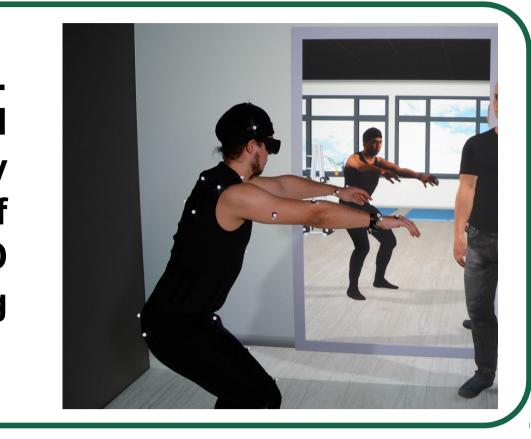
Cluster of Excellence Cognitive Interaction Technology


The ICSPACE Platform: A Virtual Reality Setup for **Experiments in Motor Learning**

Felix Hülsmann^{1,3}, Thomas Waltemate¹, Thies Pfeiffer², Cornelia Frank⁴, Thomas Schack⁴, Mario Botsch¹, Stefan Kopp³

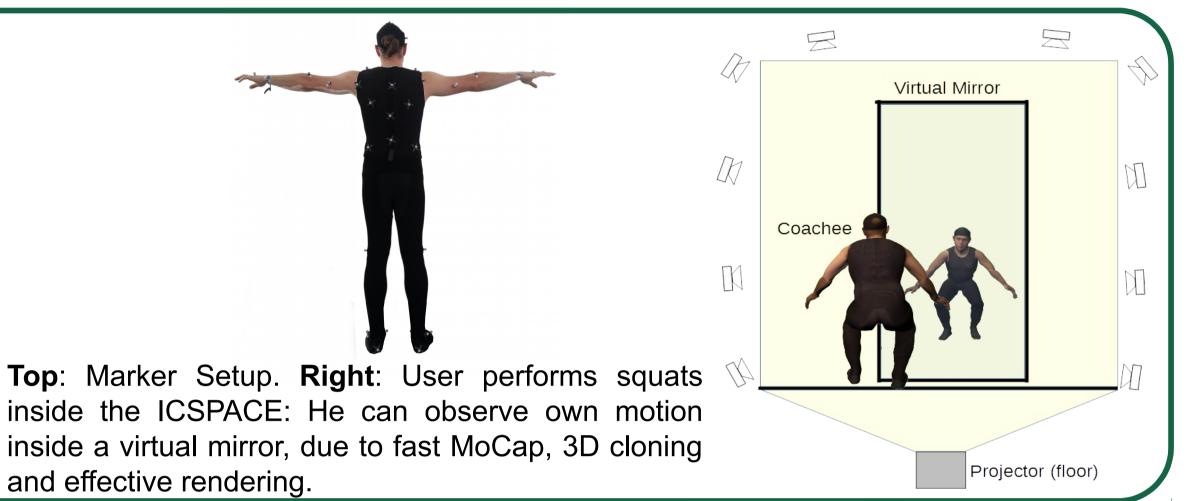
¹ Graphics and Geometry, ² Central Lab Facilities, ³ Social Cognitive Systems, ⁴ Neurocognition and Action Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Germany

OBJECTIVE

Virtual reality (VR) environments allow us to develop coaching strategies for motor learning, which exceed the limits of real-world coaching. To allow for motor learning in VR, a highly responsive virtual environment is needed which provides at least similar feedback as a real world coaching environment would do. We designed such a VR platform – the Intelligent Coaching Space (ICSPACE) – that enables full-body motor learning of complex actions. The whole system is designed to provide very low end-to-end latency of 42ms. The system consists of the following parts: Two-sided CAVE, optical motion capture system and self-developed software components which include rendering, 3D cloning and motion analysis. See Poster "Latency, Sensorimotor Feedback and Virtual Agents: Feedback Channels for Motor Learning Using the ICSPACE Platform" for further information on psychological experiments we already conducted using ICSPACE.

Technical Environment

Graphics environment


• Two-sided CAVE (front and floor), Rear projection for both walls

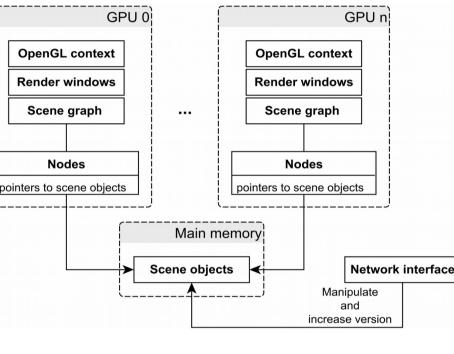
Universität Bielefeld

- 2100 x 1600 pixels per side
- Passive stereo (INFITEC)
- Four Projectors: Projection Design F35 WQ Single Computer with two NVIDIA Quadro
- K5000 graphics cards

Motion capture

- 10 camera OptiTrack System: Prime 13W • FoV: 82° x 70°
 - Spatial Resolution: 1.3 MP
 - Temporal Resolution: up to 240 Hz
- Customized motion capture suit: Markers are partly glued to the skin, partly attached on the suit using Velcro
- 44 markers are used to reconstruct up to 21 joints

Rendering Engine


To visualize the scene together with our virtual mirror inside the CAVE, we employ a self-developed rendering engine. This engine runs on a single computer exploiting multi-GPU rendering (middle image). The engine is optimized to achieve a low end-to-end latency of only 42 ms in the basic virtual mirror scenario (left image). For a more advanced scenario with a richer scene and shadow mapping enabled (right image) the latency is still low at around 60 ms.

High performance and low latency are achieved by

- employing the multi-GPU approach using a single computer,
- offloading all expensive computations to the GPU,
- controlling the data flow inside the application.

Low latency virtual mirror


Multi-GPU rendering

Sufficient visual qualtiy

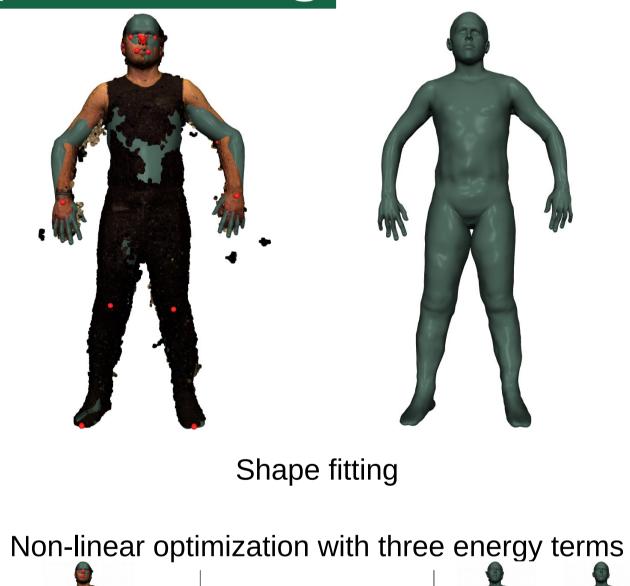
3D Cloning by Template Fitting

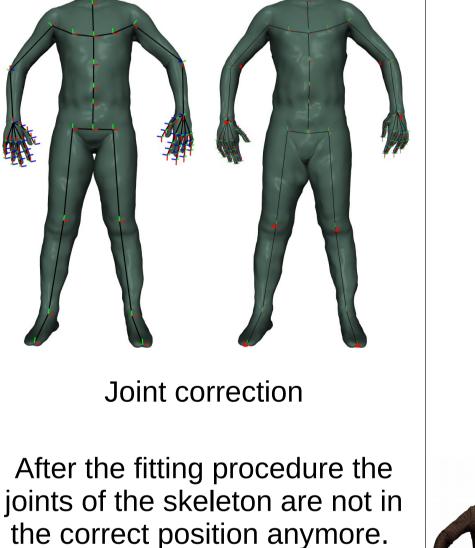
Template model and scanned point cloud

32 simultaneously triggered DSLR cameras.

3D Scanner

The point cloud is computed by multi-view stereo reconstruction.


28 corresponding landmarks (red dots) are manually selected on template model and point cloud.


The template model can be animated by its skeleton. By template fitting we transfer this attribute to the scan.

Rigid registration alternating with inverse kinematics

Posture fitting

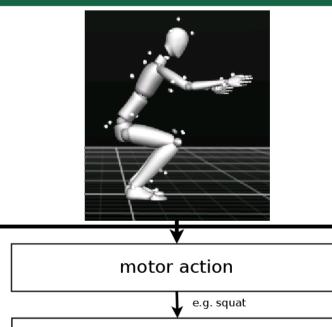
This step scales, rotates and translates the point cloud and adapts the posture of the template model based on the selected landmarks.

This is corrected by exploiting

generalized barycentric

coordinates.

Texture

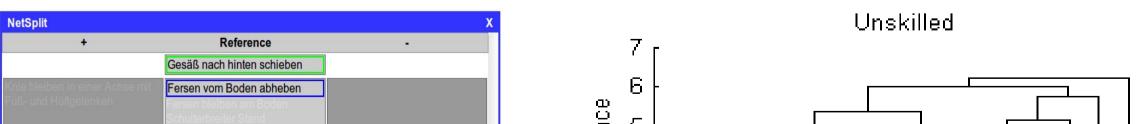

Motor Performance Analysis and Analysis of Mental Representation

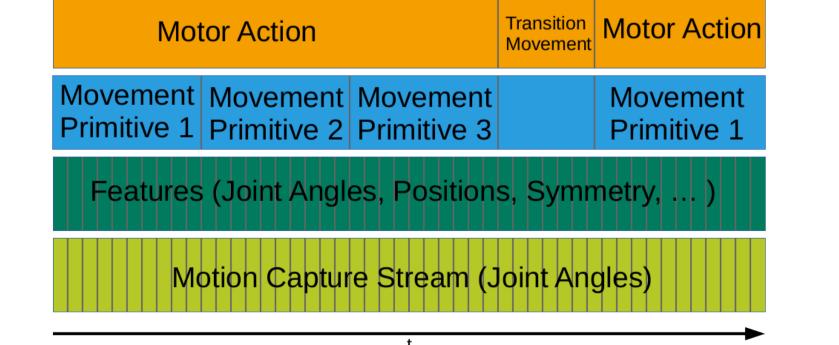
Landmarks

Motor Performance Analysis

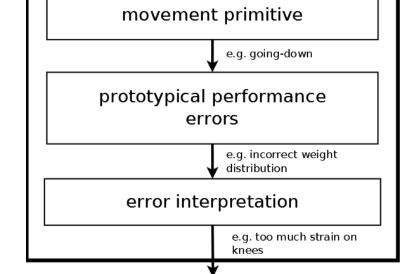
Goals: Build motion representation which combines levels of hierarchy:

- Joint angles / 3D coordinates
- **Movement Primitives**
- Prototypical Error Patterns


Mental Representation:


Point-to-point

Structural-Dimensional Analysis, SDA-M (Schack, 2012)


Regularization

Split task on set of basic action concepts (e.g., legs bent, knees behind toes, ...)

The hierarchy which represents motion in the ICSPACE system consists of four levels: Pure joint data, higher level features, movement primitives and motor actions.

ss 'cursor left' and 'cursor right' to classify elements. Press 'c' to correct decisions

Our system first determines the performed motor action (e.g., a squat) and then the current movement primitive (e.g., goingdown). Then, prototypical performance errors and their interpretations are identified. This is realized via comparison of the motion trajectory with sequential descriptions of prototypical error

Split task used to perform the SDA-M. Instruction: Do the two movements relate to each other during the movement execution?

distan euclidean d__ = 3.407 312 1 6 8 2 7 911 4 51013161415 basic action concept

BACs by an unskilled user Clusters of determined by the split test. The results for a skilled user would contain more distinctive clusters.

Selected Technical Publications

- Hülsmann, F., Frank, C., Schack, T., Kopp, S., & Botsch, M. (2016). Multi-level Analysis of Motor Actions as a Basis for Effective Coaching in Virtual Reality. In Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS) (pp. 211-214). Springer International Publishing.
- de Kok, I., Hough, J., Hülsmann, F., Botsch, M., Schlangen, D., & Kopp, S. (2015, November). A Multimodal System for Real-Time Action Instruction in Motor Skill Learning. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (pp. 355-362). ACM.
- Achenbach, J., Zell, E., & Botsch, M. (2015). Accurate Face Reconstruction through Anisotropic Fitting and Eye Correction. Proceedings of Vision, Modeling and Visualization
- Waltemate, T., Hülsmann, F., Pfeiffer, T., Kopp, S., & Botsch, M. (2015, November). Realizing a Low-latency Virtual Reality Environment for Motor Learning. In Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology (pp. 139-147). ACM.

This research/work was supported by the Cluster of Excellence Cognitive Interaction Technology 'CITEC' (EXC 277) at Bielefeld University, which is funded by the German Research Foundation (DFG).

patterns.

Virtual Environments: Current Topics in Psychological Research Workshop July 27th to 29th in 2016, Tübingen, GER