¨

˝

ÿ

ζĂη

ż

Γ0

|Bpξ, ηzζ, ζq|
V pηzζ Y ξq

V pηq
dλpξq

˛

‚dλpηq

“

ż

Γ0

kpηqV pηqpcpηq ´Mpηqqdλpηq ≤ pa´ 1q

ż

Γ0

kpηqV pηqMpηqdλpηq,
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where we have used the identity

ÿ

ζĂη

ÿ

ξĂηzζ

|Dpξ, ηzξzζ, ζq|V pηzζq “
ÿ

ζĂη

V pζq

˜

ÿ

ξĂζ

|Dpξ, ζzξ, ηzζq|

¸

.

This identity follows by the substitution ζ ÞÝÑ ηzζ. Let r P p0, 1q be such that a ă 1`r ă
2, then for any 0 ≤ k P DpL∆q

ż

Γ0

ˆ

´Mpηq `
1

r
B∆

1

˙

kpηqV pηqdλpηq ≤ 0

holds. By [TV06, Theorem 2.2] it follows that p´M ` B∆
1 , DpL

∆qq is the generator of a
sub-stochastic semigroup U∆ptq on LV . Then by [AR91, Theorem 1.1] also pL∆, DpL∆qq

is the generator of an analytic C0-semigroup T∆ptq and by [AR91, Theorem 1.2] this
semigroup satisfies |T∆ptqk| ≤ U∆ptq|k|. This shows that for any t ≥ 0

}T∆
ptqk}LV ≤

ż

Γ0

U∆
ptq|k|pηqV pηqdλpηq ≤

ż

Γ0

|kpηq|V pηqdλpηq “ }k}LV .

Let KV be the dual space to LV . This space can be identified with the collection of
all equivalence classes of functions G equipped with the norm

}G}KV “ ess sup
ηPΓ0

|Gpηq|

V pηq
.

In the following we want to give sufficient conditions so that T∆ptq provides an evolution
of densities. For this purpose suppose that the operator L is given by

pLF qpηq “
ÿ

xPη

dpx, ηzxqpF pηzxq ´ F pηqq `

ż

Rd

bpx, ηqpF pη Y xq ´ F pηqqdx

with measurable intensities dpx, ηzxq, bpx, ηq ≥ 0 and

ż

Rd

bpx, ηqdx ă 8, η P Γ0

holds. This operator is a particular example of (2.49) with

Kpξ, η, ζq “ 1Γp0qpζq1Γp1qpξq
ÿ

xPξ

dpx, ηzxq ` 1Γp0qpξq1Γp1qpζq
ÿ

xPζ

bpx, ηq.
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It is not difficult to see that Kpξ, η, ζqdλpζq satisfies the usual conditions. Hence there
exists a (minimal) semigroup pT ptqqt≥0 on BMpΓ0q associated with the operator L and the
adjoint semigroup pT ptq˚qt≥0 is strongly continuous on L1pΓ0, dλq. The same computations
as in [FKK12] yield

L∆kpηq “ ´
ÿ

xPη

ż

Γ0

kpη Y ηqpK´1
0 dpx, ¨ Y ηzxqqpζqdλpζq

`
ÿ

xPη

ż

Γ0

kpζ Y ηzxqpK´1
0 bpx, ¨ Y ηzxqqpζqdλpζq.

For any G P BbspΓ0q we have

xG,L∆ky “ xpLG, ky

and pL :“ K´1
0 LK0 is given by

ppLGqpηq “ ´
ÿ

ξĂη

Gpξq
ÿ

xPξ

pK´1
0 dpx, ¨ Y ηzxqqpηzξq

`
ÿ

ξĂη

ż

Rd

Gpξ Y xqpK´1
0 bpx, ¨ Y ξqqpηzξqdx.

Thus condition (2.61) can be restated to

ÿ

ξĂη

V pξq
ÿ

xPξ

|K´1
0 dpx, ¨ Y ηzxq|pηzξq `

ÿ

ξĂη

ż

Rd

V pξ Y xq|K´1
0 bpx, ¨ Y ξq|pηzξqdx

≤ a ¨
ÿ

xPη

dpx, ηzxqV pηq.

The cumulative intensity is given by

qpηq :“
ÿ

xPη

dpx, ηzxq `

ż

Rd

bpx, ηqdx.

Theorem 2.4.6. Suppose that (2.61) is satisfied for V pηq “ K0ϕpηq with ϕ : Γ0 ÝÑ

r1,8q. Moreover, assume that there exists a constant C ą 0 for which

3|η|p1` qpηqq ≤ Cϕpηq, η P Γ0

holds and assume that one of the equivalent conditions of Theorem 2.4.2 is fulfilled. Then
for any k0 P LV

pK˚
0 q
´1T∆

ptqk0 “ T ptq˚pK˚
0 q
´1k0, t ≥ 0 (2.62)
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holds. In particular let k0 P LV be such that R0 :“ pK˚
0 q
´1k0 is a probability density on

Γ0, then
Rt :“ pK˚

0 q
´1T∆

ptqk0

is again a probability density on Γ0.

Proof. By Lemma 2.3.4 the function pK˚
0 q
´1T∆ptqk0 P Lϕ is continuous in t ≥ 0. Since

Lϕ Ă L1pΓ0, dλq is continuously embedded it is also continuous on L1pΓ0, dλq in t ≥ 0.
Moreover,

ż

Γ0

qpηq|pK˚
0 q
´1T∆

ptqk0pηq|dλpηq ≤
ż

Γ0

ż

Γ0

qpηq|T∆
ptqk0pη Y ξq|dλpξqdλpηq

“

ż

Γ0

|T∆
ptqk0pηq|

ÿ

ξĂη

qpξqdλpηq

≤ C

ż

Γ0

|T∆
ptqk0pηq|

ÿ

ξĂη

ϕpξqdλpηq “ C}T∆
ptqk0}LV ă 8

implies that pK˚
0 q
´1T∆ptqk0 P DpL˚q. If we show for any F P DpLq, see (2.58), the

identity

xF, pK˚
0 q
´1T∆

ptqk0y “ xF, pK
˚
0 q
´1k0y `

t
ż

0

xLF, pK˚
0 q
´1T∆

psqk0yds, t ≥ 0, (2.63)

then pK˚
0 q
´1T∆ptqk0 is a weak solution to the Cauchy problem (2.57) and hence (2.62) is

proved, cf. [Bal77]. So let F P DpLq, then we can find a function G such that F “ K0G
and |Gpηq| ≤ c2|η| for some constant c “ cpGq ą 0. Fix any k P LV , then pK˚

0 q
´1k P Lϕ

and
ř

ξĂη

|Gpξq| ≤ cpGq3|η|. Therefore we obtain

ż

Γ0

ż

Γ0

|kpη Y ξq|
ÿ

ζĂη

|Gpζq|dλpξqdλpηq ≤ cpGq

ż

Γ0

ż

Γ0

3|η||kpη Y ξq|dλpξqdλpηq

“ cpGq

ż

Γ0

ÿ

ξĂη

3|ξ||kpηq|dλpηq

≤ CcpGq}k}LV

and hence by (2.25)

xG, ky “ xK0G, pK
˚
0 q
´1ky (2.64)
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holds. Using (2.25) we obtain

xG,L∆ky “ xpLG, ky “ xK0
pLG, pK˚

0 q
´1ky “ xLK0G, pK

˚
0 q
´1ky. (2.65)

Since

K0
pLGpηq “ LK0Gpηq “ ´

ÿ

xPη

dpx, ηzxqpK0Gp¨ Y xqqpηzxq `

ż

Rd

bpx, ηqpK0Gp¨ Y xqqpηqdx

identity (2.25) is applicable provided
ż

Γ0

ż

Γ0

|kpη Y ξq|lpGqpηqdλpξqdλpηq ă 8

is satisfied, where

lpGqpηq :“
ÿ

xPη

dpx, ηzxqpK0|G|p¨ Y xqqpηzxq `

ż

Rd

bpx, ηqpK0|G|p¨ Y xqqpηqdx.

But this follows from lpGqpηq ≤ 2cpGq3|η|qpηq and
ż

Γ0

ż

Γ0

|kpη Y ξq|lpGqpηqdλpξqdλpηq ≤ 2cpGq

ż

Γ0

|kpηq|
ÿ

ξĂη

3|ξ|qpξqdλpηq

≤ 2cpGqC}k}LV .

Applying (2.64) and (2.65) to k “ T∆ptqk0 yields (2.63) and hence the assertion.

2.4.3 Examples: Tumour development models

The aim is to describe the development of brain tumours. Reasonable models, including
effects like increased speed of propagation of tumour cells, require to introduce at least two
type of cells and study the interactions between these cells, see [FFH`15] and references
therein. Here we assume for simplicity that the tumour cells have only two possible states
and consider therefore Γ2

0 as the state space of the Markov dynamics. A configuration
η “ pη`, η´q P Γ2

0 is then considered as the collection of tumour cells. The cells η´ are
said to be in the so-called proliferating state. The Markov evolution for this type of cells
is assumed to be given by the Markov (pre-)generator

pL´F qpηq “
ÿ

xPη´

mpxqpF pη`, η´zxq ´ F pηqq

`
ÿ

xPη´

λpxq

ż

Rd

a`px, yqpF pη`, η´ Y yq ´ F pηqqdy
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with continuous bounded non-negative functions m,λ and a` ≥ 0 continuous with 1 “
ş

Rd
a`px, yqdy for all x P Rd. Since proliferation is a local interaction we may assume

that a`px, ¨q is fast decaying or even has compact support for any x P Rd. The rate
mpxq is typically small compared with λpxq and hence the number of cells η´ will grow
exponentially in t ≥ 0. This reflects the steady growth of the number of tumour cells.
Due to competition and other biological effects such cells have the possibility to change
their type, i.e. a cell x P η´ becomes an element of η` and vice versa. The corresponding
Markov operator for this elementary events is given by the general form

pAF qpηq “
ÿ

xPη´

ppx, η`, η´zxqpF pη` Y x, η´zxq ´ F pηqq

`
ÿ

xPη`

qpx, η`zx, η´qpF pη`zx, η´ Y xq ´ F pηqq.

Here ppx, η`, η´zxq, qpx, η`, η´zxq ≥ 0 are assumed to be continuous and bounded. For
the dynamics of the cells η` we assume that each cell moves according to a random walk
independently of each other. Such motion is described by the operator

pL`F qpηq “
ÿ

xPη`

κpxq
ż

Rd

cpx, yqpF pη`zxY y, η´q ´ F pηqqdy

with κ ≥ 0 continuous and bounded and cpx, yq ≥ 0 continuous such that 1 “
ş

Rd
cpx, yqdy

for all x P Rd. In comparison to a` we may assume that cpx, ¨q has only polynomial
decay when |y| Ñ 8. This resembles the observations that small tumour patters can be
observed far away from the main tumour pattern. The overall Markov dynamics is then
described by the sum of above operators, i.e. let

L :“ L´ ` L` ` A.

The interplay of this two types of cells can be described heuristically in the following way.
A cell x P η´ has two options. On the one-hand side it will produce several new cells
and then die due to its natural death rate mpxq ą 0. On the other-hand it may also
change its type and start immediately moving within the brain. With high probability
this jumps will be far compared to the distance of proliferation. After a certain time
this moving cell will reach a substantially less dense region and hence will change its
type back to the proliferating state. Such microscopic dynamics may cause the creation
of new tumour patterns for which the distance to the old pattern is large compared to
proliferation length. An important technical obstacle is related to real measurements of
tumour cells. Namely, it is only possible to observe tumour patters larger then some
minimal size. Such minimal size is related to the technical equipment being used. Since
the moving cells η` form only a small part of the tumour, the treatment is essentially
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restricted to the treatment of the proliferating cells η´. One goal is to determine the front
wave propagation, derive reasonable extremal statistics, and consequently predict the size
and possible locations of a significantly wider amount of tumour cells. We expect that
this kind of insights will lead to a better understanding of the microscopic structure of
tumours and hence to new therapeutic treatments of tumours. Applying [Kol06] for the
Lyapunov function V pηq “ |η`| ` |η´| yields.

Theorem 2.4.7. Suppose that for any compact Λ Ă Rd there exists a˚ P L1pRdq for which

a`px, yq, cpx, yq ≤ a˚pyq, x P Λ, y P Rd

holds. Then there exist a conservative Feller semigroup pT ptqqt≥0 with property (2.50).
This semigroup is related to the operator L by the identity (2.51). The adjoint semigroup
pT ptq˚qt≥0 on MpΓ2

0q leaves the space of densities invariant and is given by (2.52).
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Chapter 3

Markov evolutions on Γ

In this chapter we first present the main results for one-component birth-and-death
Markov evolutions and study afterwards various applications in mathematical biology,
in particular models describing the stochastic behaviour of cells within an organism.

3.1 Preliminaries

3.1.1 Harmonic analysis on Γ

Let Γ be the space of all locally finite configurations on Rd, that is

Γ “ tγ Ă Rd
| |γ X Λ| ă 8, @Λ Ă Rd compact u,

where |γXΛ| denotes the number of points inside Λ. The topology on Γ is defined as the
smallest topology such that all maps

γ ÞÝÑ
ÿ

xPγ

fpxq

are continuous, where f is continuous with compact support, cf. [AKR98a]. This topology
is metrizable in such a way that Γ becomes separable and complete, i.e. Γ is a Polish
space, cf. [KK06] and the references therein. Let BpΓq stand for the Borel-σ-algebra on
Γ. Then BpΓq is generated by sets of the form

tγ P Γ | |γ X Λ| “ nu,

where n ≥ 0 and Λ Ă Rd runs over all compacts. For a compact Λ Ă Rd define

ΓΛ :“ tγ P Γ | γ Ă Λu “
8
ğ

n“0

Γ
pnq
Λ ,
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where Γ
pnq
Λ “ tγ P ΓΛ | |γ X Λ| “ nu for n ≥ 1 and Γ

p0q
Λ “ tHu. Define pΛ : Γ ÝÑ ΓΛ by

pΛpγq :“ γΛ :“ γ XΛ and sets A P BpΓq of the form A “ p´1
Λ pA

1q for some A1 P BpΓΛq are
called cylinder sets. Let BcylpΓq be the algebra of cylinder sets, i.e.

BcylpΓq “
ď

Λ

p´1
Λ pBpΓΛqq,

where the union runs over all compacts Λ Ă Rd. The Poisson measure πβ is defined for
β P R as the unique Borel probability measure on Γ having Laplace transform

ż

Γ

e

ř

xPγ
fpxq

dπβpγq “ exp

¨

˝eβ
ż

Rd

pefpxq ´ 1qdx

˛

‚

for all continuous functions f with compact support. In the following we recall basic
notions of harmonic analysis on the configuration space Γ. For more detailed information
and proofs we refer to [KK02].

A function F : Γ ÝÑ R is called cylinder function if F pγq “ F pγΛq holds for all
γ P Γ and some compact Λ Ă Rd. Therefore F is a cylinder function if and only if it is
measurable w.r.t. BcylpΓq. Let µ be a Borel probability measure on Γ, µ is said to be locally
absolutely continuous w.r.t. to πβ if for each compact Λ Ă Rd the measure µΛ :“ µp´1

Λ

defined on pΓΛ,BpΓΛqq is absolutely continuous w.r.t. πΛ
β :“ πβp

´1
Λ . This definition is in

fact independent of β, therefore we will simply say that µ is locally absolutely continuous
w.r.t. to the Poisson measure. The measure µ is said to have finite local moments if for
all compacts Λ Ă Rd and n ≥ 1

ż

Γ

|γ X Λ|ndµpγq ă 8.

Define for any G P BbspΓ0q the K-transform by

pKGqpγq “
ÿ

ηŤγ

Gpηq,

here η Ť γ means that the sum runs only over all finite subsets η of γ. Then KG
is a polynomially bounded cylinder function, i.e. there exists a compact Λ Ă Rd with
pKGqpγq “ pKGqpγ X Λq and constants C ą 0 and N P N with

|pKGqpγq| ≤ Cp1` |γ X Λ|qN , γ P Γ.

The K-transform K : BbspΓq ÝÑ FPpΓq :“ KpBbspΓ0qq is a positivity preserving isomor-
phism with inverse given by

pK´1F qpηq :“
ÿ

ξĂη

p´1q|ηzξ|F pξq, η P Γ0.
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For any Borel probability measure µ, which has finite local moments and is locally
absolutely continuous w.r.t. the Poisson measure, we define the correlation function
kµ : Γ0 ÝÑ R` by the relation

ż

Γ

KGpγqdµpγq “

ż

Γ0

Gpηqkµpηqdλpηq.

Above relation is assumed to hold for all functions G P BbspΓ0q. The correlation function is
uniquely determined by above relation and is locally integrable. Conversely suppose that
for a given measure µ there exits a (locally integrable) correlation function kµ. Then µ is
locally absolutely continuous w.r.t. the Poisson measure and has finite local moments. For
such a measure µ and correlation function kµ the K-transform can be uniquely extended
to a linear contraction operator K : L1pΓ0, kµdλq ÝÑ L1pΓ, dµq such that

KGpγq “
ÿ

ηŤγ

Gpηq

holds for µ-a.a. γ P Γ and any G P L1pΓ0, kµdλq. Here and in the following we use
for simplicity the notation L1pΓ0, kµdλq “: Lkµ and if kµpηq “ eβ|η|, then we also write
Lβ instead of Leβ|¨| . The next statement was proved, e.g., in [KK02] and establishes the
precise relation between correlation functions and Borel probability measures on Γ.

Theorem 3.1.1. The following two assertions hold:

1. Let µ be a Borel probability measure on Γ with correlation function kµ. Then
kµpHq “ 1 and kµ is positive definite, i.e. for any G P BbspΓ0q with KG ≥ 0

ż

Γ0

Gpηqkµpηqdλpηq ≥ 0

holds.

2. Conversely, let k : Γ0 ÝÑ R` be positive definite such that kpHq “ 1 holds. Suppose
that there exist β P R and a constant Cpkq ą 0 such that

kpnqpx1, . . . , xnq ≤ Cpkqeβn

holds. Then there exists a unique probability measure µ on Γ with k as its correlation
function.

Denote by Pβ the space of all probability measures µ such that for each µ there exists
a correlation function kµ and this function satisfies for some constant Cpµq ą 0

kµpηq ≤ Cpµqeβ|η|, η P Γ0. (3.1)
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Let Kβ be the Banach space of equivalence classes of functions k : Γ0 ÝÑ R equipped
with the norm

}k}Kβ “ ess sup
ηPΓ0

|kpηq|

eβ|η|
.

Then we can identify L˚β with Kβ and the duality is given by

xG, ky “

ż

Γ0

Gpηqkpηqdλpηq,

where G P Lβ and k P Kβ. The main part of the construction of an evolution of states is
related to the proof that a given function k is in fact positive definite.

3.1.2 Markov dynamics on Γ

Let L be a Markov (pre-)generator on Γ, the precise form of L will be specified in the
next section. The aim is to construct a semigroup T ptq associated to the (backward)
Kolmogorov equation on observables F : Γ ÝÑ R

BFt
Bt

“ LFt, Ft|t“0 “ F0. (3.2)

The adjoint semigroup T ptq˚ then yields solutions to the forward Kolmogorov equation,
in the physical literature also known as the Fokker-Planck equation

B

Bt

ż

Γ

F pγqdµtpγq “

ż

Γ

pLF qpγqdµtpγq, µt|t“0 “ µ0, (3.3)

where F P FPpΓq. In [KK02, FKO09] it was proposed to study above Cauchy problems

in terms of the operators pL :“ K´1
0 LK0 and L∆ defined by the relation

ż

Γ

pLGpηqkpηqdλpηq “

ż

Γ0

GpηqL∆kpηqdλpηq, G P BbspΓ0q. (3.4)

Solutions to the Cauchy problem

BGt

Bt
“ pLGt, Gt|t“0 “ G0 (3.5)

are then called quasi-observables (evolution of quasi-observables). Solutions to (3.2) are
formally related to (3.5) by the relation Ft “ KGt. We expect that solutions to the
Cauchy problem

Bkt
Bt
“ L∆kt, kt|t“0 “ k0 (3.6)

are positive definite and hence determine uniquely a family of probability measures pµtqt≥0

such that kt is the correlation function for µt. In such a case pµtqt≥0 should be a solution
to (3.3). This general scheme will be realized for a particular choice of the operator L.
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3.1.3 General description of Vlasov scaling

The subsequent overview is a short summary of the general scheme proposed in [FKK10],
for particular examples see also [FKK11, FKK13b, BKK15] and references therein. The
aim is to construct for a given Markov (pre-)generator L on Γ a certain scaling Ln, such
that the following scheme holds. Let T∆

n ptq “ etL
∆
n be the heuristic representation of

the scaled evolution of correlation functions, see (3.6). The particular choice of L Ñ Ln
should preserve the order of singularity, that is the limit

n´|η|T∆
n ptqn

|η|k ÝÑ T∆
V ptqk, nÑ 8 (3.7)

should exist and the evolution T∆
V ptq should preserve Lebesgue-Poisson exponentials.

Namely, if r0pηq “ eλpρ0; ηq, then T∆
V ptqr0pηq “ eλpρt; ηq holds. The function ρt solves in

such a case the non-linear integro-differential equation

Bρt
Bt
“ vpρtq. (3.8)

For many particular models vpρq can be computed explicitly. Equation (3.8) is the
so-called mesoscopic limit or the kinetic description for the density of the particle sys-
tem. Instead of investigating the limits (3.7), we define renormalized operators L∆

n,ren :“

n´|η|L∆
n n

|η| and study the behaviour of its associated semigroups T∆
n,renptq when n Ñ 8.

In such a case one can compute a limiting operator

L∆
n,ren ÝÑ L∆

V , nÑ 8 (3.9)

and show that L∆
V is associated to a semigroup T∆

V ptq. This semigroup should satisfy

T∆
n,renptq ÝÑ T∆

V ptq :“ etL
∆
V . (3.10)

3.2 Main results

We present here the main results for general birth-and-death Markov evolutions. The
proofs will be given (for the two-component case) in the next chapter.

3.2.1 Description of model

Consider a birth-and-death Markov (pre-)generator L given by

pLF qpγq “
ÿ

xPγ

dpx, γzxqpF pγzxq ´ F pγqq `

ż

Rd

bpx, γqpF pγ Y xq ´ F pγqqdx. (3.11)

Here dpx, γzxq P r0,8s is the so-called death-intensity and bpx, γq P r0,8s the birth
intensity of the birth-and-death process given by the operator L. For such intensities we
suppose that the following condition is satisfied.
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(A) There exists a measurable set Γ8 Ă Γ such that for all x P Rd

Rd
ˆ Γ8 Q px, γq ÞÝÑ dpx, γzxq, bpx, γq P r0,8q (3.12)

are measurable and for any compact Λ Ă Rd and bounded set M Ă Γ0

ż

Λ

ż

M

pdpx, ηq ` bpx, ηqq dλpηqdx ă 8 (3.13)

is fulfilled. Moreover, any measure µ P Pβ is supported on Γ8, i.e. µpΓ8q “ 1.

3.2.2 Evolution of observables

For any function F P FPpΓq there exists a unique element G P BbspΓ0q such that F “ KG.
For such F and G define the norm

}F }Eβ :“ }G}Lβ “

ż

Γ0

|Gpηq|eβ|η|dλpηq,

which then satisfies

}F }L1pΓ,dπαq ≤
ż

Γ

K|G|pγqdπβpγq “

ż

Γ0

|Gpηq|eβ|η|dλpηq “ }F }Eβ .

Let Eβ stand for the completition of FPpΓq w.r.t. the norm } ¨ }Eβ . This space can be
identified with the range of the K-transform on Lβ, i.e.

Eβ – RanpKq “ tKG P L1
pΓ, dπβq | G P Lβu

holds. A sequence KGn P Eβ converges to KG if and only if Gn ÝÑ G in Lβ as n Ñ 8.
For any F P Eβ we can associate a unique function G P Lβ. This is expressed by F “ KG.
A similar construction has been used in [FKKZ12]. Let β1 ă β, then Lβ Ă Lβ1 is dense
and hence by

}F }Eβ1 “ }G}Lβ1 ≤ }G}Lβ “ }F }Eβ
this implies that Eβ ãÑ Eβ1 is continuously and dense embedded.

Remark 3.2.1. Decompose KG P Eβ into its positive and negative part, that is KG “

F` ´ F´ with F`, F´ ≥ 0, Then F˘ do not need to belong to Eβ, i.e. be of the form
F˘ “ KG˘ for some G˘ P Lβ. Therefore Eβ is not a vector lattice w.r.t. the natural
order on functions.
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Define the cumulative death intensity by

Mpηq :“
ÿ

xPη

dpx, ηzxq

and introduce cpL, β; ηq “ cpηq given by

cpηq “
ÿ

xPη

ż

Γ0

eβ|ξ||K´1
0 dpx, ¨ Y ηzxq|pξqdλpξq ` e´β

ÿ

xPη

ż

Γ0

eβ|ξ||K´1
0 bpx, ¨ Y ηzxq|pξqdλpξq.

Note that cpL, β; ηq is sub-linear in the operator L. Define on BbspΓ0q a new operator
pL :“ K´1

0 LK0 and denote by 1˚ the function given by

1
˚
pηq :“ 0|η| “

#

1, |η| “ 0

0, otherwise
.

The next statement shows that the Cauchy problems (3.2) on Eβ and (3.5) on Lβ are in
fact equivalent.

Theorem 3.2.2. Assume (A) and that cpβ; ηq is locally integrable, then the following
assertions are equivalent:

(a) The closure pL,DpLqq of pL,FPpΓqq is the generator of an analytic semigroup
pT ptqqt≥0 on Eβ such that T ptq1 “ 1 holds and T ptq is a contraction operator for
each t ≥ 0.

(b) The closure ppL,DppLqq of ppL,BbspΓ0qq is the generator of an analytic semigroup

ppT ptqqt≥0 on Lβ such that pT ptq1˚ “ 1˚ holds and pT ptq is a contraction operator for
each t ≥ 0.

This semigroups are for any KG P Eβ related by

T ptqKG “ K pT ptqG, t ≥ 0

and the corresponding generators are related by

DpLq “ KDppLq “ tKG P Eβ | G P DppLqu

and LKG “ KpLG for G P DppLq. The next proposition provides existence and uniqueness
of solutions to the Kolmogorov equation (3.2).

Proposition 3.2.3. Suppose that the intensities satisfy (A) and there exists β P R and a
constant a “ apL, βq P p0, 2q such that

cpL, β; ηq ≤ apL, βqMpηq, η P Γ0 (3.14)

holds. Then following assertions are true:
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(a) Condition (b) and therefore (a) of previous theorem are satisfied.

(b) Suppose that there exists β˚ ă β˚ with β P pβ˚, β
˚q such that for all β1 P pβ˚, β

˚q

condition (3.14) is satisfied. For β1 P pβ˚, βq let pTβ1ptqqt≥0 be the semigroup gen-
erated by the closure of pL,FPpΓqq on Lβ1. Then Eβ1 is invariant for T ptq and
T ptq “ Tβ1ptq|Eβ holds.

It should be noted that the upper bound 2 for apL, βq in (3.14) is the best possible.
Namely, there exists a model such that apβq ą 2 and equation (3.5) has for every G P Lβ
a unique solution, but such solutions do not form a strongly continuous semigroup on Lβ.

Remark 3.2.4. Let d1, b1 and d2, b2 be two pairs of birth-and-death intensities for which
condition (A) holds and denote by L1 and L2, respectively their associated generators.
Then

cpL1 ` L2, β; ηq ≤ cpL1, β; ηq ` cpL2, β; ηq

holds and hence if condition (3.14) is satisfied for L1 and L2, it is also satisfied for the
sum L1 ` L2.

Concerning continuous dependence on the intensities dpx, γzxq and bpx, γq we can prove
the following. Let dnpx, γzxq, dpx, γzxq, bnpx, γq, bpx, γq P r0,8s be given and assume that
they satisfy condition (A). In such a case there exists a common set Γ8 (independent
of n P N) such that condition (A) holds for above intensities. Denote by Ln and L the
associated Markov (pre-)generators and set

cnpβ; ηq :“`
ÿ

xPη

ż

Γ0

eβ|ξ||K´1
0 dpx, ¨ Y ηzxq ´K´1

0 dnpx, ¨ Y ηzxq|pξqdλpξq

` e´β
ÿ

xPη

ż

Γ0

eβ|ξ||K´1
0 bpx, ¨ Y ηzxq ´K´1

0 bnpx, ¨ Y ηzxq|pξqdλpξq

and Mnpηq :“
ř

xPη

dnpx, ηzxq ≥ 0.

Theorem 3.2.5. Suppose that the conditions below are fulfilled.

1. There exists β P R and a constant apβq P p0, 2q such that

cpLn, β; ηq ≤ apβqMnpηq, η P Γ0, n ≥ 1

holds.

2. There exist constants A ą 0, N P N and τ ≥ 0 such that

dnpx, ηq ≤ Ap1` |η|qNeτ |η|, η P Γ0, x P Rd

holds.
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3. cnpβ; ηq ÝÑ 0, nÑ 8 holds for all η P Γ0.

Then (3.14) is satisfied, let T ptq, Tnptq be the semigroups on Eβ associated to L and Ln,
respectively. Then for any F P Eβ

TnptqF ÝÑ T ptqF, nÑ 8

holds uniformly on compacts in t ≥ 0.

3.2.3 Evolution of states

Suppose that conditions (A) and (3.14) are fulfilled. Let pL,DpLqq be the closure of
pL,FPpΓqq in Eβ. Denote by T ptq the semigroup generated by pL,DpLqq. We suppose to
show that under additional conditions the adjoint semigroup preserves positivity. Let E˚β
be the dual space to Eβ, then each functional ` P E˚β can be represented by k` P Kβ, i.e.

`pKGq “ xG, k`y

and }`}E˚β “ }k`}Kβ holds. Let pT ptq˚qt≥0 be the adjoint semigroup on E˚β and ppT ptq˚qt≥0

be the adjoint semigroup on Kβ. Likewise we see that

pT ptq˚`qpKGq “ xG, pT ptq˚k`y, KG P Eβ, t ≥ 0 (3.15)

and }T ptq˚`}E˚β “ }
pT ptq˚k`}Kβ are satisfied. Since T ptq1 “ 1, t ≥ 0, it follows that

pT ptq˚`qp1q “ `p1q “ k`pHq

holds, which resembles the preservation of mass property. Thus we restrict all further
considerations to the case k`pHq “ 1. The general case can be obtained by normalization.
Let us start with the notion of solutions to the Fokker-Planck equation (3.3).

Definition 3.2.6. A family of Borel probability measures pµtqt≥0 Ă Pβ is said to be a
weak solution to (3.3) if for any F P FPpΓq: t ÞÝÑ xLF, µty is locally integrable and
satisfies

xF, µty “ xF, µ0y `

t
ż

0

xLF, µsyds, t ≥ 0. (3.16)

Remark 3.2.7. Let pµtqt≥0 Ă Pβ, then for any F P FPpΓq and t ≥ 0 we get F P

L1pΓ, dµtq and by (3.1)
ż

Γ

|LF pγq|dµtpγq ≤
ż

Γ0

|pLGpηq|kµtpηqdλpηq ≤ Cpµtq

ż

Γ0

|pLGpηq|eβ|η|dλpηq

also LF P L1pΓ, dµtq, where we have used F “ KG, G P BbspΓ0q Ă DppLq.
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Uniqueness is stated in the next theorem.

Theorem 3.2.8. (Uniqueness)
Suppose that (A) and (3.14) are satisfied. Then equation (3.3) has at most one solution
pµtqt≥0 Ă Pβ such that its correlation functions pktqt≥0 satisfy

sup
tPr0,T s

}kt}Kβ ă 8, @T ą 0.

Let us now focus on existence of solutions to (3.3). For a given initial state µ0 P Pβ
with correlation function kµ0 , the evolution T ptq˚µ0 “: µt P E˚β is uniquely determined

by pT ptq˚kµ0 “: kµt P Kβ, see (3.15). For existence it suffices to show that kµt is positive
definite. This resembles in proving that T ptq˚ is positivity preserving. For this purpose
additional conditions are needed.

(B) There exist constants A ą 0, τ ≥ 0 and N P N such that

bpx, ηq ` dpx, ηq ≤ Ap1` |η|qNeτ |η|, x P Rd, η P Γ0. (3.17)

(C) There exists β1 with β1 ` τ ă β such that there exists a constant apβ1q ą 0 with

cpβ1; ηq ≤ apβ1qMpηq, η P Γ0.

The crucial step in proving the positivity preservation property is identifying it with a
certain evolution of states. For such reason we approximate L by operators Lδ which fit
into the setting of the second chapter. Let pRδqδą0 be a sequence of continuous integrable
functions with 0 ă Rδ ≤ 1 and Rδpxq 1 1 as δ Ñ 0 for all x P Rd. We will call such
sequence of functions ”localization sequence”. Define a new birth intensity by bδpx, ηq :“
Rδpxqbpx, ηq for all x P Rd and η P Γ0. Then by (3.17) this intensities satisfy for all δ ą 0

ż

Rd

bδpx, ηqdx ă 8, η P Γ0.

The considerations of the second chapter imply for each η P Γ0 the existence of an associ-
ated (minimal) birth-and-death process pηtqt≥0 starting from η with state space Γ0. The
following is our last assumption for existence of an evolution of states.

(D) There exists a localization sequence pRδqδą0 such that the associated (minimal)
birth-and-death process is conservative, i.e. has no explosion starting from any
initial point η P Γ0.

The next proposition is the main result for this section. Note that, Pβ1 Ă Pβ Ă E˚β .
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Proposition 3.2.9. (Existence)
Suppose that (A) – (D) and (3.14) are fulfilled. Then T ptq˚Pβ1 Ă Pβ. In particular for
any µ0 P Pβ1 there exists exactly one solution pµtqt≥0 Ă Pβ to (3.3) given by T ptq˚µ0 “ µt.
If conditions (B) and (C) hold for all τ ą 0, then T ptq˚Pβ Ă Pβ is satisfied.

Continuity with respect to initial data establishes in the following estimate

}T ptq˚µ0}E˚β “ }kµt}Kβ ≤ }kµ0}Kβ “ }µ0}E˚β , t ≥ 0,

where pT ptq˚kµ0 “ kµt P Kβ is the correlation function corresponding to the evolution of
states µt “ T ptq˚µ0 P Pβ. Continuity in t ≥ 0 (in general) only holds in the topology
σpE˚β , Eβq. However, if we suppose that µ0 P E˚β1 holds, then

}T ptq˚µ0 ´ µ0}E˚β “ }kµt ´ kµ0}Kβ , t ≥ 0

and the evolution kµt is in fact continuous in the norm. Because Eβ is not a Banach
lattice w.r.t. the natural order on functions we are not able to show that T ptq is positivity
preserving. Above statement only implies for all 0 ≤ F P Eβ and µ0 P Pβ1 that

ż

Γ

T ptqF pγqdµ0pγq ≥ 0

holds. The construction of the Markov function has been proposed in [KKM08].

Corollary 3.2.10. Suppose that (3.14) and (A) – (D) hold for any τ ą 0 in (3.17). Then
for any µ P Pβ there exists a Markov function pXµ

t qt≥0 on the configuration space Γ with
the initial distribution µ associated with the generator L.

3.2.4 Ergodicity

For a given measure µ P Pβ let xF yµ :“
ş

Γ

F pγqdµpγq. The next statement provides

ergodicity for the semigroups pT ptqqt≥0 and pT ptq˚qt≥0.

Proposition 3.2.11. Suppose that conditions (A) – (D), (3.14) and inf
|η|≥1

Mpηq ą 0 are

fulfilled. Then there exists a unique invariant measure µinv P Pβ, i.e.

ż

Γ

LF pγqdµinvpγq “ 0, @F P FPpΓq

and T ptq˚µinv “ µinv hold for all t ≥ 0. Moreover, there exist constants C, ε ą 0 such that
the assertions below are satisfied:
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1. For each F P Eβ

}T ptqF ´ xF yµinv
}Eβ ≤ Ce´εt}F ´ xF yµinv

}Eβ , t ≥ 0

holds.

2. For any µ0 P Pβ1 let µt “ T ptq˚µ0 P Pβ, then

}µt ´ µinv}E˚β ≤ Ce´εt}µ0 ´ µinv}E˚β , t ≥ 0

holds. If conditions (B) and (C) hold for any τ ą 0, then above claim also holds for
µ P Pβ.

The aggregation model is one particular example for which the cumulative death
intensity is not bounded away from zero, i.e. the condition inf

|η|≥1
Mpηq ą 0 is not satisfied,

cf. [FKKZ14].

3.2.5 Vlasov scaling

Suppose we have given scaled intensities dnpx, γq, bnpx, γq P r0,8s which all satisfy con-
dition (A). Let

LnF pγq “
ÿ

xPγ

dnpx, γzxqpF pγzxq ´ F pγqq ` n

ż

Rd

bnpx, γqpF pγ Y xq ´ F pγqqdx,

define pLn :“ K´1
0 LnK0 and the operator pLn,ren :“ Rn

pLnRn´1 with RαGpηq :“ α|η|Gpηq.
Introduce for n ≥ 1

cnpβ; ηq “ `
ÿ

xPη

ż

Γ0

|K´1
0 dnpx, ¨ Y ηzxq|pξqn

|ξ|eβ|ξ|dλpξq

` e´β
ÿ

xPη

ż

Γ0

|K´1
0 bnpx, ¨ Y ηzxq|pξqn

|ξ|eβ|ξ|dλpξq

and Mnpηq :“
ř

xPη

dnpx, ηzxq. For passing to the limit n Ñ 8 we need the following

conditions given below:

(V1) There exists apβq P p0, 2q such that

cnpβ; ηq ≤ apβqMnpηq, η P Γ0, n P N

holds.
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(V2) For all ξ P Γ0 and x P Rd the following limits exist in Lβ and are independent of ξ

lim
nÑ8

n|¨|pK´1
0 dnpx, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 dnpx, ¨qq “: DV
x

lim
nÑ8

n|¨|pK´1
0 bnpx, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 bnpx, ¨qq “: BV
x

(V3) Let MV pηq :“
ř

xPη`
DxpHq, then there exists σ ą 0 such that either

Mnpηq ≤ σMV pηq, η P Γ0, n P N

or
Mnpηq ≥ σMV pηq, η P Γ0, n P N

are satisfied.

Remark 3.2.12. A collection of particular examples satisfying condition (V2) can be
found in [FKK10, FFH`15]. For many particular models Mn is monotone in n P N and
hence condition (V3) is satisfied.

The next statements realizes the general approach for Vlasov scaling on the level of quasi-
observables and correlation functions. It is a refinement of the result proved in [FKK12]
where only strong solutions have been considered and is stated here only for completeness.

Theorem 3.2.13. Suppose that conditions (V1) – (V3) are fulfilled. Then the following
assertions hold:

(a) For any n ≥ 1 the closure ppLn,ren, DppLn,renqq of ppLn,ren, BbspΓ0qq is the generator of

an analytic semigroup ppTn,renptqqt≥0 of contractions on Lβ.

(b) There exists an analytic semigroup ppT V ptqqt≥0 of contractions on Lβ such that for
any G P Lβ

pTn,renptqG ÝÑ pT V ptqG, nÑ 8

holds uniformly on compacts in t ≥ 0. The space BbspΓ0q is a core for the generator

ppLV , DppLV qq of ppT V ptqqt≥0.

(c) For any r0 P Kβ the unique weak solution to

B

Bt
xG, kt,ny “ xpLn,renG, kt,ny, kt,n|t“0 “ r0, G P BbspΓ0q

is given by kt,n “ pTn,renptq
˚r0, and the unique weak solution to

B

Bt
xG, rty “ xpLVG, rty, rt|t“0 “ r0, G P BbspΓ0q (3.18)

is given by rt “ pT V ptq˚r0.
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(d) Let r0pηq “
ś

xPη

ρ0pxq and ρ0 P L
8pRdq with }ρ0}L8 ≤ eβ. Assume that ρt P L

8pRdq

with }ρt}L8 ≤ eβ is a classical solution to

Bρt
Bt
pxq “ ´

ż

Γ0

eλpρt; ξqD
V
x pξqdλpξqρtpxq `

ż

Γ0

eλpρt; ξqB
V
x pξqdλpξq (3.19)

and initial condition ρt|t“0 “ ρ0. Then rtpηq :“
ś

xPη

ρtpxq is a weak solution to (3.18).

Remark 3.2.14. For many particular models we also can show the convergence in (V2)
in the operator norm of LpLβ,Lβ1q, cf. [FFH`15]. In such a case similar statements hold
without condition (V3). Condition (V3) can also be replaced by

dnpx, ηq ≤ Ap1` |η|qNeτ |η|, η P Γ0, x P Rd

for all n P N and some constants A ą 0, N P N and τ ≥ 0.

Property (d) is known as the Chaos preservation property and the integro-differential
equation for ρt is the same as in (3.8). The last statement also provides uniqueness of
solutions to the integro-differential equation (3.19). Namely, for any initial condition
ρ0 P L

8pRdq with }ρ0}L8 ≤ eβ there exists at most one classical solution ρt P L
8pRdq with

}ρt}L8 ≤ eβ. It is also possible to rewrite above result in terms of observables and states,
the precise statement is given below.

Proposition 3.2.15. Suppose that conditions (V1) – (V3) are satisfied. Then the fol-
lowing holds:

(a) For F “ KG P Eβ the relations

Tn,renptqKG :“ K pTn,renptqG, t ≥ 0, n P N

and
T V ptqKG :“ pT V ptqG, t ≥ 0

define analytic semigroups of contractions on Eβ. The generators are given by

pKpLn,ren, KDppLn,renqq and pKpLV , KDppLV qq.

(b) Above semigroups satisfy for any F P Eβ

Tn,renptqF ÝÑ T V ptqF, nÑ 8

holds uniformly on compacts in t ≥ 0.
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(c) Let r0 and rt be as in Theorem 3.2.13, then for any F P Eβ
ż

Γ

Tn,renptqF pγqdπr0pγq ÝÑ

ż

Γ

T V ptqF pγqdπr0pγq “

ż

Γ

F pγqdπrtpγq, nÑ 8

holds uniformly on compacts in t ≥ 0.

For F “ KG it follows that
ż

Γ

Tn,renptqF pγqdπr0pγq “

ż

Γ0

GpηqppTn,renptqr0qpηqdλpηq,

but pTn,renptqr0 does not need to be positive definite and hence correspond to a probability
measure on Γ. In fact, we can expect for chaotic initial conditions only that the evolution
rt is positive definite.

3.2.6 Extension to time-inhomogeneous intensities

For t ≥ 0 let dpt, x, γq, bpt, x, γq P r0,8s be given and suppose that there exists Γ8
(independent of t ≥ 0) such that condition (A) is satisfied for any fixed t ≥ 0. We are
going to apply the results obtained in the first chapter for which we suppose that the
following conditions hold:

(H1) There exist β˚ ă β˚ such that for all β P pβ˚, β
˚q and t ≥ 0 there exists a constant

apLptq; βq P p0, 2q satisfying

cpLptq, β; ηq ≤ apLptq, βqMpt, ηq, η P Γ0, t ≥ 0,

where Mpt, ηq “
ř

xPη

dpt, x, ηzxq.

(H2) There exist constants A ą 0 and N P N such that

dpt, x, ηq ≤ Ap1` |η|qN , η P Γ0, x P Rd, t ≥ 0

holds.

(H3) For any β1, β P pβ˚, β
˚q with β1 ă β the operator t ÞÝÑ Lptq P LpEβ, Eβ1q is continuous

in the uniform operator topology.

Note that by (H1) and (H2) it follows that Lptq P LpEq where E “ pEβqβPpβ˚,β˚q is a scale
of Banach spaces. Property (H3) states that L “ pLptqqt≥0 is continuous in the uniform
topology in the scale E .
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Theorem 3.2.16. Suppose that conditions (H1) – (H3) are fulfilled. Then there exist a
forward evolution system pUpt, sqq0≤s≤t and a backward evolution system pV ps, tqq0≤s≤t in
the scale E having generator pLptqqt≥0 P LpEq.

Above statement implies that the corresponding forward and backward evolution equa-
tions are well-posed on any Eβ, see Theorem 1.1.6.

Theorem 3.2.17. Suppose that conditions (H1), (H3) and

bpt, x, ηq ` dpt, x, ηq ≤ Ap1` |η|qN , η P Γ0, t ≥ 0 (3.20)

hold. Moreover, assume that for any fixed t ≥ 0 condition (D) holds for the operator Lptq.
Then U˚ps, tq and V ˚pt, sq are both positivity preserving.

In the case of above statement the adjoint evolution systems U˚ps, tq and V ˚pt, sq
provide for each µ P Pβ unique solutions to the time-dependent Fokker-Planck equations

B

Bs

ż

Γ

F pγqU˚ps, tqµpdγq “ ´

ż

Γ

LpsqF pγqU˚ps, tqµpdγq, F P FPpΓq

and
B

Bt

ż

Γ

F pγqV ˚pt, sqµpdγq “

ż

Γ

LptqF pγqV ˚pt, sqµpdγq, F P FPpΓq,

see Theorem 1.1.7. The next statement provides Vlasov scaling. For any n ≥ 1 let
dnpt, x, γzxq, bnpt, x, γq P r0,8s be given and define

cnpt, β; ηq “ `
ÿ

xPη

ż

Γ0

|K´1
0 dnpt, x, ¨ Y ηzxq|pξqn

|ξ|eβ|ξ|dλpξq

` e´β
ÿ

xPη

ż

Γ0

|K´1
0 bnpt, x, ¨ Y ηzxq|pξqn

|ξ|eβ|ξ|dλpξq.

Instead of the conditions (V1) – (V3) we suppose that the conditions given below are
satisfied.

(W1) There exist β˚ ă β˚ such that for any β P pβ˚, β
˚q and any t ≥ 0 there exists

apt, βq P p0, 2q satisfying

cnpt, β; ηq ≤ apt, βqMnpt, ηq, η P Γ0, n P N,

where Mnpt, ηq :“
ř

xPη

dnpt, x, ηzxq.
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(W2) There exist constants A ą 0 and N P N such that

dnpt, x, ηq ≤ Ap1` |η|qN , t ≥ 0, η P Γ0, x P Rd

holds.

(W3) For all ξ P Γ0 and x P Rd the following limits exist in the operator norm LpLβ,Lβ1q
for any β1 ă β with β1, β P pβ˚, β

˚q and are independent of ξ.

lim
nÑ8

n|¨|pK´1
0 dnpt, x, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 dnpt, x, ¨qq “: DV
x pt, ¨q

lim
nÑ8

n|¨|pK´1
0 bnpt, x, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 bnpt, x, ¨qq “: BV
x pt, ¨q.

Moreover, above limits are uniform on any compact in t ≥ 0.

For n ≥ 1 let pLnptq :“ K´1
0 LnptqK0, pLn,renptq :“ Rn

pLnptqRn´1 and denote by L the scale
of Banach spaces given by L “ pLβqβPpβ˚,β˚q.

Theorem 3.2.18. Suppose that conditions (W1) – (W3) are satisfied and assume that

the operators pLn,renptq are continuous in the uniform topology on LpLq in t ≥ 0. Then the
following statements are satisfied:

(a) There exist forward and backward evolution systems pUn,renpt, sq and pVn,renps, tq, re-

spectively having generator pLn,renptq P LpLq.

(b) There exist forward and backward evolution systems pUV pt, sq and pV V ps, tq, respec-
tively such that

pUn,renpt, sq ÝÑ pUV
pt, sq, nÑ 8

and
pVn,renps, tq ÝÑ pV V

ps, tq, nÑ 8

holds uniformly on compacts in t ≥ 0 in the uniform topology on LpLq. The gener-

ators satisfy pLn,renptq ÝÑ pLV ptq as n Ñ 8 w.r.t. the uniform operator topology on
LpLq and uniformly on compacts in t ≥ 0.

(c) For any r P Kβ the unique weak solution to the backward equation with s P r0, tq

B

Bs
xG, ks,ny “ ´xpLn,renpsqG, ks,ny, ks,n|s“t “ r, G P BbspΓ0q

is given by ks,n “ pUn,renps, tq
˚r and the unique weak solution to the forward equation

with t P rs,8q

B

Bt
xG, kt,ny “ xpLn,renptqG, kt,ny, kt,n|t“s “ r, G P BbspΓ0q

is given by kt,n “ pVn,renpt, sq
˚r. The same assertions hold with pLn,renptq replaced by

pLV ptq and pUn,renps, tq
˚, pVn,renpt, sq

˚ replaced by pUV ps, tq˚, pV V pt, sq˚
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(d) Let rpηq “
ś

xPη

ρpxq and ρ P L8pRdq with }ρ}L8 ≤ eβ. Assume that ρs P L
8pRdq with

}ρs}L8 ≤ eβ is a classical solution to the backward equation s P r0, tq

Bρs
Bs
pxq “

ż

Γ0

eλpρs; ξqD
V
x ps, ξqdλpξqρspxq ´

ż

Γ0

eλpρs; ξqB
V
x ps, ξqdλpξq

and initial condition ρs|s“t “ ρ. Then rspηq :“
ś

xPη

ρspxq is a weak solution to

B

Bs
xG, rsy “ ´xpLV psqG, rsy, rs|s“t “ r, G P BbspΓ0q.

Assume that ρt P L
8pRdq with }ρt}L8 ≤ eβ is a classical solution to the forward

equation with t P rs,8q

Bρt
Bt
pxq “ ´

ż

Γ0

eλpρt; ξqD
V
x pt, ξqdλpξqρtpxq `

ż

Γ0

eλpρt; ξqB
V
x pt, ξqdλpξq

and initial condition ρt|t“s “ ρ. Then rtpηq :“
ś

xPη

ρtpxq is a weak solution to

B

Bt
xG, rty “ xpLV ptqG, rty, rt|t“s “ r, G P BbspΓ0q.

3.3 Finite system in ergodic environment

The main aim for this section is to describe the behaviour of a system with state space Γ0

evolving in the presence of an equilibrium, ergodic environment, which is described by a
Markov process with the state space Γ and an associated invariant measure µ. This situa-
tion is a particular case of so-called random evolution framework, see e.g. [Pin91, SHS02].
Examples for such environments have been constructed e.g. in [AKR98a, AKR98b, KL05].
There (via the Dirichlet forms technique) the existence of a Markov semigroup TEptq on
L2pΓ, dµq has been shown, where µ is the unique invariant measure and TEptq is symmet-
ric on L2pΓ, dµq. As a consequence this semigroup can be extended to all LppΓ, dµq with
1 ≤ p ă 8 and for p “ 1 this extension, also denoted by TEptq, gives the evolution of
densities. More precisely, if R P L1pΓ, dµq and the environment is in the initial state Rdµ,
then the time evolution is given by Rtdµ, where Rt “ TEptqR. Above extension TEptq is
ergodic on L1pΓ, dµq, i.e., TEptqRÑ

ş

Γ

Rpγqdµpγq, tÑ 8 in L1pΓ, dµq. Denote by LE its

generator. We will study the evolution of a system described by the Kolmogorov operator

pLSF qpγ, ηq “
ÿ

ξĂη

ż

Γ0

pF pγ, ηzξ Y ζq ´ F pγ, ηqqKpγ, ξ, η, ζqdλpζq.
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The kernel Kpγ, ξ, η, ζq ≥ 0 depends on the present microscopic state γ P Γ of the
environment. Therefore, solutions to the Fokker-Planck equation

Bρt
Bt
“ pLSq˚ρt ` L

Eρt, ρt|t“0 “ ρ0,

on the space L1pΓˆ Γ0, dpµb λqq describe the evolution of densities of the joint Markov
process for the system and environment. Here pLSq˚ stands for the adjoint operator on
densities ρpγ, ηq, which depends on γ as a parameter but acts only on the variable η.
Similarly, LE acts only on the first variable γ. The weak-coupling limit is obtained via
an approximation ρεt , where ρεt solves the rescaled version of the Fokker-Planck equation

Bρεt
Bt
“ pLSq˚ρεt `

1

ε
LEρεt , ρεt |t“0 “ ρ0 P L

1
pΓ0, dλq.

Thus we will seek for the limit ρεt Ñ ρt when εÑ 0. In such a case we prove that ρt solves
the Fokker-Planck equation for a finite system determined by the averaged (pre-)generator

LF pηq “
ÿ

ξĂη

ż

Γ0

pF pηzξ Y ζq ´ F pηqqKpξ, η, ζqdλpζq,

where Kpξ, η, ζq “
ş

Γ

Kpγ, ξ, η, ζqdµpγq. The aim is to realize this approach and show for

one specific example how this can be applied.

3.3.1 Weak-coupling limit

Let us start with the main assumption on the environment process on Γ:

(E) There exists a probability measure µ on Γ and a positive semigroup of contractions
TEptq on L1pΓ, dµq, which is assumed to be L1-ergodic, i.e., for each R P L1pΓ, dµq

ż

Γ

|TEptqR ´ xRyµ|dµÑ 0, tÑ 8.

Here xRyµ “
ş

Γ

Rdµ denotes the average of R with respect to µ.

Denote by pLE, DpLEqq its generator. It is well-known that Lµ :“ L1pΓ Ñ L1pΓ0, dλq, dµq
can be identified with L1pΓˆ Γ0, dpµb λqq and the subspace

D “

#

f “
n
ÿ

k“1

Rkρk

ˇ

ˇ

ˇ

ˇ

n P N, Rk P L
1
pΓ, dµq, ρk P L

1
pΓ0, dλq

+

Ă Lµ
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is dense. Since TEptq is positive it can be uniquely extended to Lµ, cf. [Gra04], such that
for f P D

TEptqf “
n
ÿ

k“1

pTEptqRkqρk.

One has }pTEptqfqp¨, γq}L1pΓ0,dλq ≤ TEptq}fp¨, γq}L1pΓ0,dλq for all f P D, thus this extension
will be a positive strongly continuous semigroup of contractions which shall be again
denoted by TEptq. For convenience we also denote the generator of the extended semigroup
by pLE, DpLEqq. This generator can be characterized by the relation

LEf “
n
ÿ

k“1

pLERkqρk,

where f P D with Rk P DpL
Eq. For f P D we obtain

}TEptqf ´ xfyµ}Lµ ≤
n
ÿ

k“1

}TEptqRk ´ xRkyµ}L1pΓ,dµq}ρk}L1pΓ0,dλq Ñ 0, tÑ 8

and since TEptq is a semigroup of contractions and D dense this implies for each f P Lµ

}TEptqf ´ xfyµ}Lµ Ñ 0, tÑ 8

Note that xfyµpηq :“
ş

Γ

fpγ, ηqdµpγq is simply the projection of Lµ onto L1pΓ0, dλq.

For the description of the system process we suppose that K is measurable with respect
to all variables and

ż

Γ

ż

Γ0

Kpγ, ξ, η, ζqdλpζqdµpγq ă 8, @ξ, η P Γ0 (3.21)

holds. Let us outline the construction of the evolution of densities on Lµ “ L1pΓ ˆ
Γ0, dpµb λqq. First of all, the Markov (pre-)generator LS is assumed to be given by

LSF pγ, ηq “
ÿ

ξĂη

ż

Γ0

pF pγ, ηzξ Y ζq ´ F pγ, ηqqKpγ, ξ, η, ζqdλpζq. (3.22)

It can be rewritten as

LSF pγ, ηq “

ż

Γ0

pF pγ, ωq ´ F pγ, ηqqQpγ, η, dωq,

where

Qpγ, η, Aq “
ÿ

ξĂη

ż

Γ0

1Apηzξ Y ζqKpγ, ξ, η, ζqdλpζq.
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Define qpγ, ηq :“ Qpγ, η,Γ0q “
ř

ξĂη

ş

Γ0

Kpγ, ξ, η, ζqdλpζq, then the adjoint operator on

densities ρ P Lµ is given by

pLSq˚ρpγ, ηq “ ´qpγ, ηqρpγ, ηq ` pB˚ρqpγ, ηq,

where

pB˚ρqpγ, ηq “
ÿ

ξĂη

ż

Γ0

ρpγ, ηzξ Y ζqKpγ, ζ, ηzξ Y ζ, ξqdλpζq. (3.23)

We are interested in the asymptotic regime εÑ 0 for solutions ρεt to the Cauchy problems

Bρεt
Bt
“ pLSq˚ρεt `

1

ε
LEρεt , ρεt |t“0 “ ρ0 P L

1
pΓ0, λq Ă Lµ (3.24)

on Lµ. Typically, it is hard to construct solutions to (3.24) in this generality. Let us
define approximations pLSδ q

˚ by setting Kδpγ, ξ, η, ζq :“ e´δqpγ,ηqKpγ, ξ, η, ζq. Then LSδ is
defined by (3.22) with K replaced by Kδ and pLSδ q

˚ is its adjoint given by

pLSδ q
˚ρpγ, ηq “ ´qpγ, ηqe´δqpγ,ηqρpγ, ηq ` pB˚δ ρqpγ, ηq.

The operator B˚δ is simply given by (cf. (3.23))

pB˚δ ρq “
ÿ

ξĂη

ż

Γ0

ρpγ, ηzξ Y ζqe´δqpγ,ηzξYζqKpγ, ζ, ηzξ Y ζ, ξqdλpζq.

Because of

}B˚δ ρ}Lµ ≤
ż

Γ

ż

Γ0

ż

Γ0

ÿ

ξĂη

|ρpγ, ηzξ Y ζq|e´δqpγ,ηzξYζqKpγ, ζ, ηzξ Y ζ, ξqdλpζqdλpηqdµpγq

“

ż

Γ

ż

Γ0

|ρpγ, ηq|e´δqpγ,ηqqpγ, ηqdλpηqdµpγq

≤ 1

δ
}ρ}Lµ

the operator B˚δ is bounded on Lµ and hence so is pLSδ q
˚. Let us fix the notation for the

limiting objects when εÑ 0 and δ Ñ 0. Define the averaged functions K and Kδ by

Kpξ, η, ζq :“

ż

Γ

Kpγ, ξ, η, ζqdµpγq (3.25)
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and

Kδpξ, η, ζq :“

ż

Γ

e´δqpγ,ηqKpγ, ξ, η, ζqdµpγq. (3.26)

The results obtained in the second chapter show that there exist semigroups T ptq and T δptq
given by the associated transition probability functions P and P δ which are determined
by

LF pηq “
ÿ

ξĂη

ż

Γ0

pF pηzξ Y ζq ´ F pηqqKpξ, η, ζqdλpζq

and

LδF pηq “
ÿ

ξĂη

ż

Γ0

pF pηzξ Y ζq ´ F pηqqKδpξ, η, ζqdλpζq,

cf. (2.50) and (2.51). The adjoint semigroups on L1pΓ0, dλq are denoted by T ptq˚ and
T δptq

˚ respectively. The corresponding generators are simply given by

pL
˚

δρqpηq “ ´qδpηqρpηq `
ÿ

ξĂη

ż

Γ0

ρpηzξ Y ζqKδpζ, ηzξ Y ζ, ξqdλpζq

where qδpηq “
ř

ξĂη

ş

Γ0

Kδpξ, η, ζqdλpζq. The same holds for L
˚

with Kδ replaced by K.

Proposition 3.3.1. Assume that condition (3.21) satisfied. Then for any ε ą 0 the
operator pLSδ q

˚ ` 1
ε
LE is the generator of a sub-stochastic semigroup Tε,δptq on Lµ. For

any δ ą 0 and any ρ P L1pΓ0, dλq

lim
εÑ0

Tε,δptqρ “ T δptq
˚ρ (3.27)

holds uniformly on compacts in t ≥ 0. Assume that T ptq˚ is stochastic, then for any
ρ P L1pΓ0, dλq

lim
δÑ0

T δptq
˚ρ “ T ptq˚ρ (3.28)

holds uniformly on compacts in t ≥ 0.

Above assumption for T ptq˚ being stochastic has been characterized in Theorem 2.4.2.

Proof. The operator 1
ε
LE is for any ε ą 0 the generator of the semigroup TEp t

ε
q on Lµ.

Since pLSδ q
˚ is bounded on Lµ also the sum pLSδ q

˚ ` 1
ε
LE is the generator of a semigroup

Tε,δptq. Due to the Trotter product formula this semigroup is sub-stochastic. So let us
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show (3.27), which holds true if we can apply [Kur73, Theorem 2.1]. Therefore observe
that for ρ P Lµ and λ ą 0

›

›

›

›

›

›

λ

8
ż

0

e´λtTEptqρdt´ xρyµ

›

›

›

›

›

›

Lµ

≤
8
ż

0

e´s
›

›

›
TE

´ s

λ

¯

ρ´ xρyµ

›

›

›

Lµ
ds.

Since TEptq is ergodic on Lµ it follows that for fixed s ≥ 0 the integrand tends to zero as
λ Ñ 0. Due to }xρyµ}Lµ ≤ }ρ}Lµ and the contraction property of TEptq the integrand is
bounded by 2}ρ}Lµe

´s and hence dominated convergence implies for all ρ P Lµ

Pρ :“ lim
λÑ0

λ

8
ż

0

e´λtTEptqρdt “ xρyµ.

The operator P is a projection on Lµ with range RanpP q – L1pΓ0, dλq. Following the

notion of [Kur73] Cρ :“ P pLSδ q
˚ρ “ L

˚

δρ is defined on L1pΓ0, dλq and is additionally
bounded, which implies (3.27). For the second assertion observe that by Theorem 2.4.2

Dom :“

$

&

%

ρ P L1
pΓ0, dλq

ˇ

ˇ

ˇ

ˇ

ż

Γ0

qpηq|ρpηq|dλpηq ă 8

,

.

-

is a core for T ptq˚, since T ptq˚ is stochastic. For any ρ P Dom it holds

}L
˚

δρ´ L
˚
ρ}

≤
ż

Γ0

|ρpηq||qδpηq ´ qpηq|dλpηq

`

ż

Γ0

ÿ

ξĂη

ż

Γ0

|ρpηzξ Y ζq||Kδpζ, ηzξ Y ζ, ζq ´Kpζ, ηzξ Y ζ, ξq|dλpζqdλpηq

and by (3.25) and (3.26) for any δ ą 0 we obtain

|Kδpζ, ηzξ Y ζ, ξq ´Kpζ, ηzξ Y ζ, ζq| ≤
ż

Γ

|1´ e´δqpγ,ηzξYζq|Kpγ, ζ, ηzξ Y ζ, ξqdµpγq.

Since the integrand is bounded by 2Kpγ, ζ, ηzξ Y ζ, ξq and tends to zero for any γ P Γ,
dominated convergence yields that |Kδpζ, ηzξ Y ζ, ξq ´ Kpζ, ηzξ Y ζ, ζq| Ñ 0 as δ Ñ 0
for any η P Γ0, ξ Ă η and ζ P Γ0. Finally due to |Kδpζ, ηzξ Y ζ, ξq ´Kpζ, ηzξ Y ζ, ζq| ≤
2Kpζ, ηzξ Y ζ, ξq the second term tend to zero as δ Ñ 0. For the first term observe

|qδpηq ´ qpηq| ≤
ÿ

ξĂη

ż

Γ0

|Kδpξ, η, ζq ´Kpξ, η, ζq|dλpζq,

then above argument implies qδpηq ÝÑ qpηq for all η P Γ0 as δ Ñ 0. The assertion follows
from qδ ≤ q and dominated convergence.
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3.3.2 Example: Medical treatment of tumours

We aim to describe the (stochastic) behaviour of tumours cells influenced by an injection
of a certain medicine. The distribution of the medicine within the organism is assumed
to be diffusive and hence is modelled by an equilibrium diffusion process on Γ for a
given invariant (Gibbs) measure µ. For the construction of equilibrium diffusions and
ergodicity see [AKR98a, AKR98b]. The behaviour of the tumour cells is modelled by a
birth-and-death process on Γ0 with Markov (pre-)generator

pLSF qpγ, ηq “
ÿ

xPη

¨

˝mpx, γq `
ÿ

yPηzx

a´px´ yq

˛

‚pF pγ, ηzxq ´ F pγ, ηqq

`
ÿ

xPη

λpx, γq

ż

Rd

a`px´ yqpF pγ, η Y yq ´ F pγ, ηqqdy.

The statistical dynamics for such model (without the presence of an environment) has
been analysed, e.g., in [FM04, FKK09, FKKK15, KK16] and in the second chapter. The
proliferation of cells is described by the probability density a` and competition of tumour
cells by the kernel a´ ≥ 0. The influence of the medicine on the tumour enters through the
mortality mpx, γq ą 0 and proliferation intensity λpx, γq ą 0. After scaling the averaged
dynamics will be given by the generator

pLF qpηq “
ÿ

xPη

¨

˝mpxq `
ÿ

yPηzx

a´px´ yq

˛

‚pF pηzxq ´ F pηqq

`
ÿ

xPη

λpxq

ż

Rd

a`px´ yqpF pη Y yq ´ F pηqqdy,

where mpxq “
ş

Γ

mpx, γqdµpγq and λpxq “
ş

Γ

λpx, γqdµpγq are the averaged intensities.

Proceeding as in the previous section denote by Tε,δptq the scaled semigroup on densities
Lµ and by T ptq˚ and T δptq

˚ the semigroups on L1pΓ0, dλq defined by the adjoint operator

L
˚

of L respectively their counterparts scaled by δ ą 0. The next result states conditions
for which these semigroups exist and (3.27) holds.

Theorem 3.3.2. Assume that all intensities a˘,m, λ are non-negative, measurable, that
a` is a probability density and that mpx, ¨q, λpx, ¨q are integrable with respect to µ for any
x P Rd. Then the semigroups Tε,δptq, T δptq

˚ and T ptq˚ exist and (3.27) holds.
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Proof. First of all

qpγ, ηq “
ÿ

xPη

mpx, γq `
ÿ

xPη

ÿ

yPηzx

a´px´ yq `
ÿ

xPη

λpx, γq

“
ÿ

ξĂη

ż

Γ0

Kpγ, ξ, η, ζqdλpζq

for any η P Γ0 and hence
ż

Γ

ż

Γ0

Kpγ, ξ, η, ζqdλpζqdµpγq ≤
ż

Γ

qpγ, ηqdµpγq ă 8

implies (3.21). The existence of the semigroup T ptq and T δptq has been established in the
previous chapter. The considerations of the previous sections imply the existence of the
semigroups and property (3.27) follows from Proposition 3.3.1.

The reader may wonder why such weak assumptions are sufficient for existence and
convergence of the semigroups. The crucial point here is that we consider an approxima-
tion by bounded linear operators and hence for each δ ą 0 no additional conditions are
needed. In order to pass to the limit δ Ñ 0 additional assumptions are necessary, which
are given below. This statement is a particular case of the BDLP-model considered in the
second chapter, see also [Kol06].

Theorem 3.3.3. Assume that the conditions of previous theorem are fulfilled. If m,λ, a´

are bounded, then T ptq˚ is stochastic and hence (3.28) holds. If m,λ, a´ are locally
bounded, then T ptq˚ is still stochastic, provided there exists a continuous function ϕ :
Rd ÝÑ r1,8q with ϕpxq Ñ 8 when |x| Ñ 8 and c ą 0 such that

λpxqpa` ˚ ϕqpxq ≤ cϕpxq ` ϕpxqmpxq, x P Rd (3.29)

holds.

As a concrete case we can take µ “ πz that is the Poisson measure with intensity
z ą 0. Let us take for the interactions

mpx, γq “ m0 `
ÿ

yPγ

κpx´ yq

and
λpx, γq “ λ0 `

ÿ

yPγ

ψpx´ yq

with λ0 ą m0, 0 ≤ κ, ψ P L1pRdq and xψy ă xκy. Then m “ m0` z
ş

Rd
κpyqdy “ m0` zxκy

and λ “ λ0 ` z
ş

Rd
ψpyqdy “ λ0 ` xψy. Define

βpzq “ pλ0 ` zxψy ´m0 ´ zxκyq,
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then for the function V pηq “ 1` |η| a short computation yields

pLV qpηq ≤ βpzq|η|

and therefore an a priori estimate on the evolution of densities, provided a´ is bounded.
More precisely, let 0 ≤ ρ P L1pΓ0, dλq with

ş

Γ0

p1`|η|qρpηqdλpηq ă 8 and
ş

Γ0

ρpηqdλpηq “ 1,

then the evolution of densities for the averaged system is given by ρt “ T ptq˚ρ and by the
Grö nwall inequality we have

ż

Γ0

|η|ρtpηqdλpηq ≤ eβpzqt
ż

Γ0

|η|ρpηqdλpηq, t ≥ 0.

Without medical treatment, i.e. z “ 0, the number of tumour cells will grow exponentially
in time. But due to the influence of the medicine such growth may be prevented or even
exponential decay may be observed.

3.4 Examples

In this section we apply the main results to several stochastic birth-and-death processes
on Γ describing the behaviour of cells within organisms.

3.4.1 Free cell-proliferation

In this part we investigate a model for the proliferation of cells. It is assumed that each
cell has an exponential distributed lifetime with parameter m ą 0. Moreover, each cell
has another exponential distributed time, the so-called proliferation time, with parameter
λ ą 0. The corresponding elementary event is the splitting of a cell at position x P γ into
two new cells. The position of the new cells is determined by the probability distribution

apx´ y1, x´ y2qdy1dy2

and a ≥ 0 is assumed to be symmetric in both variables. The Markov (pre-)generator is
hence assumed to be given by

pLF qpγq “ m
ÿ

xPγ

pF pγzxq ´ F pγqq

` λ
ÿ

xPγ

ż

Rd

ż

Rd

apx´ y1, x´ y2qpF pγzxY y1 Y y2q ´ F pγqqdy1dy2

This model is exactly solvable and we construct the evolution of correlation functions
explicitly. The analysis of this model will serve as a guiding example. Above model is
very similar to the contact model, cf. [KS06, KKP08].
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Theorem 3.4.1. For G P BbspΓ0q the operator pL “ pLV ` pB is given by

ppLVGqpηq “ ´pm` λq|η|Gpηq ` λ
ÿ

xPη

ż

Rd

bpx´ yqGpηzxY yqdy (3.30)

with pB given by

p pBGqpηq “ λ
ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2qGpηzxY y1 Y y2qdy. (3.31)

Here b ≥ 0 describes the effective proliferation and is given by

bpxq “

ż

Rd

apx, yqdy `

ż

Rd

apy, xqdy.

For k : Γ0 ÝÑ R such that |kpηq| ≤ |η|!C |η| for some constant C ą 0 the operator L∆ is
given by

L∆
“ L∆

V `B
∆,

where L∆
V is given by the same expression as pLV and B∆ by

pB∆kqpηq “ λ
ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qkpη Y xzy1zy2qdx. (3.32)

Proof. Using the K´transform we obtain for x P γ

pKGqpγzxq ´ pKGqpγq “ ´
ÿ

ηŤγzx

Gpη Y xq

and therefore for the first part

m
ÿ

xPγ

ppKGqpγzxq ´ pKGqpγqq “ ´m
ÿ

xPγ

ÿ

ηŤγzx

Gpη Y xq

“ ´m
ÿ

ηŤγ

ÿ

xPη

Gpηq “ ´mKp| ¨ |Gqpγq.

Applying the inverse K´transform we arrive at the expression ´m|η|Gpηq reflecting the
natural death of each cell. For the cell-division we first note that for x P γ and y1, y1 R γ

pKGqpγzxY y1 Y y1q ´ pKGqpγq

“
ÿ

ηŤγzx

pGpη Y y1q `Gpη Y y2q `Gpη Y y1 Y y2q ´Gpη Y xqq .
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Therefore the birth-part is given by

ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2q pGpηzxY y1q `GpηzxY y2q `GpηzxY y1 Y y2q ´Gpηqq dy1dy2.

In the first two terms of the second part the integration over y1 and y2 respectively can
be carried out, which gives together with the substitution y1, y2 Ñ y

λ
ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2q pGpηzxY y1q `GpηzxY y2qq dy1dy2

“ λ
ÿ

xPη

ż

Rd

bpx´ yqGpηzxY yqdy.

Altogether we obtain formulas (3.30) and (3.31). For G P BbspΓ0q and k as described
above, the operator L∆ is uniquely determined by the pairing

ż

Γ0

ppLGqpηqkpηqdλpηq “

ż

Γ0

GpηqpL∆kqpηqdλpηq.

The negative multiplication part will therefore not change and for the second part we get

λ

ż

Γ0

ÿ

xPη

ż

Rd

bpx´ yqGpηzxY yqdykpηqdλpηq

“ λ

ż

Γ0

ż

Rd

ż

Rd

bpx´ yqGpη Y yqkpη Y xqdydxdλpηq

“ λ

ż

Γ0

ÿ

yPη

ż

Rd

bpx´ yqkpη Y xzyqdxGpηqdλpηq.

Finally
ż

Γ0

p pBGqpηqkpηqdλpηq

“ λ

ż

Γ0

ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2qGpηzxY y1 Y y2qdy1dy2kpηqdλpηq

“ λ

ż

Γ0

ż

Rd

ż

Rd

ż

Rd

apx´ y1, x´ y2qGpη Y y1 Y y2qkpη Y xqdxdy1dy2dλpηq

“ λ

ż

Γ0

ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qkpη Y xzy1zy2qdxGpηqdλpηq,

proves the assertion.
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The next statement shows that the results stated in the previous section are not
applicable in this case.

Theorem 3.4.2. The function cpα; ηq is given by

cpα; ηq “ pm` 3λq|η| ` λe´α
ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qdx

If in addition the expression

θ “ min

$

&

%

sup
yPRd

ż

Rd

apx´ y, xqdx, sup
yPRd

ż

Rd

apx, x´ yqdx

,

.

-

(3.33)

is finite, then for each α1 ă α the operator pL acts as a bounded operator from Lα to Lα1
and L∆ is bounded from Kα1 to Kα. In this case the estimate

}pL}LpLα,Lα1 q “ }L
∆
}LpKα1 ,Kαq ≤

m` 3λ

epα ´ α1q
`

4λθe´α
1

e2pα ´ α1q2
(3.34)

holds.

Proof. The function cpα; ηq is given by cpα; ηq “ e´α|η|L∆eα|¨|pηq which implies the par-
ticular form for cpα; ηq. For the second assertion observe that

ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qdx “
ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ py2 ´ y1q, xqdx

“
ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx, x´ py2 ´ y1qqdx

and hence
ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qdx ≤ θ|η|2.

The assertion now follows from the estimates

|η|e´pα´α
1q|η| ≤ 1

epα ´ α1q

and

|η|2e´pα´α
1q|η| ≤ 4

e2pα ´ α1q2

for any α1 ă α.
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The operator pL is a sum of a particle number preserving part pLV and an upper diagonal
part pB. Rewrite this number preserving part pLV in the form

ppLVGqpηq “ ´pm´ λq|η|Gpηq ` λ
ÿ

xPη

ż

Rd

bpx´ yq pGpηzxY yq ´Gpηqq dy.

This operator is well-defined on the domain

DppLV q “ tG P Lα | | ¨ |G P Lαu

and satisfies by previous theorem }pLV }αα1 ≤ m`3λ
epα´α1q

. Let us construct solutions to the
Cauchy problem

BGt

Bt
“ pLVGt, Gt|t“0 “ G0. (3.35)

For any 0 ≤ G P DppLV q
ż

Γ0

pLVGpηqe
α|η|dλpηq “ pλ´mq

ż

Γ0

Gpηq|η|eα|η|dλpηq

and hence if λ ă m, then ppLV , DppLV qq is the generator of an analytic semigroup of

contractions on Lα. If λ “ m, then ppLV , DppLV qq admits an extension, which is the
generator of an substochastic semigroup, cf. [TV06]. For this particular model it is also
possible to construct solutions in the case m ă λ which shall be done in the following.
Let G “ pGpnqq8n“0 be the decomposition of a measurable function G : Γ0 ÝÑ R into its
components and set for n P N

pDnG
pnq
qpx1, . . . , xnq “ ´pm´ λqnG

pnq
px1, . . . , xnq ` pAnGq

pnq
px1, . . . , xnq

where

pAnGq
pnq
px1, . . . , xnq “ λ

n
ÿ

k“1

ż

Rd

bpxk´yq
`

Gpnqpx1, . . . , x̂k, y, . . . , xnq ´G
pnq
px1, . . . , xnq

˘

dy.

Here x̂k means that integration over the variable xk should be omitted. For each n P N0

the operator pLV is diagonal, i.e. it acts only on Gpnq. The equation

BG
pnq
t

Bt
“ DnG

pnq
t , G

pnq
t |t“0 “ G

pnq
0

has a solution G
pnq
t “ e´pm´λqntH

pnq
t , were H

pnq
t solves

BH
pnq
t

Bt
“ AnH

pnq
t , H

pnq
t |t“0 “ G

pnq
0 .
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The operator An describes for each cell a Random walk in continuous time. The jumping
times are independent and exponentially distributed with parameter 2λ and the proba-
bility of a cell located at x P Rd to jump in the region dy is given by

1

2
bpx´ yqdy.

The next lemma was proved in [KKP08].

Lemma 3.4.3. The operator Dn is a bounded linear operator on L1ppRdqnq and L8ppRdqnq

for any n ≥ 1 and the corresponding semigroup is a positive contraction semigroup.

Let G0 “ pG
pnq
0 qnPN be measurable such that each component G

pnq
0 is integrable. Then

e´pm´λqntetAnG
pnq
0 “ etDnG

pnq
0 is well-defined and the vector Gt “ petDnG

pnq
0 q8n“0 is the

unique component-wise solution to (3.35). This solution, if G0 P Lα, evolves in the scale
of Banach spaces Lα with αptq “ α ` pm´ λqt, i.e. Gt P Lαptq, which follows from

}Gt}Lαptq “

8
ÿ

n“0

e´pm´λqnteαptqn

n!

ż

pRdqn

|etAnG
pnq
0 px1, . . . , xnq|dx1 . . . dxn

≤
8
ÿ

n“0

eαn

n!

ż

pRdqn

|G
pnq
0 px1, . . . , xnq|dx1 . . . dxn “ }G0}Lα .

The presence of the perturbation pB implies that the solution cannot satisfy Gt P Lαptq for

t ą 0 and any αptq. Since pB sends functions of n`1 variables to functions of n variables it
is not helpful to discuss a solution formula, though it is possible. More precise results will
be investigated in terms of correlation functions. Let k0 “ pk

pnq
0 q8n“0 be non-negative and

measurable such that k
pnq
0 P L8ppRdqnq, then petDnk

pnq
0 q8n“0 is the unique component-wise

solution to
Bkt
Bt
“ L∆

V kt, kt|t“0 “ k0.

Denote by B∆
n the operator given by (3.32) taking functions from n variables to functions

with n` 1 variables, i.e.

pB∆
n`1k

pnq
qpx1, . . . , xn`1q “ λ

n`1
ÿ

k“1

n`1
ÿ

j“1
j‰k

ż

Rd

apx´ xk, x´ xjqk
pnq
px1, . . . , x̂k, x̂j, x, . . . , xn`1qdx.

The solution to (3.6) is then given by

k
pn`1q
t “ e´pm´λqpn`1qtetAn`1k

pn`1q
0 `

t
ż

0

e´pm´λqpn`1qpt´sqept´sqAn`1B∆
n`1k

pnq
s ds. (3.36)

The next statement establishes asymptotic clustering for the evolution of correlation func-
tions constructed above.
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Theorem 3.4.4. For each k0 ≥ 0 measurable, such that k
pnq
0 P L8ppRdqnq, there exist a

unique solution kt ≥ 0, given recursively by formula (3.36). If θ is finite, then for each
initial condition satisfying k0pηq ≤ |η|!C |η| for some constant C ą 0, this solution obeys
the bound

ktpηq ≤ |η|!pC ` tq|η|p1` θq|η|κptq|η|e´pm´λq|η|t

with κptq “ maxt1, λ, λepm´λqtu. If there exists δ ą 0 such that apx, yq ≥ α ą 0 for some
α ą 0 and all |x|, |y| ≤ δ, then for each k0pηq “ C |η| the solution kt satisfies for any η P Γ0

with
@x, y P η, x ‰ y : |x´ y| ă δ

the estimate
ktpηq ≥ β|η|e´pm´λq|η|t|η|! t ≥ 1,

where β “ mintC, 2|Bδ|λατu with τ “

#

1
λ´m

, λ ą m

1 , λ ≤ m
and |Bδ| is the Lebesgue volume

of the ball Bδ of radius δ.

Proof. For the bound from above we proceed by induction on the number of cells |η|. The
first correlation function is given by

k
p1q
t “ e´pm´λqtetA1k

p1q
0

and hence by positivity of petA1qt≥0 and etA1C “ C

k
p1q
t ≤ e´pm´λqtC ≤ pC ` tqp1` θqκptqe´pm´λqt.

For nÑ n` 1 we get with |η| “ n` 1

k
pn`1q
t ≤ e´pm´λqpn`1qt

pn` 1q!Cn`1
`

t
ż

0

e´pm´λqpn`1qpt´sqept´sqAn`1B∆
n`1k

pnq
s ds

≤ e´pm´λqpn`1qt
pn` 1q!Cn`1

` p1` θqn`1
pn` 1q!λn

t
ż

0

e´pm´λqpn`1qpt´sq
pC ` sqnκpsqne´pm´λqnsds

≤ e´pm´λqpn`1qt
pn` 1q!Cn`1

` pn` 1q!κptqn`1
p1` θqn`1

`

pC ` tqn`1
´ Cn`1

˘

e´pm´λqpn`1qt

≤ pn` 1q!pC ` tqn`1
p1` θqn`1κptqn`1e´pm´λqpn`1qt.

Here we used the fact that for s ≤ t we have κpsq ≤ κptq. For the second part let

k
pnq
0 “ Cn, then etAnk0 “ Cn and therefore k

p1q
t “ e´pm´λqtC ≥ βe´pm´λqt. For nÑ n` 1

133



and t ≥ 1 we obtain

k
pn`1q
t ≥ e´pm´λqpn`1qtCn`1

` 2|Bδ|λαβ
n

t
ż

0

e´pm´λqpn`1qpt´sq
pn` 1qne´pm´λqnsn!ds

≥ e´pm´λqpn`1qt

t
ż

0

epm´λqsds ¨ pn` 1q!2|Bδ|λαβ
n

≥ e´pm´λqpn`1qtβn`1
pn` 1q!.

Above estimates show that if the probability distribution a has no hard core, i.e. ap0q ą
0 for continuous distributions, then the system will consist of clusters. Appearance of such
clusters is caused by properties of the operator B∆. The part L∆

V contains information
about asymptotic behaviour, speed of propagation etc., whereas B∆ contains information
about correlations of the system. Assume for simplicity that in the cell-division the
position of the new cells are independent of each other. Then we may write apx, yq “
cpxqcpyq for some symmetric function 0 ≤ c P L1pRdq normalized to 1. If for example c
is continuous and non-vanishing, then previous assumptions are satisfied and we get the
bound

βnn!e´pm´λqnt ≤ k
pnq
t .

The same results have been shown in [KKP08] for the case apx, yq “ cpxqδpyq, where each
cell creates a new cell and its location is described by the kernel c. In contrast to this
model, the old cell will not die. Clearly such models should have the same qualitative
properties.

Vlasov Scaling

Following the general scheme of Vlasov scaling described before, we scale the potentials
by a ÞÝÑ 1

n
a and accelerate the birth by a factor n. Clearly, since the birth only consists

of the a-part, this will not change the operator itself, i.e. Ln “ L. The operator on
quasi-observables is then given by pLn,ren “ Rn

pLRn´1 , where RnGpηq “ n|η|Gpηq. In this

case we obtain pLn,ren “ pLV `
1
n
pB. and the operator can be defined on the same domain

for all n ≥ 1. The evolution of scaled correlation functions is then determined by the
Cauchy problem

Bkn,t
Bt

“ L∆
V kn,t `

1

n
B∆kn,t, kn,t|t“0 “ r0.
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For every collection of L8-functions pr
pkq
0 q8k“0 above Cauchy problem has the solution kn,t

given by its components

k
pk`1q
n,t “ e´pm´λqpk`1qtetAk`1r

pk`1q
0 `

1

n

t
ż

0

e´pm´λqpk`1qpt´sqept´sqAk`1B∆
k`1k

pkq
s ds.

This solution satisfies for any k ≥ 1

k
pkq
n,t ÝÑ e´pm´λqktetAkr

pkq
0 , nÑ 8

in L8ppRdqkq. In particular if r
pkq
0 px1, . . . , xkq “ ρ0px1q ¨ ¨ ¨ ρ0pxkq, then

e´pm´λqktetAkr
pkq
0 px1, . . . , xkq “ ρtpx1q ¨ ¨ ¨ ρtpxkq

where ρt is the classical solution to

Bρt
Bt
“ ´pm` λqρt ` b ˚ ρt, ρt|t“0 “ ρ0.

3.4.2 Local regulation of cell-proliferation

As we have seen for the free-proliferation model the correlation functions k
pnq
t behave

like n!, see Theorem 3.4.4, and hence the main results cannot be applied. From a cell-
biological point of view it is reasonable to introduce some type of competition between
cells. Such competition will regulate the local density of the cell-system and hence it will
be reasonable to expect in such a case an evolution of correlation functions in the Banach
space Kβ for some β ą 0. The regulation of the system can be achieved by introducing
so-called fecundity or establishment effects, see [FKK13a]. Such effects resemble the needs
of resources for proliferation. The intensity for the creation of a new cell therefore should
depend on all neighbouring cells and be small in dense regions. In this work we follow
an alternative approach and introduce additional competition, i.e. the death intensity
depends on neighbouring cells and will be large in dense regions. Such competition is
usually described by a pair interaction function ϕpx, yq ≥ 0 and hence the relative energy

Epx, γq :“
ÿ

yPγ

ϕpx, yq P r0,8s.

The function ϕ is assumed to be non-negative and integrable in y. For the fulfilment of
condition (A) it will be sufficient to find Γ8 Ă Γ such that µ P Pβ is supported on Γ8
and Epx, γq is finite for each γ P Γ8 and each x P Rd. If ϕpx, ¨q is compactly supported
for any x P Rd, then above condition is clearly satisfied. More generally suppose that for
any x P Rd there exists Cx ą 0 such that

ϕpx, yq ≤ Cxgpyq, x, y P Rd (3.37)
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holds for a fixed integrable function g : Rd ÝÑ R`. Let

Γ8 “

#

γ P Γ

ˇ

ˇ

ˇ

ˇ

ÿ

yPγ

gpyq ă 8

+

and µ P Pβ with correlation function kµ P Kβ. Then

ż

Γ

ÿ

xPγ

gpyqdµpγq “

ż

Rd

gpyqkp1qµ pyqdy ≤ eβ}kµ}Kβ

ż

Rd

gpyqdy

implies µpΓ8q “ 1. Here and in the following we always suppose that either ϕpx, ¨q is
compactly supported or condition (3.37) holds.

Time-inhomogeneous BDLP-model

Consider the Markov (pre-)generator given by

pLptqF qpγq “
ÿ

xPγ

¨

˝mpt, xq ` λ´pt, xq
ÿ

yPγzx

a´px, yq

˛

‚pF pγzxq ´ F pγqq (3.38)

`
ÿ

xPγ

λ`pt, xq

ż

Rd

a`px, yqpF pγ Y yq ´ F pγqqdy,

where a˘ ≥ 0 are assumed to be bounded and for all x P Rd

1 “

ż

Rd

a`px, yqdy “

ż

Rd

a´px, yqdy

holds. The intensities m,λ`, λ´ ą 0 are supposed to be bounded and t ÞÝÑ mpt, ¨q, λ˘pt, ¨q
are continuous w.r.t. the supremum norm. A short computation yields

ppLptqGqpηq “ ´
ÿ

xPη

mpt, xqGpηq ´
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yqGpηq

´
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yqGpηzxq

`
ÿ

xPη

λ`pt, xq

ż

Rd

a`px, yqGpηzxY yqdy `
ÿ

xPη

λ`pt, xq

ż

Rd

a`px, yqGpη Y yqdy
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and

pL∆
ptqkqpηq “ ´

ÿ

xPη

mpt, xqkpηq ´
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yqkpηq

´
ÿ

xPη

ż

Rd

λ´pt, yqa´py, xqkpη Y yqdy

`
ÿ

xPη

ż

Rd

λ`pt, yqa`py, xqkpηzxY yqdy `
ÿ

xPη

ÿ

yPηzx

λ`pt, yqa`py, xqkpηzxq.

Therefore we obtain

cpβ; ηq “
ÿ

xPη

¨

˝mpt, xq ` eβ
ż

Rd

λ´pt, yqa´py, xqdy `

ż

Rd

λ`pt, yqa`py, xqdy

˛

‚

`
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yq ` e´β
ÿ

xPη

ÿ

yPηzx

λ`pt, yqa`py, xq

and Mpηq “
ř

xPη

mpt, xq `
ř

xPη

ř

yPηzx

λ´pt, xqa´px, yq.

Theorem 3.4.5. Suppose that there exists b ≥ 0 and ϑ ą 0 such that for all η P Γ0, t ≥ 0

ÿ

xPη

ÿ

yPηzx

λ`pt, yqa`py, xq ≤ b|η| ` ϑ
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yq (3.39)

holds. Assume that there exists q P p0, 1q such that

ϑ ă inf
xPRd
t≥0

qmpt, xq ´
ş

Rd
λ`pt, yqa`py, xqdy ´ b

ϑ

ş

Rd
λ´pt, yqa´py, xqdy

(3.40)

holds. Let β˚ :“ logpϑq and

β˚ :“ log

¨

˚

˝

inf
xPRd
t≥0

qmpt, xq ´
ş

Rd
λ`pt, yqa`py, xqdy ´ b

ϑ

ş

Rd
λ´pt, yqa´py, xqdy

˛

‹

‚

,

then all conditions of Theorem 3.2.17 are satisfied.

See also [Rue70] for conditions of the form (3.39).
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Proof. Condition (3.20) and (D) for any t ≥ 0 are clearly satisfied. It is not difficult to
see that for any β P pβ˚, β

˚q the operator Lptq act in the scale of Banach space L and
t ÞÝÑ Lptq P LpLq is continuous in the uniform topology, cf. [FK13]. For condition (H1)
let β P pβ˚, β

˚q, then

cpLptq, β; ηq ≤
ÿ

xPη

¨

˝mpt, xq ` eβ
ż

Rd

λ´pt, yqa´py, xqdy `

ż

Rd

λ`pt, yqa`py, xqdy ` be´β

˛

‚

` p1` ϑe´βq
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yq

and 1` ϑe´β ă 2 holds by β˚ ă β. We get for the other term

mpt, xq ` eβ
ż

Rd

λ´pt, yqa´py, xqdy `

ż

Rd

λ`pt, yqa`py, xqdy ` be´β

≤ mpt, xq `

ż

Rd

λ`pt, yqa`py, xqdy `
b

ϑ
` qmpt, xq ´

ż

Rd

λ`pt, yqa`py, xqdy ´
b

ϑ

“ p1` qqmpt, xq ă 2mpt, xq

and hence (H1) holds with apβq :“ 1`maxtq, ϑe´βu.

Remark 3.4.6. If instead of (3.40) the weaker condition

ϑ ă inf
xPRd
tPr0,T s

qmpt, xq ´
ş

Rd
λ`pt, yqa`py, xqdy ´ b

ϑ

ş

Rd
λ´pt, yqa´py, xqdy

holds for all T ą 0, then we still can construct the associated forward and backward
evolution systems and show that their adjoints are positivity preserving. But in such a
case we cannot choose β˚ to be independent of T ą 0.

Let us continue with the Vlasov scaling. The time-homogeneous case was considered
in [FKK13b]. The renormalized operator is given by

ppLn,renptqGqpηq “ ´
ÿ

xPη

mpt, xqGpηq ´
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yqGpηzxq

`
ÿ

xPη

λ`pt, xq

ż

Rd

a`px, yqGpηzxY yqdy

´
1

n

ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yqGpηq `
1

n

ÿ

xPη

λ`pt, xq

ż

Rd

a`px, yqGpη Y yqdy.
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Given the same conditions as in the previous theorem it is not difficult to see that (W1)
– (W3) are satisfied. The kinetic description for the density is therefore given for t ą 0
by the the backward equation with s P r0, tq, x P Rd

Bρs
Bs
pxq “ mps, xqρspxq ` ρspxq

ż

Rd

λ´ps, yqa´py, xqρspyqdy ´

ż

Rd

λ`ps, yqa`py, xqρspyqdy

ρs|s“t “ ρt

and for s ≥ 0 by the forward equation t P rs,8q, x P Rd

Bρt
Bt
pxq “ ´mpt, xqρtpxq ´ ρtpxq

ż

Rd

λ´pt, yqa´py, xqρtpyqdy `

ż

Rd

λ`pt, yqa`py, xqρtpyqdy

ρt|t“s “ ρs.

For the analysis of such equations we refer to [JZ09, Yag09, Gar11, FKT15] and references
therein.

Remark 3.4.7. Suppose that a˘px, yq “ a˘py, xq holds, then by

ÿ

xPη

ÿ

yPηzx

λ`pt, yqa`px, yq “
ÿ

xPη

ÿ

yPηzx

λ`pt, xqa`px, yq

we can rewrite condition (3.39) to

ÿ

xPη

ÿ

yPηzx

λ`pt, xqa`px, yq ≤ b|η| ` ϑ
ÿ

xPη

ÿ

yPηzx

λ´pt, xqa´px, yq.

Regulation by Glauber-type death

Suppose that the Markov (pre-)generator is given by

pLF qpγq “
ÿ

xPγ

`

m` eEpx,γzxq
˘

pF pγzxq ´ F pγqq (3.41)

`
ÿ

xPγ

¨

˝

ÿ

yPγzx

b`px´ yq

˛

‚

ż

Rd

a`px´ wqpF pγ Y wq ´ F pγqqdw,

where Epx, γzxq “
ř

yPγzx

ϕpx ´ yq, ϕ, a`, b` ≥ 0 are assumed to be symmetric, integrable

and bounded and m ą 0. Hence we obtain for γ X pηzxq “ H

dpx, γ Y ηzxq “ m` eEpx,γqeEpx,ηzxq

139



and hence
pK´1

0 dpx, ¨ Y ηzxqqpξq “ 0|ξ|m` eEpx,ηzxqeλpe
ϕpx´¨q

´ 1; ξq.

Likewise we obtain

bpx, γ Y ηzxq “
ÿ

yPγ

ÿ

wPγzy

b`pw ´ yqa`px´ yq `
ÿ

yPγ

ÿ

wPηzx

b`pw ´ yqa`px´ yq

`
ÿ

yPηzx

ÿ

wPγ

b`pw ´ yqa`px´ yq `
ÿ

yPηzx

ÿ

wPηzxzy

b`pw ´ yqa`px´ yq

and hence

pK´1
0 bpx, ¨ Y ηzxqqpξq “ 0|ξ|

ÿ

yPηzx

ÿ

wPηzxzy

b`pw ´ yqa`px´ yq

` 1Γp1qpξq
ÿ

wPξ

ÿ

yPηzx

b`pw ´ yqa`pw ´ xq

` 1Γp1qpξq
ÿ

yPξ

ÿ

wPηzx

b`pw ´ yqa`px´ yq

` 1Γp2qpξq
ÿ

yPξ

ÿ

wPξzy

b`pw ´ yqa`px´ yq.

This implies for β P R

cpβ; ηq “ pm` eβxb`yxa`yq|η| ` κpβ, ϕq
ÿ

xPη

eEpx,ηzxq

` xb`y
ÿ

xPη

ÿ

yPηzx

a`px´ yq `
ÿ

xPη

ÿ

yPηzx

pb` ˚ a`qpx´ yq

` e´β
ÿ

xPη

ÿ

yPηzx

ÿ

wPηzxzy

b`pw ´ yqa`px´ yq

and Mpηq “ m|η| `
ř

xPη

eEpx,ηzxq where κpβ, ϕq :“ exp

˜

eβ
ş

Rd
peϕpxq ´ 1qdx

¸

.

Theorem 3.4.8. Suppose that there exist constants 0 ≤ b ă m` 1, ϑ ą 0 and c ą 0 such
that

xb`y
ÿ

xPη

ÿ

yPηzx

a`px´ yq `
ÿ

xPη

ÿ

yPηzx

pb` ˚ a`qpx´ yq ≤ b|η| ` ϑ
ÿ

xPη

ÿ

yPηzx

ϕpx´ yq

holds and ϕ ´ b` is a stable potential. Moreover, assume that for all η P Γ0 and all
x, y, w P Rd

b`pw ´ yqa`px´ yq ≤ cϕpx´ wqϕpx´ yq
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is fulfilled. If in addition there exists β ă log
´

m`1´b
xb`yxa`y

¯

with

max
 

1, ϑ, 2e´βc
(

` κpβ, ϕq ă 2, (3.42)

then (3.14) and (A) – (D) hold for τ “ }ϕ}8.

Proof. We obtain

cpβ; ηq ≤ pm` eβxb`yxa`yq|η| ` κpβ, ϕq
ÿ

xPη

eEpx,ηzxq

` b|η| ` ϑ
ÿ

xPη

ÿ

yPηzx

ϕpx´ yq ` e´βc
ÿ

xPη

ÿ

yPηzx

ÿ

wPηzxzy

ϕpx´ yqϕpw ´ xq.

By

ÿ

xPη

eEpx,ηzxq ≥ |η| `
ÿ

xPη

ÿ

yPηzx

ϕpx´ yq `
1

2

ÿ

xPη

ÿ

yPηzx

ÿ

wPηzxzy

ϕpx´ yqϕpx´ wq

it follows that

cpβ; ηq ≤ pm` eβxb`yxa`y ` pb´ 1qq|η| `
`

κpβ, ϕq `maxt1, ϑ, 2e´βcu
˘

ÿ

xPη

eEpx,ηzxq

and hence (C) holds. Condition (3.14) is satisfied for

apβq :“ max

"

1` eβ
xb`yxa`y

m
`
b´ 1

m
,κpβ, ϕq `maxt1, ϑ, 2e´βcu

*

.

Condition (D) clearly holds since all potentials are assumed to be positive and bounded
(take e.g. V pηq “ 1` |η|). Condition (B) follows from

dpx, ηq ` bpx, ηq “ m` eEpx,ηzxq `
ÿ

yPη

ÿ

wPηzx

b`py ´ wqa`px´ yq

≤ m` e}ϕ}8|η| ` }a`}8}b
`
}8|η|p|η| ´ 1q.

For the Vlasov scaling we scale the potentials by a` ÞÝÑ 1
n
a`, b` ÞÝÑ 1

n
b`, ϕ ÞÝÑ 1

n
ϕ

and the birth part by n. This leads to

cnpβ; ηq “ pm` eβxb`yxa`yq|η| ` κnpβ, ϕq
ÿ

xPη

e
1
n
Epx,ηzxq

`
1

n
xb`y

ÿ

xPη

ÿ

yPηzx

a`px´ yq `
1

n

ÿ

xPη

ÿ

yPηzx

pb` ˚ a`qpx´ yq

`
e´β

n2

ÿ

xPη

ÿ

yPηzx

ÿ

wPηzxzy

b`py ´ wqa`px´ yq
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and Mnpηq “ m|η| ` κnpβ, ϕq
ř

xPη

e
1
n
Epx,ηzxq where κnpβ, ϕq “ exp

˜

neβ
ş

Rd
pe

1
n
ϕpxq ´ 1qdx

¸

.

Theorem 3.4.9. Suppose that the same conditions as in previous theorem with

maxt1, ϑ, 2e´βcu ` exp
`

e}ϕ}8`βxϕy
˘

ă 2

instead of (3.42) are satisfied. Then conditions (V1) – (V3) are satisfied and the kinetic
equation for the cell density is given by

Bρt
Bt
pxq “ ´mρtpxq ´ ρtpxqe

pϕ˚ρtqpxq ` pa` ˚ pb` ˚ ρtqqpxq, ρt|t“0 “ ρ0.

Proof. Condition (V1) can be shown in the same way as in the case n “ 1. Let us show
condition (V2) for the death. Observe that after taking the limit nÑ 8 we arrive at

DV
x pηq “ m0|η| ` eλpϕpx´ ¨q; ηq.

Observe that
ˇ

ˇ

ˇ
e

1
n
Epx,ηzxqeλ

´´

e
1
n
ϕpx´¨q

´ 1
¯

n; ξ
¯

´ eλpϕpx´ ¨q; ξq
ˇ

ˇ

ˇ

≤ e
1
n
Epx,ηzxq

ˇ

ˇ

ˇ
eλ

´´

e
1
n
ϕpx´¨q

´ 1
¯

n; ξ
¯

´ eλpϕpx´ ¨q; ξq
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
1´ e

1
n
Epx,ηzxq

ˇ

ˇ

ˇ
eλpϕpx´ ¨q; ξq.

The second term tends to zero in Lβ w.r.t. ξ, so let us consider the first term. The

estimates
´

e
ϕpx´yq

n ´ 1
¯

n ≤ ϕpx´ yqeϕpx´yq, ϕpx´ yq ≤ ϕpx´ yqeϕpx´yq and

ˇ

ˇ

ˇ

´

e
ϕpx´yq

n ´ 1
¯

n´ ϕpx´ yq
ˇ

ˇ

ˇ
≤ 1

n
ϕpx´ yq2eϕpx´yq

imply for all x, y P Rd

ˇ

ˇ

ˇ
eλ

´´

e
ϕpx´¨q
n ´ 1

¯

n; ξ
¯

´ eλpϕpx´ ¨q; ξq
ˇ

ˇ

ˇ

≤
ÿ

yPξ

ˇ

ˇ

ˇ

´

e
ϕpx´yq

n ´ 1
¯

n´ ϕpx´ yq
ˇ

ˇ

ˇ
eλpϕpx´ ¨qe

ϕpx´¨q; ξzyq

≤ e}ϕ}8}ϕ}8
n

ÿ

yPξ

ϕpx´ yqeλpϕpx´ ¨qe
ϕpx´¨q; ξzyq.

This shows that
ż

Γ0

ˇ

ˇ

ˇ
e

1
n
Epx,ηzxqeλ

´´

e
1
n
ϕpx´¨q

´ 1
¯

n; ξ
¯

´ eλpϕpx´ ¨q; ξq
ˇ

ˇ

ˇ
eβ|ξ|dλpξq

≤ }ϕ}8e
}ϕ}8

n
xϕy exp

`

eβ`}ϕ}8xϕy
˘

.
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Convergence for the birth can be shown by similar estimates to [FK13], which yields

BV
x pηq “ 1Γp2qpηq

ÿ

yPη

ÿ

wPηzy

b`pw ´ yqa`px´ yq.

This implies MV pηq “ m|η| ≤Mnpηq and hence condition (V3) holds.

3.4.3 Ergodic cell-systems

The two previous models satisfied the condition inf
|η|≥1

Mpηq ą 0 and hence were ergodic.

However, the unique invariant measure for this models was µinv “ δH. In this part we
discuss models with non-trivial invariant measures.

Time-inhomogeneous Glauber dynamics

Suppose that the Markov (pre-)generator is given by

pLptqF qpγq “
ÿ

xPγ

pF pγzxq ´ F pγqq ` zptq

ż

Rd

e´Etpx,γqpF pγ Y xq ´ F pγqqdx,

where 0 ≤ z P CbpR`q and Etpx, γq “
ř

yPγ

ϕpt, x ´ yq with ϕpt, x ´ yq “ ϕpt, y ´ xq ≥ 0

such that t ÞÝÑ ϕpt, ¨q is continuous in the supremum norm } ¨ }8 and L1-norm } ¨ }1. A
short computation yields

cpLptq, β; ηq “ |η| ` zptqκpt, βqe´β
ÿ

xPη

e´Etpx,ηq

and Mpηq “ |η| where κpt, βq “ exp

˜

eβ
ş

Rd
|e´ϕpt,xq ´ 1|dx

¸

. The next statement provides

one possible sufficient condition for the evolution of states.

Theorem 3.4.10. Suppose that Cϕ :“ sup
t≥0

ş

Rd
ϕpt, xqdx is finite and there exist β P R

such that
}z}8e

´β exp
`

eβCϕ
˘

ă 1

holds. Then there exist β˚ ă β˚ with β P pβ˚, β
˚q and condition (H1) holds for all

β1 P pβ˚, β
˚q. Moreover, condition (H3) and (3.20) are satisfied.

Proof. Because of cpLptq, β; ηq ≤ p1 ` }z}8e´β exp
`

eβCϕ
˘

q|η| the first assertion follows
by the continuous dependence of apβq “ 1 ` }z}8e

´β exp
`

eβCϕ
˘

on β. Condition (3.20)
follows readily by ϕ ≥ 0 and (H3) was proved in [FK13].
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Given above conditions it is not difficult to see that after scaling ϕ ÞÝÑ 1
n
ϕ also

conditions (W1) – (W3) are satisfied. The backward equation for the cell density is for
s P r0, tq given by

Bρs
Bs
pxq “ ρspxq ´ zpsqe

´pϕs˚ρsqpxq, ρs|s“t “ ρt

and the forward equation for t P rs,8q

Bρt
Bt
pxq “ ´ρtpxq ` zptqe

´pϕt˚ρtqpxq, ρt|t“s “ ρs.

In order to obtain ergodicity we suppose that ϕ and z do not depend on the time t ≥ 0.

Theorem 3.4.11. Suppose that there exist β P R such that

ze´β exp

¨

˝eβ
ż

Rd

|e´ϕpxq ´ 1|dx

˛

‚ă 1 (3.43)

holds. Then there exists a unique invariant (Gibbs) measure and the evolution of states
is ergodic with exponential rate.

Remark 3.4.12. The assumption, ϕ is integrable and bounded, is only necessary for the
Vlasov scaling. For the evolution of states, it suffices to assume that

ş

Rd
|1 ´ e´ϕpxq|dx is

finite.

Above statement was proved in [KKM10] for the stronger condition

ze´β exp

¨

˝eβ
ż

Rd

|1´ e´ϕpxq|dx

˛

‚ă
1
?

2
.

Taking e´β “
ş

Rd
p1´ e´ϕpxqqdx yields by (3.43) the well-known condition

z ă
1

ş

Rd
p1´ e´ϕpxqqdx

.

Ergodicity for individual based models

Consider the evolution of cells within the organism described by the generator L0 either
given by (3.38) or (3.41) respectively. Suppose that new cells are created by an external
source, e.g. produced by undifferentiated cells. The distribution of the new cells is
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assumed to be uniformly in the space Rd. Hence the stochastic dynamics can be described
by the Markov (pre-)generator

pLF qpγq “ pL0F qpγq ` z

ż

Rd

pF pγ Y xq ´ F pγqqdx,

where z ą 0.

Theorem 3.4.13. Suppose that the conditions of Theorem 3.4.5 or Theorem 3.4.8 respec-
tively for the generators L0 are fulfilled. Then there exists z0 ą 0 such that for z ă z0 the
conditions (3.14) and (A) – (D) are satisfied. In particular there exists a unique invariant
measure µinv ‰ δH and the evolution of states is ergodic with exponential rate.

Proof. Clearly it is enough to show that condition (3.14) holds. We obtain

cpL, β; ηq ≤ cpL0, β; ηq ` ze´β ≤ apL0, βq ` ze
´β

and hence condition (3.14) holds for all z ă z0 with z0 :“ p2´ apL0, βqqe
β ą 0.

3.4.4 Epistatic mutation-selection balance model

In [KM66] a model for the dynamics of mutation-selection for an infinite-population was
proposed. The mathematical analysis, in the language of interacting particle systems in
continuum, can be found in the recent works [SEW05, KKO08, KKMP13]. Below we
consider a generalization to time-dependent coefficients.

Let X be a complete, separable metric space and σ be a σ-finite Borel measure on X.
Elements of X describe potential mutations and for A Ă X the value σpAq is the rate
at which spontaneously a mutant allele arises from A. Such allele is characterized by its
position x P A. The space of genotypes ΓX is identified with the space of all locally finite
subsets of X, i.e. γ “ txn | n P Nu P ΓX if for any compact K Ă X: γ XK contains only
finitely many potential mutations. The topology is defined as the weakest topology such
that

γ ÞÝÑ
ÿ

xPγ

fpxq

is continuous for any continuous function f having compact support. For additional
properties see [AKR98a].

For each genotype γ P ΓX we assign a ”selection cost” functional

Φpt, γq “
ÿ

xPγ

hpt, xq `
1

2

ÿ

xPγ

ÿ

yPγzx

ψpt, x, yq

with non-negative, measurable functions h, ψ ≥ 0 and ψpt, x, yq “ ψpt, y, xq.
Denote by µt the state of the population at time t, that is µt is a Borel probability
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measure on ΓX . Then µt shall satisfy for a suitable collection of functions F : ΓX ÝÑ R
the equation

B

Bt
xF, µty “ xLptqF, µty ´ xFΦpt, ¨q, µty ` xF, µtyxΦpt, ¨q, µty (3.44)

with initial condition µt|t“0 “ µ0 and the Markov (pre-)generator

pLptqF qpγq “

ż

X

pF pγ Y xq ´ F pγqqapt, xqσpdxq, γ P ΓX .

In the particular case a “ 1 and Φ independent of t in [SEW05] a solution was constructed
by the Feynmann-Kac formula and its behaviour for tÑ 8 was studied. Uniqueness of the
solution µt could only be proved for the case ψ “ 0. For particular functions ψ “ ψpx, yq,
the results obtained in [KKO08] show that the limiting measure will be a Gibbs measure
with energy Φpγq. In this work we provide existence and uniqueness of (local) solutions
to the associated hierarchical equations of correlation functions and derive its kinetic
description. Therefore our existence and uniqueness result extends the one from [SEW05]
and the kinetic description was not analysed by the authors there. We suppose from now
on that the following conditions are fulfilled:

1. h ≥ is continuous from R` to L1pX, σq X L8pX, σq and ψ ≥ 0 is continuous from
R` to L1pX2, σb2q X L8pX2, σb2q.

2. a ≥ 0 is continuous and bounded in its arguments pt, xq.

3. For any T ą 0

sup
pt,xqPr0,T sˆX

ż

X

ψpt, x, yqdσpyq ă 8.

Correlation functions kµ can be defined in the same way as for X “ Rd where Γ0,X “

tη Ă X | |η| ă 8u, cf. [KK02, FKO09]. Let µt be a solution to (3.44) and assume that it
has correlation functions kt. Then kt satisfies for any G P BbspΓ0,Xq

B

Bt
xG, kty “ xG,L

∆
pt, kqky, (3.45)
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where L∆pt, kqk “ ´A∆
0 ptqk ` A

∆
1 ptqk `B

∆pt, kqk is given by

A∆
0 ptqkpηq “ Φpt, ηqkpηq `

ż

X

hpt, xqkpη Y xqσpdxq

`
1

2

ż

X

ż

X

ψpt, x, yqkpη Y xY yqσpdxqσpdyq

A∆
1 ptqkpηq “ ´

ÿ

xPη

ż

X

ψpt, x, yqkpη Y yqσpdyq `
ÿ

xPη

apt, xqkpηzxq

B∆
pt, kq “

ż

X

hpt, xqkp1qpxqσpdxq `
1

2

ż

X

ż

X

ψpt, x, yqkp2qpx, yqσpdxqσpdyq.

Conversely, let kt be a solution to (3.45) and assume that there exist probability measures
µt such that kt is the correlation function to µt. Then pµtqt solves also (3.44). As for
X “ Rd, let Kα be the Banach space of all equivalence classes of functions k with finite
norm

}k}Kα “ ess sup
ηPΓ0,X

|kpηq|e´α|η|, α ≥ 0.

Theorem 3.4.14. For any 0 ă α˚ ă α˚ and ε P p0, α˚q there exist λpα˚, α˚, k0q “ λ ą 0
such that for any k0 P Kα˚´ε there exists a unique classical K-valued solution kt to

Bkt
Bt
“ L∆

pt, ktqkt, kt|t“0 “ k0.

with 0 ≤ t ă α˚´α˚
λ

.

Proof. Since A∆
0 ptq is a sum of a multiplication operator and a bounded operator, it is not

difficult to see that for any α ≥ 0 there exists a unique evolution family pUαpt, sqq0≤s≤t Ă
LpKαq with the properties:

1. Upt, sq satisfies Uαpt, sq|Bα1 “ Uα1pt, sq whenever α1 ă α.

2. For κprq :“ eα
ş

X

hpr, xqσpdxq ` e2α

2

ş

X

ş

X

ψpr, x, yqσpdxqσpdyq

}Uαpt, sq}LpKαq ≤ exp

¨

˝

t
ż

s

κprqdr

˛

‚.

3. For any T ą 0 and α1 ă α there exists Cpα1, α, T q ą 0 such that

}Uαpt, 0qk ´ Uαps, 0qk}Kα ≤ Cpα1, α, T q}k}Kα1 , 0 ≤ s, t ≤ T.
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Moreover, it is strongly continuously differentiable in LpKα1 ,Kαq with strong deriva-
tives

B

Bt
Uαpt, sqk “ ´A

∆
0 ptqUαpt, sqk

and
B

Bs
Uαpt, sq “ Uαpt, sqA

∆
0 psqk.

Therefore conditions A1 – A4 hold with β “ 0 and any λ ą 0. Now let Cpk, tq :“
A∆

1 ptqk`B
∆pt, kqk, then it can be easily checked that Cpk, tq satisfies B1 – B3 with r ą 0

arbitrary,

C2 “ 2rpα˚ ´ α˚q sup
0≤t≤α

˚´α˚
λ

eα
˚

ż

X

hpt, xqσpdxq

` 2rpα˚ ´ α˚q sup
0≤t≤α

˚´α˚
λ

e2α˚

2

ż

X

ż

X

ψpt, x, yqσpdxqσpdyq

` e´α˚e´1
}a}8 ` e

´1eα
˚

sup
xPX

sup
0≤tα

˚´α˚
λ

ż

X

ψpt, x, yqσpdyq

and C3 :“ C2. The assertion now follows from Theorem 1.3.2 and Corollary 1.3.9 with
Eα “ Kα.

Rescale the potentials ψ Ñ ε2ψ, h Ñ εh and a Ñ ε´1a, where ε ą 0 and denote by
L∆
ε pt, ¨q the associated operator on correlation functions. Afterwards define the renormal-

ized operator

L∆
ε,renpt, kqkpηq :“ ε|η|L∆

ε pt, ε
´|¨|kqpε´|¨|kqpηq “ ´A∆

0,εptqk ` A
∆
1,εptqk `B

∆
pt, kqk

with Φεpt, ηq “ ε
ř

xPη

hpt, xq ` ε2
ř

xPη

ř

yPηzx

ψpt, x, yq and

A∆
0,εptqkpηq “ Φεpt, ηqkpηq `

ż

X

hpt, xqkpη Y xqσpdxq

`
1

2

ż

X

ż

X

ψpt, x, yqkpη Y xY yqσpdxqσpdyq

A∆
1,εptqkpηq “ ´ε

ÿ

yPη

ż

X

ψpt, x, yqkpη Y xqσpdxq `
ÿ

xPη

apt, xqkpηzxq.
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Denote by

L∆
V pt, kqkpηq “ ´

ż

X

hpt, xqkpη Y xqσpdxq ´
1

2

ż

X

ż

X

ψpt, x, yqkpη Y xY yqσpdxqσpdyq

`
ÿ

xPη

apt, xqkpηzxq `B∆
pt, kqkpηq

the pointwise limit when εÑ 0. An application of Theorem 1.3.10 yields

Theorem 3.4.15. There exist λ ą 0 and for ε P p0, 1s unique classical K-valued solutions
kt,ε and rt to

Bkt,ε
Bt

“ L∆
ε,renpt, kt,εqkt,ε, kt,ε|t“0 “ k0 P Kα˚´ε

and

Brt
Bt
“ L∆

V pt, rtqrt, rt|t“0 “ r0 P Kα˚´ε. (3.46)

Moreover, for any α P pα˚, α
˚s and T P p0, α´α˚

λ
q

kt,ε Ñ rt, εÑ 0

in Kα uniformly on r0, T s.

Take k0pηq “
ś

xPη

ρ0pxq, ρ0 P L
8pX, σq, let ρtpxq “ ρ0ptq `

t
ş

0

aps, xqds, then rtpηq :“
ś

xPη

ρtpxq is the unique solution to (3.46).
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Chapter 4

Markov evolutions on Γ2

In this chapter we present and prove the main results for two-component Markov birth-
and-death evolutions. Examples from mathematical biology are presented in the last
section.

4.1 Preliminaries

4.1.1 Harmonic analysis on Γ2

For two-component systems the state space is defined as the direct product of two copies
of Γ

Γ2 :“ tpγ`, γ´q P Γˆ Γ | γ` X γ´ “ Hu,

, cf. [FKO13]. For simplicity of notation we write γ :“ pγ`, γ´q and if necessary write
x instead of txu, hence γ˘zx, γ˘ Y x are well-defined set-operations. Likewise we use for
η P Γ2

0 the notation η Ă γ and γzη by which we mean that η` Ă γ`, η´ Ă γ´ and γ`zη`,
γ´zη´. The restriction of the product topology on ΓˆΓ topologizes Γ2 in such a way that
it becomes a Polish space. Γ2 equipped with this topology becomes a Polish space. The
Poisson measure πα,β is defined for α, β P R as the unique measure having the Laplace
transform

ż

Γ2

e

ř

xPγ`
fpxq

e

ř

xPγ´
gpxq

dπα,βpγq “ exp

¨

˝eα
ż

Rd

pefpxq ´ 1qdx

˛

‚exp

¨

˝eβ
ż

Rd

pegpxq ´ 1qdx

˛

‚,

where f, g : Rd ÝÑ R are continuous with compact support. Hence it is simply the
restriction of πα b πβ to Γ2. Notions of cylinder sets, local absolute continuity w.r.t. the
Poisson measure and finite local moments are adapted to Γ2 in the obvious way. For
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G P BbspΓ
2
0q define the K-transform by

pKGqpγq “
ÿ

ηŤγ

Gpηq, (4.1)

where η Ť γ means that the sum only runs over all finite subsets η of γ. Then KG is a
polynomially bounded cylinder function, i.e. there exists a compact Λ Ă Rd and constants
C ą 0, N P N such that pKGqpγ`, γ´q “ pKGqpγ` X Λ, γ´ X Λq and

|pKGqpγq| ≤ Cp1` |γ` X Λ| ` |γ´ X Λ|qN , γ P Γ2

holds. The K-transform K : BbspΓ
2
0q ÝÑ FPpΓ2q :“ KpBbspΓ

2
0qq is a positivity preserving

isomorphism with inverse given by

pK
´1F qpηq :“

ÿ

ξĂη

p´1q|ηzξ|F pξq, η P Γ2
0.

Denote by K0 the restriction of K determined by evaluating KG only on Γ2
0 for G P

BbspΓ
2
0q. Its inverse is then denoted by K´1

0 . Given a probability measure µ on Γ2 with
finite local moments the correlation function kµ : Γ2

0 ÝÑ R` for µ is defined by the relation

ż

Γ2

KGpγqdµpγq “

ż

Γ2
0

Gpηqkµpηqdλpηq, (4.2)

provided it exists. In such a case kµ is locally integrable and µ is locally absolutely continu-
ous w.r.t. the Poisson measure. Conversely, let kµ be a locally integrable correlation func-
tion associated to a probability measure µ. Then µ has finite local moments and is locally
absolutely continuous w.r.t. the Poisson measure. In such a case the K-transform can be
uniquely extended to a bounded linear operatorK : L1pΓ2

0, kµdλq ÝÑ L1pΓ2, dµq such that
}KG}L1pΓ2,dµq ≤ }G}L1pΓ2

0,kµdλq and (4.1) holds for µ-a.a. γ P Γ2. Let Lkµ :“ L1pΓ2
0, kµdλq

and for kµpηq :“ eα|η
`|eβ|η

´| we also write Lkµ ” Lα,β. The next statement shows a one-to-
one correspondence between certain classes of probability measures on Γ2 and correlation
functions.

Theorem 4.1.1. The following assertions are satisfied.

1. Let µ be a probability measure on Γ2 having finite local moments and correlation
function kµ. Then kµpHq “ 1 and kµ is positive definite, i.e. for any G P BbspΓ

2
0q

with KG ≥ 0:
ż

Γ2
0

Gpηqkµpηqdλpηq ≥ 0

holds.
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2. Conversely, let k : Γ2
0 ÝÑ R` be locally integrable, positive definite and satisfies

kpHq “ 1. Suppose there exist α, β P R and Cpµq ą 0 such that for all n,m ≥ 0

kpn,mqpx1, . . . , xn; y1, . . . ymq ≤ Cpµqeαneβm, x1, . . . , xn, y1, . . . , ym P Rd (4.3)

holds. Then there exists a unique probability measure µ on Γ2 with k as its correla-
tion function.

For given α, β P R let Pα,β be the space of all probability measures µ such that for
each µ there exists an associated correlation function kµ and this function satisfies for
some constant Cpµq ą 0

kµpηq ≤ Cpµqeα|η
`|eβ|η

´|, η P Γ2
0,

see (4.3). Let Kα,β stand for the Banach space of all equivalence classes of functions
k : Γ2

0 ÝÑ R equipped with norm

}k}Kα,β “ ess sup
ηPΓ2

0

|kpηq|e´α|η
`|e´β|η

´|.

Working with the measure µ P Pα,β it is often important to apply Fubini’s theorem which
yields for any G P Lα,β

ż

Γ2

KGpγqdµpγq “

ż

Γ

ż

Γ

KGpγ`, γ´qdµpγ`, γ´q.

4.1.2 Markov dynamics on Γ2

Let L be a a Markov (pre-)generator on Γ2, the precise form will be given in the next
section. The corresponding Markov process can be constructed by solving the (backward)
Kolmogorov equation on observables F P FPpΓ2q

BFt
Bt

“ LFt, Ft|t“0 “ F0. (4.4)

Formally it is the same as investigating solutions to the forward Kolmogorov equation
(Fokker-Planck equation)

B

Bt

ż

Γ2

F pγqdµtpγq “

ż

Γ2

pLF qpγqdµtpγq, µt|t“0 “ µ0. (4.5)

Here pµtqt≥0 is a flow of Borel probability measures on Γ2. As in the one-component case
it is possible and, indeed, it was proposed in [FKO13] to study above Cauchy problems
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in terms of the evolution of quasi-observables and correlation functions. Define for this
purpose the operators pL :“ K´1LK and L∆ by the relation

ż

Γ2

pLGpηqkpηqdλpηq “

ż

Γ2
0

GpηqL∆kpηqdλpηq, G P BbspΓ
2
0q. (4.6)

In such a case we study the Cauchy problem for quasi-observables

B

Bt
Gt “ pLGt, Gt|t“0 “ G0 (4.7)

and for correlation functions

B

Bt
kt “ L∆kt, kt|t“0 “ k0. (4.8)

Solutions to (4.4) are formally related to (4.7) by the relation Ft “ KGt and we expect
that solutions to the Cauchy problem (4.8) are positive definite and hence determine
uniquely a family of probability measures pµtqt≥0 such that kt is the correlation function
for µt. As a result, pµtqt≥0 should be a solution to (4.5).

4.1.3 General description of Vlasov scaling

Let us briefly fix the notation for Vlasov scaling in the two-component case. Let L be
a Markov (pre-)generator on Γ2, the aim is to find a scaling Ln such that the following
scheme holds. Let T∆

n ptq “ etL
∆
n be the (heuristic) representation of the scaled evolution

of correlation functions, see (4.8). The particular choice of L Ñ Ln should preserve the
order of singularity, that is the limit

n´|η|T∆
n ptqn

|η|k ÝÑ T∆
V ptqk, nÑ 0 (4.9)

should exist and the evolution T∆
V ptq should preserve Lebesgue-Poisson exponentials, i.e.

if r0pηq “ eλpρ
E
0 , η

´qeλpρ
S
0 ; η`q, then T∆

V ptqr0pηq “ eλpρ
E
t , η

´qeλpρ
S
t ; η`q. In such a case

ρEt , ρ
S
t satisfy a system of non-linear integro-differential equations

BρEt
Bt

“ vEpρ
E
t , ρ

S
t q (4.10)

BρSt
Bt

“ vSpρ
E
t , ρ

S
t q. (4.11)

The functionals vE, vS can be computed explicitly for a large class of models. Instead of
investigating the limit (4.9), we define renormalized operators L∆

n,ren :“ n´|η|L∆
n n

|η| and
study the behaviour of the semigroups T∆

n,renptq when n Ñ 8. In such a case one can
compute a limiting operator

L∆
n,ren ÝÑ L∆

V (4.12)
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and show that L∆
V is associated to a semigroup T∆

V ptq. The limit (4.9) is then obtained
by showing the convergence

T∆
n,renptq ÝÑ T∆

V ptq (4.13)

in a proper sense.

4.1.4 Description of model

In this chapter we discuss a general two-component model given by the formal Kolmogorov
operator

pLF qpγq “ pLSF qpγq ` pLEF qpγq,

where

pLEF qpγq “
ÿ

xPγ´

dEpx, γ`, γ´zxqpF pγ`, γ´zxq ´ F pγqq (4.14)

`

ż

Rd

bEpx, γqpF pγ`, γ´ Y xq ´ F pγqqdx

and

pLSF qpγq “
ÿ

xPγ`

dSpx, γ`zx, γ´qpF pγ`zx, γ´q ´ F pγqq (4.15)

`

ż

Rd

bSpx, γqpF pγ` Y x, γ´q ´ F pγqqdx.

The functions dE, dS are the so-called death intensities and bE, bS ≥ 0 the birth intensities
of the birth-and-death process given by the operator L. All intensities are assumed to be
non-negative. As in the one-component case we suppose that above intensities satisfy the
condition given below.

(A) There exists a measurable set Γ8 Ă Γ2 such that for all x P Rd

Rd
ˆ Γ2

8 Q px, γq ÞÝÑ dpx, γzxq, bpx, γq P r0,8q (4.16)

are measurable and for any compact Λ Ă Rd and bounded set M Ă Γ2
0

ż

Λ

ż

M

pdSpx, ηq ` dEpx, ηq ` bSpx, ηq ` bEpx, ηqqdλpηqdx ă 8 (4.17)

holds. Moreover, any measure µ P Pα,β is supported on Γ2
8.
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4.2 Evolution of observables

Similar to the one-component case, let Eα,β be the completition of FPpΓ2q w.r.t. to the
norm

}F }Eα,β :“ }G}Lα,β “

ż

Γ2
0

|Gpηq|eα|η
`|eβ|η

´|dλpηq,

where F “ KG P FPpΓ2q. Then }F }L1pΓ2,dπα,βq ≤ }F }Eα,β and each F P Eα,β is uniquely
determined by an element G P Lα,β for which we use the notation F “ KG. For any
α1 ă α and β1 ă β the dense embedding Lα,β Ă Lα1,β1 implies that Eα,β is continuously
embedded into Eα1,β1 . Introduce the cumulative death intensity by

Mpηq :“
ÿ

xPη´

dEpx, η`, η´zxq `
ÿ

xPη`

dSpx, η`zx, η´q

and set cpL, α, β; ηq “ cpηq “ cpα, β; ηq by

cpL, α, β; ηq :“
ÿ

xPη´

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 dEpx, ¨ Y η`, ¨ Y η´zxq|pξqdλpξq

`
ÿ

xPη`

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 dSpx, ¨ Y η`zx, ¨ Y η´q|pξqdλpξq

` e´β
ÿ

xPη´

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 bEpx, ¨ Y η`, ¨ Y η´zxq|pξqdλpξq

` e´α
ÿ

xPη`

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 bSpx, ¨ Y η`zx, ¨ Y η´q|pξqdλpξq.

Define on BbspΓ
2
0q the operator pL :“ K´1

0 LK0, see (4.7). Denote by 1˚ the function given

by 1˚pηq :“ 0|η| “

#

1, |η| “ 0

0, otherwise
. Using the methods proposed in [FKK12, FKO13] we

can compute pL. It has the form pL “ A ` B. The latter operators are well-defined for
functions G P BbspΓ

2
0q and are given by pAGqpηq “ ´MpηqGpηq, where

Mpηq “
ÿ

xPη´

dEpx, η`, η´zxq `
ÿ

xPη`

dSpx, η`zx, η´q ≥ 0
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and by

pBGqpηq “ ´
ÿ

ξĹη

Gpξq
ÿ

xPξ´

pK
´1
0 dEpx, ¨ Y ξ`, ¨ Y ξ´zxqqpηzξq

´
ÿ

ξĹη

Gpξq
ÿ

xPξ`

pK
´1
0 dSpx, ¨ Y ξ`zx, ¨ Y ξ´qqpηzξq

`
ÿ

ξĂη

ż

Rd

Gpξ`, ξ´ Y xqpK´1
0 bEpx, ¨ Y ξ`, ¨ Y ξ´qqpηzξqdx

`
ÿ

ξĂη

ż

Rd

Gpξ` Y x, ξ´qpK´1
0 bSpx, ¨ Y ξ`, ¨ Y ξ´qqpηzξqdx.

Lemma 4.2.1. Suppose that condition (A) is fulfilled and cpα, β; ηq is locally integrable.

Then pL,FPpΓ2qq is a well-defined operator on Eα,β and ppL,BbspΓ
2
0qq is a well-defined

operator on Lα,β.

Proof. Let F “ KG P FPpΓ2q, then by
ż

Γ2

|LF pγq|dπα,βpγq ≤
ż

Γ2

K|pLG|pγqdπα,βpγq “

ż

Γ2
0

|pLGpηq|eα|η
`|eβ|η

´|dλpηq

it is enough to show that ppL,BbspΓ
2
0qq is a well-defined operator on Lα,β. For each G P

BbspΓ
2
0q we have
ż

Γ2
0

|Gpηq|Mpηqdλpηq

“

ż

Rd

ż

Γ2
0

|Gpη` Y x, η´q|dSpx, ηqdλpηqdx`

ż

Rd

ż

Γ2
0

|Gpη`, η´ Y xq|dEpx, ηqdλpηqdx

and in view of (4.17) the latter expression is finite. It remains to show that pB,BbspΓ
2
0qq

is a well-defined operator on Lα,β. Define a new (positive) operator B1 on BbspΓ
2
0q by

pB1Gqpη`, η´q :“
ÿ

ξĹη

Gpξq
ÿ

xPξ´

|K
´1
0 dEpx, ¨ Y ξ`, ¨ Y ξ´zxq|pηzξq

`
ÿ

ξĹη

Gpξq
ÿ

xPξ`

|K
´1
0 dSpx, ¨ Y ξ`zx, ¨ Y ξ´q|pηzξq

`
ÿ

ξĂη

ż

Rd

Gpξ`, ξ´ Y xq|K´1
0 bEpx, ¨ Y ξ`, ¨ Y ξ´q|pηzξqdx

`
ÿ

ξĂη

ż

Rd

Gpξ` Y x, ξ´q|K´1
0 bSpx, ¨ Y ξ`, ¨ Y ξ´q|pηzξqdx.
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Then |BG| ≤ B1|G| and by property (2.27) it follows that for any 0 ≤ G P BbspΓ
2
0q

ż

Γ2
0

B1Gpηqeα|η
`|eβ|η

´|dλpηq “

ż

Γ2
0

pcpα, β; ηq ´MpηqqGpηqeα|η
`|eβ|η

´|dλpηq (4.18)

holds. The assertion is therefore proved.

Below we show that the closure of pL,FPpΓ2qq is the generator of a strongly continuous
semigroup.

Theorem 4.2.2. Suppose that (A) is satisfied and assume that cpα, β; ηq is locally inte-
grable. Then the following assertions are equivalent:

(a) The closure pL,DpLqq of pL,FPpΓ2qq is the generator of an analytic semigroup
pT ptqqt≥0 of contraction on Eα,β such that T ptq1 “ 1 holds.

(b) The closure ppL,DppLqq of ppL,BbspΓ
2
0qq is the generator of an analytic semigroup

ppT ptqqt≥0 of contractions on Lα,β such that pT ptq1˚ “ 1˚ holds.

Proof. It holds that 1˚ P BbspΓ
2
0q, pL1˚ “ 0 and since K1˚ “ 1 also 1 P FPpΓ2q and

L1 “ 0 hold.
pbq ñ paq : Define on Eα,β a family of operators pT ptqqt≥0 by the relation

T ptqKG “ KpT ptqG, KG P Eα,β (4.19)

and hence
}T ptqKG}Eα,β “ }

pT ptqG}Lα,β ≤ }G}Lα,β .
The strong continuity follows from

}T ptqKG´KG}Eα,β “ }
pT ptqG´G}Lα,β

and since ppT ptqqt≥0 satisfies the semigroup property, so does pT ptqqt≥0. Hence T ptq is a
C0-semigroup on Eα,β. For a given pair of functions KG,Kh P Eα,β

T ptqKG´KG

t
ÝÑ Kh, tÑ 0

holds in Eα,β if and only if
pT ptqG´G

t
ÝÑ h, tÑ 0

holds in Lα,β. This is possible if and only if G P DppLq and pLG “ h. Therefore the

generator of pT ptqqt≥0 is given by LKG “ KpLG and

DpLq “ KDppLq “ tKG P Eα,β | G P DppLqu.
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To show that FPpΓ2q Ă Eα,β is a core it suffices to show that closure of FPpΓ2q in Eα,β
with respect to the graph norm

}KG}L “ }KG}Eα,β ` }LKG}Eα,β

coincides with DpLq. So let KG P DpLq, since BbspΓ
2
0q is a core for DppLq there exists

a sequence pGnqnPN Ă BbspΓ
2
0q such that Gn ÝÑ G and pLGn ÝÑ pLG. By definition of

the norm in Eα,β this implies KGn ÝÑ KG and LKGn ÝÑ LKG in Eα,β and hence with
respect to the graph norm } ¨ }L. The resolvent Rpλ;Lq for L is given by

Rpλ;LqKG “

8
ż

0

e´λtT ptqKGdt “

8
ż

0

e´λtKpT ptqGdt “ KRpλ; pLqG

and hence pT ptqqt≥0 is analytic.

paq ñ pbq : Since T ptqKG P Eα,β for all G P Lα,β there exists a linear operator pT ptq on

Lα,β such that KpT ptqG “ T ptqKG, G P Lα,β, t ≥ 0. The definition of the norm in Eα,β
and the same arguments as above imply the assertion.

The next Proposition provides existence and uniqueness of solutions to the Kolmogorov
equation (4.4).

Proposition 4.2.3. Suppose that (A) is satisfied and assume that there exists β P R and
a constant a “ apα, βq P p0, 2q such that

cpα, β; ηq ≤ apα, βqMpηq, η P Γ2
0 (4.20)

holds. Then the following assertions are true:

(a) Condition (b) and therefore (a) of Theorem 4.2.2 are satisfied.

(b) Suppose that there exist α˚ ă α˚ and β˚ ă β˚ with α P pα˚, α
˚q and β P pβ˚, β

˚q

such that for all α1 P pα˚, α
˚q and β1 P pβ˚, β

˚q condition (4.20) is satisfied. Denote
by Tα1,β1ptq the associated semigroup on Eα1,β1, then for any α ą α1 and β ą β1 the
space Eα,β is invariant for Tα1,β1ptq and T ptq “ Tα1,β1ptq|Eα,β holds.

Proof. (a) Set DppLq :“ tG P Lα,β | M ¨ G P Lα,βu. Then, since M ≥ 0, the operator

pA,DppLqq is the generator of an analytic (of angle π
2
), positive C0-semigroup pe´tMqt≥0

on Lα,β, see [EN00]. Let B1 be given as in the proof of Lemma 4.2.1. Then, since

|BG| ≤ B1|G|, it is enough to show that pA ` B1, DppLqq is resolvent positive, cf. [AR91,

Theorem 1.1]. To this end we show that pA ` B1, DppLqq is the generator of a positive

semigroup. We will prove afterwards that ppL,DppLqq is the closure of ppL,BbspΓ0qq.
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So fix r P p0, 1q, cf. (4.20), such that

apα, βq ă 1` r ă 2.

For each 0 ≤ G P DppLq, see (4.18), we obtain
ż

Γ2
0

B1Gpηqeα|η
`|eβ|η

´|dλpηq “

ż

Γ2
0

pcpα, β; ηq ´MpηqqGpηqeα|η
`|eβ|η

´|dλpηq

≤ papα, βq ´ 1q

ż

Γ2
0

MpηqGpηqeα|η
`|eβ|η

´|dλpηq ≤ r

ż

Γ2
0

MpηqGpηqeα|η
`|eβ|η

´|dλpηq

and hence
ż

Γ2
0

ˆ

A`
1

r
B1
˙

Gpηqeα|η
`|eβ|η

´|dλpηq ≤ 0

holds. Therefore by [TV06, Theorem 2.2] the operator pA ` B1, DppLqq is the generator
of a sub-stochastic semigroup pUpsqqs≥0 and by [AR91, Theorem 1.1, Theorem 1.2] also

pA`B,DppLqq “ ppL,DppLqq is the generator of an analytic semigroup ppT psqqs≥0 such that

|pT psqG| ≤ Upsq|G|, G P Lα,β.

Since Upsq is a contraction operator, so is pT psq. The next lemma completes the proof of
assertion (a).

Lemma 4.2.4. BbspΓ
2
0q is a core for the generator ppL,DppLqq on Lα,β.

Proof. Let G P DppLq, An Ă Γ2
0 an increasing sequence of bounded sets with

Ť

n≥1

An “ Γ2
0

and let Gnpηq :“ 1Anpηq1|G|≤npηqGpηq. Then |Gn| ≤ |G|, Gn ÝÑ G a.e. and by dominated

convergence also pLGn ÝÑ pLG as nÑ 8 almost everywhere. Moreover, by

|pLGn| ≤M |Gn| `B
1
|Gn| ≤ pM `B1q|G| P L1

pΓ2
0, dλq

and dominated convergence we obtain pLGn ÝÑ pLG in Lα,β. Therefore BbspΓ
2
0q Ă DppLq

is dense in the graph norm.

(b) Let α1 ă α and β1 ă β such that (4.20) also holds for pα1, β1q. Denote by

ppTα1,β1psqqs≥0 the corresponding semigroup on Lα1,β1 constructed in (a). Let ppL,Dα1,β1ppLqq

be the generator of pTα1,β1ptq. By previous construction it is simply given by the action of

the operator pL on the domain

Dα1,β1ppLq :“ tG P Lα1,β1 | M ¨G P Lα1,β1u.
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We have to show that Lα,β is invariant for pTα1,β1psq and

pT psqG “ pTα1,β1psqG, G P Lα,β, s ≥ 0. (4.21)

To this end we define a linear isomorphism

S : Lα,β ÝÑ Lα1,β1 , pSGqpηq “ epα´α
1q|η`|epβ´β

1q|η´|Gpηq

with inverse S´1 given by

pS´1Gqpηq “ e´pα´α
1q|η`|e´pβ´β

1q|η|Gpηq.

Define on Lα1,β1 a new operator by pL1 :“ SpLS´1 equipped with the domain

Dα1,β1ppL1q “ tG P Lα1,β1 | S´1G P DppLqu “ tG P Lα1,β1 | MS´1G P Lα,βu.

Since

}MS´1G}Lα,β “

ż

Γ2
0

e´pα´α
1q|η`|e´pβ´β

1q|η|Mpηq|Gpηq|eα|η
`|eβ|η

´|dλpηq “ }MG}Lα1,β1

we obtain Dα1,β1ppL1q “ tG P Lα1,β1 | M ¨ G P Lα1,β1u “ Dα1,β1ppLq. Let us show that

ppL1, Dα1,β1ppL1qq is the generator of a C0-semigroup on Lα1,β1 . The definition of S and S´1

implies pL1 “ A`B1 where A is the same as for pL and B1 is given by

pB1Gqpηq “

´
ÿ

ξĹη

Gpξqepα´α
1q|η`zξ`|epβ´β

1q|η´zξ´|
ÿ

xPξ´

pK
´1
0 dEpx, ¨ Y ξ`, ¨ Y ξ´zxqqpηzξq

´
ÿ

ξĹη

Gpξqepα´α
1q|η`zξ`|epβ´β

1q|η´zξ´|
ÿ

xPξ`

pK
´1
0 dSpx, ¨ Y ξ`zx, ¨ Y ξ´qqpηzξq

` e´pβ´β
1q
ÿ

ξĂη

ż

Rd

Gpξ`, ξ´ Y xqepα´α
1q|η`zξ`|epβ´β

1q|η´zξ´|
pK

´1
0 bEpx, ¨ Y ξqqpηzξqdx

` e´pα´α
1q
ÿ

ξĂη

ż

Rd

Gpξ` Y x, ξ´qepα´α
1q|η`zξ`|epβ´β

1q|η´zξ´|
pK

´1
0 bSpx, ¨ Y ξqqpηzξqdx.

Define analogously to B1 the positive operator B11 such that |B1G| ≤ B11|G|, then for any

non-negative function G P Dα1,β1ppL1q we obtain

ż

Γ2
0

B11Gpηqe
α1|η`|eβ

1|η´|dλpηq “

ż

Γ2
0

pcpα, β; ηq ´MpηqqGpηqeα
1|η`|eβ

1|η´|dλpηq.
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The same arguments as for the construction of pT ptq show that pA`B11, Dα1,β1ppL1qq is the

generator of a sub-stochastic semigroup and hence ppL1, Dα1,β1ppL1qq is the generator of a
C0-semigroup. Now [Paz83, Chapter 4, Theorem 5.5, Theorem 5.8] implies that Lα,β is

invariant for pTα1,β1ptq and the restriction to Lα,β is a C0-semigroup given by

rTα,βptq :“ pTα1,β1ptq|Lα,β .

The generator of rTα,βptq is given by the part of ppL,Dα1,β1ppLqq in Lα,β, that is by

Dα1,β1ppLq|Lα,β :“ tG P Dα1,β1ppLq X Lα,β | pLG P Lα,βu
“ tG P Lα,β | M ¨G P Lα1,β1 , pLG P Lα,βu.

Condition (4.20) therefore implies DppLq Ă Dα1,β1ppLq|Lα,β and hence ppL,Dα1,β1ppLq|Lα,βq

is an extension of ppL,DppLqq. Denote by Rpλ; pLq the resolvent for ppL,DppLqq and by
rRpλ; pLq the resolvent for ppL,Dα1,β1ppLq|Lα,βq. For sufficiently large λ ą 0 it follows that

Rpλ, pLqG P DppLq Ă Dα1,β1ppLq|Lα,β for any G P Lα,β and thus

rRpλ; pLqG´Rpλ; pLqG “ rRpλ; pLqppλ´ pLq ´ pλ´ pLqqRpλ; pLqG “ 0,

where we have used that for elements in DppLq the action of the generators is given by the

formulas for pL “ A`B and hence coincide.

For one-component models, i.e. bE “ 0 “ dE, a similar construction was already done
in [FKK12]. The main assumption was that each term in cpα, β; ηq is bounded by 3

2
Mpηq

and it was not clear whether pT ptq is a contraction operator for t ≥ 0. The next example
shows that the constant 2 in (4.20) is optimal.

Theorem 4.2.5. The constant 2 in condition (4.20) is optimal in the sense that it cannot
be increased.

Proof. It suffices to find a model with apα, βq ą 2 and show that the Cauchy problem (4.7)
does not admit a solution in Lα,β. Take dE “ 1, bE “ z ą 0 constant and bS “ dS “ 0,
then condition (4.20) can be restated to z ă eβ and α P R is arbitrary. The evolution
equation (4.7) is in this case exactly solvable and hence has for every initial condition G0

the solution pGtqt≥0 given by

Gtpηq “ e´t|η
´|

ż

Γ0

Gpη`, η´ Y ξ´qeλ
`

zp1´ e´tq; ξ´
˘

dλpξ´q, η P Γ2
0,

see [Fin11] for the one-component case. If condition (4.20) is satisfied, then Gt P Lα,β.
Suppose that apα, βq ą 2, i.e. z ą eβ and let t0 ą 0 such that p1 ´ e´tqz ą eβ for all
t ≥ t0 and hence

zp1´ e´tqpe´β ` e´tq ≥ zp1´ e´tqe´β ą 1.
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Take 0 ≤ G P Lα,β such that G R Lα,β1 for any β1 ą β. The unique solution Gt is then
positive and satisfies

}Gt}Lα,β “

ż

Γ2
0

ż

Γ0

e´t|η
´|Gpη`, η´ Y ξ´qeλpzp1´ e

´t
q; ξ´qeα|η

`|eβ|η
´|dλpξ´qdλpηq

“

ż

Γ2
0

eα|η
`|Gpη`, ξ´qeλpzp1´ e

´t
q; ξ´q

ÿ

η´Ăξ´

e´t|η
´|eβ|η

´|dλpη`, ξ´q

“

ż

Γ2
0

Gpη`, ξ´q
`

pe´β ` e´tqzp1´ e´tq
˘|ξ´|

eα|η
`|eβ|ξ

´|dλpη`, ξ´q “ 8.

Let dSn, d
S, dEn , d

E, bSn, b
S, bEn , b

E P r0,8s be birth-and-death intensities which satisfy
condition (A). As in the one-component case, introduce cnpα, β; ηq by

ÿ

xPη´

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 dEpx, ¨ Y η`, ¨ Y η´zxq ´K´1

0 dEn px, ¨ Y η
`, ¨ Y η´zxq|pξqdλpξq

`
ÿ

xPη`

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 dSpx, ¨ Y η`zx, ¨ Y η´q ´K´1

0 dSnpx, ¨ Y η
`
zx, ¨ Y η´q|pξqdλpξq

` e´β
ÿ

xPη´

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 bEpx, ¨ Y η`, ¨ Y η´zxq ´K´1

0 bEn px, ¨ Y η
`, ¨ Y η´zxq|pξqdλpξq

` e´α
ÿ

xPη`

ż

Γ2
0

eα|ξ
`|eβ|ξ

´|
|K

´1
0 bSpx, ¨ Y η`zx, ¨ Y η´q ´K´1

0 bSnpx, ¨ Y η
`
zx, ¨ Y η´q|pξqdλpξq

and Mnpηq “
ř

xPη´
dEn px, η

`, η´zxq `
ř

xPη`
dSnpx, η

`zx, η´q. Denote by Ln the Kolmogorov

operators associated to the intensities dSn, d
E
n , b

S
n, b

E
n . The next statement implies the

continuous dependence of the constructed semigroups Tnptq w.r.t. above intensities.

Theorem 4.2.6. Suppose that the following conditions are satisfied:

1. There exist α, β P R and a constant apα, βq P p0, 2q such that

cpLn, α, β; ηq ≤ apα, βqMnpηq, η P Γ2
0, n ≥ 1

holds.
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2. There exist constants A ą 0, N P N and τ ≥ 0 such that

dEn px, ηq ` d
S
npx, ηq ≤ Ap1` |η|qNeτ |η|, η P Γ2

0, x P Rd

holds.

3. cnpα, β; ηq ÝÑ 0, nÑ 8 holds for all η P Γ2
0.

Then (4.20) is satisfied. Let T ptq, Tnptq be the semigroups on Eα,β associated to L and Ln
respectively. Then for any F P Eα,β

TnptqF ÝÑ T ptqF, nÑ 8

holds uniformly on compacts in t ≥ 0.

Proof. Since |cpLn, α, β; ηq ´ cpL, α, β; ηq| ≤ cnpα, β; ηq ÝÑ 0, n Ñ 8 and |Mnpηq ´
Mpηq| ≤ cnpα, β; ηq ÝÑ 0 it follows that

cpL, α, β; ηq “ lim
nÑ8

cpLn, α, β; ηq ≤ apα, βq lim
nÑ8

Mnpηq “ apα, βqMpηq

and hence (4.20) holds. Let T ptq and Tnptq be the semigroups on Eα,β generated by the
closure of pLn,FPpΓ2qq and pL,FPpΓ2qq respectively. By Trotter-Kato approximation it

suffices to show LnF ÝÑ LF for any F P FPpΓ2q. This is equivalent to pLnG ÝÑ pLG for
any G P BbspΓ

2
0q. Therefore

}pLnG´ pLG}Lα,β ≤
ż

Γ2
0

cnpα, β; ηq|Gpηq|eα|η
`|eβ|η

´|dλpηq

and the integrand tends to zero. Since cnpα, β; ηq ≤ apα, βqpMpηq ` Mnpηqq and by
Mpηq “ lim

nÑ8
Mnpηq ≤ A|η|N`1eτ |η| it follows that cnpα, β; ηq ≤ 2apα, βqA|η|N`1eτ |η| and

hence the assertion is satisfied by dominated convergence.

4.3 Evolution of correlation functions

Suppose that condition (A) and (4.20) are fulfilled. Denote by pT ptq˚ the adjoint semigroup

on Kα,β and by ppL˚, DppL˚qq its generator. This is, by definition, the adjoint operator to

ppL,DppLqq, i.e. xpLG, ky “ xG, pL˚ky for G P DppLq and k P DppL˚q.

Remark 4.3.1. Let α1 ă α and β1 ă β be such that condition (4.20) holds for α1, β1 and

α, β. Let ppTα1,β1psqqs≥0 be the analytic semigroup constructed in Theorem 4.2.3. Then by
(4.21) for any G P Lα,β Ă Lα1,β1 and k P Kα1,β1 Ă Kα,β we obtain

xG, pTα1,β1ptq
˚ky “ xpTα1,β1ptqG, ky “ xpT ptqG, ky “ xG, pT ptq

˚ky

and hence pT ptq˚k “ pTα1,β1ptq
˚k holds.
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Because of the relation (4.6) it is reasonable to consider the linear operator L∆ given
by

pL∆kqpηq “ ´
ÿ

xPη´

ż

Γ2
0

kpη Y ξqpK´1
0 dEpx, ¨ Y η`, ¨ Y η´zxqqpξqdλpξq

´
ÿ

xPη`

ż

Γ2
0

kpη Y ξqpK´1
0 dSpx, ¨ Y η`zx, ¨ Y η´qqpξqdλpξq

`
ÿ

xPη´

ż

Γ2
0

kpη` Y ξ`, η´ Y ξ´zxqpK´1
0 bEpx, ¨ Y η`, ¨ Y η´zxqqpξqdλpξq

`
ÿ

xPη`

ż

Γ2
0

kpη` Y ξ`zx, η´ Y ξ´qpK´1
0 bSpx, ¨ Y η`zx, ¨ Y η´qqpξqdλpξq.

We will consider this operator on the maximal domain

DpL∆
q “ tk P Kα,β | L∆k P Kα,βu.

Below we will need the additional conditions:

(B’) There exist constants A ą 0, N P N and τ ≥ 0 such that

dSpx, ηq ` dEpx, ηq ≤ Ap1` |η|qNeτ |η|, x P Rd, η P Γ2
0

holds.

(C) There exist α1, β1 P R with α1 ` τ ă α, β1 ` τ ă β and a constant apα1, β1q ą 0 such
that the condition below is satisfied

cpα1, β1; ηq ≤ apα1, β1qMpηq, η P Γ2
0.

Lemma 4.3.2. Suppose that (4.20) and (A) are fulfilled, then ppL˚, DppL˚qq “ pL∆, DpL∆qq.
If in addition conditions (B’) and (C) hold, then L∆ considered as an operator Kα1,β1 ÝÑ
Kα,β is bounded. In particular Kα1,β1 Ă DpL∆q holds.

Proof. It is not difficult to see that for any G P DppLq and k P DppL˚q

ż

Γ2
0

GpηqppL˚kqpηqdλpηq “

ż

Γ2
0

ppLGqpηqkpηqdλpηq “

ż

Γ2
0

GpηqpL∆kqpηqdλpηq,
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see (2.27). Thus L∆k “ pL˚k P Kα,β and hence DppL˚q Ă DpL∆q. Conversely let k P

DpL∆q, then for any G P DppLq above equality implies k P DppL˚q. For the second assertion
observe that for k P Kα1,β1

|L∆kpηq| ≤ }k}Kα1,β1cpα
1, β1; ηqeα

1|η`|eβ
1|η´|

≤ }k}Kα1,β1apα
1, β1qMpηqe´pα´α

1q|η`|e´pβ´β
1q|η´|eα|η

`|eβ|η
´|

≤ }k}Kα1,β1apα
1, β1qA|η|N`1e´pα´α

1´τq|η`|e´pβ´β
1´τq|η´|eα|η

`|eβ|η
´|,

hence the assertion follows by p|η`| ` |η´|qN`1 ≤ 2Np|η`|N`1 ` |η´|N`1q,

xae´bx ≤
´a

b

¯a

e´a, a, x ≥ 0, b ą 0

and

|η|N`1e´pα´α
1´τq|η`|e´pβ´β

1´τq|η´| ≤ 2NpN ` 1qN`1e´pN`1q

pα ´ α1 ´ τqN`1
`

2NpN ` 1qN`1e´pN`1q

pβ ´ β1 ´ τqN`1
.

Since Lα,β is not reflexive, pT ptq˚ does not need to be strongly continuous. In fact it is
continuous only w.r.t. the topology σppLα,βq˚,Kα,βq “ σpKα,β,Lα,βq. Here σpKα,β,Lα,βq is
the smallest topology such that all linear functionals Lα,β Q G ÞÝÑ xG, ky are continuous,

where k P Kα,β. It is well-known that pT ptq˚ is strongly continuous on Kdα,β “ DpL∆q and

its restriction pT ptqd :“ pT ptq˚|Kdα,β
is a C0-semigroup with generator pLdk “ L∆k,

DppLdq “ tk P DpL∆
q | L∆k P Kdα,βu.

Hence we obtain existence and uniqueness of strong solutions to (4.8) on the Banach
space Kdα,β. Unfortunately this space depends on the generator and does not provide
uniqueness for the weak solutions. Another possibility is to change the topology on Kα,β.
Let CpKα,β,Lα,βq “: C be the topology of uniform convergence on compact subsets of
Lα,β. A basis of neighbourhoods around 0 is given by sets of the form

tk P Kα,β | sup
GPK

|xG, ky| ă εu,

with ε ą 0 and compact K Ă Lα,β, see [WZ02, WZ06, Lem10] and the references therein.

The semigroup ppT ptq˚qt≥0 becomes continuous w.r.t. C and its generator w.r.t. C is exactly
the adjoint operator pL∆, DpL∆qq, cf. [WZ06, Theorem 1.4]. The next theorem is our
main result for this section, it provides existence, uniqueness and regularity of solutions
to the Cauchy problem (4.8) on Kα,β.
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Theorem 4.3.3. Suppose that (4.20) and (A) are satisfied. Then for any k0 P Kα,β the
equation

xG, kty “ xG, k0y `

t
ż

0

xpLG, ksyds, G P DppLq (4.22)

has a unique solution given by kt “ pT ptq˚k0. This means that kt is continuous w.r.t. to
the topology C and satisfies (4.22). Moreover, t ÞÝÑ xG, kty is continuously differentiable
and solves the Cauchy problem

d

dt
xG, kty “ xpLG, kty, kt|t“0 “ k0, G P DppLq. (4.23)

Assume that (B’) and (C) are fulfilled. Then the following assertions are true:

1. If k0 P Kα1,β1, then kt is continuous w.r.t. to the norm in Kα,β.

2. If k0 P Kα1,β1 and α1`2τ ă α, β1`2τ ă β, then kt is also continuously differentiable
w.r.t. to the norm in Kα,β and the unique classical solution to (4.8).

Proof. Existence and uniqueness for the Cauchy problem (4.22) follows from [WZ06, The-
orem 2.1] and Theorem 4.2.3. A direct proof can be achieved by the arguments provided in

the proof of Theorem 1.1.7. Since pT ptq˚ is continuous w.r.t. σpKα,β,Lα,βq, t ÞÝÑ xpLG, kty
is continuous and hence (4.22) implies (4.23).
1. If k0 P Kα1,β1 , then by Lemma 4.3.2 L∆k0 P Kα,β and hence k0 P DpL

∆q Ă Kdα,β which
implies the assertion.
2. Suppose that α1 ` 2τ ă α, β1 ` 2τ ă β and let α2 P pα1, αq, β2 P pβ1, βq be such
that α1 ` τ ă α2, α2 ` τ ă α and β1 ` τ ă β2, β2 ` τ ă β. By Lemma 4.3.2 the op-
erator L∆ is bounded as Kα1,β1 Ñ Kα2,β2 and Kα2,β2 Ñ Kα,β. Therefore k0 P DpL

∆q and

L∆k0 P Kα2,β2 Ă DpL∆q. Thus k0 P DppL
dq implies that kt is continuously differentiable

w.r.t. the norm in Kα,β and it is a classical solution to (4.8).

We close this section with one sufficient condition for the evolution pT ptq˚k0 to satisfy
the generalized Ruelle bound given below. Let E : Γ2

0 ÝÑ R` be measurable such that

Epηq ` Epξq ≤ Epη Y ξq, η X ξ “ H, η, ξ P Γ2
0 (4.24)

holds. In particular this implies Epξq ≤ Epηq for ξ Ă η P Γ2
0. In applications such function

is chosen to be growing at infinity, e.g. for non-negative potentials φ1, φ2, φ3 of the form

Epηq “
ÿ

xPη`

ÿ

yPη`zx

φ1px´ yq `
ÿ

xPη´

ÿ

yPη´zx

φ2px´ yq `
ÿ

xPη`

ÿ

yPη´

φ3px´ yq.

166



We will say that the correlation function k P Kα,β satisfies the generalized Ruelle bound
if

|kpηq| ≤ Ceα|η
`|eβ|η

´|e´Epηq, η P Γ2
0

holds for some constant C ą 0. The grand canonical Gibbs measure with activity z ą 0
and pair potential φ is an example of a measure with such decay of correlations, cf.
[KKK04].

Remark 4.3.4. Suppose that kµ is the correlation function for some probability measure
µ on Γ2 an kµ satisfies the generalized Ruelle bound. For i P Zd let

Qi “ tr P Rd
| ik ´

1

2
ă rk ≤ ik `

1

2
, k “ 1, . . . , du,

define |γi| :“ |γ XQi| and set

Un :“ tγ P Γ2
||γ˘i | ≤ npmaxt1, logp}i}8quq

1
2 , @i P Zdu.

Suppose that the functional E is of the form

Epηq “
ÿ

xPpη`Yη´q

ÿ

yPpη`Yη´qzx

φpx´ yq

“
ÿ

xPη`

ÿ

yPη`zx

φpx´ yq ` 2
ÿ

xPη`

ÿ

yPη´

φpx´ yq `
ÿ

yPη´

ÿ

yPη´zx

φpx´ yq,

where φ is symmetric, integrable and superstable in the sense of Ruelle, cf. [Rue70]. Then
in [KKK04] (for the one-component case) it was shown that µp

Ť

n≥1

Unq “ 1. In fact, it

should be not difficult to adapt such result for the two-component case.

Define for α, β P R a function cdecpα, β; ηq by

cdecpα, β; ηq “

`
ÿ

xPη´

ż

Γ2
0

|K
´1
0 dEpx, ¨ Y η`, ¨ Y η´zxq|pξqeα|ξ

`|eβ|ξ
´|e´Epξqdλpξq

`
ÿ

xPη`

ż

Γ2
0

|K
´1
0 dSpx, ¨ Y η`zx, ¨ Y η´q|pξqeα|ξ

`|eβ|ξ
´|e´Epξqdλpξq

` e´β
ÿ

xPη´

eEpηq´Epη
`,η´zxq

ż

Γ0

|K
´1
0 bEpx, ¨ Y η`, ¨ Y η´zxq|pξqeα|ξ

`|eβ|ξ
´|e´Epξqdλpξq

` e´α
ÿ

xPη`

eEpηq´Epη
`zx,η´q

ż

Γ0

|K
´1
0 bSpx, ¨ Y η`zx, ¨ Y η´q|pξqeα|ξ

`|eβ|ξ
´|e´Epξqdλpξq.

167



Denote by Bα,β,E the Banach space of functions G with norm

~G~α,β,E :“

ż

Γ2
0

|Gpηq|eα|η
`|eβ|η

´|e´Epηqdλpηq.

We identity the dual Banach space B˚α,β,E with the space of functions k having finite norm

~k~α,β,E :“ ess sup
ηPΓ2

0

|kpηq|e´α|η
`|e´β|η

´|eEpηq.

Then k satisfies the generalized Ruelle bound if k P B˚α,β,E. The next theorem gives one

sufficient condition that the evolution kt “ pT ptq˚k0 satisfies the generalized Ruelle bound.

Theorem 4.3.5. Let (A) be satisfied and suppose that there exists adecpα, βq P p0, 2q such
that

cdecpα, β; ηq ≤ adecpα, βqMpηq, η P Γ2
0

holds. Then ppL,DBppLqq is the generator of an analytic semigroup of contractions ppTBptqqt≥0

on Bα,β,E, where

DBppLq “ tG P Bα,β,E | M ¨G P Bα,β,Eu.
This semigroup satisfies similar statements to Theorem 4.2.3 and 4.3.3.
Suppose that (4.20) holds. Then for every k0 P B˚α,β,E the unique weak solution to (4.22)

is given by pTBptq˚k0 “ kt “ pT ptq˚k0 and hence satisfies kt P B˚α,β,E.

Proof. Denote by B1 the positive operator defined in the proof of Theorem 4.2.3. For
every 0 ≤ G P DBppLq by property (4.24) and a short computation we see that
ż

Γ2
0

B1Gpηqeα|η
`|eβ|η

´|e´Epηqdλpηq ≤
ż

Γ2
0

pcdecpα, β; ηq ´MpηqqGpηqeα|η
`|eβ|η

´|e´Epηqdλpηq

is satisfied. The same arguments as for the proof of Theorem 4.2.3 show that ppL,DBppLqq

is the generator of an analytic semigroup pTBptq on Bα,β and Theorems 4.2.3 and 4.3.3

hold for this semigroup. Fix k0 P B˚α,β,E, then pTBptq˚k0 is the unique weak solution to

(4.22) in B˚α,β,E. Since k0 P B˚α,β,E Ă Kα,β is continuously embedded pT ptq˚k0 is the unique

weak solution to (4.22) in Kα,β. Let us show that pTBptqk0 is also a weak solution in

Kα,β. Because of Lα,β Ă Bα,β,E we see that ppL,DBppLqq is an extension of ppL,DppLqq and
pTBptq˚k0 P B˚α,β,E Ă Kα,β is continuous w.r.t. σpKα,β,Lα,βq. Because of

|pTBptqk0pηq| ≤ e´Epηqeα|η
`|eβ|η

´|
~pTBptq˚k0~α,β,E ≤ eα|η

`|eβ|η
´|
~k0~α,β,E

we get by [WZ06, Lemma 1.10] that it is also continuous w.r.t. CpKα,β,Lα,βq. As a

consequence pTBptq˚k0 is also a weak solution to (4.22) in Kα,β and uniqueness implies
pT ptq˚k0 “ pTBptq˚k0.

168



4.4 Evolution of states

Suppose that (A) and (4.20) are satisfied. Let T ptq be the semigroup on Eα,β generated
by the closure of pL,FPpΓ2qq. Let E˚α,β be the dual Banach space to Eα,β and T ptq˚ the
adjoint semigroup on E˚α,β. A functional ` P E˚α,β is called positive if for any 0 ≤ KG P Eα,β
the action satisfies `pKGq ≥ 0. Let K`α,β Ă Kα,β stand for the cone of all positive definite
functions in Kα,β.

Lemma 4.4.1. For any linear functional ` P E˚α,β there exists a unique function k` P Kα,β
such that

`pKGq “ xG, k`y, KG P Eα,β (4.25)

and }`}E˚α,β “ }k`}Kα,β hold. The functional ` is positive if and only if k` P K`α,β. In such

a case ` is given by

`pKGq “ xG, k`y “ k`pHqxKG, µ`y, KG P FPpΓ2
q

with µ` P Pα,β associated to the correlation function 1
k`pHq

k`.

Proof. Let ` P E˚α,β, then p`pGq :“ `pKGq defines an element in L˚α,β – Kα,β. Hence there

exists a unique element k` P Kα,β such that p`pGq “ xG, k`y and

}`}E˚α,β “ sup
}KG}Eα,β“1

|`pKGq| “ sup
}G}Lα,β“1

|xG, k`y| “ }k`}Kα,β

holds. For KG ≥ 0 we get `pKGq “ xG, k`y ≥ 0 if and only if k` is positive definite. The
last assertion is a consequence of Theorem 4.1.1.

As a consequence for any ` P E˚α,β the action T ptq˚` is represented by pT ptq˚k` P Kα,β,
i.e. for any KG P Eα,β

pT ptq˚`qpKGq “ `pT ptqKGq “ xpT ptqG, k`y “ xG, pT ptq
˚k`y.

holds. From pT ptq1˚ “ 1˚ we obtain pT ptq˚k0pHq “ k0pHq and by K1˚ “ 1 P Eα,β

pT ptq˚`qp1q “ pT ptq˚k`pHq “ k`pHq. (4.26)

Therefore the semigroup pT ptq˚qt≥0 is conservative on E˚α,β. Let us start with the notion
of solutions to the Fokker-Planck equation (4.5).

Definition 4.4.2. A flow of Borel probability measures pµtqt≥0 Ă Pα,β is said to be a weak
solution to (4.5) if for any F P FPpΓ2q, t ÞÝÑ xLF, µty is locally integrable and satisfies

xF, µty “ xF, µ0y `

t
ż

0

xLF, µsyds, t ≥ 0. (4.27)
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Uniqueness is stated in the next theorem, its proof is achieved by showing that any
solution to the Fokker-Planck equation (4.5) yields a weak solution to (4.8).

Theorem 4.4.3. (Uniqueness) Suppose that (A) and (4.20) are fulfilled. Then equation
(4.5) has at most one solution pµtqt≥0 Ă Pα,β such that its correlation functions pktqt≥0

satisfy
sup
tPr0,T s

}kt}Kα,β ă 8, @T ą 0.

Proof. Let pµtqt≥0 Ă Pα,β be a solution to (4.5), and denote by pktqt≥0 Ă Kα,β the as-

sociated correlation functions. Let F P FPpΓ2q and G P BbspΓ
2
0q Ă DppLq such that

F “ KG. Then by ktpηq ≤ }kt}Kα,βeα|η
`|eβ|η

´| it follows that G, pLG P Lα,β Ă Lkt . Since

K : Lkt ÝÑ L1pΓ2, dµtq is continuous it follows that F “ KG,LKG “ KpLG belong to
L1pΓ2, dµtq for any t ≥ 0. Moreover,

xLF, µty “ xKpLG, µty “ xpLG, kty

and hence t ÞÝÑ xpLG, kty is locally integrable. This show for any G P BbspΓ
2
0q

xG, kty “ xG, k0y `

t
ż

0

xpLG, ksyds, t ≥ 0.

Hence kt is continuous w.r.t. σpKα,β,Lα,βq and since kt is norm-bounded on r0, T s [WZ06,
Lemma 1.10] implies that kt is also continuous w.r.t. the topology C. It remains to show

that pktqt≥0 solves (4.22) for any G P DppLq. To this end let G P DppLq, then there exists

Gn P BbspΓ
2
0q such that Gn ÝÑ G and pLGn ÝÑ pLG in Lα,β. Passing in

xGn, kty “ xGn, k0y `

t
ż

0

xpLGn, ksyds

to the limit nÑ 8 shows (4.22). As a consequence pktqt≥0 is a weak solution to (4.22).

Remark 4.4.4. Let k0 P Kα,β be positive definite and suppose that kt :“ pT ptq˚k0 P Kα,β is
positive definite. Then pktqt≥0 is a weak solution to (4.22) and for each t ≥ 0 there exists

a unique µt P Pα,β having correlation function kt. By xG, kty “ xF, µty and xpLG, kty “
xLF, µty it follows that pµtqt≥0 is a weak solution to (4.5).

Above considerations show that for existence of weak solutions to (4.5), it suffices

to show that pT ptq˚ preserves the cone of positive definite functions. The main idea for

the proof of positive definiteness is to approximate the evolution kt “ pT ptq˚k0 by an

auxiliary evolution pTδptq
˚k0 and prove that pTδptq

˚k0 is positive definite. Such idea was
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proposed in [KK16], where the authors proved for the BDLP-model positive-definiteness
of a local evolution. Let pRδqδą0 be a sequence of continuous integrable functions with
0 ă Rδ ≤ 1 and Rδpxq 1 1 as δ Ñ 0 for all x P Rd. Define new birth intensities by
bSδ px, ηq :“ Rδpxqb

Spx, ηq and bEδ px, ηq :“ Rδpxqb
Epx, ηq for all x P Rd and η P Γ2

0. In the
following we simply say that pRδqδą0 is a localization sequence. In such a case the overall
birth intensity is finite, i.e. for any η P Γ2

0 and δ ą 0

ż

Rd

`

bSδ px, ηq ` b
E
δ px, ηq

˘

dx ă 8 (4.28)

holds. The considerations of the second chapter imply for each η P Γ2
0 the existence of

an associated (minimal) birth-and-death process pηtqt≥0 associated to Lδ starting from
η with the state space Γ2

0. Here Lδ is obtained from L by replacing bS, bE with bSδ , b
E
δ .

The following are the main assumptions for the existence of weak solutions to the Fokker-
Planck equation.

(B) There exist constants A ą 0, τ ≥ 0 and N P N such that for all x P Rd and η P Γ2
0

dSpx, ηq ` dEpx, ηq ` bSpx, ηq ` bEpx, ηq ≤ Ap1` |η|qNeτ |η|. (4.29)

(D) There exists a localization sequence pRδqδą0 such that the (minimal) birth-and-
death process associated to Lδ is conservative, i.e. has no explosion starting from
any initial point η P Γ2

0.

The next proposition is the main result. It provides positivity of the semigroups con-
structed above. Note that Pα1,β1 Ă Pα,β Ă E˚α,β.

Proposition 4.4.5. (Existence) Suppose that (A) – (D) and (4.20) are fulfilled. Then
T ptq˚Pα1,β1 Ă Pα,β holds. In particular for any µ0 P Pα1,β1 there exists exactly one solution
pµtqt≥0 Ă Pα,β to (4.5) given by T ptq˚µ0 “ µt. If conditions (B) and (C) hold for all
τ ą 0, then T ptq˚Pα,β Ă Pα,β.

Existence of an associated Markov function is stated in the next corollary.

Corollary 4.4.6. Suppose that (A) – (D) hold for any τ ą 0 and assume that (4.20)
holds. Then for any µ P Pα,β there exists a Markov function pXµ

t qt≥0 on the configuration
space Γ2 with the initial distribution µ associated with the generator L.

The rest of this section is devoted to the proof of Proposition 4.4.5. Consider a linear
operator Iδ “ ´Dδ`Qδ on L1pΓ2

0, dλq, where the first operator is a multiplication operator
given by the function Dδpηq “Mpηq`

ş

Rd
bSδ px, ηqdx`

ş

Rd
bEδ px, ηqdx. The integrals are finite
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due to (4.28). The operator Qδ is given by

QδRpηq “

ż

Rd

dEpx, ηqRpη`, η´ Y xqdx`

ż

Rd

dSpx, ηqRpη` Y x, η´qdx

`
ÿ

xPη´

bEδ px, η
`, η´zxqRpη`, η´zxq `

ÿ

xPη`

bSδ px, η
`
zx, η´qRpη`zx, η´q.

The operator Iδ is considered on the domain

DpIδq “ tR P L1
pΓ2

0, dλq | DδR P L
1
pΓ2

0, dλqu.

The results of the second chapter imply that for any R0 P DpIδq the Cauchy problem

BRδ
t

Bt
“ IδRδ

t , Rδ
t |t“0 “ R0 (4.30)

admits a minimal solution given by a C0-semigroup pSδptqqt≥0 on L1pΓ2
0, dλq. Condition

(D) implies that pIδ, DpIδqq is closable and the closure is the generator of the C0-semigroup
pSδptqqt≥0. Therefore, for any R0 P DpIδq there exists exactly one solution to (4.30) and
this solution is given by SδptqR0. For technical reasons we will also need the adjoint
semigroup on L8pΓ2

0, dλq. Let pJδ, DpJδqq be the adjoint operator to pIδ, DpIδqq on
L8pΓ2

0, dλq. The following lemma is proved in the same way as Lemma 2.4.3.

Lemma 4.4.7. For any F P DpJδq it holds that JδF “ LδF .

Lemma 4.4.8. For any δ ą 0 Theorem 4.2.3 and 4.3.3 hold with L replaced by Lδ. Let
pTδptq and pTδptq

˚ be the semigroups on Lα,β and Kα,β, respectively. Then for any G P Lα,β
pTδptqG ÝÑ pT ptqG, δ Ñ 0

is satisfied.

Proof. Let pLδ “ K
´1
0 LδK0 “ A ` Bδ, where A is given as before and Bδ is obtained

from B by multiplication of the terms for the birth by Rδpxq. This operator is defined

on DppLq for any δ ą 0 and since Rδ ≤ 1 Theorem 4.2.3 and 4.3.3 can be applied to pLδ,

which yields the first assertion. For the second assertion observe that for G P DppLq and
0 ≤ hδpxq :“ 1´Rδpxq ≤ 1 we obtain

}pLδG´ pLG}Lα,β ≤

`

ż

Γ2
0

|Gpξq|
ÿ

xPξ`

hδpxq

ż

Γ2
0

|K
´1
0 bSpx, ¨ Y ξ`zx, ¨ Y ξ´q|pηqeα|ξ

`|eα|η
`|eβ|ξ

´|eβ|η
´|dλpηqdλpξq

`

ż

Γ2
0

|Gpξq|
ÿ

xPξ´

hδpxq

ż

Γ2
0

|K
´1
0 bEpx, ¨ Y ξ`, ¨ Y ξ´zxq|pηqeα|ξ

`|eα|η
`|eβ|ξ

´|eβ|η
´|dλpηqdλpξq.
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The integrand tends for each ξ P Γ2
0 to zero as δ Ñ 0, hence by dominated convergence

pLδG Ñ pLG. Trotter-Kato approximation therefore implies pTδptq Ñ pT ptq strongly on
Lα,β.

Let Bα,β be the Banach space of all equivalence classes of functions G with norm

~G~Bα,β “

ż

Γ2
0

|Gpηq|eλpRδ; η
`
qeλpRδ; η

´
qeα|η

`|eβ|η
´|dλpηq.

Likewise let B˚α,β be the Banach space of all equivalence classes of functions k with norm

~k~B˚α,β “ ess sup
ηPΓ2

0

|kpηq|

eλpRδ; η`qeλpRδ; η´qeα|η
`|eβ|η´|

.

The same arguments as for the proof of Theorem 4.2.3 and 4.3.3 show that we can replace
Lα,β,Kα,β also by Bα,β and B˚α,β. Denote by Uδptq and Uδptq

˚ the corresponding semigroups

on Bα,β and B˚α,β, respectively. Let ppLδ, D
BppLqq be the generator of Uδptq. The proofs of

Theorem 4.2.3 and 4.3.3 show that

DBppLq “ tG P Bα,β | M ¨G P Bα,βu.

Thus the Cauchy problem

B

Bt
xG, uδt y “ x

pLδG, u
δ
t y, uδt |t“0 “ u0, @G P D

B
ppLq (4.31)

has for every u0 P B˚α,β a unique weak solution in B˚α,β given by Uδptq
˚u0.

Lemma 4.4.9. Let k0 P B˚α,β, then pTδptq
˚k0 “ Uδptq

˚k0.

Proof. First observe that B˚α,β Ă Kα,β continuously and hence k0 P Kα,β. In particular

uδt :“ Uδptq
˚k0 and kδt :“ pTδptq

˚k0 are well-defined. Moreover, since also Lα,β Ă Bα,β
continuously we obtain DppLq Ă DBppLq, i.e. ppLδ, D

BppLqq is an extension of ppLδ, DppLqq.
Therefore puδt qt≥0 is also a weak solution to (4.22) and thus by uniqueness uδt “ kδt ,
t ≥ 0.

Lemma 4.4.10. Let k0 P B˚α1,β1 be positive definite. Denote by uδt P B˚α,β the unique weak

solution to (4.31), then uδt is positive definite for any t ≥ 0.
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Proof. Define for any u P B˚α,β a linear operator Hupηq :“
ş

Γ2
0

p´1q|ξ|upη Y ξqdλpξq. Then

Hu is well-defined and satisfies for any C`, C´ ą 0
ż

Γ2
0

|Hupηq|C |η
`|

` C
|η´|
´ dλpηq ≤

ż

Γ2
0

ż

Γ2
0

|upη Y ξq|C
|η`|
` C

|η´|
´ dλpξqdλpηq

“

ż

Γ2
0

ÿ

ξĂη

C
|ξ`|
` C

|ξ´|
´ |upηq|dλpηq “

ż

Γ2
0

p1` C`q
|η`|
p1` C´q

|η´|
|upηq|dλpηq

≤ ~u~B˚α,β

ż

Γ2
0

p1` C`q
|η`|
p1` C´q

|η´|eα|η
`|eβ|η

´|eλpRδ; η
`
qeλpRδ; η

´
qdλpηq,

i.e. H : B˚α,β ÝÑ LlogpC`q,logpC´q is continuous. Let G P Bα,β be arbitrary, then for any
u P B˚α,β we get by Fubini’s theorem and (2.27)

xK0G,Huy “
ż

Γ2
0

ÿ

ξĂη

Gpξq

ż

Γ2
0

p´1q|ζ|upη Y ζqdλpζqdλpηq

“

ż

Γ2
0

ż

Γ2
0

ż

Γ2
0

Gpξqp´1q|ζ|upη Y ξ Y ζqdλpζqdλpξqdλpηq

“

ż

Γ2
0

Gpξq

ż

Γ2
0

ÿ

ζĂη

p´1q|ζ|upη Y ξqdλpηqdλpξq “

ż

Γ2
0

Gpξqupξqdλpξq “ xG, uy

and thus

xK0G,Huy “ xG, uy (4.32)

holds. We can apply Fubini’s theorem and (2.27) since
ż

Γ2
0

ż

Γ2
0

ż

Γ2
0

|Gpξq||upη Y ξ Y ζq|dλpζqdλpξqdλpηq

≤ }u}B˚α,βe
2eαxRδye2eβxRδy

ż

Γ2
0

|Gpξq|eα|ξ
`|eβ|ξ

´|eλpRδ; ξ
`
qeλpRδ; ξ

´
qdλpξq

is satisfied, where xRδy :“
ş

Rd
Rδpxqdx. For the same u and G P DBppLq we obtain by (4.32)

and K0
pLδG “ LδK0G

xpLδG, uy “ xK0
pLδG,Huy “ xLδK0G,Huy. (4.33)
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Now let Uδptq
˚k0 “ uδt P B˚α,β, then

xG, uδt y “ xG, u0y `

t
ż

0

xpLδG, u
δ
syds, G P DBppLq.

Observe that condition (B) implies Klogp2q,logp2q Ă DBppLq. Hence by (4.32) and (4.33) it
follows for Rδ

t :“ Huδt P L1pΓ2
0, dλq, t ≥ 0 that

xK0G,R
δ
t y “ xK0G,R0y `

t
ż

0

xLδK0G,R
δ
syds, G P Klogp2q,logp2q

holds. For any F P DpJδq Ă L8pΓ0, dλq we get |K´1
0 F pηq| ≤ }F }L82|η| and hence

DpJδq Ă K0Klogp2q,logp2q. Thus we can find G P Klogp2q,logp2q such that K0G “ F P DpJδq.
Lemma 4.4.7 therefore implies

xF,Rδ
t y “ xF,R0y `

t
ż

0

xJδF,Rδ
syds, F P DpJδq.

Since k0 P B˚α1,β1 we get by Theorem 4.3.3.1) that uδt is continuous in t ≥ 0 w.r.t. the norm

in B˚α,β. Because H : B˚α,β ÝÑ L1pΓ2
0, dλq is continuous, Rδ

t “ Huδt is continuous w.r.t.

t ≥ 0 on L1pΓ2
0, dλq. Hence pRδ

t qt≥0 is a weak solution to (4.30). The main result from
[Bal77] therefore implies Rδ

t “ SδptqR0 ≥ 0. Finally, for any G P BbspΓ
2
0q with KG ≥ 0

we get
xG, uδt y “ xK0G,R

δ
t y ≥ 0, t ≥ 0.

We are now prepared to complete the proof of positive definiteness.

Proof. (Proposition 4.4.5) Let µ0 P Pα1,β1 with correlation function k0 P Kα1,β1 . Define

k0,δpηq :“ k0pηqeλpRδ; η
`
qeλpRδ; η

´
q, δ ą 0, η P Γ2

0,

then k0,δ P B˚α1,β1 and it is positive definite, cf. [Fin13, Fin11]. By Lemma 4.4.9 we

get pTδptq
˚k0,δ “ Uδptq

˚k0,δ P B˚α,β and by Lemma 4.4.10 the latter expression is positive
definite. Let G P BbspΓ

2
0q be such that KG ≥ 0. Then it suffices to show that

xG, pTδptq
˚k0,δy ÝÑ xG, pT ptq˚k0y, δ Ñ 0.

To this end observe that

xG, pTδptq
˚k0,δy “ xpTδptq

˚G´ pT ptqG, k0,δy ` xpT ptqG, k0,δy.
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The first term can be estimated by

}pTδptqG´ pT ptqG}Lα,β}k0}Kα,β

and hence tends by Lemma 4.4.8 to zero. The second term tends by dominated conver-
gence to xpT ptqG, k0y “ xG, pT ptq

˚k0y, which implies that pT ptq˚k0 is positive definite.
If conditions (B) and (C) hold for all τ ą 0, then k0,δpηq :“ e´δ|η|k0pηq belongs to Kα´δ,β´δ
for any δ ą 0. Consequently, above considerations imply that pT ptq˚k0,δ P Kα,β is positive
definite. Taking the limit δ Ñ 0 yields the assertion.

Remark 4.4.11. Suppose instead of (B) the following to be satisfied: There exist A ą 0,
N P N and νb ≥ 0, ν1, ν2 ≥ 0 such that for all x P Rd and η P Γ2

0:

bSpx, ηq ` bEpx, ηq ≤ Ap1` |η|qNeνb|η|

dSpx, ηq ≤ Ap1` |η|qNeν1|η|

dEpx, ηq ≤ Ap1` |η|qNeν2|η|.

Then for any positive definite k0 P Kα1,β1 the evolution pT ptq˚k0 is positive definite, provided
(C) holds for α1 ` ν1 ă α, β1 ` ν2 ă β.

4.5 Ergodicity

Let µ P Pα,β and denote by kµ its correlation function. Then Lα,β Ă Lkµ and hence
Eα,β Ă L1pΓ2, dµq. Therefore, for any F P Eα,β we see that xF yµ :“

ş

Γ2

F pγqdµpγq “
ş

Γ2
0

Gpηqkµpηqdλpηq is well-defined. The next statement provides ergodicity for the semi-

groups pT ptqqt≥0 and pT ptq˚qt≥0.

Proposition 4.5.1. Suppose that (A) – (D), (4.20) and inf
|η|≥1

Mpηq ą 0 are fulfilled.

Then there exists a unique invariant measure µinv P Pα,β. Namely, µinv satisfies
ż

Γ2

LF pγqdµinvpγq “ 0, F P FPpΓ2
q (4.34)

and T ptq˚µinv “ µinv for all t ≥ 0. Moreover, there exist constants C ą 0 and ε ą 0 such
that the following assertions hold:

1. For each F P Eα,β

}T ptqF ´ xF yµinv
}Eα,β ≤ Ce´εt}F ´ xF yµinv

}Eα,β , t ≥ 0 (4.35)

holds.

176



2. For any µ0 P Pα1,β1 let µt “ T ptq˚µ0 P Pα,β, then

}µt ´ µinv}E˚α,β ≤ Ce´εt}µ0 ´ µinv}E˚α,β , t ≥ 0

holds. If conditions (B) and (C) hold for each τ ą 0, then above claim is also true
for µ0 P Pα,β.

The rest of this section is devoted to the proof of above proposition. Let K≥1
α,β “ tk P

Kα,β | kp0q “ 0u, K0
α,β “ tk P Kα,β | k “ κ1˚, κ P Ru and denote by 1˚pηq “ 0|η

`|`|η´|.
Multiplication by 1˚ respectively 1´1˚ defines projection operators 1˚ : Kα,β ÝÑ K0

α,β and

p1´1˚q : Kα,β ÝÑ K≥1
α,β. These projections are orthogonal in the sense that 1˚p1´1˚q “

p1´ 1˚q1˚ “ 0. Hence we obtain the decomposition

Kα,β “ K0
α,β ‘K

≥1
α,β.

Define the linear operator SkpHq “ 0 and for η ‰ H

pSkqpηq “ ´
1

Mpηq

ÿ

xPη´

ż

Γ2
0ztHu

kpη Y ξqpK´1
0 dEpx, ¨ Y η`, ¨ Y η´zxqqpξqdλpξq

´
1

Mpηq

ÿ

xPη`

ż

Γ2
0ztHu

kpη Y ξqpK´1
0 dSpx, ¨ Y η`zx, ¨ Y η´qqpξqdλpξq

`
1

Mpηq

ÿ

xPη´

ż

Γ2
0

kpη` Y ξ`, η´ Y ξ´zxqpK´1
0 bEpx, ¨ Y η`, ¨ Y η´zxqqpξqdλpξq

`
1

Mpηq

ÿ

xPη`

ż

Γ2
0

kpη` Y ξ`zx, η´ Y ξ´qpK´1
0 bSpx, ¨ Y η`zx, ¨ Y η´qqpξqdλpξq,

i.e. Skpηq “ 1
Mpηq

L∆kpηq ` kpηq. The next theorem provides existence and uniqueness

of solutions to the equation L∆k “ 0, i.e. for correlation functions. For one-component
systems a similar result was proved for the case κ “ 1 in [FKO13].

Theorem 4.5.2. The equation

L∆kinv “ 0, kinvpHq “ 1 (4.36)

has a unique solution kinv P Kα,β. This solution is given by

kinv “ 1
˚
` p1´ Sq´1S1˚, (4.37)

where S1˚pηq “ 1
Γ
p1q
0
pη`q0|η

´|
ř

xPη`

bSpx,Hq
dSpx,Hq

` 1
Γ
p1q
0
pη´q0|η

`|
ř

xPη´

bEpx,Hq
dEpx,Hq

. The equation

L∆kκinv “ 0, kκinvpHq “ κ

has for every κ P R exactly one solution given by kκinv “ κkinv.
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Proof. Let k P Kα,β, then

Mpηq|Skpηq| ≤ papα, βq ´ 1qMpηqeα|η
`|eβ|η

´|
}k}Kα,β

and hence by (4.20) }S}LpKα,βq ă 1. Moreover, since S : K≥1
α,β ÝÑ K

≥1
α,β it follows that 1´S

is invertible in K≥1
α,β. Any solution k P Kα,β to (4.36) is also the solution to MpS´1qk “ 0.

Letting rk “ k ´ 1˚ yields by M1˚ “ 0

0 “MpS ´ 1qrk `MS1˚

and hence (4.36) is equivalent to

p1´ Sqrk “ S1˚, rk :“ k ´ 1˚.

Since 1´ S is invertible on K≥1
α,β we obtain

rk “ p1´ Sq´1S1˚.

For individual-based models, i.e. bSpx,Hq “ bEpx,Hq “ 0, the invariant state is
simply kinvpηq “ 1

˚pηq. Such correlation function corresponds to the probability measure

µinv “ δtHu on Γ2. The next step is to establish ergodicity for the semigroups pT ptq on

quasi-observables and pT ptq˚ on correlation functions. Such ergodicity has been established
for the (one-component) Glauber dynamics, see [KKM10]. Our approach is based on the
ideas of this work. Let L0

α,β :“ tG P Lα,β | G “ κ1˚, κ P Ru and

L≥1
α,β :“ tG P Lα,β | GpHq “ 0u.

Then any G P Lα,β admits a unique decomposition G “ 1
˚G ` p1 ´ 1˚qG “ G0 ` G1

where G0 P L0
α,β and G1 P L≥1

α,β, i.e. Lα,β “ L0
α,β ‘L

≥1
α,β. The projection onto L0

α,β is given

by the multiplication with the function 1˚pηq “ 0|η|, i.e.

1
˚ : Lα,β ÝÑ L0

α,β, G ÞÝÑ 1
˚G “ 0|η|Gp0q, Gp0q P R.

Thus by MpHq “ 0 and pL “ pLp1 ´ 1˚q the action of the operator pL “ A ` B can be
represented in the form

pL “ 1˚Bp1´ 1˚q ` Ap1´ 1˚q ` p1´ 1˚qBp1´ 1˚q.

Therefore L≥1
α,β is invariant for A and p1´ 1˚qB. Note that

1
˚BGpηq “ 1˚pηq

ż

Rd

GpH, xqbEpx,Hqdx` 1˚pηq

ż

Rd

Gpx,HqbSpx,Hqdx
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is a positive operator. Denote by B01 : L≥1
α,β ÝÑ L0

α,β, B01G “ 1
˚BG and by L11 :

L≥1
α,β ÝÑ L

≥1
α,β, L11G “ AG` p1´ 1˚qBG the restrictions to L≥1

α,β, therefore we obtain

pLG “ B01p1´ 1
˚
qG` L11p1´ 1

˚
qG, G P Lα,β. (4.38)

Moreover, since DppLq “ tG P Lα,β | M ¨ G P Lα,βu and L0
α,β Ă DppLq it follows that

DpL11q “ DppLq X L≥1
α,β. The next theorem provides information about kerppLq and the

resolvent set ρppLq on Lα,β.

Theorem 4.5.3. Let

ω0 :“ sup

"

ω P
”

0,
π

4

ı

ˇ

ˇ

ˇ

ˇ

apα, βq ă 1` cospωq

*

, (4.39)

then the following statements hold:

1. The point λ “ 0 is an eigenvalue for ppL,DppLqq with eigenspace L0
α,β and eigenvector

1
˚.

2. Let λ0 :“ p2´ apα, βqqM˚ ą 0, where M˚ :“ inf
|η|≥1

Mpηq ą 0. Then

I1 :“ tλ P C | Repλq ą ´λ0uzt0u

and

I2 :“

"

λ P C
ˇ

ˇ

ˇ

ˇ

|argpλq| ă
π

2
` ω0

*

zt0u

belong to the resolvent set ρppLq of pL on Lα,β.

Proof. Let pA1, DpL11qq be the restriction of pA,DppLqq to L≥1
α,β and denote by } ¨ }L≥1

α,β
the

norm on L≥1
α,β. This restriction is simply given by AG “ A1p1 ´ 1

˚qG. Moreover for any
λ “ u` iw, u ≥ 0, w P R

ˇ

ˇ

ˇ

ˇ

G

λ`Mpηq

ˇ

ˇ

ˇ

ˇ

≤ |G|
a

pu`M˚q
2 ` w2

≤ |G|min

˜

1

|λ|
,

1
a

M2
˚ ` w

2

¸

implies that λ P ρpA1q and

}Rpλ;A1qG}L≥1
α,β
≤ min

˜

1

|λ|
,

1
a

M2
˚ ` w

2

¸

}G}L≥1
α,β
. (4.40)

Let us show that for λ “ u ` iw, u ≥ 0, w P R the operator λ ´ L11 is invertible, i.e.
λ P ρpL11q. Due to the decomposition

pλ´ L11q “ p1´ p1´ 1
˚
qBRpλ;A1qqpλ´ A1q (4.41)

179



it suffices to show that p1´p1´1˚qBRpλ;A1qq is invertible on L≥1
α,β. We obtain therefore

Rpλ;L11q “ Rpλ;A1qp1´ p1´ 1
˚
qBRpλ;A1qq

´1. (4.42)

In fact p1´ p1´ 1˚qBRpλ;A1qq is invertible provided for any G P L≥1
α,β

}p1´ 1˚qBRpλ;A1qG}L≥1
α,β
≤ q}A1G}L≥1

α,β

for some constant q P p0, 1q. But this simply means that p1´1˚qB is relatively bounded to
A1 with constant q. Now let B1 be the positive operator defined in the proof of Theorem
4.2.3, then |BG| ≤ B1|G| and B|G|pHq “ 1˚B|G|pHq “ 1˚B1|G|pHq ≥ 0. Therefore we
obtain for q :“ apα, βq ´ 1 ă 1

}p1´ 1˚qBG}L≥1
α,β
“

ż

Γ2
0ztHu

|BGpηq|eα|η
`|eβ|η

´|dλpηq

≤
ż

Γ2
0

B1|G|pηqeα|η
`|eβ|η

´|dλpηq ´B|G|pHq

≤
ż

Γ2
0

pcpα, β; ηq ´Mpηqq|Gpηq|eα|η
`|eβ|η

´|dλpηq

≤ papα, βq ´ 1q

ż

Γ2
0

Mpηq|Gpηq|eα|η
`|eβ|η

´|dλpηq

“ q

ż

Γ2
0ztHu

Mpηq|Gpηq|eα|η
`|eβ|η

´|dλpηq “ q}G}L≥1
α,β

and hence our claim. In particular we obtain for λ “ u` iw, u ≥ 0, w P R by (4.42) and
(4.40) for λ P ρpL11q,

}Rpλ;L11qG}L≥1
α,β
≤

min

ˆ

1
|λ|
, 1?

M2
˚`w

2

˙

2´ apα, βq
}G}L≥1

α,β

and for λ “ iw, w P R

}Rpiw, L11qG}L≥1
α,β
≤

a

M2
˚ ` w

2
´1

2´ apα, βq
}G}L≥1

α,β
.

For λ “ u` iw, 0 ą u ą ´λ0 and w P R write

pu` iw ´ L11q “ p1` uRpiw;L11qqpiw ´ L11q.
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Then by |u| ă λ0 and |u|?
M2
˚`w

2

1
2´a
≤ |u|

λ0
ă 1 we obtain λ P ρpL11q and

}Rpλ;L11qG}L≥1
α,β
≤

a

M2
˚ ` w

2
´1

2´ apα, βq

ˆ

1´
|u|

λ0

˙´1

}G}L≥1
α,β
.

Therefore I1 belongs to the resolvent set of L11. For I2 let λ “ u ` iw P I2 and u ă 0,
then there exists ω P p0, ω0q such that |argpλq| ă π

2
` ω and hence

|w| “ | tanpargpλqq||u| ≥ cotpωq|u|.

This implies for η ‰ H

|λ`Mpηq|2 “ pu`Mpηqq2 ` w2 ≥ pu`Mpηqq2 ` cotpωq2u2.

The right-hand side is minimal for the choice u “ ´ Mpηq
1`cotpωq2

which yields

|λ`Mpηq|2 ≥Mpηq2

˜

ˆ

cotpωq2

1` cotpωq2

˙2

`
cotpωq2

p1` cotpωq2q2

¸

“Mpηq2
cotpωq2

1` cotpωq2
“Mpηq2 cospωq2.

Then by

}p1´ 1˚qBRpλ;A1qG}L≥1
α,β
≤ q}A1Rpλ;A1qG}L≥1

α,β
≤ q

cospωq
}G}L≥1

α,β

and (4.39) q “ apα, βq ´ 1 ă cospωq. By (4.41) we obtain I2 Ă ρpL11q and for each
λ “ u` iw such that π

2
ă |argpλq| ă π

2
` ω, λ ‰ 0 for some ω P p0, ω0q

}Rpλ;L11qG}L≥1
α,β
≤

a

pu2 `M˚q
2 ` w2

´1

1´ q
cospωq

}G}L≥1
α,β

≤
p1´ q

cospωq
q´1

|w|
}G}L≥1

α,β
≤
?

2
p1´ q

cospωq
q´1

|λ|
}G}L≥1

α,β
.

where we have used |w| ≥ |λ|
?

2
in the last estimate. For the first claim let ψ P DppLq be an

eigenvector to the eigenvalue 0. The decomposition ψ “ 1˚ψ ` p1´ 1˚qψ “ ψ0 ` ψ1 with

ψ0 P L0
α,β and ψ1 P L≥1

α,β XDp
pLq “ DpL11q yields by (4.38)

0 “ pLψ “ 1˚Bψ1 ` L11ψ1 P L0
α,β ‘ L

≥1
α,β.

Hence L11ψ1 “ 0 and since 0 P ρpL11q also ψ1 “ 0. For the second statement let λ P I1YI2

and H “ H0 `H1 P L0
α,β ‘ L

≥1
α,β. Then we have to find G P DppLq such that

pλ´ pLqG “ H.
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Using again the decomposition of pL, above equation is equivalent to the system of equa-
tions

λG0 ´ 1
˚BG1 “ H0

pλ´ L11qG1 “ H1.

Since λ P I1 Y I2 Ă ρpL11q the second equation has a unique solution on L≥1
α,β given by

G1 “ Rpλ;L11qH1. Therefore G0 is given by

G0 “
1

λ
pH0 ` 1

˚BRpλ;L11qH1q .

Remark 4.5.4. The proof shows that for any ε ą 0 there exists ω “ ωpεq P p0, π
2
q such

that

Σpεq :“

"

λ P C
ˇ

ˇ

ˇ

ˇ

|argpλ` λ0 ´ εq| ≤
π

2
` ω

*

Ă I1 Y I2 Y t0u

and there exists Mpεq ą 0 such that

}Rpλ;L11qG}L≥1
α,β
≤ Mpεq

|λ|
}G}L≥1

α,β

for all λ P Σpεqzt0u. Moreover, pL11, DpL11qq is a sectorial operator of angle ω0 on L≥1
α,β.

Denote by rT ptq the bounded analytic semigroup on L≥1
α,β given by (in the uniform operator

topology)

rT ptq “
1

2πi

ż

σ

eζtRpζ;L11qdζ, t ą 0, (4.43)

see [Paz83]. Here σ denotes any piecewise smooth curve in
"

λ P C
ˇ

ˇ

ˇ

ˇ

|argpλq| ă
π

2
` ω0

*

zt0u

running from 8e´iθ to 8eiθ for θ P pπ
2
, π

2
` ω0q.

The L≥1
α,β part of pT ptq is given by p1 ´ 1˚qpT ptqp1 ´ 1˚q, hence has generator p1 ´

1
˚qpLp1´1˚q “ L11 and therefore coincides with prT ptqqt≥0. This yields the decomposition

pT ptq “ 1˚ ` 1˚ pT ptqp1´ 1˚q ` rT ptqp1´ 1˚q, t ≥ 0. (4.44)

and by duality we see that the adjoint semigroup ppT ptq˚qt≥0 on Kα,β admits the decom-
position

pT ptq˚ “ 1˚ ` p1´ 1˚qpT ptq˚1˚ ` rT ptq˚p1´ 1˚q, t ≥ 0, (4.45)

where rT ptq˚ P LpK≥1
α,βq is the adjoint semigroup to prT ptqqt≥0. The next lemma provides a

construction of the limiting projection operators, when tÑ 8.
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Lemma 4.5.5. Define a linear operator pSG :“ B 1
M
p1´ 1˚qG on Lα,β, then pS : Lα,β ÝÑ

Lα,β is bounded and for any G P Lα,β and k P Kα,β

xpSG, ky “ xG,Sky. (4.46)

The operators, cf. (4.37),
pP ˚ :“ 1˚ ` p1´ Sq´1S1˚

and
pP :“ 1˚ ` 1˚ pSp1´ pSq´1

are projections on Kα,β and Lα,β respectively, such that

x pPG, ky “ xG, pP ˚ky.

Proof. First observe that Mpηq ą 0 for any η ‰ H and since B : DppLq XL≥1
α,β ÝÑ Lα,β is

well-defined, so is pS. The inequalities

ż

Γ2
0

|pSGpηq|eα|η
`|eβ|η

´|dλpηq “

ż

Γ2
0

ˇ

ˇ

ˇ

ˇ

Bp1´ 1˚q
G

M
pηq

ˇ

ˇ

ˇ

ˇ

eα|η
`|eβ|η

´|dλpηq

≤
ż

Γ2
0ztHu

pcpα, β; ηq ´Mpηqq
|Gpηq|

Mpηq
eα|η

`|eβ|η
´|dλpηq

≤ papα, βq ´ 1q

ż

Γ2
0

|Gpηq|eα|η
`|eβ|η

´|dλpηq

imply that pS is bounded with norm }pSG}Lα,β ≤ pa ´ 1q}G}Lα,β and property (4.46) is a

consequence of the definition of pS and a short computation. Because of (4.20) we have

a ´ 1 ă 1 and hence pP is well-defined. The second part is a consequence of (4.46) and

the representation formulas for pP and pP ˚.

Since pP projects, by definition, onto L0
α,β it follows that pPG “ xG,rky1˚ for some

rk P Kα,β. Therefore we obtain

x1
˚, ky xG,rky “ x pPG, ky “ xG, pP ˚ky

and hence
kpHqrkpηq “ pP ˚kpηq “ pP ˚p1˚kqpηq.

The right-hand-side depends only on the value kpHq, hence we can divide by kpHq ‰ 0
which yields

rk “ pP ˚1˚ “ kinv
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and therefore
pPGpηq “ xG, kinvy1

˚
pηq, η P Γ2

0.

The adjoint operator pP ˚ is then given by

pP ˚kpηq “ kpHqkinvpηq “ p1
˚kqpηqkinvpηq, η P Γ2

0. (4.47)

By pT ptq1˚ “ 1˚ this formulas yield

pP “ pT ptq pP “ pP pT ptq

and pP 2 “ pP . In the same way p pP ˚q2 “ pP ˚ and

pT ptq˚ pP ˚ “ pP ˚ pT ptq˚ “ pP ˚. (4.48)

Now we are prepared to prove Proposition 4.5.1, i.e. ergodicity of the semigroups pT ptq

and pT ptq˚.

Proof. (Proposition 4.5.1)
The spectral properties stated in Remark 4.5.4, the representation formula (4.43) and
(4.44), (4.45) imply that for any ε ą 0 there exists Cpεq ą 0 such that for any t ≥ 0

}p1´ 1˚qpT ptqG}Lα,β ≤ Cpεqe´pλ0´εqt}G}Lα,β , G P L≥1
α,β

and hence by duality

}pT ptq˚k}Kα,β ≤ Cpεqe´pλ0´εqt}k}Kα,β , k P K≥1
α,β,

repeat e.g. the arguments in [KKM10]. Let k P Kα,β, by (4.47) we obtain

k ´ pP ˚k “ p1´ 1˚qk ¨ kinv P K≥1
α,β.

Using (4.48) we see that

}pT ptq˚k ´ pP ˚k}Kα,β “ }
pT ptq˚pk ´ pP ˚kq}Kα,β ≤ Cpεqe´pλ0´εqt}k ´ pP ˚k}Kα,β (4.49)

holds. Let µ0 P Pα1,β1 , µt P Pα,β the associated evolution of states and kµt P Kα,β its
correlation function for t ≥ 0. Then for any t ≥ 0

}µt ´ µinv}E˚α,β “ }kµt ´ kinv}Kα,β

≤ Cpεqe´pλ0´εqt}kµ0 ´ kinv}Kα,β “ Cpεqe´pλ0´εqt}µ0 ´ µinv}E˚α,β
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holds and hence kinv is a limit of positive definite functions. Thus there exists a unique
measure µinv P Pα,β having kinv as its correlation function. It follows for any G P BbspΓ

2
0q

0 “

ż

Γ2
0

GpηqL∆kinvpηqdλpηq “

ż

Γ2
0

pLGpηqkinvpηqdλpηq “

ż

Γ2

LKGpγqdµinvpγq

and hence (4.34). Since pT ptq˚kinv “ kinv it follows that T ptq˚µinv “ µinv. It remains to
show the estimate (4.35). Observe that by duality and (4.49) we obtain

}pTα,βptqG´ pPG}Lα,β ≤ Cpεq´pλ0´εqt}G´ pPG}Lα,β . (4.50)

Because of K1˚ “ 1 this implies

}Tα,βptqKG´ xGykinv
}Eα,β “ }

pTα,βptqG´ pPG}Lα,β

and hence by (4.50) the convergence (4.35).

Remark 4.5.6. Let ` P E˚α,β and take k` P Kα,β determined by (4.25). Define `inv by
`invpKGq “ xG, kinvy`p1q, where kinv is the unique correlation function associated to the
invariant measure µinv. Then

}T ptq˚`´ `inv}E˚α,β ≤ Cpεqe´pλ0´εqt}`´ `inv}E˚α,β

holds. That is pT ptq˚qt≥0 is ergodic on E˚α,β.

4.6 Vlasov scaling

Consider for n P N scaled intensities dSn, d
E
n , b

S
n, b

E
n ≥ 0 and suppose they satisfy condition

(A). Let Ln “ LSn ` L
E
n where

LEnF pγq “
ÿ

xPγ´

dEn px, γ
`, γ´zxqpF pγ`, γ´zxq ´ F pγ`, γ´qq

` n

ż

Rd

bEn px, γ
`, γ´qpF pγ`, γ´ Y xq ´ F pγ`, γ´qqdx

and

LSnptqF pγq “
ÿ

xPγ`

dSnpx, γ
`
zx, γ´qpF pγ`zx, γ´q ´ F pγ`, γ´qq

` n

ż

Rd

bSnpx, γ
`, γ´qpF pγ` Y x, γ´q ´ F pγ`, γ´qqdx.
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Introduce

cnpα, β; ηq :“`
ÿ

xPη´

ż

Γ2
0

|K
´1
0 dEn px, ¨ Y η

`, ¨ Y η´zxq|pξqn|ξ|eα|ξ
`|eβ|ξ

´|dλpξq

ÿ

xPη`

ż

Γ2
0

|K
´1
0 dSnpx, ¨ Y η

`
zx, ¨ Y η´q|pξqn|ξ|eα|ξ

`|eβ|ξ
´|dλpξq

` e´β
ÿ

xPη´

ż

Γ0

|K
´1
0 bEn px, ¨ Y η

`, ¨ Y η´zxq|pξqn|ξ|eα|ξ
`|eβ|ξ

´|dλpξq

` e´α
ÿ

xPη`

ż

Γ0

|K
´1
0 bSnpx, ¨ Y η

`
zx, ¨ Y η´q|pξqn|ξ|eα|ξ

`|eβ|ξ
´|dλpξq

and Mnpηq :“
ř

xPη´
dEn px, η

`, η´zxq `
ř

xPη`
dSnpx, η

`zx, η´q. We will suppose the following

conditions to be satisfied:

(V1) There exists apα, βq P p0, 2q such that for all η P Γ2
0 and n P N

cnpα, β; ηq ≤ apα, βqMnpηq

is satisfied.

(V2) For all ξ P Γ2
0 and x P Rd the following limits exist in Lα,β and are independent of ξ

lim
nÑ8

n|¨|pK´1
0 dEn px, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 dEn px, ¨qq “: DV,E
x

lim
nÑ8

n|¨|pK´1
0 dSnpx, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 dSnpx, ¨qq “: DV,S
x

lim
nÑ8

n|¨|pK´1
0 bEn px, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 bEn px, ¨qq “: BV,E
x

lim
nÑ8

n|¨|pK´1
0 bSnpx, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 bSnpx, ¨qq “: BV,S
x .

(V3) Let MV pηq :“
ř

xPη`
DS
x pHq `

ř

xPη´
DE
x pHq, then there exists σ ą 0 such that either

Mnpηq ≤ σMV pηq, η P Γ2
0, n P N

or
Mnpηq ≤ σMV pηq, η P Γ2

0, n P N

are satisfied.
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Define pLn :“ K
´1
0 LnK0 and the renormalized operators pLn,ren :“ Rn

pLnRn´1 , where

RαGpηq “ α|η|Gpηq. Then we get pLn,ren “ An ` Bn with pAnGqpηq “ ´MnpηqGpηq,
where

Mnpηq “
ÿ

xPη´

dEn px, η
`, η´zxq `

ÿ

xPη`

dSnpx, η
`
zx, η´q ≥ 0

and

pBnGqpηq “ ´
ÿ

ξĹη

Gpξqn|ηzξ|
ÿ

xPξ´

pK
´1
0 dEn px, ¨ Y ξ

`, ¨ Y ξ´zxqqpηzξq

´
ÿ

ξĹη

Gpξqn|ηzξ|
ÿ

xPξ`

pK
´1
0 dSnpx, ¨ Y ξ

`
zx, ¨ Y ξ´qqpηzξq

`
ÿ

ξĂη

n|ηzξ|
ż

Rd

Gpξ`, ξ´ Y xqpK´1
0 bEn px, ¨ Y ξ

`, ¨ Y ξ´qqpηzξqdx

`
ÿ

ξĂη

n|ηzξ|
ż

Rd

Gpξ` Y x, ξ´qpK´1
0 bSnpx, ¨ Y ξ

`, ¨ Y ξ´qqpηzξqdx.

In analogy to L∆, cf. Lemma 4.3.2, define a linear operator L∆
n,ren by

pL∆
n,renkqpηq “ ´

ÿ

xPη´

ż

Γ2
0

kpη Y ξqn|ξ|pK´1
0 dEn px, ¨ Y η

`, ¨ Y η´zxqqpξqdλpξq

´
ÿ

xPη`

ż

Γ2
0

kpη Y ξqn|ξ|pK´1
0 dSnpx, ¨ Y η

`
zx, ¨ Y η´qqpξqdλpξq

`
ÿ

xPη´

ż

Γ2
0

kpη` Y ξ`, η´ Y ξ´zxqn|ξ|pK´1
0 bEn px, ¨ Y η

`, ¨ Y η´zxqqpξqdλpξq

`
ÿ

xPη`

ż

Γ2
0

kpη` Y ξ`zx, η´ Y ξ´qn|ξ|pK´1
0 bSnpx, ¨ Y η

`
zx, ¨ Y η´qqpξqdλpξq.

We obtain for any G P BbspΓ
2
0q, k P Kα,β and n P N

xpLn,renG, ky “ xG,L
∆
n,renky.

The next theorem provides existence and uniqueness of an evolution of quasi-observables
and correlation functions for any fixed n P N.

Theorem 4.6.1. Suppose that condition (V1) is satisfied. Then for any fixed n P N the
following assertions are true:
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1. The closure of ppLn,ren, BbspΓ
2
0qq is given by ppLn,ren, DppLn,renqq, where

DppLn,renq “ tG P Lα,β | Mn ¨G P Lα,βu.

It is the generator of an analytic C0-semigroup ppTn,renpsqqs≥0 of contractions on Lα,β.

2. Let pTn,renptq
˚ be the adjoint semigroup. The generator is given by pL∆

n,ren, DpL
∆
n,renqq

with the (maximal) domain

DpL∆
n,renq “ tk P Kα,β | L∆

n,renk P Kα,βu.

For any n P N and k0 P Kα,β, there exists a unique weak solution to

B

Bt
xG, kt,ny “ xpLn,renG, kt,ny, kt,n|t“0 “ k0, G P DppLn,renq

given by kt,n “ pTn,renptq
˚k0.

The case n “ 1 is covered by the results obtained in Theorem 4.3.3. Following the
arguments there, it is not difficult to adopt the proofs to this case. In the next step we
construct the limiting dynamics when n Ñ 8. Condition (V2) suggests to consider the
limit

pLn,renG ÝÑ pLVG, nÑ 8.

The operator pLV :“ AV `BV is given by AVGpηq “ ´MV pηqGpηq, where

MV pηq “
ÿ

xPη`

DV,S
x pHq `

ÿ

xPη´

DV,E
x pHq

BVGpηq “ ´
ÿ

ξ`Ĺη`

ξ´Ĺη´

Gpξq
ÿ

xPξ`

DV,S
x pηzξq ´

ÿ

ξ`Ĺη`

ξ´Ĺη´

Gpξq
ÿ

xPξ´

DV,E
x pηzξq

`
ÿ

ξĂη

ż

Rd

Gpξ` Y x, ξ´qBV,S
x pηzξqdx`

ÿ

ξĂη

ż

Rd

Gpξ`, ξ´ Y xqBV,E
x pηzξqdx.

In the next theorem we establish existence and uniqueness of the dynamics described by
the limiting operator pLV . Therefore let DppLV q :“ tG P Lα,β | MV ¨G P Lα,βu, define

cV pα, β; ηq :“

`
ÿ

xPη`

ż

Γ2
0

|DV,S
x pξq|eα|ξ

`|eβ|ξ
´|dλpξq ` e´α

ÿ

xPη`

ż

Γ2
0

|BV,S
x pξq|eα|ξ

`|eβ|ξ
´|dλpξq

`
ÿ

xPη´

ż

Γ2
0

|DV,E
x pξq|eα|ξ

`|eβ|ξ
´|dλpξq ` e´β

ÿ

xPη´

ż

Γ2
0

|BV,E
x pξq|eα|ξ

`|eβ|ξ
´|dλpξq
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and finally

pL∆
V kqpηq :“´

ÿ

xPη`

ż

Γ2
0

kpη Y ξqDV,S
x pξqdλpξq ´

ÿ

xPη´

ż

Γ2
0

kpη Y ξqDV,E
x pξqdλpξq

`
ÿ

xPη`

ż

Γ2
0

kpη`zxY ξ`, η` Y ξ`qBV,S
x pξqdλpξq

`
ÿ

xPη´

ż

Γ2
0

kpη` Y ξ`, η´zxY ξ´qBV,E
x pξqdλpξq.

Theorem 4.6.2. Assume that conditions (V1), (V2) are satisfied. Then the following
assertions are true:

1. The operator ppLV , DppLV qq is the generator of an analytic semigroup ppT V ptqqt≥0 of
contractions on Lα,β.

2. Let ppT V ptq˚qt≥0 be the adjoint semigroup on Kα,β, then for any r0 P Kα,β there exists

a unique solution rt “ pT V ptq˚r0 to the Cauchy problem

B

Bt
xG, rty “ xpLVG, rty, rt|t“0 “ r0, G P DppLV q. (4.51)

3. Let r0pηq “
ś

xPη`
ρS0 pxq

ś

xPη´
ρE0 pxq and ρS0 , ρ

E
0 P L

8pRdq with }ρS0 }L8 ≤ eα, }ρE0 }L8 ≤

eβ. Assume that pρSt , ρ
E
t q is a classical solution to

BρEt
Bt
pxq “ ´

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qDV,E

x pξqdλpξqρEt pxq

`

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qBV,E

x pξqdλpξq

BρSt
Bt
pxq “ ´

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qDV,S

x pξqdλpξqρSt pxq

`

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qBV,S

x pξqdλpξq

with initial conditions ρSt |t“0 “ ρS0 , ρEt |t“0 “ ρE0 and }ρSt }L8 ≤ eα and }ρEt }L8 ≤ eβ.
Then rtpηq :“

ś

xPη`
ρSt pxq

ś

xPη´
ρEt pxq is a weak solution to (4.51) in Kα,β.
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Proof. By conditions (V1) and (V2) it follows

cV pα, β; ηq ≤ lim
nÑ8

cnpα, β; ηq

≤ apα, βq lim
nÑ8

Mnpηq “ apα, βqMV pηq.

Define a positive operator B1V on DppLV q by

B1VGpηq “
ÿ

ξ`Ĺη`

ξ´Ĺη´

Gpξq
ÿ

xPξ`

|DV,S
x pηzξq| `

ÿ

ξ`Ĺη`

ξ´Ĺη´

Gpξq
ÿ

xPξ´

|DV,E
x pηzξq|

`
ÿ

ξĂη

ż

Rd

Gpξ` Y x, ξ´q|BV,S
x pηzξq|dx`

ÿ

ξĂη

ż

Rd

Gpξ`, ξ´ Y xq|BV,E
x pηzξq|dx.

Then it is not difficult to see that for any 0 ≤ G P DppLV q

ż

Γ2
0

B1VGpηqe
α|η`|eβ|η

´|dλpηq “

ż

Γ2
0

pcV pα, β; ηq ´MV pηqqGpηqe
α|η`|eβ|η

´|dλpηq

≤ papα, βq ´ 1q

ż

Γ2
0

MV pηqGpηqe
α|η`|eβ|η

´|dλpηq

is fulfilled. The same arguments as in the proof of Theorem 4.6.1 yield existence, ana-
lyticity and the contraction property of the semigroup pT V ptq. For the last assertion we
only show that rt is continuous w.r.t. C. The other assertions are simple computations,
see e.g. [FKO13]. First observe that by |rtpηq| ≤ eα|η

`|eβ|η
´| the function rt is norm-

bounded and hence it suffices to show that it is continuous w.r.t. σpKα,β,Lα,βq. But this
function is continuous in t ≥ 0 for any η and hence the assertion follows by dominated
convergence.

Theorem 4.6.3. Suppose that conditions (V1) – (V3) are fulfilled. Then pTn,renptq Ñ
pT V ptq holds strongly in Lα,β and uniformly on compacts in t ≥ 0.

Proof. We are going to apply [FKK12, Lemma 4.3] and Trotter-Kato approximation. Fix
λ ą 0 and denote by Rpλ;Anq and Rpλ,AV q the resolvent for Aε and AV , respectively.
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Then it follows that }Rpλ;Anq}LpLα,βq, }Rpλ;AV q}LpLα,βq ≤ 1
λ
,

}BnRpλ;AnqG}Lα,β “

ż

Γ2
0

|BnRpλ;AnqGpηq|e
α|η`|eβ|η

´|dλpηq

≤
ż

Γ2
0

pcnpα, β; ηq ´Mnpηqq|Rpλ;AnqGpηq|e
α|η`|eβ|η

´|dλpηq

≤ papα, βq ´ 1q

ż

Γ2
0

Mnpηq

λ`Mnpηq
|Gpηq|eα|η

`|eβ|η
´|dλpηq

≤ papα, βq ´ 1q}G}Lα,β

and likewise

}BVRpλ;AV qG}Lα,β ≤
ż

Γ2
0

pcV pα, β; ηq ´MV pηqq|Rpλ;AV qGpηq|e
α|η`|eβ|η

´|dλpηq

≤ papα, βq ´ 1q}G}Lα,β

hold. Since Mn ÝÑ MV as n Ñ 8, it is easy to show by dominated convergence that
Rpλ;Anq ÝÑ Rpλ;AV q holds strongly in Lα,β as n Ñ 8. Hence it remains to show the
convergence

BnRpλ;AnqG ÝÑ BVRpλ;AV qG, nÑ 8. (4.52)

To do so, suppose that Mnpηq ≤ σMV pηq holds, then we estimate by

}BnRpλ;AnqG´BVRpλ;AV qG}Lα,β

≤ }pBn ´BV qRpλ;AV qG}Lα,β ` }BnpRpλ;Anq ´Rpλ;AV qqG}Lα,β .

For the first term we obtain

}pBn ´BV qRpλ;AV qG}Lα,β “

ż

Γ2
0

|pBn ´BV qRpλ;AV qGpηq|e
α|η`|eβ|η

´|dλpηq

≤
ż

Γ2
0

|Gpηq|

λ`MV pηq
eα|η

`|eβ|η
´|Hnpηqdλpηq
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where

Hnpηq “

`
ÿ

xPη´

ż

Γ2
0

|K
´1
0 dEn px, ¨ Y η

`, ¨ Y η´zxqpξqn|ξ| ´DV,E
x pξq|eα|ξ

`|eβ|ξ
´|dλpξq

`
ÿ

xPη`

ż

Γ2
0

|K
´1
0 dSnpx, ¨ Y η

`
zx, ¨ Y ηqpξqn|ξ| ´DV,S

x pξq|eα|ξ
`|eβ|ξ

´|dλpξq

` e´β
ÿ

xPη´

ż

Γ2
0

|K
´1
0 bEn px, ¨ Y η

`, ¨η´ Y zxqpξqn|ξ| ´BV,E
x pξq|eα|ξ

`|eβ|ξ
´|dλpξq

` e´α
ÿ

xPη`

ż

Γ2
0

|K
´1
0 bSnpx, ¨ Y η

`
zx, ¨ Y η´qpξqn|ξ| ´BV,S

x pξq|eα|ξ
`|eβ|ξ

´|dλpξq.

The Lα,β convergence in condition (V2) implies that Hn tends to zero and because of

Hnpηq ≤ cnpα, β; ηq ` cV pα, β; ηq ≤ apα, βq pMnpηq `MV pηqq ≤ apα, βqp1` σqMV pηq

dominated convergence implies }pBn´BV qRpλ;AV qG}Lα,β ÝÑ 0, nÑ 8. For the second
term we obtain

}BnpRpλ;Anq ´Rpλ;AV qqG}Lα,β

“

ż

Γ2
0

|BnpRpλ;Anq ´Rpλ;AV qqGpηq|e
α|η`|eβ|η

´|dλpηq

≤
ż

Γ2
0

pcnpα, β; ηq ´Mnpηqq
|MV pηq ´Mnpηq|

pλ`Mnpηqqpλ`MV pηqq
eα|η

`|eβ|η
´|dλpηq

≤ papα, βq ´ 1q

ż

Γ2
0

Mnpηq
|MV pηq ´Mnpηq|

pλ`Mnpηqqpλ`MV pηqq
eα|η

`|eβ|η
´|dλpηq

and observe that by (V2) the integrand tends to zero. Because of

Mnpηq
|MV pηq ´Mnpηq|

pλ`Mnpηqqpλ`MV pηqq
≤ MV pηq

λ`MV pηq
`

Mnpηq

λ`MV pηq
≤ 1` σ

we can apply dominated convergence and obtain therefore the assertion in the case Mn ≤
σMV . For the other case we estimate by

}BnRpλ;AnqG´BVRpλ;AV qG}Lα,β

≤ }pBn ´BV qRpλ;AnqG}Lα,β ` }BV pRpλ;Anq ´Rpλ;AV qqG}Lα,β

and apply similar arguments to deduce the assertion.
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Remark 4.6.4. The proof shows that condition (V3) can be replaced by

dEn px, ηq ` d
S
npx, ηq ≤ Ap1` |η|qNeτ |η|, x P Rd, η P Γ2

0, n P N

for some constants A ą 0, N P N and τ ≥ 0.

4.7 Extension to time-inhomogeneous intensities

For t ≥ 0 let dSpt, x, γq, dEpt, x, γq, bSpt, x, γq, bEpt, x, γq P r0,8s be given and suppose
that there exists Γ2

8 (independent of t ≥ 0) such that condition (A) is satisfied for any
fixed t ≥ 0. We suppose that the following conditions hold:

(H1) There exist α˚ ă α˚ and β˚ ă β˚ such that for all α P pα˚, α
˚q, β P pβ˚, β

˚q and
t ≥ 0 there exists a constant apLptq, α, βq P p0, 2q which satisfies

cpLptq, α, β; ηq ≤ apLptq, α, βqMpt, ηq, η P Γ0, t ≥ 0,

where Mpt, ηq “
ř

xPη´
dEpt, x, η`, η´zxq `

ř

xPη`
dSpt, x, η`zx, η´q.

(H2) There exist constants A ą 0 and N P N such that

dSpt, x, ηq ` dEpt, x, ηq ≤ Ap1` |η|qN , η P Γ2
0, x P Rd, t ≥ 0

holds.

(H3) For any α1, α P pα˚, α
˚q, β1, β P pβ˚, β

˚q with α1 ă α and β1 ă β the map t ÞÝÑ
Lptq P LpEα,β, Eα1,β1q is continuous in the uniform operator topology.

Consider a scale of Banach spaces given by E “ pEα,βqαPpα˚,α˚q
βPpβ˚,β

˚q

and extend the notions

introduced in the first chapter to this case in the obvious way.

Theorem 4.7.1. Suppose that conditions (H1) – (H3) are satisfied. Then there exist a
forward evolution system pUpt, sqq0≤s≤t and a backward evolution system pV ps, tqq0≤s≤t in
the scale E having generator pLptqqt≥0 P LpEq.

Proof. We are going to apply Theorem 1.1.4. Let α1 ă α, β1 ă β and F “ KG P Eα,β,
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then

}LptqF }Eα1,β1 “ }
pLptqG}Lα1,β1

≤
ż

Γ2
0

cpLptq, α1, β1; ηq|Gpηq|eα
1|η`|eβ

1|η´|dλpηq

≤ apLptq, α1, β1q

ż

Γ2
0

Mpt, ηq|Gpηq|eα
1|η`|eβ

1|η´|dλpηq

≤ AapLptq, α1, β1q

ż

Γ2
0

|η|N`1
|Gpηq|e´pα´α

1q|η`|e´pβ´β
1q|η´|eα|η

`|eβ|η
´|dλpηq.

Hence there exists a constant A “ Apt, α, α1, β, β1q ą 0 satisfying

}LptqF }Eα1,β1 ≤ A}F }Eα,β .

Thus Lptq is bounded from Eα,β to Eα1,β1 and by (H3) it is also continuous in the uniform
topology w.r.t. t ≥ 0. Condition (a) follows from Proposition 4.2.3 and condition (b)
from the contraction property of the semigroups.

Note that Theorem 1.1.4 was proved for a one-parameter scale of Banach spaces. The
generalization for two-parameter scales of Banach spaces (as used above) is a straight-
forward repetition of the arguments there. The next statement shows the positivity
preservation property of the adjoint evolution systems.

Theorem 4.7.2. Suppose that conditions (H1), (H3) are satisfied and assume that there
exists A ą 0 such that for any η P Γ2

0 and t ≥ 0

dSpt, x, ηq ` dEpt, x, ηq ` bSpt, x, ηq ` bEpt, x, ηq ≤ Ap1` |η|qN (4.53)

holds. If for any fixed t ≥ 0 condition (D) holds for the operator Lptq, then U˚ps, tq and
V ˚pt, sq are positivity preserving.

Proof. Let Upt, sq and V ps, tq be the evolution systems constructed in Theorem 4.7.1

and pUpt, sq, pV ps, tq the associated evolution systems for quasi-observables. The adjoint
evolution systems then satisfy for F “ KG P FPpΓ2q

xF,U˚ps, tqµy “ xG, pU˚ps, tqkµy

and
xF, V ˚pt, sqµy “ xG, pV ˚pt, sqkµy,

where µ P Pα,β has correlation function kµ. Thus it suffices to show that pU˚ps, tqkµ and
pV ˚pt, sqkµ are positive definite. Let pUnpt, sq and pVnps, tq be the approximations defined
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in the proof of Theorem 1.1.4, see 1.12. By Proposition 4.4.5 and (1.11), (1.13) it follows
for G P BbspΓ

2
0q with KG ≥ 0

xpUnpt, sqG, kµy “ xG, pU
˚
n ps, tqkµy ≥ 0

and
xpVnps, tqG, kµy “ xG, pV

˚
n pt, sqkµy ≥ 0.

Letting nÑ 8 yields

0 ≤ lim
nÑ8

xpUnpt, sqG, kµy “ xpUpt, sqG, kµy “ xG, pU
˚
ps, tqkµy

and
xG, pV ˚pt, sqkµy ≥ 0.

The adjoint evolution systems U˚ps, tq and V ˚pt, sq are positivity preserving and pro-
vide for each µ P Pα,β unique solutions to the time-dependent Fokker-Planck equations

B

Bs

ż

Γ2

F pγqU˚ps, tqµpdγq “ ´

ż

Γ2

LpsqF pγqU˚ps, tqµpdγq, F P FPpΓ2
q

and
B

Bt

ż

Γ2

F pγqV ˚pt, sqµpdγq “

ż

Γ2

LptqF pγqV ˚pt, sqµpdγq, F P FPpΓ2
q.

The last statement provides Vlasov scaling. For any n ≥ 1, let dnpt, x, γzxq, bnpt, x, γq P
r0,8s be the scaled birth-and-death intensities. Define

cnpt, α, β; ηq :“
ÿ

xPη´

ż

Γ2
0

|K
´1
0 dEn pt, x, ¨ Y η

`, ¨ Y η´zxq|pξqn|ξ|eα|ξ
`|eβ|ξ

´|dλpξq

`
ÿ

xPη`

ż

Γ2
0

|K
´1
0 dSnpt, x, ¨ Y η

`
zx, ¨ Y η´q|pξqn|ξ|eα|ξ

`|eβ|ξ
´|dλpξq

` e´β
ÿ

xPη´

ż

Γ0

|K
´1
0 bEn pt, x, ¨ Y η

`, ¨ Y η´zxq|pξqn|ξ|eα|ξ
`|eβ|ξ

´|dλpξq

` e´α
ÿ

xPη`

ż

Γ0

|K
´1
0 bSnpt, x, ¨ Y η

`
zx, ¨ Y η´q|pξqn|ξ|eα|ξ

`|eβ|ξ
´|dλpξq.

Instead of the conditions (V1) – (V3) we suppose that the conditions given below are
fulfilled:
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(W1) There exist α˚ ă α˚, β˚ ă β˚ such that for any α P pα˚, α
˚q, β P pβ˚, β

˚q and any
t ≥ 0 there exists apt, α, βq P p0, 2q such that

cnpt, α, β; ηq ≤ apt, α, βqMnpt, ηq, η P Γ0, n P N

holds, where Mnpt, ηq :“
ř

xPη´
dEn pt, x, η

`, η´zxq `
ř

xPη`
dSnpt, x, η

`zx, η´q.

(W2) There exist constants A ą 0 and N P N such that for all n P N

dEn pt, x, ηq ` d
S
npt, x, ηq ≤ Ap1` |η|qN , t ≥ 0, η P Γ2

0, x P Rd

holds.

(W3) For all ξ P Γ2
0 and x P Rd the following limits exist in the operator norm LpLα,β,Lα1,β1q,

for any α1 ă α and β1 ă β with α1, α P pα˚, α
˚q, β1, β P pβ˚, β

˚q such that

lim
nÑ8

n|¨|pK´1
0 dEn pt, x, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 dEn pt, x, ¨qq “: DV,E
x pt, ¨q

lim
nÑ8

n|¨|pK´1
0 dSnpt, x, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 dSnpt, x, ¨qq “: DV,S
x pt, ¨q

lim
nÑ8

n|¨|pK´1
0 bEn pt, x, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 bEn pt, x, ¨qq “: BV,E
x pt, ¨q

lim
nÑ8

n|¨|pK´1
0 bSnpt, x, ¨ Y ξqq “ lim

nÑ8
n|¨|pK´1

0 bSnpt, x, ¨qq “: BV,S
x pt, ¨q.

Moreover, above limits are uniform on any compact in t ≥ 0 and are independent
of ξ.

For n ≥ 1, let pLnptq :“ K´1
0 LnptqK0, pLn,renptq :“ Rn

pLnptqRn´1 and denote by L the scale
of Banach spaces given by L “ pLα,βqαPpα˚,α˚q

βPpβ˚,β
˚q

.

Theorem 4.7.3. Suppose that conditions (W1) – (W3) are satisfied and assume that

the operators ppLn,renptqqt≥0 are continuous in the uniform topology on LpLq. Then the
following statements are satisfied:

(a) There exist forward and backward evolution systems pUn,renpt, sq and pVn,renps, tq, re-

spectively having generator pLn,renptq P LpLq.

(b) There exist forward and backward evolution systems pUV pt, sq and pV V ps, tq, respec-
tively such that

pUn,renpt, sq ÝÑ pUV
pt, sq, nÑ 8pVn,renps, tq ÝÑ pV V

ps, tq, nÑ 8

hold uniformly on compacts in t ≥ 0 in the uniform topology on LpLq. The gener-

ators satisfy pLn,renptq ÝÑ pLV ptq as n Ñ 8 w.r.t. the uniform operator topology on
LpLq and uniformly on compacts in t ≥ 0.

196



(c) For any r P Kα,β the unique weak solution to the backward equation

B

Bs
xG, ks,ny “ ´xpLn,renpsqG, ks,ny, ks,n|s“t “ r, s P r0, tq G P BbspΓ

2
0q

is given by ks,n “ pUn,renps, tq
˚r and the unique weak solution to the forward equation

B

Bt
xG, kt,ny “ xpLn,renptqG, kt,ny, kt,n|t“s “ r, t P rs,8q, G P BbspΓ

2
0q

is given by kt,n “ pVn,renpt, sq
˚r. The same assertions hold with pLn,renptq replaced by

pLV ptq and pUn,renps, tq
˚, pVn,renpt, sq

˚ replaced by pUV ps, tq˚, pV V pt, sq˚.

(d) Let rpηq “
ś

xPη´
ρEpxq

ś

xPη`
ρSpxq and ρS, ρE P L8pRdq with }ρE}L8 ≤ eβ and }ρS}L8 ≤

eα. Assume that ρSs , ρ
E
s P L

8pRdq with }ρEs }L8 ≤ eβ, }ρSs }L8 ≤ eα is a classical so-
lution to the backward equation with 0 ≤ s ă t

BρEs
Bs
pxq “

ż

Γ2
0

eλpρ
S
s ; ξ`qeλpρ

E
s ; ξ´qDV,E

x ps, ξqdλpξqρEs pxq

´

ż

Γ2
0

eλpρ
S
s ; ξ`qeλpρ

E
s ; ξ´qBV,E

x ps, ξqdλpξq

BρSs
Bs
pxq “

ż

Γ2
0

eλpρ
S
s ; ξ`qeλpρ

E
s ; ξ´qDV,S

x ps, ξqdλpξqρSs pxq

´

ż

Γ2
0

eλpρ
S
s ; ξ`qeλpρ

E
s ; ξ´qBV,S

x ps, ξqdλpξq

and initial condition ρs|s“t “ ρ. Then rspηq :“
ś

xPη`
ρSs pxq

ś

xPη´
ρEs pxq is a weak

solution to

B

Bs
xG, rsy “ ´xpLV psqG, rsy, rs|s“t “ r, s P r0, tq, G P BbspΓ

2
0q.

Assume that ρSt , ρ
E
t P L

8pRdq with }ρEt }L8 ≤ eβ, }ρSt }L8 ≤ eα is a classical solution
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to the forward equation t P rs,8q

BρEt
Bt
pxq “ ´

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qDV,E

x pt, ξqdλpξqρEt pxq

`

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qBV,E

x pt, ξqdλpξq

BρSt
Bt
pxq “ ´

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qDV,S

x pt, ξqdλpξqρSt pxq

`

ż

Γ2
0

eλpρ
S
t ; ξ`qeλpρ

E
t ; ξ´qBV,S

x pt, ξqdλpξq

and initial condition ρt|t“s “ ρ. Then rtpηq :“
ś

xPη`
ρSt pxq

ś

xPη´
ρEt pxq is a weak solu-

tion to

B

Bt
xG, rty “ xpLV ptqG, rty, rt|t“s “ r, t P rs,8q, G P BbspΓ

2
0q.

Proof. Assertion (a) follows from (W1), (W2) and Theorem 1.1.4. Conditions (W1) –

(W3) imply pLn,renptq ÝÑ pLV ptq uniformly on compacts in the uniform topology in the

scale L. Hence Theorem 1.1.4 implies the existence of the evolution systems pUV pt, sq and
pV V ps, tq and in view of Lemma 1.1.3 assertion (b) is proved. Assertion (c) is an immediate
consequence of Theorem 1.1.6. Finally, assertion (d) can be proved in the same way as in
the time-homogeneous case.

4.8 Weak-coupling limit

In this part we establish the weak-coupling limit for two coupled general birth-and-death
dynamics. Let L “ LS ` LE be the corresponding Markov (pre-)generator and suppose
that LE does not depend on γ`, i.e. is given by

pLEF qpγq “
ÿ

xPη´

dEpx, γ´zxqpF pγ`, γ´zxq ´ F pγ`, γ´qq (4.54)

`

ż

Rd

bEpx, γ´qpF pγ`, γ´ Y xq ´ F pγ`, γ´qqdx.

The dynamics of the system shall be given by the general form (4.15). We suppose that
the birth-and-death intensities satisfy:
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(A’) Condition (A) holds for a set Γ2
8 “ Γ`8 ˆ Γ´8 such that any µ P Pα is supported on

Γ`8 and any µ P Pβ is supported on Γ´8.

Let µ P Pα,β, the marginals µ` and µ´ on Γ are for A P BpΓq given by µ`pAq :“
µppAˆ Γq X Γ2q and µ´pAq :“ µppΓˆ Aq X Γ2q. This definitions are equivalent to

ż

Γ2

F pγ˘qdµpγq “

ż

Γ

F pγ˘qdµ˘pγq, F P FPpΓq.

Let kµ be the correlation function for µ. Then for any G P BbspΓ0q let pG b 1˚qpηq :“
1
˚pη´qGpη`q, we obtain in such a case

ż

Γ

KGpγ`qdµ`pγ`q “

ż

Γ2

KpGb 1˚qpγqdµpγq

“

ż

Γ2
0

Gpη`q1˚pη´qkµpηqdλpηq “

ż

Γ0

Gpη`qkµpη
`,Hqdλpη`q.

Therefore kµp¨,Hq is the correlation function for the marginal µ`. A similar argument
shows that kµpH, ¨q is the correlation function for the marginal µ´. Introduce the functions

cEpβ; η´q :“
ÿ

xPη´

ż

Γ2
0

|K´1
0 dEpx, ¨ Y η´zxq|pξ´qeβ|ξ

´|dλpξ´q

` e´β
ÿ

xPη´

ż

Γ2
0

|K´1
0 bEpx, ¨ Y η´zxq|pξ´qeβ|ξ

´|dλpξ´q.

and

cSpα, β; ηq :“
ÿ

xPη`

ż

Γ2
0

|K
´1
0 dSpx, ¨ Y η`zx, ¨ Y η´q|pξqeα|ξ

`|eβ|ξ
´|dλpξq

` e´α
ÿ

xPη`

ż

Γ0

|K
´1
0 bSpx, ¨ Y η`zx, ¨ Y η´q|pξqeα|ξ

`|eβ|ξ
´|dλpξq.

Suppose that the conditions given below are fulfilled.

(E1) There exists a constant 0 ă aEpβq ă 2 satisfying

cEpβ; η´q ≤ aEpβqMEpη
´
q, η´ P Γ0,

where MEpη
´q “

ř

xPη´
dEpx, η´zxq.
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(E2) The death intensity is strictly bounded away from zero, i.e. inf
|η´|≥1

MEpη
´q ą 0 holds.

(E3) There exist constants A ą 0, N P N and νE ≥ 0 such that for all x P Rd and η´ P Γ0

dEpx, η´q ` bEpx, η´q ≤ Ap1` |η´|qNeν
E |η´|

holds.

(E4) There exists β1 with β1 ` νE ă β and aEpβ
1q ą 0 satisfying

cEpβ
1; η´q ≤ aEpβ

1
qMEpη

´
q, η´ P Γ0.

(S1) There exists a constant 0 ă aSpα, βq ă 2 such that

cSpα, β; ηq ≤ aSpα, βqMSpηq, η P Γ2
0

holds, where MSpηq “
ř

xPη`
dSpx, η`zx, η´q.

(S2) There exist constants A ą 0, N P N and νS ≥ 0 such that for all x P Rd and η P Γ2
0

dSpx, ηq ` bSpx, ηq ≤ Ap1` |η|qNeν
S |η|.

(S3) There exists α1 with α1 ` νS ă α, β1 from (E4) satisfies β1 `maxtνS, νEu ă β and
there exists a constant aSpα

1, β1q ą 0 satisfying

cSpα
1, β1; ηq ≤ aSpα

1, β1qMSpηq, η P Γ2
0.

(L) There exists a localization sequence pRδqδą0 such that the (minimal) birth-and-death
process associated to LEδ and LSδ `

1
ε
LEδ is conservative, i.e. it has no explosion for

any starting point and any δ ą 0, ε ą 0.

Here LSδ and LEδ are given by (4.15) and (4.56) with bSpx, ηq and bEpx, ηq replaced by
Rδpxqb

Spx, ηq and Rδpxqb
Epx, ηq. Above conditions and the ergodicity statement of the

third chapter imply that the evolution of the environment is ergodic. This ergodicity can
be extended to the two-component state space for which the precise statement is given
below.

Theorem 4.8.1. The closure pLE, DpLEqq of the operator pLE,FPpΓqq is the generator of
an analytic semigroup pTEptqqt≥0 of contractions on Eβ. The adjoint operator pTEptq˚qt≥0

on E˚β satisfies TEptq˚Pβ1 Ă Pβ and there exists a unique invariant measure µE such that
for all F P Eα,β

}TEptqF ´ xF yµ`0 bµE}Eα,β ≤ Ce´λt}F }Eα,β

for some constants C, λ0 ą 0 independent of F and t ≥ 0.

200



Define for all x P Rd and γ` P Γ new intensities bpx, η`q and dpx, η`q by

bpx, γ`q :“

ż

Γ

bSpx, γ`, γ´qdµEpγ´q (4.55)

dpx, γ`q :“

ż

Γ

dSpx, γ`, γ´qdµEpγ´q (4.56)

and let

cpα; η`q :“
ÿ

xPη`

ż

Γ0

|K´1
0 dpx, ¨ Y η`zxq|pξ`qeα|ξ

`|dλpξ`q

` e´α
ÿ

xPη`

ż

Γ0

|K´1
0 bpx, ¨ Y η`zxq|pξ`qeα|ξ

`|dλpξ`q.

Above intensities are well-defined for γ` P Γ`8. Define for above intensities the averaged
Kolmogorov operator

pLF qpγ`q “
ÿ

xPγ`

dpx, γ`zxqpF pγ`zxq ´ F pγ`qq `

ż

Rd

bpx, γ`qpF pγ` Y xq ´ F pγ`qqdx

(4.57)

and the averaged cumulative death intensity by Mpη`q :“
ř

xPη`
dpx, η`zxq. The next

statement is the main result for this section.

Proposition 4.8.2. Suppose that conditions (A’), (E1) – (E4), (S1) – (S3), (L) are
fulfilled and assume that the following conditions are satisfied:

1. There exists a constant apαq P p0, 2q such that

cpα; η`q ≤ apαqMpη`q, η` P Γ0 (4.58)

holds.

2. There exists a localization sequence such that the (minimal) birth-and-death process
associated to the operator Lδ is conservative.

3. There exist A ą 0, N P N and ν ≥ 0 such that

dpx, η`q ` bpx, η`q ≤ Ap1` |η`|qNeν|η
`|

holds for all x P Rd and η` P Γ0.
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4. α1 given in (S3) satisfies α1 `maxtν, νSu ă α and there exists apα1q ą 0 such that

cpα1; η`q ≤ apα1qMpη`q, η` P Γ0

holds.

Then the following assertions are true:

1. For any ε ą 0 the operator pLS ` 1
ε
LE,FPpΓ2qq is closable and the closure is the

generator of an analytic semigroup pT εptqqt≥0 of contractions on Eα,β. The adjoint
semigroup yields for any µ0 P Pα1,β1 the unique solution to the Fokker-Planck equa-
tion for the Kolmogorov operator LS ` 1

ε
LE given by T εptq˚µ0 “ µεt .

2. The operator pL,FPpΓqq is closable and the closure is the generator of an analytic
semigroup pUαptqqt≥0 of contractions on Eα. The adjoint semigroup yields for any
µ P Pα1 the unique solution to the Fokker-Planck equation for the operator L given
by Uαptq

˚µ “ µt.

3. For any F P Eα

T εptqF ÝÑ UαptqF, εÑ 0 (4.59)

holds uniformly on compacts in t ≥ 0.

4. For any µ0 P Pα1,β1 let µ`0 be the marginal on its first component, let µt “ Uαptq
˚µ`0

and µεt :“ T εptq˚µ0. Denote by µε,`t its marginal on its first component, then for
any F P Eα

ż

Γ

F pγ`qdµε,`t pγ`q ÝÑ

ż

Γ

F pγ`qdµtpγ
`
q, εÑ 0

holds uniformly on compacts in t ≥ 0.

Remark 4.8.3. Instead of condition (A’) we also can suppose that (A) holds for the
operators LS ` 1

ε
LE and L.

The rest of this section is devoted to the proof of above statements. Let

0` b Lβ :“ tG P Lα,β | Gpηq “ 0|η
`|Gpηq “ 0|η

`|GpH, η´qu

and
Lα b 0´ :“ tG P Lα,β | Gpηq “ 0|η

´|Gpηq “ 0|η
´|Gpη`,Hqu.

be the closed subspaces of functions in one variable. Multiplication by 0|η
`| and 0|η

´|,
respectively defines projection operators on Lα,β. The range of these operators is precisely
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0`bLα and Lαb0´. Moreover this spaces can be identified with Lα and Lβ respectively,
i.e.

pP` : 0` b Lβ ÝÑ Lβ, pP`Gpη
´
q “ GpH, η´q

and
pP´ : Lα b 0´ ÝÑ Lα, pP´Gpη

`
q “ Gpη`,Hq

are isometric isomorphisms with inverses given by

pP´1
` Gpηq “ 0|η

`|Gpη´q

pP´1
´ Gpηq “ 0|η

´|Gpη`q.

Given a bounded linear operator C on Lα,β, we will say that C leaves Lβ-invariant if it
leaves 0` b Lβ invariant. In such a case the restriction to Lβ is defined by

C|Lβ :“ pP`C pP´1
` . (4.60)

The same notation shall be used for Lα and pP´ respectively. Let

X :“ tG1 bG2 | G1 P Lα, G2 P Lβu Ă Lα,β

where pG1 b G2qpηq :“ G1pη
`qG2pη

´q. Then linpX q Ă Lα,β is dense, where lin denotes
the linear span of a given subset of Lα,β. Given bounded linear operators A1 on Lα and
A2 on Lβ, the product A1 b A2 on Lα,β is defined as the unique linear extension of the
operator

pA1 b A2qGpηq “ A1G1pη
`
qA2G2pη

`
q, G P X .

This definition satisfies }pA1bA2qG}Lα,β “ }A1G1}Lα}A2G2}Lβ and hence such extension
exists. For A2 being the identity operator we use the notation A1 b 1 and for A1 being
the identity we use the notation 1 b A2 respectively. The next statement extends above
definition to strongly continuous semigroups.

Theorem 4.8.4. The following assertions are satisfied:

(a) Let pAα, DpAαqq be the generator of a C0-semigroup pTαptqqt≥0 on Lα and define

D :“ tG1 bG2 | G1 P DpAαq, G2 P Lβu.

Then Tαptq b 1 is a C0-semigroup on Lα,β. Let pAα,β, DpAα,βqq be its generator.
Then linpDq Ă Lα,β is dense and a core for pAα,β, DpAα,βqq where

Aα,βpG1 bG2q “ AαG1 bG2, G1 bG2 P D.

(b) Let pTα,βptqqt≥0 be a C0-semigroup on Lα,β and pAα,β, DpAα,βqq its generator. Sup-
pose that Tα,βptq leaves Lα invariant and let Tαptq :“ Tα,βptq|Lα. Then pTαptqqt≥0 is

a C0-semigroup on Lα and its generator is given by Aα “ pP´Aα,β pP
´1
´ and

DpAαq “ tG P Lα | pP´1
´ G P DpAα,βq, Aα,β pP

´1
´ G P Lα b 0´u.
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A similar result holds true, if we exchange the components Lα and Lβ. Above state-
ment is not difficult to prove, the details can be found in the appendix. Define the operator
pL “ K´1

0 LK0 “ pLS ` pLE on quasi-observables. Then pLE “ AE `BE is given by

pAEGqpηq “ ´MEpη
´
qGpηq

with
MEpη

´
q “

ÿ

xPη´

dEpx, η´zxq ≥ 0, η´ P Γ0

and

pBEGqpηq “ ´
ÿ

ξ´Ĺη´

Gpη`, ξ´q
ÿ

xPξ´

pK´1
0 dEpx, ¨ Y ξ´zxqqpη´zξ´q

`
ÿ

ξ´Ăη´

ż

Rd

Gpη`, ξ´ Y xqpK´1
0 bEpx, ¨ Y ξ´qqpη´zξ´qdx.

The generator for the system is similarly given by pLS “ AS `BS, where

pASGqpηq “ ´MSpηqGpηq

with
MSpηq “

ÿ

xPη`

dSpx, η´, η`zxq ≥ 0, η P Γ2
0

and

pBSGqpηq “ ´
ÿ

ξĹη

Gpξq
ÿ

xPξ`

pK
´1
0 dSpx, ¨ Y ξ`zx, ¨ Y ξ´qqpηzξq (4.61)

`
ÿ

ξĂη

ż

Rd

Gpξ` Y x, ξ´qpK´1
0 bSpx, ¨ Y ξ`, ¨ Y ξ´qqpηzξqdx.

Assumption (E1) and Theorem 3.2.3 imply that ppLE, DppLEqq is the generator of an ana-
lytic semigroup of contractions on Lα,β, where

DppLEq “ tG P Lα,β | ME ¨G P Lα,βu.

Here and in the following we will use the notation ppTEptqqt≥0 for the semigroup generated

by ppLE, DppLEqq. Define the operator ppLE|Lβ , DβppL
Eqq by

DβppL
E
q “ tG P Lβ | ME ¨G P Lβu,
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pLE|Lβ “ AE|Lβ `BE|Lβ , pAE|LβGqpη
´q “ ´MEpη

´qGpη´q and

pBE|LβGqpηq “ ´
ÿ

ξ´Ĺη´

Gpξ´q
ÿ

xPξ´

pK´1
0 dEpx, ¨ Y ξ´zxqqpη´zξ´q (4.62)

`
ÿ

ξ´Ăη´

ż

Rd

Gpξ´ Y xqpK´1
0 bEpx, ¨ Y ξ´qqpη´zξ´qdx.

Then, using again (E1) and Theorem 3.2.3 it follows that ppLE|Lβ , DβppL
Eqq is the generator

of an analytic semigroup pTEβ ptqqt≥0 of contractions on Lβ.

Lemma 4.8.5. Let
D :“ tG1 bG2 P X | G2 P DβppL

E
qu,

then linpDq Ă DppLEq is a core and pTEptq “ 1 b pTEβ ptq. Here 1 denotes the identity
operator on Lα. Moreover, for G P D it holds that

pLEGpηq “ G1pη
`
qppLE|LβG2qpη

`
q. (4.63)

Proof. Property (4.63) is evident and by Theorem 4.8.4.(a) it is enough to show pTEptq “

1 b pTEβ ptq. For any G P D the action p1 b pTEβ ptqqG “ G1 b pTEβ ptqG2 is a solution to the
Cauchy problem

B

Bt
Gt “ pLEGt, Gt|t“0 “ G

on Lα,β, see (4.63). Since for G P D Ă DppLEq this Cauchy problem has the unique solution

given byGt “ pTEptqG, it follows that p1b pTEβ ptqqG “
pTEptqG. Again by Theorem 4.8.4.(a)

D Ă Lα,β is dense and hence pTEptq “ 1b pTEβ ptq.

Using the duality

xG, ky “

ż

Γ0

Gpηqkpηqdλpηq, G P Lβ, k P Kβ

we can compute the adjoint operator to pLE|Lβ , which is given by

LE,∆|Kβkpη
´
q “ ´

ÿ

xPη´

ż

Γ0

kpη´ Y ξ´qpK´1
0 dEpx, ¨ Y η´zxqqpξ´qdλpξ´q

`
ÿ

xPη´

ż

Γ0

kpη´zxY ξ´qpK´1
0 bEpx, ¨ Y η´zxqqpξ´qdλpξ´q.

The operator will be considered on the maximal domain

DβpL
E,∆
|Kβq “ tk P Kβ | LE,∆|Kβk P Kβu
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and by Lemma 4.3.2 it follows that ppLE|˚Lβ , Dp
pLE|˚Lβqq “ pLE,∆|Kβ , DβpL

E,∆|Kβqq. A

function kinv P DβpL
E,∆|Kβq is called invariant if it satisfies the equation

LE,∆|Kβkinv “ 0, kinvpHq “ 1.

An application of Proposition 3.2.11 implies the next statement.

Lemma 4.8.6. There exists a unique probability measure µE P Pβ with

ż

Γ

LEF pγ´qdµEpγ´q “ 0, F P FPpΓq.

The associated correlation function kinv P Kβ is invariant and the semigroup pTEβ ptq is
ergodic on Lβ. Namely, there exist constants λ0 ą 0, C ą 0 such that for all G P Lβ

}pTEβ ptqG´ xG, kinvy0
|¨|
}Lβ ≤ Ce´λ0t}G´ xG, kinvy0

|¨|
}Lβ

holds.

Define a projection operator pP : Lα,β ÝÑ Lα b 0´ by

pPGpηq “

ż

Γ0

Gpη`, ξ´qkinvpξ
´
qdλpξ´q0|η

´|. (4.64)

Then pP leaves Lβ invariant and the restriction to Lβ is given by pP |LβGpη
´q “ xG, kinvy0

|η´|.
This can also be rewritten to

pP “ 1b pP |Lβ . (4.65)

The next statement extends the ergodicity to the semigroup pTEptq defined on Lα,β, i.e.
proves Theorem 4.8.1.

Theorem 4.8.7. For any G P Lα,β the following estimate holds

}pTEptqG´ pPG}Lα,β ≤ Ce´λ0t}G}Lα,β . (4.66)

Let pTEptqqt≥0 be the associated semigroup on Eα,β and µ0 P Pα1,β1 with correlation function
k0 P Kα1,β1. Then there exists a unique solution pµtqt≥0 to the Fokker-Planck equation with
generator LE given by TEptq˚µ0. Let µ`0 pdγ

`q be the marginal of µ0, then

}TEptq˚µ0 ´ µ
`
0 b µ

E
}E˚α,β ≤ Ce´λ0t}µ0}E˚α,β .
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Proof. Since pTEptq is a contraction operator it is enough to show (4.66) only for the dense

set of functions given by linpX q. So let G “
N
ř

n“1

G1
nG

2
n P linpX q with N P N. From (4.64),

i.e. (4.65) it follows that

pPG “
N
ÿ

n“1

G1
n ¨

pP |LβG
2
n

and by Lemma 4.8.5

pTEptqG “
n
ÿ

n“1

G1
n ¨

pTEβ ptqG
2
n.

Thus we obtain

}pTEptqG´ pPG}Lα,β ≤
N
ÿ

n“1

}G1
n}Lα}

pTEβ ptqG
2
n ´

pP |LβG
2
n}Lβ

≤ 2Ce´λ0t
N
ÿ

n“1

}G1
n}Lα}G

2
n}Lβ .

Now observe that

Lα,β –

#

G “
8
ÿ

n“1

G1
n bG

2
n | pG

1
nqnPN Ă Lα, pG2

nqnPN Ă Lβ,
8
ÿ

n“1

}G1
n}Lα}G

2
n}Lβ ă 8

+

,

cf. [Rya02]. Using this representation we obtain

}G}Lα,β “ inf

#

8
ÿ

n“1

}G1
n}Lα}G

2
n}Lβ |

8
ÿ

n“1

}G1
n}Lα}G

2
n}Lβ ă 8, G “

8
ÿ

n“1

G1
n bG

2
n

+

.

Let G “
8
ř

n“1

G1
nbG

2
n P Lα,β and set GN :“

N
ř

n“1

G1
nbG

2
n P linpX q. Above estimate implies

}pTEptqGN ´ pPGN}Lα,β ≤ 2Ce´λ0t}G}Lα,β .

Taking the limit N Ñ 8 yields (4.66). Denote by pP ˚ the adjoint operator to pP which is
given by

pP ˚kpηq “ kpη`,Hqkinvpη
´
q.

Hence we obtain by (4.66) and duality for any k P Kα,β

}pTEptq˚k ´ pP ˚k}Kα,β ≤ Ce´λ0t}k ´ pP ˚k}Kα,β .

Given µ0 P Pα1,β1 with correlation function k0 P Kα1,β1 , Proposition 4.4.5 yields the ex-
istence of a unique solution pµtqt≥0 to the Fokker-Planck equation for LE and µt has
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correlation function kt “ pTEptq˚k0. Because of kt Ñ pP ˚k0 when t Ñ 8, pP ˚k is posi-
tive definite and hence the correlation function for some probability measure. For any
G P BbspΓ0q it holds that

ż

Γ

KGpγ`qdµ`0 pγ
`
q “

ż

Γ2

KGpγ`qdµ0pγq

“

ż

Γ2
0

Gpη`q0|η
´|k0pηqdλpηq “

ż

Γ0

Gpη`qk0pη
`,Hqdλpη`q

and hence for any G P BbspΓ
2
0q

ż

Γ2

KGpγqdpµ`0 b µ
E
qpγq “

ż

Γ

ż

Γ

KGpγ`, γ´qdµS0 pγ
`
qdµEpγ´q

“

ż

Γ0

ż

Γ0

Gpη`, η´qk0pη
`,Hqkinvpη

´
qdλpη`qdλpη´q

is satisfied. Therefore the probability measure µ`0 bµ
E has correlation function pP ˚k0.

The next lemma is one necessary condition for the application of [Kur73, Theorem
2.1], which shall be applied later on.

Lemma 4.8.8. DppLSq XDppLEq is a core for the operator ppLE, DppLEqq, where

DppLSq “ tG P Lα,β | MS ¨G P Lα,βu.

Proof. Let G P DppLEq and for λ ą 0 define Gλ :“ λRpλ;ASqG “ λ
λ`MS

G P DppLSq X

DppLEq. Then we have to show that Gλ Ñ G and pLEGλ Ñ pLEGλ when λ Ñ 8. The
convergence Gλ Ñ G is evident and the second one follows from

}pLEGλ ´ pLEG}Lα,β ≤ }AEpλRpλ;ASq ´ 1qG}Lα,β ` }BEpλRpλ;ASq ´ 1qG}Lα,β

≤ aEpβq}MEpλRpλ;ASq ´ 1qG}Lα,β

“ aEpβq

ż

Γ2
0

MSpηqMEpη
´q

λ`MSpηq
|Gpηq|eα|η

`|eβ|η
´|dλpηq

and dominated convergence.

Condition (S1) implies that ppLS, DppLSqq and is the generator of an analytic semigroup

of contractions ppT Sptqqt≥0 on Lα,β, see Theorem 4.2.3 In the following we are going to
construct a semigroup for the limiting dynamics, that is the dynamics after taking the
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limit εÑ 0. The definition of the K-transform applied for kpηq “ 0|η
`|kinvpη

´q yields for
x R η` and η` P Γ0

ż

Γ

dSpx, η`, γ´qdµEpγ´q “

ż

Γ0

ÿ

ζ´Ăξ´

p´1q|ξ
´zζ´|dSpx, η`, ζ´qkinvpξ

´
qdλpξ´q (4.67)

ż

Γ

bSpx, η`, γ´qdµEpγ´q “

ż

Γ0

ÿ

ζ´Ăξ´

p´1q|ξ
´zζ´|bSpx, η`, ζ´qkinvpξ

´
qdλpξ´q. (4.68)

We obtain by (4.67) and (4.68)

K´1
0 dpx, ¨ Y η`zxqpξ`q “

ÿ

ζ`Ăξ`

p´1q|ξ
`zζ`|

ż

Γ

dSpx, ζ` Y η`zx, γ´qdµEpγ´q

“

ż

Γ0

ÿ

ζ`Ăξ`

ζ´Ăξ´

p´1q|ξ
`zζ`|`|ξ´zζ´|dSpx, ζ` Y η`zx, ζ´qkinvpξ

´
qdλpξ´q

“

ż

Γ0

pK
´1
0 dSpx, ¨ Y η`zx, ¨qqpξqkinvpξ

´
qdλpξ´q

and likewise

K´1
0 bpx, ¨ Y η`zxqpξ`q “

ż

Γ0

pK
´1
0 bSpx, ¨ Y η`zx, ¨qqpξqkinvpξ

´
qdλpξ´q.

Therefore we obtain

cpα; η`q ≤`
ÿ

xPη`

ż

Γ2
0

|K
´1
0 dSpx, ¨ Y η`zx, ¨q|pξqeα|ξ

`|kinvpξ
´
qdλpξq

` e´α
ÿ

xPη`

ż

Γ2
0

|K
´1
0 bSpx, ¨ Y ξ`zx, ¨q|pξqeα|ξ

`|kinvpξ
´
qdλpξq,

≤ aSpα, βq}kinv}KβMSpη
`,Hq ă 8.

Lemma 4.8.9. The operator p pP pLS,Ranp pP q X DppLSqq is closable and the closure is the

generator of an analytic semigroup of contractions on Lα b 0´, where pP was defined in
(4.64).

Proof. The projection operator pP satisfies Ranp pP q “ Lαb0´. Given Gpη`q0|η
´| we obtain

MSpη
`, η´qGpη`q0|η

´| “MSpη
`,HqGpη`q0|η

´| and hence

Ranp pP q XDppLSq “ tG “ G1 b 0´ | G1 P DαpMSp¨,Hqqu “ pP´1
´ DαpMSp¨,Hqq, (4.69)
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where DαpMSp¨,Hqq :“ tG P Lα | MSp¨,HqG P Lαu. For Gpηq “ G1pη
`q0|η

´| with
G1 P DαpMSp¨,Hqq we obtain

pLSGpηq “ ´
ÿ

ξ`Ăη`

G1pξ
`
q
ÿ

xPξ`

pK
´1
0 dSpx, ¨ Y ξ`zx, ¨qqpη`zξ`, η´q

`
ÿ

ξ`Ăη`

ż

Rd

G1pξ
`
Y xqpK´1

0 bSpx, ¨ Y ξ`, ¨qqpη`zξ`, η´qdx.

Applying the operator pP yields

pP pLSGpηq “

´ 0|η
´|

ÿ

ξ`Ăη`

G1pξ
`
q
ÿ

xPξ`

ż

Γ0

pK
´1
0 dSpx, ¨ Y ξ`zx, ¨qqpη`zξ`, ξ´qkinvpξ

´
qdλpξ´q

` 0|η
´|

ÿ

ξ`Ăη`

ż

Rd

G1pξ
`
Y xq

ż

Γ0

pK
´1
0 bSpx, ¨ Y ξ`, ¨qqpη`zξ`, ξ´qkinvpξ

´
qdλpξ´qdx.

As a consequence by (4.55), (4.56), (4.67) and (4.68) we arrive at

pP pLSGpηq “ ´Mpη`qG1pη
`
q0|η

´|

´ 0|η
´|

ÿ

ξ`Ĺη´

G1pξ
`
q
ÿ

xPξ`

pK´1
0 dpx, ¨ Y ξ`zxqqpη`zξ`q

` 0|η
´|

ÿ

ξ`Ăη`

ż

Rd

G1pξ
`
Y xqpK´1

0 bpx, ¨ Y ξ`qqpη`zξ`qdx.

Similar arguments as for Theorem 4.2.3 together with the assumption (4.58) imply that

p pP pLS, pP´1
´ DppLS|Lαqq is the generator of an analytic semigroup ppUαptq b 0´qt≥0 of con-

tractions on Lα b 0´, where DppLS|Lαq “ tG P Lα | M ¨ G P Lαu. Because of cpα; η`q ≤
}kinv}KβaSpα, βqMSpη

`,Hq we obtain

p pP pLS, pP´1
´ BbspΓ0qq Ă p pP pLS, pP´1

´ DαpMSp¨,Hqqq Ă p pP pLS, pP´1
´ DppLS|Lαqq.

Hence it is enough to show that p pP pLS, pP´1
´ BbspΓ0qq “ p pP pLS, pP´1

´ DppLS|Lαqq. However,
this can be shown by the same arguments as in Lemma 4.2.4.

Let pUαptq :“ ppUαptq b 0´qptq|Lα , then it has the generator ppLS|Lα , DppL
S|Lαqq, where

pLS|LαGpηq “ ´
ÿ

ξ`Ăη´

Gpξ`q
ÿ

xPξ`

pK´1
0 dpx, ¨ Y ξ`zxqqpη`zξ`q

`
ÿ

ξ`Ăη`

ż

Rd

Gpξ` Y xqpK´1
0 bpx, ¨ Y ξ`qqpη`zξ`qdx.
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The next statement establishes the weak-coupling limit for quasi-observables and corre-
lation functions.

Theorem 4.8.10. For every ε ą 0 the operator ppLS ` 1
ε
pLE, DppLSq X DppLEqq is the

generator of an analytic semigroup of contractions on Lα,β. Let pT εptq be the semigroup

generated by pLS ` 1
ε
pLE. Then for any G P Lα

pT εptq pP´1
´ G ÝÑ pP´1

´
pUαptqG, εÑ 0 (4.70)

and for any k P Kα,β
ż

Γ0

Gpη`qppT εptq˚kqpη`,Hqdλpη`q ÝÑ

ż

Γ0

Gpη`q
´

pUαptq
˚kp¨,Hq

¯

pη`qdλpη`q, εÑ 0

(4.71)

holds uniformly on compacts in t ≥ 0.

Proof. For ε ą 0 and η P Γ2
0 we get

cSpα, β; η`q `
1

ε
cEpβ; η´q ≤ aSpα, βqMSpηq `

aEpβq

ε
MEpη

´
q

≤ max taEpβq, aSpα, βqu

ˆ

MSpηq `
1

ε
MEpη

´
q

˙

.

Theorem 4.2.3 and conditions (E1), (S1) imply that ppLS ` 1
ε
pLE, DppLSq X DppLEqq is the

generator of an analytic semigroup of contractions on Lα,β. Applying [Kur73, Theorem
2.1] yields (4.70) and hence

x pP´1
´ G, pT εptq˚ky “ xpT εptq pP´1

´ G, ky ÝÑ x pP´1
´

pUαptqG, ky

holds uniformly on compacts in t ≥ 0. The convergence (4.71) now follows from

x pP´1
´

pUαptqG, ky “

ż

Γ0

pUαptqGpη
`
qkpη`,Hqdλpη`q

“

ż

Γ0

Gpη`q
´

pUαptq
˚kp¨,Hq

¯

pη`qdλpη`q.

In view of Proposition 4.4.5 the assertions of Proposition 4.8.2 are proved.
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4.9 Examples

The birth-and-death intensities in the examples given below consist of terms

Epx, γ˘q “
ÿ

yPγ˘

ϕpx´ yq, x P Rd, γ˘ P Γ.

Here ϕ is a symmetric, non-negative integrable function. To assure condition (A) or (A’)
respectively, we always suppose that either ϕ is compactly supported or condition (3.37)
is satisfied.

4.9.1 Two interacting Glauber dynamics

Suppose that the death intensities are given by

dEpx, γ`, γ´zxq “ exp
`

´sEψSpx, γ
`
q
˘

dSpx, γ`zx, γ´q “ exp
`

´sEψEpx, γ
´
q
˘

,

where s P r0, 1
2
s and ψS, ψE are symmetric, non-negative and integrable. The birth inten-

sities are assumed to be of the form

bEpx, γq “ zE exp
`

´p1´ sqEψSpx, γ
`
q
˘

exp
`

´EφEpx, γ
´
q
˘

bSpx, γq “ zS exp
`

´p1´ sqEψEpx, γ
´
q
˘

exp
`

´EφSpx, γ
`
q
˘

,

where zE, zS ą 0 and φE, φS are assumed to be non-negative, symmetric and integrable.
For f : Rd ÝÑ R` let Ef px, γ

˘q :“
ř

yPγ˘
fpx´ yq and

Cpfq :“

ż

Rd

|e´fpxq ´ 1|dx. (4.72)

Evolution of states

The cumulative death intensity is given by

Mpηq “
ÿ

xPη´

exp
`

´sEψSpx, η
`
q
˘

`
ÿ

xPη`

exp
`

´sEψEpx, η
´
q
˘

and we obtain

|K
´1
0 dEpx, ¨ Y η`, ¨ Y η´zxq|pξq “ 0|ξ

´| exp
`

´sEψSpx, η
`
q
˘

eλ

´

|e´sψ
Spx´¨q

´ 1|; ξ`
¯

|K
´1
0 dSpx, ¨ Y η`zx, ¨ Y η´q|pξq “ 0|ξ

`| exp
`

´sEψEpx, η
´
q
˘

eλ

´

|e´sψ
Epx´¨q

´ 1|; ξ´
¯

.
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For the birth intensities it follows that

|K
´1
0 bEpx, ¨ Y η`, ¨ Y η´zxq|pξq

“ zEe´p1´sqEψS px,η
`qe´EφE px,η

´zxqeλ

´

|e´p1´sqψ
Spx´¨q

´ 1|; ξ`
¯

eλ

´

|e´φ
Epx´¨q

´ 1|; ξ´
¯

and

|K
´1
0 bSpx, ¨ Y η`zx, ¨ Y η´q|pξq

“ zSe´p1´sqEψE px,η
´qe´EφS px,η

`zxqeλ

´

|e´p1´sqψ
Epx´¨q

´ 1|; ξ´
¯

eλ

´

|e´φ
Spx´¨q

´ 1|; ξ`
¯

hold. Hence we obtain for any α, β P R

cpα, β; ηq “

` exp
`

eαCpsψSq
˘

ÿ

xPη´

e´sEψS px,η
`q
` exp

`

eβCpsψEq
˘

ÿ

xPη`

e´sEψE px,η
´q

` e´βzE exp
`

eαCpp1´ sqψSq
˘

exp
`

eβCpφEq
˘

ÿ

xPη´

e´p1´sqEψS px,η
`qe´EφE px,η

´zxq

` e´αzS exp
`

eβCpp1´ sqψEq
˘

exp
`

eαCpφSq
˘

ÿ

xPη`

e´p1´sqEψE px,η
´qe´EφS px,η

`zxq.

The next theorem provides an evolution of states.

Theorem 4.9.1. Let φS, φE, ψS, ψE be symmetric, non-negative and integrable and as-
sume that the paramters satisfy the relations

ee
αCpsψSq

` e´βzEee
αCpp1´sqψSqee

βCpφEq
ă 2 (4.73)

ee
βCpsψEq

` e´αzSee
βCpp1´sqψEqee

αCpφSq
ă 2. (4.74)

Then conditions (A) – (D) are satisfied for τ “ 0 and (4.20) holds. If in addition s “ 0,
then there exists a unique invariant measure µinv P Pα,β and the dynamics described by
the operator L is ergodic with exponential rate.

Proof. Conditions (A), (B), (D) are obvious and (C) follows from the representation for
cpηq. In view of s P r0, 1

2
s, (4.73) and (4.74) condition (4.20) holds for

apα, βq “ max

"

ee
αCpsψSq

` e´βzEee
αCpp1´sqψSqee

βCpφEq,

ee
βCpsψEq

` e´αzSee
βCpp1´sqψEqee

αCpφSq

*

.

If s “ 0, then Mpηq “ |η| which yields ergodicity.
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In the case s “ 0 conditions (4.73) and (4.74) simplify to

zEee
αCpψSqee

βCpφEq
ă eβ (4.75)

zSee
βCpψEqee

αCpφSq
ă eα. (4.76)

Of particular interest is the special case φS “ 0 “ φE, also known as the Widom-Rowlinson
model. The non-equilibrium dynamics for this model has recently been analysed in
[FKKO15], but without conditions (4.75) and (4.76) only existence of a local evolution of
correlation functions could have been shown. Conditions (4.75) and (4.76) are satisfied
for e´α “ CpψSq and e´β “ CpψEq if

zE ă
1

eCpψEq
and zS ă

1

eCpψSq

are satisfied.

Vlasov scaling

For simplicity we consider the case s “ 0, hence the death intensities need not to be
scaled, i.e. are given by

dEpx, γ`, γ´zxq “ 1 “ dSpx, γ`zx, γ´q.

The scaled birth intensities are given by

bEn px, γq “ zE exp

ˆ

´
1

n
EψSpx, γ

`
q

˙

exp

ˆ

´
1

n
EφEpx, γ

´
q

˙

bSnpx, γq “ zS exp

ˆ

´
1

n
EψEpx, γ

´
q

˙

exp

ˆ

´
1

n
EφSpx, γ

`
q

˙

.

This yields for the death intensities

|K
´1
0 dEpx, ¨ Y η`, ¨ Y η´zxq|pξq “ 0|ξ|

|K
´1
0 dSpx, ¨ Y η`zx, ¨ Y η´q|pξq “ 0|ξ|.

For the birth intensities we get

|K
´1
0 bEn px, ¨ Y η

`, ¨ Y η´zxq|pξq

“ zEe´
1
n
E
ψS
px,η`qe´

1
n
E
φE
px,η´zxqeλ

´ˇ

ˇ

ˇ
e´

1
n
ψSpx´¨q

´ 1
ˇ

ˇ

ˇ
; ξ`

¯

eλ

´ˇ

ˇ

ˇ
e´

1
n
φEpx´¨q

´ 1
ˇ

ˇ

ˇ
; ξ´

¯

and

|K
´1
0 bSnpx, ¨ Y η

`
zx, ¨ Y η´q|pξq

“ zSe´
1
n
E
ψE
px,η´qe´

1
n
E
φS
px,η`zxqeλ

´ˇ

ˇ

ˇ
e´

1
n
ψEpx´¨q

´ 1
ˇ

ˇ

ˇ
; ξ´

¯

eλ

´ˇ

ˇ

ˇ
e´

1
n
φSpx´¨q

´ 1
ˇ

ˇ

ˇ
; ξ`

¯

.
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Moreover we have Mpηq “ |η| “ |η`| ` |η´|. Therefore for α, β P R (where we put in
addition the factor n in front of the birth-terms)

cnpα, β; ηq ≤ |η|
` e´βzE exp

`

eαxψSy
˘

exp
`

eβxφEy
˘

|η´| ` e´αzS exp
`

eβxψEy
˘

exp
`

eαxφSy
˘

|η`|

Thus condition (V1) is satisfied with

apα, βq “ 1`max

"

e´βzEee
αxψSyee

βxφEy, e´αzSee
βxψEyee

αxφSy

*

provided we suppose that

zE exp
`

eαxψSy
˘

exp
`

eβxφEy
˘

ă eβ

zS exp
`

eβxψEy
˘

exp
`

eαxφSy
˘

ă eα

holds. Suppose that ψS, ψE, φS, φE are in addition bounded, then condition (V2) is not
difficult to see, cf. [FK13, FFH`15]. This yields

DV,E
x pηq “ 0|η| “ DV,S

x pηq

and

zEeλ
`

´ψSpx´ ¨q; ξ`
˘

eλ
`

´φEpx´ ¨q; ξ´
˘

“: BV,E
x pηq

zSeλ
`

´ψEpx´ ¨q; ξ´
˘

eλ
`

´φSpx´ ¨q; ξ`
˘

“: BV,S
x pηq,

and hence also (V3) holds. Therefore all previous results can be applied and we obtain
the mesoscopic limit equations, cf. (4.10) and (4.11), given by

BρEt
Bt
pxq “ ´ρEt pxq ` z

Ee´pφ
E˚ρEt qpxqe´pψ

S˚ρSt qpxq (4.77)

BρSt
Bt
pxq “ ´ρSt pxq ` z

Se´pφ
S˚ρSt qpxqe´pψ

E˚ρEt qpxq. (4.78)

Here and in the following ˚ denotes the usual convolution of functions on Rd.

Weak-coupling limit

Suppose that s “ 0 and ψS “ 0 holds, then we have

dEpx, γ`, γ´zxq “ 1 “ dSpx, γ`zx, γ´q.

The birth intensities are given by

bEpx, γq “ zE exp
`

´EφEpx, γ
´
q
˘

bSpx, γq “ zS exp
`

´EψEpx, γ
´
q
˘

exp
`

´EφSpx, γ
`
q
˘

.
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Therefore we obtain MEpη
´q “ |η´|, MSpηq “ |η

`| and for α, β P R

cEpβ; ηq ≤
`

1` e´βzE exp
`

eβCpφEq
˘˘

|η´|

cSpα, β; ηq ≤
`

1` e´αzS exp
`

eβCpψEq
˘

exp
`

eαCpφSq
˘˘

|η`|

follows. Suppose that

zE exp
`

eβCpφEq
˘

ă eβ

zS exp
`

eβCpψEq
˘

exp
`

eαCpφSq
˘

ă eα (4.79)

are fulfilled. Then conditions (E1) – (E4) and (S1) – (S3) are satisfied. Because of
bEpx, ηq ≤ zE and bSpx, ηq ≤ zE for all η P Γ2

0 condition (L) holds e.g. for Rδpxq :“ e´δ|x|
2
.

The unique invariant measure for the environment is given by the Gibbs measure µinv

with activity zE and potential φE. Let

dpx, η`q :“

ż

Γ

dSpx, η`, γ´qdµinvpγ
´
q “ 1

bpx, η`q :“

ż

Γ

bSpx, η`, γ´qdµinvpγ
´
q “ zS exp

`

´EφSpx, γ
`
q
˘

ż

Γ

e´EψE px,γ
´qdµinvpγ

´
q.

Then bpx, η`q ≤ 1 and with λpxq :“
ş

Γ

e´EψE px,γ
´qdµinvpγ

´q ≤ 1 we get

cpα; η`q “ |η`| ` e´αzS exp
`

eαCpφSq
˘

ÿ

xPη`

exp
`

´EφSpx, γ
`
q
˘

λpxq.

≤
`

1` e´αzS exp
`

eαCpφSq
˘˘

|η`|.

Thus condition (4.58) holds since by (4.79)

zS exp
`

eαCpφSq
˘

ă eα.

Hence we have shown that Proposition 4.8.2 is applicable. The limiting dynamics is given
by the averaged operator

pLF qpγ`q “
ÿ

xPγ`

pF pγ`zxq ´ F pγ`qq ` zS
ż

Rd

λpxqe´EφS px,γ
`q
pF pγ` Y xq ´ F pγ`qqdx.

That is by a Glauber dynamics with potential φS and activity zSλ. The mesoscopic
equation is in such a case given by

Bρt
Bt
pxq “ ´ρtpxq ` z

Sλpxqe´pφ
S˚ρtqpxq.

This equation can be obtained from (4.77) and (4.78). Namely, suppose that ρE is a
solution to the stationary version of equation (4.77), i.e.

ρEpxq “ zEe´pφ
E˚ρEqpxq, a.a. x P Rd

holds. By ep´ψ
E˚ρEqpxq ” λpxq we obtain from (4.78) above averaged kinetic equation.
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4.9.2 BDLP-dynamics in Glauber environment

Let us consider death intensities given by

dEpx, γ`, γ´zxq “ 1

dSpx, γ`zx, γ´q “ mS
`

ÿ

yPγ`zx

a´px´ yq `
ÿ

yPγ´

φpx´ yq,

where mS ą 0 and 0 ≤ a´, φ P L1pRdq are symmetric. The birth intensities are assumed
to be of the form

bEpx, γq “ zE exp
`

´Eψpx, γ
´
q
˘

bSpx, γq “
ÿ

yPγ`

a`px´ yq `
ÿ

yPγ´

b`px´ yq,

where zE ą 0 and 0 ≤ ψ, a`, b` P L1pRdq are symmetric.

Evolution of states

We have

K
´1
0 dEpx, ¨ Y η`, ¨ Y η´zxqpξq “ 0|ξ|

and

K
´1
0 dSpx, ¨ Y η`zx, ¨ Y η´qpξq “ 0|ξ|mS

` 0|ξ|
ÿ

yPη`zx

a´px´ yq ` 0|ξ|
ÿ

yPη´

φpx´ yq

` 0|ξ
´|
1Γp1qpξ

`
q
ÿ

yPξ`

a´px´ yq ` 0|ξ
`|
1Γp1qpξ

´
q
ÿ

yPξ´

φpx´ yq.

Likewise we obtain

K
´1
0 bEpx, ¨ Y η`, ¨ Y η´zxqpξq “ zEe´Eψpx,η

´zxqeλ
`

e´ψpx´¨q ´ 1; ξ´
˘

0|ξ
`|

and

K
´1
0 bSpx, ¨ Y η`zx, ¨ Y η´qpξq “ 0|ξ|

ÿ

yPη`zx

a`px´ yq ` 0|ξ|
ÿ

yPη´

b`px´ yq

` 0|ξ
´|
1Γp1qpξ

`
q
ÿ

yPξ`

a`px´ yq ` 0|ξ
`|
1Γp1qpξ

´
q
ÿ

yPξ´

b`px´ yq.
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This yields

cpα, β; ηq “ |η´| ` zEe´β
ÿ

xPη´

e´Eψpx,η
´zxq exp

`

eβCpψq
˘

`
`

mS
` eαxa´y ` eβxφy ` xa`y ` xb`y

˘

|η`|

`
ÿ

xPη`

ÿ

yPη`zx

a´px´ yq ` e´α
ÿ

xPη`

ÿ

yPη`zx

a`px´ yq

`
ÿ

xPη`

ÿ

yPη´

φpx´ yq ` e´α
ÿ

xPη`

ÿ

yPη´

b`px´ yq.

Theorem 4.9.2. Suppose that a˘, b`, φ are bounded and there exist θ P p0, eαq and b ≥ 0
such that

ÿ

xPη`

ÿ

yPη`zx

a`px´ yq ≤ θ
ÿ

xPη`

ÿ

yPη`zx

a´px´ yq ` b|η`| (4.80)

is satisfied. Moreover, assume that for some ϑ P p0, eαq and

ϑφ ≥ b` (4.81)

eβ ą zE exp
`

eβCpψq
˘

(4.82)

mS
ą eαxa´y ` eβxφy ` xa`y ` xb`y ` e´αb (4.83)

hold. Then conditions (A) – (D) are satisfied with τ “ 0 and (4.20) holds. In particular
the evolution of states is ergodic with exponential rate.

Proof. Above conditions imply

cpα, β; ηq ≤
`

1` zEe´β exp
`

eβCpψq
˘˘

|η´|

`
`

mS
` eαxa´y ` eβxφy ` xa`y ` xb`y ` e´αb

˘

|η`|

`
`

1` θe´α
˘

ÿ

xPη`

ÿ

yPη`zx

a´px´ yq `
`

1` ϑe´α
˘

ÿ

xPη`

ÿ

yPη´

φpx´ yq.

Since MEpη
´q “ |η´| and

MSpηq “ mS
|η`| `

ÿ

xPη`

ÿ

yPη´zx

a´px´ yq `
ÿ

xPη`

ÿ

yPη´

φpx´ yq,

condition (C) is satisfied. Condition (B) holds since all potentials are bounded and (D)
is obvious. Condition (4.20) holds with

apα, βq “ 1`max

"

zEe´βee
βCpψq, θe´α, ϑe´α,

eαxa´y ` eβxφy ` xa`y ` xb`y ` e´αb

mS

*

.

Ergodicity now follows from Mpηq ≥ |η´| `mS|η`|.
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Vlasov scaling

Suppose that a˘, b`, φ, ψ are bounded and (4.80) – (4.83) with zEee
βxψy ă eβ instead of

(4.82) hold. Scaling of the potentials by 1
n

yields for the death

dEpx, γ`, γ´zxq “ 1

dSnpx, γ
`
zx, γ´q “ mS

`
1

n

ÿ

yPγ`zx

a´px´ yq `
1

n

ÿ

yPγ´

φpx´ yq.

For the birth we obtain

bEn px, γq “ zE exp

ˆ

´
1

n
Eψpx, γ

´
q

˙

bSnpx, γq “
1

n

ÿ

yPγ`

a`px´ yq `
1

n

ÿ

yPγ´

b`px´ yq.

We have together with the factor n in front of the terms contributing to the birth

cnpα, β; ηq ≤ |η´| ` zEe´β
ÿ

xPη´

e´
1
n
Eψpx,η

´zxq exp
`

eβxψy
˘

`
`

mS
` eαxa´y ` eβxφy ` xa`y ` xb`y

˘

|η`|

`
1

n

ÿ

xPη`

ÿ

yPη`zx

a´px´ yq `
1

n
e´α

ÿ

xPη`

ÿ

yPη`zx

a`px´ yq

`
1

n

ÿ

xPη`

ÿ

yPη´

φpx´ yq `
1

n
e´α

ÿ

xPη`

ÿ

yPη´

b`px´ yq

and

Mnpηq “ |η
´
| `mS

|η`| `
1

n

ÿ

xPη`

ÿ

yPη`zx

a´px´ yq `
1

n

ÿ

xPη`

ÿ

yPη´

φpx´ yq.

Hence condition (V1) is satisfied. Concerning condition (V2) observe that

K
´1
0 dEpx, ¨ Y η`, ¨ Y η´zxqpξq “ 0|ξ|

and

K
´1
0 dSnpx, ¨ Y η

`
zx, ¨ Y η´qpξq “ 0|ξ|mS

`
1

n
0|ξ|

ÿ

yPη`zx

a´px´ yq `
1

n
0|ξ|

ÿ

yPη´

φpx´ yq

`
1

n
0|ξ

´|
1Γp1qpξ

`
q
ÿ

yPξ`

a´px´ yq `
1

n
0|ξ

`|
1Γp1qpξ

´
q
ÿ

yPξ´

φpx´ yq.
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Taking nÑ 8 yields DV,E
x pηq “ 0|η| and

DV,S
x pηq “ 0|η|mS

` 0|ξ
´|
1Γp1qpξ

`
q
ÿ

yPξ`

a´px´ yq ` 0|ξ
`|
1Γp1qpξ

´
q
ÿ

yPξ´

φpx´ yq.

For the birth intensity of the environment we obtain

K
´1
0 bEn px, ¨ Y η

`, ¨ Y η´zxqpξq “ zEe´
1
n
Eψpx,η

´zxqeλ

´

e´
1
n
ψpx´¨q

´ 1; ξ´
¯

0|ξ
`|

and hence
BV,E
x pηq “ zEeλ

`

´ψpx´ ¨q; ξ´
˘

0|ξ
`|.

Similarly for the birth intensity of the system

K
´1
0 bSnpx, ¨ Y η

`
zx, ¨ Y η´qpξq “

1

n
0|ξ|

ÿ

yPη`zx

a`px´ yq `
1

n
0|ξ|

ÿ

yPη´

b`px´ yq

`
1

n
0|ξ

´|
1Γp1qpξ

`
q
ÿ

yPξ`

a`px´ yq `
1

n
0|ξ

`|
1Γp1qpξ

´
q
ÿ

yPξ´

b`px´ yq

yields
BV,S
x pηq “ 0|ξ

´|
1Γp1qpξ

`
q
ÿ

yPξ`

a`px´ yq ` 0|ξ
`|
1Γp1qpξ

´
q
ÿ

yPξ´

b`px´ yq.

This implies conditions (V2) and (V3). The kinetic equation is therefore given by

BρEt
Bt
pxq “ ´ ρEt pxq ` z

Ee´pψ˚ρ
E
t qpxq

BρSt
Bt
pxq “ ´

`

mS
` pφ ˚ ρEt qpxq

˘

ρSt pxq ´ ρ
S
t pxqpa

´
˚ ρSt qpxq ` pa

`
˚ ρSt qpxq ` pb

`
˚ ρEt qpxq.

Weak-coupling limit

Suppose that the same as for the evolution of states are satisfied. By previous computa-
tions we get MEpη

´q “ |η´|,

cEpβ; η´q ≤
`

1` e´βzE exp
`

eβCpψq
˘˘

|η´|

and hence (E1) – (E4) hold. For the system observe that

MSpηq “ mS
|η`| `

ÿ

xPη`

ÿ

yPη`zx

a´px´ yq `
ÿ

xPη`

ÿ

yPη´

φpx´ yq
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and

cSpα, β; ηq “
`

mS
` eαxa´y ` eβxφy ` xa`y ` xb`y

˘

|η`|

`
ÿ

xPη`

ÿ

yPη`zx

a´px´ yq ` e´α
ÿ

xPη`

ÿ

yPη`zx

a`px´ yq

`
ÿ

xPη`

ÿ

yPη´

φpx´ yq ` e´α
ÿ

xPη`

ÿ

yPη´

b`px´ yq.

Then (S1) – (S3) are satisfied and (L) is not difficult to see. The unique invariant measure
for the environment is the Gibbs measure µinv with activity zE and potential ψ. The
averaged intensities are therefore given by

dpx, η`q “ mS
`

ÿ

yPγ`zx

a´px´ yq `

ż

Γ

ÿ

yPγ´

φpx´ yqdµinvpγ
´
q

and

bpx, η`q “
ÿ

yPγ`

a`px´ yq `

ż

Γ

ÿ

yPγ´

b`px´ yqdµinvpγ
´
q.

Let λpxq :“
ş

Γ

ř

yPγ´
b`px´ yqdµinvpγ

´q and mpxq :“
ş

Γ

ř

yPγ´
φpx´ yqdµinvpγ

´q, then

mpxq ≤ zE
ż

Γ

ż

Rd

φpx´ yqe´Eψpx,γ
´qdydµinvpγ

´
q ≤ zExφy

and λpxq ≤ zExb`y. It follows

Mpη`q “ mS
|η`| `

ÿ

xPη`

ÿ

yPη`zx

a´px´ yq `
ÿ

xPη`

mpxq

and we only have to show (4.58). By (4.80)

cpα; η`q “
`

mS
` eαxa´y ` xa`y

˘

|η`| `
ÿ

xPη`

ÿ

yPη`zx

a´px´ yq ` e´α
ÿ

xPη`

ÿ

yPη`zx

a`px´ yq

`
ÿ

xPη`

mpxq ` e´α
ÿ

xPη`

λpxq

≤
`

mS
` eαxa´y ` xa`y ` be´α

˘

|η`| ` p1` θe´αq
ÿ

xPη`

ÿ

yPη`zx

a´px´ yq

`
ÿ

xPη`

mpxq ` e´α
ÿ

xPη`

λpxq
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condition (4.58) is satisfied, provided there exists q P p0, 1q with

be´α ` λpxqe´α ` eαxa´y ` xa`y ≤ qpmS
`mpxqq

for a.a. x P Rd. This is in particular satisfied if there exist κ P p0, eαq with λ ≤ κm. The
averaged (pre-)generator is given by

pLF qpγ`q “
ÿ

xPγ`

¨

˝mS
`mpxq `

ÿ

yPγ`zx

a´px´ yq

˛

‚pF pγ`zxq ´ F pγ`qq

`
ÿ

xPγ`

ż

Rd

a`px´ yqpF pγ` Y yq ´ F pγ`qqdy `

ż

Rd

λpyqpF pγ` Y yq ´ F pγ`qqdy.

The mesoscopic equation is in such a case given by

Bρt
Bt
pxq “ ´pmS

`mpxqqρtpxq ´ ρtpxqpa
´
˚ ρtqpxq ` pa

`
˚ ρtqpxq ` λpxq.

4.9.3 Density dependent branching in Glauber environment

Suppose that the death intensities are given by

dEpx, γ`, γ´zxq “ 1

dSpx, γ`zx, γ´q “ mS exp
`

EφSpx, γ
`
zxq

˘

,

where mS ą 0. The birth intensities are given by

bEpx, γq “ zE exp
`

´EφEpx, γ
´
q
˘

bSpx, γq “
ÿ

yPγ`

exp
`

´EψEpy, γ
´
q
˘

a`px´ yq

with zE ą 0 and a`, φE, φS, ψE symmetric, non-negative and integrable.

Evolution of states

Similar to previous models we obtain

|K
´1
0 dEpx, ¨ Y η`, ¨ Y η´zxq|pξq “ 0|ξ|

|K
´1
0 dSpx, ¨ Y η`zx, ¨ Y η´q|pξq “ 0|ξ

´|mSeEφS px,η
`zxqeλ

´

eφ
Spx´¨q

´ 1; ξ`
¯

|K
´1
0 bEpx, ¨ Y η`, ¨ Y η´zxq|pξq “ 0|ξ

`|zEe´EφE px,η
´zxqeλ

´

|e´φ
Epx´¨q

´ 1|; ξ´
¯
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and

|K
´1
0 bSpx, ¨ Y η`zx, ¨ Y η´q|pξq “

` 1Γp1qpξ
`
q
ÿ

yPξ`

a`px´ yqe´EψE py,η
´qeλ

´

|e´ψ
Epy´¨q

´ 1|; ξ´
¯

` 0|ξ
`|

ÿ

yPη`zx

a`px´ yqeλ

´

|e´ψ
Epy´¨q

´ 1|; ξ´
¯

e´EψE py,η
´q.

The cumulative death intensity is given by Mpηq “ |η´| ` mS
ř

xPη`
eEφS px,η

`zxq and we

obtain for α, β P R

cpα, β; ηq “ |η´| `mS exp
`

eαCp´φSq
˘

ÿ

xPη`

eEφS px,η
`zxq

` zEe´β exp
`

eβCpφEq
˘

ÿ

xPη´

e´EφE px,η
´zxq

` exp
`

eβCpψEq
˘

ÿ

xPη`

ż

Rd

a`px´ yqe´EψE py,η
´qdy

` e´α exp
`

eβCpψEq
˘

ÿ

xPη`

ÿ

yPη`zx

a`px´ yqe´EψE py,η
´q.

Theorem 4.9.3. Suppose that 0 ‰ φS, a` are bounded, there exist constants κ ą 0 and
b ≥ 0 such that for all η` P Γ0

ÿ

xPη`

ÿ

yPη`zx

a`px´ yq ≤ ϑ
ÿ

xPη`

ÿ

yPη`zx

φSpx´ yq ` b|η`| (4.84)

and the parameters satisfy the relations

eβ ą zE exp
`

eβCpφEq
˘

2 ą ee
αCp´φSq

`
maxtxa`y ` be´α, ϑe´αu

mS
ee
βCpψEq.

Then conditions (A) – (D) hold with τ “ }φS}8 and (4.20) is satisfied. The corresponding
evolution of states is ergodic with exponential rate and the invariant measure is given by
δH b µ

E, where µE be the unique Gibbs measure with activity zE and potential φE.
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Proof. We obtain

cpηq ≤ |η´|
`

1` zEe´β exp
`

eβCpφEq
˘˘

` e´α exp
`

eβCpψEq
˘

ÿ

xPη`

ÿ

yPη`zx

a`px´ yq

` |η`|xa`y exp
`

eβCpψEq
˘

`mS exp
`

eαCp´φSq
˘

ÿ

xPη`

eEφS px,η
`zxq

≤ |η´|
`

1` zEe´β exp
`

eβCpφEq
˘˘

` |η`|
`

xa`y ` e´αb
˘

exp
`

eβCpψEq
˘

`mS exp
`

eαCp´φSq
˘

ÿ

xPη`

eEφS px,η
`zxq

` e´α exp
`

eβCpψEq
˘

ϑ
ÿ

xPη`

ÿ

yPη`zx

φSpx´ yq

≤ |η´|
`

1` zEe´β exp
`

eβCpφEq
˘˘

`

´

mSee
αCp´φSq

`maxtxa`y ` be´α, ϑe´αuee
βCpψEq

¯

ÿ

xPη`

eEφS px,η
`zxq.

This shows condition (C) with constant

apα, βq “ max

"

1` zEe´βee
βCpφEq, ee

αCp´φSq
`

maxtxa`y ` be´α, ϑe´αu

mS
ee
βCpψEq

*

.

Conditions (B) and (D) are not difficult to see. Finally for any cylinder function F

ż

Γ2

pLF qpγqdpδH b µ
E
qpγq “

ż

Γ

pLEF qpH, γ´qdµEpγ´q “ 0

and hence δH b µ
E is the invariant measure.

Vlasov scaling

Scaling all potentials by 1
n

gives dEpx, γ`, γ´zxq “ 1,

dSpx, γ`zx, γ´q “ mS exp

ˆ

1

n
EφSpx, γ

`
zxq

˙

and for the birth intensities

bEpx, γq “ zE exp

ˆ

´
1

n
EφEpx, γ

´
q

˙

bSpx, γq “
1

n

ÿ

yPγ`

exp

ˆ

´
1

n
EψEpy, γ

´
q

˙

a`px´ yq.
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Therefore, after scaling of the birth by n, Mnpηq “ |η
´| `mS

ř

xPη`
e

1
n
E
φS
px,η`zxq and

cnpα, β; ηq ≤ |η´| `mS exp
`

eαxφSy
˘

ÿ

xPη`

e
1
n
E
φS
px,η`zxq

` zEe´β exp
`

eβxφEy
˘

ÿ

xPη´

e´
1
n
E
φE
px,η´zxq

` exp
`

eβxψEy
˘

ÿ

xPη`

ż

Rd

a`px´ yqe´
1
n
E
ψE
py,η´qdy

`
e´α

n
exp

`

eβxψEy
˘

ÿ

xPη`

ÿ

yPη`zx

a`px´ yqe´
1
n
E
ψE
py,η´q.

Suppose that 0 ‰ φS, a`, φE, ψE, a` are bounded, (4.84) holds and the parameters satisfy
the stronger relations

eβ ą zE exp
`

eβxφEy
˘

2 ą ee
αxφSy

`
maxtxa`y ` be´α, ϑe´αu

mS
ee
βxψEy.

Then conditions (V1) – (V3) are satisfied. This yields the kinetic equations

BρEt
Bt
pxq “ ´ ρEt pxq ` z

Ee´pφ
E˚ρEt qpxq

BρSt
Bt
pxq “ ´mSρSt pxqe

pφS˚ρSt qpxq ` pa` ˚ ρSt qpxqe
´pψE˚ρEt qpxq.

Weak-coupling limit

Suppose that the same conditions as for the evolution of states are fulfilled. Observe that

MEpη
´q “ |η´|, MSpηq “ mS

ř

xPη`
eEφS px,η

`zxq. We have

cEpβ; η´q “ |η´| ` zEe´β exp
`

eβCpφEq
˘

ÿ

xPη´

e´EφE px,η
´zxq

cSpα, β; ηq “ mS exp
`

eαCp´φSq
˘

ÿ

xPη`

eEφS px,η
`zxq

` exp
`

eβCpψEq
˘

ÿ

xPη`

ż

Rd

a`px´ yqe´EψE py,η
´qdy

` e´α exp
`

eβCpψEq
˘

ÿ

xPη`

ÿ

yPη`zx

a`px´ yqe´EψE py,η
´q.
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Conditions (E1) – (E4), (S1) – (S3) and (L) can be checked in the same way as above.
Let µE be the invariant measure for the environment, then

dpx, γ`q “ mS exp
`

EφSpx, γ
`
zxq

˘

and with λpyq :“
ş

Γ

exp
`

´EψEpy, γ
´q
˘

dµEpγ´q ≤ 1

bpx, γ`q “
ÿ

yPγ`

λpyqa`px´ yq.

Hence we obtain

cpα; η`q “ `
ÿ

xPη`

ż

Rd

λpyqa`px´ yqdy ` e´α
ÿ

xPη`

ÿ

yPη`zx

λpyqa`px´ yq

`mSee
αCp´φSq

ÿ

xPη`

eEφS px,η
`zxq

and Mpηq “ mS
ř

xPη`
eEφS px,η

`zxq. It follows by (4.84) and λpyq ≤ 1

cpα; η`q ≤
`

xa`y ` be´α
˘

|η`| ` ϑe´α
ÿ

xPη`

ÿ

yPη`zx

φSpx´ yq `mSee
αCp´φSq

ÿ

xPη`

eEφS px,η
`zxq

≤
ˆ

max txa`y ` be´α, ϑe´αu

mS
` ee

αCp´φSq

˙

Mpηq.

Hence Proposition 4.8.2 is applicable and the averaged (pre-)generator is given by

pLF qpγ`q “ mS
ÿ

xPγ`

eEφS px,γ
`zxq
pF pγ`zxq ´ F pγ`qq

`
ÿ

xPγ`

λpxq

ż

Rd

a`px´ yqpF pγ` Y yq ´ F pγ`qqdy.

The mesoscopic equation associated to this microscopic model is then

Bρt
Bt
pxq “ ´mSρtpxqe

pφS˚ρtqpxq `

ż

Rd

λpyqa`px´ yqρtpyqdy.

4.9.4 Two interacting BDLP-models

Suppose that the death intensities are given by

dEpx, γ`, γ´zxq “ mE
`

ÿ

yPγ´zx

a´px´ yq

dSpx, γ`zx, γ´q “ mS
`

ÿ

yPγ`zx

b´px´ yq `
ÿ

yPγ´

ϕ´px´ yq.
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The birth intensities are assumed to be given by

bEpx, γq “
ÿ

yPγ´

a`px´ yq ` z

bSpx, γq “
ÿ

yPγ`

b`px´ yq `
ÿ

yPγ´

ϕ`px´ yq.

Suppose that z,mS,mE ą 0 and a˘, b˘, ϕ˘ are non-negative, symmetric and integrable.
It can be shown that

cpα, β; ηq “
`

mS
` eαxb´y ` eβxϕ´y ` xb`y ` xϕ`y

˘

|η`|

`
`

mE
` eβxa´y ` xa`y ` ze´β

˘

|η´|

`
ÿ

xPη´

ÿ

yPη´zx

a´px´ yq `
ÿ

xPη`

ÿ

yPη`zx

b´px´ yq `
ÿ

xPη`

ÿ

yPη´

ϕ´px´ yq

` e´β
ÿ

xPη´

ÿ

yPη´zx

a`px´ yq ` e´α
ÿ

xPη`

ÿ

yPη`zx

b`px´ yq

` e´α
ÿ

xPη`

ÿ

yPη´

ϕ`px´ yq

and MEpη
´q “ mE|η´| `

ř

xPη´

ř

yPη´zx

a´px´ yq,

MSpηq “ mS
|η`| `

ÿ

xPη`

ÿ

yPη`zx

b´px´ yq `
ÿ

xPη`

ÿ

yPη´

ϕ´px´ yq.

Theorem 4.9.4. Suppose that a˘, b˘, ϕ˘ are bounded and there exist constants b1, b2 ≥ 0
and ϑ1, ϑ2, ϑ3 ą 0 such that

ÿ

xPη`

ÿ

yPη`zx

b`px´ yq ≤ ϑ1

ÿ

xPη`

ÿ

yPη`zx

b´px´ yq ` b1|η
`
|

ÿ

xPη´

ÿ

yPη´zx

a`px´ yq ≤ ϑ2

ÿ

xPη´

ÿ

yPη´zx

a´px´ yq ` b2|η
´
|,

and ϕ` ≤ ϑ3ϕ
´ hold. Moreover, assume that the parameters satisfy the relations ϑ1, ϑ3 ă

eα, ϑ2 ă eβ,

mS
ą eαxb´y ` eβxϕ´y ` e´αb1 ` xb

`
y ` xϕ`y

mE
ą eβxa´y ` e´βpb2 ` zq ` xa

`
y.

Then conditions (A) – (D) hold for τ “ 0 and (4.20) is fulfilled. The dynamics described
by the operator L is ergodic with exponential rate and non-degenerated invariant measure.
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Proof. It follows that

cpα, β; ηq ≤
`

mS
` eαxb´y ` eβxϕ´y ` xb`y ` xϕ`y ` b1e

´α
˘

|η`|

`
`

mE
` eβxa´y ` xa`y ` pz ` b2qe

´β
˘

|η´|

` p1` ϑ1e
´α
q
ÿ

xPη`

ÿ

yPη`zx

b´px´ yq ` p1` e´βϑ2q
ÿ

xPη´

ÿ

yPη´zx

a´px´ yq

` p1` ϑ3e
´α
q
ÿ

xPη`

ÿ

yPη´

ϕ´px´ yq.

The same arguments as before imply (B) – (D) and (4.20).

Suppose that the conditions given above are fulfilled. Then (V1) – (V3) are satisfied
and after Vlasov scaling we arrive at the kinetic equations

BρEt
Bt
pxq “ ´mEρEt pxq ´ ρ

E
t pxqpa

´
˚ ρEt qpxq ` pa

`
˚ ρEt qpxq ` z

BρSt
Bt
pxq “ ´

`

mS
` pϕ´ ˚ ρEt qpxq

˘

ρSt pxq ´ ρ
S
t pxqpb

´
˚ ρSt qpxq

` pb` ˚ ρSt qpxq ` pϕ
`
˚ ρEt qpxq.

The unique invariant measure for LE is given by π z

mE
and hence the averaged intensities

are given by

dpx, γ`q “ mS
`

z

mE
xϕ´y `

ÿ

yPγ`zx

b´px´ yq

bpx, γ`q “
ÿ

yPγ`

b`px´ yq ` xϕ`y
z

mE
.

Proposition 4.8.2 is applicable if

eαxb´y `
´

xϕ`y
z

mE
` b1

¯

e´α ` xb`y ă mS
` xϕ´y

z

mE
.

Applying the Vlasov scaling to the averaged system yields the kinetic equation

Bρt
Bt
pxq “ ´

´

mS
`

z

mE
xϕ´y

¯

ρtpxq ´ ρtpxqpb
´
˚ ρtqpxq ` pb

`
˚ ρtqpxq ` xϕ

`
y
z

mE
.

Such equation can be also obtained by simply setting ρEt “
z
mE

in the coupled system of
equations.
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Appendix

A.1 Banach lattice

Here we give the definition of a Banach lattice, see e.g. [BA06]. Let X be a real vector
space.

Definition A.1.1. A partial order (simply order) on X is a relation 2 ≤2 on XˆX such
that the following are fulfilled for all x, y, z P X

1. x ≤ x.

2. If x ≤ y and y ≤ x, then x “ y.

3. If x ≤ y and y ≤ z, then x ≤ z.

An upper bound for a set A Ă X is an element x˚ P X such that a ≤ x˚ for all
a P A. A lower bound is then an element x˚ P X such that x˚ ≤ a for all a P A. The
supremum suppAq of A is the last upper bound of A, i.e. given any other upper bound
x˚ P X of A, then suppAq ≤ x˚. The infimum infpAq of the set A is defined in the same
way. We should emphasize that in general the supremum and infimum do not have to
exist. A vector space X equipped with a partial order 2 ≤2 is called lattice if for every
two elements x, y P X the supremum supptx, yuq and infimum infptx, yuq exist.

Definition A.1.2. A vector space X equipped with an partial order 2 ≤2 is called ordered
vector space if its vector structure is compatible with the order 2 ≤2, i.e.

(a) x ≤ y implies x` z ≤ y ` z for all x, y, z P X.

(b) x ≤ y implies αx ≤ αy for all α ≥ 0 and x P X.

If the ordered vector space X is also a lattice, then it is called vector lattice.

For a vector lattice X it is possible to define for any x P X its positive, negative part
and absolute value by

x` :“ sup tx, 0u, x´ :“ sup t´x, 0u

and |x| :“ sup tx,´xu. By [BA06, Proposition 2.46] above operations satisfy the relations

x “ x` ´ x´ and |x| “ x` ` x´.
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Definition A.1.3. A norm } ¨ } on the vector space X is called lattice norm if |x| ≤ |y|
implies }x} ≤ }y}.

A.2 Basic lemmas

Set ∆ :“ tps, tq P R` ˆ R` | s ≤ tu, the next two lemmas should be well-known and are
included here only for convenience.

Lemma A.2.1. Let fj : ∆ ˆ R` ˆ E ÝÑ R be a family of measurable functions indexed
by j PM , where M is an arbitrary non-empty index set, such that

1. fj is bounded on compacts uniformly in j PM .

2. The map ps, t, xq ÞÝÑ fjps, t, r, xq is continuous uniformly in j P M for fixed r P
rs, ts.

Then ps, t, xq ÞÝÑ
t
ş

s

fjps, t, r, xqdr is continuous uniformly in j PM .

Proof. Let ps, tq, psn, tnq P ∆ and x, xn P E be such that sn Ñ s, tn Ñ t and xn Ñ x as
nÑ 8. We find T ą 0 and a compact B Ă E such that s, sn, t, tn P r0, T s and x, xn P B
for n P N. Let f˚ :“ sup

jPM
sup

pt1,t2,t3,xqP∆Xr0,T s2ˆr0,T sˆB

fjpt1, t2, t3, xq ă 8, then for any n P N

and j PM

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
ż

s

fjps, t, r, xqdr ´

tn
ż

sn

fjpsn, tn, r, xnqdr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ |s´ sn|f˚ ` |t´ tn|f˚ `
T
ż

0

|fjps, t, r, xq ´ fjpsn, tn, r, xnq|dr.

For each r P r0, T s the integrand on the right-hand-side tends to zero as nÑ 8, and since
|fjps, t, r, xq ´ fjpsn, tn, r, xnq| ≤ 2f˚ dominated convergence yields the assertion.

The next lemma will show continuity in the case where instead of dr there is an
arbitrary kernel Hpt, x, dyq. In such a case we will need that E is locally compact.

Lemma A.2.2. Let E be a locally compact Polish space,

f : tps, r, tq P R3
` | s ≤ r ≤ tu ˆ E ˆ E ÝÑ R
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be continuous and bounded, and let H : I ˆ E ˆ BpEq ÝÑ R` be a weakly continuous
kernel, i.e. for all F P CbpEq, R` ˆE Q pr, xq ÞÝÑ

ş

E

F pyqHpr, x, dyq is continuous. Then

ps, r, t, xq ÞÝÑ

ż

E

fps, r, t, x, yqHpr, x, dyq

is continuous.

Proof. Let sn ≤ rn ≤ tn be such that sn Ñ s, rn Ñ r, tn Ñ t and xn Ñ x as n Ñ 8. Fix
ε ą 0 and take A Ă E compact with Hpr, x, Acq ă ε. Since E is a locally compact space

we can find another compact A1 Ă E with A Ă
˝

A1 Ă A1. Portmanteau implies then

lim sup
nÑ8

Hprn, xn, p
˝

A1q
cq ≤ Hpr, x, p

˝

A1q
cq ≤ Hpr, x, Acq ă ε. The function f restricted

to the compact tpsn, rn, tnq | n P Nu Y tps, r, tqu ˆ txn | n P Nu Y txu ˆ A1 is uniformly
continuous and hence we obtain for sufficiently large n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

E

fpsn, rn, tn, xn, yqHprn, xn, dyq ´

ż

E

fps, r, t, x, yqHpr, x, dyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

≤
ż

E

|fpsn, rn, tn, xn, yq ´ fps, r, t, x, yq|Hprn, xn, dyq

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

E

fps, r, t, x, yqHprn, xn, dyq ´

ż

E

fps, r, t, x, yqHpr, x, dyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ Hprn, xn, A1qε` 2}f}Hprn, xn, p
˝

A1q
c
q ` ε

≤ Hprn, xnqε` 2}f}ε` ε.

Due to the weak continuity of H the function Hpr, xq :“ Hpr, x, Eq is continuous and
hence Hprn, xnq is uniformly bounded in n P N, which shows the assertion.

A.3 Proof of Theorem 4.8.4

(a) Clearly Tαptq b 1 is a bounded linear operator on Lα,β. Let M ≥ 1 and ω P R be
such that }Tαptq}LpLαq ≤Meωt, then }Tαptq b 1}LpLα,βq ≤Meωt. For G “ G1bG2 P X we
obtain

}pTαptq b 1qG´G}Lα,β “ }G2}Lβ}TαptqG1 ´G1}Lα

and hence it is strongly continuous on X . Since X is dense in Lα,β it follows that it is
strongly continuous on the whole space Lα,β. Take G “ G1 bG2 P D, then

pTαptq b 1qG´G

t
“

ˆ

TαptqG1 ´G1

t

˙

bG2 ÝÑ AαG1 bG2, tÑ 0
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shows that linpDq Ă DpAα,βq and Aα,βG “ AαG1 b G2. For the last assertion it suffices
to show that

G :“

#

G1 bG2 | G1 P
č

n≥1

DpAnαq, G2 P Lβ

+

Ă D

is a core for pAα,β, DpAα,βqq. For G1bG2 P G we get pTαptqb1qpG1bG2q “ TαptqG1bG2

and hence linpGq is invariant for Tαptq b 1. Moreover, we see that

X Ă linpGq Ă Lα,β

and hence Lα,β “ X Ă linpGq Ă Lα,β, which shows that linpGq Ă Lα,β is dense.
(b) Let M ≥ 1 and ω P R be such that }Tα,βptq}LpLα,βq ≤ Meωt, then Tαptq is clearly a
bounded linear operator on Lα and it holds that

}TαptqG}Lα ≤ }Tα,βptq pP´1
´ G}Lα,β ≤Meωt} pP´1

´ G}Lα,β “Meωt}G}Lα .

The semigroup property is evident and strong continuity follows from

}TαptqG´G}Lα “ } pP´pTα,βptq pP
´1
´ G´ pP´1

´ Gq}Lα ≤ }Tα,βptq pP´1
´ G´ pP´1

´ G}Lα,β

and the strong continuity of pTα,βptqqt≥0. Since pTα,βptqqt≥0 leaves Lα invariant it fol-
lows by definition that Tα,βptq leaves Lα b 0´ invariant. The space Lα b 0´ is a closed
subspace and hence the restriction Tα,βptq|Lαb0´ is the generator of a C0-semigroup on
Lα b 0´. The generator is in such a case given by the Lα b 0´-part of Aα,β, that is by
pAα,β|Lαb0´ , DpAα,βq|Lαb0´ , where Aα,β|Lαb0´G “ Aα,βG, G P DpAα,βq|Lαb0´ and

DpAα,βq|Lαb0´ “ tG P DpAα,βq X Lα b 0´ | Aα,βG P Lα,β b 0´u.

Since Tαptq “ pP´Tα,βptq pP
´1
´ it follows that Aα “ pP´Aα,β|Lαb0´

pP´1
´ and

DpAαq “ pP´DpAα,βq|Lαb0´ “ tG P Lα | pP´1
´ G P DpAα,βq, Aα,β pP

´1
´ G P Lα b 0´u.
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