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ABSTRACT

This paper presents a novel approach for using sound to
externalize emotional states so that they become an object
for communication and reflection both for the users them-
selves and for interaction with other users such as peers,
parents or therapists. We present an abstract, vocal, and
physiology-based sound synthesis model whose sound space
each covers various emotional associations. The key idea in
our approach is to use an evolutionary optimization approach
to enable users to find emotional prototypes which are then
in turn fed into a kernel-regression-based mapping to allow
users to navigate the sound space via a low-dimensional in-
terface, which can be controlled in a playful way via tablet
interactions. The method is intended to be used for sup-
porting people with autism spectrum disorder.

CCS Concepts

eHuman-centered computing — Auditory feedback;
Accessibility technologies; Accessibility systems and tools;
eApplied computing — Sound and music computing;

Keywords

Emotions, Sound, Auditory Display, Autism Spectrum Dis-
order (ASD)

1. INTRODUCTION

Emotions play an important role for our experience of the
world and ourselves as they color experience and influence
our decisions and their execution. Furthermore, the expres-
sion of emotions and perception of emotions are highly rel-
evant for social interaction. As emotional intelligence is a
complex function of the mind, and it operates usually au-
tomatically we are rarely aware of how exactly the dynam-
ics of emotions operates and manifests. Emotions manifest
normally in a number of carriers such as facial expression,
movement, prosody in spoken language, or explicitly by the
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choice of spoken words. They furthermore correlate and in-
fluence physiological states such as heart rate, body tension,
etc. Yet if — for instance due to certain dysfunctions or dis-
orders such as Autism Spectrum Disorder (ASD) — the per-
ception, processing and manifestation of emotional signals
is hindered, it affects the individual and social live signifi-
cantly [9]. Failing to express feelings or pain may lead to
many negative effects including increasing in anger or even
self-injuries [12]. This is risky as people suffering from ASD
are often not able to seek help using methods such as facial
expression. Subsequently, caregivers are not able to spot it
for the same reason. A study shows that a person suffering
from ASD may appear to be completely calm while having
an unusually high resting heart rate [4].

With this research we set out to develop a sound-based
interface which might to some degree bypass cognitive pro-
cessing steps and facilitate the expression of emotions in a
direct way. Using sound is motivated from the fact that it
is already established and known to be an important carrier
of emotional charge, for instance consider film music, the
expressiveness achieved by prosody, or music in general. By
means of the interactive synthesis of emotional sounds, and
an iterative refinement of the sounds to match the innerly
felt emotions, the user is expected to perform an inner ‘self-
reflective dialogue’ for which the synthesized sound becomes
a mirror image of the sensed state. This may help users
(a) for themselves to pay more attention to their emotions,
understand and observe them more clearly, (b) to simulta-
neously find novel ways to express them, i.e. to bring them
beyond the surface, which is particularly relevant if emo-
tional production is hindered, and (¢) to render emotions
more ‘tangible’ as a shared resource to be worked with, for
instance, as a therapeutical means.

ASD patients could profit from such a technique that al-
lows them to express emotions towards others (peers, care-
givers, parents), or even to train the perception of emotional
categories as they manifest in sound in gamelike interactions.

In this paper we will first review related work at the
intersection of sound and emotion, then outline basic as-
sumptions about and representations of emotions as a basis
for the definition of continuous sound models that enable
the expression of various emotional signals and their inter-
polation and morphing. These models necessarily have a
large number of parameters, which complicates the adjust-
ment towards clear emotional expressions. Therefore we pro-
ceed with an approach inspired by evolutionary optimization
techniques where the user merely iteratively selects one of



several sound variations in search of a sound that matches
a given emotional prototype. This allows us to investigate
the clustering (e.g. dispersion, homogeneity) of parameter
vectors in sound model space for certain primary emotions,
and subsequent definition of anchor points for kernel regres-
sion. In the following section we apply kernel-regression
to provide a mapping between an interaction space (low-
dimensional manifold) and the high-dimensional parameter
space of sound models by means of which we can reduce the
complexity of specifying and interpolating sounds that rep-
resent emotions significantly. We illustrate this by various
sound examples. As the focus is on the technique, we only
touch on some prospects for evaluation of the new approach
before ending with discussion and conclusion.

2. RELATED WORK

Currently, the studies of sound and emotion mainly focus
on three domains: music, speech and acoustic events.

The conventional way of measuring the emotional re-
sponse from listening to music is to ask subjects to verbally
express their experience, or using eclectic scales method to
weight different emotional labels [15]. Koelsch et al. [10]
used functional magnetic resonance imaging (fMRI) to study
how consonant and dissonant music triggered different brain
activities corresponding to different emotions.

Film music is considered by Schubert as a sonification
process of conveying emotion that guides film viewers to the
intended emotional context [17]. In [17], Schubert et al. con-
cluded the difficulty of sonifying emotion via conducting a
study based on listening to pieces of different film music.
The study showed that it is easier to quantify the low-level
emotional arousal via parameter mapping of acoustic param-
eters such as sound pressure level (SPL), pitch or tempo. Yet
when lending to complex emotions it became increasingly
harder and film music often serves as a complex entity to
deliver guidance to the emotion but not without ambiguity.
Winters and Wanderley explored continuous sonification [6]
to monitor arousal and valence [20]. They looked into low-
level parameters such as fundamental frequency or loudness,
in contrast to complex musical theories.

A wide range of studies have been conducted in the field
of speech synthesis to simulate emotion and making speech
synthesis sounding more natural. In [16], Schréder reviewed
various studies on formant and time-domain synthesis and
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Figure 1: The circumplex model of emotions (mod-
ified from [14]).

provided a parametric guideline. Tachibana et al. created
a HMM-based speech synthesis allowing interpolation be-
tween two different emotional speaking styles [18]. Such
research mainly focuses on robotic voice enhancements such
as prosodic text-to-speech systems or how to make robots
sound more human-like.

In comparison with the presented examples, our approach
aims at providing both expressive and complex models which
are capable of rendering audio based on a target emotional
state and at the same time also of enabling seamless inter-
polation between the sounds for different emotional states.
Although the control space of the sound models is high-
dimensional, the kernel-regression algorithm enables its nav-
igation from a rather low-dimensional interaction space.
This, in result, allows the navigation of emotional sounds
to be realized even on a small-scale 2D display of small de-
vices such as smartphone or tablet computer.

3. REPRESENTATION OF EMOTIONS

Emotions are perceived based on physiological and/or
contextual states. It is suggested that people have six basic
emotions (happiness, surprise, fear, anger, disgust and sad-
ness) regardless of their cultural background. Traditional
theories suggested that the basic emotions act as discrete
categories because they are distinguishable from each other
by their physiological responses and behavioral expressions.

In contrast, Russell [14] proposed a continuous representa-
tion of emotions. His model, referred as a circumplex model,
defines emotions in a two-dimensional space consisting of
pleasant /unpleasant and arousal/sleepiness axes. Fig. 1 il-
lustrates the model, in which the six basic emotions plus
calm are plotted in the 2D space. For example, happiness is
perceived as a state with high pleasure and a medium level
of arousal, whereas surprised and sad feelings are charac-
terized by high and low arousal respectively. An important
point is that emotions can be represented at any level of
pleasure and arousal. Common neurophysiological systems
are suggested to produce and perceive all possible emotional
states [13]. Our approach to sonically externalize emotional
states is inspired by such model.

4. DESIGN OF SOUND MODELS FOR
EMOTION COMMUNICATION

The International Affective Digitized Sounds (IADS) pro-
vides a standardized sound library and the association with
the different emotional charge. It exemplifies that sounds
cover a large spectrum of emotional associations in the
pleasure—arousal-dominance space [2]. The problem with
their used sounds, however, is their heterogeneity, i.e. the
differences between sound sources, stretching from environ-
mental nature sounds to violent inter-human interactions
and, as side-effect, the differences in emotional associations
that are likely triggered. For instance, the affective charge
may strongly depend on the cultural background and ex-
perience of the listeners. In another cross-cultural study
from [11], the emotional expressions of sounds (such as loud,
strong, noisy, pretty) differed between subjects from five dif-
ferent countries given the same collection of sounds. For that
reason we conclude that the most important requirement for
our target sound models should be

R1 expressiveness: the sounds should be able to express
(resp. evoke) a rich variety of emotions, best cover-



ing the complete emotional space, i.e. the whole plea-
sure/arousal space.

R2 continuity: the sounds should be the result of a sound
synthesis where any (small) parameter variation con-
tinuously results in a (small) change of the sound, thus
allowing to meaningfully interpolate between parame-
ter vectors.

R3 culture dependency: the sounds should have a low cul-
tural dependency. This minimizes misinterpretation
of sounds subject to the user’s cultural background.
To achieve this, we consider artificial and synthesized
sounds that do not associate strongly to specific cul-
tural knowledge. The design also excludes embodi-
ment of musical characteristics.

In the course of developing sound models to express emo-
tions we discovered that stand-alone events allow to iden-
tify an affective charge rather quickly, within few seconds.
These events could be regarded as cartoon versions of emo-
tions. Similar to cartoon figures which often communicate
an emotional state very concisely and sparsely, just by us-
ing few pencil strokes, the sound events can be regarded as
cartoonified emotion sounds. Such short sounds are particu-
larly attractive for tightly-closed interaction loops in which
users refine sounds, since it shortens the cycle duration. For
that reason we add as secondary requirement:

R4 The sound should convey the emotion within a short
time frame of less than 2.5 seconds.

Furthermore, we acknowledge the problem of controlla-
bility, particularly for highly expressive yet non-parametric
sound models. For example, an additive synthesis model
using 50 harmonics and 20 control points over time would
result in 1000 parameters. Since, however, we are interested
in manually still controllable sound models, we add as fur-
ther constraint:

R5 The number of parameters should be low, i.e. smaller
than /20, to enable us in principle to also practically
adjust the parameters manually.

In search of models to meet R1-R5, our subjectively bi-
ased design attempts converged to three models which we
describe next. These are abstract sound model, vocal sound
model and physiological sound simulation. As there are
many other sound design possibilities, for the current stage,
these three models covers a suitable range of sound creation
range from the most raw approach (abstract sound model)
to mimicking the familiar way of expressing emotions (vocal-
isation thus the vocal sound model), and even using sound
to represent our emotions when certain emotion is appeared.

4.1 Abstract Sound Model

We started with the idea of a model that uses very ab-
stract sounds — sounds that cannot be as easily interpreted
as coming from any natural cause and thus comply with R5.

The model is implemented as a synth on Max 7.2.1 and
provided with 11 controllable parameters. The synth creates
a baseline timbre based on a combination of three common
wave forms: sine, square and sawtooth. The synthesis is
triggered by events meaning that at each trigger the sound
appears with certain duration rather than being rendered
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Figure 2: Slider- and Node- based GUI for parame-
ter adjustment of the abstract sound synthesizer.

parameter | range and unit

duration | [0.01, 2.0] s
attack | [1, 80] %
decay slope | [—40,0] dB/rm time
AM intensity | [0, 1]
AM rate | [0, 60] Hz

chirp

LFO rate

LFO intensity
spectral richness
LP cutoff

, 50] Hz

, 1] rel. of pitch

, 1] mix between sin, triangle, saw
000, 10000] Hz

NO OO

[
[
[
|
pitch | [20, 85] midinote
[
[
[
[
[

Table 1: Parameters and ranges for the abstract syn-
thesis sound model.

continuously. Within the duration of the sonic event, care-
fully selected modulations and variations are applied. The
parameter GUI is shown in Fig. 2. First of all, the duration
parameter d decides how long each segment of sound is, set-
ting d € [0.01,2.0]s. The attack rate is a linear volume
ramp that decides how much percentage of the beginning
signal is going to be smoothly ramped up from 0, resulting
in a range between percussive and slowly appearing sounds.
An initial pitch p € [20,85] (MIDI scale which translated to
25 1109Hz) can be selected, then the chirp parameter deter-
mines the amount in semitones (3 octaves) that the ending
pitch is changed relative to the initial pitch. A low frequency
oscillator (LFO) is added to the carrier as frequency mod-
ulation (FMgeq € [0,50] Hz, FMint € [0,1]), adding a little
more natural feeling to sound when the modulation amount
is very small. In its extreme, the vibrato effect intensifies
and the sound becomes more rough. The amplitude mod-
ulation (AMgeq € [0,60] Hz, AMiy € [0,1]) adds a tremolo
effect to the tone, i.g. similar to the trembling in the voice
if a person is nervous. Finally, the richness parameter al-
ters the mix between the above mentioned waveforms and
lpfreq controls the cut-off frequency of a lowpass filter that
shapes the brightness of the sound. The parameter range is
shown in Table 1.

4.2 Vocal Sound Model

This sound model is inspired by the human voice as
formidable carrier for emotional charge, even without artic-
ulation of meaningful words, i.e. without using language. As



SynthDef (\vs, {| out=0, amp=1, pitch=50, chirp=0, dur=0.5, att=0.0, decslope=(-12),
amint=0, amfreq=0, 1fnfrq=0, 1fnint=0, vowel=2, voweldiff=0, bright=1, pan=0 |

var sig, aenv, fenv, amsig, va, ve, vi, vo, vu, blend, r=0.01;

amsig = SinOsc.kr(amfreq, mul: O.5%amint, add: 0.5);

aenv = Line.ar(0, decslope,dur, doneAction: 2).dbamp *

EnvGen.kr (Env.new([0,1,1,0], [attxdur, durx(i-att)-r, rl));

fenv = Line.kr(pitch, pitch+chirp, dur).midicps + LFNoisel.kr(lfnfrq,lfnint*pitch.midicps);

vu = Vowel(\u, \tenor); vo = Vowel(\o, \tenor); va = Vowel(\a, \tenor);

ve = Vowel(\e, \tenor); vi = Vowel(\i, \tenor);

blend = Line.kr(vowel, vowel+voweldiff, dur);

sig = Formants.ar(fenv, vu
.blend(vo, blend.linlin(0,1,0,1,\minmax)).blend(va, blend.linlin(1,2,0,1,\minmax))
.blend(ve, blend.linlin(2,3,0,1,\minmax)).blend(vi, blend.1linlin(3,4,0,1,\minmax))
.brightenExp (bright.reciprocal, 1));

Out.ar(0, Pan2.ar(sig * amsig * aenv;, pan, amp));

}).addO;

Figure 3: SuperCollider code for the vocal synth
definition.

the human voice can be simply modeled via a source/filter
model we here apply subtractive synthesis with controllable
formants to define the synths. The parameters for the mod-
els are kept largely in analogy with the previously described
abstract sound model. Specifically, we implement the du-
ration, amplitude envelope, amplitude modulation, pitch,
chirp, and frequency modulation parameters in the same
way. For practical implementation we here used SuperCol-
lider 3.6, using the Vowel class described in Grond et al. [5]
to implement the formant/filtering part of the subtractive
model.

Two formants suffice for the perception of vowels. How-
ever, to gain better discernible sounds we use 5 formants,
and specifically the tenor settings for a male voice in the mid-
dle pitch range. Since, however, 5 formants would require
alone 15 parameters (5 center frequencies, band widths and
intensities), a full-fledged control would violate R4. Hence
we reduced the timbre control to only one parameter: an
interpolation coefficient v € [0, 4] over the vowel range “u-o-
a-e-1” (vowels roughly pronounced as in ‘moon-bow-bar-bed-
in’), so that v = 0,1,2,3,4 results in ‘v, ‘0’, ‘a’, ‘¢’, ‘i’ and
real values in between interpolate linearly between the vow-
els. The order of vowels was chosen to implement a linear
order from closed&dark vowels to open&bright vowels.

A constant vowel, however, gives a limited perception in
terms of vocal contour. For that reason we introduce a vo-
cal drift parameter variry € [—2.5,2.5] by means of which the
vowel at the end of the event becomes v + vqyist. On top of
these two parameters we use a brightness parameter to con-
trol the spectral richness of the sound, ranging from rather
mellow sounds to bright sounds with lots of harmonics. The
vocal parameters are demonstrated in interaction video V3 L
Table 2 depicts the parameters of the vocal synthesizer.

In combination with the other parameter the resulting
sounds can (in certain parameter ranges) be associated to
utterances or vocalizations.

4.3 Physiology-inspired Sound Model

There is strong evidence that emotions affect the physio-
logical responses of the body. Arousal as an aspect of emo-
tion, for instance, manifests also in aroused physiological
responses such as heart rate, respiration, or skin tempera-
ture, muscle spasms, fatigue, constriction in internal organs,
etc. [3]. The physiologically inspired sound model starts
from the assumption that a synthesis of bodily sounds that
correspond to originating emotional causes can elicit or in-

'Media files are provided at
http://doi.org/10.4119/unibi/2905039

parameter | range and unit map Do
duration | [0.005, 1.5] s exp 0.4
attack time | [0.001, 0.5] s exp | 0.001
decay slope | [—50,10] dB/rm time lin —12

AM intensity | [0, 1] lin 0

AM rate | [1, 50] Hz exp 1
pitch | [20, 85] midinote lin 50

chirp | [—36,36] semitones lin 0

LFO rate | [5, 50] Hz exp 5

LFO intensity | [0, 0.5] rel. of pitch lin 0
vowel | [0, 4] 7uoaei” lin 2.5

vowel drift | [—2.5,2.5] lin 0
brightness | [0.2, 1] lin 0.5

Table 2: Parameters and ranges for the vocal synthe-
sis sound model. The column ‘map’ states whether
this parameter is linearly (lin) or exponentially
(exp) mapped from the interval [0,1].

duce in the listener a similar emotion as remembered from
own experience.

Some of these bodily manifestations already possess an
audible expression, such as heartbeat and breathing sounds,
which are selected to be synthesized in this study. The ra-
tionale to implement audio synthesis techniques rather than
using recorded samples is so that they offer much more free-
dom of parametrization. Furthermore, users can navigate
the parameter space seamlessly via interpolation and mor-
phing. Using recorded samples, on the other hand is much
more rigid.

In extension beyond the directly audible, however, we con-
sider physiological reactions that are not audible yet that
may be nonetheless epressed by synthesized sound. Trem-
bling, muscle tension and blinking of the eyes are examples
for such non-audible phenomena. We postpone these phys-
iological components for future explorations. The following
section explains the two physiological sounds in details.

4.3.1 Synthesizing Heartbeat sounds

Heartbeat can normally be heard via a stethoscope. The
sound of a heartbeat comes from a two-part pumping action
of the heart, which usually takes about one second. Our
heartbeat synthesizer is based on subtractive synthesis and
produces a periodic sound. It uses three triangular waves
(fo, 2fo & 0.5fp). This provides a rich harmonic content for
the filtering. The carrier frequency ranges between 20 and
100Hz. The signal passes through an amplitude envelope
that creates the temporal amplitude pattern of the heart-
beat. For that, the envelope creates two percussive hits per
cycle. Finally the signal passes through an LFO-controlled
lowpass filter, where the cutoff frequency is modulated to
make the sound closer to a real heartbeat sound. With in-
creasing LFO frequency the sound changes from smooth to
rough. A synthesis structure is presented in Fig. 4.

The parameters are listed in Table 3: pitch defines the
fundamental frequency of the sound.

While a lower frequency (< 50 Hz) will sound more natu-
ral in general, a higher pitch makes the sound easier to be
perceived. The rhythm decides the repetition rate of the
beats. The human heart rate is typically between 60 and
200 beats per minute (bpm). Typically, a slower rate is of-
ten associated with a calm and lower arousal state, such as
sleep (40 — 50 bpm). On the other side, a higher heart rate
is connected with high arousal states which can be both
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Figure 4: Heartbeat synthesis diagram.

physical correspondent
for resulting lower but
perceivable tone.

[30, 200] bpm | speed of the heartbeat.

[0, 40] Hz intensity of the heartbeat.

parameter | range/unit
pitch | [20, 240] Hz

rhythm
LFO rate

Table 3: Parameters and their correspondent phys-
iological ranges for the heartbeat synthesis.

positive (excited) and negative (angry & feared). As last
control parameter, the LFO rate alters the intensity of the
beat itself ranging from clear and smooth to rough and dis-
torted, which can be used to distinguish the pleasantness of
the emotion.

4.3.2 Synthesizing Breathing Sounds

Respiration is the inhalation and exhalation of air. The
process facilitates several of our key organs. The air passes
through mouth or nose and is then sucked in and passed
out of the lungs due to the expansion and contraction of the
thorax. The sound of respiration is made audible because of
the air passing through our nose or mouth. It is generally
not a pitched sound but noise-like. Breathing through the
nose has more high frequency content (‘hiss’) while breath-
ing through the mouth is spectrally lower and perceptually
more thick (‘huu’). Thus, we use a pink noise generator as
the sound source and apply a comb filter for fine tuning (see
Fig. 5).

To separate nasal breathing and open-mouth breathing,
the filtered noise is passed through two extra filters: a low-
pass filter (f. =~ 150Hz) and a high-pass filter with cutoff
frequency (f. ~ 1000 Hz). These separate signals are mixed
at different amplitude levels, which controls the balance be-
tween the two breathing types.

The action of the breathing is split into three sections:
breath in, mid gap and breath out. For the inhalation and
exhalation, two multi-point graphical envelopes are used al-
lowing fine-tuning of the volume change in such actions. The
up-ramping envelope is for simulating inhalation with a du-
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Attack
Envelope
Mid Gap

Decay
Envelope

. . Comb
Pink NmseH Filter
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Figure 5: Breathing synthesis diagram.

parameter | range/unit physical correspondent

tin | [0.2, 2] s the breath in time.
tous | [0, 5] rel. of tin | relative of the breath in
time.
teap | [0, 0.5] s gap between the two
phases.

mix | [0, 1] balance between mouth
and nasal breathing.

the rate of breathing

rhythm | [30, 200] bpm

Table 4: Parameters and their correspondent phys-
iological changes of the breathing synthesis.

ration of ¢, € [0.2,2]s. The down-ramping (exhalation)
time is relative to tin. tgap € [0,0.5] s is the time gap be-
tween the two phases. Interestingly, just by varying the
relationship between the three time variables, a wide range
of breathing types can be simulated. As the last step, the
rhythm parameters determine the rate of repetition. The
list of controllable parameters are shown in Table 4.

S. EVOLUTIONARY OPTIMIZATION OF
EMOTIONAL PROTOTYPES

Given that the above mentioned sound models fulfill our
requirements and are expressive in terms of emotional qual-
ity, it is now interesting to understand (a) how far users
agree upon emotional assignments to sounds resulting from
a specific parameter vector, i.e. the accuracy of sound-to-
emotion mapping, and (b) what parameter space regions
are chosen to obtain sounds that represent a certain emo-
tion, i.e. the uniqueness of the emotion-to-sound mapping,
or the dispersion of emotional sound categories.

In the context of auditory display, these two angles have
been discussed in the study of auditory icons under the terms
causal uncertainty and typicality [1]. In contrast to his dis-
cussion where sound sources were related to their evoked
interpretation, we here relate emotional sounds to their in-
duced emotional interpretation.

The problems can be studied in two different ways, of
which we here focus on the emotional sound category clus-
ters. Our empirical approach is to ask users to imagine a
specific target emotion and then to refine the sound model
so that the resulting sound suits to their option optimally.
Sound designers are familiar with this task as it is akin the
task of creating presets that sound like a pre-given musical
instrument. In this vein, we ourselves first tried to adjust
the parameters using a slider-based GUI as shown in Fig. 2.
In this user interface the sound event occurs repeatedly at a
user-adjustable rate and regularity, so that adjustments of
the sliders deliver immediate changes of the sound. Such a
parameter-aligned control can be effectively used by people
who have some sound design experience, and is probably
very hard to use for unskilled users. But for both groups we
believe that this type of control is not the one that is most
conducive for the discovery of the optimal emotional sounds,
because it isolates parameters that ideally are meaningfully
controlled together. Also, the GUI distracts from fully at-
tending to the sound as such. For that reason we proposed
and implemented a method that veils all parameter details
from the participants and leaves to them solely the task to
select one of 4 new candidate sounds which are derived from
the starting sound (or to keep the previous sound). The



method is akin to evolutionary optimization and has been
introduced and used by the authors before in [8] for the
refinement of sonification mappings. The variations are ob-
tained by modifying the initial parameter vector by means
of random mutations. In evolutionary optimization, usually
a fitness function is evaluated in order to select the descen-
dants that survive for the next generation. In our approach,
the fitness function-based selection is replaced by the manual
selection. In consequence, the user enforces an evolutionary
drift that lets the sound converge towards a fix point. Con-
vergence is guaranteed by iteratively reducing the mutation
strengths as detailed below. In summary, with few update
steps, users — even without any sound design experience —
are enabled to optimize sounds while being disburdened from
any parameter-specific control GUIs.

5.1 Evolutionary Sound Design

Practically, we map the d-dimensional parameter space to
the unit cube in R? using a mapping function f~!. The
initial parent for the evolutionary process is thus

T(t=0)=f"/), (1)

where p is the vector of default parameter values of the
synths, as shown in Table 1, 2. Note that the mapping
function f in its components is either linear or exponential,
as defined in the table. The warping function serves to lin-
earize the perceptual effect when making an additive change
in the source representation.

From the parent ¥(¢) in iteration ¢, n. variations (called
‘children’) are rendered using a random process

Ti(t+1) = (t) + (o) ¥ i € [1,nc] 2)

where 77 is a vector of Gaussian distributed random num-
bers with mean 0 and variance o2. In each iteration, o is
decreased by multiplying with a factor o < 1.

As user interface, as depicted in Fig. 6, on each itera-
tion t, a radio button with 1 4 n. states is presented to the
participant, where the first triggers playback of the parent
s(p(t)) = s(f(¥(t))), followed by the sounds of the n. chil-
dren on the subsequent buttons. After listening to any of
these sounds as often as wished the user clicks the ‘proceed’
button. This makes the parameters for the currently selected
radio button the parent of the next generation, allowing also
to reject all children by selecting the first button.

selecttarget happy | surprised = angry | disgusted @ sad calm

Choose bestvariation: | 0 | 1 2 3 4
proceed

log(sigma): -2
accept

Figure 6: User Interface for evolutionary optimiza-
tion of emotional sounds

In consequence, the initially large o grants that the first
iterations provide highly different sounds. With increasing
generations, the smaller o offers minor variations and thus
rather subtle sound event adjustments. Whenever the user
is sufficiently content, he or she can click on ‘accept’ to com-
plete the episode. With the actual parameter settings, the
six primary emotions are processed in ~ 10-15 minutes.

5.2 Results: Sounds for primary emotions

We illustrate typical outcomes of the previously described
method in sound example S1.1 — S1.6 (for ‘happy’, ‘sur-
prised’, ‘angry’, ‘disgusted’, ‘sad’, ‘calm’), which we also
provide online on our website 2

As you can hear in these sounds resulting from the vo-
cal sound model, the sounds for happy, surprised, angry,
disgusted, sad and calm share some specific properties and
make sense. We can also hear variations within the groups,
since different users conceptualize these emotions differently
using the vocal synthesizer. Sound example S3 presents the
sounds for the 6 primary emotions which result from averag-
ing all parameters within the emotion cluster. It is remark-
able that the parameter averaging produces sounds that
actually capture relevant aspects of the individual sounds.
This indicates that the idea of interpolation between sounds
indeed works. The global mean of all parameter vectors of
all emotions is a rather neutral sound, as can be heard in
sound example S4.

Looking at the distance matrices between these cluster
centers, as depicted in Fig. 7, we discover a neighborhood
structure that is similar to the circumplex model: (a) happy
and surprised are obviously nearby, and so are angry and dis-
gusted, and to a lower degree sad. As emotions are sorted
counterclockwise along the model, we would expect low val-
ues on the next-to-diagonal in the matrix. The most evident
observation is the high distance between surprised and an-
gry, though. The analysis was done using only 19 data points
(8 for abstract, 11 for vocal). We plan to collect more data
to investigate the clustering structure in more detail.

e 1.0 o
EOR a«“’ﬂ 9 4‘6 o @ a(\q b\sQ 4,6 &

0.9 0.9
happy 0.8 happy 08
arprised 0.7 arprised 0.7
0.6 0.6

angry angry
0.5 05
sgusted 0.4 sgusted 04
sad 03 sad 0.3
0.2 0.2
0.1 0.1

Figure 7: Distance matrices of cluster means for ab-
stract (left) and vocal (right) sound model.

6. KERNEL-REGRESSION MAPPING IN
EMOTION SPACES

This section presents an approach for mapping between a
low-dimensional interaction space and the high-dimensional
parameter space of the sound models. The need for such a
mapping arises from the fact that most users are unable
to cope with the challenge of directly controlling multi-
parameter interfaces: it requires too much learning, too
much time, and involves too much detail. Reducing the
number of parameters by removing those that seem to be
least relevant (i.e. those whose removal and replacement by
average values would the least degrade the perceptual qual-
ity of the emotions) would provide some workaround, how-

2Media files are provided at
http://doi.org/10.4119 /unibi/2905039



ever, a reduction to as few as 1 or 2 parameters would re-
sult in sounds that are not anymore emotionally compelling.
For that reason we propose the kernel-regression mapping to
solve the problem in a way that gives us full control both
over the interaction space manifold and the parameter space.
This approach is very general, but for better understand-
ing the idea, consider that we wish to navigate a 2D-space,
e.g. a multitouch tablet surface depicting N = 6 emotion
prototypes at locations #;. At each of these locations we’d
like to reach a d-dimensional parameter vector p;. We need
a controllable mapping that allows a continuous transition
between an analogic and symbolic mapping.

This is exactly what Kernel regression mapping delivers,
which has been introduced by the authors in [7] to better
control a vocal mapping of EEG feature trajectories. Kernel
regression is a standard approach to smoothly interpolate
between a set of function values (outputs) defined at loca-
tions in input space [19], and we just quickly recapitulate
the key idea before we show how it is applied here for the
mapping task.

Kernel regression mapping calculates the parameter value
at an arbitrary position Z in input space (which here is our
interaction space) by
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where K (Z, %), is a kernel function that describes the relative

importance of ¢ to influence the interpolation at location

Z. A standard choice for K (Z, ) is the normal distribution

Nyuo(Z — §) with mean p = 0. The standard deviation o
plays a central role:

e if o is small compared to the distances between proto-
type pairs in input space, the nearest input vector Zpy
to a sample location # dominates the output, i.e. p(Z)
deviates only slightly from p(Z,,). In consequence,
the input vector is tesselated into the so-called Voronoi
cells, of strongly categorical character, i.e. we get a rep-
resentation that promotes clearly separated and dis-
cernible prototype sounds and thus a symbolic repre-
sentation. In the limiting case o = 0 the parameters
within the cell are constant within the Voronoi cells.

e with increasing o, the parameter value will more and
more be influenced by the neighboring prototypes
and thus enable a meaningful continuous morphing of
sounds between prototypes. A good value for ¢ is half
the average over nearest prototype distances as seen
from each prototype. We might call this an analogic
representation, to contrast from the previous case. Ap-
parently the kernel regression mapping helps overcom-
ing the dichotomy of analogic/symbolic via a single
control parameter.

e The limiting case, 0 — o0, is of little interest as it
would result in the mean p(Z) = Y. pi/N for any point
in interaction space.

The following section will demonstrate how navigation on a
2D manifold allows straightforward navigation of emotional
sounds.

Figure 8: 2D interface, the nodes refer to emotion
prototypes (clockwise from top: surprised, happy,
calm, sad, disgust, angry) and are currently at fixed
locations. Interpolated sounds can be interactively
triggered via tapping (resp. Mouse click).

7. NAVIGATING EMOTION MANIFOLDS
WITH A 2D INTERFACE

In this section we describe our first approach for a simple
2D interaction space. Given that our parameter space is
around 15-dimensional this might appear an overly extreme
reduction. However, we aim at very easy-to-use interactions
on multitouch tablets, and for this 2D is the obvious choice.

The circumplex model suggests a ring topology for the pri-
mary emotions if organized along the pleasantness/arousal
dimensions. From that observation we start by defining the
prototype vectors Z;,7 = 1...6 for primary emotions ¢ along
the circle as depicted in Fig. 8.

Interaction video V5 shows how typical interaction yields
sounds in the expectable fashion. Our subjective impression
is that the interface is easy to learn and use. Note that a
fixed spatial layout of the prototypes favors continuous inter-
polations between adjacent prototypes, which may appear as
a limitation. For that reason we propose to allow the user to
position (i.e. to drag and drop) the prototypes themselves
in interaction space, allowing for instance interpolations be-
tween calm and angry prototype sounds by grouping them
next to each other and others out of the way. Whether this
flexibility is useful or even counterproductive depends on
the target application, the users, and needs evaluation in
studies.

We envision that autistic children might like to asso-
ciate personally selected graphical icons with the prototypes,
making the interface a more storyline experience. Maybe
users might even want to create their own personalized pro-
totypes and add them to the interaction space, or have a
hierarchic approach, i.e. a number of prototypes just for a
single primary emotion to better navigate within a cluster.
We now have an environment that allows us to investigate
such ideas without much effort.

8. DISCUSSION & CONCLUSIONS

We have demonstrated emotional sound models that have
a moderately high-dimensional parameter space yet enable
shaping complex emotionally charged sounds, i.e. they can
represent the users’ impression of certain emotional states.
We introduced ways to externalize emotions using these
sounds with our abstract, vocal and physiological sound
models. We implemented an evolutionary optimization that
simplifies exploration of the sound space by hiding the con-
trol parameters completely: Users simply select ‘mutations’
of the sound that points toward a certain ‘emotional direc-
tion’ and thus gradually refine and converge the sound into



a satisfactory emotion fingerprint. This process allows us to
collect typical sounds that represent a selection of emotions
from participants, agnostic to their audio synthesis back-
ground or skills.

We collected so far about 10 prototype vectors for each
emotion, from different users both under the abstract and
vocal model. We subjectively find that the sounds share
some properties, i.e. there is a plausible intra-cluster coher-
ence while at the same time the clusters exhibit distinct
perceptual intra-cluster dissimilarity. At this time we lack
sufficient data to analyze the clustering properties quantita-
tively, yet we aim to do that after conducting a user study
with larger number of participants.

Our kernel regression mapping provides access to the high-
dimensional data space from a low-dimensional control man-
ifold, allowing a highly intuitive point & click exploration of
relevant sound interpolations in a 2D interface. This pro-
vides the backbone of achieving an easy-to-use tablet-based
emotion externalization device that can either function as
a communicative tool, or as a game-like learning tool — es-
pecially for people who are suffering from ASD and having
difficulties in expressing their feelings.

Therefore, the continuation of the current research will
be looking into creating a tablet-based interface for sound
sculpting. As future continuation we plan a study of letting
ASD patients explore their own emotions via such an inter-
face. It is hypothesized that ASD patients will yield different
parametric region than typically developed persons. Hence,
to achieve meaningful interpretation, we aim to develop a
calibration system for individuals so that despite difference
in emotional categories in correspondence to the parame-
ter space, the generated sound can be ‘translated’ and be
understood by others.
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