
Parameterized Pattern Generation via
Regression in the Model Space of

Echo State Networks

Witali Aswolinskiy and Jochen Steil

Research Institute for Cognition and Robotics - CoR-Lab
Universitätsstraße 25, 33615 Bielefeld, Germany
waswolinskiy@cor-lab.uni-bielefeld.de

https://www.cor-lab.de/

Abstract. Recurrent neural networks capable of sequential pattern gen-
eration could facilitate new types of applications like music generation.
Here, we explore the capability of echo state networks for parameterized
pattern generation and present a new approach utilizing regression in
the model space. The goal of the learning is a system that can gener-
ate patterns for previously unseen parameterizations. Contrary to other
approaches, where a single network is trained to generate all pattern pa-
rameterizations, we learn to generate a different network for each pattern
parameterization. We evaluate the classical and our modular approach
on several synthetic, periodic datasets. We show that regression in the
model space of echo state networks can generate parameterized patterns
more precisely than a single echo state network.

Keywords: time series generation, pattern generation, echo state net-
work, reservoir computing, model space

1 Introduction

Sequential pattern generation has potentially many applications in signal pro-
cessing, e.g. filling gaps in time series, computational creativity, e.g music gener-
ation and time series modelling. Compared to the main areas of machine learning
such as classification, regression and clustering, few advances have been made
in pattern generation. The reasons for this include the lack of datasets and
benchmarks and the difficulty of training recurrent neural networks, especially
to generate stable output. Recently, several variants of Echo State Networks
(ESNs, [6]) were applied to a range of pattern generation tasks including fre-
quency modulation [7, 9, 10] and learning human motion [13, 8].

Here, we focus on parameterized pattern generation: Given a set of pattern
sequences shaped by control parameters, the goal is to learn to generate patterns
for new control parameter values. In a sine wave generator, for example, the
control parameter would be the frequency and the goal the generation of a sine
wave with a frequency not used during training. This is a more difficult task than



to learn to reproduce patterns, since it involves the learning of the underlying
dynamical system producing the patterns and requires the learner to generalize
in the space of the control parameters. The solution for this type of task with
ESNs, as applied for similar tasks in [7, 9, 10, 13], is to train a single network,
which receives the control parameter as input. We propose a different solution,
where for each pattern a new network is generated based on the value of the
control parameter. This approach is inspired by learning in the model space
[3], which was successfully applied to time series classification [4, 2] and to the
similar problem of modelling parameterized processes [1].

Fig. 1 visualizes the core architectures of both approaches. In contrast to the
classical approach, in our modular approach for each control parameter value the
generalist creates a specialist generator, which is only responsible for generating
the corresponding pattern. The generalist is responsible for generalizing in the
control parameter space, so that the specialists can concentrate on generating
their specific patterns. Thus, the generalist maps the control parameter space
to the space of specialist models - we refer therefore to our approach in accord
with [1] as model space regression (MSR).

3/15	

Generalist	
Model	

y	Specialist	
Generator	

creates	

					Classical	Architecture																																								Modular	MSR	Architecture	

Generator	p	 y	 p	

Fig. 1: Pattern generation with a classic (left) and a modular architecture (right).
The control parameter p shapes the produced output y.

The remainder of this paper is structured as follows. In the next section,
we describe the basic, classical ESN pattern generator. In Section 3 we present
our modular approach. In Section 4, we compare both approaches on several
synthetic datasets. The paper closes with a discussion and some concluding re-
marks.

2 Echo State Network pattern generator with the control
parameters as inputs

An ESN consists of two parts: A reservoir of recurrently connected neurons and a
linear readout. The reservoir provides a non-linear fading memory of the inputs.
For pattern generation, the network operates with output feedback (cf. Fig. 2).
The reservoir states x ∈ RN and readouts y ∈ RO are updated according to:

x(k) = (1− λ)x(k−1) + λf(W recx(k−1) + W inu(k) + W backd(k)) (1)

y(k) = d̂(k + 1) = W outx(k), (2)



where u(k) ∈ RU and d(k) ∈ RO with k = 1, . . . ,K are the input and output
sequences, respectively; λ is the leak rate, f the activation function, e.g. tanh,
Wrec the recurrent weight matrix, Win the input weight matrix, Wout the
matrix from the reservoir to the output and Wback the matrix from the output
to the reservoir. Win, Wrec and Wback are initialized randomly, scaled and
remain fixed. W rec is typically scaled to achieve a spectral radius smaller than
one.

The readout is trained to predict the next pattern step, using the training
sequence, which is known as teacher forcing [7]:

E(W out) =
1

K−1

K∑
k=2

(d(k)−W out
i x(k−1))2 + α

∥∥W out
∥∥2 , (3)

W out = (XTX + αI)−1XTD, (4)

where D are the row-wise collected pattern signal values and X the correspond-
ing reservoir activations. α is the regularization strength.

21/15	

u	 Win	
Wout	

y	

Reservoir	

Wback	

Fig. 2: Echo State Network with input u and output y, which is fed back to the
reservoir.

During testing (pattern generation) the output y(k) = d̂(k + 1) serves as an
estimation of the next pattern step and is fed back into the reservoir. In param-
eterized pattern generation, the input u corresponds to the control parameter,
e.g. the sine frequency for a sine wave generator.

3 Parameterized pattern generation via regression in the
model space

The training of the MSR architecture is depicted in Fig. 3. It consists of two
steps: First, for each pattern, an ESN is trained using teacher forcing. The ESNs
are trained independently, but share the same reservoir parameters W rec and
W back in order to create a coherent model space. Second, an Extreme Learning
Machine (ELM, [5]) is trained as generalist to map the control parameters to



22/15	

ELMGeneralist(G)	

G	G	

h(p)	

2	

Wout	
copy	

Wback	

S	

ESNSpecialist(S)	

For	each	of	the	P	pi	1	

					wout	S1	

wout	Si	

wout	SP	

p1		

pi		

pP	
i	

di,2	 di,j+1	 di,K	

di,1	 di,j	 di,K-1	

Wout	 Win	

Fig. 3: Training with Model Space Regression (MSR). In the first step, for each
of the P control parameters pi a specialist generator is trained using the corre-
sponding pattern outputs di,j , where j = 1, . . . ,Ki is the pattern sample index.
In the second step, the generalist ELM is trained to map the the control pa-
rameters pi to the ESN readout weights W out

Si
.

the trained readout weights of the ESNs. The ELM is a two-layer feed-forward
network with a random hidden layer and a linear readout layer trained by ridge
regression. We chose here the ELM for its simplicity and fast training time -
other non-linear regressors like multilayer perceptrons could be used too.

During testing, the generator creates from a control parameter value the
ESN readout weights. A new ESN is created with the reservoir shared by all
ESNs during training and the created readout weights. Then, the created ESN
is run autonomously in a feedback loop.

4 Results

We tested the classical ESN pattern generator and our MSR approach on sev-
eral synthetic datasets. As testing scheme we used leave-one-out-cross-validation
(LOOCV), where in P folds, P−1 patterns were used for training and the remain-
ing patterns for testing. That is, the trained system, given the control parameter
value, had to produce the corresponding pattern from a zero-state.

ESNs have several important hyper-parameters, e.g. input scaling and ridge
factor, which have severe effect on the performance. Additionally, in MSR also
the generalist needs tuning. We performed randomized grid parameter search
to find good parameters for both approaches. As metric we used the distance
between the target and the generated outputs computed via fast dynamic-time-
warping [11].



4.1 Sine wave generation

We consider first a sine wave generator modelling y = a · sin(b · x). The goal
of the trained generator is to produce a sine wave with the given amplitude a
and frequency b. We vary the frequency in the range [0.2, 0.6] with step size 0.25
and the amplitude in the range [0.5, 2] with step size 0.75. For each pattern, 500
steps were used for training and testing. The last 100 steps of the best LOOCV
generation results are shown in Fig.4. While MSR is able to generate a sine wave
with a given amplitude and frequency, the classic ESN generator fails to produce
the sine wave with the lowest frequency and highest amplitude (cf. Fig.4 bottom
left).

0
.5

0

Target ESN MSR-ESN

A
m

p
lit

u
d
e

 1
.2

5

0.10

2
.0

0

0.35
 Frequency

0.60

Fig. 4: Sine wave generator with ESN and MSR-ESN. Each cell depicts the
LOOCV test generation results over the last 100 generated steps for the de-
noted frequency and amplitude.

4.2 Skewed figure eight generation

As second task we consider the two-dimensional figure eight pattern:

y1 = sin(x)

y2 = a · sin(2x− b) + (1− a) · cos(x+ b),

where a controls the shape and b the skewness. When y2 is plotted over y1,
(a = 0, b = 0) corresponds to a circle and (a = 1, b = 0) to the figure eight. We
varied a and b in the range [0, 1] with step size 0.5 and recorded the resulting
nine patterns for 300 steps.



MSR produces the target signal with high precision, while the classic ESN
shows a relative strong deviation (cf. Fig. 5). A version with a constant b, where
only a was varied, posed no problem for either approach.

0
.0

0
Target ESN MSR-ESN

a
 0

.5
0

0.00

1
.0

0

0.50
 b

1.00

Fig. 5: Figure eight generator with ESN and MSR-ESN. Each cell depicts the
LOOCV generation results for the corresponding values of the parameters (a, b).

4.3 Teardrop generation

The teardrop curve is defined as:

y1 = cos(x) (5)

y2 = sin(x) · sinm(0.5x). (6)

We varied m uniformly in the range [2, 10] with step size 2 and recorded each
pattern for 300 steps. While both ESN and MSR-ESN capture the overall shape,
neither is able to create a new curve with precision (cf. Fig. 6).

4.4 More complex tasks

We also experimented with a parameterized multiple superimposed oscillator
(P-MSO) in it’s simplest form: y = sin(a ·x) + sin(b ·x), and varied (a, b) in the
range [0.1, 0.6]. We were, however, unable to train either architecture successfully.
This is not surprising, considering that a (non-parameterized) MSO is not an
easy task for ESNs and requires additional measures to solve (cf. [12]).

The ability of an ESN to generate each pattern places a natural limit on
what can be learned - if an ESN can not learn a single pattern, than it will not



m=2 m=4 m=6 m=8

Target ESN MSR-ESN

m=10

Fig. 6: Teardrop generator with ESN and MSR-ESN. Each cell depicts the
LOOCV generation results for the corresponding value of the parameter m.

be possible to generate an ESN which can, or train an ESN to produce multiple
patterns.

5 Discussion

The training of a single network to generate different patterns presents two chal-
lenges. First, the number of patterns that the network can learn is inherently
limited. Similar patterns, as in the case of parameterized patterns, might re-
quire less memory, but might also interfere with each other in the state space
because of their similarity. Second, the network must be able to change it’s out-
put according to the control parameter - it has to be able to reach the attractor
corresponding to the control parameter pattern from any state. Both challenges
were tackled recently by Jaeger’s Conceptors [8]. However, the conceptors were
used for morphing between different patterns, and not to learn parameterized
patterns - it is unclear, how the conceptor concept can be extended to learn to
generate patterns for new control parameter values.

MSR bypasses both challenges by creating networks tailored to each pattern.
The basic assumption is, that similar control parameter values result in similar
sequences and that the generalist can learn this relationship.

6 Conclusion

In this paper we introduced regression in the model space of ESNs for parame-
terized pattern generation. In contrast to other approaches, where a single ESN
is trained to generate different patterns, in our modular approach for each pat-
tern a specialist ESN (more precise: a readout) is created. The specialist ESN
then autonomously generates the pattern. An evaluation on several synthetic
datasets showed that MSR-ESN can generate parameterized patterns with a
higher precision than a single ESN.

The successful application to the synthetic datasets shows that for some tasks
the readout weights can be expressed as a function of the control parameters and



learned from few examples. Further research is required to assess whether the
recurrent network weights can also be learned from the control parameters and
to extend the approach to more complex tasks.

Acknowledgments. This project is funded by the German Federal Ministry of
Education and Research (BMBF) within the Leading-Edge Cluster Competition
“it’s OWL” (intelligent technical systems OstWestfalenLippe) and managed by
the Project Management Agency Karlsruhe (PTKA). The authors are responsi-
ble for the contents of this publication.

References

1. Aswolinskiy, W., Reinhart, F., Steil, J.: Modelling parameterized processes via
regression in the model space. In: European Symposium on Artificial Neural Net-
works (ESANN) (2016)

2. Aswolinskiy, W., Reinhart, F., Steil, J.: Time series classification in reservoir- and
model-space: a comparison. In: Workshop on Artificial Neural Networks in Pattern
Recognition (ANNPR) (2016), accepted

3. Chen, H., Tino, P., Rodan, A., Yao, X.: Learning in the model space for cognitive
fault diagnosis. IEEE Trans. on Neural Networks and Learning Systems 25(1),
124–136 (2014)

4. Chen, H., Tang, F., Tino, P., Yao, X.: Model-based kernel for efficient time series
analysis. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 392–400 (2013)

5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: IEEE International Joint Conference
on Neural Networks. vol. 2, pp. 985–990 (2004)

6. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. GMD Technical Report 148, 34 (2001)

7. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the” echo state network” approach. GMD-Forschungszentrum Informa-
tionstechnik (2002)

8. Jaeger, H.: Controlling recurrent neural networks by conceptors. arXiv preprint
arXiv:1403.3369 (2014)

9. Li, J., Jaeger, H.: Minimal energy control of an esn pattern generator. Jacobs
University technical report (26) (2011)

10. Li, J., Waegeman, T., Schrauwen, B., Jaeger, H., et al.: Frequency modulation of
large oscillatory neural networks. Biological cybernetics 108(2), 145–157 (2014)

11. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and
space. Intelligent Data Analysis 11(5), 561–580 (2007)

12. Steil, J.J.: Several ways to solve the mso problem. In: European Symposium on
Artificial Neural Networks (ESANN). pp. 489–494 (2007)

13. Wyffels, F., Schrauwen, B.: Design of a central pattern generator using reservoir
computing for learning human motion. In: Advanced Technologies for Enhanced
Quality of Life, 2009. AT-EQUAL’09. pp. 118–122. IEEE (2009)


