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Abstract
Purpose Link traveling time models form the basis for route
planning methods used in navigation devices as well as
for logistic applications. These models are provided based
on extensive real world data sets which are available to a
differing degree in different cities as well as for different
links within a given city. For smaller cities, where typically
fewer data is available or less frequently measured links, it
might be beneficial to transfer models from close-by cities
or links from the same city with sufficient data basis. In
this paper, the potential for transferring link traveling time
model fits, that is, the estimated models, between cities and
within a city is investigated. Methods that combine infor-
mation typically contained in street maps with empirically
derived features that are easily transferred are developed and
tested with substantial real world data sets. This provides the
basis for developing route planning methods in cities with
insufficient real world data coverage to base accurate route
traveling time predictions on.
Methods Link traveling time models are derived on the basis
of an extensive floating taxi data set in Vienna, Austria. The
models incorporate typical map information such as speed
limits and functional road classification (frc). Estimation is
performed using penalized least squares methods to control
for overfitting. The expected accuracy for the model trans-
fer is investigated both in terms of intracity transfer (from
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modelled links to other links in the same city) and in terms
of intercity transfer (from one city to another city). Data sets
of different extent are used from the two Austrian cities of
Vienna and Linz as well as for the French city of Lyon.
Results The models presented in this paper are demonstrated
to lead to superior performance compared to the benchmark
model of Leodolter et al. (2015). It is shown that transfer
between cities in the same country (here using the Vienna
model for Linz) may be beneficial in terms of prediction
accuracy while the transfer between countries (here from
Vienna to Lyon) decreases accuracy but not dramatically.
Conclusion These results demonstrate that the transfer of
link traveling time models within a city or from one city to
another city can provide acceptable prediction accuracy and
thus can be used as the basis for navigation algorithms in
case no good data basis is accessible for a city.

Keywords Traveling time estimation · Navigation ·
Routing · Floating car data

1 Introduction

Local traveling speed measurements and predictions pro-
vide the basis for many vehicle routing and traveling time
prediction algorithms. The latter can be found in navigation
devices used in private vehicles as well as in logistic appli-
cations. Predictions are especially relevant for congested
networks [16]. While navigation devices increasingly use
real time information, logistics applications typically used
in the planning stage (pre-trip) rely on long term (in the
sense of several hours or days ahead) route traveling time
predictions. Such predictions may be derived from link trav-
eling time predictions based on local (to the links in the
network) traveling speed predictions.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12544-016-0206-8-x&domain=pdf
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Traveling speed predictions have been derived from
either local measurements, taken from stationary road side
sensors (for a survey see e.g. [1]), or from floating sensors
distributed to a fleet of vehicles (from a long list of contribu-
tions see e.g. [3, 4, 10]). There exists an extensive literature
dealing with traveling time estimation; see the collection of
survey papers in [2] or the literature reviews in [13] and
[23] amongst others. All these approaches presuppose large
databases in order to yield accurate predictions for all pos-
sible routes in a given city and for a given time of the day
(see e.g. [11] and [18]).

Twomain hurdles for providing such a large sample exist.
First, only a subset of the road links can be equipped with
road side sensors due to cost restrictions. Second, the data
collecting fleet vehicles do not traverse all road links at
all times. Especially those links located on the outskirts of
a city are typically neglected. Consequently, many cities
currently lack sufficiently large data sets required by the
mentioned approaches. In order to fill the gaps in the data,
one can implement an extensive measurement campaign to
cover missing road links. An alternative option—a backup
strategy—is to estimate free flow speeds based on static
data. Moses and Mtoi [15] propose different models for
estimating free flow speeds based on the speed limit,
spacing between signalized intersections and vehicle type.
Transportation Research Board [20] and [5] consider addi-
tional adjustment factors for structural road parameters and
vehicle types. Tseng et al. [21] extend these methods to sub-
urban highways. Graser et al. [8] and [9] suggest the usage
of different road network centrality measures as predictors
for link traveling speed. However, these authors acknowl-
edge that some of the measures depend on the boundaries of
the chosen map which introduces some arbitrariness to the
approach.

Most of these basic approaches donot address the presence
of daily variation of traveling speeds in sufficient detail, or
even neglect it completely. Leodolter et al. [12] highlight the
dramatic losses in prediction accuracy resulting fromneglect-
ing the daily variation.

In general, one should expect decreased traveling speeds
in morning and evening rush hours. However, more precise
information on the daily variation of local traveling speeds
must be inferred fromdata. Nonetheless, it may be postulated
that daily variation patterns are very similar for road links of
similar usage (in a given city). Herein, road usage is opera-
tionalized as functional road categories.Moreover, these pat-
terns may be similar for similar cities, which suggests the
possibility of some form of transfer across cities. Leodolter
et al. [12] illustrate this ideaby transferring severalmodels fit-
ted on data from Vienna, Austria, to the nearby city Linz,
Austria. In particular, this amounts to using the daily varia-
tion of one city as a proxy for the daily variation in a different
city and is shown to improve the predictive power in

comparison to approaches not taking daily variation into
account. Hence, this method couples the simplicity and
low costs of the mentioned backup approaches with the
accuracy gained from using local measurements.

In this paper, we refine and extend the method presented
in [12] in several respects. Most notably, we provide a
more careful modeling of the daily variation patterns by
allowing these profiles to differ across road types. Earlier
approaches neglect dependence between different time-of-
the-day intervals and hence result in noisy daily profiles.
This problem becomes more severe when increasing the
model complexity by allowing daily profiles to change with
road type (as we do). Here, we propose to use penalized
least-squares methods, which are already popular in non-
parametric (spline-based) estimation. Penalizing the rough-
ness of the daily variation patterns lowers the estimation
uncertainty and yields smooth estimated daily profiles. We
include details on an efficient numerical implementation of
our approach in the Appendix. In addition, we observe that
the similarities of the daily profiles across cities concentrate
in low dimensional subspaces. We enhance the cross-city
prediction approach of [12] to exploit this finding. Using
these new developments, we comprehensively evaluate the
effectiveness of a wide range of predictive models with
respect to on-site performance (predictive power for the
city for which data is available) and cross-city transfer. For
the on-site comparisons we use data from the two Austrian
cities Vienna and Linz as well as the French city Lyon. The
cross-city performance is evaluated for the transfer from
Vienna to Linz, Austria, and from Vienna to Lyon, France.
The choice of cities here is due to data availability; all meth-
ods can be applied without change to other cities/countries
as long as adequate data is available.

The remainder of this paper is organized as follows:
Section 2 provides background information on the data
set used for accessing the predictive power in subsequent
sections. Subsequently, Section 3 presents the models and
estimation techniques as well as the formulas used for pre-
diction. Section 4 details on the evaluation methodology.
Section 5 discusses the evaluation results. Section 6 con-
cludes the paper. The Appendix provides some details for
practical implementation of our methods.

2 Data & descriptive analysis

The floating car data (FCD) used in our study is similar
to that in [12]. More specifically, the FCD is collected by
about 3500 registered taxis in the region of Vienna (Austria),
about 300 taxis in the region of Linz (Austria), and about
400 taxis in the region of Lyon (France).

The FCD raw data consists of anonymized vehicle tra-
jectories (time and GPS position) with a variable sampling
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Fig. 1 The figure shows the (estimated) daily variation of prediction errors from a regression model for link traveling speed sp in km/h with road
type (frc) specific intercepts and speed limit slope coefficients for three road types (1, 4, 7) and three cities (Vienna, Linz, and Lyon)

interval (between 10 and 60 seconds). In the FCD pro-
cessing, the vehicle trajectories are first map-matched to an
OpenStreetMap road network graph of the region. During
map-matching, the most probable road link for every GPS
position is identified (by taking into account the great-circle
distance between GPS position and road geometry as well
as the estimated heading of the vehicle). Positions without
plausible map-matchings are discarded from the trajectory.
Then, the covered road distance between two consecutive
map-matched positions is determined by a shortest-path
routing on the road network. The quotient of the covered
distance and the time elapsed between two GPS measure-
ments provides one speed observation. The latter is assigned
to the respective links by linear interpolation. Finally, trajec-
tories corresponding to implausible speed observations of
more than 110% of the link speed limit are discarded.

Each of the three city-specific data sets covers a period
of one year with about 3 million speed measurements per
day in Vienna, about 700,000 measurements per day in Linz,
and about 800,000 measurements per day in Lyon. Data
from irregular days (public holidays, weekends, school hol-
iday, etc.) is discarded as well as observations concerning
links with a speed limit below 20 km/h. In particular, our
analysis focuses exclusively on weekdays during the school
period. Arguably, this time features the most severe conges-
tion delays and is therefore most critical for traveling speed
prediction.

Time is expressed in the form of 96 intervals of 15 min-
utes covering the 24 hours of a day. Speed measurements
pertaining to a given road link, day, and time interval are
averaged (using harmonic averages) to form a single obser-
vation. This leads to roughly 2.5 million (M) observations
for Viennese road links, roughly 1.1 M. observations for
road links in Linz, and roughly 1.25 M. observations for
road links in Lyon. The associated speed limits and road
classification information are taken from OpenStreetMap.
Finally, every road link is assigned a functional road clas-
sification (frc) number on the basis of its OpenStreetMap
highway tag. These numbers indicate the road type and

range from one (motorways) to eight (living streets). As a
rough guide, the importance of road links decreases as the
frc number increases.

For preliminary descriptive analysis, the regression
model

spi = cf (i) + βf (i)mxspi + vi

is fitted by least-squares to the first half of each city-specific
data set. Herein, spi , f (i), and mxspi denote the travel-
ing speed (average), road type (frc), and speed limit of the
i-th observation, respectively. In particular, intercept and
slope coefficients are allowed to change across road types
(frc). Next, prediction errors v̂i are calculated for each city
based on the second half of the respective data set. Figure 1
shows the averages1 of the prediction errors over each of
the 96 time intervals and for frc numbers 1, 4, and 7. The
shown daily variation patterns reflect the frc classifications:
highways (frc = 1) exhibit strong signs of congestion dur-
ing morning and evening peaks, which fade during midday;
medium size roads (frc = 4) show a clear night/day divide,
but of lesser extent than highways; finally, living streets
(frc = 7) show only little daily variation.

Figure 1 also reveals considerable differences in the
daily variation patterns across cities, which raises concerns
about the approach of [12] of using the same pattern for
all cities. Figure 2 further investigates this issue. To this
end, we arrange the prediction error averages in matrices
�̂q = [γ̂t,j |q ] ∈ R

96×8, wherein γ̂t,j |q denotes the aver-
age pertaining to time interval t , road type j (frc), and
city q ∈ {Vienna,Linz,Lyon}. Hence, the j -th column
of �̂q embodies the estimated daily variation for the j -th
road type (frc) in city q. Insufficient data on frc class 2
for Linz leads to several missing entries in the second col-
umn of �̂Linz. Therefore we nullify the second column of �̂q

for all three cities to ensure comparability. Panels (a)–(d) of
Fig. 2 show the first four left singular vectors û1|q, . . . , û4|q

1These averages are calculated by regularized least-squares to obtain a
smooth daily variation estimate; see Section 3 for details.
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Fig. 2 Panels (a)–(d) show the first four left singular vectors
û1|q , . . . û4|q of the estimated 96 × 8 daily variation matrices �̂q

for three cities q ∈ {Vienna,Linz,Lyon}. Panels (e)–(h) show the
corresponding loading vectors σ̂1|q v̂1|q , . . . , σ̂4|q v̂4|q calculated by

multiplication of the respective singular value σ̂i|q and right singular
vector v̂i|q . Roads of type (frc) 2 are excluded from the estimation due
to lack of corresponding data. The zero loadings for road type 2 in
panels (e)–(h) reflect this omission

of the 96 × 8 matrices2 �̂q = ∑
i≤7 σ̂i|q ûi|q v̂Ti|q , wherein

σ̂i|q and v̂i|q denote the i-th singular value and i-th right
singular vector of �̂q , respectively.

We observe that the first two left singular vectors shown
in panel (a) and (b) are quite similar across cities, but one
distinct feature of Lyon stands out. These two signals mostly
represent the decline of average traveling speed during the
day in panel (a) as well as the morning and evening peak
in panel (b), respectively. In particular, the second left sin-
gular vector for Lyon reflects the considerable difference in
magnitude between the morning and evening peak shown
in Fig. 1. In contrast, the two peaks are quite similar for
Vienna and Linz, which manifests in the divergence of the
three left singular vectors in panel (b) during this time. Panel
(c) and (d) reveal considerable differences between the left
singular vectors û3|q , û4|q across cities; û5|q, . . . , û7|q—not
shown—exhibit qualitatively comparable differences across
cities q as û3|q and û4|q . Finally, it should be kept in mind
that Figs. 1 and 2 show estimates, which are subject to
sampling uncertainty.

Panel (e)–(h) of Fig. 2 show the coefficient vectors
σ̂ i|q v̂i|q corresponding to the first four left singular vectors
ûi|q . More specifically, each column of �̂q—representing
the daily pattern for one road category in form of 96 esti-
mates γ̂t,j |q , t ≤ 96—equals a linear combination of
the left singular vectors û1|q, . . . , û7|q (panel (a)–(d)).

2Nullification of the second column induces a zero singular value;
thus, summation of seven components suffices.

The latter can therefore be interpreted as basic daily pat-
terns. The coefficients σ̂ i|q v̂j,i|q—called loadings herein—
corresponding to the i-th basic pattern ûi|q and the eight
road types j = 1, . . . , 8 gather in the vector σ̂ i|q v̂i|q . The
zero loadings σ̂ i|q v̂2,i|q for road type (frc) 2 with respect
to all basic patterns i = 1, . . . , 7 reflect its omission in the
estimation. The other loadings express how the respective
basic pattern enters the daily variation of the corresponding
road type. In case of a positive loading σ̂ i|q v̂j,i|q , the basic
pattern i enters in the form shown in panels (a)–(d) of Fig. 2.
A negative loading implies that the basic pattern is turned
upside down. The absolute value of the each loading gov-
erns the strength of the respective basic pattern in the daily
variation of the corresponding road type. In this regard, we
observe two notable features. Firstly, the signs of σ̂ 1|q v̂j,1|q
and σ̂ 2|q v̂j,2|q are identical across cities. Thus, the first two
basic patterns enter in the same form across cities q, which
affirms the above interpretation of û1|q and û2|q . However,
the magnitude of the loadings differs considerably for some
road types, that is, the basic patterns occur with differ-
ent strength across cities. Secondly, the loadings decrease
rapidly as i increases, however, are still of considerable size
for some road types and i > 2; see panel (g) and (h).

Finally, we observe that the ratio ‖�̂q − �̃Vienna‖F
/‖�̂q−

�̂Vienna‖F, wherein �̃Vienna = ∑
i≤2 σ̂ i|Viennaûi|Viennav̂Ti|Vienna

and ‖A‖2F = ∑
i,j a2i,j for any matrix A = [ai,j ],

equals 82.1% for q = Linz and 98.4% for q = Lyon.
Hence, the rank two approximation �̃Vienna to the Viennese
daily variation matrix �̂Vienna is a closer substitute for �̂Linz

and �̂Lyon than the full estimate �̂Vienna. This finding
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motivates the alternative prediction strategy proposed in the
following Section 3 and evaluated in Sections 4 and 5.

3 Models, estimation & prediction

This paper considers predictions of the traveling speed
sp = y (in km/h) and predictions of the ratio sp/mxsp =
y′ of traveling speed to speed limit (in km/h) for a given
road type (frc) f ∈ {1, . . . , 8} and time t ∈ {1, . . . , 96}. We
start with two general formulations

yi = spi = cf (i) + γt(i),f (i) + βf (i)mxspi + ui and (1a)

y′
i = spi

mxspi

= c′
f (i) + γ ′

t (i),f (i) + β ′
f (i)mxspi + u′

i , (1b)

wherein t (i) denotes the time-of-the-day interval of obser-
vation i. The remainder terms ui and u′

i are assumed to
be zero mean. The superscript ′ in Eq. 1b acknowledges
the possibility of differences in parameter values between
Eqs. 1a and 1b. The subsequent discussion is in terms of
the former to circumvent superfluous replications. We tested
the assumption of linearity in mxsp and found it to be
appropriate; see the comment at the end of Section 5.

These general models lead to a number of variations by
imposing different restrictions of the frc-specific intercept
and slope coefficients cf and βf as well as the daily varia-
tions γt,f . For the slope coefficient βf , we mostly focus on
the unrestricted case. Section 5 also comments on the choice
of a common slope coefficient βf = β, f = 1, ..., 8. For
the daily variation coefficients γt,f we allow several (pre-
specified) frc-based groups F0, F1, ..., Fg (partitioning the
set {1, ..., 8}) of identical daily variation. More specifically,
we use

γt,i = γ̄t,j for all i ∈ Fj with
96∑

t=1

γ̄t,j = 0, j = 1, ..., g, (2)

and γ̄t,0 = 0. Notable special cases of Eq. 2 are the case of
no daily variation (F0 = {1, ..., 8}), a single daily variation
pattern (g = 1, F0 = ∅, F1 = {1, . . . , 8}), and the unre-
stricted case (g = 8, F0 = ∅, Fh = {h}, 1 ≤ h ≤ 8). In
the latter case, no restrictions—except

∑
t≤96 γt,f = 0—

are imposed on γt,f . The parameters can be conveniently
collected into the matrix � = [γt,f ].

Additional constraints on � allow further reduction in
model complexity, e.g., γt,f being identical at night time,
in order to optimize the variance-bias trade-off; we further
comment on this in Section 5.

The models are fitted using regularized least-squares.
The regularization aims at smoothing the daily variation
by adding a penalty term λ‖�2�‖2F to the least-squares
objective. Here λ(≥ 0) is the regularization constant, ‖·‖F
denotes the Frobenius norm (square root of the sum of

the squares of the matrix entries), and �2 the symmetric
circulant matrix

�2 =

⎛

⎜
⎜
⎜
⎝

2 −1 . . . . . . 0 −1
−1 2 −1 . . . 0 0
...

...
...

. . .
...

...

−1 0 0 . . . −1 2

.

⎞

⎟
⎟
⎟
⎠

This penalty encourages a smooth daily variation estimate;
see [6, sec. 4.2] amongst others. The regularization con-
stant λ is either set to zero (no regularization) or chosen
by the GCV-criterion [7]. The Appendix further details on
an implementation strategy that easily adapts to large-scale
applications.

The estimation is carried out for all three cities—Vienna,
Linz, and Lyon, separately; an additional subscript on the
parameter estimates indicates the respective data source, e.g.
γ̂t,j |Vienna, in case the distinction is important.

Predictions ŷ either take the form

ŷi (p | q) = ĉf (i)|q + γ̂t (i),f (i)|q + β̂f (i)|qmxspi or (3a)

ŷi (p | q) = ĉf (i)|q + γ̂ r
t (i),f (i)|q + β̂f (i)|qmxspi , (3b)

wherein p, q ∈ {Vienna,Linz,Lyon} indicate the target city
for prediction (p) and the data source for estimation (q).
A hat superscript identifies least-squares estimates. More-
over, the daily variation coefficient estimate γ̂ r

t,f in Eq. 3b
amounts to the t, f -th entry of the rank r approximation

�̃r
q =

∑

i≤r

σ̂ i|q ûi|q v̂Ti|q

of �̂q . The latter is calculated based on the singular value
decomposition �̂q = ∑

i≤8 σ̂ i|q ûi|q v̂Ti|q of the estimate �̂q .
Herein r ≤ 8 is pre-specified. The reduction implemented
by choosing r < 8 acknowledges the above observation of
similarities across cities between the terms σ̂ i ûi v̂Ti for i ≤ 2
and dissimilarities for i > 2.

4 Evaluation methodology

The various models are assessed by cross validation.
Therein parameter estimation (training) is carried out on
a data set from q ∈ {Vienna,Linz,Lyon} of size ne =
500, 000. Prediction errors (evaluation) are calculated using
a separate data set from p ∈ {Vienna,Linz,Lyon} of
size nv = 500, 000. That is, the cases p = q and p �= q

refer to on-site prediction and cross-city prediction, respec-
tively. Training and evaluation data sets are randomly drawn
from the respective full data sets in such a way that the two
data sets are non-overlapping and each of the two has the
same share of observations from every time interval as the
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full data set. This stratification ensures that all time intervals
receive appropriate attention. Moreover, the lack of over-
lap ensures that on-site comparisons rely on out-of-sample
predictions, too.

We express the predictive performance in terms of the
(estimated) mean absolute percentage error (mape) calcu-
lated as

m̂ape(p | q) = 1

nv

nv∑

i=1

|yi − ŷi (p | q)|
|yi | and (4a)

m̂ape′(p | q) = 1

nv

nv∑

i=1

|y′
i − ŷ′

i (p | q)| |mxspi |
|yi | , (4b)

respectively. Here, yi = spi and y′
i = spi/mxspi denote

the i-th response observation in an evaluation data set of
size nv = 500, 000 from p ∈ {Vienna,Linz,Lyon}. In con-
trast to the root mean squared error used in [12], the criteria
in Eqs. 4a and 4b acknowledge that prediction errors y −
ŷ(p | q) and (y′ − ŷ′(p | q))mxsp, respectively, occur at
different speed levels.

The predictions ŷ(p | q) and ŷ′(p | q) are based on either
a special case of Eqs. 1a and 1b, respectively, or one of
the additional benchmark strategies outlined below. In the
former case, the calculation of predictions proceeds as in
Eqs. 3a or 3b.

We repeat the calculation of Eqs. 4a and 4b for M = 50
different, but necessarily overlapping, pairs of a disjoint
training sample and an evaluation sample and for (p | q)

equal to (Vienna |Vienna), (Linz |Linz), (Lyon |Lyon) (on-
site) and (Linz |Vienna), (Lyon |Vienna) (cross-city). The
replications reduce the effects of randomly drawing the esti-
mation and prediction subsamples and generate information
on the accuracy of the estimated performance measures.
Table 1 reports averages and empirical standard deviations3

(in parenthesis) of the mape estimates over the M =
50 replications and for the various prediction strategies. We
considered several other variants but restrict the presentation
to three benchmark procedures and some specializations of
Eqs. 1a and 1b chosen to reflect the key lessons of our study.
Section 5 comments on some extensions.

The three benchmark predictors for y comprise

a) the speed limit ŷi = mxspi ,

3More specifically, m̂ape(p | q) = 1
M

∑M
m=1 m̂apem(p | q) and

[
1

M − 1

∑M

m=1

(
m̂apem(p | q) − m̂ape(p | q)

)2
]1/2

, (**)

wherein the additional subscript indicates the m-th of the M repli-
cations. If the M sample pairs were non-overlapping, then (**)/

√
M

should provide a good estimate of the variability of m̂ape(p | q) (over
hypothetical replications of the present study). The overlap potentially
induces a downward bias of this estimate. A worst case (complete
overlap) estimate is given by (**).

b) the scaled speed limit ŷi = β̂mxspi , wherein β̂ sym-
bolizes a least-squares estimate, and

c) a linear model prediction ŷi = ĉ + γ̂t (i),f (i) +
β̂f (i)mxspi , wherein t (i), and f (i) once more indi-
cate the respective time interval and the road type (frc).
The least-squares estimates ĉ, γ̂t,f , and β̂f represent
an intercept, the daily variation, and the influence of
the speed limit, respectively. The mxsp slope coeffi-
cient estimates β̂f are only allowed to differ across the
road type (frc) groups {1, 2}, {3}, {4, 5, 6}, and {7, 8}.
The daily variation coefficients γ̂t,f = ˆ̄γt,1 are iden-
tical across all road types, which amounts to (g =
1, F0 = ∅, F1 = {1, . . . , 8}). In addition, the estimation
of the daily variation coefficients γ̄t,1 enforces identical
coefficient estimates for (night) time intervals between
23:00 and 5:30.

The first two are used as benchmarks in [12]; the third
method is the specification advocated therein. The second
benchmark b) may be understood as a constant prediction
of y′

i = spi/mxspi . Its acceptable performance—shown
in Table 1—motivated the consideration of the refined ratio
model in Eq. 1b.

In addition, we include several variants of the mod-
els Eqs. 1a and 1b. All of these specializations allow
differences in the effect of the speed limit mxsp across road
types (frc) via unrestricted4 slope coefficients βf ; Section 5
comments on the restriction βf = β, f = 1, ..., 8. More
specifically, we consider non-regularized fitting (λ = 0) of

d) Eq. 1a with no daily variation (g = 0, F0 = {1, .., 8}),
e) Eq. 1a with a single daily variation (g = 1, F0 =

∅, F1 = {1, . . . , 8}),
f) Eq. 1a with three groups of identical daily variation

(g = 3, F0 = ∅, F1 = {1, 2}, F2 = {3, 4, 5, 8}, F3 =
{6, 7}),

g) Eq. 1a with unrestricted5 daily variation matrix � (g =
8, F0 = ∅, Fj = {j}, j ≤ 8), and

h) Eq. 1b with unrestricted6 daily variation matrix �.

The latter two cases g) and h) are fitted with and without
regularization. Both estimation strategies are combined with
prediction as in Eq. 3a as well as Eq. 3b with ranks r ∈
{1, 2}.

A few words on the selection of model variants are
in order. The first two variants d) and e) act as further
benchmarks reflecting the simplest variants of Eq. 1a. The

4The data set for Linz contains too little data on road type (frc) 2 for
unrestricted estimation of �. Therefore, “unrestricted daily variation”
refers to F0 = ∅, F1 = {1, 2}, Fj−1 = {j} for 3 ≤ j ≤ 8 together
with restricted slopes β1 = β2 (and likewise for Eq. 1b) if q = Linz.
5See footnote 4.
6See footnote 4.
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Table 1 Mean Absolute Percentage Error Estimates (Overview)

benchmarks special cases of Eqs. 1a and 1b

p | q a) b) c) d) e) f)

on-site Vienna |Vienna 56.27
(0.18)

28.89
(0.13)

23.68
(0.13)

24.69
(0.13)

23.29
(0.13)

23.14
(0.13)

Linz |Linz 43.72
(0.16)

26.69
(0.12)

25.56
(0.12)

26.21
(0.12)

25.47
(0.12)

25.27
(0.12)

Lyon |Lyon 62.15
(0.055)

22.84
(0.028)

22.51
(0.030)

21.86
(0.028)

21.65
(0.028)

21.61
(0.028)

cross city Linz |Vienna 43.72
(0.16)

26.21
(0.11)

25.41
(0.11)

26.15
(0.11)

25.56
(0.11)

25.42
(0.11)

Lyon |Vienna 62.15
(0.055)

25.79
(0.038)

25.29
(0.037)

25.67
(0.082)

25.37
(0.07)

25.32
(0.067)

g) g) g) g) g) g)

r = 1 r = 2 regl. r = 1, regl. r = 2, regl.

on-site Vienna |Vienna 23.13
(0.13)

24.08
(0.14)

23.23
(0.13)

22.67
(0.13)

23.56
(0.13)

22.72
(0.13)

Linz |Linz 25.24
(0.12)

25.71
(0.12)

25.29
(0.12)

25.23
(0.12)

25.71
(0.12)

25.28
(0.12)

Lyon |Lyon 21.45
(0.028)

21.82
(0.028)

21.53
(0.029)

21.45
(0.028)

21.82
(0.028)

21.51
(0.029)

cross city Linz |Vienna 25.41
(0.11)

25.82
(0.11)

25.52
(0.11)

24.90
(0.11)

25.25
(0.11)

24.96
(0.11)

Lyon |Vienna 25.38
(0.075)

25.91
(0.35)

25.30
(0.36)

24.81
(0.072)

25.41
(0.08)

24.80
(0.074)

h) h) h) h) h) h)

r = 1 r = 2 regl. r = 1, regl. r = 2, regl.

on-site Vienna |Vienna 23.25
(0.13)

23.62
(0.13)

23.28
(0.13)

22.78
(0.13)

23.14
(0.13)

22.79
(0.13)

Linz |Linz 25.23
(0.12)

25.39
(0.12)

25.27
(0.12)

25.26
(0.12)

25.44
(0.12)

25.32
(0.12)

Lyon |Lyon 21.45
(0.028)

21.73
(0.028)

21.46
(0.028)

21.48
(0.028)

21.69
(0.028)

21.52
(0.029)

cross city Linz |Vienna 25.52
(0.11)

25.63
(0.11)

25.53
(0.11)

25.00
(0.11)

25.10
(0.11)

25.01
(0.11)

Lyon |Vienna 24.95
(0.064)

24.84
(0.34)

24.86
(0.35)

24.38
(0.055)

24.38
(0.054)

24.37
(0.056)

grouping in f) showed the best performance among dif-
ferent configurations for the daily variation groups on the
Viennese data (on-site). Its success reflects the similar
loadings—shown in panel (e) and (f) of Fig. 2—of these
groups with the first two signals—shown in panel (a) and (b)
of Fig. 2. The most flexible configurations g) and h) show
the best overall performance when fitted with regulariza-
tion. The non-regularized cases help to judge the value of
regularization.

5 Results

Table 1 summarizes the main results of our study. In partic-
ular, the upper third of Table 1 presents averages of mean
absolute percentage error (MAPE) estimates from M = 50
replications of the same out-of-sample prediction exercises
for six benchmark procedures. The parenthesized numbers
are empirical standard deviations of these mean absolute
percentage error estimates.

Table 2 Bias Estimates
(Selected Models) p | q a) b) c) g) h)

regl. regl.

V. |V. −12.9
(0.01)

−0.48
(0.02)

−0.004
(0.01)

−0.004
(0.01)

−0.005
(0.01)

Li. |Li. −9.32
(0.009)

0.159
(0.02)

0.0012
(0.02)

0.0006
(0.02)

0.137
(0.02)

Ly. |Ly. −17.1
(0.01)

0.115
(0.02)

0.0044
(0.02)

0.0038
(0.01)

0.232
(0.02)

Li. |V. −9.32
(0.009)

2.13
(0.02)

2.58
(0.01)

2.06
(0.01)

2.2
(0.01)

Ly. |V. −17.1
(0.01)

−3.36
(0.02)

−1.04
(0.02)

−1.61
(0.03)

−1.51
(0.03)
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Here predictions are calculated by Eq. 3a; the use of
Eq. 3b is indicated by adding the choice for the rank r to the
respective column title. Similarly, an additional label regl.
signals regularized least-squares fitting. All numbers are
multiplied by 100 to reflect percentages and rounded to at
most 4 significant digits. Boldface indicates the best result
within the respective row.

The supplementary Tables 2, 3, 4 and 5 follow the same
layout and typographical conventions as Table 1. Therein,
bias and root mean squared error estimates are averages as
in Eq. 4a (or Eq. 4b) but over powers of the prediction errors(
y−ŷ(p | q)

)s (or
(
y′−ŷ′(p | q)

)s
mxsps) with s = 1 (bias)

and s = 2 (root mean squared error), respectively. Again,
the reported numbers are means and standard deviations
over M = 50 replications. The abbreviations ‘V.’, ‘Li.’,
and ‘Ly.’ replace ‘Vienna’. ‘Linz’, and ‘Lyon’, respectively.

The table clearly shows that using the speed limit as the
prediction of the actual traveling speed leads to a decisively
worse performance than all its competitors. The latter is
due to its ignorance of congestion, which is already clearly
visible in Fig. 1. This is also seen in Table 2 which con-
tains (averaged) bias estimates for the three benchmark
procedures a), b), and c) alongside g) and h) fitted with reg-
ularization and using Eq. 3a for prediction. The latter two
as well as the method c) advocated by [12] are unbiased for
on-site prediction and feature a moderate bias when used
for cross-city prediction. The speed limit a) is highly biased
in both cases; simply scaling the speed limit b) removes
this deficiency to a large extent. However, this simplest
method a) exhibits the unique selling point of not requiring
any estimation and thus no actual speed measurements. The
identical on-site and cross-city performance of a) in Linz
and Lyon is an obvious consequence.

The specialization f) of Eq. 1a performs best among the
benchmarks shown in the upper third of Table 1. The less
flexible c) seemingly outperforms f) in cross-city predic-
tion; however, its superiority is small and lies within the
sampling uncertainty. The performance of b), c), d), and e)
ranges between that of a) and f). Regarding these methods,
note that the cross-city prediction in Linz using b), c), and d)
exceeds the respective on-site performance.

Table 3 shows (averaged) root mean squared error esti-
mates for on-site and cross-city prediction in Linz using
these methods. The latter measures are calculated from
the same prediction errors as used for Table 1 to counter

Table 3 Root Mean Squared Error Estimates (Selected Models)

p | q b) c) d) e)

Li. |Li. 8.11
(0.009)

7.45
(0.007)

7.64
(0.007)

7.38
(0.006)

Li. |V. 8.38
(0.009)

8.26
(0.009)

8.32
(0.009)

8.14
(0.009)

Table 4 Mean Absolute Percentage Error Estimates
(Selected Models with Single mxsp Slope Coefficient)

g) g) h) h)

p | q r = 2, r = 2,

regl. regl. regl. regl.

Li. |V. 24.95
(0.11)

24.95
(0.11)

25.21
(0.11)

25.21
(0.11)

Ly. |V. 24.04
(0.064)

23.96
(0.065)

23.76
(0.056)

23.72
(0.058)

doubts regarding the results shown therein. More specifi-
cally, least-squares estimation implicitly optimizes the root
mean squared error, and the on-site performance of b), c),
and d) in Linz shown in Table 3 surpasses the respective
cross-city result.

The second and third part of Table 1 concern the proce-
dures g) and h). In summary, these procedures outperform
the simpler alternatives and yield optimal results for both
on-site and cross-city prediction when fitted with regular-
ization and using Eq. 3a. Figure 3 shows how the gains
in cross-city prediction are distributed over time. Panel (a)
visualizes the differences between the (averaged) cross-city
mean absolute percentage error estimates for g) together
with Eq. 3a and fitted with regularization and the corre-
sponding estimates for c). Panel (b) replaces g) with h).
Notable improvements in cross-city performance are spread
across the off-peak hours. In contrast, prediction quality
remains largely unaltered during peaks.

Table 4 delivers (averaged) mean absolute percentage
error estimates for cross-city prediction using two variants
of g) and h) with restricted slope coefficients. It shows that
the cross-city results of g) and h) can be improved in case
of Lyon by enforcing an identical speed limit slope coeffi-
cient for all road types via βf = β, f = 1, ..., 8. Cross-city
prediction for Linz degrades under this constraint.

Similarly, the record of Eq. 3b is mixed. Tables 1 and 4
certify a slightly improved cross-city performance for Lyon
and losses in prediction accuracy for Linz. In light of
Table 3, one may suspect that gains are hidden by using the
mean absolute percentage error. However, the correspond-
ing root mean squared error estimates in Table 5 disprove
this suspicion.

Table 5 Root Mean Squared Error Estimates (Selected Models)

g) g) g) g) g) g)

p | q r = 1 r = 2 r = 1, r = 2,

regl. regl. regl.

Li. |V. 8.09
(0.009)

8.21
(0.01)

8.12
(0.01)

7.92
(0.009)

8.03
(0.009)

7.94
(0.01)

Ly. |V. 9.15
(0.03)

9.15
(0.2)

9.11
(0.2)

8.93
(0.03)

8.97
(0.03)

8.93
(0.03)
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Fig. 3 Panel (a) shows the difference between the (averaged) mean absolute percentage error estimates for procedure g) using Eq. 3a and fitted
with regularization and those for c) separately for the 96 time intervals. Panel (b) compares h) (using Eq. 3a and regularized fitting) with c) in the
same way

A comparison of our main results (averaged MAPEs in
Table 1) with competing studies in literature is in order.
Moghaddam and Hellinga [14] provide models for predict-
ing freeway travel times based on Bluetooth data. Thus,
these authors consider an arguably simpler setting and data of
higher quality. They find MAPEs of 13-18 %. Stathopoulos
and Karlaftis [19] develop multivariate ARIMA and state
space models in a setting similar to ours and obtain MAPEs
between 12-20 %. Tulic et al. [22] investigate the Vienna
taxi FCD in detail. They also build multivariate autoregres-
sive models for a smaller number of links. In addition, these
authors find that the MAPE for a given link varies strongly
with the number of measurements on the link based on only
a single observed taxi. Their (MAPE) results range from
roughly 10 % (for links with almost no measurements based
only on one taxi) up to 40 % (for links with almost all mea-
surements being based on only one taxi) and with averages
over all links ranging from 20 % to 30 % depending on the
time of the day. In summary, the averagedMAPEs in Table 1
(ranging from 21 % to 25 %) are of similar magnitude as
those found in related studies.

Finally, partial residual plots [6, Section 3.1.3] derived
from the linear formulations showedno indicationof a nonli-
near effect of the speed limit mxsp. Nonetheless, we exper-
imented with more flexible modeling of the effect of the
speed limit mxsp, in particular, polynomial terms as well as
more general non-parametric approaches, and orthogonality
constraints on the columns of � to enforce zero variation
in the mean at night time. We found no improvements in
the prediction performance when using these extensions and
therefore refrain from a detailed discussion.

6 Conclusion & outlook

This paper formulates several models expressing traveling
speeds on a road link at a given time in terms of its road type

(frc), its speed limit, and day time; see Section 3. Restricting
the choice of covariates to time and static map information
allows prediction when no measurement data is available.
More specifically, we use the model fits derived from Vien-
nese data to obtain predictions for the Austrian city Linz and
the French city Lyon; see Section 4. We evaluate these trans-
fer predictions using actual data for both cities and show
that using the Viennese fit as a surrogate for a city-specific
fit entails merely a moderate loss in prediction accuracy;
see Section 5. We conclude that this transfer is a reasonable
means to obtain traveling time predictions for cities which
lack actual measurement data.

Concerning the model choice, we find that good on-site
performance coincides with good transfer performance. We
therefore suggest selecting a model based on its on-site pre-
diction performance. In our study, a flexible model allowing
distinct daily variation patterns for different road types (frc)
together with regularized least-squares fitting dominates all
its competitors. The Appendix provides instructions for a
numerically efficient implementation of this procedure. In
addition, we note that slight reductions in model complexity
may further improve the transfer performance. Specifically,
we consider equality constraints on the speed limit slope
coefficients and a rank reduction of the daily variation
coefficient matrix.

Finally, we list four possible directions for further
research. Firstly, estimates for cross-city prediction can be
obtained from a pooled data set consisting of data from two
(or more) cities. Intuitively, these estimates should reflect
peculiarities of individual cities to a lower degree than esti-
mates based on data from a single city and therefore be
better suited for cross-city prediction. A semi-transfer pro-
vides another alternative—applicable when too little data
is available for a given city. More specifically, data fusion
techniques can be used to “update” the transferred fit based
on the available data prior to prediction. Secondly, our study
focuses on three cities. Investigating whether our findings
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generalize to a broader context is clearly important for the
intended application. Thirdly, one may use different reg-
ularization constant λj for the daily variation pattern γ j

pertaining to different road types j to reflect the different
levels of smoothness of the daily variation patterns shown
in Fig. 1. Finally, a rank constraint could be added to the
estimation of � to obtain an even better bias/variance trade-
off. Therein, the appropriate rank may either be enforced as
a hard constraint or estimated by penalization as in [17].

In conclusion, we can state that for the data sets examined
in this paper out-of-sample prediction accuracy amounts to
broadly 25 %. The transferal of model fits did not decrease
the accuracy for very similar regions with Linz showing
25 % for on-site and cross-city evaluation. The penalty is
higher for more distant cities: Lyon shows on-site errors of
less than 22 % with transferal accuracy more than 24 %,
thus, adding roughly 2.3 percentage points. It remains to be
seen whether the more sophisticated models alluded to in
the last paragraph can change this picture.
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Appendix

A Implementation details

This appendix supplies the details on the calculation of the
penalized least squares estimator used in the main text. In
particular, efficient calculation of the estimates for a range
of values of λ is explained, which facilitates the choice of an
optimal λ by cross-validation. As an alternative, this section
derives an explicit expression of the corresponding GCV-
criterion of [7].

A change in notation simplifies the following presen-
tation. The restrictions

∑96
t=1 γ̄t,j = 0, 1 ≤ j ≤ g, in

Eqs. 1a and 1b ensure that the intercepts cf , f ∈ {1, . . . , 8},
are identified. Alternatively, one may set cf = 0 for one
(reference) road type in each daily variation group Fj ,
1 ≤ j ≤ g. This alternative standardization produces the

same predictions7—irrespective of the choice of reference
road types—and is used throughout this appendix. Then the
model (1a) may be re-written as

yi = xTi

(
β̄

vec�̄

)

+ ui , wherein xTi = (xTi,1 xTi,2 ) with

xTi,1 =
(
mxspi eTf (i)|8 inti,1 . . . inti,8−g

)
and

xTi,2 = eTg(i)|g ⊗ eTt (i)|96 ,

wherein g(i), f (i), and t (i) denote the frc-based daily vari-
ation group—out of the g possible groups, the road type
(frc), and time of the i-th observation, respectively. The
vector ep|q denotes the p-th element of the standard basis
of Rq and exemplifies the general use of lower case bold-
face letters to represent vectors; upper case boldface letters
symbolize matrices. The symbols ⊗, vec, and T indicate
Kronecker multiplication, the vec operator, and transposi-
tion, respectively. The indicator variable inti,j equals one
if the i-th observation comes from the j -th non-reference
road type; c̄j denotes the corresponding (possibly nonzero)
intercept cj . Hence, β̄ gathers the non-regularized8 coeffi-
cients and is given by (βT, c̄1, . . . , c̄8−g)

T. The vector xi,2

and the matrix of regularized coefficients �̄ = (γ̄ 1, . . . , γ̄ g)

represent the daily variation and are present only if g > 0.
The discussion of model (1b) is essentially identical, and
hence this appendix focuses exclusively on Eq. 1a.

To this end, denote the vector of response observations
by yT = (y1, . . . , yn) and the design matrix by X =(
X1 X2

)
with blocks X1 = (x1,1, . . . xn,1)

T and X2 =
(x1,2, . . . , xn,2)

T.
In this notation, the least-squares objective becomes

∥
∥y − (

X1 X2
)
(

β̄

vec(�̄)

)
∥
∥2 + λ‖[M ⊗ �2

]
vec(�̄)‖2

=
∥
∥
∥
∥

(
y
0

)

−
(
X1 X2

0
√

λM ⊗ �2

)(
β̄

vec(�̄)

)∥
∥
∥
∥

2

, (5)

wherein the matrix M is a diagonal matrix with j -th diag-
onal element equal to the number of frc classes in daily
variation group j . Finally, 0 symbolizes a matrix or vector
of appropriate size and with all entries equal to zero.

In the unconstrained case λ = 0, least-squares solu-
tions can be obtained as usual. Otherwise, a comparable
multistage procedure becomes relevant as the choice of λ

increases the numerical burden. Most of the latter relies
on the assumption of a full column rank of the data
part (X1,X2) of the design matrix. This may be ensured by
proper grouping of the frc classes.

Firstly, note that the matrices in Eq. 5 are tall in the
sense that they contain many rows and comparatively few
columns. Therefore, the dimension of the problem can be

7Note in this regard that �1 with 1 = (1, . . . , 1)T is zero.
8See footnote 7.

http://creativecommons.org/licenses/by/4.0/
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reduced significantly by virtue of a QR-decomposition QR
of (X1,X2, y). The latter leads to

∥
∥
∥
∥

⎛

⎜
⎜
⎝

R1 R1,2 r1,3
0 R2 r2,3
0 0 r3

0
√

λM ⊗ �2 0

⎞

⎟
⎟
⎠

⎛

⎝
β̄

vec(�̄)

−1

⎞

⎠
∥
∥
∥
∥

2

.

In addition, the triangular form of the upper part—given

by R—allows to first focus on ˆ̄�. Subsequently, the opti-

mal ˆ̄β follows from (back)solving the triangular system

R1
ˆ̄β = r1,3 − R1,2vec( ˆ̄�) .

Solving the least-squares problem

∥
∥

(
R2√

λM ⊗ �2

)

vec(�̄) −
(
r2,3
0

)
∥
∥2 .

yields the daily variation matrix estimate ˆ̄�, which therefore
equals

vec( ˆ̄�) = [
RT
2R2 + λM2⊗�2

2

]−1RT
2r2,3

= R−1
2

[
I + λSST]−1r2,3 ,

S = (RT
2)

−1(M ⊗ �2) . (6)

In Eq. 6—and subsequently, I denotes the appropriately
sized identity matrix. In addition, a full singular value
decomposition (SVD) S = USDSVT

S of S aids the consid-
eration of a range of values for λ. Herein US and VS are
orthogonal matrices and DS is diagonal with nonnegative
entries. In fact, this decomposition leads to the representa-
tion

vec( ˆ̄�) = (R−1
2 US)

[
I + λD2

S

]−1
(UT

Sr2,3) , (7)

which reduces the repeated calculation of vec( ˆ̄�) to a
sequence of weighted matrix-vector multiplications.

The representation (7) also facilitates the calculation of
the corresponding GCV criterion for a range of values for λ.
Specifically, the numerator of this criterion—given by the
sum of squared residuals—becomes

‖(I − US

[
I + λD2

S

]−1UT
S)r2,3‖2

︸ ︷︷ ︸

‖λD2
S

[
I+λD2

S

]−1
UT

Sr2,3‖2=
∑

j

(
λd2

j

1+λd2
j

)2

r̄2j

+ r23 ,

wherein dj and r̄j represent the j -th diagonal element ofDS

and the j -th entry of UT
Sr2,3, respectively. Furthermore, the

corresponding denominator is given by the trace of

I − (
X1 X2

)
(
XT
1X1 XT

1X2

XT
2X1 XT

2X2 + λM2⊗�2
2

)−1 (
XT
1

XT
2

)

.

Linearity and the cyclic property of the trace yields

n − trace

[(
XT
1X1 XT

1X2

XT
2X1 XT

2X2 + λM2⊗�2
2

)−1 (
XT
1X1 XT

1X2
XT
2X1 XT

2X2

) ]

,

wherein n denotes the sample size. The first column block
of the latter matrix follows from appending sufficient zero
rows to the bottom of the k1 × k1 identity matrix with k1
being the number of columns of X1. The second column
block amounts to the solution (AT

1,A
T
2)

T of
(
XT
1X1 XT

1X2

0 X̃T
2X̃2 + λM2⊗�2

2

)(
A1

A2

)

=
(
XT
1X2

X̃T
2X̃2

)

,

wherein only A2 is needed for the present application, and
the columns of ˜mxx2 equal the residuals from projecting the
columns of mxx2 onto the column space of mxx1. The 731
equality X̃T

2X̃2 = RT
2R2 identifies the trace of A2 as

trace

[

R2
[
RT
2R2 + λM2⊗�2

2

]−1RT
2

]

= trace
[
I + λD2

S

]−1
.

In summary, the GCV criterion can be obtained as

GCV(λ) =
∑

j

(
λd2j

1+λd2j

)2

r̄2j + r23

n − k1 − ∑
j

1
1+λd2j

,

which is easily evaluated for a wide range of values for λ.
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