
Towards a Comprehensive Power Consumption Model
for Wireless Sensor Nodes

Marc Hesse, Michael Adams, Timm Hörmann and Ulrich Rückert

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/BSN.2016.7516293

Abstract— Energy efficiency is the most outstanding design
criterion for wireless sensor nodes and especially wireless body
sensors. Because a detailed measurement of the system’s power
consumption is not possible during the design process and
often too complex for already manufactured devices, the power
consumption has to be estimated. This leads to the need for a
comprehensive and modular model for the power consumption
of WSNs, which is proposed in this work. Due to the modular
structure of the model the user is able to get a first estimate in
an early stage of the design process (e.g. choose components)
and to get a more accurate estimation later in the design process
by lowering the abstraction level. This tackles the demanding
trade-off between accuracy and usability in modeling.

I. INTRODUCTION

With the dissemination of wearable electronic devices
and Internet of Things (IoT), the need for energy efficient
wireless sensor nodes (WSN) and especially wireless body
sensors (WBS) is increasing. Besides functionality, runtime
and a small form factor are the most important aspects.
Both are mainly influenced by the power consumption of
the WSN, because an energy efficient operation allows to
use a smaller battery pack without reducing the runtime
of the system. Due to the increasing complexity of WSNs,
the estimation of the system’s runtime is challenging. This
leads to the need of an appropriate model for the design of
WSNs. The model should enable the theoretical estimation
of a WSN’s runtime before the hardware design process and
without manual determination of a multitude of parameters.
Because this requirement is often contrary to the model’s
accuracy, the system’s behavior has to be abstracted. Due
to different requirements, the model’s level of abstraction
needs to be adaptable. Therefore, it should be possible to
get a first estimation of the system’s runtime without having
to determine multiple parameters beforehand. Additionally,
the model should allow an accurate estimation in a later stage
of the design process when it is easier to identify additional
parameters of the system. In this paper, we propose a model
for the power consumption estimation of WSNs, which
includes the components microcontroller, sensor, transceiver,
memory, interface, DC-DC converter and battery as shown
in fig. 1. Furthermore, an abstracted description of the WSN’s
behavior (algorithm) is established. Every component is
modeled by its modes of operation and can be used to form
a WSN on system level.
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Fig. 1. Components of a WSN

The paper is structured as follows: Section II summarizes
related work, before we introduce our power consumption
model in section III. To demonstrate the usage of our
proposed model, an example architecture of a WBS is
analyzed in section IV. Afterwards, the results are presented
in section V, and subsequently discussed in section VI.
Finally, a prospect on our future work is given in section VII.

II. RELATED WORK

A common method to determine the runtime of a system
is by measuring its power consumption. Although there are
several methods available [1], the current shunt method is of-
ten utilized, which is due to the rather easy handling. But the
major drawback of this method is its smoothening character.
For cycle accurate measurements it is necessary to place the
shunt resistor as close as possible to the analyzed component
(e.g. the microcontroller), which is sometimes not feasible in
embedded systems. Additionally, the number of components
and their modes of operation increases constantly. Therefore,
only the current consumption for the whole system can be
measured, which prevents a detailed analysis. This leads to
the need of modeling and simulating the system.

Due to the increasing demand for WSN modeling there
are several approaches discussed in literature. A detailed
model of an embedded system was proposed by Simunic
et al. [2] in 2001. The authors combined a cycle-accurate
simulation of an ARM processor with an energy model.
Their model included the core, memory, cache, IO lines,
DC-DC converter, and the battery. The energy consumed
per cycle is determined by each component’s equivalent
capacitance, the supply voltage and the clock rate, which



makes the model highly scalable and very fine-grained.
But it is only applicable, if the application algorithm is
already known and implemented for the used instruction set
simulator. Additionally, their energy values are solely based
on the manufacturer’s specification in the data sheet, which
was also stated by Steinke et al. [3], who extended the model
for an energy-driven compiler. These models are capable of
precisely estimating the power consumption, but they require
a deep insight in the processor’s architecture which is often
not the case during the design process of a WSN.

Several detailed studies are presented by Tobola et al. in
which they compare different microcontrollers for WSNs [4],
quantify the impact of different sampling rates for various
algorithms [5], and optimize the hard- and software imple-
mentation of an ECG sensor [6]. Likewise, Berlin et al. [7]
increased the runtime of a wearable data logger by varying
the sampling rates, the low-power modes, the type of used
SD-card and by applying a run length encoding. Besides the
fact that all these studies are rather specific, the components
DC-DC converter and battery are not considered, which
are significant for the system’s energy efficiency. This is
underlined by Abdallah et al. [8] who distinguish between
the minimum energy operation point of the core (C-MEOP)
and of the complete system (S-MEOP) including DC-DC
converter and battery.

A generic approach is described by Benini et al. [9].
In their model, the system consists of power manageable
components (PMC) whose modes of operations are modeled
as power state machines (PSM). Additionally, the transitions
between different modes cause costs (power, delay), which
is in contrast to [2]. In our approach, we will follow the
concept of manageable components with independent power
state machines and will adapt it to the requirements of WSNs.

III. POWER CONSUMPTION MODEL

Based on the requirements analysis, a comprehensive
model of the power consumption of WSNs should include
the following features:

• System and components modeling
• Transition costs
• DC-DC converter and battery efficiency (S-MEOP)
• Adaptable level of abstraction

Every WSN consists of at least one sensor, a microcon-
troller and a wireless transceiver, which are connected via se-
rial interfaces. The power supply includes the battery and, in
most cases, a DC-DC converter. Due to the modular structure
of WSNs the proposed model needs to be designed modular
as well. In the following sections the components’ models
(sec. III-A) and the system model (sec. III-B) are described.
The system model also includes the task definition, which
specifies the active time for each component included in the
system. These tasks can be used to model and simulate a
large variety of system duty cycles, as described in sec. III-
C. The model is implemented using MATLAB [10].
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Fig. 2. The components’ model and its parameters. The user forms
the modeled system by selecting and configuring several components.
Afterwards, different tasks for the system can be defined and simulated.

A. Components

The components are partitioned into the functional groups:
sensor, transceiver, memory, interfaces, microcontroller, DC-
DC converter and battery. Every component in each func-
tional group can be defined by the same parameters, which
are shown in fig. 2. After defining a device by its parameters
it is possible to store it in a database, which leads to a
growing device database for future analyses. As described
in [9], each component is modeled by a power state machine.

1) Sensors: A sensor is defined by its power consumption
in every operational mode (e.g. different measurements, idle,
standby), the power and delay for every transition between
the modes and the active time needed for every possible
measurement. Additionally, the available interfaces, their
clock rates and the device specific protocol overhead are
noted. The data width depends on the chosen measurement
and determines the payload for the interface operation.

2) Transceiver: Similar to a sensor, a transceiver is de-
fined by its power consumption in every mode (e.g. TX,
RX, active, idle, standby) and the power and delay for every
transition. The available interfaces, their clock rates and the
protocol overhead are noted in the model. Based on these
parameters, the time needed for sending a specific number of
bytes (including payload and protocol overhead) is calculated
by a device specific function. Only the payload is needed as
an input parameter.

3) Memory: A memory device is defined by the power
consumption in every mode (e.g. read, write, idle, standby),
the power and delay for every transition, and the time needed
for writing or reading a specific number of bytes which
includes payload and overhead. Available interfaces, their
clock rates and protocol overhead are noted.

4) Interfaces: An interface specific function calculates the
length of the data packet, which consists of the interface
overhead, the device’s protocol overhead and the device’s
payload. The overheads for the most common interfaces
(SPI, I2C, UART) are depicted in [11]. The time needed for
the interface communication is added to the microcontroller’s
active time.

5) Microcontroller: A microcontroller is defined by the
power consumption in every mode (e.g. active at different
clock rates, idle, standby) and the power and delay for



every transition. Additionally, the power consumption for
the active interfaces is added to the microcontroller’s active
mode power consumption. The active time is specified by
the user at task level and depends on the implemented
algorithm. An algorithm’s runtime can be determined by
estimation, measurement, or the usage of an instruction set
simulator. The active time of the sensors, including the time
needed for the serial interface communication, is added to
the microcontroller’s active time.

6) Converter: The efficiency of the DC-DC converter
depends on the input voltage, output current and output
voltage. In our work it is modeled by a lookup table and
linear interpolation, which is a commonly used method [12].

7) Battery: Our battery model is based on Peukert’s
law [13], which is an empirical model with very low compu-
tational complexity [14]. In our implementation (eqn. 1), a
battery specific Peukert constant k is only applied, if the load
current exceeds the specified maximal continuous discharge
current IBAT,cont. of the battery. Otherwise, IBAT (t) equals
IDC,ave(t).

IBAT (t) = IDC,ave(t)×
(
IDC,ave(t)

IBAT,cont.

)k−1

(1)

where IDC,ave(t) is the average current drawn by the DC-
DC converter over the past 1000 time steps [2].

B. System Configuration and Task Modeling

In the next step, the modeled components can be used
to define multiple system configurations. A configuration
selects the components for the system and defines the in-
active mode for each device. The system’s inactive power
consumption is given by the sum of all devices’ power
consumptions in their inactive modes. A task definition
selects the active mode of every component and therefore its
active time and the transition costs. The active time of the
sensors and the wireless transceiver are based on the chosen
measurements of the sensors, as described in sec. III-A. The
tasks are modeled with 1µs time steps. The energy consumed
by every defined task is given by the active times of the
components and their power consumption in the selected
active modes.

C. Duty Cycle

The system’s duty cycle can be modeled by the execution
frequency of the different tasks (sampling rate). The pos-
sibility to define the sampling rate independently for each
task allows the user to flexible model the system’s behavior.
Therefore, the overall power consumption is given by the
inactive power consumption and the type and number of
executed tasks.

IV. EXAMPLE WSN

An example architecture of a WSN was defined to demon-
strate the capabilities of the proposed model. First of all, the
components and their chosen operational modes are selected
in sec. IV-A. Afterwards, two different tasks were defined in
sec. IV-B and used for the duty cycle modeling in sec. IV-C.
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Fig. 3. Example architecture of the analyzed WSN

A. Configurations

The chosen example architecture of the WSN can be seen
in fig. 3, which could serve as a wireless environmental
sensor node. The Atmel SAML21 with ARM Cortex M0+
core is used as the main microcontroller. A Rohm BH1715
ambient light sensor and a Bosch Sensortec BME280 com-
bined humidity and pressure sensor are connected via I2C to
the microcontroller. The Bluegiga BLE112 Bluetooth Low
Energy transceiver is connected via an UART interface. To
demonstrate the flexibility of the model and to underline the
importance of an efficient power supply for the system, two
different step down converters and five different, commonly
used, battery types were analyzed. In active mode, the
SAML21 microcontroller uses the PL0 mode at 12 MHz.
For the inactive mode, in configuration C-IDL and C-STB
the Idle PL0 mode or the Standby mode is selected, respec-
tively. All other devices use the same operational modes in
configuration C-IDL and C-STB. An overview of the devices
and their operational modes is given in tbl. I.

TABLE I
EXAMPLE WSN: COMPONENTS AND MODES

Component Active mode Inactive mode

SAML21 PL0 at 12MHz
0.3515 mA

C-IDL: Idle PL0 at 12MHz
0.1968 mA

C-STB: Standby
(PD0-PD2 in retention)
0.0060 mA

BME280
Measurement
Temp./Hum./Press.
0.468 mA

Standby
0.0005 mA

BH1715
Measurement
Low-Resolution Mode
0.190 mA

Powerdown
0.0010 mA

BLE112 Send Notification
13 mA

PM2
0.0809 mA

DC-DC converter TI TPS62743, TI TPS62730

Batteries CR2025, CR2032, LIR2032, IPC402025, CR123

The denoted current consumptions for the devices are
either measured (Atmel SAML21, Bluegiga BLE112) or



taken from the data sheet specifications (Bosch BME280,
Rohm BH1715).

B. Tasks

The usage and therefore the active time of the devices
is defined by the tasks. Each sensor’s active time depends
on the selected measurement and can be found in its data
sheet [15,16]. The packet size of the interface is, as described
in section III-A, set by the sensor’s payload (BME280:
48 Bit, BH1715: 16 Bit), the device’s protocol overhead and
the interface overhead. The active time for the interface
equals packet size multiplied with the interface’s clock rate.
Likewise, the active time for the wireless transceiver is
given by the time to send a notification with 48 Bit + 16 Bit
payload, which was measured by applying variable payload
sizes. Finally, the active time for the microcontroller is
the sum of the transceiver’s and the sensors’ active times
including their interfaces’ active times and the algorithm’s
runtime. In our example, the microcontroller’s active time
needed to check the sensor values and to determine, if
a wireless transmission is necessary is set to 1ms. This
follows our environmental sensor node example application.
An overview for the components’ active times in task T-MST
and their sequence is given in fig. 4. The visualization was
generated using TORSCHE toolset [17].
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Fig. 4. Example WSN: Task T-MST sequence

To enable an optional wireless transmission, the task T-
MS was defined, in which the payload for the wireless
transceiver, and therefore its active time, is set to zero. The
overall durations for both tasks, including the transition times
for both configurations, are shown in tbl. II.

TABLE II
EXAMPLE WSN: TASK DURATIONS

Task T-MST Task T-MS

Conf. C-IDL 28489 µs 24314 µs

Conf. C-STB 28493 µs 24318 µs

C. Duty Cycle

The example system’s duty cycle is modeled for a wide
sampling rate range of the defined tasks. Task T-MS (mi-
crocontroller and sensors active), as the default task, is
executed with a rate of 0.0001 Hz to 2 Hz. Task T-MST,
which additionally uses the wireless transceiver, is executed

with a predefined ratio of the sampling rate of task T-
MS. Applied values for the ratio were 0.1, 0.5 and 1.0.
For example, if task T-MS is executed at 1 Hz and the
chosen wireless ratio is 0.5, task T-MST will be executed
at 0.5 Hz. So the microcontroller will be active once every
second and both tasks are alternatingly executed. The energy
consumption of the tasks is determined by the devices’ active
times (fig. 4 and tbl. II) and their power consumption during
that time (tbl. I). During the inactive period, the system’s
power consumption is defined as the sum of all devices’
inactive power consumption (tbl. I).

V. RESULTS

The following section points out the capabilities of our
proposed modeling technique. First, the energy consumption
for the two defined tasks and the inactive power consumption
for the two different configurations are analyzed (sec. V-A).
Based on that results, the optimal power supply is identified
and used for the duty cycle simulations in sec. V-B.

A. Tasks and Inactive Mode

The energy consumed by the tasks and the inactive power
consumption for the WSN is shown in fig. 5. Additionally,
the devices’ share in the overall values is emphasized. Note,
that these values do not include the components DC-DC
converter and battery. Because the wireless transceiver is
inactive in task T-MS, the energy consumption is reduced by
the transceivers share and the microcontroller’s active time is
accordingly decreased. The interfaces’ energy consumptions
are relatively low and therefore not visible in fig. 5. Since
the configurations only differ by the chosen inactive mode
and their transition costs, task energy consumption is nearly
equal for both configurations. But the impact of using the
deeper inactive mode in configuration C-STB can clearly be
seen in the inactive modes’ power consumption. The choice
of a suitable configuration depends on the duty cycle, which
will be discussed in sec. V-B.
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Fig. 5. Task energy and inactive power consumption

The effective task energy including DC-DC converter
and battery is shown in fig. 6. While the influence of the
different DC-DC converters is rather small, the coin cell
batteries are not capable of efficiently supplying the high
peak currents especially needed for the wireless transmission.
This effect is reduced in task T-MS, but shows the same
pattern. The inactive power consumption for configuration



C-STB, in dependence of the modeled power supplies, is
shown in fig. 7. Every battery type is able to deliver the low
standby current efficiently. However, a rather big deviation
in the converter’s performance occurs, which is due to a
significant difference in the converters’ efficiencies in the
specific operation point.
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Fig. 6. Task T-MST energy consumption (C-IDL)
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Fig. 7. Inactive power consumption (C-STB)

Based on that results, it is possible to determine the
most efficient power supply (consisting of converter and
battery) for every configuration and task combination. The
most efficient power supply is equal for both configurations
and both tasks, but differs for task execution and inactive
mode. For task execution, the combination of TPS62730
converter and IPC402025 battery is optimal. In inactive
mode, the TPS62743 converter with any battery is more
efficient. Therefore, the optimal power supply for the WSN
depends on the system’s duty cycle and will be determined
in the following section.

B. Duty Cycle

The defined configurations and tasks were used to simulate
a wide range of different duty cycles. The sampling rate of
task T-MS is in the range from 0.0001 Hz to 2 Hz, while task
T-MST is executed with a predefined ratio of 0.1, 0.5 and
1.0. Because the optimal power supplies for task execution
and inactive mode are not equal, the simulations were done
for both optimal converter and battery combinations. Due
to the lower inactive power consumption in configuration
C-STB, it should be preferred. However, choosing a deeper
standby mode results in higher transitions costs in terms of
power and delay. Therefore, the saved energy in the lower
mode has to exceed the energy needed for the transitions [9].
Because both configurations fulfill this requirement in our
sampling rate range, C-STB is chosen. The system’s power
consumption as a function of the sampling rate and the
wireless ratio (WL) is shown in fig. 8. Because the inactive

power comsumption is equal for every battery, the ideal
task execution battery IPC402025 is chosen in both cases.
The results are shown for the optimal task power supply
(TPS62730+IPC402025) and the optimal inactive power sup-
ply (TPS62743+IPC402025).
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Fig. 8. Overall WSN power consumption (C-STB)

The power consumption increases linearly with the sam-
pling rate. A lower wireless ratio and therefore a decreased
use of the wireless transceiver results in a significantly lower
power consumption. The simulation of the task execution
and inactive power supplies enables the determination of a
break-even sampling rate, at which the optimal power supply
for the WSN changes. Below that break-even sampling
rate, the optimal inactive power supply is overall more
efficient than the optimal task power supply. Above that
break-even sampling rate, the optimal task power supply is
more efficient. This is denoted in tbl. III. The break-even
sampling rate in configuration C-STB is significantly higher
compared to C-IDL, which is due to the lower inactive power
consumption and therefore the increased influence of the task
power supply efficiency.

TABLE III
BREAK-EVEN SAMPLING RATE

WL: 1.0 WL: 0.5 WL: 0.1

Conf. C-IDL 0.18 Hz 0.32 Hz 0.80 Hz

Conf. C-STB 3.60 Hz 6.00 Hz 12.70 Hz

VI. DISCUSSION AND CONCLUSION

We proposed a comprehensive and easy to use model,
which enables a rapid estimation of the effective power
consumption of future WSNs. By analyzing an example



architecture of a WSN we were able to quantify task en-
ergy consumption and inactive power consumption. After
identifying the optimal power supply for task execution and
inactive mode we simulated a wide range of duty cycles and
optimized the power supply in dependence of the sampling
rate. The determined break-even sampling rate gives the
designer an estimation of the system’s optimal configuration
and the possibility to adapt the system’s hardware design to
the intended use. Based on that knowledge, it is possible to
guarantee a desired runtime of the system by defining limits
for the sampling range or the ratio of wireless transmissions.
For our example of the wireless environmental sensor node,
the optimal inactive power supply should be chosen, because
those systems usually operate below the identified break-
even sampling rates. A limitation of our model is the
simplified battery model. Therefore, we estimated only the
system’s power consumption instead of the runtime based
on the battery discharge. Additionally, the model needs the
active time of the microcontroller as user input, which is
sometimes hard to determine. But the modular structure and
the adaptable abstraction level gives the opportunity to either
estimate, measure, or simulate a algorithm’s runtime.

VII. FUTURE WORK

In future work we want to implement an extensive battery
model, which handles rate-dependent capacity, temperature
effects and capacity fading [14]. Furthermore, we want to
define the active time of the microcontroller as a function of
its clock rate in order to extrapolate a known runtime of an
algorithm for a variety of configurations. Additionally, im-
portant features like interrupt handling and DMA operation
have to be modeled. Currently, we are designing the suc-
ceeding version of our wireless body sensor BG-V4.2 [18],
which will be used to improve and validate the proposed
model on the basis of a manufactured WBS. Furthermore,
we want to evaluate different configurations by the outcome
of various applications. For instance, the correlation between
the accuracy of machine learning algorithms [19]–[21] and
the power consumption would enable the assessment of
different configurations. This could establish a correlation
between power consumption and accuracy, which is already
a rising topic of recent research [22].
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