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Abstract

Matter produced in relativistic heavy-ion collisions follows the laws of
relativistic hydrodynamics when it has reached thermal equilibrium. The
hydrodynamic model of choice is often the model of a perfect fluid. In
recent years dissipative corrections have been applied to this model to
account for several dissipative phenomena.
A significant part of the changes in the momentum distributions induced

by dissipative phenomena in the description of the created matter actu-
ally takes place when the fluid turns into individual particles. We study
these corrections in the limit of a low freeze-out temperature of the flowing
medium and we show that they mostly affect particles with a higher ve-
locity than the fluid. For these, we derive relations between different flow
coefficients, from which the functional form of the dissipative corrections
could ultimately be reconstructed from experimental data.
Although the dissipative relativistic fluid dynamic description of the

extended matter is quite successful, it requires a prescription for converting
the fluid into particles. We present further arguments in favor of using a
locally anisotropic momentum distribution for the particles emitted from
the fluid, so as to smooth out discontinuities introduced by the usual
conversion prescriptions. Building on this ansatz, we investigate the effect
of the anisotropy on several observables of heavy-ion physics.
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1 Introduction

Our current understanding of nature involves four fundamental forces:
gravity, electromagnetism, the weak force and the strong force. Electro-
magnetism and the weak force are joined together in a unified theory of
electro-weak interaction and it is attempted to further include the strong
force to gain a grand unified theory. Regardless, the strong force is in itself
an interesting subject for studies together with the fundamental particles
which are affected by it: quarks and gluons. All together, quarks, gluons
and the strong force are forming the "ingredients" to quantum chromody-
namics (QCD), one of the most fundamental physical theories describing
the subatomic matter.
Since the first steps of QCD, which started more or less with Gell-

Mann’s eightfold way1 in 1961 as a phenomenological model, many new
features were found. Especially one should name the color degrees of free-
dom or the running coupling which leads to the concept of asymptotic
freedom. The latter one results in a very interesting property of QCD.
Depending on the energy scale at which one examines strong interactions,
the strength of the coupling varies. For low energies the coupling is very
strong, resulting in the phenomenon of confinement. Confinement means
that the constituents of QCD (quarks and gluons) can never be set free
like, for example, electrons. Quarks and gluons always have to be bound
together to hadrons. On the other hand, for very high energies the cou-
pling is very small and the binding of the hadrons weakens. However, this
does not lead to free quarks and gluons, since the concept of color provides
no possibility for free quarks or gluons.
The concept of color implies that every quark carries an internal degree

of freedom which can take one of three possible colors2, often called red,

1Another attempt to describe subatomic matter was Feynman’s parton model. How-
ever the parton model only plays a minor role nowadays.

2We neglect the colors of the gluons since this subject is more complicated and not
relevant in this thesis.
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1 Introduction

QCD reminder

Deconfinement transition
●Deconfinement
●Color confinement
●Debye screening
●Debye screening
●Phase diagram
●Early Universe

Heavy Ion Collisions

Observables

François Gelis – 2013 Lecture I / IV – Master 2ème année - spécialité NPAC, Orsay, France, Février 2013 - p. 14/34

Deconfinement transition

Individual
nucleons plasma

Quark gluon

Density

■ When the nucleon density increases, they merge, enabling
quarks and gluons to hop freely from a nucleon to its
neighbors

■ This phenomenon extends to the whole volume when the
phase transition ends

■ Note: if the transition is first order, it goes through a mixed
phase containing a mixture of nucleons and plasma

Figure 1.1: Schematic view of the creation of the quark-gluon-plasma. [1]

green and blue3. The observable hadrons however do not carry a color,
therefore every hadron fulfills one of the following two cases: Either, the
hadron is a meson, which consists of a quark with a color and an anti-quark
with the corresponding anti-color, or the hadron is a baryon consisting of
three quarks where every quark has one of the possible three colors. Both
types, mesons and baryons, are called color neutral (white) and are bound
states of quarks.
Going back to high energies: If the interaction weakens, but no colored

particles can be observed, what is actually happening? The answer is
simple: Only the interaction between the quarks weakens, resulting in the
effect seen in figure 1.1. The individual hadrons are starting to dissolve
and form a single form of matter, called the quark-gluon-plasma (QGP).
Since the proposition of the QGP it has been studied, theoretically and
experimentally.
The theoretical frameworks for QCD, respectively the QGP, are pertur-

bative QCD (pQCD) or lattice QCD (lQCD). Both techniques describe
QCD and the QGP very well, but only in a certain region. pQCD works
for high temperatures, while lQCD needs a vanishing chemical potential.
The experiments in which the QGP is probed are relativistic heavy-ion

3It may be obvious, but quarks and gluons do not have an actual color. Instead it is
just a name for a new degree of freedom.
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Figure 1.2: Schematic view of a relativistic heavy-ion collision. [2]

collisions. A schematic view of a typical collision in such an experiment
is shown in figure 1.2. As it turns out, the created matter in such colli-
sions has many different stages, starting with a pre-equilibrium phase and
ending with free streaming hadrons.
The challenge is to combine the different stages of a heavy-ion collision

with the theoretical frameworks of pQCD or lQCD to achieve physical
insight to the produced matter. This is still a "work in progress". How-
ever, if one is only interested in understanding the process of heavy-ion
collisions, it may be promising to revert back to an effective theory in-
stead of the real theories. Effective theories, like the popular theory of
hydrodynamics, have the advantage that they can be much simpler than
the real QCD-theories, which allows a faster framework to examine and
understand heavy-ion collisions.

Experiments
The details of the different properties of QCD, like the QGP and confine-
ment, are still a subject of current research. Experimentally, these subjects
are probed in relativistic particle colliders. At present, the two largest
colliders in operation are the Large Hadron Collider (LHC) at CERN
with its most important experiments ALICE, ATLAS and CMS4, and the
Relativistic Heavy Ion Collider (RHIC) at BNL with the PHENIX and
STAR experiments.
Both colliders are circular colliders, where the heavy-ions are first accel-

4There are further experiments at LHC, for example LHCb.
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1 Introduction

erated in smaller linear and circular accelerators before they are inserted
into the main storage ring, where the ions circulate until they collide in
the different experiments. The heavy-ions used in the experiments are
gold at RHIC and lead at LHC. The kinetic energy of the individual ions
at RHIC is about 100 GeV per nucleon, while at LHC an energy of about
2 TeV per nucleon can be achieved.
Inside the collider several packets of heavy-ions, called bunches, are

circling around, both clock-wise and counter-clock-wise, in two different
tubes. The experiments are placed where the tubes intersect, which allows
the two "beams" of heavy-ions to collide. The actual experiments consists
of several detectors for different particles, such that the particle type (and
therefore its quantum numbers, like mass, charge, etc.), the kinetic energy,
and the position of the detection can be extracted. Different detectors are
needed for each individual experiment, depending on the particle type it
should detect. Most of the detectors in the experiments are build per-
pendicular around the collider, similar to a big cylinder. Few are placed
near the entrance and exit of the experiment, close to the beam, where
the most energetic particles are observed.
Starting from QCD-theories, it is possible to calculate various cross sec-

tions which can be tested against the experimental results. Unfortunately
not only calculating the cross sections itself, but also relating them to
the experimental data, can be a challenging task. It seemed therefore
promising to use an effective theory to describe the experimental results.

Effective theories
The QGP created in heavy-ion collisions is often called a "strongly inter-
acting matter" or, more simply, a fireball. This implies that the created
particles are viewed as a form of matter instead of individual particles.
This allows us to use macroscopic thermodynamic concepts like tempera-
ture and pressure. Then it is natural to describe the dynamical evolution
of the collision with a macroscopic approach, namely hydrodynamics. This
idea dates back to 1953, proposed by L. D. Landau [3].
Experimental data underlines the concept, that the created matter in

heavy-ion collisions acts like a fluid [4]. The most striking experimental
observation is the phenomena of jet quenching [5]. If two particles, for
example protons, collide, several new particles are created in pairs due to
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the conservation of momentum and energy. It is possible that such a single
particle pair can gain a large amount of kinetic energy and both particles
fly in two opposing directions, accounting for momentum conservation.
The two particles can later be observed distinctly in the detectors and
are called jets. In the presence of the fireball only one jet is observed.
The other particle has to traverse through the dense matter of the fireball
and in the process loses momentum and energy until it can no longer be
detected individually.
The chapter concludes with two remarks. Recent experimental data

showed that the matter created in heavy-ion collisions is not in a global
thermal equilibrium. However, many older descriptions of the QGP de-
pend on this assumption of a global thermal equilibrium and seem to
be no longer valid. Nevertheless, local thermal equilibrium can still be
achieved during the process of a heavy-ion collision. For effective theories
like hydrodynamics a local thermal equilibrium is sufficient enough to be
applied. Still, this also shows clearly the limits of effective theories. If one
can not assume local thermodynamic equilibrium, hydrodynamics is not
applicable. Indeed this is happening at the beginning, after the fireball is
created, and at the end, when the individual hadrons are set free (figure
1.2). Another possible theory to describe the collision is a kinetic theory,
but compared to hydrodynamics this theory is more complex.
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1 Introduction

Outline
In this thesis we use the effective theory of relativistic hydrodynamics to
describe the last stage of a heavy-ion collision. In this last stage the QGP
disintegrates into several hadrons, a process which is called freeze-out.
The whole process of freeze-out is still not completely understood, both
in theoretical and experimental aspects, and is still a subject to current
research.
From a theoretical point of view, the main problem of the freeze-out is

that the created hadrons can not be described by the equations of hydro-
dynamics and a new theory has to take its place, for example a kinetic
theory. Nonetheless, it is possible to use an ansatz for the freeze-out itself
to calculate possible observables of the later detected hadrons. Here we
restrict ourself purely to the theoretical part. The ansatz involves aspects
of both sides at the freeze-out. It includes the momenta of the created
hadrons and the flow profile of the fluid-like QGP.
In the presented work the flow profile is modified. We start with a

perfect fluid flow for the QGP and include separately dissipative and
anisotropic corrections. The dissipative corrections are used to expand the
known relations between different flow harmonics and to find new meth-
ods to extract the dissipative properties from experimental data. The
anisotropic corrections are utilized to smooth out the transition from a
fluid to individual particles and the effects on several observables are in-
vestigated.
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Structure
The layout of the thesis is structured as follows:
Starting with a brief introduction of relativistic heavy-ion collisions in

chapter 2, we set the focus on the different stages of a heavy-ion collision.
Furthermore, three possible observables of heavy-ion collisions, the particle
momentum spectrum (transverse momentum spectrum), anisotropic flow,
and HBT-radii are illustrated. For all three observables one possible way
to calculate them is shown.
In chapter 3 we present the basics of relativistic hydrodynamics for a

perfect and for a dissipative fluid. Although the hydrodynamic equations
are not explicitly needed in the thesis, we can extract some concepts and
ideas for the following chapters, mainly regarding first order dissipative
corrections. Finally, we present a possible calculation method for the fields
with the help of the Boltzmann equation.
The subject of the chapters 4 and 5 is to calculate the observables from a

specific ansatz, the sudden freeze-out approximation. The fourth chapter
is a short summary of an article from 2006 by N. Borghini and J.-Y.
Ollitrault [6], where a perfect fluid was involved. In the fifth chapter
dissipative corrections are introduced to enhance the previous calculations.
The chapter concludes with a comparison to a numerical model, the blast-
wave model.
The last part is grouped into two chapters. In chapter 6 the concepts

of anisotropic hydrodynamics are introduced, along with a motivation for
the need of an anisotropic momentum distribution. Afterwards, the basic
hydrodynamical fields are calculated for an anisotropic fluid, which is used
in chapter 7 to once more calculate the observables within the sudden
freeze-out approximation. However, compared to chapter 5, the obtained
results are only numerical calculations within the blast-wave model.
The thesis closes with a conclusion, where the results of both types of

corrections, dissipative and anisotropic, are summarized. Also, an outlook
is provided.
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1 Introduction

Conventions
Throughout the thesis the following conventions are used:

• 4-vectors are written in sans serif font or in component representa-
tion (e.g. x or xµ), normal vectors are denoted by an arrow above
(e.g. ~p ) and two-dimensional vectors are in bold font with an arrow
above (e.g. ~ut).

• In our calculations we use natural units, electronvolt (eV) and fermi
(fm), and therefore set ~ = c = kB = 1.

• In Minkowski coordinates the following metric is used

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

• In cylindrical coordinates we use the metric

gµν =


τ η r φ

τ 1 0 0 0
η 0 −τ2 0 0
r 0 0 −1 0
φ 0 0 0 −r2

.
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2 Relativistic heavy-ion collisions

Relativistic collisions of heavy-ions are a well established tool to study
subatomic matter. With increasing collision energy subatomic matter is
probed at finer resolutions and new facets of the subatomic world are
revealed.
In a collision at very low energies the nuclei as a whole are interact-

ing with each other, while the nucleons, protons and neutrons, inside are
unaffected. As the energy increases, the nucleons start to interact and
the production of new particles is initiated. At even higher energies, the
quarks and gluons inside the individual nucleons start to interact, which
is the beginning of relativistic heavy-ion collisions. But unlike at low
and medium energies, where the collisions can be described in terms of
nucleon-nucleon-collisions, in relativistic heavy-ion collisions such a de-
scription fails. [7]
In the following sections, we explain the different stages of a relativistic

heavy-ion collision and how to model them. Furthermore, we present
possible observables of a collision and explain in detail three of them: the
particle momentum distribution, the anisotropic flow, and the HBT-radii.

2.1 Stages of relativistic heavy-ion collisions
A heavy-ion collision at relativistic energies passes through several stages
until the hadrons are created, which are later detected in the experiments.
A space-time diagram with the different stages of the collision is shown
in figure 2.1 on page 16. Starting from the diagram in 2.1 the following
stages are classified. [7]

1. Pre-equilibrium
At relativistic energies, the initial collisions are expected to be at
partonic level. The initial partonic collisions produce the so called
fireball, a dense and highly excited state of matter, consisting to
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2 Relativistic heavy-ion collisions582 Relativistic Hydrodynamics of Non-Selfgravitating Fluids

Fig. 11.29 Spacetime diagram of the collision between a projectile and a target moving at ultrarelativis-
tic speeds along the z-direction. The collision takes place at z = 0, t = 0 and the diagram reports the dif-
ferent stages after the collision: pre-equilibrium, hydrodynamic evolution, hadronisation and freeze-out.
The proper time τ is constant along hyperbolas.

very high and above the deconfinement transition. Note that the central-rapidity region also
expands in the perpendicular direction, which we indicate as r.

The purely spatial schematic diagram in Fig. 11.28 can be contrasted with the (t, z)
centre-of-mass spacetime diagram shown in Fig. 11.29, representing the different stages of
the collision. More specifically, in such a diagram, the target and the projectile nuclei follow
trajectories close to the past light cone and collide at z = 0, t = 0, with the proper time being
defined as

τ := (t2 − z2)1/2 , (11.286)

and therefore constant on the hyperbolas given by Eq. (11.286).
At very short (proper) times after the collision, the degrees of freedom excited are weakly

interacting, the constituents rescatter, but their distributions are not thermal, so that they move
essentially freely with velocity vz away from the centre of the collision; this is indicated as the
pre-equilibrium region in Fig. 11.29 and would correspond to straight lines with velocity z/t
from z = 0 in the spacetime diagram. Later on, at a proper time τ0 ∼ 1 fm ∼ 3.3 × 10−24 s,
the interactions become sufficiently strong to establish local thermodynamic equilibrium and
thus allow for the possibility of hydrodynamic flow. For collisions with energies in the range
100–270 GeV, the post-collision energy density is (Baym et al., 1983)

e0 ∼ (0.3 − 0.4)A1/3/t ∼ 2 GeV/fm
3
, (11.287)

where t is expressed in fm and where we have considered A ∼ 238. Assuming now that
the matter at τ0 consists of a thermalised mixture of quarks and antiquarks (q, q̄) and gluons

Figure 2.1: Space-time diagram of a collision. The colliding ions are la-
beled as projectile and target and collide at the origin of the dia-
gram. [8]

a large extend of gluons. This fireball is not in equilibrium and
the constituents collide frequently to establish a local equilibrium
state. The time to establish the local equilibrium state is called
thermalization time and it takes approximately 1 fm to reach this
state.

2. Expansion (Hydrodynamics and Hadronization)
In the (thermalized) equilibrium state, the constituents of the fire-
ball are the individual partons (quarks and gluons). The partons are
still in a deconfined state and the whole fireball has a thermal pres-
sure, acting against the surrounding vacuum. Therefore the fireball
undergoes a collective expansion, often described by hydrodynam-
ics. During the expansion, the (energy) density decreases and the

16



2.1 Stages of relativistic heavy-ion collisions

system cools down. Below a critical temperature the deconfined par-
tons hadronize and are forming light particles, for example pions. In
the hadronization stage the entropy density decreases very fast over
a small time interval. This implies that the fireball expands rapidly,
while the temperature remains approximately constant. This pro-
cess occurs due to the total entropy conservation.

3. Freeze-out
Even after the hadronization, the matter can still be in local thermal
equilibrium. Constituent hadrons collide to maintain equilibrium,
but the system is still expanding and cooling down. Eventually, a
stage is reached in which inelastic collisions become too small to keep
up with the expansion. This stage is called the chemical freeze-out,
where the hadron abundances remain fixed after this stage. How-
ever, the system remains in its expansion and still cools down, since
elastic collisions may still be happening. At a certain point, the
system reaches a stage where the average distance between the con-
stituents is larger than the interaction range. Collisions between the
hadrons are so infrequent that the local thermal equilibrium can-
not be maintained. The hydrodynamic description breaks down and
the hadrons decouple, they freeze-out. This is the so called kinetic
freeze-out and the free floating hadrons from this stage are later
detected in the experiments.

There are several models for relativistic heavy-ion collisions. They are
roughly categorized into two groups: static and dynamic models. The
static models try to explain experimental results by modeling the freeze-
out conditions, while the dynamic models try to answer how the freeze-
out is reached after the initial collision occurred. Currently there are two
major dynamic models: hydrodynamics and kinetic theory. Even if the
hydrodynamic model is restricted from the expansion stage to freeze-out1,
it is more elementary compared to a kinetic model. As for the static
model, we restrict ourself to the popular Cooper-Frye model to describe
the kinetic freeze-out. The chemical freeze-out is neglected, therefore we
refer to the kinetic freeze-out simply by writing freeze-out.

1A kinetic theory may describe the whole process from pre-equilibrium to freeze-out.
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2 Relativistic heavy-ion collisions

2.2 Observables
In this section the main goal is to characterize possible observables of
a relativistic heavy-ion collision. There are many different observables,
starting with rather simple ones like the particle multiplicity, which is
simply counting all particles produced in a collision, up to more complex
ones like different correlation functions.
Here we want to present two of these observables: The particle mo-

mentum distribution and the anisotropic flow. Both observables are used
to describe the collective dynamics of a heavy-ion collision and can be
linked together. As written before, we are interested in the kinetic freeze-
out, therefore we focus on the particle momentum distribution and the
anisotropic flow at this point in the dynamical process.

2.2.1 Particle momentum distribution
Like the particle multiplicity, the particle momentum distribution is a
rather simple observable. The actual measurement in real experiments is
a basic task and used to calculate further properties of the created matter
in the collisions. The particle momentum distribution is the number of
particles in a certain momentum interval, which is written as d3N/d3~p.
Unfortunately this expression is not invariant under Lorentz transforma-
tion. The best method to achieve an invariant observable and therefore
making it easier to handle, is to multiply d3N/d3~p by the energy E~p of
the corresponding particles with momentum ~p. The new observable is the
particle momentum distribution

E~p
d3N

d3~p
. (2.1)

In the next step we want to present a possible method to calculate the
particle momentum distribution (2.1). The method we choose was in-
troduced by F. Cooper and G. Frye in 1974 [9] and led to the known
Cooper-Frye formula. The general idea of their work was to describe the
particle momentum distribution on a certain surface where it depends on
the one-particle distribution with a collective velocity ~v. In the following
a short derivation is presented, found in [10, p. 232].
Starting with the criterion that when the temperature T reaches a cer-

tain point Tf all processes in the created matter stop. This behavior is
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2.2 Observables

easily adopted in the hydrodynamic description of the heavy-ion collision.
The condition T = Tf defines a three-dimensional hypersurface in the
four-dimensional Minkowski space-time. Due to the hydrodynamic de-
scription we know other thermodynamical quantities and flow parameters
on the hypersurface and together with these informations we can calculate
different observables, like the particle momentum distribution.
We start in the local rest frame of the particles, the particle number in

a small volume element dV at equilibrium can be expressed as

dN = dV n = dV

∫
d3~p feq(E~p). (2.2)

The issue with this formula is that it is not Lorentz invariant and therefore
it is only valid in the rest frame of the particles. We generalize (2.2) by
writing it in a covariant way

dN = dV n = dVµ

∫
d3~p

E~p
pµf(pνuν) (2.3)

with the four-velocity field uν of the fluid modeled with the help of hydro-
dynamics and dV µ = dV uµ. It is clear, that in the rest frame where uµ is
equal to (1, 0, 0, 0), the equation (2.3) is reduced to equation (2.2). The
total number of particles is obtained by integrating over the volume ele-
ment dV µ. However, both dV µ and uµ depend on the space-time position
x. We achieve the total particle number

N =
∫
dVµ(x)

∫
d3~p

E~p
pµf(pνuν(x)). (2.4)

With this equation we are almost finished and can determine the distri-
bution of the emitted particles on the hypersurface, but an important
modification has to be done yet.
The volume elements cannot be generally written in the form dV µ =

dV uµ. For example, at the early stages of the collision the emitted parti-
cles have a surface character and an appropriate fluid element is obtained
by the multiplication of the area of the emission region by the time this
emission takes place. In this case dV µ is space-like and thus the structure
of equation (2.4) is of the desired form. But the fluid element dV µ(x)
should be taken independently of uµ(x). It is reasonable that the form
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2 Relativistic heavy-ion collisions

of dV µ(x) should follow from the model used to describe the space-time
evolution of the matter.
With this remark in mind we rewrite the number of particles N which

decouple on the freeze-out hypersurface Σ:

N =
∫
d3~p

E~p

∫
dΣµ(x) pµf(x, p). (2.5)

This is the first form of the Cooper-Frye formula. The element dV moving
with the four-velocity uµ is replaced by the three-dimensional element of
the freeze-out hypersurface dΣµ. With the help of differential geometry it
is possible to calculate dΣµ by using

dΣµ = εµνρσ
dxν

dν

dxρ

dρ

dxσ

dσ
dνdρdσ, (2.6)

with εµνρσ the Levi-Civita tensor and three parameters ν, ρ, and σ, which
are used to parameterize the three-dimensional hypersurface in the four-
dimensional Minkowski space-time. More details on dΣµ can be found
in [10, p. 233-235]. The particle momentum distribution from equation
(2.5) is rewritten to

E~p
d3N

d3~p
=
∫
dΣµ(x) pµf(x, p). (2.7)

If the particles are still in local equilibrium we replace the function f(x, p)
with the equilibrium distribution function

feq(pνuν) = 1
(2π)3

1
e
pνuν−µ

T − α
. (2.8)

For α = +1 the formula (2.8) corresponds to the Bose-Einstein statistics,
for α = −1 to the Fermi-Dirac statistics and in the limit α → 0 the
classical Maxwell-Boltzmann statistics are obtained.

2.2.2 Anisotropic Flow
When two heavy-ions collide they almost never collide head on. Instead
the collision is characterized by an impact parameter b. At finite b every
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Figure 2.2: The reaction plane and the almond-shaped form of the collision
zone. [11]

collision has a reaction plane, spanned by the beam axis and the orien-
tation of the impact parameter b in the transverse plane. As a result,
non-central collisions tend to have an almond-shaped area where the colli-
sion took place and therefore an asymmetric distribution in space remains
(see figure 2.2). After a certain amount of time the asymmetry in space
is transferred to momentum-space and is then also visible in the particle
momentum distribution. [11]
There is a simple explanation for this behavior: A particle moving along

the long axis of the collision zone has a larger probability to scatter and
then change direction, compared to a particle along the short axis. The
observed particle emission is azimuthal anisotropic and grows even more
anisotropic the more rescattering occurs. The anisotropy serves as a mea-
surement of the frequency of rescatterings during the dense expansion
phase of a heavy-ion collision. [12,13]
The next step is to characterize the momentum distribution as a func-

tion of the azimuthal angle φ with respect to the reaction plane angle φRP .
The reaction plane is a crucial point in this process since it may change
from collision to collision. Instead of φ the difference φ−φRP seems more
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2 Relativistic heavy-ion collisions

fit to characterize the azimuthal dependence. Unfortunately, there is a
downside to this description: In a heavy-ion collision the reaction plane
cannot be measured and one has to find other options to measure the az-
imuthal angle. In a theoretical treatment it is possible to assume that the
reaction plane does not change, which is used in this thesis.
In general there are two sources of azimuthal asymmetries: Statistical

fluctuations and correlations within the reaction plane. While the first one
should always be present even in the absence of a reaction plane, the second
one manifests itself in form of collective behavior of the produced matter.
The resulted anisotropy is quantified in terms of a Fourier expansion of
the azimuthal distribution within the particle momentum distribution

E~p
d3N

d3~p
= d2N

2πp⊥dp⊥dy

[
1 +

∞∑
n=1

2vn cos(n(φ− φRP ))
]
, (2.9)

where d3~p/E~p = p⊥dp⊥dydφ with the transverse momentum p⊥ and the
momentum rapidity y. Only the even cosine part is kept, the odd sine
part is zero due to the symmetry under φ→ −φ. [12]
The flow coefficients vn are expressed as expectation values of the cosine

from (2.9)

vn = 〈cos(n(φ− φRP ))〉 =
∫ 2π

0 dφ d2N
2πp⊥dp⊥dy · cos(n(φ− φRP ))∫ 2π

0 dφ d2N
2πp⊥dp⊥dy

. (2.10)

In general the coefficients (2.10) may depend on the transverse momentum
p⊥ and the rapidity y and they can differ from particle species to particle
species. At first, when the idea of collective flow was presented, it was
common to neglect all vn for odd n, since for identical particles in heavy-ion
collisions at mid-rapidity (y ≈ 0) the collision region is symmetric under
φ → −φ. Recently, more sources for anisotropic flow, like fluctuations,
have been considered which result in non-vanishing terms for odd n. The
individual vn have different names which originate from the geometrical
shape associated with the corresponding coefficient: v1 is called the "direct
flow", v2 is the "elliptic flow", v3 is the "triangular flow", and so on. A
last remark: Non-vanishing flow coefficients may indicate that the created
medium in heavy-ion collisions consists of interacting particles. If the
collision would be only a superposition of independent collisions between
different nucleons, no φ-distribution should be visible. [11]
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2.3 Hanbury-Brown Twiss interferometry
This section covers the so called Hanbury-Brown and Twiss interferometry,
more commonly known as HBT-interferometry. The HBT-interferometry
is the correlation of identical particles, mainly pions, to get access to the
size of the emitting source, in our case the heavy-ion collision. Originally,
HBT-interformetry was invented for examining far away galactic sources,
but it turned out to be a good measurement in relativistic heavy-ion col-
lisions. However, what is the source in the case of a heavy-ion collision?
It is common to assume that the source reflects the position of the pions
when they freeze-out, this means when they scatter for the last time. [11]
The following derivation is taken from [10, p. 246-256], but the rather

old but still complete article [14] by G. Baym serves also as a good source.

2.3.1 Time-independent correlation function
We start with the two-particle distribution P2(~p1, ~p2), the one-particle
distributions P1(~p1) and P1(~p2), and the correlation function C(~p1, ~p2)
which are all related by

C(~p1, ~p2) = P2(~p1, ~p2)
P1(~p1)P1(~p2) (2.11)

The one- and two-particle distribution are directly related to the particle
momentum distribution in section 2.2.1 by

P1(~p1) = E~p1

d3N

d3~p1
(2.12)

P2(~p1, ~p2) = E~p1E~p2

d6N

d3~p1d3~p2
. (2.13)

We assume that there are two pions at positions ~x1 and ~x2 randomly
distributed in space and they have momenta ~p1 and ~p2, which are detected
far away from the source of the pions. Furthermore, the source size is
much smaller than the distance to the particle detectors. This means that
the momentum of a particle seen at a detector does not depend on the
position where it was emitted. The distribution of the positions is given
by a density distribution ρ(~x). It is possible to express the two-particle
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distribution as follows

P2(~p1, ~p2) =
∫
d3~x1d

3~x2 ρ(~x1)ρ(~x2) |Ψ12(~p1, ~p2, ~x1, ~x2)|2 , (2.14)

where Ψ12 is the symmetric wave function of the pions

Ψ12(~p1, ~p2, ~x1, ~x2) = 1√
2

(
ei~p1·~x1ei~p2·~x2 + ei~p1·~x2ei~p2·~x1

)
. (2.15)

For further proceedings we introduce two new variables, the relative mo-
mentum

~q ≡ ~p1 − ~p2 (2.16)
and the center of mass momentum

~k ≡ 1
2(~p1 + ~p2). (2.17)

With these two variables equation (2.15) is rewritten to

Ψ12(~k, ~q, ~x1, ~x2) = 1√
2
ei
~k·(~x1+~x2)

[
e
i
2~q·(~x1−~x2) + e−

i
2~q·(~x1−~x2)

]
, (2.18)

which is further simplified to∣∣∣Ψ12(~k, ~q, ~x1, ~x2)
∣∣∣2 = 1 + 1

2
[
ei~q·(~x1−~x2) + e−i~q·(~x1−~x2)

]
. (2.19)

This result leads to the final form of the two-particle distribution

P2(~k, ~q ) =
∫
d3~x1d

3~x2 ρ(~x1)ρ(~x2)
[
1 + 1

2
(
ei~q·(~x1−~x2) + e−i~q·(~x1−~x2)

)]
=
∫
d3~x1 ρ(~x1)

∫
d3~x2 ρ(~x2) +

∣∣∣∣∫ d3~x ρ(~x)e−i~q·~x
∣∣∣∣2 . (2.20)

The one-particle distribution is obtained in a similar way as

P1(~p ) =
∫
d3~x ρ(~x)

∣∣∣ei~p·~x∣∣∣2 =
∫
d3~x ρ(~x), (2.21)

which is independent of the momentum, reflecting the uncertainty relation.
From the definition of the correlation function (2.11) the final result is

C(~k, ~q ) = 1 +

∣∣∣∫ d3~x ρ(~x)e−i~q·~x
∣∣∣2

[
∫
d3~x ρ(~x)]2

. (2.22)

The correlation C(~k, ~q ) is directly related to the Fourier transformation
of the source density at the point ~q. For small ~q the correlation function
takes a value of 2.
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2.3.2 The source function
The model from 2.3.1 is still rather simple and therefore it lacks an impor-
tant feature: The time dependency of the pion source. This dependency
is important for pion production since pions may be created close to each
other but the time distance is large and therefore no correlation should be
present. For a better description of the HBT-radii, we want to introduce
the source function, also sometimes called the emission function. [10, p.
237]
The emission function is defined as follows

S(x, ~p ) ≡
∫
dΣµ(x′) pµδ(4)(x′ − x)f(x′, p). (2.23)

The physical interpretation of the emission function is rather simple. The
emission function gives the number of particles emitted in the phase-space
element per unit time. If we integrate the emission function over space
and time we achieve the particle momentum distribution (2.7)∫

d4x S(x, ~p ) =
∫
dΣµ(x) pµf(x, p) = E~p

d3N

d3~p
. (2.24)

The concept of the emission function is useful in the modeling of the phys-
ical conditions at the freeze-out, since it is in general not restricted to the
hydrodynamical picture. The emission function is often used to compute
particle spectra, but here we want to use it for HBT-interferometry and
especially the HBT-radii.
To use the emission function we make an ansatz for the Fourier trans-

formation of the density matrix %(~p1, ~p2) depending on the source function

%(~p1, ~p2) = %(~k + 1
2~q,

~k − 1
2~q ) =

∫
d4x eiqµx

µ
S(x,~k ). (2.25)

The momenta ~k and ~q are defined by the equations (2.17) and (2.16). To
generalize equation (2.25) to full space-time integrals, we have to define
k0 and q0 to achieve full four-momenta kµ and qµ. The most applicable
way is to assume that the pions are on the mass shell which leads to the
following definitions

k0 = 1
2

(√
m2 + ~p 2

1 +
√
m2 + ~p 2

2

)
(2.26)

q0 =
√
m2 + ~p 2

1 −
√
m2 + ~p 2

2 . (2.27)
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With the density matrix and the relation (2.24) it is possible to rewrite
the correlation function (2.11) to

C(~p1, ~p2) = 1 + |%(~p1, ~p2)|2
%(~p1, ~p1)%(~p2, ~p2)

= 1 +

∣∣∣%(~k + 1
2~q,

~k − 1
2~q )

∣∣∣2∫
d4x S(x, ~p1)

∫
d4y S(y, ~p2)

= 1 +

∣∣∣∫ d4x eiqµx
µ
S(x,~k)

∣∣∣2∫
d4x S(x,~k + 1

2~q )
∫
d4y S(y,~k − 1

2~q )
, (2.28)

where the following relation of the source function to the density matrix
was used

%(~p, ~p) = E~p
d3N

d3~p
=
∫
d4x S(x, ~p ). (2.29)

Very often the q-dependence of the denominator is neglected because it is
assumed to be rather weak. This is called the smoothness approximation

S(x,~k + 1
2~q )S(y,~k − 1

2~q ) ≈ S(x,~k) S(y,~k). (2.30)

Due to this approximation equation (2.28) is rewritten to

C(~k, ~q ) = 1 +

∣∣∣∫ d4x eiqµx
µ
S(x,~k)

∣∣∣2∣∣∣∫ d4x S(x,~k)
]2 . (2.31)

We conclude that the correlation function is the Fourier transformation of
the emission function. The range of the correlation function is related to
the space-time extension of the emitting source.

2.3.3 Computing the HBT-radii
In the final step we need to parameterize the emission function. Since
there is no actual way to measure the emission function we have to choose
one, for example a Gaussian function

S(x,~k) = N(~k)e−
1
2 x̃
µ(~k)Bµν(~k)x̃ν(~k). (2.32)
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N(~k) is a normalization factor and the coordinates x̃µ(~k) are deviations
from the mean values xµ(~k),

x̃µ(~k) = xµ − xµ(~k). (2.33)

By performing a diagonalization of Bµν(~k), shown in [10, p. 250-252], it
is possible to express the correlation function as

C(~k, ~q ) = 1 + e−qµ(B−1)µν(~k)qν . (2.34)

One may also rewrite (B−1)µν(~k) to 〈x̃µx̃ν〉(~k) and therefore rewrite (2.34)
to

C(~k, ~q ) = 1 + e−q
µqν〈x̃µx̃ν〉(~k) (2.35)

where the 〈...〉 is an abbreviation for

〈f〉 =
∫
d4x f(x,~k)S(x,~k)∫

d4x S(x,~k)
. (2.36)

We rewrite qµqν〈x̃µx̃ν〉(~k) to obtain the HBT-radii

qµqν〈x̃µx̃ν〉(~k) =
3∑

i,j=1
qiqj〈(x̃i − βit̃)(x̃j − βj t̃)〉(~k) (2.37)

=
3∑

i,j=1
qiqjR2

ij(~k),

with βi = ki

k0 . The matrix R2
ij(~k) is symmetric under permutation of i and

j, therefore it only consists of six components and is further simplified by
choosing the right coordinate system, the so called Out-side-long-system2.
In this system the vector ~k is simplified to the pair momentum

~k = (k⊥, 0, k‖). (2.38)

The z-axis coincides with the beam axis of the heavy-ion collision and
determines the long-direction. In the transverse plane the x-axis is chosen
parallel to the vector component of the momentum pair in (2.38), which

2Sometimes this coordinate system is called Bertsch-Pratt-system.
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is transverse to the beam direction and therefore fixes the out-direction.
The remaining y-axis determines the side-direction. The R2

ij(~k) matrix
consists of the following elements: The diagonal elements

R2
11(~k) = R2

out(~k) = 〈(x̃− β⊥t̃)2〉(~k) (2.39a)
R2

22(~k) = R2
side(~k) = 〈ỹ2〉(~k) (2.39b)

R2
33(~k) = R2

long(~k) = 〈(z̃ − β‖t̃)2〉(~k), (2.39c)

and the off-diagonal elements

R2
12(~k) = R2

out−side(~k) = 〈(x̃− β⊥t̃)ỹ〉(~k) (2.40a)
R2

23(~k) = R2
side−long(~k) = 〈ỹ(z̃ − β‖t̃)〉(~k) (2.40b)

R2
31(~k) = R2

long−out(~k) = 〈(z̃ − β‖t̃)(x̃− β⊥t̃)〉(~k). (2.40c)

In a cylindrically symmetric system ỹ(~k) is equal to zero because we
have a reflection symmetry with respect to the side-direction, which means
y → −y. In this case all off-diagonal elements linear in ỹ are equal to zero.
Furthermore, if the system is boost-invariant, the off-diagonal element
linear in z̃ is also zero. Finally, in a longitudinally comoving system the
momentum k‖ vanishes and the remaining three matrix elements are

R2
out(k⊥) = 〈(x̃− β⊥t̃)2〉(~k) (2.41a)

R2
side(k⊥) = 〈ỹ2〉(~k) (2.41b)

R2
long(k⊥) = 〈z̃2〉(~k). (2.41c)

These three matrix elements are commonly called the HBT-radii and are
calculated with the help of equation (2.36). Moreover, the correlation
function (2.34) is rewritten to

C(~k, ~q) = 1 + e−R
2
out(k⊥)q2

out−R2
side(k⊥)q2

side−R
2
long(k⊥)q2

long . (2.42)

With these final results we have all equations needed to calculate the
desired observables, namely the particle momentum spectrum (2.7), the
flow coefficients (2.10), and the HBT-radii (2.41).
Before the actual calculations we summarize in the next chapter the

basic fields and equations of relativistic hydrodynamics. These results may
not be needed explicitly, but they provide concepts and ideas necessary
for the following chapters.
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The basic theory in this thesis is hydrodynamics. In this chapter we want
to explain the fundamental concepts of relativistic hydrodynamics. We
start with a short overview of a classical fluid and go on to relativistic
hydrodynamics. For relativistic hydrodynamics we present general predi-
cations, but also take a look at perfect and dissipative relativistic fluids.
The chapter is based on the lecture [15] by N. Borghini.

3.1 Classical fluid
Hydrodynamics is a classical effective field theory which describes a con-
tinuous medium like a fluid or a gas. This means that the theory discards
any relativistic or quantum mechanical effects, uses averages over the mi-
croscopic degrees of freedom of the system and at every point in time and
space assigns physical quantities a certain value.
We want to look closer at the aspects of an effective theory. Instead

of looking at the real degrees of freedom of a physical system, we choose
new degrees of freedom. In hydrodynamics this is done by averaging over
particles in a certain volume V in space and choose the volume as the new
particles of the system. This volume V is often called a fluid-particle and
it has to fulfill two criteria. First, the fluid-particle has to be larger than
the real particles of the system, for example elementary particles or atoms.
The effect of many particles inside one fluid-particle is a reduction of the
microscopic fluctuations of the physical quantities which are relevant for
the system. Second, the fluid-particle has to be much smaller than the
whole system we want to describe. Therefore, when looking at the whole
system, the fluid-particles act as point-like particles.
If a system satisfies these conditions, it fulfills the following relation

lmfp
L
� 1. (3.1)
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I.4 Mechanical stress 13

I.4 Mechanical stress

I.4.1 Forces in a continuous medium

Consider a closed material domain V inside the volume Vt occupied by a continuous medium,
and let S denote the (geometric) surface enclosing V . One distinguishes between two classes of
forces acting on this domain:

• Volume or body forces,(xvi) which act in each point of the bulk volume of V .
Examples are weight, long-range electromagnetic forces or, in non-inertial reference frames,
fictitious forces (Coriolis, centrifugal).
For such forces, which tend to be proportional to the volume they act on, it will later be more
convenient to introduce the corresponding volumic force density.

• Surface or contact forces,(xvii) which act on the surface S, like friction, which we now discuss
in further detail.

V

S

d2S ~en

d2 ~Fs

Figure I.2

Consider an infinitesimally small geometrical surface element d2S at point P . Let d2 ~Fs denote
the surface force through d2S. That is, d2 ~Fs is the contact force, due to the medium exterior to V ,
that a “test” material surface coinciding with d2S would experience. The vector

~Ts ⌘
d2 ~Fs

d2S , (I.20)

representing the surface density of contact forces, is called (mechanical) stress vector (xviii) on d2S.
The corresponding unit in the SI system is the Pascal, with 1 Pa = 1 N·m�2.

Purely geometrically, the stress vector ~Ts on a given surface element d2S at a given point can
be decomposed into two components, namely

• a vector orthogonal to plane tangent in P to d2S, the so-called normal stress(xix); when it
is directed towards the interior resp. exterior of the medium domain being acted on, it also
referred to as compression(xx) resp. tension(xxi);

• a vector in the tangent plane in P , called shear stress(xxii) and often denoted as ~⌧ .

Despite the short notation adopted in Eq. (I.20), the stress vector depends not only on the
position of the geometrical point P where the infinitesimal surface element d2S lies, but also on the
(xvi)Volumenkräfte (xvii)Oberflächenkräfte (xviii)Mechanischer Spannungsvektor (xix)Normalspannung
(xx)Druckspannung (xxi)Zugsspannung (xxii)Scher-, Tangential- oder Schubspannung

Figure 3.1: d2S and d2 ~FS on the surface S of a volume V. [15]

The fraction (3.1) is called the Knudsen-number. It consists of two length
scales, the mean free path length lmfp and the typical size of the system
L. While the second length scale is self-explaining, the mean free path
length is a measurement for the distance a particle travels until it interacts
with another particle. If the Knudsen-number is much smaller than one,
the particles in the system interact with each other almost certainly. A
medium which fulfills the condition (3.1) is a continuous medium.
A continuous medium is further subclassified into solid state bodies and

fluids. The two types differ in the response to external forces on them.
Possible external forces are volume forces and surface forces. For example,
volume forces are the weight force or long-range electromagnetic forces and
surface forces are frictional forces. We define the mechanical stress tensor
(see figure 3.1) as

~TS ≡
d2 ~FS
d2S (3.2)

to classify the surface forces. It represents the surface density of contact
forces on the surface d2S. The stress vector ~TS on a given surface element
d2S at a point P is decomposed into two components:

• a vector orthogonal to the tangent plane in P to d2S, called the
normal stress. It is also referred to as compression or tension.

• a vector in the tangent plane in P , called the shear stress. It is often
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denoted by ~τ .

With the help of the notion of mechanical stress, we define a fluid:

A fluid is a continuous medium that deforms itself as long as it
is submitted to shear stress.

Or from another viewpoint: In a fluid at rest or in a reference frame
with respect to which it is at rest, the mechanical stresses are necessarily
all normal.
Fluids are described by several fields, while the field dynamics are ob-

tained by rewriting conservation laws with the help of the Reynolds trans-
port theorem

DG(t)
Dt

=
∫
V

∂

∂t
[g(t, ~r )ρ(t, ~r )] d3~r +

∮
S

[g(t, ~r )ρ(t, ~r )~v(t, ~r ] · d2 ~S. (3.3)

The theorem states the following: The usual laws of dynamics are valid
only for closed systems and not for open systems. Accordingly, these laws
involve time derivatives which follow the system in its motion, the material
derivative (substantial derivative)D/Dt. The Reynolds transport theorem
(3.3) expresses the latter for extensive quantities G(t), in terms of local
densities g(t, ~r ) attached to a fixed spatial position. G(t) and g(t, ~r ) are
connected by the relation

g(t, ~r ) = dG(t, ~r )
dM(t, ~r ) (3.4)

with M(t, ~r ) the mass inside the small material volume V at position ~r
and time t.
Starting from the Reynolds transport theorem (3.3), several fields and

their differential equations for common conservation laws are found. The
most popular are the Euler equation for a perfect fluid and the Navier-
Stokes equation for a dissipative fluid. The actual form of these equations
is not important for this thesis. Instead we are moving directly to the
basic concepts of relativistic hydrodynamics.
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3.2 Relativistic hydrodynamics
A non-relativistic description can no longer be adapted if the energy den-
sity of the fluid becomes very large. This means that the participating
particles in the fluid achieve very high kinetic energies comparable to the
rest energy of the particles itself. Such behavior is found in the early
universe or in relativistic heavy-ion collisions. Therefore it is necessary
to adopt a relativistic description of fluids. In the same way as in the
non-relativistic (classical) case, the fundamental equations describing the
fluid in the relativistic regime are formulations of conservation laws for the
particle number, energy, and momentum. For a more complete overview
of relativistic hydrodynamics we refer to [8, chapter 3 and 6].

3.2.1 Basic equations
Particle number conservation

In a relativistic fluid the particle number is strictly speaking no longer
conserved. Instead, due to the high energies, particle-antiparticle-pairs
are created or annihilated and therefore the particle number is no longer
a conservation quantity, even if the system is closed. But if the parti-
cles carry a conserved quantum number, for example electric charge, the
difference of the quantum number between particles and antiparticles is
conserved. In any creation or annihilation process the amount of the quan-
tum number changes with +1, respectively −1, but the difference remains
constant. This difference between particles and antiparticles is our new
particle number and in a similar way we use particle number density and
particle number flux which both refer to the difference of particles.
We consider a relativistic fluid consisting of a single species of particles,

respectively antiparticles, both with mass m. Also, for simplicity, (t, ~r )
is replaced by (x). The local particle number density n(x) is defined such
that the product of n(x) and the infinitesimal spatial volume element d3~r
represents the total number of particles about position ~r at time t. Since
the spatial element d3~r depends on the reference frame, this should also
be the case for n(x), such that the total particle number in d3~r remains
independent of the reference frame. In a similar way, the particle flux
density ~jN (x) is defined as the number of particles that cross a unit surface
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per unit time interval. Both, unit surface and unit time interval, are
reference frame concepts.
The quantities n(x) and ~jN (x) are combined to the particle number

four-current N(x)

Nµ(x) =
(
n(x)
~jN (x)

)
. (3.5)

The local formulation of the conservation of the particle number is

dµN
µ(x) = 0 (3.6)

where dµ = d
dxµ denotes the components of the four-gradient1.

Energy-momentum conservation

In a relativistic theory, energy and momentum are the time and space com-
ponents of a four-vector, the four-momentum p. The local conservation of
the four-momentum is expressed in form of densities and flux densities of
energy and momentum at each point in space-time. Together they form
the energy-momentum tensor T(x), a tensor of rank two, defined by the
physical content of its components

• T 00(x): the energy density

• T 0j(x): the j-th component of the energy flux density (j = 1, 2, 3)

• T i0(x): the density of the i-th momentum component (i = 1, 2, 3)

• T ij(x): the momentum flux-density tensor (i, j = 1, 2, 3).

All physical quantities are measured with respect to the reference frame.
In the absence of external forces, the local conservation of the energy-
momentum tensor is written as

dµT
µν(x) = 0 ∀ ν = 0, 1, 2, 3. (3.7)

For ν = 0 this is the conservation of energy, while for j = 1, 2, 3 we have
momentum conservation for each component.

1In Minkowski-coordinates dµ is replaced by the partial derivative ∂µ = ∂
∂xµ .
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3.2.2 Local rest frame and four-velocity
The four-velocity u of a fluid is a field defined at each point in space-time.
Its vectors are time-like and fulfill

uµ(x)uµ(x) = 1 ∀ x. (3.8)

At each point of the fluid, we define a proper reference frame, the so-called
local rest frame, abbreviated as LR, in which the spatial components of
the four-velocity vanish

uµ(x)
∣∣∣
LR

= (1, 0, 0, 0) . (3.9)

Let ~v(x) denote the instantaneous velocity of (an observer at rest in) the
local rest frame with respect to a fixed reference frame. In the latter, the
components of the four-velocity are

uµ(x)
∣∣∣
R

=
(

γ(x)
γ(x)~v(x)

)
, (3.10)

where γ(x) is the corresponding Lorentz factor

γ(x) = 1√
1− ~v(x)2 . (3.11)

The local rest frame also represents the reference frame in which the local
thermodynamic variables of the system, particle number density n(x) and
energy density ε(x), are defined in their usual interpretation

n(x) ≡ n(x)
∣∣∣
LR
, ε(x) ≡ T 00(x)

∣∣∣
LR
. (3.12)

For the remaining local thermodynamic variables in the local rest frame
it is assumed that they are related to n(x) and ε(x) in the same way, as
when the fluid is at thermodynamic equilibrium.
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3.3 Perfect relativistic fluid
A "perfect" fluid has no dissipative currents in itself, namely friction and
heat flow. As a consequence we can find at each space-time point of the
fluid a reference frame in which the local neighborhood of the given point
is spatially isotropic. This reference frame represents the natural choice
of the local rest frame. In this section we present the particle number
four-current Nµ(x) and the energy-momentum tensor Tµν(x) for a perfect
fluid.
We adopt a cartesian coordinate system for the spatial directions in the

local rest frame. This defines the spatial isotropy of the local fluid prop-
erties since the fluid characteristics are the same in all spatial directions.
In such a system the local rest frame values of the i-th component of the
particle number flux density N i(x), the j-th components of the energy flux
density T 0j(x) and the i-th component of the momentum density T i0(x)
should all vanish. Also, the momentum flux density tensor T ij(x) should
be diagonal. These conditions are expressed as

N0(x)
∣∣∣
LR

= n(x), (3.13a)

N i(x)
∣∣∣
LR

= 0 ∀i = 1, 2, 3 (3.13b)

T 00(x)
∣∣∣
LR

= ε(x), (3.13c)

T ij(x)
∣∣∣
LR

= P(x)δij , ∀i, j = 1, 2, 3 (3.13d)

T i0(x)
∣∣∣
LR

= T 0j(x)
∣∣∣
LR

= 0, ∀i, j = 1, 2, 3 (3.13e)

where the conditions in (3.12) are respected and P(x) denotes the pressure.
The matrix form of the energy-momentum tensor is

Tµν(x)
∣∣∣
LR

=


ε(x) 0 0 0

0 P(x) 0 0
0 0 P(x) 0
0 0 0 P(x)

 . (3.14)

In an arbitrary reference frame the components of the particle number
four-current and energy-momentum tensor are
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Nµ(x) = n(x)uµ(x) (3.15)
Tµν(x) = [ε(x) + P(x)]uµ(x)uν(x)− P(x)gµν(x) (3.16)

with uµ(x) the components of the fluid four-velocity. Tµν(x) in (3.16) can
be rewritten as

Tµν(x) = ε(x)uµ(x)uν(x) + P(x)∆µν(x). (3.17)

∆µν(x) represents the components of a tensor which is a projector on the
three-dimensional vector space orthogonal to the four-velocity uµ(x)

∆µν(x) = uµ(x)uν(x)− gµν(x). (3.18)

On the other hand uµ(x)uν(x) is projecting on the time-like direction of
the four-velocity.

3.4 Dissipative relativistic fluid
In a dissipative relativistic fluid, the transport of particle number and four-
momentum is no longer only convective (caused by fluid motion), but may
also be diffusive. The diffusive effects happen due to spatial gradients
of the flow velocity field, the temperature, or the chemical potential(s)
associated with the conserved particle number(s). A description of these
new types of transport needs the introduction of additional terms in the
particle number four-current and the energy-momentum tensor. These
terms break the local isotropy of the fluid and therefore the local rest
frame of the fluid is no longer uniquely.

3.4.1 Dissipative currents
Additional types of transport present in a dissipative fluid are accounted
for by adding extra terms to the particle number four-current and the
energy-momentum tensor. Denoting the quantities for a perfect fluid by
a subscript 0, their equivalents in the dissipative case thus read
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Nµ(x) = Nµ
0 (x) + nµ(x) (3.19)

Tµν(x) = Tµν0 (x) + τµν(x) (3.20)

with nµ(x) components of a four-vector and τµν(x) components of a tensor
of rank two. They represent a dissipative particle number four-current and
a dissipative energy-momentum flux density.
In analogy to the perfect fluid, it is natural to introduce a four-velocity

uµ(x) in terms of which the quantities Nµ
0 (x) and Tµν0 (x) achieve a sim-

ple isotropic expression. Let uµ(x) be an arbitrary time-like four-vector
field respecting equation (3.8). The reference frame in which the spatial
components of this four-velocity vanish will constitute the local rest frame
associated with uµ(x). The projector ∆µν(x) on the three-dimensional
vector space orthogonal to the four-velocity uµ(x) is defined as in (3.18).
Compared with (3.15) and (3.16) we write

Nµ(x) = n(x)uµ(x) + nµ(x) (3.21)
Tµν(x) = ε(x)uµ(x)uν(x) + P(x)∆µν(x) + τµν(x). (3.22)

The physical content and mathematical form of the additional terms can
be further specified.

Relations for nµ(x) and τµν(x)

In the local rest frame the following condition must hold

uµ(x)nµ(x)
∣∣∣
LR

= 0. (3.23)

The left-hand side is a Lorentz scalar and therefore it should hold in any
coordinate system

uµ(x)nµ(x) = 0. (3.24)

Physically nµ(x) represents a diffusive particle number four-current in the
local rest frame, which describes the non-convective transport of the par-
ticle number.
For the dissipative energy-momentum current τµν(x) we conclude that

it has no 00-component in the local rest frame, to ensure that T 00(x) in
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that frame still defines the comoving energy density ε(x). Therefore, the
components τµν(x) may not be proportional to the product uµ(x)uν(x).
The most general symmetric tensor of rank two which obeys this condition
has the form

τµν(x) = qµ(x)uν(x) + qν(x)uµ(x) + πµν(x) (3.25)

with qµ(x) the components of a four-vector and πµν(x) components of a
tensor with rank two such that

uµ(x)qµ(x) = 0 (3.26)
uµ(x)πµν(x)uν(x) = 0. (3.27)

The condition (3.26) states that qµ(x) is a four-vector orthogonal to the
four-velocity uµ(x). Its physical representation is the heat current or en-
ergy flux current in the local rest frame. On the other hand, πµν(x) con-
tains all dissipative phenomena due to friction forces and is called stress
tensor. Furthermore, πµν(x) is a symmetric tensor and is decomposed
into the sum of a traceless tensor ωµν(x) and a tensor proportional to the
projector (3.18)

πµν(x) = ωµν(x) + Π(x)∆µν(x). (3.28)

The tensor ωµν(x) is the shear stress tensor in the local rest frame of
the fluid, that describes the transport of momentum due to shear defor-
mations. Eventually, Π(x) represents a dissipative pressure term, since it
behaves like the thermodynamic pressure P(x). With these new fields, the
energy-momentum tensor of a dissipative relativistic fluid is written as

Tµν(x) = ε(x)uµ(x)uν(x) + [P(x) + Π(x)] ∆µν(x)
+ qµ(x)uν(x) + qν(x)uµ(x) + ωµν(x). (3.29)

3.4.2 Local rest frames
At a given point in a dissipative relativistic fluid, the particle number and
the energy may flow in different directions. This happens in particular
because particle-antiparticle pairs, which do not contribute to the par-
ticle density, still transport energy. Another possibility is that different
conserved quantum numbers flow in different directions.
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3.4 Dissipative relativistic fluid

In general it is not possible to find a preferred reference frame in which
the local properties of the fluid are isotropic. As a consequence, there is
no unique natural choice for the four-velocity uµ(x) of the fluid flow. On
the contrary, several definitions of the four-velocity are possible, imply-
ing varying relations for the dissipative currents, although the described
physics remain the same.
• A first natural possibility was proposed by C. Eckart [16]. The four-

velocity is assumed proportional to the particle number four-current.
Accordingly, the dissipative particle number flux nµ(x) vanishes au-
tomatically and the expression of the particle number conservation
is simpler with this choice. The local rest frame associated with this
four-velocity is referred to as Eckart frame.

• Another natural definition of the four-velocity is that of L. D. Landau
[17, p. 512-514]. The four-velocity is assumed to be proportional to
the energy flux density. This choice determines the Landau frame,
where the heat current qµ(x) vanishes and the dissipative tensor
τµν(x) is reduced to its viscous part πµν(x).

Eventually, one may choose to work with a general four-velocity and thus
keep both the diffusive particle number current and the heat flux density
in the dynamical fields.

3.4.3 First order dissipative relativistic fluid dynamics
The decompositions (3.21) and (3.29) are purely algebraic and do not im-
ply anything regarding the physics of the fluid. Such assumptions involve
two different elements: an equation of state, relating the energy density
ε to the pressure P and the particle number n, and a constitute equa-
tion that models the dissipative effects, for example the diffusive particle
number four-current nµ(x), the heat flux density qµ(x), and the dissipative
stress tensor πµν(x).
Several approaches are possible to construct such constitutive equa-

tions. At first one could compute the particle number four-current and
energy-momentum tensor starting from an underlying microscopic theory,
in particular from a kinetic theory of the fluid constituents. Alternatively,
one can work at the macroscopic level, using the various constraints ap-
plying to such. For example, the tensorial structure of the various currents
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should be the correct one, or the second law of thermodynamics should
be satisfied.
In the Landau frame the heat flux density qµ(x) vanishes and the re-

maining constituents are written as2

Π(x) = −ζ(x)∇µ(x)uµ(x) (3.30)

ωµν(x) = −η(x)
[
∇µ(x)uν(x) +∇ν(x)uµ(x)− 2

3 [∇ν(x)uν(x)]
]

(3.31)

nµ(x) = κ(x)
[
n(x)T (x)
ε(x) + P(x)

]2
∇µ(x)

[
µ(x)
T (x)

]
(3.32)

for dissipative pressure, stress tensor, and particle number four-current.
The new coefficients ζ, η, and κ are three positive numbers which de-
pend on the space-time position implicitly and vary with temperature
and chemical potential. The three coefficients are named after the dissi-
pative phenomenon to which they contribute. ζ is the bulk viscosity, η
is the shear viscousity, and κ is the heat conductivity. The constitutive
equations (3.30), (3.31), and (3.32) only involve first order terms in the
derivatives of velocity, temperature, or chemical potential. A theory con-
structed with such an ansatz is referred to as first order dissipative fluid
dynamics which is the relativistic generalization of the set of laws valid
for classical dissipative fluids.
However, the theory suffers from a severe issue which does not affect its

non-relativistic counterpart. Many solutions of the first order dissipative
fluid dynamics equations are unstable against small perturbations. Such
disturbances grow exponentially with time on a typical microscopic time
scale. As a result the velocity of given modes can quickly exceed the
speed of light, which is of course unacceptable in a relativistic theory.
Additionally, gradients also grow quickly, leading to a breakdown of the
small-gradient assumption that underlies the construction of first order
dissipative fluid dynamics. As a consequence, including dissipation in
relativistic fluid dynamics necessitates going beyond a first order expansion
in gradients. The most popular theory of the second order dissipative fluid
dynamics is called Israel-Stewart-theory. Further insight regarding this
theory can be found in [18]. For simplicity in this thesis we will remain
with the first order dissipative fluid dynamics.

2We introduce the following notation: ∇µ(x) ≡ ∆µν(x)dν .
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3.5 Boltzmann approach
The last section of this chapter shows a different approach to calculate
the hydrodynamical fields (3.15) and (3.16) for a perfect fluid. This time
we start from a kinetic theory description. This short overview is taken
from [19, p. 10-12].
The starting point in a kinetic theory is the relativistic Boltzmann equa-

tion
pµ∂µf(x, p) = −C [f(x, p)] , (3.33)

where x = (t, ~x), p = (E~p, ~p)3 and ∂µ = (∂t,−~∇). The function f(x, p)
is the (one-particle) distribution function of the fluid particles and the
functional C is the so called collision integral which includes interactions
between the particles of the fluid. To obtain the fields from section 3.3, we
take the first two moments (zeroth and first) of the Boltzmann equation,
which we achieve by multiplying both sides of (3.33) with the following
integral operator

Iµ1µ2...µn =
∫
dP

n∏
i=1

pµi (3.34)

with dP ∝ d3~p/E~p = d3~p/(2π)3p0 the Lorentz invariant phase-space ele-
ment.
For the zeroth moment (n = 0) we obtain by partial integration∫

dP pµ∂µf(x, p) = −
∫
dP C [f(x, p)]

∂µ

∫
dP pµf(x, p) =

∫
dP C [f(x, p)] . (3.35)

The right side of (3.35) is generalized by the n-th moment of the collision
integral Cn ≡

∫
dP

∏n
i=1 p

µ
i C [f(x, p)]. The integral on the left side of

(3.35) represents the known particle number four-current N in a different
component form

Nµ(x, p) =
∫
dP pµf(x, p). (3.36)

This allows us to write (3.35) in a more compact form

∂µN
µ = C0. (3.37)

3Note that we restrict ourself to on-shell particles. For a more general formalism E~p
should be replaced by p0.
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If the (effective) particle number is conserved, C0 has to be zero and we
find the already known equation (3.6).
For the first moment (n = 1) we achieve from (3.33)∫

dP pνpµ∂µf(x, p) = −C1

∂µ

∫
dP pνpµf(x, p) = C1. (3.38)

On the left side, the energy-momentum tensor in its component form Tµν

is found
Tµν =

∫
dP pµpνf(x, p) (3.39)

and the equation (3.38) is simplified to

∂µT
µν = C1. (3.40)

C1 vanishes in case of energy-momentum conservation, leading to the
known formula (3.7).
It is easy to extend the equations above in the case of dissipative hy-

drodynamics, which is shortly presented for the energy-momentum tensor.
The energy-momentum tensor for a dissipative fluid is written as in (3.20)
and the distribution function f(x, p) is assumed to be

f(x, p) = f0(x, p) + δf(x, p), (3.41)

where f0(x, p) the distribution function for a perfect fluid and δf(x, p)
dissipative corrections to f0. In the next step, (3.41) is inserted into (3.39)

Tµν =
∫
dP pµpνf0(x, p) +

∫
dP pµpνδf(x, p)

= Tµν0 +
∫
dP pµpνδf(x, p). (3.42)

From this result we deduce that τµν is

τµν =
∫
dP pµpνδf(x, p). (3.43)

This concludes the chapter about hydrodynamics. From now on we use
the information from this chapter to calculate observables at the freeze-
out.
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4 Freeze-out of a perfect fluid
In section 2.1 we explained that during the expansion of the fireball the
mean free path length gets smaller and smaller, until the fireball thermal-
izes. This leads to an isentropic collision-dominated phase, which can be
described by perfect hydrodynamics. In the later stages the collisions cease
until the expansion becomes collision-free. Between these two stages, hy-
drodynamics and free expansion, a transition has to take place. The tran-
sition should be modeled by a transport theory to account both important
aspects of the process, the isentropic and the collision-less limits.
This chapter is a short summary of an article by N. Borghini and J.-

Y. Ollitrault written in 2006 [6]. In the article a rather simple ansatz
for the transition was chosen, the sudden freeze-out approximation. The
approximation involves the already presented Cooper-Frye method from
section 2.2.1.

4.1 Ansatz for the Cooper-Frye formula
The particle momentum distribution is calculated with the following form
of the Cooper-Frye formula

E~p
d3N

d3~p
= C

∫
Σ
dσµ(x) pµ exp

(
−p

µuµ(x)
T

)
, (4.1)

where Σ is a given space-time hypersurface along the history of the fluid.
It is also the surface where the transition should take place, therefore
at each point of Σ free-streaming particles are emitted, accordingly to
the known thermal distribution (2.8) in the rest frame. For simplicity,
quantum mechanical effects are neglected and as a result the thermal dis-
tribution is equal to the Maxwell-Jüttner distribution, the relativistic form
of the Maxwell-Boltzmann distribution. A further simplification is to set
the temperature T , also called freeze-out temperature, as a constant ev-
erywhere on the surface Σ. All possible normalization factors have been
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grouped together to the normalization constant C. The perfect hydrody-
namics are represented by the fluid four-velocity u(x) at space-time point1

x on Σ.
It is assumed that the approximation gives poor results for observables,

which depend on the detailed physics at the freeze-out, like the HBT-radii.
On the other hand it should give reasonable results for single-particle
spectra, like the anisotropic flow, if the collective expansion dominates
over random thermal motion.

4.2 Method of steepest descent
The general idea to solve the integral over Σ in equation (4.1) in the limit
of small T is to apply the method of steepest descent, also known as saddle
point integration. The dominant contribution comes from points where
the energy of the particles in the fluid frame EFF is at minimum. For a
given p, EFF is a function of the spatial components of u, which themselves
depend on the space-time point x on Σ. Here EFF is equal to pµuµ. The
component u0 is related to the spatial components via u0 =

√
1 + ~u 2,

since u has to fulfill condition (3.8). The absolute minimum of EFF is the
particle mass m, which is reached if the particles are at rest with respect
to the fluid. This absolute minimum occurs only if a point on Σ exists
where this value of the fluid velocity is reached.
The values taken by the longitudinal velocity of the fluid along the beam

axis span the whole range in relativistic heavy-ion collisions, while the
transverse velocity perpendicular to the beam axis is limited to a certain
range. This behavior is explained by the absence of the transverse part
of the flow in the beginning of the collision, which only builds up in the
progress of the expansion. For a given fluid rapidity y, which depends on
the longitudinal fluid velocity uz and the component u0, the transverse
velocity ut =

√
(ux)2 + (uy)2 extends up to a maximum value umax. The

value umax may depend on y and the azimuthal angle φ for non-central
collisions and is largest along the direction of the impact parameter (φ = 0)
due to larger pressure gradients in this direction.

1For simplicity the x-dependence will be dropped in this chapter.
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4.3 Slow and fast particles
From now on the following distinction is made: a particle of mass m,
rapidity y and transverse momentum pt is considered to be a slow particle
if pt/m < umax(y, φ) for all φ (actually for φ = π/2, where the minimum
occurs)2. Conversely, a fast particle is defined by pt/m > umax(y, φ) for all
φ (this is for φ = 0, where the velocity is at its maximum). Between both
particle regimes should be a small intermediate region, which is neglected
in the article.

Slow particles

For a slow particle, there is a point x on Σ where the fluid velocity is the
same as the particle velocity and the minimum pµuµ = m is reached. If
the freeze-out temperature T is small enough, the dominant contributions
to (4.1) come from the neighborhood of the point x. The integral is eval-
uated approximatively by expanding the exponent around the minimum
to second order. This results in a Gaussian integral. For a given velocity,
the four-momentum is proportional to the particle mass. The width of the
Gaussian varies with

√
m and the integral over Σ in (4.1) is proportional

to
√
m

3 times a function of the particle velocity. The result has a mass
dependence only as a global factor for slow particles

E~p
d3N

d3~p
= d3N

ptdpt dφ dy
= c(m)F

(
pt
m
, y, φ

)
, (4.2)

where F is the same function for all particles. The transverse momentum
and rapidity spectra of slow particles coincide up to a normalization factor,
if they are plotted as a function of pt/m and y. The flow coefficients
vn = 〈cos(nφ)〉, which are independent of the total yield, should also
coincide for different slow particles with the same pt/m and y.

Fast particles

For particles that move faster than the fluid, the fast particles, the mini-
mum value of pµuµ is larger than m. To locate this minimum, one denotes

2Keep in mind, that pt is the momentum of the particles and umax(y, φ) is the maxi-
mum value of the fluid velocity.
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the particle rapidity as y and the fluid particle rapidity as yf , the trans-
verse component of ~u parallel to the particle transverse momentum ~pt as
u‖ and the transverse component of ~u orthogonal to ~pt as u⊥. With these
notations pµuµ is written as

pµuµ = mt cosh(y − yf )
√

1 + u2
‖ + u2

⊥ − ptu‖ (4.3)

where mt =
√
m2 + p2

t is the transverse mass. The minimum of (4.3)
with respect to yf and u⊥ is given by yf = y and u⊥ = 0, implying that
the fluid velocity is parallel to the particle velocity. For u‖ the minimum
is attained for u‖ = umax(y, φ). Fast particles come from regions on Σ
where the parallel velocity is close to its maximum value. Depending on
the point of Σ, the saddle-point integration results in3

d3N

ptdpt dφ dy
∝ 1√

pt −mtvmax
exp

(
ptumax −mtu

0
max

T

)
, (4.4)

where we introduced vmax defined as

vmax ≡
umax√

1 + u2
max

. (4.5)

The y- and φ-dependence of umax is implicit. The transverse momen-
tum spectrum of the particles is directly obtained from equation (4.4) by
neglecting the y- and φ-dependence of umax. Radial flow results in flat-
ter mt-spectra for heavier particles and also implies a breakdown of the
mt-scaling.

4.4 Flow coefficients
For non-central collisions the flow coefficients are obtained from equation
(4.4) by expanding umax in a Fourier series while neglecting the rapidity
y and the odd harmonics

umax(φ) = umax(1 + 2V2 cos(2φ) + 2V4 cos(4φ) + ...). (4.6)

3It is assumed, that the maximum umax is reached at an inner point of Σ. If the
maximum is reached at the edge, there is no square root in the prefactor.
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4.4 Flow coefficients

The φ-distribution is gained by inserting (4.6) into (4.4). If T is small
enough, the φ-dependence in (4.4) is dominated by the exponential func-
tion. Expanding the latter to first order in V2, respectively in cos(2φ), one
obtains the elliptic flow

v2(pt) = V2umax
T

(pt −mtvmax). (4.7)

In particular, equation (4.7) shows that the mass ordering, following from
equation (4.2) for slow particles, persists at high pt in perfect hydrody-
namics. At a given pt, heavier particles have smaller v2(pt).
Furthermore, the hexadecupole flow v4(pt) is calculated by expanding

(4.4) and looking for terms up to cos(4φ) in leading order. Two terms
arise

v4(pt) = V4umax
T

(pt −mtvmax) + (V2umax)2

2T 2 (pt −mtvmax)2. (4.8)

If pt is large enough, the first term can be neglected against the second
term and the following simple relation is acquired

v4(pt) = v2(pt)2

2 . (4.9)

The result for v4(pt) in equation (4.8), respectively (4.9), is a contradiction
to the assumption of a probe sensitive to the initial conditions. If v4(pt)
would be a sensitive probe, it should not depend on v2(pt). On the other
hand, a universal result is found which is directly used to probe the perfect
fluid behavior. Deviations from this behavior are generally expected to
yield a higher value for v4(pt).
All these results can be used as signatures of hydrodynamical evolution

in relativistic heavy-ion collisions and consistency checks of numerical fluid
calculations. Some results for fast particles have already been known from
blast-wave model calculations, but the results of N. Borghini and J.-Y.
Ollitrault are more general.
In the next chapter the calculations from [6] are expanded to the case

of a dissipative fluid.
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5 Dissipative corrections to the
freeze-out

Dissipative phenomena enter the freeze-out description in two possible
ways. First, the whole evolution process is changed, which is accounted
for by the fluid velocity obeying equations of dissipative relativistic hydro-
dynamics, namely the relativistic Navier-Stokes equation or second order
equations [13]. This necessitates knowledge of the temperature depen-
dence of the transport coefficients over the history of the fireball. Sec-
ondly, dissipation changes the endpoint of the fluid evolution, namely the
transition from a continuous medium to individual particles. This process
is modeled again by the sudden freeze-out approximation, with the help
of the Cooper-Frye prescription.
We use the following form of the Cooper-Frye formula, which is similar

to (4.1)

E~p
d3N

d3~p
= g

(2π)3

∫
Σ
dσµ(x) pµf

(
pµuµ(x)

T

)
, (5.1)

with Σ the freeze-out hypersurface, g the degeneracy factor of the par-
ticles and f the phase-space distribution, which depends on the par-
ticle type (bosons or fermions) and dissipative properties of the fluid.
Like in chapter 4, f is given by the Bose-Einstein, Fermi-Dirac, or the
Maxwell-Jüttner distribution. Again, quantum effects are neglected and
the Maxwell-Jüttner distribution denoted by f0 is used

f0(pµuµ(x)) ∝ exp
(
−p

µuµx
T

)
. (5.2)

If the fluid is dissipative, f in equation (5.1) contains extra terms to ensure
the continuity of the energy-momentum tensor (3.29) at decoupling. These
corrections have been calculated in the case of a transition to a single
component Boltzmann gas for a fluid with finite shear viscosity [20] or
bulk viscosity [21], or a conformal fluid obeying second order dissipative
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5 Dissipative corrections to the freeze-out

hydrodynamics [22]. However, it has been recognized that more realistic
corrections are needed, some have been computed in [23–28]. Also, there
have been attempts to constrain them from available experimental data
in [29].
Here, we wish to pursue this approach and investigate whether the func-

tional form of the dissipative corrections to the phase-space distribution
f at the end of the hydrodynamical evolution (the particle momentum
distribution) can be reconstructed from the shape of the flow coefficients.
This is done by following the basic ideas of [6].
The content of this chapter has also been published in the following

article: [30].

5.1 Saddle point approximation
Similar to [6], we do not assume a specific flow profile (Bjorken flow or
blast-wave model) as in previous analytical studies. We bypass the knowl-
edge of the freeze-out surface in the Cooper-Frye prescription by approx-
imating the integral with the method of steepest descent (saddle point
approximation). Naturally, the trade-off for the approximation is a re-
striction to the range of validity of our results, which should only hold in
a certain transverse momentum interval and for some observables.
Most models1 analyzed so far, take the one-particle distribution function

at decoupling as follows

f(x, p) = [1 + δf(x, p)] f0

(
pµuµ(x)

T

)
. (5.3)

Dissipative effects contribute to an additional term proportional to the
equilibrium distribution f0 in addition to the modified velocity profile u(x).
For the sake of consistency, the modulus of δf should be smaller than one.
We shall adopt the ansatz (5.3) and use the condition |δf | � 1 to replace
the actual saddle point of the integrand in equation (5.1), corresponding to
f , by the saddle point obtained with f0 only2. The changes introduced by
this simplification are of second order in the small parameters, which are
controlling δf . Since we consider the regime of not too small momenta,

1An exception is [26].
2For simplicity the x-dependence is dropped again in this section.
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5.1 Saddle point approximation

where f0 is given by the Maxwell-Jüttner distribution (5.2), the saddle
point is the point on the freeze-out surface where pµuµ is at its minimum.
For a longitudinal motion, the saddle point method selects regions of

the fluid with the same rapidity yf as the rapidity y of emitted particles.
Regarding the transverse motion, a particle with an azimuthal angle ϕ is
stemming from a fluid cell with transverse velocity ~ut pointing along ϕ.
For further specifications, we introduce the maximum value umax(y, ϕ) of
~ut for a fixed rapidity y and azimuth ϕ. Depending on the transverse
velocity pt/m of the particle being smaller or bigger than umax(y, ϕ) one
defines again slow particles and fast particles. The slow particles are
emitted by regions with respect to which they are at rest, such that ~ut =
~pt/m. For fast particles, they are emitted from where the fluid velocity
reaches its maximum umax(y, ϕ).

5.1.1 Minimization
Let ~pt and y be the transverse momentum and longitudinal rapidity of an
emitted particle with mass m in a proper reference frame and transverse
mass mt =

√
m2 + (~pt)2. Furthermore, ~ut and yf denote the transverse

velocity and longitudinal rapidity of the fluid. The time-like component
of the fluid velocity is given by u0 = ũt cosh(yf ), with ũt =

√
1 + (~ut)2

following directly from the normalization of u in equation (3.8),

uµ = (ũt cosh(yf ), ~ut, ũt sinh(yf )) (5.4)

uµuµ = (ũt)2 cosh2(yf )− (ũt)2 sinh2(yf )− (~ut)2

= (ũt)2 − (~ut)2 = 1

⇒ (ũt)2 = 1 + (~ut)2 ⇔ ũt =
√

1 + (~ut)2. (5.5)

Eventually, ϕ and ϕf are the azimuthal angles of the particle transverse
momentum and fluid transverse velocity. With these information we find
that p is

pµ = (mt cosh(y), ~pt, mt sinh(y))
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5 Dissipative corrections to the freeze-out

due to p2 = m2 and that pµuµ in the exponent of (5.2) is written as follows

pµuµ = mt

√
1 + (~ut)2(cosh(y) cosh(yf )− sinh(y) sinh(yf ))− ~pt · ~ut

= mt

√
1 + (~ut)2 cosh(y − yf )− ~pt · ~ut

= mt

√
1 + (ut)2 cosh(y − yf )− ptut cos(ϕ− ϕf ) (5.6)

with pt = |~pt| and ut = |~ut|.
We introduce the transverse rapidity yf,t of the fluid, which is defined

through ut = sinh(yf,t), as well as, the transverse rapidity yt of the parti-
cle, which obeys mt = m cosh(yt) and pt = m sinh(yt). With the help of
yf,t and yt, the product (5.6) is written as

pµuµ = m cosh(yt) cosh(yf,t) cosh(y − yf )
−m sinh(yt) sinh(yf,t) cos(ϕ− ϕf ). (5.7)

Minimizing (5.7) with respect to yf and ϕf gives the conditions

yf = y (5.8a)
ϕf = ϕ. (5.8b)

The first result (5.8a) indicates that the time and longitudinal compo-
nents of the particle four-momentum and the four-velocity of the fluid
obey pz/p0 = uz/u0 = tanh(y) at the points of the freeze-out surface,
where the minimum is reached. On the other hand, (5.8b) suggests that
the transverse components of the particle four-momentum and the four-
velocity of the fluid are parallel at the corresponding points. Further
computations yield the second derivatives of (5.7) with respect to yf and
ϕf at the minimum

∂2(pµuµ)
∂y2

f

∣∣∣∣∣
min

= m cosh(yt) cosh(yf,t) (5.9a)

∂2(pµuµ)
∂ϕ2

f

∣∣∣∣∣
min

= m sinh(yt) sinh(yf,t). (5.9b)

At the minimum the product (5.7) is rewritten to

pµuµ = m cosh(yt) cosh(yf,t)−m sinh(yt) sinh(yf,t)
= m cosh(yt − yf,t) (5.10)
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5.1 Saddle point approximation

which reaches its absolute minimum for yf,t = yt.
Instead of characterizing the transverse components through transverse

rapidity and azimuthal angle, it is possible to adopt the same choice as
in [6]. The components of the transverse fluid velocity are parallel and or-
thogonal to the transverse momentum ~pt of the emitted particle, denoted
by u‖ and u⊥. If this coordinate system is chosen, (5.6) is rewritten to

pµuµ = mt

√
1 + u2

‖ + u2
⊥ cosh(y − yf )− ptu‖. (5.11)

Again, minimizing (5.11) with respect to yf and u⊥ gives the results

yf = y (5.12a)
u⊥ = 0, (5.12b)

which are equivalent to the conditions (5.8a) and (5.8b). Equation (5.11)
at its minimum is expressed as

pµuµ = mt

√
1 + u2

‖ − ptu‖. (5.13)

The absolute minimum of (5.13) is reached when v‖ ≡ u‖/
√

1 + u2
‖ is as

close as possible to pt/mt. The second derivatives of (5.11) with respect
to yf and u⊥ at the minimum are

∂2(pµuµ)
∂y2

f

∣∣∣∣∣
min

= mt

√
1 + u2

‖ (5.14a)

∂2(pµuµ)
∂ϕ2

f

∣∣∣∣∣
min

= mt√
1 + u2

‖

. (5.14b)

For further calculations we distinguish between slow and fast particles, as
seen in section 4.3.

5.1.2 Slow particles
A point on the freeze-out surface with yf,t = yt defines in the terminology
of [6] a slow particle and gives the minimum of pµuµ, which is simply m
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5 Dissipative corrections to the freeze-out

(see equation (5.10)). This determines the saddle point xsp of the Cooper-
Frye integral. The condition yf,t = yt together with (5.8a) and (5.8b) are
equivalent to the already known relation at the saddle point

pµuµ(xsp) = m. (5.15)

The non-vanishing second derivatives at the saddle point are

∂2(pµuµ)
∂y2

f

∣∣∣∣∣
min

= m cosh2 yt = m2
t

m
(5.16a)

∂2(pµuµ)
∂ϕ2

f

∣∣∣∣∣
min

= m sinh2 yt = p2
t

m
(5.16b)

∂2(pµuµ)
∂y2

f,t

∣∣∣∣∣
min

= m. (5.16c)

Equivalently, in the ~pt-attached coordinate system3 with u⊥ and u‖, the
condition yf,t = yt becomes u‖ = pt/m and the second derivatives are

∂2(pµuµ)
∂y2

f

∣∣∣∣∣
min

= m2
t

m
(5.17a)

∂2(pµuµ)
∂u2
⊥

∣∣∣∣∣
min

= m (5.17b)

∂2(pµuµ)
∂u2
‖

∣∣∣∣∣
min

= m3

m2
t

. (5.17c)

The validity of the saddle point approximation is ensured, if the higher
order terms in the Taylor expansion of (pµuµ)/T are negligible compared
to the quadratic terms. Considering the derivatives with respect to yf,t
the odd terms all vanish at the saddle point while the even terms are all
equal to m/T . Fixing now yf and ϕf to their saddle points, the following
expansion holds

pµuµ
T
∼ m

T
+ m

T

(yf,t − yt)2

2 + m

T

(yf,t − yt)4

4! +O
(
(yf,t − yt)6

)
. (5.18)

3We call this coordinate system from now on the pt-system.
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5.1 Saddle point approximation

For values of yf,t− yt .
√
T/m the quadratic term is of order one. There-

fore the quartic term is much smaller than the quadratic term, if one
assumes m� T , which excludes pions and maybe even kaons.
If we insert (5.15) and (5.17) into the exponent of (5.2) via a Taylor

expansion, we use the following formula to calculate the integral (5.1)

lim
T→0

∫ ∞
−∞

d3x exp
(
−p

µuµ(x)
T

)
= exp

(
−p

µuµ(xsp)
T

)√ 2πT 3

(pµuµ)′′ , (5.19)

where (pµuµ)′′ is the product of the second derivatives from (5.17). The
result is

E~p
d3N

d3~p
= c(m)F

(
pt
m
,ϕ, y

)
(5.20)

with c(m) = exp
(−m

T

)√2πT 3

m3 and F
(pt
m , ϕ, y

)
a function which follows

from changing the integration measure dσµ(x) pµ from space-time coor-
dinates to four-velocity coordinates. The same result has already been
shown in section 4.3. One should note that still no dissipative corrections
have been considered.

5.1.3 Fast particles
Fast particles are defined as the particles whose transverse velocity is
larger than the maximal transverse velocity umax(yf , ϕf ) reached by the
fluid flowing in the same direction. For them pµuµ is minimal when the
fluid transverse velocity takes its maximum value along that direction,
namely ymaxf,t (yf , ϕf ) = ln

[
umax(yf , ϕf ) + u0

max(yf , ϕf )
]
, where we defined

u0
max(yf , ϕf ) =

√
1 + umax(yf , ϕf )2. This yields the value of the product

(5.7) at the corresponding point on the freeze-out hypersurface
pµuµ(xsp) = m cosh(yt)u0

max(y, ϕ)−m sinh(yt)umax(y, ϕ). (5.21)
Equivalently in the pt-system with u⊥ and u‖ where the maximum is
reached for u‖ = umax(y, ϕ), we deduce for (5.13)

pµuµ(xsp) = mtu
0
max(y, ϕ)− ptumax(y, ϕ). (5.22)

At the saddle point, the first derivative in yf,t is

∂(pµuµ)
∂yf,t

∣∣∣∣∣
min

= mtumax(y, ϕ)− ptu0
max(y, ϕ), (5.23)
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respectively in the pt-system the first derivative in u‖ is

∂(pµuµ)
∂u‖

∣∣∣∣∣
min

= mtvmax(y, ϕ)− pt, (5.24)

with vmax(y, ϕ) ≡ umax(y, ϕ)/u0
max(y, ϕ). The latter expression shows

clearly that the derivative is negative, since pt/mt > vmax(y, ϕ). The
other two first derivatives vanish as they did in the case of slow particles.
In turn the non-vanishing second derivatives for fast particles are

∂2(pµuµ)
∂y2

f

∣∣∣∣∣
min

= mtu
0
max(y, ϕ) (5.25a)

∂2(pµuµ)
∂ϕ2

f

∣∣∣∣∣
min

= ptumax(y, ϕ) (5.25b)

∂2(pµuµ)
∂y2

f,t

∣∣∣∣∣
min

= mtu
0
max(y, ϕ)− ptumax(y, ϕ), (5.25c)

and in the corresponding pt-system, the second derivatives are

∂2(pµuµ)
∂y2

f

∣∣∣∣∣
min

= mtu
0
max(y, ϕ) (5.26a)

∂2(pµuµ)
∂u2
⊥

∣∣∣∣∣
min

= mt
1

u0
max(y, ϕ) (5.26b)

∂2(pµuµ)
∂u2
‖

∣∣∣∣∣
min

= mtu
0
max(y, ϕ)3. (5.26c)

Both second derivatives with respect to yf,t and u‖ are actually irrel-
evant for the saddle point approximation, since the corresponding first
derivatives do not vanish. Therefore, the first derivatives are the leading
terms in this approximation. However, they are important for the deter-
mination of the region of validity of the approximation. With yf and ϕf
fixed to their saddle point values we write

pµuµ
T
∼ mtu

0
max − ptumax

T
− ptu

0
max −mtumax

T
(yf,t − yf )

+ mtu
0
max − ptumax

2T (yf,t − yf )2 +O
(
(yf,t − yt)3

)
. (5.27)
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5.1 Saddle point approximation

The quadratic term is negligible compared to the linear term, if

(mtumax − ptu0
max)2

mtu0
max − ptumax

� T, (5.28)

resulting in a validity region of the saddle point approximation. The con-
dition (5.28) is more stringent than the trivial condition pt > mtvmax and
translates in a species-dependent lower bound of the particle transverse
momentum. Also, like in the slow particle case, the smaller the freeze-out
temperature, the better the saddle point approximation.
We write down the exponent −pµuµ/T in the Maxwell-Jüttner distri-

bution (5.2) at the saddle point xsp for fast particles

−p
µuµ(x)
T

=− mtumax(y, ϕ)− ptumax(y, ϕ)
T

+ ptu
0
max(y, ϕ)−mtumax(y, ϕ)

T
(yf,t − ymaxf,t (y, ϕ))

− mtu
0
max(y, ϕ)
T

(yf − y)2

2

− ptumax(y, ϕ)
T

(ϕf − ϕ)2

2 , (5.29)

or in case of the pt-system

−p
µuµ(x)
T

=− mtumax(y, ϕ)− ptumax(y, ϕ)
T

+ ptu
0
max(y, ϕ)−mtumax(y, ϕ)

T
(u‖ − umax(y, ϕ))

− mtu
0
max(y, ϕ)
T

(yf − y)2

2

− mt

Tu0
max(y, ϕ)

u2
⊥
2 , (5.30)

where every coefficient of each term is positive. Also, (yf − y), (ϕf − ϕ),
and (yf,t − ymaxf,t (y, ϕ)), respectively u⊥ and (u‖ − umax(y, ϕ)) are func-
tions of the space-time coordinate x, restricted to the freeze-out surface
Σ. As in [6], depending on whether the maximum ymaxf,t (y, ϕ), respectively
umax(y, ϕ), is reached on the edge of Σ or at a point in its interior, it is
possible for yf,t− ymaxf,t (y, ϕ) and u‖−umax(y, ϕ) to be linear or quadratic
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5 Dissipative corrections to the freeze-out

in their space-time coordinates. With (5.30) as the exponent of formula
(5.2) we use equation (5.19) to calculate the particle momentum spectrum
with the Cooper-Frye formula (5.1). For the u‖-integral, which is simply a
exponential function, the saddle point approximation is not needed. The
results are

E~p
dN

d3~p
∝
√

2πT 3

m2
t

1√
pt −mtvmax

exp
(
ptumax −mtu

0
max

T

)
, (5.31)

if the maximum value umax is reached at an inner point and

E~p
dN

d3~p
∝
√

2πT 3

m2
t

1
pt −mtvmax

exp
(
ptumax −mtu

0
max

T

)
, (5.32)

if the maximum value umax is reached at the edge4. The first result coin-
cides with the result in section 4.3. For practical purposes, we assume that
the minimum is reached at an inner point and we neglect the prefactor√

(2πT 3)/m2
t , which is insignificant for the next calculations. The term

which accounts for the change of the integration measure dσµ(x) pµ from
space time to four-velocity coordinates is also neglected. Like in section
5.1.2, no dissipative corrections are included.
We conclude this section with a small remark: All calculations in section

5.1 hold for perfect and for dissipative fluids. However, the fluid velocity
u(x) does change when switching from a perfect to a dissipative fluid, but
these changes will not affect the following calculations.

5.2 Freeze-out of a dissipative fluid
This section introduces dissipative properties to the fluid. As in the previ-
ous section, we will divide the results into slow particles and fast particles.
Since we only work with first order dissipative corrections, three possible
dissipative transport phenomena may contribute: shear viscosity, bulk vis-
cosity and heat conductivity. As seen in section 3.4.2, the Landau frame
results in a vanishing heat current and the phenomenon of heat conduc-
tivity has not to be taken into account. Therefore, the following results
have all been calculated within the Landau frame.

4In both formulas the (y, ϕ)-dependence of vmax, umax, and u0
max is implicit.
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5.2 Freeze-out of a dissipative fluid

5.2.1 Slow particles revisited
First let us quickly review the results from section 5.1.2, respectively from
section 4.3. If slow particles decouple from a perfect fluid, the Cooper-Frye
prescription is simply a function of the mass m multiplied by a species-
independent function

E~p
d3N

d3~p
= c(m)F

(
pt
m
,ϕ, y

)
. (5.33)

The particle momentum spectrum for different particles should only differ
by a normalization factor. The flow coefficients vn(pt/m, y) should be
identical for different species of slow particles. This leads to the so called
"mass ordering", which means that the flow coefficients are smaller for
heavier particles.
We show that these generic features persist for slow particles decoupling

from a dissipative fluid. This holds at least as far as first order effects are
concerned. One should note, that the factor c and the function F depend
on the actual form of the dissipative corrections. These corrections are
grouped into two kinds: shear viscosity δfshear and bulk viscosity δfbulk.
We write δf from equation (5.3) as follows5

δf = δfshear + δfbulk. (5.34)

First, consider the corrections δfshear accounting for shear viscosity ef-
fects. Such a contribution should at least contain a term

δfshear(x, p) ∝ πµνshear(x)pµpν , (5.35)

with πµνshear(x) the shear stress tensor, motivated by section 3.4.3. For
our case, the important feature of the shear stress tensor is, that it is
orthogonal to the fluid velocity, the so called Landau matching condition,
which was already presented in equation (3.27)

πµνshear(x)uµ(x) = 0. (5.36)

We have already shown in section 5.1.2 that the saddle point for slow
particles is uµ(x) = pµ/m which yields at once

πµνshear(xsp)pµpν ∝ π
µν
shear(xsp)uµ(x)uν(x) = 0. (5.37)

5The (x, p)-dependence is implicit.
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5 Dissipative corrections to the freeze-out

Therefore, the additive correction for shear viscosity vanishes for slow
particles at decoupling in the saddle point approximation.
Secondly, the bulk viscosity term δfbulk is also motivated by section

3.4.3 and in general is written as

δfbulk(x, p) = Cbulk(pµuµ(x), pµpµ)Π(x), (5.38)

with Π(x) = ζ∇µ(x)uµ(x) the bulk pressure from equation (3.30) and Cbulk
a certain function. For slow particles, it is easily shown that the arguments
of Cbulk are simply m and m2, which means the function is momentum
independent. The bulk pressure at freeze-out only includes the expansion
rate ∇µ(x)uµ(x), which is taken at the saddle point for particles which
have the same transverse velocity.
We find that the particle momentum distribution only depends on the

momentum through the variables pt/m, ϕ, and y, so that the conclusions
for the decoupling from a perfect fluid remain valid for decoupling from
a dissipative fluid. However, the factor c and the function F have to be
modified.

5.2.2 Fast particles revisited
We review the dissipative corrections δf , which are again divided into
shear viscosity δfshear and bulk viscosity δfbulk. We use the framework of
Grad’s prescription, in which the relative corrections to the phase-space
distribution due to shear viscosity effects are written as

δfshear = 1
2 [ε(x) + P(x)]T (x)2π

µν
shear(x)pµpν

≡ Cshear(x)πµνshear(x)pµpν (5.39)

with ε(x) and P(x) the already known energy density and pressure from
chapter 3. The shear stress tensor πµνshear(x) is recast as πµνshear(x) =
η∇〈µuν〉 from equation (3.31), with η the shear viscosity and ∇〈µuν〉 =
∇µuν + ∇νuµ − 2

3 [∇νuν ], where we have neglected the x-dependency of
∇µ and uµ. To handle the product πµνshear(x)pµpν , we use the Landau con-
dition to cancel out the component of the the particle four-momentum p
along the flow velocity u, by introducing6 qµ ≡ pµ− (p0/u0)uµ. We obtain
πµνshear(x)pµpν = πµνshear(x)qµqν .

6Note that qµ is not the heat current, introduced in equation (3.25).
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5.2 Freeze-out of a dissipative fluid

We make the assumption that our velocity profile should only have a
radial component ur and an azimuthal component uϕ. Therefore, the
only non-vanishing components of πµνshear(x) are πrrshear(x), πϕϕshear(x), and
the symmetric component πrϕshear(x). Computations yield

πrrshear = −2η
[
∂ru

r + urDur − 1 + (ur)2

3 ∇ · u
]

(5.40a)

πϕϕshear = −2η
[

1
r2∂ϕu

ϕ + 1
r3u

r + uϕDuϕ − 1 + (ruϕ)2

3r2 ∇ · u
]

(5.40b)

πrϕshear = −η
[
∂ru

ϕ + 1
r2∂ϕu

r + urDuϕ + uϕDur − 2uruϕ
3 ∇ · u

]
, (5.40c)

where D is given by Duµ = uνdνu
µ. D is the time derivative in the local

rest frame (Landau frame) and ∇ · u is the four-divergence of the velocity
field

∇ · u = ∂ru
r + ∂ϕu

ϕ + ∂τu
τ + ur

r
+ uτ

τ
. (5.41)

We assume that the velocity profile is approximately radial at freeze-out
and that uϕ and its derivatives vanish. Under this hypothesis, only the
radial components of qµ and πµνshear(x) contribute, with

qr = pt −mtvmax(y, ϕ) (5.42)

and πrrshear(x) as in equation (5.40a). At the saddle point, corresponding
to a given four-momentum, we find

δfshear = Cshear(xsp)πrrshear(xsp) [pt −mtvmax(y, ϕ)]2 . (5.43)

The bulk viscosity term δfbulk is neglected because it is of higher order
in ϕ in the Cooper-Frye formula (5.1). If we look at (5.3), the equilibrium
distribution f0 should be of order one in ϕ at the saddle point, which means
that the computed correction (5.43) is already of second order in ϕ and
therefore it is the leading term in δf . This indicates that δfbulk has to be of
higher order than δfshear and therefore can be neglected. Furthermore, the
bulk viscosity ζ in the bulk pressure Π(x) is proportional to c2

s−1/3, where
cs is the speed of sound. In the case of relativistic heavy-ion collisions,
calculations revealed that the speed of sound is about 1/

√
3, which leads

to ζ ≈ 0.
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5 Dissipative corrections to the freeze-out

Inserting equation (5.43) into formula (5.3) and combining it with the
result from equation (5.31), we achieve the following result for the particle
momentum spectrum7

E~p
d3N

d3~p
∝ 1√

pt −mtvmax
(1 + Cshear(xsp)πrrshear(xsp) [pt −mtvmax(y, ϕ)]2)

× exp
[
ptumax(y, ϕ)−mtu

0
max(y, ϕ)

T

]
, (5.44)

or, if the prefactor is neglected,

E~p
d3N

d3~p
∝ (1 + Cshear(xsp)πrrshear(xsp) [pt −mtvmax(y, ϕ)]2)

× exp
[
ptumax(y, ϕ)−mtu

0
max(y, ϕ)

T

]
. (5.45)

Neglecting the y- and ϕ-dependence in (5.44), respectively (5.45), results
in the transverse momentum spectrum dN/dpt. The transverse momen-
tum spectra are shown in figure 5.1.
It is shown that the approximated dissipative momentum spectrum co-

incides for large pt with the complete dissipative spectrum, but departs
from it for low pt, obviously due to the neglected square root prefactor.
Furthermore, the "exact" dissipative spectrum coincides with the perfect
spectrum for low pt, but for high pt it grows larger, indicating a "harder"
spectrum for the decoupled particles. This behavior is in good agreement
with our results for slow particles from the previous section 5.2.1. The
prefactor in (5.44) should depend on the dissipative corrections, which are
estimated at the saddle point, as well as the behavior of the velocity in
the neighborhood of the saddle point, which necessitates a more detailed
knowledge on the flow profile at the freeze-out. Here, we chose a constant
value for umax, which allows us to show the differences between the three
possible momentum spectra.
To bypass the need for a more detailed knowledge about the prefactor,

we will focus on the azimuthal anisotropies of the particle distribution,
the flow coefficients vn. The flow coefficients should not depend on the
normalization factor of the spectrum in (5.44). We also assume that the

7Again, the (y, ϕ)-dependence of vmax under the square root is implicit.
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Figure 5.1: Comparison between the transverse momentum spectrum for
a perfect and a dissipative fluid for fixed values of umax, T , m, and η.

rapidity y does not play a role for our calculations and therefore remove
it from our expressions.
The expansion of the maximum transverse flow velocity has already been

introduced in section 4.4. Again, we perform an expansion of umax(ϕ) at
the freeze-out as a Fourier series

umax(ϕ) = umax

1 + 2
∑
n≥1

Vn cos [n(ϕ−Ψn)]

 , (5.46)

with Ψn the n-th harmonic symmetry-plane angle. Given any realistic ve-
locity profile, umax and the anisotropies Vn should easily be reconstructed.
The three-velocity value corresponding to the average maximum trans-
verse flow velocity vmax will be denoted as

vmax = umax√
1 + u 2

max

. (5.47)
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5 Dissipative corrections to the freeze-out

A typical value for umax is roughly 1, which amounts to vmax ≈ 0.7.
In turn the Fourier coefficients Vn are assumed to be small, roughly of
order 0.05 or smaller. We assume the following hierarchy: V2 & V3 �
V1, V4, V5, and the higher coefficients all vanish. Our calculations can easily
be repeated with any other hierarchy of the anisotropies of the maximum
transverse flow velocity at the freeze-out.
The expansion from equation (5.46) is inserted in equation (5.44), in

the exponent and in the prefactor. In the latter, one should keep in mind
the Fourier expansions of various combinations of the derivatives of the
flow velocity u around the saddle point. We are for instance interested
in the azimuthal dependence of the shear stress tensor, but for simplicity
we neglect this dependence, considering that it only represents a small
modulation of a small quantity itself. There is however no difficulty in
including the refinement at the cost of introducing new Fourier coefficients
for each azimuthally dependent quantity.
We start with the exponent of (5.44) and expand it with the help of

(5.46). We use
√

1 + (a+ x)2 ≈
√

1 + a2 + ax/
√

1 + a2 to rewrite the
exponent

ptumax(ϕ)−mtu
0
max(ϕ)

= ptumax −mt

√
1 + u2

max + 2 (pt −mtvmax)umax
×
∑
n≥1

2Vn cos [n(ϕ−Ψn)] . (5.48)

Expanding only the exponential function in (5.44) with the help of (5.48)
up to quadratic order results in

E~p
d3N

d3~p
∝ exp

ptumax −mt

√
1 + u2

max

T


×
[
1 + I(pt)

∑
n≥1

2Vn cos [n(ϕ−Ψn)]

+ I(pt)2 ∑
n≥1

2V 2
n cos2 [n(ϕ−Ψn)]

+ I(pt)2 ∑
n>m

4VnVm cos [n(ϕ−Ψn)] cos [m(ϕ−Ψm)]
]
, (5.49)
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5.2 Freeze-out of a dissipative fluid

where the function I(pt) is introduced as

I(pt) = umax
pt −mtvmax

T
. (5.50)

Since pt/mt > vmax it is assured that I(pt) is always positive for fast par-
ticles. Trigonometric relations are used for the term between the squared
brackets to write

1 + I(pt)2 ∑
n≥1

V 2
n

+ I(pt)
∑
n≥1

2Vn cos [n(ϕ−Ψn)]

+ 1
2I(pt)2 ∑

n≥1
2V 2

n cos [2n(ϕ−Ψn)]

+ I(pt)2 ∑
n>m

2VnVm(cos[(n+m)ϕ− nΨn −mΨm]

+ cos[(n−m)ϕ− nΨn +mΨm]). (5.51)

The second term, which is ϕ-independent is dropped because the Vn them-
selves are very small. As a consequence the flow coefficients vn are read off
the expansion (5.51) itself by selecting the corresponding 2 cos[n(ϕ−Ψn)]
terms. The results for the first five coefficients are

v1(pt) = I(pt)V1 + I(pt)2V2V3, (5.52a)
v2(pt) = I(pt)V2, (5.52b)
v3(pt) = I(pt)V3 + I(pt)2V1V2, (5.52c)

v4(pt) = I(pt)V4 + I(pt)2

2 V 2
2 , (5.52d)

v5(pt) = I(pt)V5 + I(pt)2V2V3. (5.52e)

If pt is high enough, V1, V4, and V5 can be neglected and one finds the
following two relations

v4(pt) '
v2(pt)2

2 , (5.53a)

v5(pt) ' v2(pt)v3(pt). (5.53b)
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5 Dissipative corrections to the freeze-out

The first relation is the same as in equation (4.9) and the second relation
is found in [31].
The final step in this section is to extend the previous steps to a dis-

sipative fluid. Fortunately, we can use all aspects of the solution for the
exponential function and simply have to "expand" them to the dissipative
prefactor. We go back to equation (5.43) and rewrite it to

δfshear = C ′shear [pt −mtvmax(y, ϕ)]2 (5.54)

with the new function C ′shear

C ′shear ≡ Cshear(xsp)πrrshear(xsp). (5.55)

The expansion of umax(ϕ) in (5.46) is applied to the dissipative correction
(5.54), which results in

pt −mtvmax(ϕ) ≈ pt −mtvmax −
mtvmax

1 + u2
max

∑
n≥1

2Vn cos [n(ϕ−Ψn)]

⇒ [pt −mtvmax(ϕ)]2 ≈ (pt −mtvmax)2 − 2 (pt −mtvmax) mtvmax
1 + u2

max

×
∑
n≥1

2Vn cos[n(ϕ−Ψn)], (5.56)

where quadratic terms in ϕ have been neglected. The ϕ-dependence of
πrrshear(xsp) is also neglected and we insert (5.56) into the correction (5.54)
so that we can rewrite 1 + δfshear to

1 + δfshear = 1 + C ′shear [pt −mtvmax(y, ϕ)]2

≈ 1 + C ′shear (pt −mtvmax)2

×
1− 2

pt −mtvmax

mtvmax
1 + u2

max

∑
n≥1

2Vn cosn(ϕ−Ψn)


=
[
1 + C ′shear (pt −mtvmax)2

]
×
1−D(pt)

∑
n≥1

2Vn cos[n(ϕ−Ψn)]

 . (5.57)
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5.2 Freeze-out of a dissipative fluid

The first factor in (5.57) is independent of the azimuth angle ϕ and does
not contribute to the flow coefficients vn. The second factor yields the
dissipative term D(pt)

D(pt) = 2C ′shear (pt −mtvmax)
1 + C ′shear (pt −mtvmax)2

mtvmax
1 + u2

max

, (5.58)

which adds dissipative properties to the flow coefficients vn. The term
C ′shear (pt −mtvmax)2 should be significantly smaller than one to assure
that dissipative corrections remain small. The dependence of D(pt) on the
transverse momentum pt is thus actually given by the numerator and is
approximately quadratic. We combine the expansions (5.51) and (5.57)
and recalculate the first five flow coefficients

v1(pt) = [I(pt)−D(pt)]V1 +
[
I(pt)2 − I(pt)D(pt)

]
V2V3, (5.59a)

v2(pt) = [I(pt)−D(pt)]V2, (5.59b)

v3(pt) = [I(pt)−D(pt)]V3 +
[
I(pt)2 − I(pt)D(pt)

]
V1V2, (5.59c)

v4(pt) = [I(pt)−D(pt)]V4 +
[
I(pt)2

2 − I(pt)D(pt)
]
V 2

2 , (5.59d)

v5(pt) = [I(pt)−D(pt)]V5 +
[
I(pt)2 − I(pt)D(pt)

]
V2V3. (5.59e)

The dissipative contribution vanishes if dissipative corrections are absent,
leaving only the solutions for a perfect fluid. It is possible to compute
D(pt) starting from any ansatz for δf . The result can then be compared
to the shape constrained from experimental results. Furthermore, there
is another change which is not reflected in our notations, affecting the
average umax and the Fourier coefficients Vn of the maximum flow velocity
at freeze-out, depending on the amount of dissipation along the evolution
of the system. In the following, we assume that these values are fixed and
only consider the effects of D(pt).
In figure 5.2 on page 68 the flow coefficients v2(pt), v3(pt), and v4(pt)

for a perfect fluid taken from the equations (5.52) and for a dissipative
fluid from the equations (5.59) are shown.
We perceive that D(pt) is positive and its inclusion leads to a decrease of

every flow coefficient (see also [32]). The graphical presentation in figure
5.2 shows clearly this property of D(pt). The actual sign of D(pt) depends

67



5 Dissipative corrections to the freeze-out
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Figure 5.2: Comparison between the flow coefficients v2(pt), v3(pt), and
v4(pt) for a perfect fluid (dotted lines) and for a dissipative fluid (full
lines). We set C ′shear to 0.2 and fixed umax, T , and m. Not shown are
v1(pt) and v5(pt) because they mostly overlap with v4(pt).

on the flow profile at freeze-out. It turned out to be positive in existing
hydrodynamical simulations. In particular, the decrease of v2(pt) at large
transverse momentum and mid-rapidity explains a posteriori our choice
of signs in the equations (5.59). However, there are theoretical reasons
to expect that the bulk viscosity contribution to D(pt) could change the
sign [29]. It is not clear if this behavior should happen in the fast particle
region and therefore no definite statement can be made.
Similar to the perfect fluid case, some equations in (5.59) show obvious

similarities. For vanishing V1, V4, and V5, equation (5.59b) and equation
(5.59c) predict a constant ratio

v3(pt)
v2(pt)

' V3
V2
, (5.60)
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5.2 Freeze-out of a dissipative fluid

in case the hierarchy V3 ∼ V2 holds. Likewise, equations (5.59a) and
(5.59e) are very similar and predict similar behavior for v1(pt) and v5(pt)
in the regime where the linear contributions to these harmonics become
negligible with respect to the V2V3 term. We emphasize that the similari-
ties between different flow harmonics hold in the regime of fast particles,
far from low pt, where the analyticity of the momentum distribution in-
duces different scaling behaviors for each flow harmonic [33].
From the equations in (5.59) it is deduced that the nonlinear relations

from (5.53), which were valid in the perfect case, no longer hold. Thus
the first relation (5.53a) is changed to

v4(pt)
v2(pt)2 <

1
2 , (5.61)

if V4 is neglected. The ratio is decreased by the inclusion of the dissipative
correction D(pt), with or without V4. In contrast, when we neglect V5 the
second relation (5.53b) changes to

v5(pt)
v2(pt)v3(pt)

> 1. (5.62)

It shows a larger value than in the case of a perfect fluid. These quali-
tative results originates from either a Boltzmann transport model [34] or
hydrodynamical simulations [31,35]. We exploited the nonlinear relations
for more quantitative results, still in negligible linear contributions. We
extract from (5.59b), (5.59c), and (5.59e) the relation

v5(pt)− v2(pt)v3(pt)
v3(pt)

' V2D(pt) (5.63)

or similar from equation (5.59b) and (5.59d) the relation

v2(pt)2 − 2v4(pt) ' [V2D(pt)]2. (5.64)

It is possible to isolate the dissipative contributions from decoupling to
v2(pt) or more generally D(pt). We find two independent relations from
which the dissipative term can be constrained experimentally and then
may be compared with the functional form derived from an ansatz for δf .
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5 Dissipative corrections to the freeze-out

5.3 Discussion
In the previous section 5.2, we investigated the dissipative effects of dis-
sipative corrections δf to the phase-space distribution f0 of particles at
freeze-out. In this section, we want to test the found results, especially
those for fast particles. Therefore, we compare them to the flow coeffi-
cients calculated from the numerical integration over a three dimensional
freeze-out hypersurface Σ of a flow profile u. For Σ we choose an infinite
azimuthally symmetric cylinder of radius R at a constant proper time τfo
and cylindrical coordinates r, φ and space-time rapidity ηs. Furthermore,
we assume that for the fluid velocity on Σ a generalized blast-wave profile
for the radial component is applicable [36,37]

ur(r, φ) = umax
r

R

(
1 + 2

5∑
n=1

Vn cos(nφ)
)
. (5.65)

For the other velocity coordinates we simply assume

uφ = uηs = 0, (5.66)

in the φ- and ηs-direction, as well as the natural component

uτ (r, φ) =
√

1 + ur(r, φ)2 (5.67)

in the time-like direction. From these expressions the maximal transverse
velocity in equation (5.46) is directly extracted. The graphical presenta-
tions were generated with the following values: R = 7.5 fm, τfo = 5.25 fm,
T = 160 MeV, umax = 0.55, V2 = 0.05 (corresponding to [20]), V3 = 0.05,
and all other Vn = 0. Other values did not change the general behavior of
the following results.
With such a choice of values for the flow profile, 7 out of 10 components

of πµνshear(x) are non-zero. Nevertheless, in our saddle point approxima-
tion only the πrrshear(x) term was kept, as explained in section 5.2.2. The
relatively small umax along with a small value for

η

s
= η

(e+ P)T = 0.16 (5.68)

lead to a value of about 0.6 for the coefficient C ′shear. This ensures that
some of the terms we have neglected when deriving the correction term
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Figure 5.3: Comparison between the saddle point solutions and the nu-
merical blast-wave model results for v2(pt) and v3(pt) for a dissipative
fluid.

(5.58) remain small as long as pt is not too large, respectively pt−mtvmax.
With this setup for our blast-wave model of the Cooper-Frye formula, we
compare its results to our findings within the saddle point approximation.
We focus on pions and choose pt ≥ 0.6 GeV.
Let us start with the unsatisfying aspects of our approximation of the

vn in (5.59). The approximation itself is a poor representation compared
to those of the numerical blast-wave simulation in a reasonable pt-region
(see figure 5.3). We list a few discrepancies for the vn from (5.59), which
already appear for the results of a perfect fluid. v2(pt) in the exact blast-
wave model grows quadratically at low pt for pions, this should be be-
tween 1 GeV to 1.5 GeV, while the equation (5.59b) is almost linear (see
figure 5.3). Furthermore, (5.59b) and (5.59c) predict a parallel behavior
for v2(pt) and v3(pt). Actually, with our choice of Vn, they are identical.
The full computation of v2(pt) and v3(pt) shows that they are significantly
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Figure 5.4: Experimental data from the ALICE collaboration. [38]

smaller and differ from each other, also seen in figure 5.3. The ratio
v3(pt)/v2(pt) for pions grows from 0.5 at 1 GeV to 0.8 at 3 GeV. Com-
parisons between the other vn reveal further discrepancies. Below 3GeV
the blast-wave v1(pt) and v5(pt) differ by more than a factor 2, while in
our equations (5.59a) and (5.59e) they are equal. v4(pt) and v5(pt) are
almost equal, while (5.59d) and (5.59e) predict a factor of 2. All in all,
below 3GeV our approximations in (5.59) are quite unsatisfactory. How-
ever, they become much better above 5GeV, as it was already observed
for the nonlinear relations between higher and lower flow coefficients in
realistic hydrodynamical computations [31]. Unfortunately, this region is
not relevant to experimental data, but might help with the understanding
of numerical fluid dynamics simulations.
On the other hand, experimental data shows the estimated behavior for

v2(pt) and v3(pt) above a certain pt value, as seen in the experimental data
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pT first increase for pT < 2.0 GeV/c, saturate for intermediate pT and then decrease for higher
pT > 3.5 GeV/c. A similar type of pT dependence is observed for both systems.

3.2. Centrality Dependence
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Figure 2. (Color online) Ï meson v2, v3, v4 and v5 as function of pT in U+U collisions and
Au+Au collisions for three di�erent centrality bins(0 ≠ 10%, 10 ≠ 40% and 40 ≠ 80%). The
di�erent colored bands are the systematic uncertainties and vertical lines are the statistical
uncertainties.

Figure 2 shows the centrality dependence of Ï meson flow coe�cients vn for Au+Au atÔ
sNN = 200 GeV and U+U collisions at Ô

sNN = 193 GeV. Strong centrality dependence is
observed for the elliptic flow (v2) in both Au+Au and U+U collisions. We found v2 values higher
in peripheral collisions (40 ≠ 80% centrality) compare to central collisions (0 ≠ 10% centrality).
No clear centrality dependence is observed for other flow harmonics. This can be explained as
the higher flow coe�cients v3, v4 and v5 are generated due to fluctuations corresponding to the
initial states of the colliding nuclei.
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Figure 3. (Color online) v3/v2 ratio as a function of pT in U+U collisions and Au+Au collisions
for three di�erent centrality bins(0 ≠ 10%, 10 ≠ 40% and 40 ≠ 80%). Di�erent colored bands are
the systematic uncertainties and vertical lines are the statistical uncertainties. The dashed lines
are the 4th order polynomial fit to the v2 to get v2 at the pT corresponding to v3.

Figure 3 shows the ratio of v3 to v2 as a function of pT for Au+Au and U+U collisions atÔ
sNN = 200 GeV and 193 GeV, respectively. We observe the v3/v2 ratio for pT > 1.5 GeV/c
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Figure 5.5: Experimental data from the STAR collaboration. [39]

from ALICE [38] and STAR [39]. Data8 from the ALICE collaboration
almost shows the desired behavior, seen in figure 5.4. While pions and
kaons have only a small deviation from our predicted constant behavior
between 1.5 GeV and 2.5 GeV for pt, anti-protons deviate clearly from it.
Data from the STAR collaboration shows in the pt range from 2 GeV to
4 GeV for 10% to 40% centrality that the ratio remains at a constant value
of about 0.5 (figure 5.5, middle). For 40% to 80% centrality the behavior
is still visible between 1.5 GeV and 4 GeV with a value of 0.5, however
the error bars slightly increase (figure 5.5, right). And finally for 0% to
10% centrality (figure 5.5, left) the ratio between v2(pt) and v3(pt) is still
found, but the value changes to 0.75 and the error bars are significantly
larger.
Despite having just criticized our predictions in (5.59), we argue now

that the saddle point approximation captures the nature of dissipative
effects at freeze-out in a very good manner. To illustrate this point, we
display in figure 5.6 on page 74 the difference between the perfect and
dissipative v2(pt), computed with the same parameters as above, given by
the exact numerical integration of the Cooper-Frye formula. This differ-
ence should only reflect the dissipative correction δf , which within our

8Note that the error bars for the data points in figure 5.4 are too small to be visible.
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Figure 5.6: The difference between the perfect and dissipative solution of
v2(pt) (top) and v3(pt) (bottom) for a blast-wave model computation
(dashed line) or within the saddle point approximation (full line).
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Figure 5.7: Results from (5.63) and (5.64) in a blast-wave model computa-
tion of the Cooper-Frye integral with dissipative corrections (full and
dashed lines). Also shown is the squared dissipative part of v2(pt)
within the saddle point approximation (dotted line).

saddle point approximation is simply V2D(pt), with D(pt) given by equa-
tion (5.58). The agreement between the analytical and numerical result is
very good, especially when one keeps in mind that the v2(pt) value itself
is quite poorly approximated by the saddle point approximation in both
cases. One should note that the two curves depart above 2GeV. This be-
havior arises from discarding terms in the derivation of the simple formula
(5.58) and could be handled by including more terms. However, we have
no explanation for the good agreement for low pt outside the regime of
fast particles.
As mentioned above, the blast-wave results for v2(pt) and v3(pt) are

quite different from each other, in contrast to the saddle point approxima-
tion. In figure 5.6 we also show the difference of the perfect and dissipative
v3(pt). The saddle point approximation V3D(pt) is again a good approx-
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imation to the full computation within the blast-wave model. Especially
given by the fact, that the saddle point calculation for v3(pt) is too large
by a factor of about 2 across the whole pt range.
Both figures in 5.6 reveal that the saddle-point approximation correctly

approximates the dissipative corrections arising from additive terms at
freeze-out. However, the displayed quantities are no experimental observ-
ables and thus this particular result can only be used for numerical sim-
ulations where corrections are turned on and off at will. In contrast, the
combinations on the left-hand sides of equations (5.63) and (5.64) only in-
volve measurable quantities. In figure 5.7 on page 75, we show the squared
left-hand side of (5.63) and the left-hand side of (5.64), computed within
the blast-wave model at freeze-out with dissipative corrections. From the
equations they should be equal to the squared dissipative contribution
of v2(pt), which is [V2D(pt)]2. However, they are about a factor of 2-3
times larger than [V2D(pt)]2, which is calculated within the saddle point
approximation (also seen in figure 5.7). Furthermore, these combinations
of flow coefficients do not vanish when they are computed with flow coef-
ficients obtained in the blast-wave model without dissipative corrections
unlike the saddle point results. This is disappointing, yet we view the
good agreement between the full line and the dashed line in figure 5.7 as
a hint that the displayed quantities open the possibility to pin down the
effects of dissipation at decoupling, although we could not come up with
a good mathematical argument to substantiate this statement.
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6 Anisotropic hydrodynamics
In chapter 5 the fundamental theory was dissipative hydrodynamics. The
results we achieved in the dissipative framework were sometimes remark-
ably good and may allow some insight in the form of the dissipative correc-
tions in the process of the freeze-out. Unfortunately, other results were not
accurate and need either a more complex modeling for the (one-particle)
distribution function corrections δf or a complete new ansatz for the whole
distribution function f . But even before our model was applied, the whole
concept of the sudden freeze-out approximation has some discrepancies.
For example, the approximation needs a certain proper time τfo, when the
freeze-out should begin, and a certain freeze-out temperature T at which
the transition from a fluid to particles takes place.
We do not want to abandon the whole idea of the Cooper-Frye for-

mula, but instead want to find a new ansatz which might help with the
conceptual problems of the sudden freeze-out approximation. Since a few
years, such an ansatz is present in form of anisotropic hydrodynamics. The
general idea is that the distribution function itself should be anisotropic,
generated by an anisotropic tensor of rank two. The origin of this idea
stems from the fact that the initial condition in a relativistic heavy-ion
collision itself is highly anisotropic. It should be easier to account for this
anisotropy by making the whole dynamic process anisotropic, instead of
just adding anisotropic terms to parameters and observables.
In this chapter the motivation and basic formulas for anisotropic hy-

drodynamics are presented. We also present calculations for the hydrody-
namic fields in case of an anisotropic distribution function.

6.1 Motivation
Despite the success of perfect and dissipative hydrodynamic descriptions
in the process of relativistic heavy-ion collisions, there are still some issues
which need to be addressed. One issue is, that the traditional derivation
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6 Anisotropic hydrodynamics

of dissipative hydrodynamics and its dynamical equations (see chapter 3),
relies on a linearization around an isotropic (local) equilibrium distribu-
tion. In recent years we have come to understand that the matter created
in relativistic heavy-ion collisions is not momentum-space isotropic. For
example, shortly after the collision of two nuclei one finds very large pres-
sure anisotropies. This signifies that the pressure along the beam axis, the
longitudinal pressure PL is smaller than the pressure perpendicular to the
beam axis, the transverse pressure PT inside the created fireball for a real-
istic shear viscosity. As one moves to the edge of the fireball, the pressure
anisotropy increases. Such pressure anisotropies are an indication for large
dissipative correction terms assumed to be at the starting point of per-
fect hydrodynamics. Furthermore, for a dissipative distribution function
negative values are possible, which are unphysical regions in phase-space.
Such unphysical regions may affect the calculation of several signatures,
like dilepton production, quarkonia suppression or the freeze-out. This
may lead to potential inaccuracies in the calculations. [19]
Such problems are motivating to create an alternative framework for

describing dissipative dynamics, but also describe more accurately the dy-
namics of an anisotropic momentum distribution. A successful framework
for accounting such properties is anisotropic hydrodynamics. One assumes
that the distribution function f(x, p) allows an anisotropic momentum-
space to leading order. This means that for a perfect isotropic distribution
function f0 with dissipative corrections δf the distribution function can
be rewritten as

f(x, p) = f0(x, p) + δf(x, p) = f0


√
pµΞµν(x)pν

Λ(x)

 , (6.1)

with Ξµν(x) the components of a second-rank tensor that is a reference for
the amount of anisotropy in momentum-space and Λ(x) a temperature-
like scale which can be identified with the temperature T of an isotropic
system. The most useful anisotropies are the spheroidal and the ellipsoidal
forms. For the first one the spatial components of the energy-momentum
tensor Tµν to leading order are assumed to be T xx = T yy 6= T zz in the local
rest frame. In the second form all three components are different T xx 6=
T yy 6= T zz. For the spheroidal case this means that Ξµν(x) involves a
single anisotropy parameter ξ(x) such that pµΞµν(x)pν is reduced to pµpµ+
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6.1 Motivation

ξ(x)p2
z in the local rest frame. From here, the dynamical equations for

spheroidal anisotropic hydrodynamics may be derived by taking equation
(6.1) and using the zeroth and first moments of the Boltzmann equation
in a relaxation time approximation (see section 3.5).
By using an anisotropic distribution function it is possible to account

for dissipative terms in a non-perturbative approach1. In addition, the
following benefits are achieved:

• For ξ → 0 and Λ → T it reproduces the perfect hydrodynamics
limit, corresponding to η

s → 0

• Since f0 ≥ 0, the distribution function and all pressures are equal or
greater than zero in contrast to first order dissipative corrections δf

• It is possible to show that for small anisotropies the formalism is
reduced to second order dissipative hydrodynamics [40,41]

We want to take a closer look at the motivation for anisotropic hydro-
dynamics in relativistic heavy-ion collisions. This motivation originates
from [19].
Let us review the different stages of a relativistic heavy-ion collision

(figure 6.1 on page 80). After the initial collision the created matter passes
through several stages. First, there is the semi-hard particle production
which is describable in terms of the color-glass-condensate (CGC). In the
next step, the pre-equilibrium quark-gluon-plasma is reached, where in a
small perimeter dissipative hydrodynamics should be applicable. After the
pre-equilibrium, the equilibrium phase is reached and we traverse to the
(dissipative) hydrodynamical regime. In the following the quark-gluon-
plasma freezes out, first in the process of hadronization (chemical freeze-
out) and finally in the (kinetic) freeze-out. In this process hydrodynamics
ceases to be applicable.
We take a closer look at this evolution in terms of pressure anisotropy.

Figure 6.2 on page 81 helps us to illustrate the pressure anisotropy PL/PT
at various stages in the quark-gluon-plasma. Here, we want to focus more
on the later parts of this evolution. After the initial anisotropy with a
significant value apart from one for PL/PT , the longitudinal expansion

1Although it is possible to add correction terms to the anisotropic distribution in (6.1),
we will neglect such terms completely in this work.
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Fig. 1. (Color online) A cartoon depicting the space-time history of the QGP as

generated in a heavy ion collision at LHC energies. The overlay on the right shows

the lab-frame evolution.

this case. However, it turns out that strong-coupling approaches and vis-
cous hydrodynamics itself also predict large momentum-space anisotropies
at early times. The existence of large momentum-space anisotropies in the
QGP seems to be very much model-independent.

Looking again at Fig. 1, we see that, after the initial period of hard
particle production, there is a pre-equilibrium period that may extend for
as long as 2 fm/c. In the past, it has been claimed that the pre-equilibrium
period can only exist for up to 1 fm/c and that, after that, the QGP becomes
isotropic; however, we now understand that viscous hydrodynamics itself
shows large corrections to ideal isotropic behavior even at times as late
as 2 fm/c. After the pre-equilibrium period is over, one can begin to use
linearized viscous hydrodynamics to describe the evolution of the QGP.2

I emphasize, however, that these time scales are only appropriate for the
description of the matter in the center of the fireball. In a conformal system,
the length of the pre-equilibrium stage scales like the inverse temperature.
Therefore, as one moves out of the center, towards the cooler transverse or
longitudinal regions of the QGP, one expects much larger non-equilibrium
corrections and a longer pre-equilibrium stage.

After the pre-equilibrium stage, we move into the hydrodynamic regime.

2 Of course, one can apply linearized viscous hydro prior to this time, but its reliability
is less sure at early times.

Figure 6.1: Schematic space-time history of the created matter in a rel-
ativistic heavy-ion collision at the LHC. The right overlay shows the
laboratory frame evolution. [19]

is reduced and interactions between the constituents of the quark-gluon-
plasma drive the system back towards an isotropic equilibrium. However,
the system does not cease to expand longitudinally and the interactions
may never fully restore isotropy. At late times the degree of the anisotropy
in momentum-space should be set by the shear viscosity, indicated in
figure 6.2. If the shear viscosity is large enough, one expects large non-
equilibrium corrections and the need for an anisotropic description arises.
After this qualitative aspect, a quantitative aspect should also underline

the need for anisotropic hydrodynamics. We follow again the arguments
of [19] and look at a system that is transversely homogenous and boost
invariant in the longitudinal direction. The dissipative hydrodynamics in
chapter 3 (more precisely the relativistic Navier-Stokes equation) predicts,
that in the local rest frame the corrections to the perfect pressures are
diagonal. For the spatial components of the shear stress tensor πµνshear the
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Fig. 2. (Color online) A cartoon depicting the temporal evolution of the

momentum-space anisotropy evolution expected to be generated in a heavy ion

collision at LHC energies. The inset yellow ellipses indicate the shape of the

momentum-space distribution with the horizontal direction corresponding to the

longitudinal (beamline) direction. The inset in the lower right shows a snapshot of

the receding nuclei, with the red wave indicating the stretching of a longitudinal

mode and the blue wave indicating a pseudo-static transverse mode.

During this period, the expansion and cooling of the QGP can be described
using the equations of linearized viscous hydrodynamics. At late times,
however, the system goes through a transition to hadronic degrees of free-
dom and eventually becomes too dilute to be reliably described by linearized
viscous hydrodynamics once again. The system subsequently “freezes-out,”
first chemically and then kinetically, and finally, the produced hadrons free
stream to the detectors, with an imprint of their former existence as a near-
equilibrium QGP left on their spatial/momentum distributions and relative
abundances.

Having discussed the general space-time picture of a heavy-ion colli-
sion, let’s now discuss, in some more detail, the evolution of the level of
pressure anisotropy expected. In order to illustrate the pressure anisotropy
expected at various stages of QGP evolution, in Fig. 2, I show a sketch of
the proper-time evolution of the level of momentum-space anisotropy mea-
sured by the ratio of the longitudinal pressure, PL, and transverse pressures,
PT . The blue band shows a range for the possible level of momentum-
space anisotropy. At early times, the lower bound of this band illustrates

Figure 6.2: The temporal evolution of the momentum-space anisotropy
evolution expected to be generated in relativistic heavy-ion collisions
at the LHC. [19]

following relation holds

πzzshear = −2πxxshear = −2πyyshear = −4η
3τ , (6.2)

with η the already known shear viscosity and τ the proper time. In dissipa-
tive hydrodynamics, the longitudinal pressure is given by PL = P+πzzshear
and the transverse pressure by PT = P + πxxshear. If one assumes an ideal
equation of state (ε = 3P), the ratio PL/PT from first order dissipative
hydrodynamics is given by

PL
PT

= 3τT − 16η̄
3τT + 8η̄ , (6.3)

with η̄ = η/s and s the entropy density. For initial conditions at RHIC
with T0 = 400 MeV and τ0 = 0.5 fm and a conjectured lower bound of
η̄ = 1/4π [42], one finds that (6.3) is about 0.5. The initial conditions at
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6 Anisotropic hydrodynamics

LHC with T0 = 600 MeV and τ0 = 0.25 fm and taking η̄ = 1/4π results
in PL/PT = 0.35. Both results show that even in the best case scenario
for η̄ = 1/4π, dissipative hydrodynamics itself predicts rather sizable mo-
mentum space anisotropies. Larger η̄ result in even larger anisotropies. In
addition, for a fixed value of τ the anisotropy increases when the temper-
ature T is lowered.
In conclusion, the momentum-space anisotropies persist in the evolu-

tion of the quark-gluon-plasma and need to be taken into account in the
dynamical description of relativistic heavy-ion collisions.

6.2 Anisotropic hydrodynamic fields
In this section we use the results from section 3.5 to calculate the particle
number four-current Nµ(x) and the energy-momentum tensor Tµν(x) for
an anisotropic distribution function. The calculations were developed in
cooperation with S. Feld and are originally presented in his master thesis
[43].

6.2.1 Anisotropic distribution function
We start with the form (5.2) of the distribution function and expand it to
the anisotropic case

fa(x, p) ∝ exp

−
√
pµΞµν(x)pν

Λ(x)

 . (6.4)

This equation is further simplified by assuming that the scale Λ(x) is in-
dependent of the space-time x. Λ takes the role of a parameter allowing
us to tune possible results. Also, we assume that the anisotropic tensor
Ξµν(x) is symmetric, to assure that the argument of the exponential func-
tion is commuting. If Ξµν(x) is symmetric, we can choose a basis in which
the tensor is diagonal, reducing it to only four components. We also use
p2 = m2 to explicitly include the mass m of the fluid particles. Finally,
for a purely spatial anisotropy, Ξ00(x) is assumed to be one and we define
Ξi(x) ≡ 1 + Ξii(x). With these assumptions we write

pµΞµνpν =
(
p0
)2

Ξ00 +
(
p1
)2

Ξ11 +
(
p2
)2

Ξ22 +
(
p3
)2

Ξ33
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6.2 Anisotropic hydrodynamic fields

= m2Ξ00 +
(
p1
)2

(Ξ00 + Ξ11) +
(
p2
)2

(Ξ00 + Ξ22)

+
(
p3
)2

(Ξ00 + Ξ33)

= m2 +
(
p1
)2

Ξ1 +
(
p2
)2

Ξ2 +
(
p3
)2

Ξ3, (6.5)

where we dropped the x-dependence of the anisotropies Ξµν , respectively
Ξi. The distribution function (6.4) can then be rewritten as

fa(x, p) ∝ exp

−
√
m2 + (p1)2 Ξ1 + (p2)2 Ξ2 + (p3)2 Ξ3

Λ

 . (6.6)

The form of (6.6) can be found in [10] and [44]. Due to the resemblance
of Λ in (6.6) to the thermodynamic temperature, we call Λ simply the
anisotropic temperature. From a thermodynamical point of view, this
picture is wrong. However, if we set all Ξi to zero, Λ gains the role of the
temperature T in equation (5.2), which justifies its name.
It is useful to change the spatial coordinates from the cartesian to

the out-side-long coordinates introduced in section 2.3.3. In this coor-
dinate system, every volume element dV is locally defined. For simplicity,
we write: o =̂ out, s =̂ side and l =̂ long. The distribution function (6.6)
changes to

fa(x, p) ∝ exp

−
√
m2 + (po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl

Λ

 . (6.7)

6.2.2 Anisotropic particle number four-current
We start with N(x) from (3.36)

Nµ =
∫
d3~p

p0 p
µfa(x, p). (6.8)

Note that the factor 1/(2π)3 is neglected in all calculations. We also
rewrote p0 to p0. In Minkowski or the out-side-long coordinates this is a
trivial step, but keep in mind that in other coordinate systems this may
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6 Anisotropic hydrodynamics

not be the case. We apply fa from (6.7) to equation (6.8) and calculate
Nµ component-by-component, starting with N0

N0 =
∫
d3~p exp

−
√
m2 + (po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl

Λ

 . (6.9)

The substitution qi =
√

Ξi/Λ pi with dqi =
√

Ξi/Λ dpi simplifies the inte-
gral and we replace the qo and qs coordinates by cylindric coordinates q
and φ. The φ-integral simply yields 2π and also the q-integral is solvable

N0 = Λ3
√

ΞoΞsΞl

∫
d3~q exp

−
√
m2

Λ2 + (qo)2 + (qs)2 + (ql)2


= Λ3
√

ΞoΞsΞl

∫
dql

∫ ∞
0

dq

∫ 2π

0
dφ q exp

−
√
m2

Λ2 + q2 + (ql)2


= 2πΛ3
√

ΞoΞsΞl

∫
dql

∫ ∞
0

dq q exp

−
√
m2

Λ2 + q2 + (ql)2


= 2πΛ3
√

ΞoΞsΞl

∫
dql

√m2

Λ2 + (ql)2 + 1

 exp

√m2

Λ2 + (ql)2

 . (6.10)

The substitution ql =
√

m2

Λ2 sinh(r) with dql =
√

m2

Λ2 cosh(r)dr results in

N0 = 4πΛ2m√
ΞoΞsΞl

[ ∫ ∞
0

dr cosh(r) exp
(
−mΛ cosh(r)

)

+m

Λ

∫ ∞
0

dr cosh2(r) exp
(
−mΛ cosh(r)

)]
. (6.11)

The last integrals are solved by using the definition of the modified Bes-
selfunction Kα(x)

Kα(x) =
∫ ∞

0
dt cosh(αt) exp(−x cosh(t)), (6.12)

as well as the reciprocal relation for Kα(x)

Kn+1(x) = Kn−1(x) + 2n
x
Kn(x) (6.13)
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and the identity cosh2(r) = 1
2 + 1

2 cosh(2r). The final result for N0 is

N0 = 4πΛ2m√
ΞoΞsΞl

[
K1

(
m

Λ

)
+ m

2Λ

(
K2

(
m

Λ

)
+K0

(
m

Λ

))]
= 2πΛm2
√

ΞoΞsΞl

[2Λ
m
K1

(
m

Λ

)
+K2

(
m

Λ

)
+K0

(
m

Λ

)]
= 4πΛm2
√

ΞoΞsΞl
K2

(
m

Λ

)
. (6.14)

This is the same result as in [8] (page 110, formula 2.182), [10] (page 141,
formula 8.56) or [45] (formula 28). The solution resembles the one for an
isotropic perfect fluid, except for the square root of the anisotropies Ξi

N0
aniso(Λ,Ξi) = 1√

ΞoΞsΞl
N0
iso(Λ = T ). (6.15)

This behavior is a good argument for viewing Λ as a temperature. For the
sake of completeness, we also show the result for N0 in case of massless
particles (m = 0)

N0 =
∫
d3~p exp

−
√

(po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl
Λ


= Λ3
√

ΞoΞsΞl

∫
d3~q exp

(
−
√

(qo)2 + (qs)2 + (ql)2
)

= 4πΛ3
√

ΞoΞsΞl

∫ ∞
0

dq q2 exp (−q)

= 8πΛ3
√

ΞoΞsΞl
. (6.16)

In the isotropic case (Ξi = 1 ∀ i) the known result N0 = 8πT 3 is retrieved.
Both results for massless particles coincide with [46] (formula 36 and 37).
The spatial components ofNµ are all solved in the same way, exemplified

by No

No =
∫
d3~p

p0 p
o exp

−
√
m2 + (po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl

Λ

 . (6.17)

85



6 Anisotropic hydrodynamics

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■

■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

massive particles

massless particles

-1.0 -0.5 0.0 0.5 1.0
0

1×108

2×108

3×108

4×108

ξ

n
(M
eV

3 )

Figure 6.3: The particle density N0 = n in dependence of the anisotropy
parameter ξ. The dots represent numeric calculations of (6.9) for mas-
sive particles, while the squares are the results of (6.9) for massless
particles. The dashed lines are the analytic results (6.14) and (6.16).
For the massive particles we chose pions (m = 140 MeV) and for Λ we
chose 160 MeV.

The integral over po is equal to zero, because the integrand is a product of
an even function ((1/p0) · exp(...)) times an odd function (po) integrated
over the whole integration region and consequently No is zero as well.
The same symmetric argument is applied to N s and N l and for all spatial
components we find

No = N s = N l = 0. (6.18)

The result is unchanged if we switch to massless particles.
For a graphical representation of the equations (6.14) and (6.16), we set

Ξs and Ξl to one and rewrite Ξo as 1 + ξ according to the simplification
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made in section 6.2.1. This results in a lower bound for ξ:

N0 ∈ R⇔ ξ > −1. (6.19)

In figure 6.3 the massive and massless results for N0 as a function of
the anisotropy parameter ξ are presented. In both cases, we found two
important properties: First, for a positive ξ the value for N0 has only
a small deviation compared to the isotropic (ξ = 0) case. Second, for a
negative ξ, the value of N0 grows significantly larger and is more sensitive
to a variation of ξ.

6.2.3 Anisotropic energy-momentum tensor
The energy-momentum tensor is calculated by using formula (3.39)

Tµν =
∫
d3~p

p0 p
µpνfa(x, p). (6.20)

The 16 components of Tµν are reduced to 4 components due to symmerty
considerations. From (6.20) we already deduce that T 0i = T i0 and T ij =
T ji, which eliminates the first six components. Inserting fa from (6.7)
into (6.20) yields

Tµν =
∫
d3~p

p0 p
µpν exp

−
√
m2 + (po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl

Λ

 . (6.21)

For µ = 0 and ν = i or µ = i and ν = j, we deduce that the corresponding
components vanish. Due to pi being an odd function and the exponential
function an even function, the integration over the whole integration region
results in a zero value for these components. This leaves the diagonal
components µ = ν for an actual calculation

Tµµ =
∫
d3~p

p0 p
µpµ exp

−
√
m2 + (po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl

Λ

 .
(6.22)

The different components are identified by their physical interpretation
with ε = T 00, Po = T oo, Ps = T ss and Pl = T ll.
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Figure 6.4: Numerical solution of (6.22) for m = 140 MeV and Λ =
160 MeV in dependence of ξ.

Unfortunately, for massive particles we need to exploit numerical inte-
gration to solve (6.22). The results2 are presented in figure 6.4, where we
chose the same values as above for N0 (Ξs = Ξl = 1 and Ξo = 1 + ξ).
The numerical calculations confirm our observations made for N0. For
negative ξ, the values of T 00 and T oo grow significantly larger. On the
other hand, T ss and T ll do not change as much as the former two, simply
because we set the corresponding anisotropies to one. It is notable, that
the pressure in the out-direction Po is larger than Ps and Pl for a negative
ξ and smaller for positive ξ. All four results are consistent with the general
relation that Tµν is traceless, meaning that the sum Po +Ps +Pl is equal
to ε.
For massless particles (m = 0) it is possible to find a semi-analytic

solution. We start with equation (6.22) for µ = 0, which is simplified by

2The pressures Ps and Pl are identical and overlap in our calculation.

88



6.2 Anisotropic hydrodynamic fields

the same substitution already applied to N0

T 00 =
∫
d3~p p0 exp

−
√

(po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl
Λ



=
∫
d3~p

√
(po)2 + (ps)2 + (pl)2

× exp

−
√

(po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl
Λ


= Λ4
√

ΞoΞsΞl

∫
d3~q

√
(qo)2

Ξo
+ (qs)2

Ξs
+ (ql)2

Ξl
× exp

(
− (qo)2 − (qs)2 − (ql)2

)
. (6.23)

Further simplifications are achieved by changing the coordinate system
to spherical coordinates in the out-side-long coordinate system. In the
spherical coordinates (6.23) is rewritten to

T 00 = Λ4
√

ΞoΞsΞl

∫ ∞
0

dq

∫ π

0
dΘ

∫ 2π

0
dφ q3 sin(Θ) exp (−q)

√
F (Θ, φ)

= 6Λ4
√

ΞoΞsΞl

∫ π

0
dΘ

∫ 2π

0
dφ sin(Θ)

√
F (Θ, φ), (6.24)

where the function F (Θ, φ) is introduced as

F (Θ, φ) = sin2(Θ) cos2(φ)
Ξo

+ sin2(Θ) sin2(φ)
Ξs

+ cos2(Θ)
Ξl

. (6.25)

Replacing Ξi with 1 + ξi yields the same form as in [46] (formula 57).
Unfortunately, the angular integrals have in general no analytical solution
and we have to fall back to numerical integration. By setting all Ξi to one
and replacing Λ by T , the function F (Θ, φ) is equal to one and we find
the isotropic solution for T 00 [46]

T 00 = 24πT 4. (6.26)
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The three pressures Po, Ps and Pl are calculated in the same way as for
T 00, exemplified for Po

T oo =
∫
d3~p

p0 p
opo exp

−
√

(po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl
Λ


=
∫

d3~p√
(po)2 + (ps)2 + (pl)2

popo

× exp

−
√

(po)2 Ξo + (ps)2 Ξs + (pl)2 Ξl
Λ


= Λ4√

Ξ3
oΞsΞl

∫
d3~q

qoqo√
(qo)2

Ξo + (qs)2

Ξs + (ql)2

Ξl

exp
(
− (qo)2 − (qs)2 − (ql)2

)

= Λ4√
Ξ3
oΞsΞl

∫ ∞
0

dq

∫ π

0
dΘ

∫ 2π

0
dφ q3 exp (−q) sin3(Θ) cos2(φ)√

F (Θ, φ)

= 6Λ4√
Ξ3
oΞsΞl

∫ π

0
dΘ

∫ 2π

0
dφ

sin3(Θ) cos2(φ)√
F (Θ, φ)

(6.27)

Ps and Pl have similar results

T ss = 6Λ4√
ΞoΞ3

sΞl

∫ π

0
dΘ

∫ 2π

0
dφ

sin3(Θ) sin2(φ)√
F (Θ, φ)

(6.28)

T ll = 6Λ4√
ΞoΞsΞ3

l

∫ π

0
dΘ

∫ 2π

0
dφ

sin(Θ) cos2(Θ)√
F (Θ, φ)

, (6.29)

where F (Θ, φ) is the same function as in equation (6.25). These results
are compatible with the results in [46] (formula 60).
In the last step, the angular integrals of (6.24), (6.27), (6.28) and (6.29)

are solved numerically to gain a functional form. Again, we choose Ξs and
Ξl to be one and the remaining anisotropy Ξo is set to 1 + ξ. The results
are shown in figure 6.5, where we find the same qualitative results already
found for massive particles.
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Figure 6.5: Semi-analytical solutions for (6.24), (6.27), (6.28) and (6.29)
for Λ = 160 MeV in dependence of ξ (dashed lines). The points repre-
sents exact numerical results of (6.22) for massless particles.

The results in this chapter may seem unimportant for the freeze-out,
where Nµ and Tµν do not contribute, but we gain insight into the ef-
fectiveness of the anisotropy on hydrodynamic quantities. Especially, the
behavior of the pressure Po in dependence of ξ has the remarkable prop-
erty, that a negative anisotropy shifts Po to larger values, while the other
pressures are, compared to Po, are hardly affected by the anisotropy ξ.
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7 Anisotropic corrections to the
freeze-out

We return to chapter 5 with the sudden freeze-out approximation and the
Cooper-Frye formula

E~p
d3N

d3~p
= g

(2π)3

∫
Σ
dσµ(x) pµf (x, p) . (7.1)

In the sudden freeze-out approximation the fluid breaks up abruptly when
it reaches the hypersurface Σ. In chapter 5 this happens when a certain
temperature is reached (T = 160 MeV). It is possible to make the process
a little less abrupt, if the "thin" region of the hypersurface is replaced by a
four-dimensional shell to weaken the abruptness of the process. However,
there is still the problem that the freeze-out has to start somewhere in the
phase-space and the problem of an abrupt transition persists.
Apart from the problem, when the transition takes place, we also have

to ask how the transition proceeds. In chapter 4 and 5, we assumed an
equilibrium thermal distribution for the fluid in the case of a perfect fluid
or a near-equilibrium distribution including correction terms in case of a
dissipative fluid. In both cases it has been assumed, explicitly or implicitly,
that the fluid is not far away from the local thermal equilibrium to assure
that the dissipative effects remain small. Determining the corrections may
be achieved by pure theory (see again [20–28]) or by phenomenological
data-driven approaches [29], and is an ongoing effort.
The distribution f (x, p) at the freeze-out considered in the literature is

isotropic in the local rest frame of the fluid, a reflection of the (near) local
thermal equilibrium. In this chapter we depart from the local isotropy and
assume instead a locally asymmetric (anisotropic) momentum distribution
for the fluid at the freeze-out.
Before proceeding any further, we want to mention that the existence of

a local anisotropy at freeze-out was already considered in [47]. However,
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7 Anisotropic corrections to the freeze-out

we are interested in a different kind of anisotropy, reflecting the dissimilar
underlying motivation. Nevertheless, some of the results of [47] naturally
translate into similar results in our case.
The content of this chapter has also been published in the following

article: [48].

7.1 Motivation
The sudden freeze-out scenario within the Cooper-Frye prescription aims
at joining two different descriptions together. The mismatch of the model
is obvious when the fluid freezes out into the free-streaming particles,
exemplified by the jump of the Knudsen-number (see equation (3.1)) from
very small values (fluid) to very large values (free particles). Even when
the Cooper-Frye formula is used to switch from a dissipative fluid to a
collection of hadrons, some issues remain [13,49].
An often mentioned problem is the existence of regions on the hypersur-

face Σ where dσµ(x)dσµ(x) < 0, which can lead to negative contributions
to the Cooper-Frye integral, as it has been mentioned in section 6.1. So-
lutions have been proposed in [50], which themselves remain incomplete
since they introduce discontinuities across Σ either in the stress tensor or
in the four-velocity. These discontinuities are only mathematical artifacts
of the modeling process and no physical manifestations.
Another issue of the usual sudden freeze-out approximation is the sensi-

tivity of the observables computed with the emitted particles. In particu-
lar their spectra is sensitive to the parameters in the Cooper-Frye formula
(7.1). This rather crucial point implies, that the matching between a mi-
croscopic approach (kinetic description of the particles) and a macroscopic
effective theory (fluid description) depends significantly on the parameter
that separates them, making the whole process questionable. A strong
theoretical incentive for developing and investigating new approaches to
the modeling of decoupling at the end of the dynamical stages of relativis-
tic heavy-ion collisions is thus to obtain a description, which interpolates
between the hydrodynamic and kinetic regimes in a smoother manner than
the usual prescriptions.
There is of course the possibility to find a way out of the problem by

dropping the assumption of a sudden freeze-out in favor of a continuous
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freeze-out [51–53]. In the current implementation of this approach, the
particles decouple from the fluid and are not interacting with each other
after this process. Unfortunately, this implies a sudden transition from
a very small to a very large (infinitely) mean free path length for each
particle, which is again unsatisfactory, even though it does not happen "at
once" for the whole fluid.
Despite the mentioned discrepancies, the Cooper-Frye formula remains

appealing because of its simplicity, which makes it easier to test new ideas.
We want to ensure a better transition between the fluid and particle de-
scription, so it seems promising to tweak one of the models in order to
bring them closer together. We suggest that the anisotropic hydrody-
namics [40,54,55] may improve the smoothness of the transition between
the fluid and the particle framework. As we shall demonstrate in section
7.2, this ansatz diminishes the sensitivity to the freeze-out temperature T .
We introduce control parameters, namely those governing the anisotropy
of the phase-space distribution at decoupling, which widen the possible
range of values for T . Three arguments in favor of distorting the particle
distribution at freeze-out are:

1. In the context of heavy-ion physics there is an obvious analogy with
the advocated use of anisotropic hydrodynamics at early stages of
the evolution of the medium. It is used to ease the transition from
the locally asymmetric energy-momentum tensor of the fields left by
the colliding nuclei to the almost isotropic tensor needed to apply
usual hydrodynamics consistently. In the early evolution stage, the
phase-space distribution is deformed along the axis of the nucleus-
nucleus collision (z-axis). However, for our case we do not expect
such a global direction for the anisotropy.

2. As a matter of fact, our resort to a possibe strongly anisotropic
freeze-out distribution is the observation of a similar asymmetry,
parameterized as two different translation temperatures along the
streamlines and perpendicular to them, in hypersonic non-relativistic
flows [56]. These observations help us specify the kind of anisotropy
we want to consider hereafter. Let us for simplicity focus on particle
emission around mid-rapidity to discard any anisotropy along the z-
direction on symmetry grounds. Far from the fluid, each particle will

95



7 Anisotropic corrections to the freeze-out

tend to fly away radially, as implied by the simultaneous conservation
of angular momentum and (kinetic) energy. The dispersion of the
momentum components transverse to the radial direction will thus
be much smaller than that of the radial component.

3. Eventually, the argument for assuming a deformed particle distribu-
tion is that such an anisotropy was actually found for post-freeze-out
distributions arising from the decoupling through time-like portions
of freeze-out hypersurfaces [28,57].

We conclude that it would be helpful to adopt a particle distribution
which is already deformed with a larger mean squared momentum along
the radial direction in the Cooper-Frye description. If we adopt the out-
side-long coordinate system, we assume a larger pressure along the local
out-direction than in the side- and long-directions, motivated by the re-
sults in section 6.2. The asymmetry is admittedly a mere assumption,
motivated by non-relativistic studies where the freeze-out happens when
the local particle distribution has a large enough anisotropy in momentum-
space, and by the incentive to have a smoother transition between the fluid
and particle descriptions. The actual functional form of the phase-space
distribution at freeze-out, as well as the size of the parameters measuring
the anisotropy, should emerge from a detailed kinetic description of the
decoupling process [58]. In section 7.2, we postulate such a form and ex-
amine the change induced by the momentum-space asymmetry on various
observables of relativistic heavy-ion collisions.
One last remark: Note that the anisotropy we consider hereafter differs

from that considered in [47], in which the distribution is assumed to be
distorted along the z-axis, as a remnant of the distortion along that di-
rection in the initial state of the heavy-ion collision. Both deformations
can naturally be present at once, yet our intention here is to examine the
influence of a larger radial momentum dispersion, so that we keep the
pressures in the side- and long-directions equal.
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7.2 Freeze-out of an anisotropic fluid

7.2 Freeze-out of an anisotropic fluid
We propose that for the phase-space distribution at the freeze-out of a
particle species with mass m a Romatschke-Strickland-like profile can be
assumed [59], which is similar to the distribution used in chapter 6. In the
local rest frame the distribution should take the following form

fa,LR(x, p; Λ, ξ) = exp

−
√
m2 + ~p 2

LR + ξ(x)p 2
out,LR

Λ(x)

 , (7.2)

where pout,LR denotes the out-component of the particle momentum ~pLR
with respect to the local rest frame of the fluid at position x. Λ(x) is again a
temperature-like scale over which the particle momentum takes significant
values and ξ(x) characterizes the anisotropy in the out-direction. A priori,
both Λ(x) and the anisotropy parameter ξ(x) depend on their position in
space-time as well as the particle type, but for simplicity we treat them
as parameters and they are assumed to be constant over the freeze-out
hypersurface Σ. Obviously, (7.2) does not include quantum effects.
In the same way as in section 6.2, the anisotropy parameter ξ must be

larger than −1, to ensure the positivity of the expression under the square
root. In order to obtain a larger pressure along the radial direction than
perpendicular to it, ξ should be negative. Therefore, ξ has to be in the
range of −1 < ξ < 0.
To test the influence of the momentum anisotropy in equation (7.2),

we assume some specific freeze-out flow profile u(x) and hypersurface Σ.
We let the fluid decouple like in chapter 5 at a constant proper time τfo
on a longitudinally infinite, azimuthally symmetric cylinder of radius R.
The coordinates in the laboratory frame are the proper time τ , space-time
rapidity η, and cylindrical coordinates r and φ. We also assume for the
fluid velocity on Σ a generalized blast-wave profile [36,37]

ur(r, φ) = umax
r

R

1 + 2
∑
n≥1

Vn cos (nφ)

 (7.3)

for the radial coordinate, uφ = uη = 0 for the azimuthal- and rapidity-
direction and eventually uτ (r, φ) =

√
1 + (ur(r, φ))2. With this choice,
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the phase-space distribution (7.2) is written in the laboratory frame as

fa(x, p; Λ, ξ)

= exp
(
−
√

[pτuτ (x)− prur(x)]2 + ξ[pruτ (x)− pτur(x)]2
Λ

)
. (7.4)

Equation (7.4) is achieved by rewriting m2 + ~p 2
LR and pout,LR.

First, pτuτ (x) − prur(x) is found by writing m2 + ~p 2
LR =

(
p0
LR

)2. In
the local rest frame u(x) is (1, 0, 0, 0), which allows us to write p0

LR =
(pµuµ(x))LR and holds automatically in every reference frame, so that we
can write (pµuµ(x))LR = (pµuµ(x)). For our choice of u(x) from above we
find (pµuµ(x)) = pτuτ (x)− prur(x).
The second squared bracket is found by boosting pout,LR along the ur-

direction1: pr → p′r = γ(x) (pr − β(x)pτ ). In our cylindrical coordinate
system, γ(x) is equal to uτ (x) and β(x) is equal to ur(x)/uτ (x), which
results in p′r = (pruτ (x)− pτur(x)).
Under these assumptions we compute the Cooper-Frye integral numer-

ically, from which we obtain the transverse momentum spectrum, respec-
tively the particle momentum spectrum, the anisotropic flow coefficients
vn, and the three HBT-radii Rout, Rside and Rlong [26, 60]. The HBT-
radii are computed with formula (2.41), while the vn are computed with
equation (2.10). We will focus on pions (m = 140 MeV) produced at
mid-rapidity (y ≈ 0).

7.2.1 Effects for a fixed anisotropic temperature
First, we present results obtained with fixed values of the anisotropic tem-
perature Λ = 150 MeV and the following parameters of the blast-wave
profile: τfo = 7.5 fm, R = 10 fm, umax = 1, V2 = V3 = 0.05 and all other
Vn = 0. The HBT-radii are an exception where all Vn are set to zero. In
contrast, the anisotropy parameter ξ varies and we use values from −0.5
to 0 in steps of 0.1 and include the positive values ξ = 0.15 and ξ = 0.3.
According to our argumentation in section 7.1, these positive values, which
lead to a smaller pressure in radial direction as perpendicular to it, should
not be relevant for the freeze-out, yet we conclude them for the sake of
reference.

1Note that the out-direction and the r-direction coincide here.
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Figure 7.1: Transverse spectra for fixed Λ and varying anisotropy param-
eter ξ.

We start with the results of the transverse momentum spectra, which
are equivalent to formula (7.1) for neglected y and ϕ, in figure 7.1. As it
is expected, the non-zero values of ξ lead to deviations from the almost
exponential shape valid in the isotropic case. While for low pt up to
0.5 GeV almost no deviations from the isotropic spectrum are present,
the spectrum becomes harder for high pt, meaning the spectrum raises
at larger values of pt when ξ goes to increasingly negative values. This
clearly reflects the growing radial pressure, or equivalently the effective
radial temperature T

T = Λ/
√

1 + ξ, (7.5)

obtained by assuming −1 < ξ < 0.
Figure 7.2 on page 100 displays the transverse momentum dependence

of the elliptic flow v2(pt) for various ξ. The triangular flow v3(pt) follows
the same trend, also seen in figure 7.2. We conclude from both graphics
that the anisotropic flow decreases when ξ becomes more negative. At
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Figure 7.2: Elliptic flow v2(pt) and triangular flow v3(pt) for fixed Λ and
varying anisotropy parameter ξ.
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the same time the radial temperature T grows. This behavior reflects
the fact that an increase in random thermal motion tends to dilute the
effect of directed collective behavior encoded in the flow velocity and its
anisotropies and therefore diminishes the values of the flow coefficients
vn(pt), here exemplified by v2(pt) and v3(pt).
Finally, the HBT-radii, are shown in figure 7.3 and 7.4 on pages 102

and 103, together with the ratio Rout(Kt)/Rside(Kt), as functions of the
pair transverse momentum Kt. To be more precise, the radii R2

side(Kt)
and R2

long(Kt) are the weighted averages with fa from equation (7.4) over
the freeze-out hypersurface of y2 = r2 sin2 φ, respectively z2 = τ2 sinh2 η,
while R2

out(Kt) is the average of (x − (Kt/E ~K)t)2, where x = r cosφ and
t = τ cosh η (see also the formulas in (2.41)). As it was just mentioned,
negative values of ξ amount to a larger radial temperature T and thus to
higher thermal velocities in the out-direction. Since the emission duration
at the same time barely changes, this naturally leads to a larger Rout(Kt)
(see figure 7.3), as well as to a larger ratio Rout(Kt)/Rside(Kt) (see figure
7.4). In turn, the longitudinal radius Rlong(Kt) shown in figure 7.4 is to
a large extent unaffected by ξ. This could be anticipated since the longi-
tudinal part of the occupation factor remains unchanged. The behavior
of the sidewards radius Rside(Kt) with varying ξ (see figure 7.3) is more
complicated without finding a satisfactory explanation describing all its
details.
Before we go any further, one should note that in a more complete ap-

proach, the local anisotropy parameterized in this work by ξ should not
be uniform, but rather position-dependent. In particular, ξ (or similar
parameters) would normally be a function of the azimuthal angle φ, par-
alleling the corresponding dependence of the velocity profile, as we now
argue2. The fluid-particle conversion, whose modeling ξ is supposed to
facilitate, roughly happens when the fluid expansion rate ∇µ(x)uµ(x) be-
comes comparable to that of elastic scatterings. Since the flow velocity
varies with φ, so does the expansion rate, which motivates the azimuthal
dependence of ξ. On the other hand, the scattering rate depends on the
particle density obtained by integrating the occupancy factor over mo-
mentum, and on the relative velocity of the particles. As follows from a

2Similarly, Λ also might depend on φ, yet we leave this possibility aside to simplify
the discussion.
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Figure 7.3: HBT-radii Rout(Kt) and Rside(Kt) for fixed Λ and variable
anisotropy parameter ξ.

102



7.2 Freeze-out of an anisotropic fluid

ξ=0.3

ξ=0.15

ξ=0

ξ=-0.1

ξ=-0.2

ξ=-0.3

ξ=-0.4

ξ=-0.5

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

Kt (GeV)

R
lo
ng

(f
m
)

ξ=0.3

ξ=0.15

ξ=0

ξ=-0.1

ξ=-0.2

ξ=-0.3

ξ=-0.4

ξ=-0.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Kt (GeV)

R
ou
t/
R
si
de

Figure 7.4: HBT-radius Rlong(Kt) and the ratio Rout(Kt)/Rside(Kt) for
fixed Λ and varying anisotropy parameter ξ.
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straightforward change of the integration variable [47], the density is in-
versely proportional to

√
1 + ξ(x), thus is a priori φ-dependent. In turn,

the typical relative velocity is controlled by the (effective) temperature(s)
of the decoupling medium and thus a function of φ as well. All in all, ev-
ery relevant physical quantity depends on the azimuth angle which results
in a non-trivial description of the φ-dependence to determine the actual
dependence of ξ. In any case, there will be such a dependence, which will
affect the anisotropic flow coefficients vn. The results shown in figure 7.2
and also figure 7.6 are obviously neglecting this feature.

7.2.2 Effects for a variable anisotropic temperature
After investigating the influence of ξ when all other parameters are fixed,
we want to illustrate the degeneracy introduced by the new parameter Λ,
showing that very similar values of the observables can be obtained with
different pairs (Λ, ξ). Note that we did not attempt to optimize the results
we are showing by fine tuning parameters3, as it will be made apparent
by the values of the latter.
We show the transverse momentum spectra for four sets of values of

(Λ, ξ), where Λ varies between 130 MeV and 160 MeV and ξ between −0.5
and 0.3, in figure 7.5. In all four cases, we have chosen the same values
for the other parameters, in particular umax = 1. We find that all curves
are barely distinguishable below pt = 1.5 GeV, while for larger pt the
one with (Λ = 130 MeV, ξ = −0.5) starts curving up. The spectrum for
(Λ = 140 MeV, ξ = −0.25) only starts to differ from those with larger
Λ from about 2 GeV onwards, while the remaining two stay very close
together up to at least 3 GeV. In the same figure the spectrum for (Λ =
130 MeV, ξ = −0.5) is shown, but with a different flow velocity, namely
umax = 0.8. The change in umax makes the spectrum almost coincide with
the one for (Λ = 150 MeV, ξ = 0), with a relatively small difference over
the whole momentum range.
The elliptic flow v2(pt) and the triangular flow v3(pt) for the same set of

parameters as in figure 7.5 are shown in figure 7.6 on page 106. The three
HBT-radii Rout(Kt), Rside(Kt) and Rlong(Kt) are also shown in figure
7.7 on page 107 and figure 7.8 on page 108, again for the same set of

3An attempt to optimize the results is presented in the master’s thesis by S. Feld [43].
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Figure 7.5: Transverse spectra for different choices of Λ, ξ, and umax.

parameters as before.
As in the case of the transverse spectra, the values for v2(pt) (figure 7.6)

and Rout(Kt) (figure 7.7) for all pairs of (Λ, ξ) with umax = 1 are very close
to each other, with (Λ = 130 MeV, ξ = −0.5) once more being the farthest
apart from the other three. Also included is the calculation with umax =
0.8, which provides a good approximation for the transverse momentum
spectrum. For v2(pt) it basically makes no difference with respect to the
case umax = 1, whereas the departure is more marked for Rout(Kt). All in
all, the results for the transverse momentum spectra, v2(pt), and Rout(Kt)
support our claim that introducing extra parameters opens a much wider
range for the freeze-out temperature Λ without drastically affecting the
values of the two observables.
In contrast, the sidewards HBT-radius Rside(Kt) displayed in figure 7.7

is much more sensitive to the choice of the decoupling parameters (Λ, ξ).
This is actually somewhat reassuring, since femtoscopic measurements are
precisely designed to probe the space-time configuration at decoupling [61].
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Figure 7.6: Elliptic flow v2(pt) and triangular flow v3(pt) for different
choices of Λ, ξ, and umax.
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Figure 7.7: HBT-radii Rout(Kt) and Rside(Kt) for different choices of Λ,
ξ, and umax.

107



7 Anisotropic corrections to the freeze-out

Λ=160 MeV, ξ=0.3

Λ=150 MeV, ξ=0

Λ=140 MeV, ξ=-0.25

Λ=130 MeV, ξ=-0.5
all with umax=1

Λ=130 MeV, ξ=-0.5 and umax=0.8

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

Kt (GeV)

R
lo
ng

(f
m
)

Figure 7.8: HBT-radius Rlong(Kt) for different choices of Λ, ξ, and umax.

On the other hand, the radius Rlong(Kt) is very insensitive to the choice
of (Λ, ξ), also seen in figure 7.8. This behavior has already been explained
in context of figure 7.4. Finally, v3(pt) (figure 7.6) shows more or less the
same characteristics as v2(pt): For all pairs (Λ, ξ) the curves stay close to
each other, with (Λ = 130 MeV, ξ = −0.5) being the farthest apart from
them.

7.3 Discussion
We have argued that there are two main motivations for resorting to an
anisotropic momentum distribution to describe the transition from a usual
perfect or dissipative hydrodynamic model to a particle distribution at
the end of the evolution of the fireball, created in relativistic heavy-ion
collisions. First, this ansatz is supported by non-relativistic studies [56].
Second, this could help diminish the sensitivity of computed observables
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on the parameters introduced by the decoupling description and thus lead
to a smoother matching between models. This is all in the spirit of seeing
fluid dynamics emerging as an effective theory caused by some underlying,
more microscopic dynamics.
As a matter of fact, our findings for the transverse momentum spectra,

v2(pt), and Rout(Kt) (figures 7.5, 7.6 and 7.7) support the idea of intro-
ducing an extra parameter, which governs the local momentum anisotropy
at decoupling. It opens a much wider range for the freeze-out tempera-
ture Λ without significantly changing the values of the observables. This
is admittedly not too surprising, since we introduced one new degree of
freedom. Yet it emphasizes the fact that the freeze-out temperature Λ is
just a parameter for switching between two models, not a real physical
temperature determined by some critical energy or entropy density, for
which the medium properties change drastically. As such a parameter, Λ
may not have a dramatic impact on measured quantities.
Accordingly, it seems possible to find a whole region of parameters to

which the early time signals, like anisotropic flow, are to a large extend
insensitive. They carry information on the properties of the fireball along
the whole evolution, rather than on decoupling itself [62]. On the other
hand, some sensitivity remains for the observables which are governed by
the freeze-out process.
We postulated the asymmetric form of the occupation factor at decou-

pling fa (see equation (7.4)) and investigated some of the consequences
within a toy model. The actual form of fa, together with that of the as-
sociated hydrodynamical quantities, still has to be calculated in a more
microscopic approach [58]. This involves at the same time a discussion
of the freeze-out hypersurface Σ, whose position in space-time obviously
depends on the amount of momentum anisotropy in the phase-space dis-
tribution.
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8 Conclusion
This conclusion will shortly summarize the main results in terms of dissi-
pative and anisotropic corrections.

8.1 Dissipative corrections
The first goal of this thesis was to expand the method of the sudden freeze-
out approximation, solved by a saddle point approximation for a perfect
relativistic fluid presented in [6], to a relativistic dissipative fluid. In the
process of this expansion we found that the most general result persists.
We could group the emitted particles in the process of the freeze-out into
two kinds, slow and fast particles. However, new features did arise.
We assumed that the saddle points for the dissipative fluid are the same

as for the perfect fluid. Also, we specified the dissipative corrections,
where we found that only the first order viscosity corrections (shear and
bulk viscosity) were important and that the heat flow could be neglected
by choosing the right reference frame (Landau frame).
For slow particles, the dissipative corrections did not change the results

of a perfect fluid. The particle spectrum is given by the product of a factor
depending on the particle mass and a function depending on the velocity
of the emitted particles. The particle spectrum resulted in a mass ordering
of the anisotropic flow coefficients, meaning that for heavier particles the
flow coefficients decrease.
Turning to fast particles, the bulk viscosity could be neglected and the

shear viscosity corrections could be expressed with the help of the Grad’s
prescription. Analytical results for the transverse momentum spectrum
and the anisotropic flow coefficients were found, which reproduced for
vanishing shear viscosity the results of a perfect fluid. Also, "new" relations
between different flow coefficients were found.
To test the new results for fast particles, the blast-wave model was

chosen to calculate the flow coefficients. As it turned out, the absolute
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results of the flow coefficients calculated within the saddle point approxi-
mation are poor approximations compared to the coefficients in the blast-
wave model. However, if the dissipative part of the flow coefficients was
isolated, the saddle point approximation gave astonishingly good results
compared to the blast-wave model results. Furthermore, if one combined
different flow coefficients to calculate the dissipative corrections, another
good agreement was found. This is especially convenient, since for an ex-
perimental measurement an isolation of the dissipative part alone is not
possible.

8.2 Anisotropic corrections
Several articles, like [19] and [55], suggested that an anisotropic momen-
tum distribution could help to describe dissipative corrections.
Therefore, we adapted the idea of [47], but changed the direction of

the anisotropy. To understand anisotropic relativistic hydrodynamics, the
fundamental hydrodynamical fields were calculated within a kinetic the-
ory. In this calculation we found that the anisotropy can be quantified by
two parameters, an anisotropy parameter ξ and an anisotropic tempera-
ture Λ. We gained insight on how the anisotropy parameter changes the
values of the hydrodynamical fields. From these results we concluded that
a negative parameter ξ results in the desired behavior.
Next, we examined the impact of the anisotropy on the freeze-out. Since

an analytical calculation within the sudden freeze-out approximation did
not give any satisfying results, we reverted to the known blast-wave model
from the first part of the thesis to calculate the transverse momentum spec-
trum, the elliptic and triangular flow coefficients v2(pt) and v3(pt), and the
three possible HBT-radii Rout(Kt), Rside(Kt) and Rlong(Kt). To simplify
the calculation, only one anisotropic parameter in the out-direction was
included.
For a fixed anisotropic temperature and variable anisotropic param-

eter ξ, we found that the transverse momentum spectrum for negative
anisotropic parameters increases for high transverse momenta, while the
anisotropic flow coefficients are reduced. Both results were anticipated due
to the hydrodynamical results. For the HBT-radii, the radius Rout(Kt)
changes significantly compared to the isotropic case, while the radius
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Rlong(Kt) hardly changes. Both results were again expected, however, the
radius Rside(Kt) also changed significantly, which could not be explained.
In the final step, both parameters ξ and Λ were changed in order to

find anisotropic solutions which are mostly overlapping with the isotropic
solutions. Such parameter sets were indeed found and it is even possible
to change other parameters of the blast-wave model without changing the
overall results. With the help of anisotropic correction we gained a much
smoother transition between the two states, fluid and free particles, in
the freeze-out process compared to the sharp transition in the case of
dissipative corrections.

8.3 Outlook
In section 5.3, we left aside a few phenomena which could ruin the validity
of our findings. There are initial-state fluctuations, but their effect should
not be too hard to be dealt with by adding analysis-method-dependent
multiplication coefficients [31,34] in front of the flow harmonics in relations
(5.63) or (5.64). These are related to the initial eccentricities and can be
deduced from the study of integrated flow or from slow particles. A possi-
ble more worrisome effect is the rescattering. After the fluid-particle tran-
sition, this effect might blur the relations by contributing more anisotropic
flow. Again, we think this problem can be handled by exploiting particles
that rescatter less and by gauging the influence of hadronic collisions in
transport models.
Also, there is an interesting possibility: By investigating particles with

different cross sections that decouple at different stages of the evolution,
one could hope to map the temperature dependence of the transport co-
efficients. This can be done once the functional form of δf is known,
although it may depend on the particle type. This idea may be followed
in the future within more realistic numerical solutions.
As far as for section 7.3, the actual form of fa, together with that of

the associated hydrodynamical quantities, still has to be calculated in a
microscopic approach [58]. In this microscopic approach we wish to solve
the Boltzmann equation with an anisotropic part to gain not just a postu-
lated distribution function. Until now we have successfully transferred the
relativistic Boltzmann equation from a Minkowski coordinate system to a
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cylindrical system. In the next step we need to insert the anisotropy into
the interaction term of the equation. So far, we assume that a relaxation
time approach should be sufficient enough. The solution of the Boltzmann
equation should yield a distribution function which already includes the
free streaming regime after the freeze-out. The ultimate goal is to achieve
new constrains for the anisotropic tensor Ξµν .
Once this is done, it will be necessary to study how the improved de-

scription may be implemented in practice. This is the process of how
numerical simulations of dissipative fluid dynamics, anisotropic hydrody-
namics, and particle transport are connected with each other in a satisfac-
tory manner. An important point is to check what the shortcomings of the
sudden freeze-out approximation, in particular the backflow of particles
through Σ [63], become in the new approach. If there is more freedom in
choosing the decoupling hypersurface Σ, some choices may be more con-
venient than others. Eventually, it is of interest to investigate the possible
relation of the new description, which in its essence still assumes a sud-
den conversion from fluid to particles, with continuous emission [50–52].
For instance, one may wonder if it is possible to mimic the latter within
the former, or whether one has to formulate a continuous version of the
anisotropic freeze-out scenario.
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