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Abstract

In this paper, we present and evaluate an
approach to incremental dialogue act (DA)
segmentation and classification. Our ap-
proach utilizes prosodic, lexico-syntactic
and contextual features, and achieves an
encouraging level of performance in of-
fline corpus-based evaluation as well as in
simulated human-agent dialogues. Our ap-
proach uses a pipeline of sequential pro-
cessing steps, and we investigate the contri-
bution of different processing steps to DA
segmentation errors. We present our results
using both existing and new metrics for DA
segmentation. The incremental DA seg-
mentation capability described here may
help future systems to allow more natural
speech from users and enable more natural
patterns of interaction.

1 Introduction

In this paper we explore the feasibility of incor-
porating an incremental dialogue act segmentation
capability into an implemented, high-performance
spoken dialogue agent that plays a time-constrained
image-matching game with its users (Paetzel et al.,
2015). This work is part of a longer-term research
program that aims to use incremental (word-by-
word) language processing techniques to enable
dialogue agents to support efficient, fast-paced in-
teractions with a natural conversational style (De-
Vault et al., 2011; Ward and DeVault, 2015; Paetzel
et al., 2015).

It’s important to allow users to speak naturally
to spoken dialogue systems. It has been understood
for some time that this ultimately requires a system
to be able to automatically segment a user’s speech
into meaningful units in real-time while they speak
(Nakano et al., 1999). Still, most current systems

use relatively simple and limited approaches to this
segmentation problem. For example, in many sys-
tems, it’s assumed that pauses in the user’s speech
can be used to determine the segmentation, often
by treating each detected pause as indicating a dia-
logue act (DA) boundary (Komatani et al., 2015).

While easily implemented, such a pause-based
design has several problems. First, a substantial
number of spoken DAs contain internal pauses
(Bell et al., 2001; Komatani et al., 2015), as in
I need a car in... 10 minutes. Using simple pause
length thresholds to join certain speech segments to-
gether for interpretation is not a very effective rem-
edy for this problem (Nakano et al., 1999; Ferrer
et al., 2003). More sophisticated approaches train
algorithms to join speech across pauses (Komatani
et al., 2015) or decide which pauses constitute end-
of-utterances that should trigger interpretation (e.g.
(Raux and Eskenazi, 2008; Ferrer et al., 2003)).
This addresses the problem of DA-internal pauses,
but it does not address the second problem with
pause-based designs, which is that it’s also com-
mon for a continuous segment of user speech to
include multiple DAs without intervening pauses,
as in Sure that’s fine can you call when you get
to the gate? A third problem is that waiting for a
pause to occur before interpreting earlier speech
may increase latency and erode the user experience
(Skantze and Schlangen, 2009; Paetzel et al., 2015).
Together, these problems suggest the need for an
incremental dialogue act segmentation capability in
which a continuous stream of captured user speech,
including the intermittent pauses therein, is incre-
mentally segmented into appropriate DA units for
interpretation.

In this paper, we present a case study of im-
plementing an incremental DA segmentation ca-
pability for an image-matching game called RDG-
Image, illustrated in Figure 1. In this game, two
players converse freely in order to identify a spe-



Figure 1: An example RDG-Image dialogue, where the director (D) tries to identify the target image,
highlighted in red, to the matcher (M). The DAs of the director (D DA) and matcher (M DA) are indicated.

cific target image on the screen (outlined in red).
When played by human players, as in Figure 1,
the game creates a variety of fast-paced interac-
tion patterns, such as question-answer exchanges.
Our motivation is to eventually enable a future ver-
sion of our automated RDG-Image agent (Paet-
zel et al., 2015) to participate in the most com-
mon interaction patterns in human-human game-
play. For example, in Figure 1, two fast-paced
question-answer exchanges arise as the director
D is describing the target image. In the first, the
matcher M asks brown...brown seat? and receives
an almost immediate answer brown seat yup. A mo-
ment later, the director continues the description
with and handles got it?, both adding and han-
dles and also asking got it? without an intervening
pause. We believe that an important step toward
automating such fast-paced exchanges is to create
an ability for an automated agent to incrementally
recognize the various DAs, such as yes-no ques-
tions (Q-YN), target descriptions (D-T), and yes
answers (A-Y) in real-time as they are happening.

The contributions of this paper are as follows.
First, we define a sequential approach to incre-
mental DA segmentation and classification that is
straightforward to implement and which achieves
a useful level of performance when trained on a
small annotated corpus of domain-specific DAs.
Second, we explore the performance of our ap-
proach using both existing and new performance
metrics for DA segmentation. Our new metrics
emphasize the importance of precision and recall
of specific DA types, independently of DA bound-
aries. These metrics are useful for evaluating DA
segmenters that operate on noisy ASR output and
which are intended for use in systems whose dia-

logue policies are defined in terms of the presence
or absence of specific DA types, independently of
their position in user speech. This is a broad class
of systems. Third, while much of the prior work on
DA segmentation has been corpus-based, we report
here on an initial integration of our incremental DA
segmenter into an implemented, high-performance
agent for the RDG-Image game. Our case study
suggests that incremental DA segmentation can be
performed with sufficient accuracy for us to be-
gin to extend our baseline agent’s conversational
abilities without significantly degrading its current
performance.

2 Related Work

In this paper, we are concerned with the alignment
between dialogue acts (DAs) and individual words
as they are spoken within Inter-Pausal Units (IPUs)
(Koiso et al., 1998) or speech segments. (We use
the two terms interchangeably in this paper to re-
fer to a period of continuous speech separated by
pauses of a minimum duration before and after.)
Beyond the work on this alignment problem men-
tioned in the introduction, a related line of work has
looked specifically at DA segmentation and clas-
sification given an input string of words together
with an audio recording to enable prosodic and tim-
ing analysis (Petukhova and Bunt, 2014; Zimmer-
mann, 2009; Zimmermann et al., 2006; Lendvai
and Geertzen, 2007; Ang et al., 2005; Nakano et al.,
1999; Warnke et al., 1997). This work generally en-
compasses the problems of identifying DA-internal
pauses as well as locating DA boundaries within
speech segments. Prosody information has been
shown to be helpful for accurate DA segmentation
(Laskowski and Shriberg, 2010; Shriberg et al.,



2000; Warnke et al., 1997) as well as for DA classi-
fication (Stolcke et al., 2000; Fernandez and Picard,
2002). In general, DA segmentation has been found
to benefit from a range of additional features such
as pause durations at word boundaries, the user’s
dialogue tempo (Komatani et al., 2015), as well
as lexical, syntactic, and semantic features. Work
on system turn-taking decisions has used similar
features to optimize a system’s turn-taking policy
during a user pause, often with classification ap-
proaches; e.g. (Sato et al., 2002; Takeuchi et al.,
2004; Raux and Eskenazi, 2008). To our knowl-
edge, very little research has looked in detail at the
impact of adding incremental DA segmentation to
an implemented incremental system (though see
Nakano et al. (1999)).1

3 The RDG-Image Game and Data Set

Our work in this paper is based on the RDG-Image
game (Paetzel et al., 2014), a collaborative, time
constrained, fast-paced game with two players de-
picted in Figure 1. One player is assigned the role
of director and the other the role of matcher. Both
players see the same eight images on their screens
(but arranged in a different order). The director’s
screen has a target image highlighted in red, and
the director’s goal is to describe the target image so
that the matcher can identify it as quickly as possi-
ble. Once the matcher believes they have selected
the right image, the director can request the next
target. Both players score a point for each correct
selection, and the game continues until a time limit
is reached. The time limit is chosen to create time
pressure.

3.1 Dialogue Act Annotations

We have previously collected data sets of human-
human gameplay in RDG-Image both in a lab set-
ting (Paetzel et al., 2014) and in an online, web-
based version of the game (Manuvinakurike and
DeVault, 2015; Paetzel et al., 2015). To support
the experiments in this paper, a single annotator
segmented and annotated the main game rounds
from our lab-based RDG-Image corpus with a set

1In Manuvinakurike et al. (2016), we describe a related
application of incremental speech segmentation in a variant
rapid dialogue game with a different corpus. In that paper, we
focus on fine-grained segmentation of referential utterances
that would all be labeled as D-T in this paper. The model
presented here is shallower and more general, focusing on
high-level DA labels.

of DA tags.2 The corpus includes gameplay be-
tween 64 participants (32 pairs, age: M = 35,
SD = 12, gender: 55% female). 11% of all par-
ticipants reported they frequently played similar
games before; the other 89% had no or very rare
experience with similar games. All speech was pre-
viously recorded, manually segmented into speech
segments (IPUs) at pauses of 300ms or greater, and
manually transcribed. The new DA segmentation
and annotation steps were carried out at the same
time by adding boundaries and DA labels to the
transcribed speech segments from the game. The
annotator used both audio and video recordings to
assist with the annotation task. The annotations
were performed on transcripts which were seen as
segmented into IPUs.

Table 1 provides several examples of this anno-
tation. We designed the set of DA labels to include
a range of communicative functions we observed
in human-human gameplay, and to encode distinc-
tions we expected to prove useful in an automated
agent for RDG-Image. Our DA label set includes
Positive Feedback (PFB), Describe Target (D-T),
Self-Talk (ST), Yes-No Question (Q-YN), Echo
Confirmation (EC), Assert Identified (As-I), and
Assert Skip (As-S). We also include a filled-pause
DA (P) used for ‘uh’ or ‘um’ separated from other
speech by a pause. The complete list of 18 DA la-
bels and their distribution are included in Tables 9
and 10 in the appendix. To assess the reliability of
annotation, two annotators annotated one game (2
players, 372 speech segments); we measured kappa
for the presence of boundary markers (‖) at 0.92
and word-level kappa for DA labels at 0.83.

Summary statistics for the annotated corpus are
as follows. The corpus contains 64 participants
(32 pairs), 1,906 target images, 8,792 speech seg-
ments, 67,125 word tokens, 12,241 DA segments,
and 4.27 hours of audio. The mean number of DAs
per speech segment is 1.39. In Table 2, we summa-
rize the distribution in number of DAs initiated per
speech segment. 23% of speech segments contain
the beginning of at least two DAs; this highlights
the importance of being able to find the boundaries
between multiple DAs inside a speech segment.
Most DAs begin at the start of a speech segment
(i.e. immediately after a pause), but 29% of DAs
begin at the second word or later in a speech seg-
ment. 4% of DAs contain an internal pause and

2We excluded from annotation the training rounds in the
corpus, where players practiced playing the game.



Example # IPUs # DAs Annotation
1 1 5 PFB that’s okay ‖ D-T um this castle has a ‖ ST oh gosh this is hard ‖ D-T this castle is tan ‖

D-T it’s at a diagonal with a blue sky
2 1 2 D-T and it’s got lemon in it ‖ Q-YN you got it
3 1 2 PFB okay ‖ D-T this is the christmas tree in front of a fireplace
4 1 2 EC fireplace ‖ As-I got it
5 2 2 D-M all right ‖ D-T this is ... this is this is the brown circle and it’s not hollow
6 3 1 D-T this is a um ... tan or light brown ... box that is clear in the middle
7 3 2 D-M all right ‖ D-T he’s got he’s got that ... that ... first uh the first finger and the thumb

pointing up
8 3 2 ST um golly ‖ DT this looks like a a a ... ginseng ... uh of some sort
9 2 4 ST oh wow ‖ D-M okay ‖ D-T this one ... looks it has gray ‖ D-T a lotta gray on this robot

Table 1: Examples of annotated DA types, DA boundaries (‖), and IPU boundaries (...). The number of
IPUs and DAs in each example are indicated.

Number of DAs 0 1 2 ≥ 3
% of speech segments 3 74 18 5

Table 2: The distribution in the number of DAs
whose first word is within a speech segment.

thus span multiple speech segments.

4 Technical Approach

The goal for our incremental DA segmentation
component is to segment the recognized speech
for a speaker into individual DA segments and to
assign these segments to the 18 DA classes in Table
9. We aim to do this in an incremental (word-by-
word) manner, so that information about the DAs
within a speech segment becomes available before
the user stops or pauses their speech.

Figure 2 shows the incremental operation of our
sequential pipeline for DA segmentation and clas-
sification. We use Kaldi for ASR, and we adapt the
work of Plátek and Jurčı́ček (2014) for incremen-
tal ASR using Kaldi. The pipeline is invoked after
each new partial ASR result becomes available (i.e.,
every 100ms), at which point all the recognized
speech is resegmented and reclassified in a restart
incremental (Schlangen and Skantze, 2011) design.
The input to the pipeline includes all the recognized
speech from one speaker (including multiple IPUs)
for one target image subdialogue.

In our sequential pipeline, the first step is to use
sequential tagging with a CRF (Conditional Ran-
dom Field) (Lafferty et al., 2001) implemented in
Mallet (McCallum, 2002) to perform the segmen-
tation. The segmenter tags each word as either the
beginning (B) of a new DA segment or as a contin-
uation of the current DA segment (I).3 Then, each

3Note that our annotation scheme completely partitions our

Figure 2: The operation of the pipeline on selected
ASR partials (with time index in seconds).

resulting DA segment is classified into one of 18
DA labels using an SVM (Support Vector Machine)
classifier implemented in Weka (Hall et al., 2009).

4.1 Features
Prosodic Features We use word-level prosodic
features similar in nature to Litman et al. (2009).
The alignment between words and computed
prosodic features is achieved using a forced aligner
(Baumann and Schlangen, 2012) to generate word-
level timing information. For each word, we first

data, with every word belonging to a segment and receiving a
DA label. We have therefore elected not to adopt BIO (Begin-
Inside-Outside) tagging.



obtain pitch and RMS values every 10ms using In-
proTK (Baumann and Schlangen, 2012). Because
pitch and energy features can be highly variable
across users, our pitch and energy features are rep-
resented as z-scores that are normalized for the
current user up to the current word. For the pitch
and RMS values, we obtain the max, min, mean,
variance and the co-efficients of a second degree
polynomial. Pause durations at word boundaries
provide an additional useful feature (Kolář et al.,
2006; Zimmermann, 2009). All numeric features
are discretized into bins. We currently use prosody
for segmentation but not classification.4

Lexico-syntactic & contextual features We use
word unigrams along with the corresponding part-
of-speech (POS) tags, obtained using Stanford
CORENLP (Manning et al., 2014), as a feature
for both the segmentation and the DA classifier.
Words with a low frequency (<10) are substituted
with a low frequency word symbol. The top level
constituent category from a syntactic parse of the
DA segment is also used.

Several contextual features are included. The
role of the speaker (Director or Matcher) is in-
cluded as a feature. Previously recognized DA
labels from each speaker are included. Another fea-
ture is added to assist with the Echo Confirmation
(EC) DA, which applies when a speaker repeats
verbatim a phrase recently spoken by the other
interlocutor. For this we use features to mark word-
level unigrams that appeared in recent speech from
the other interlocutor. Finally, a categorical fea-
ture indicates which of 18 possible image sets (e.g.
bikes as in Figure 1) is under discussion; simpler
images tend to have shorter segments.5

4.2 Discussion of Machine Learning Setup
A salient alternative to our sequential pipeline ap-
proach – also adopted for example by Ang et al.
(2005) – is to use a joint classification model to
solve the segmentation and classification problems
simultaneously, potentially thereby improving per-
formance on both problems (Petukhova and Bunt,
2014; Morbini and Sagae, 2011; Zimmermann,
2009; Warnke et al., 1997). We performed an ini-
tial test using a joint model and found, unlike the
finding reported by Zimmermann (2009), that for

4For the experiments reported in this paper, prosodic fea-
tures were calculated offline, but they could in principle be
calculated in real-time.

5The image set feature affects the performace of the seg-
menter only slightly.

Condition Transcripts
(T)

Segment
Boundaries (S)

DA la-
bels (D)

HT-HS-HD Human Human Human
HT-HS-AD Human Human Automated
HT-AS-AD Human Automated Automated
AT-AS-AD ASR Automated Automated

Table 3: Conditions for evaluating DA segmenta-
tion and classification.

our corpus a joint approach performed markedly
worse than our sequential pipeline.6 We speculate
that this is due to the relative sparsity of data on
rarer DA types in our relatively small corpus. For
similar reasons, we have not yet tried to use RNN-
based approaches such as LSTMs, which tend to
require large amounts of training data.

5 Experiment and Results

We report on two experiments. In the first experi-
ment, we train our DA segmentation pipeline using
the annotated corpus of Section 3.1 and report re-
sults on the observed DA segment boundaries (Sec-
tion 5.1) and DA class labels (Section 5.2). In the
second experiment, presented in Section 5.3, we
report on a policy simulation that investigates the
effect of our incremental DA segmentation pipeline
on a baseline automated agent’s performance.

For the first experiment, we use a hold-one-pair-
out cross-validation setup where, for each fold, the
dialogue between one pair of players is held out
for testing, while automated models are trained
on the other pairs. To evaluate our pipeline, we
use four data conditions, summarized in Table 3,
that represent increasing amounts of automation in
the pipeline. These conditions allow us to better
understand the sources for observed errors in seg-
ment boundaries and/or DA labels. Our notation
for these conditions is a compact encoding of the
data sources used to create the transcripts of user
speech, the segment boundaries, and the DA labels.
Our reference annotation, described in Section 3.1,
is notated HT-HS-HD (human transcript, human
segment boundaries, human DA labels). Example
segmentations for each condition are in Table 4.

5.1 Evaluation of DA Segment Boundaries
In this evaluation, we ignore DA labels and look
only at the identification of DA boundaries (notated
by ‖ in Table 4, and encoded using B and I tags in
our segmenter). For this evaluation, we use human

6We used a joint CRF model similar to the BI coding of
Zimmermann (2009).



Condition # IPUs Example
HT-HS-HD 1 (a) A-N um no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat and an orange handle
HT-HS-AD 1 (b) A-N um no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat and an orange handle
HT-AS-AD 1 (c) P um ‖ A-N no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat ‖ D-T and an orange handle
AT-AS-AD 1 (d) A-N on no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat ‖ D-T and orange ‖ A-N no

Table 4: Examples of DA boundaries (‖) and DA labels in each condition.

Condition Features Accuracy F-Score DSER
B tag I tag

1-DA-per-IPU 0.78 0.23 0.87 0.26
HT-AS-AD Prosody (I) 0.72 0.62 0.69 0.42
HT-AS-AD Lexico-Syntactic & Contextual (II) 0.90 0.82 0.82 0.31
HT-AS-AD I+II 0.91 0.83 0.84 0.30
Human annotator 0.95 0.91 0.94 0.15

Table 5: Observed DA segmentation performance. These results consider only DA boundaries.

transcripts and compare the boundaries in our ref-
erence annotations (HT-HS-HD) to the boundaries
inferred by our automated pipeline (HT-AS-AD).7

In Table 5, we present results for versions of
our pipeline that use three different feature sets:
only prosody features (I), only lexico-syntactic and
contextual features (II), and both (I+II). We include
also a simple 1-DA-per-IPU baseline that assumes
each IPU is a single complete DA; it assigns the
first word in each IPU a B tag and subsequent words
an I tag. Finally, we also include numbers based on
an independent human annotator using the subset
of our annotated corpus that was annotated by two
human annotators. For this subset, we use our main
annotator as the reference standard and evaluate
the other annotator as if their annotation were a
system’s hypothesis.8

The reported numbers include word-level ac-
curacy of the B and I tags, F-score for each of
the B and I tags, and the DA segmentation error
rate (DSER) metric of Zimmermann et al. (2006).
DSER measures the fraction of reference DAs
whose left and right boundaries are not exactly
replicated in the hypothesis. For example, in Ta-
ble 4, the reference (a) contains three DAs, but
only the boundaries of the second DA (it’s the blue
frame) are exactly replicated in hypothesis (c). This
yields a DSER of 2/3 for this example.

We find that our automated pipeline (HT-AS-
AD) with all features performs the best among
the pipeline methods, with word-level accuracy
of 0.91 and DSER of 0.30. Its performance how-

7We evaluate our DA segmentation performance using
human transcripts, rather than ASR, as this allows a simple
direct comparison of inferred DA boundaries.

8For comparison, the chance-corrected kappa value for
word-level boundaries is 0.92; see Section 3.1.

Condition Metrics used
for human
transcripts

Alignment-
based metrics

DER Strict Lenient Levenshtein-
Lenient

CER

HT-HS-AD 0.39 0.09 0.09 0.07 0.27
HT-AS-AD 0.72 0.38 0.15 0.12 0.39
AT-AS-AD 0.39 0.52

Table 6: Observed DA classification and joint seg-
mentation+classification performance.

ever is worse than an independent human annotator,
with double the DSER. This suggests there remains
room for improvement at boundary identification.
The 1-DA-per-IPU baseline does well on the com-
mon case of single-IPU DAs, but it fails ever to
segment an IPU into multiple DAs. We use the
pipeline with all features in the following sections.

5.2 Evaluation of DA Class Labels

In this evaluation, we consider DA labels assigned
to recognized DA segments using several types of
metrics. We summarize our results in Table 6.

Metrics used for human transcripts We first
compare our reference annotations (HT-HS-HD) to
the performance of our automated pipeline when
provided human transcripts as input. For this com-
parison, we use three error rate metrics (Lenient,
Strict, and DER) from the DA segmentation liter-
ature that are intuitively applied when the token
sequence being segmented and labeled is identi-
cal (or at least isomorphic) to the annotated token
sequence. Lower is better for these. The Lenient
and Strict metrics (Ang et al., 2005) are based on
the DA labels assigned to each individual word (by
way of the label of the DA segment that contains
that word). Lenient is a per-token DA label error



rate that ignores DA segment boundaries.9 In Ta-
ble 6, this error rate is 0.09 when human-annotated
boundaries are fed into our DA classifier (HT-HS-
AD) and 0.15 when automatically-identified bound-
aries are used (HT-AS-AD).

Strict and DER are boundary-sensitive metrics.
Strict is a per-token error rate that requires each
token to receive the correct DA label and also to
be part of a DA segment whose exact boundaries
appear in the reference annotation. This is a much
higher standard.10 Dialogue Act Error Rate (DER)
(Zimmermann et al., 2006) is the fraction of refer-
ence DAs whose left and right boundaries and label
are perfectly replicated in the hypothesis. While
the reported boundary-sensitive error rate numbers
(0.38 and 0.72) may appear to be high, many of
these boundary errors may be relatively innocuous
from a system standpoint. We return to this below.

Alignment-based metrics We also report two
additional metrics that are intuitively applied even
when the word sequence being segmented and clas-
sified is only a noisy approximation to the word
sequence that was annotated, i.e. under an ASR
condition such as AT-AS-AD. The Concept Error
Rate (CER) is a word error rate (WER) calculation
(Chotimongkol and Rudnicky, 2001) based on a
minimum edit distance alignment of the DA tags
(using one DA tag per DA segment). Our fully au-
tomated pipeline (AT-AS-AD) has a CER of 0.52.

We also report an analogous word-level met-
ric which we call ‘Levenshtein-Lenient’. To our
knowledge this metric has not previously been used
in the literature. It replaces each word in the refer-
ence and hypothesis with the DA tag that applies
to it, and then computes a WER on the DA tag se-
quence. It is thus a Lenient-like metric that can be
applied to DA segmentation based on ASR results.
Our automated pipeline (AT-AS-AD) scores 0.39.

DA multiset precision and recall metrics
When ASR is used, the CER and Levenshtein-
Lenient metrics give an indication of how well you
are doing at replicating the ordered sequence of
DA tags. But in building a system, sometimes the
sequence is less of a concern, and what is desired
is a breakdown in terms of precision and recall per
DA tag. Many dialogue systems use policies that
are triggered when a certain DA type has occurred
in the user’s speech (such as an agent that processes
yes (A-Y) or no (A-N) answers differently, or a di-

9E.g. in Table 4 (c), the only Lenient error is at word um.
10E.g. in Table 4 (c), only the four words it’s the blue frame

would count as non-errors on the Strict standard.

Condition HT-HS-AD HT-AS-AD AT-AS-AD
P R P R P R

D-T 0.98 0.98 0.85 0.95 0.79 0.88
As-I 0.97 0.97 0.74 0.96 0.73 0.68
NG 0.84 0.89 0.72 0.88 0.63 0.50
PFB 0.67 0.65 0.50 0.77 0.42 0.60
ST 0.92 0.92 0.71 0.63 0.41 0.31
Q-YN 0.94 0.85 0.86 0.85 0.55 0.52
AN 0.90 0.90 0.70 0.67 0.42 0.32
A-Y 0.79 0.79 0.65 0.75 0.59 0.58

Table 7: DA multiset precision and recall metrics
for a sample of higher-frequency DA tags.

rector agent for the RDG-Image game that moves
on when the matcher performs As-I (“got it”)). For
such systems, exact DA boundaries and even the
order of DAs is not of paramount importance so
long as a correct DA label is produced around the
time the user performs the DA.

We therefore define a more permissive measure
that looks only at precision and recall of DA labels
within a sample of user speech. As an example, in
(a) in Table 4, there is one A-N label and two D-T
labels. In (d), there are two A-N labels and 3 D-T
labels. Ignoring boundaries, we can represent as a
multiset the collection of DA labels in a reference
A or hypothesis H , and compute standard multiset
versions of precision and recall for each DA type.
For reference, a formal definition of multiset preci-
sion P (DAi) and recall R(DAi) for DA type DAi

is provided in the appendix.

We report these numbers for our most common
DA types in Table 7. Here, we continue to use
the speech of one speaker during a target image
subdialogue as the unit of analysis. The data show
that precision and recall generally decline for all
DA types as automation increases in the condi-
tions from left to right. We do relatively well with
the most frequent DA types, which are D-T and
As-I. A particular challenge, even in human tran-
script+segment condition HT-HS-AD, is the DA
tag PFB. In a manual analysis of common error
types, we found that the different DA labels used
for very short utterances like ‘okay’ (D-M, PFB,
As-I) and ‘yeah’ (A-Y, PFB, As-I) are often con-
fused. We believe this type of error could be re-
duced through a combination of improved features,
collapsed DA categories, and more detailed anno-
tation guidelines. ASR errors also often cause DA
errors; see e.g. Table 4 (d).



image set total time(sec) total points p p/sec NLU accuracy avg sec/image
All DAs Pets 984.7 182 0.18 0.77 4.15

Zoo 921.1 203 0.22 0.79 3.60
Cocktails 1300.3 153 0.12 0.60 5.12

Bikes 1630.9 126 0.08 0.47 6.12
Only D-T Pets 992.0 184 0.19 0.78 4.19

Zoo 932.8 198 0.21 0.77 3.64
Cocktails 1326.7 155 0.12 0.61 5.22

Bikes 1678.4 130 0.08 0.49 6.29

Table 8: Overall performance of the eavesdropper simulation on the unsegmented data (All DAs) and the
automatically segmented data (Only D-T) identified with our pipeline (AT-AS-AD).

5.3 Evaluation of Simulated Agent Dialogues

Motivation. In prior work (Paetzel et al., 2015),
we developed an automated agent called Eve which
plays the matcher role in the RDG-Image game and
has been evaluated in a live interactive study with
125 human users. Our prior work underscored the
critical importance of pervasive incremental pro-
cessing in order for Eve to achieve her highest per-
formance in terms of points scored and also the best
subjective user impressions. In this second experi-
ment, we perform an offline investigation into the
potential impact on our agent’s image-matching
performance if we integrate the incremental DA
segmentation pipeline from this paper.

We take the “fully-incremental” version of Eve
from Paetzel et al. (2015) as our baseline agent
in this experiment. Briefly, this version of Eve in-
cludes the same incremental ASR used in our new
DA segmentation pipeline (Plátek and Jurčı́ček,
2014), incremental language understanding to iden-
tify the target image (Naive Bayes classification),
and an incremental dialogue policy that uses pa-
rameterized rules. See Paetzel et al. (2015) for full
details.

The baseline agent’s design focuses on the most
common DA types in our RDG-Image corpora:
D-T for the director (constituting 60% of director
DAs), and As-I for the matcher (constituting 46%
of matcher DAs). Effectively, the baseline agent
assumes every word the user says is describing the
target, and uses an optimized policy to decide the
right moment to commit to a selection (As-I) or
ask the user to skip the image (As-S). Eve’s typical
interaction pattern is illustrated in Figure 3.

This experiment is narrowly focused on the im-
pact of using the pipeline to segment out only the
D-T DAs and to use only the words from detected
D-Ts in the target image classifier and the agent’s
policy decisions. Changing the agent pipeline from
using the director’s full utterance towards only tak-
ing the D-T tagged words into account could po-

Figure 3: Eve (E) identifies a target image.

tentially have a negative impact on the baseline
agent’s performance. For example, for the fully
automated condition AT-AS-AD in Table 7, D-T
has precision 0.79 and recall 0.88. The 0.88 re-
call suggests that some D-T words will be lost (in
false negative D-Ts) by integrating the new DA
segmenter. Additionally, as shown in Figure 2, the
recognized words and whether they are tagged as D-
T can change dynamically as new incremental ASR
results arrive, and this instability could undermine
some of the advantage of segmentation. On the
other hand, by excluding non-D-T text from con-
sideration, there is a potential to decrease noise in
the agent’s understanding and improve the agent’s
accuracy or speed.

Experiment. As an initial investigation into the
issues described above, we adopt the “Eavesdrop-
per” framework for policy simulation and training
detailed in Paetzel et al. (2015). In an Eavesdropper
simulation, the director’s speech from pre-recorded
target image dialogues is provided to the agent, and
the agent simulates alternative policy decisions as
if it were in the matcher role. We have found that
higher cross-validation performance in these offline
simulations has translated to higher performance
in live interactive human-agent studies (Paetzel et
al., 2015).

We created a modified version of our agent that
uses the fully automated pipeline (AT-AS-AD) to
pass only word sequences tagged as D-T to the
agent’s language understanding component (a tar-
get image classifier), effectively ignoring other DA
types. Tagging is performed every 100 ms on each
new incremental output segment published by the



ASR. We then compare the performance of our
baseline and modified agent in a cross-validation
setup, using an Eavesdropper simulation to train
and test the agents. We use a corpus of human-
human gameplay that includes 18 image sets and
game data from both the lab-based corpus of 32
games described in Section 3.1 and also the web-
based corpus of an additional 98 human-human
RDG-Image games described in Manuvinakurike
and DeVault (2015). Each simulation yields a new
trained NLU (target image classifier, based either
on all text or only on D-T text) and a new optimized
policy for when the agent should perform As-I vs.
As-S. Within the simulations, for each target image,
we compute whether the agent would score a point
and how long it would spend on each image.

Table 8 summarizes the observed performance in
these simulations for four sample image sets in the
two agent conditions. All results are calculated
based on leave-one-user-out training and a pol-
icy optimized on points per second. A Wilcoxon-
Mann-Whitney Test on all 18 image sets indicated
that, between the two conditions, there is no signif-
icant difference in the total time (Z = −0.24, p =
.822), total points scored (Z = −0.06, p = .956),
points per second (Z = −0.06, p = .956), average
seconds per image (Z = −0.36, p = .725), or
NLU accuracy (Z = −0.13, p = .907).

These encouraging results suggest that our in-
cremental DA segmenter achieves a performance
level that is sufficient for it to be integrated into
our agent, enabling the incremental segmentation
of other DA types without significantly compromis-
ing (or improving) the agent’s current performance
level. These results provide a complementary per-
spective on the various DA classification metrics
reported in Section 5.2.

The current baseline agent (Paetzel et al., 2015)
can only generate As-I and As-S dialogue acts. In
future work, the fully automated pipeline presented
here will enable us to expand the agent’s dialogue
policies to support additional patterns of interaction
beyond its current skillset. For example, the agent
would be better able to understand and react to a
multi-DA user utterance like and handles got it?
in Figure 1. By segmenting out and understanding
the Q-YN got it?, the agent would be able to detect
the question and answer with an A-Y like yeah.
Overall, we believe the ability to understand the
natural range of director’s utterances will help the
agent to create more natural interaction patterns,

which might receive a better subjective rating by
the human dialogue partner and in the end might
even achieve a better overall game performance, as
ambiguities can be resolved quicker and the flow
of communication can be more efficient.

6 Conclusion & Future Work

In this paper, we have defined and evaluated a
sequential approach to incremental DA segmen-
tation and classification. Our approach utilizes
prosodic, lexico-syntactic and contextual features,
and achieves an encouraging level of performance
in offline analysis and in policy simulations. We
have presented our results in terms of existing met-
rics for DA segmentation and also introduced ad-
ditional metrics that may be useful to other system
builders. In future work, we will continue this line
of work by incorporating dialogue policies for ad-
ditional DA types into the interactive agent.
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A Appendix

Definition of multiset precision and recall Let
D = {DA1, ...,DAn} be the set of possible DAs.
Let A : D → Z≥0 be an annotated reference DA
multiset and H : D → Z≥0 be a hypothesized DA
multiset. The multiset intersection for each DA
type DAi is:

(A ∩H)(DAi) = min(A(DAi), H(DAi))

DA-level multiset precision P (DAi) and recall
R(DAi) are then defined as:

P (DAi) = (A ∩H)(DAi) / H(DAi)

R(DAi) = (A ∩H)(DAi) / A(DAi)

DA Description Example
D-T Describe target this is the christmas

tree in front of a fire-
place

As-I Assert Identified got it
NG Non-game utterances okay there i saw the

light go on
PFB Positive feedback okay
ST Self-talk statements ooh this is gonna be

tricky
P Filled pause uh
D-M Discourse marker alright
Q-YN Yes-No question is it on something

white
A-Y Yes answer yeah
EC Echo confirmation the blue
As-M Matcher assertions it didn’t let me do it
Q-C Clarification question bright orange eyes?
A-D Action directive oh oh wait hold on
A-N No answer no, nah
H Hedge i don’t know what it

is
Q-D Disjunctive question are we talking

dark brown or like
caramel brown

Q-Wh Wh-question what color’s the
kitty

As-S Assert skip i’m gonna pass on
that

Table 9: The complete list of DAs in the annotated
RDG-Image corpus.

DA All Dir Mat DA All Dir Mat
D-T 41 60 0 EC 2 .5 6
As-I 15 0 46 As-M 2 0 4
NG 11 9 11 Q-C 2 .5 4
PFB 8 10 7 A-D 1 .3 2
ST 4 4 4 A-N .5 .7 .2
P 4 6 2 H .5 .7 0
D-M 3 5 .2 Q-Wh .3 0 .5
Q-YN 3 .6 7 As-S .1 0 .1
A-Y 2 3 1 Q-D .4 0 1.2

Table 10: DA distribution. We report the relative
percentages for each DA out of all DAs, director
DAs, and matcher DAs, respectively.


