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Abstract. Statistical Schema Induction can be applied on an RDF
dataset to induce domain and range restrictions. We extend an existing
approach that derives independent domain and range restrictions to
derive coupled domain/range restrictions, which may be beneficial in the
context of Natural Language Processing tasks such as Semantic Parsing
and Entity Classification. We provide results from an experiment on the
DBpedia graph. An evaluation shows that high precision can be achieved.
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1 Introduction

RDFS domain restrictions and range restrictions for a property let us infer to
which class the subject and the object, respectively, of a triple with this property
belong to. For example, given the domain restriction (foaf:knows, rdfs:domain,
foaf:Person) and (foaf:knows, rdfs:range, foaf:Person), from the triple
(ex:Frank, foaf:knows, ex:Vidya) we can infer the class assertions (ex:Frank,
rdf:type, foaf:Person) and (ex:Vidya, rdf:type, foaf:Person).

In the context of the Semantic Web knowledge representation format RDF,
Statistical Schema Induction is the process of inducing ontological statements
such as RDFS statements and OWL statements from RDF data, such as domain
and range restrictions or subclass relations.

Domain restrictions and range restrictions were so far considered indepen-
dently [9]. For example, RDFS does not allow to specify that given a statement
(ex:s, ex:p, ex:o), if ex:s belongs to class c1, then ex:o belongs to class
c2. This makes sense since property restrictions are entailment rules and not
constraints. However, when applying them as heuristics instead, coupling domain
and range restrictions becomes interesting. For example, consider the DBpedia
property dbo:champion with domain dbo:SportsEvent and range dbo:Athlete.
When observing concrete data, one can see that this property is either used
for subjects of class dbo:SportsEvent and objects of class dbo:Athlete or,
among other cases, for subjects of class dbo:GolfTournament and objects of class
dbo:GolfPlayer. Having identified a golf tournament in text near and entity
identified as a person, one may now guess that the person is a golf player.

In this paper we propose an approach based on Frequent Itemset Mining
(FIM) to statistically induce coupled domain and range restrictions. Given a



knowledge base encoded in RDF, for a property p our method creates a set of
statements of the form (D,R, c) where D is the set of domain classes, R is the
set of range classes, and c ∈ [0, 1] is a support value.

We envision that the application of coupled domain/range restrictions is
interesting in the following two scenarios.

1. Semantic Parsing: Question answering may consist of the task of mapping
natural language questions to SPARQL queries that can then be evaluated
over an RDF dataset. An example of a question and the corresponding query
from QALD-61 is given below: "Which actors were born in Germany?"

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT ?uri WHERE {

?uri rdf:type dbo:Actor .
?uri dbo:birthPlace dbr:Germany .

}

Listing 1. SPARQL query from QALD-6

The string "born" can be interpreted as mapping to a property. In DBpedia
there are various candidates for the interpretation of "born": dbo:birthDate,
dbo:birthYear, and dbo:birthPlace. For the question above, only the in-
terpretation in terms of dbo:birthPlace makes sense as Germany matches to
the range restriction of dbo:birthPlace (since dbr:Germany is a dbo:Place).
As the entity dbr:Germany does not comply with the range restrictions of
dbo:birthYear nor of dbo:birthDate, these interpretations can be ruled out
by a Question Answering system that takes into account domain and range
restrictions. Using coupled domain/range restrictions can help to rule out
further interpretations in terms of properties and entities.

2. Entity Classification: given are a property with two different pairs of do-
main/range classes: (c1, c2) and (c3, c4). If we find an entity, e.g. in text, that
belongs to c1, then, if the object of the relation is also found in text but is
ambiguous since there are multiple entities that match, then the entity that
belongs to class c2 is more likely to be the correct one than entities of other
types, e.g., c4.

The main contributions of this paper are:

– We motivate the idea of coupled domain/range restrictions that can serve as
heuristics in NLP tasks such as Question Answering and Entity Classification.

– We formalize an existing approach for the induction of independent domain
and range restrictions as well as our approach for the induction of coupled
domain/range restrictions.

– We carry out an experiment on DBpedia and make all induced (independent
and coupled) restrictions available to the community.

1 See http://qald.sebastianwalter.org/index.php?x=benchmark&q=6



The remainder of this paper is structured as follows. We give a quick in-
troduction to Frequent Itemset Mining as well as relevant vocabulary (RDF,
RDFS, and OWL) in Section 2, present the existing method to derive domain
and range restrictions independently as introduced by [9] as well as our method
in Section 3, describe an experiment to induce coupled domain range restrictions
from DBpedia in Section 4, evaluate the outcome of the experiment in Section 5,
discuss related work in Section 6, and, finally, conclude in Section 7.

All code and data is available at a dedicated page:
https://github.com/ag-sc/SchemaInduction

2 Preliminaries

In this section we briefly introduce the graph-based data model RDF, relevant
terms from the RDF(S) vocabularies2 and from the OWL3 vocabulary, as well as
Frequent Itemset Mining.

2.1 RDF, RDFS, and OWL

An RDF graph consists of a set of RDF triples. An RDF triple t = (s, p, o) ∈
(U ∪B)× (U)× (U ∪B∪L) is an ordered set consisting of a subject s, a predicate
p, and an object o. U is a set of URIs, B is a set of blank nodes (existentially
qualified variables), and L is a set of literals. U , B, and L are pairwise disjunct.

From the RDF, RDFS, and OWL vocabularies a small set of terms is rel-
evant in the context of the current work: rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, and owl:equivalentClass.

The property rdf:type is used for explicit class assertions. For example,
the RDF triple (ex:X, rdf:type, ex:C) explicitly expresses that ex:X is a
member of the class ex:C. With the triples (ex:P, rdfs:domain, ex:C) and
(ex:P, rdfs:range, ex:D) a domain restriction (first triple) and a range re-
striction (second triple) are specified. Given these domain and range restrictions,
from a statement, such as (ex:A, ex:P, ex:B), the two class assertions (ex:A,
rdf:type, ex:C) and (ex:B, rdf:type, ex:D) can be derived (by taking into
account RDFS semantics4) – the first triple via the domain restriction and the
second triple via the range restriction. Subclass relations between classes can
be expressed using the property rdfs:subClassOf. For example, from a state-
ment (ex:C, rdfs:subClassOf, ex:D) it follows that ex:C is a subclass of ex:D,
which means that every entity that is a member of class ex:C is also a member of
class ex:D. Equivalence between two classes can be expressed via the symmetric
property owl:equivalentClass, as in (ex:C, owl:equivalentClass, ex:D).

2 See http://www.w3.org/TR/rdf-primer/
3 See http://www.w3.org/TR/owl-features/
4 See http://www.w3.org/TR/2004/REC-rdf-mt-20040210/



2.2 Frequent Itemset Mining

Let I be a set of items. Given a list T of subsets of the item set (also known
as a set of transactions) and given a value τ ∈ [0, 1] (also known as the support
threshold), the objective of frequent itemset mining consists of creating a set of
itemsets O where each set o ∈ O has a support of greater than or equal to τ ,
which means that it is subset to at least τ ∗ |T | itemsets in T . Support of an
itemset s is calculated as the number of itemsets t ∈ T where s ⊆ t devided by
|T |. See [7] for a textbook-style introduction to Frequent Itemset Mining.

As a classical example, let I be the set of articles available in a grocery store
and let T be the set of sets of articles in individual shopping baskets. Frequent
Itemset Mining [2] applied on T then tells us which articles are frequently
(depending on the τ value) purchased together. Given τ = 0.9, each set of articles
can be found in at least 90% of the shopping baskets.

Note that for each frequent itemset, all of its subsets are also frequent itemsets.
This property is referred to as the monotonicity of frequent itemsets. Frequent
Maximal Itemset Mining is the task of deriving only those frequent itemsets that
are maximal, which means that a frequent maximal itemset is not a true subset
of another frequent itemset.

3 Method

In this section we describe two methods. The first method is the state-of-the-art
method by Völker and Niepert [9] that derives independent domain and range
statements from an RDF graph using the Frequent Itemset Mining tool [6].
The second method, which is a new contribution, derives coupled domain/range
statements from an RDF graph using Frequent Itemset Mining.

Note that we do not intend to provide a method that outperforms the one
presented in [9] but rather introduce the new problem of inducing coupled
domain/range restrictions for which we introduce a method that builds on the
method by Völker and Niepert.

Input to both methods is an RDF graph G, a set of properties P , and a
support threshold value τ .

Output for the first method is a set of (domain classes, support) tuples
and a set of set of (range classes, support) tuples. Output for the second
method is a set of (domain classes, range classes, support) tuples.

The examples that we present to illustrate the method were created by
querying against the DBpedia [1] dataset.5 We ignore classes that are not in the
DBpedia namespace, such as owl:Thing.

3.1 Deriving Independent Domain and Range Statements

Here we describe the core of the method based on Frequent Itemset Mining to
induce domain and range axioms as introduced by Völker and Niepert [9]. The
5 The prefixes dbo and dbr refer to http://dbpedia.org/ontology/ and
http://dbpedia.org/resource/, respectively.



method to gather data from an endpoint is a bit different, as we will explain
later in Section 6.

We create a class dictionary D which is an injection that assigns an integer
value to each class in G. Given an RDF graph G, the class dictionary D, and a
set of properties P , for each property p ∈ P we create two transaction tables T p

d

and T p
r as follows. For each triple (s, p, o) ∈ G we add a row to T p

d containing
all members of cs, which is the set of classes the entity s belongs to. We do not
add a row to T p

d if cs is empty. Furthermore, we add a row to T p
r containing all

members of co, which is the set of class identifiers of the classes the object entity
o belongs to or the set of datatypes the object literal o belongs to. We do not add
a row to T p

r if co is empty. The sets of classes do not only contain the explicit
classes c of an entity e as defined via the triple (e, rdf:type, c), but also all
superclasses of c via the transitive relation rdfs:subClassOf, all their equivalent
classes via the transitive relation owl:equivalentClass, as well as all implicit types
that can be inferred via existing domain or, respectively, range restrictions.

For example, given the property dbo:author and the triple (dbo:Gantenbein,
dbo:author, dbr:Max_Frisch), for the resource dbo:Gantenbein we obtain the
set cs = {dbo:Book, dbo:Work, dbo:WrittenWork}. All three classes happen to
be available via direct class assertions. dbo:Work is the domain of the property
(given in the DBpedia Ontology). The superclasses of the directly asserted classes
are dbo:Book, dbo:Work, and dbo:WrittenWork and the superclass of the domain
class is dbo:Work.

For the resource dbr:Max_Frisch we obtain the set co = {dbr:Writer,
dbo:Person, dbo:Agent}. Again, all three classes happen to be available via
direct class assertions. dbo:Person is the range of the property. The superclasses
of the directly asserted classes are dbo:Writer, dbo:Agent, and dbo:Person and
the superclasses of the range class are dbo:Person and dbo:Agent. To the do-
main transaction table T dbo:author

d we would therefore add a line such as "0 1
2", given that the class identifiers refer to the classes dbo:Book, dbo:Work, and
dbo:WrittenWork, respectively, in the class dictionary D. This line in T dbo:author

d

would express that there is a triple with the property dbo:author where the
subject belongs to the classes with the identifiers 0, 1, and 2.

Given a transaction table and a support threshold τ , we perform frequent
maximal6 itemset mining to derive a set of classes and their support values where
the support values are not less than τ . We reduce each set of classes so that for each
class all of its superclasses are removed from the set. Moreover, if a set contains
multiple equivalent classes, then all but the first in lexicographic order are removed.
For example, the set {dbo:Athlete, dbo:Person, dbo:Agent} is reduced to
{dbo:Athlete}, since this class is a subclass of the two other classes. The purpose
of adding superclasses and equivalent classes in the first place is, that within a

6 Note that the authors of [9] do not explicitly mention that they derive frequent
maximal itemsets only. But since non-maximal itemsets, such as empty itemsets, are
irrelevant, we assume they perform frequent maximal itemset mining.



knowledge graph such as DBpedia, not all entities are necessarily consistently
typed. For example, sometimes a superclass is explicitly given, sometimes it is
not. Adding them leads to more consistent entries in the transaction table.

For example, given a domain transaction table T dbo:author
d that was created

with 10,000 triples and τ = 0.5 we obtained three frequent maximal itemsets:

– ({dbo:Work}, 10000/10000)

– ({dbo:WrittenWork}, 7771/10000)

– ({dbo:Book}, 6396/10000)

From these we can create three domain restrictions:

– (dbo:author, rdfs:domain, dbo:Work)

– (dbo:author, rdfs:domain, dbo:WrittenWork)

– (dbo:author, rdfs:domain, dbo:Book)

Note that this set of domain restrictions contains redundancies. Given the
third restriction, the first two restrictions could automatically be created since
dbo:Work and dbo:WrittenWork are superclasses of dbo:Book. Therefore, we
reduce the output to the restriction with the most specific class. Thus, the re-
striction (dbo:author, rdfs:domain, dbo:Book) is the only itemset remaining
after reduction.

3.2 Deriving Coupled Domain and Range Statements

We create a class dictionary D which is an injection as follows. For each class
c in G we create two new strings "domain=" + c and "range" + c via string
concatenation and assign different integer values in the dictionary. Given an RDF
graph G, the class dictionary D, and a set of properties P , for each property
p ∈ P we create one transaction table T p

dr as follows. For each triple (s, p, o) ∈ G
we add a row (transaction) to T p

dr containing all members of c′s ∪ c′o As for the
other method above, cs is the set of classes the entity s belongs to and co is the
set of classes the object entity o belongs to or the set of datatypes the object
literal o belongs to and the sets c′s and c′o are derived from cs and co, respectively,
as follows. For each member c ∈ cs (co, respectively), we concatenate the string
"domain=" ("range=", respectively) and c and add the resulting string to c′s (c′o,
respectively). The sets of classes do not only contain the explicit classes c of an
entity e as defined via the triple (e, rdf:type, c), but also all superclasses of
c via the transitive relation rdfs:subClassOf, all their equivalent classes via the
transitive relation owl:equivalentClass, as well as all implicit types that can be
inferred via existing domain or, respectively, range restrictions.

From a transaction table T p
dr we derive frequent maximal itemsets and reduce

them as carried out in the method above. Depending on whether the class names
begin with the string "domain=" or "range=" we can distribute them to the set
of domain classes and the set of range classes.



An example of a frequent itemset is (dbo:bronzeMedalist, {dbo:Olympic
Event}, {dbo:Person}, 5200/10000). From this itemset we can create two re-
strictions: (dbo:bronzeMedalist, rdfs:domain, dbo:OlympicEvent) and (dbo:
bronzeMedalist, rdfs:range, dbo:Person). However, if these restrictions are
represented in this form and are added to an RDF graph, then the domain
restrictions and the range restrictions are not coupled anymore.

4 Experiment

For our experiment we set up a SPARQL endpoint containing DBpedia (version
2015-10). The repository contains 8.8 billion triples, 739 classes, 1099 object
properties, and 1734 datatype properties.

For some properties DBpedia already contains domain and range restrictions,
as listed in Table 1. The headers of the table denote whether properties have
domain or range restrictions, e.g., as in the example D ∧ ¬R, that the property
has a domain restriction but no range restriction.

Table 1. Statistics about Object & Data Properties in DBpedia version 2015-10.

Property Type Total D ∧R ¬D ∧R D ∧ ¬R ¬D ∧ ¬R
Object Properties 1099 704 120 206 69
Datatype Properties 1734 1497 237 0 0

We induced restrictions for 1099 object properties and for 1734 datatype
properties (see Table 1) for values of τ in the range {1.0, 0.9, 0.8, 0.7,
0.6, 0.5, 0.4, 0.3, 0.2, 0.1} independently of whether domain or range
restrictions already exist in DBpedia. Figure 1 shows: i) the number of domain
and range itemsets that were induced for different values of τ (e.g., 2290 domain
itemsets (= domain restrictions) were induced for τ = 1.0 and 920 range itemsets
(= range restrictions) were induced for τ = 0.9), ii) the minimum, average,
and maximal number of classes in itemsets in domain and range, and iii) the
minimum, average, and maximum number of itemsets induced per property. It is
no surprise that the number of domain itemsets and range itemsets grows when
τ is decreased. Also, the number of classes within a frequent itemset and the
number of frequent itemsets per property grow when τ is decreased.

Results from inducing coupled domain/range restrictions are shown in Figure
2. In detail, it shows: i) the number of itemsets that were induced for different
values of τ (e.g., ), ii) the minimum, average, and maximal number of classes
in itemsets in domain and range (e.g., 3203 itemsets (= coupled domain/range
restrictions were induced for τ = 0.9), minD, stands for the minimum number
of classes in the sets of domain classes), and iii) the minimum, average, and
maximum number of itemsets induced per property.
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Fig. 1. Basic statistics of induced independent domain and range restrictions.

5 Evaluation

We evaluate the results of both methods:

1. We compare the induced domain (range) restrictions against the domain
(range) restrictions that already exist in DBpedia, which we treat as gold
standard.

2. We compare the induced coupled domain/range restrictions against the
independent domain and range restrictions that already exist in DBpedia,
which we treat as gold standard.

To compare against the gold standard of DBpedia, we selected 704 object
properties and 1497 datatype properties for which both domain restriction and
range restriction are known.

5.1 Evaluation of independent domain and range restrictions

For each domain (range) restriction for which a gold domain (range) restriction
exists we compare the induced set of classes against the gold set of classes. This
comparison may result in four cases: i) the sets of classes are identical, ii) all
induced classes are more specific than all gold classes, iii) all induced classes are
less specific than all gold classes, and iv) else (some classes are more specific, some
are less specific, some are neither less nor more specific when compared to the
gold set). In Table 2 these cases are denoted with =, >, <, and x, respectively.

We define precision@τ as the number of frequent maximal itemsets derived
with the support threshold τ where either the set of induced classes is the same
as the gold classes or where the induced classes are less specific, divided by the
number of all frequent maximal itemsets derived with the support threshold τ .
The arrows (↑) in Table 2 mark the columns where this is the case (i.e, = and <).
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Fig. 2. Basic statistics of induced coupled domain/range restrictions.

Table 3 shows an example for each of the four cases i) the induced domains
and the gold domains are identical, ii) the induced domains are more specific than
gold domains, iii) the induced domains are less specific than the gold domains,
and iv) otherwise, denoted with =, >, <, and x, respectively.

5.2 Evaluation of coupled domain/range restrictions

Induced coupled domain/range restrictions were evaluated similarly to the in-
dependent domain and range restrictions. However, the number of cases that
may occur is not 4 ({=, >,<, x}) but instead 4*4 ({=, >,<, x} × {=, >,<, x}).
Table 4 shows an example for each of the 16 possible cases of itemsets with
coupled domain and range.

We define precision@τ as the number of frequent maximal itemsets derived
with the support threshold τ where either the set of induced domain classes is
the same or less specific than the gold domain classes and where the induced
range classes is the same or less specific than the gold range classes, divided by
the number of all frequent maximal itemsets derived with the support threshold
τ . The arrows (↑) in Table 5 mark the columns where this is the case (i.e., ==,
=<, <=, and <<). Table 6 shows the precision@τ values.



Table 2. Induced independent domain and range restrictions, the frequency of cases,
and precision values.

domain range domain precision@τ range precision@τ
τ = > < x = > < x

1 722 152 1254 162 723 4 155 0 0.86 1.00
0.9 723 249 1254 217 723 20 155 22 0.81 0.95
0.8 723 268 1254 482 723 30 155 58 0.72 0.91
0.7 723 294 1252 544 723 40 155 58 0.70 0.90
0.6 723 319 1252 642 723 52 155 91 0.67 0.86
0.5 723 349 1252 748 723 57 155 147 0.64 0.81
0.4 723 393 1253 954 723 62 155 241 0.59 0.74
0.3 723 424 1254 1071 723 78 155 316 0.57 0.69
0.2 723 477 1254 1272 723 94 155 377 0.53 0.65
0.1 723 574 1248 2221 722 144 151 531 0.41 0.56

↑ ↑ ↑ ↑

Table 3. Examples of induced domain classes and the corresponding gold domain
classes. The entries for the column case correspond to the comparison of induced
domains to gold domains, where four cases are possible: = (the induced domain classes
are identical with the gold domain classes), > (the induced domain classes are more
specific than gold domain classes), < (the induced domain classes are less specific than
gold domain classes), and x (otherwise).

case τ property support induced domain gold domain

= 1.0 dbo:leftTributary 4881/4881 dbo:River dbo:River
> 0.5 dbo:composer 5847/10.000 dbo:TelevisionShow dbo:Work
< 1.0 dbo:chef 54/54 dbo:ArchitecturalStructuredbo:Restaurant
x 0.8 dbo:launchSite 45/509 dbo:MeanOfTransportation dbo:SpaceMission

Note that the precision of induced coupled restrictions (Table 2) tends to be
below the precision of induced independent restrictions (Table 6). The main reason
for the lower precision is that domain and range classes of coupled domain/range
restrictions are often more specific than the gold domain and range classes. See for
example Table 4 case >>. Adding restrictions with classes that are too specific to
a knowledge graph would result in wrong entailment. For example, by adding the
restriction (dbo:champion, rdfs:range, dbo:GolfPlayer), from every triple
with that property we can then infer via RDFS entailment that the object of
the triple is an instance of the class dbo:GolfPlayer – in other words: every
champion is a golf player. However, these specific classes are helpful as heuristics
for certain Natural Language Processing tasks as motivated in the introduction.



Table 4. Examples of induced coupled domain and range classes and the corresponding
gold classes. The namespace prefix (dbo) has been consistently omitted. d corresponds to
domain restriction and r to range restriction. The entries for the column case correspond
to the comparison of induced domains to gold domains and induced ranges to gold
ranges, respectively, where for each comparison four cases are possible: = (the induced
classes are identical with the gold classes), > (the induced classes are more specific
than gold classes), < (the induced classes are less specific than gold classes), and x
(otherwise).

case τ property support induced coupled dom./range gold domain/range

xx 0.3 launchSite 156/509 d=SocietalEvent,
MeanOfTransportation
r=MilitaryStructure

d=SpaceMission
r=Building

x< 0.8 launchSite 455/509 d=SpaceMission,
MeanOfTransportation
r=ArchitecturalStructure

d=SpaceMission
r=Building

x> 0.1 writer 1195/10000 d=Wikidata:Q11424,Work
r=Writer

d=Work
r=Person

x= 0.4 militaryBranch 4065/10000 d=Organisation,
MilitaryPerson
r=MilitaryUnit

d=MilitaryPerson
r=MilitaryUnit

<x 0.3 militaryBranch 5042/10000 d=Agent
r=MilitaryUnit,Place

d=MilitaryPerson
r=MilitaryUnit

<< 0.7 champion 1349/1349 d=SocietalEvent
r=Agent

d=SportsEvent
r=Athlete

<> 0.2 militaryBranch 10000/10000 d=Person
r=Agent

d=MilitaryPerson
r=MilitaryUnit

<= 0.1 militaryBranch 10000/10000 d=Agent
r=MilitaryUnit

d=MilitaryPerson
r=MilitaryUnit

>x 0.3 dam 198/450 d=RaceHorse
r=RaceHorse,Eukaryote

d=Animal
r=Animal

>< 0.2 dam 450/450 d=Mammal
r=Species

d=Animal
r=Animal

>> 0.9 champion 1252/1349 d=Tournament
r=GolfPlayer

d=SportsEvent
r=Athlete

>= 0.8 champion 1348/1349 d=GolfTournament
r=Athlete

d=SportsEvent
r=Athlete

=x 0.3 launchSite 191/509 d=SpaceMission
r=MilitaryStructure

d=SpaceMission
r=Building

=< 0.2 dam 439/450 d=Mammal
r=Mammal

d=Animal
r=Animal

=> 0.1 dam 439/450 d=Animal
r=Horse

d=Animal
r=Animal

== 1.0 launchSite 509/509 d=SpaceMission
r=Building

d=SpaceMission
r=Building



Table 5. Induced coupled domain/range restrictions and the frequency of cases.

τ == => =< = x >= >> >< > x <= <> << < x x = x > x < xx

1.0 721 4 157 0 153 4 32 0 1252 10 326 0 165 0 13 0
0.9 723 20 156 22 249 20 56 16 1256 51 327 66 219 0 18 4
0.8 723 30 157 58 269 30 59 24 1254 75 326 134 481 0 34 4
0.7 723 40 155 58 294 35 67 24 1256 101 326 135 545 1 44 4
0.6 723 52 156 91 319 39 69 25 1257 127 327 207 643 0 99 8
0.5 723 58 156 147 350 42 75 48 1256 140 330 306 749 22 122 392
0.4 723 62 158 242 393 50 78 88 1254 144 326 438 954 23 164 440
0.3 723 78 158 316 425 68 92 91 1256 159 328 520 1071 74 186 529
0.2 723 94 156 378 479 78 105 101 1255 203 326 672 1272 135 196 603
0.1 722 146 152 531 574 105 120 156 1250 314 311 1084 2225 239 348 783

↑ ↑ ↑ ↑

Table 6. Precision@τ for induced coupled domain/range restrictions.

τ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
precision@τ 0.87 0.77 0.67 0.65 0.59 0.50 0.44 0.41 0.36 0.27

6 Related Work

Our approach is an extension of a method for statistical schema induction
from RDF data introduced by Völker and Niepert [9] which we discuss in
detail in Section 3.1. Besides inducing domain and range restrictions of prop-
erties, in their work further axioms are induced such as subsumption axioms
(e.g., (ex:A, rdfs:subClassOf, ex:B)) and transitivity axioms (e.g., (ex:P,
rdf:type, owl:TransitiveProperty)). This work was subsequently extended
in [4] and [5] with further types of axioms. The main difference to this work is
that we induce independent domain and range restrictions as well as coupled
domain/range restrictions whereas in these works only independent domain and
range restrictions are induced. However, all methods are based on Frequent
Itemset Mining and only differ in some technical details, such as, how the set
of classes an entity belongs to are created (e.g., whether equivalent classes (via
owl:equivalentClass), superclasses (via rdfs:subClassOf), and existing do-
main and range restrictions are regarded). In both approaches the sets of classes
are approximated and it cannot be guaranteed that the sets are complete since
data is accessed via SPARQL only. As long as endpoints do not support RDFS
and OWL entailment, or as long as not all inferences are materialized, some
classes may be missing.

Instead of inducing domain and range restrictions from RDF data, restrictions
can also be induced from unstructured data. In [3], Cimiano et al. derive the
classes of arguments of verbs from natural language text, which can be seen
as a subtask in the context of ontology learning from text. Since in their work
verbs are interpreted as binary relations, what they induce are domain and range
restrictions. Given an existing taxonomy, for the domain and the range of a



property the appropriate level in the taxonomy is selected considering the classes’
conditional probabilities. Interestingly, the authors note that "the domain and
range of a relation can actually not be regarded as independent from each other,"
which is exactly what we do in this paper. However, due to a lack of training
data, they refrain from regarding coupled domain/range restrictions.

In [8], Töpper et al. induce domain and range restrictions as well as class
disjointness axioms from RDF data for the purpose of enabling to detect logical
inconsistencies via reasoning. In their work, the domain (range) of a property is
the class that most of the subjects (objects) in triples with this property belong
to. This has the drawback that if for a property entities belonging to several
diverse classes appear in subject (object) position, then the induced domain
(range) restriction only regards the most specific superclass of these classes. While
this is not wrong, for Natural Language Processing more fine-grained domain
and range restrictions are interesting.

7 Conclusion

In this paper we presented the concept of coupled domain/range restrictions and
presented an approach to apply Frequent Itemset Mining to induce independent
domain and range restrictions as well as coupled domain/range restrictions from
an RDF graph. Experiments carried out with the DBpedia dataset showed that
high precision can be achieved. We believe that these restriction statements
can be beneficially applied in Natural Language Processing scenarios such as
Semantic Parsing, Question Answering, and Entity Classification. Therefore, all
data obtained as well as our implementation is available to the community on a
dedicated website.
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