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Chapter 1

Introduction

Risk is involved in almost all decision processes in real life. The riskiness may

be related to unswayable issues, as for example uncertain weather conditions,

or influenceable issues as for example the behavior of others. In economic

environments, the uncertainty may relate to risky asset returns, uncertain

production processes or innovations. The decision makers’ imperfect knowl-

edge plays a major role in determining the degree of uncertainty. Therefore,

decision making under risk is inherently connected to available information

at that point in time. Moreover, information might be more or less reliable,

it reduces risk to greater or lesser extent. For decades economists study the

impacts of information on economic behavior and economic outcomes.

The purpose of this work is to contribute to the understanding of ‘better

information’ and how this can be formalized in economic models. In par-

ticular, two new informativeness criteria are defined and compared to some

criteria which are frequently used in economic theory. Build on this, the

work analyzes the demand for information and its impact on the equilib-

rium/economic outcomes.

In economic modeling it is distinguished between market risk and event

risk. Market risk is related to the limited knowledge about endogenous vari-

ables as for instance other market participants’ actions or risky equilibrium

prices. In contrast, event risk is characterized by a probability space. In

particular, this probability space consists of a set of states of the world and
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a corresponding state distribution. Each state fully and uniquely determines

the decision maker’s (economic) environment. The state distribution is often

also called belief and reflects the decision makers imperfect knowledge about

the state of the world. A belief may be objective or subjective, an individual

or common assignment of probabilities to each state of the world. Intuitively

it is clear that these assignments of probabilities to the states heavily de-

pend on available information. Most parts of this work will focus on event

risk rather than on market risk.

When deciding under risk, a decision maker cannot directly choose an

action with corresponding outcome. Instead she chooses a random variable

depending on the state of the world that maximizes her expected utility. Be-

fore choosing an action, the decision maker may reduce her uncertainty by

acquiring additional information. Information acquisition can, for instance,

be reading newspapers or asking an expert for advice. As mentioned above,

the decision maker’s belief depends on her available information. There-

fore, the acquisition of additional information changes the decision maker’s

belief. In economic theory, information acquisition is frequently modeled

by observing a signal. This signal is correlated to the state of the world

and, therefore, contains information about it. For a given (prior) belief, the

correlation of states and signals is determined by an information structure.

Formally, an information system specifies for each state a conditional prob-

ability distribution on a set of possible signal realizations. After observing

a signal realization, the decision maker update her prior belief via Bayes’ rule.

Informativeness Criteria

Whether an information system is more precise than another one, i.e. in-

duces a greater reduction of risk, has been extensively discussed in economic

theory. Intuitively, the greater the correlation of states and signals the more

informative the underlying information system. In spite of this clear intu-

ition, up to today there is no clear answer how to compare informativeness

of different information system. The reason for this is that informativeness

criteria should fulfill some desirable properties. These properties might be
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natural ones as, for instance, reflexivity and transitivity, or desirable ones as

for example robustness under certain state transformations.1 Additionally,

an information system might be quite precise for some signal realizations

while it might be vague for some others. Moreover, some notions of informa-

tiveness seems to be appropriate in some economic environment while their

applicability is questionable in others. Therefore, various informativeness

concepts for different classes of information systems and economic situations

have been developed.

Blackwell (1951, 1953) defined the possibly most famous informativeness

criterion. He calls an information system more informative than another one

if the former one can be stochastically transformed into the latter one in

Blackwell’s sense. Or put differently, an information system is more informa-

tive than another, if a signal observation of the latter is equal to a disturbed

signal observation of the former. Blackwell shows that, if the set of possible

actions is independent of the information revelation, every expected utility

maximizer prefers an information system to another one if and only if the

former is more informative than the latter.

Following the same intuition, Lehmann (1988)/Persico (1996) define an

informativeness criterion for a subset of information systems. In contrast

to Blackwell, for defining accuracy they use a certain state dependent sig-

nal transformation which transforms signals of the less accurate system into

signals of the more accurate system.

Kim (1995) argue that Blackwell’s criterion is not applicable in principal-

agent models. Therefore, he defined a new criterion for the analysis of those

problems: an information system is more reliable if its conditional signal

distribution reacts more sensitive to changes in the state.

All of the three criteria mentioned so far compare conditional signal distri-

butions in different ways. By contrast Eckwert and Zilcha (2008) formalize

informativeness by looking at the updated distributions after a signal re-

alization. In particular, an information system is more informative, if its

posterior state distributions are more dispersed. Intuitively, the more the

1Of course, there are more natural and desirable properties for an informativeness
criterion, but for reasons of readability these are introduced later in this work.



CHAPTER 1. INTRODUCTION 4

updated state distributions depent on the signal realizations, the more pre-

cise is the information system. Following the same idea, Ganuza and Penalva

(2010) compare the dispersion of conditional state expectations.

As mentioned earlier, it is desirable that an informativeness criterion is

invariant under certain state transformations. An example for such a trans-

formation is an ordinal relabeling of states. Since such a relabeling is a

one-to-one transformation of the states, the original state can be inferred

without noise from each transformed state and vice versa. Therefore, the

information about the transformed states that is revealed by an informa-

tion system, is exactly the same as the information that it reveals about

the original state. The informativeness criteria of Blackwell (1951, 1953),

Lehmann (1988) and Kim (1995) meet this property while the criteria of

Ganuza and Penalva (2010) does not.

Since the precision criteria of Ganuza and Penalva (2010) have other help-

ful properties, the first objective of this work is to define new informativeness

criteria, weak and strong informativeness, that are invariant to ordinal rela-

belings of states and respect the informativeness criteria of Ganuza and Penalva

(2010). The intuition of both criteria is that the more informative an informa-

tion system the more spread out are the posterior conditional expectations.

Moreover, as the name suggest, weak informativeness is weaker than strong

informativeness in the sense that if an information system is strongly more

informative than an alternative one, then it is also weakly more informative

than the alternative one.

The Value of Information

Blackwell (1951) shows that all expected utility maximizers prefers ‘better

information’ (in the sense of Blackwell’s criterion) to ‘worse information’.

However, he assumes that the set decision maker’s set of feasible actions

does not vary with information revelation. Since signals may be observed by

many people, this is not the case in most economic circumstances.

Hirshleifer (1971) have shown that better information can hurt agents in a

pure exchange economy. Intuitively, better information destroys risk-sharing
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opportunities. In particular, Hirshleifer considers a pure exchange economy

with one good (wealth) and two states of the world. The agents’ are risk

averse and possess risky state dependent endowments. If the agents trade

state-contingent claims before the state is realized, they are able to share

some of the risk. However, if the agents were be perfectly informed about

the true state of the world before they start to trade with each other, then

each agent would prefer to consume in the same state and they would not

trade at all. Therefore, from ex ante perspective, each agent just consumes

her endowment which delivers less (ex ante) expected utility than the risk

sharing equilibrium without information.

In contrast, Eckwert and Zilcha (2000) examine conditions for restoring

Blackwell’s theorem in a production economy with productivity risk. The

intuition of their result is that better information may improve the input

allocation in the economy which may outweigh its negative effects on risk

sharing. Nevertheless, they also show that in the presence of risk sharing

markets the value of information still might be negative.

The second objective of this work is to examine the value of information

if sets of feasible actions are not independent of the information system. This

is done in two different economic environments.

First, the demand for costly private information is modeled. In this model

action sets are independent of the signal realization but, since information

is costly, depend on the choice of information system. The main results are

driven by two simple effects. Each agent on the demand side plays a lot-

tery where she has to guess the right state of nature. If she is right, then

her resources will increase, otherwise they will remain constant. On the one

hand better information leads to higher (ex ante) welfare as the chances of

winning improve. But on the other hand better information leads to less

budget available for consumption as it exhibits a higher price. Under these

circumstances even risk neutral agents invest in information provided infor-

mation is not too expensive. Furthermore, and perhaps more surprisingly,

risk averse agents do not invest in information if their degree of risk aversion

is sufficiently high. This is due to the fact that resources keep constant in

the case of not winning the lottery.



CHAPTER 1. INTRODUCTION 6

And secondly, in a general equilibrium model which considers a many

commodity production economy with risky endowments and efficient risk-

sharing. There are two different types of agents, risk averse consumers and

risk neutral firms. Both types of agents possess a risky endowment of com-

modities (inputs as well as outputs). At date 0, after receiving information

but before observing the state of the world, the agents trade state-contingent

claims in a competitive market. After the state realization, at date 1, the

agents consume/produce according to their state-contingent claim. There-

fore, since state-contingent claims are traded after the signal realization, the

equilibrium prices, and therefore the sets of feasible actions, vary with the

signal realization. Within this framework it is shown that weakly more in-

formative (information) systems make every risk avers agent worse off. In

particular, parts of the result by Schlee (2001) are generalized to a many

commodity, production economy with complete risk sharing markets.

Asymmetric Information

Information is asymmetric if some market participants know more than

others. A situation with asymmetric information is the Stackelberg game

(Stackelberg (1934)). In his model Stackelberg describes a situation with

asymmetric informations in which two firms compete with each other in a

quantity competition. The information asymmetry is modeled by an infor-

mation advantage of one firm. In particular, one firm, the leader, decides at

first about its optimal supply (quantity) and the follower observes this before

deciding about its own quantity. Therefore, given the action of the leader,

the follower reacts to this by setting her best reaction. There exist a huge

literature on these models for homogeneous as well as for horizontal differ-

entiated commodities (see e.g., Amir and Jin (2001), Kreps and Scheinkman

(1983), Vives (1985) and Vives (2005)). It is well established in the eco-

nomic literature that for the commodities being perfect substitutes and the

firms being quantity setters (Cournot competition), the leader is better off

than the follower. The reason for this is that when deciding about her opti-

mal quantity, the leader can take the followers behavior, i.e. her best reply,
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into account. The opposite is true for the firms being price setter (Bertrand

competition).

Boyer and Moreaux (1987) studied the role of the strategy space under

these circumstances. In particular, they allow both agents to choose whether

to set a quantity or a price. Using a very restrictive demand structure they

showed that it is always more profitable to be a quantity (price) setter if the

goods are substitutes (complements). Consequently, uncertainty concerning

the opponent’s strategy space (market uncertainty) does not have any impact

of a firms decision. Regarding total and consumers’ surpluses they proofed

that price competition is dominant for all degrees of product differentiation.

The third aim of this work is to generalize Boyer and Moreaux’s results

to a more general demand structure proposed by Dixit (1979) which allows

different corss-effects and reservation prices for the goods.

Organization of the Work

Chapter 2 introduces the reader to the basic framework of decision mak-

ing under risk. The concept of an information system and the information

processing are explained.

Chapter 3 reviews some classic informativeness concepts from the eco-

nomic literature, defines two new informativeness concepts, strong and weak

informativeness, and discusses some of their properties and implication. Fur-

thermore, these concepts are compared to some informativeness criteria used

in the economics literature.

Chapter 4 studies the value of information in two different situations.

First, the demand for costly information in a partial equilibrium model is

analyzed. Furthermore, this model looks at the connection of the degree of

risk aversion and the demand for information. And secondly, the impact of

information on individual behavior and prices is studied in a general equilib-

rium model with production.

Chapter 5 then is a side step to industrial organization. This chapter

studies the role of the strategy space in a Stackelberg game, i.e. a game with

asymmetric information.
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Finally, Chapter 6 summarizes the main results and gives some concluding

remarks as well as some preview on further research.

All formal proofs have been relegated to the appendix.



Chapter 2

Information and Decision Making

under Risk

Normally, the prediction of a future state of the world is uncertain. In eco-

nomic theory this is often modeled by assuming that the state of the world

is unknown at time of decision making. It is usual to assume that deci-

sion making under risk is rational in the sense of the expected utility rule by

Morgenstern and von Neumann (1944). In particular, this means that agents

choose an alternative that maximizes expected utility with respect to their

belief about the future state of the world. Within the literature on economics

this kind of modelling decision making under risk is called expected utility

theory. Since these models play a major role later in this work, section 2.1

presents the basic framework of expected utility theory and introduces some

notation.

Now imagine that the decision maker might get some additional informa-

tion about the state of the world before the decision is to be made. Clearly,

these additional information might change the agent’s belief about the state

of the world. Hence, the agent chooses an alternative that is optimal accod-

ing to her new belief. In economic theory additional information are often

modeled through the observation of random signals. These signals are corre-

lated with the state of the world and, therefore, an signal observation reveals

some information about the state of the world. In particular, after a signal

9
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observation a decision maker updates her belief accoding to Bayes’ rule and

then chooses an action which maximized her expected utility accoding to the

updated belief. Hence, this behavior is called Baysian decision making and

will formally be introduced in section 2.2.

Next, suppose that a decision maker observes more than just one infor-

mation signal, say two of them. Then the decision maker will take both

observations into account when updating her belief according to Bayes’ rule.

An opportunity how this can be formalized and modelled in economic theory

will be given in section 2.3

For the comparison of different information signals, it is sometimes nec-

essary to normalize them in a specific way. Therefore, section 2.4 shows how

information signals can be normalized and explains why this is without loss

of further generality.

2.1 Decision making under Risk

This section introduces the basic framework of decision making under risk.

In economic theory a risky economic environment is typically modeled by a

measurable space (Ω,F) consisting of a set of possible future states of the

world Ω and a σ-algebra (of subsets in Ω). In general, Ω could be finite

or infinite. Even though most of the statements are also true for finite sets

of states, the following restricts attention to infinite sets of states. This is

due to readability reasons. Therefore, unless explicitly mentioned otherwise,

let Ω = (ω
¯
, ω̄) be a convex subset of R and let F denote its (borelean) σ-

algebra of subsets in Ω. At the time of decision making the future state

of the world is unknown. In particular, the decision maker does not know

which state ω ∈ Ω will occur. Hence, the decision maker forms an subjective

or objective probability measure µΩ on F representing his belief about the

future state of the world. Consequently, (Ω,F , µΩ) becomes a probability

space. Throughout this work it is assumed that µΩ is characterized by an
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probability density function (or Lebesgue density)2

fΩ : Ω → R, ω 7→ fΩ(ω)

with corresponding cumulative distribution function

FΩ : Ω → [0, 1]; ω 7→ FΩ(ω) =

ω∫

ω
¯

fΩ(ω
′)dω′ = Prob (ω̃ ≤ ω) . (2.1)

Therefore, the term prior belief simultaneously denotes the agents belief

about the state of the world µΩ, the corresponding density function fΩ or cu-

mulative distribution function FΩ. Denote by ∆(Ω) the set of all probability

density functions fΩ : Ω → R, i.e.

∆(Ω) =






fΩ : Ω → R

∣
∣
∣
∣
∣
∣

fΩ(ω) ≥ 0 ∀ ω ∈ Ω and

∫

Ω

fΩ(ω)dω = 1






.

In the following a measure µΩ always denotes the unique measure which is

defined by the density function fΩ ∈ ∆(Ω).

The decision maker has to choose an alternative a from a set of possible

alternatives A. In principle, an alternative could be anything, for instance, it

could be an action or a consumption bundle. It is assumed that the decision

maker’s outcome depends on both, her action and the state of the world.

Formally this is represented by a µΩ-measurable function

o : A× Ω → O, (a, ω) 7→ o(a, ω),

where O denotes the set of possible outcomes. A widespread example for such

a situation is a farmer. Her problem is to choose the right type of grain like

corn or wheat. The set of outcomes consists of the farmer’s possible incomes

in the next year. The unknown state of the world might be the precipitation

amount of the next year. Since the precipitation amount is essetial for the

2If Ω is finite, fΩ denotes the corresponding probability mass function.
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quantity and quality of the harvest in the next year, and therefore, for the

farmer’s income, the state of the world is relevant for the farmer’s optimal

decision.

The decision maker’s preferences on the set of outcomes O are represented

by an elementary utility function

u : O → R, o 7→ u(o).

Under certainty, i.e. when the state of the world is known, each alternative

implements a certain outcome and the decision maker can choose an autcome

which maximizes her utility. In contrast, under risk, the decision maker is

unable to choose directly an outcome (through the choice of an action).

Instead, each alternative a ∈ A induces a lottery on the set of outcomes.

In particular this means, that choosing an alternative a ∈ A is the same as

choosing a lottery o(a, ω̃) on O. Following Morgenstern and von Neumann

(1944) it is assumed the decision maker now chooses an action for which the

induced lottery o(a, ω̃) maximizes her expected utility. This induces that the

decision maker’s preferences on the set of alternatives can be derived from

her direct preferences on the set of outcomes O in the following way: the

valuation of an alternative is determined as expected elementary utility of

the lottery implemented by that alternative. Therefore, it is assumed that

u(o(a, ·)) is µΩ-integrable for all a ∈ A. Then the decision maker’s preferences

on A are represented by

U : A → R, a 7→ EΩ [u(o(a, ω̃))] :=

∫

Ω

u(o(a, ω))fΩ(ω)dω.

In order to simplify notation, denote by v the indirect elementary utility

from a combination of an action and a state of the world. In particular, the

indirect elementary utility is defined by

v : A× Ω → R, (a, ω) 7→ u(o(a, ω)). (2.2)
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The formal problem of a decision maker then is

max
a∈A

U(a) = max
a∈A

EΩ [u(o(a, ω̃))] = max
a∈A

EΩ [v(a, ω̃)] . (2.3)

The decision maker’s behavior and her decision heavily depends on her

attitude towards risk. A risk averse decision maker dislikes risks. Therefore,

a decision maker is called risk averse if she prefers the expected outcome of

an lottery over the lottery itsself.

Definition 2.1. A decision maker is called

risk







averse

neutral

affine







if and only if u (EO [õ])

>

=

<

EO [u (õ)]

for all lotteries õ on the set of outcomes.

From Jensens’ inequality immediately follows that a decision maker with

elementary utility function u is risk averse (neutral, affine) if and only if u is

concave (linear, convex).

2.2 Decisions and Information

Decision making under risk is characterized by an unknown future state of

the world. This state is determined by nature before anything else happens

in the model. Therefore, this point in time represents the starting point

of the model and is called "ex ante" stage. As argued above, the decision

maker forms a probability distribution on the set of all possible states. At

the next point in time, the "interim" stage which is placed after the ex ante

stage and before the state of the world becomes observable, the decision

maker can observe a random signal that is correlated to the state variable.

If the signal is correlated to the state variable then it contains information

about it. In particular, if the agent knows the common distribution of states

and signals she can infer information about the future state and update her

prior belief using Bayes’ rule. Based on this updated belief the decision
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maker then choose an alternative which maximizes her expected utility. The

last point in time is the "ex post" stage. At this stage the state variable

becomes observable and the decision maker’s gets her payoff according to her

alternative and the state realization.

State of the world becomes
known and the decision
maker’s outcome realize.

Nature determines
unobservable state
of the world.

Signal realization, up-
date of prior belief and
choice of alternative.

ex ante interim ex post

Figure 2.1: Timing of events.

2.2.1 Information Systems

In the traditional literature on information, the prior state distribution is

typically kept fixed, and an information system is defined as a profile of sig-

nal distributions conditional on the state. In order to analyze the impact

of the prior belief on the quality of information, the present study proceeds

from a more general notion of informativeness by allowing for different pri-

ors and distinguishing between an information structure and an information

system. For each state of the world ω ∈ Ω, an information structure defines

conditional signal distributions on the set of signals S. An information sys-

tem is a tuple consisting of an information structure and a prior belief. In

order to define information structures and information systems formally, let

ω̃ denote the state variable. Denote by S the set of possible signals and by S

the corresponding σ-algebra of subsets in S, i.e. (S,S) is a measurable space.

In principle, S can be finite or infinite but for readability reasons, attention

is restricted to the case of infinite signal sets which are convex subsets of the

real line, i.e. S = [s
¯
, s̄]. The discrete case will be presented in examples.

Definition 2.2. (i) An information structure with corresponding state space

Ω and signal space S is a family of conditional signal densities fS|Ω =
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{
fS|Ω(s|ω)

}

s∈S,ω∈Ω
.3

(ii) An information system with corresponding state space Ω and signal

space S is a tuple (fS|Ω, fΩ), where fS|Ω is an information structure

and fΩ ∈ ∆(Ω) is a probability density function on Ω.

An information structure is a family of conditional signal distributions

characterized by a family of conditional signal densities. Analogue to section

2.1 the conditional cumulative distribution function of the signals is

FS|Ω : S × Ω → [0, 1], s 7→

s∫

s
¯

fS|Ω(s
′|ω)ds′.

For simplicity, the following example 1 presents a finite version of the

formulations above.

Example 1. Suppose Ω = {ω1, ω2} and S = {s1, s2} with ω1 < ω2 and

s1 < s2, respectively. Moreover, let the prior belief be given by the probability

mass function fΩ(ω1) = Prob (ω̃ = ω1) = 1/2 = Prob (ω̃ = ω2) = fΩ(ω2).

Then the cumulative distribution is equal to

FΩ(ω) =

{
1/2 if ω = ω1

1 else.

Moreover, the signal’s conditional probability mass function is defined through

the Markov-Matrix

fS|Ω =

(

f(s1|ω1) f(s2|ω1)

f(s1|ω2) f(s2|ω2)

)

=

(

1 0

1/4 3/4

)

. (2.4)

Then fS|Ω defines an information structure. If the true state is ω1 signal s1

occurs with probability 1, while the signal s2 will never occur. If the true

state is ω2, this information structure generates s2 with probability 3/4 and

3In particular, this means that FS|Ω(s|ω) :=
s∫

s
¯

fS|Ω(s
′|ω)ds′ is a cumulative distribution

function and FS|Ω(C|·) =
∫

C

fS|Ω(s|·)ds is F -measurable for all C ⊆ S.
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while s1 occurs with probability 1/4. Last, (fS|Ω, fΩ) defines an information

system.

There are two extreme types of information structures: the fully unin-

formative one and the fully informative one. Following Nermuth (1982) an

information structure is fully uninformative if the set of signals contains only

one signal, say s0, i.e. S0 = {s0}. This information structure is informa-

tionally equivalent to an information structure which conditional signal dis-

tributions are state independent, i.e. f 0
S|Ω(·|ω) = f 0

S|Ω(·|ω
′) for all ω, ω′ ∈ Ω.

Intuitively it is clear that the observation of a signal produced by this struc-

ture is equal to no observation at all, because no additional information can

be inferred from a signal observation s. Denote all these fully uninfomative

information structures by f 0
S0|Ω where S0 might be any convex subset of R.

It should be clear that the corresponding information systems (f 0
S0|Ω, fΩ) are

fully uninformative for all prior distributions fΩ on Ω.

On the other extreme, an information system is called fully informative if

the observation of an signal reveals the state with certainty. This means that

every signal s ∈ S1 there is a state ω ∈ Ω such that the probability of observ-

ing s conditional on ω is strictly positive while this probability conditional on

any other state ω′ 6= ω is zero. Denote such information structures by f 1
S1|Ω.

Clearly, the corresponding information systems (f 1
S1|Ω, fΩ) are fully informa-

tive for all prior distributions fΩ ∈ ∆(Ω). Unfortunately, conditional signal

distributions as described above are not representable by density functions

f 1
S1|Ω(·|ω). Hence, a fully informative information structure is not feasible in

a setting, where attention is restricted to continuous information structures

(i.e. to information structures which are defined by a family of conditional

signal densities). However, for Ω finite, say Ω = {ω1, . . . , ωn} with n ∈ N,

an fully informative information structure can be constructed by defining

S1 = Ω and

f 1
Ω|Ω(s|ω) =

{

1 if s = ω

0 else.

If the true state is ω, this structure produces the signal s = ω with probability
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one while any other signal will occur with probability zero. Hence, after the

observation of an signal s the true state must be ω = s, hence, the signal

observation reveals the state with certainty.

In order to give an more concrete example consider Ω = {ω1, ω2} and S =

{s1, s2}. The completely uninformative and the fully informative information

structures are characterized by the Markov-Matrices

f 0
S0|Ω =

(

1

1

)

and f 1
S1|Ω =

(

1 0

0 1

)

.

2.2.2 Update of the Prior Belief

It is assumed that the decision maker knows the information system. Thus,

the observation of a signal realization allows her to update her prior belief

using Bayes’ rule. Then the revised belief is used for the maximization of her

expected utility. In particular, this means that the decision maker’s problem,

formally stated in equation (2.3), after a signal realization s becomes

max
a∈A

EΩ [v(a, ω̃)|s] = max
a∈A

EΩ [u(o(a, ω̃))|s] =

∫

Ω

u(o(a, ω))fΩ|S(ω|s)dω, (2.5)

where fΩ|S(ω|s) denotes the posterior state distribution after a signal real-

ization equal to s. The posterior state distribution is determined as follows:

Consider an information system (fS|Ω, fΩ). The joint probability density

function of signals and states is given by

fS,Ω : S × Ω → R, (s, ω) 7→ fS|Ω(s|ω)fΩ(ω)

while the joint cumulative distribution function is

FS,Ω : S × Ω → [0, 1], (s, ω) 7→

ω∫

ω
¯

s∫

s
¯

fS,Ω(s
′, ω′)ds′dω′ = Prob(s̃ ≤ s, ω̃ ≤ ω).
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The marginal distribution of the signals is characterized by the probability

distribution function

fS : S → R, s 7→

∫

Ω

fS,Ω(s, ω)dω = EΩ

[
fS|Ω(s|ω̃)

]

with corresponding cumulative distribution function

FS : S → [0, 1], s 7→

s∫

s
¯

fS(s
′)ds′ = Prob(s̃ ≤ s). (2.6)

Any signal with fS(s) = 0 will never occur and, therefore, can be neglected in

the revision of the prior belief. In particular, the posterior state distribution

conditional on a redundant signal, (i.e. fS(s) = 0) is not well defined and

will not be computed. Of course, the marginal signal distribution depends

on the prior belief. Therefore, for a fixed information structure but different

prior, the corresponding information systems might have different redundant

signals. Define the set of non-redundant signals of an information system

(fS|Ω, fΩ) by S(fS|Ω, fΩ) := {s ∈ S|fS(s) > 0}. An example for this can be

found at the end of this subsection. Applying Bayes’ rule for densities to

non-redundant signals yields the posterior state (probability) distribution

function after a signal realization equal to s ∈ S(fS|Ω, fΩ)

fΩ|S : Ω× S(fS|Ω, fΩ), (ω, s) 7→
fS,Ω(s, ω)

fS(s)
=

fS|Ω(s|ω)fΩ(ω)

fS(s)
.

The corresponding posterior cumulative distribution function is

FΩ|S : Ω× S(fS|Ω, fΩ) → [0, 1], (ω, s) =

ω∫

ω
¯

fΩ|S(ω
′|s)dω′ = Prob(ω̃ ≤ ω|s).

If Ω and S are finite, the procedure keeps the same, the only thing to

change is to substitute all integrals by sums over the same sets. In order to

make this more clear consider the continuation of example 1 below.
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Example 1 (Continued). Consider again (fS|Ω, fΩ) as given in example 1

above. The joint probability distribution of signals and states is

fS,Ω =

(

fS,Ω(s1, ω1) fS,Ω(s2, ω1)

fS,Ω(s1, ω2) fS,Ω(s2, ω2)

)

=

(
1/2 0

1/8 3/8

)

Therefore, the corresponding cumulative distribution function is

FS,Ω =

(
∑

s′≤s

∑

ω′≤ω

fS,Ω(s
′, ω′)

)

s∈S,ω∈Ω

=

(
1/2 1/2

5/8 1

)

while the marginal signal distribution is equal to

fS : S → [0, 1], s 7→
∑

ω∈Ω

fS,Ω(s, ω) =

{
5/8 if s = s1
3/8 if s = s2.

Hence, the set of non-redundant signals is equal to the whole signal set, i.e.

S(fS|Ω, fΩ) = S. Clearly, the corresponding cdf is

FS : S → [0, 1], s 7→
∑

s′≤s

fS(s
′) =

{
5/8 if s = s1

1 if s = s2.

Applying Bayes’ rule yields the posterior state distribution as

fΩ|S =

(

fΩ|S(ω1|s1) fΩ|S(ω2|s1)

fΩ|S(ω1|s2) fΩ|S(ω2|s2)

)

=

(
4/5 1/5

0 1

)

.

If s1 is observed the updated probability for the state being ω1 is 4/5 while

with probability 1/5 the second state ω2 is the true state. Signal s2 is only

observed if the true state is ω2. Therefore, after observing s2, the updated

probability for the state being ω1 is zero while ω2 is the true state with

probability 1. Consequently, the corresponding posterior cdf is

FΩ|S =

(
∑

ω′≤ω

fΩ|S(ω
′|s)

)

ω∈Ω,s∈S(fS|Ω,fΩ)

=

(
4/5 1

0 1

)

.
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Theoretically also mixed forms with an infinite state space and a finite

signal space or conversely are possible. For reasons of tractability these will

be omitted here. Instead, an example for an information system with infinite

signal space and finite state space can be found in the following section.

2.3 Combining Various Information Structures

If more than one information structure is available, a decision maker might

decide to use multiple structures. That is, instead of observing a single signal

from one structure, she might observe multiple signals of various information

structures. An example for this would be the reading of various newspa-

pers. If the conditional signals are perfectly correlated, the observation of

an additional signal conveys no additional information about the state of

the world (as an example consider newspapers which always publish equal

articles). However, since one of the signals could be ignored, such a sys-

tem never transmits less information than only one of the structures. If, in

contrast, the signals are not perfectly correlated, then the observation of an

additional signal conveys additional information about the state. For illus-

tration of this idea, it is assumed that for any pair of information structures,

fS|Ω and f̄S̄|Ω, the conditional signals distribution are independent, i.e. s̃|ω

and ˜̄s|ω are independent for all ω ∈ Ω. Therefore, for information structures

f 1
S1|Ω

, . . . , fN
SN |Ω, N ∈ N, the joint conditional distribution of (s̃1, . . . , s̃N) is

given by

f(S1,...,SN )|Ω :

N⊗

i=1

Si × Ω → R+, (s1, . . . , sN , ω) 7→

N∏

i=1

fSi|Ω(si|ω). (2.7)

Then the family of conditional signal distributions
{
f(S1,...,SN )|Ω(s|ω)

}

s∈
N⊗

i=1
Si,ω∈Ω

defines an information structure f(S1,...,SN )|Ω with signal space
n⊗

i=1

Si.
4 After

4Remark: In case of infinite signal spaces, this work restricted attention to signal spaces
which are convex subsets of the real line. Clearly, this assumption has to be relaxed in
order to allow for multiple signals. Therefore, it is assumed that signal spaces are convex
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the observation of a signal s ∈
N⊗

i=1

Si, the revision of the prior belief is done

along the same lines as described in the previous section 2.2.2. For a more

concrete illustration consider Example 2 below.

Example 2. Consider again fS|Ω as given in Example 1. Moreover, as-

sume that this structure describes an experiment which is independently

done twice. Therefore, two signals are observed, i.e. N = 2. Then the infor-

mation structure f(S,S)|Ω is defined through the joint conditional distribution

of the two signals:

f(S,S)|Ω =
(

f(S,S)|Ω(s1, s1|ω1) f(S,S)|Ω(s1, s2|ω1) f(S,S)|Ω(s2, s1|ω1) f(S,S)|Ω(s2, s2|ω1)

f(S,S)|Ω(s1, s1|ω1) f(S,S)|Ω(s1, s2|ω1) f(S,S)|Ω(s2, s1|ω1) f(S,S)|Ω(s2, s2|ω1)

)

=

(

1 0 0 0

1/16 3/16 3/16 9/16

)

.

The joint distribution of signals and states is

fS,S,Ω =

(
fS,S,Ω(s1, s2, ω1) fS,S,Ω(s1, s2, ω1) fS,S,Ω(s2, s1, ω1) fS,S,Ω(s2, s2, ω1)

fS,S,Ω(s1, s1, ω2) fS,S,Ω(s1, s2, ω2) fS,S,Ω(s2, s1, ω2) fS,S,Ω(s2, s2, ω2)

)

=

(
1/2 0 0 0

1/32 3/32 3/32 9/32

)

.

Using Bayes’ rule leads to the posterior state distribution:

fΩ|(S,S) =









fΩ|(S,S)(ω1|(s1, s1)) fΩ|(S,S)(ω2|(s1, s1))

fΩ|(S,S)(ω1|(s1, s2)) fΩ|(S,S)(ω2|(s1, s2))

fΩ|(S,S)(ω1|(s2, s1)) fΩ|(S,S)(ω2|(s2, s1))

fΩ|(S,S)(ω1|(s2, s2)) fΩ|(S,S)(ω2|(s2, s2))









=









16/17 1/17

0 1

0 1

0 1









.

2.4 Normalization of the Signal Space

For some informativeness criteria and for graphical characterizations it is

useful to normalize the signal space. This section shows that it is without

further loss of generality to assume that the signals (ex ante) are uniformly

subsets of Rn, whenever multiple signals are considered.
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distributed on [0, 1]. Consider an information system (fS|Ω, fΩ). First, sup-

pose S = [s
¯
, s̄] and S(fS|Ω, fΩ) = S. Therefore, the marginal density of

the (ex ante) signal distribution fS(s) is strictly positive on S. This implies

that the corresponding cdf FS(s) is strictly increasing in s. Now consider

the random variable s̃n := FS(s̃) where FS is the cdf of the marginal signal

distribution. Since S = S(fS|Ω, fΩ) and since FS is continuous and strictly

increasing, s̃n is uniformly distributed on [0, 1]. Moreover, since the transfor-

mation FS : S → [0, 1] is one-to-one, s̃n = FS(s̃) fully reveals the realizations

of the original signal s̃ in terms of quantiles and, therefore, conveys exactly

the same information as s̃. More precisely, the normalized information sys-

tem (fSn|Ω, fΩ) defined by

fSn|Ω =
{
fSn|Ω(s|ω)

}

s∈Sn=[0,1],ω∈Ω
=

{
fS|Ω(F

−1
S (s)|ω)

fS(F
−1
S (s))

}

s∈Sn=[0,1],ω∈Ω

(2.8)

has ex ante uniformly distributed signals and is informationally equivalent

to (fS|Ω, fΩ). To see this, first compute the marginal probability distribution

of s̃n as given by

fSn(s) =

ω̄∫

ω
¯

fn
Sn|Ω(s|ω)fΩ(ω)dω =

ω̄∫

ω
¯

fS|Ω(F
−1
S (s)|ω)fΩ(ω)dω

fS(F
−1
S (s))

=
fS(F

−1
S (s))

fS(F
−1
S (s))

= 1.

I.e. s̃n is (ex ante) uniform on [0, 1]. Next, to see the ‘informationally equiv-

alence’ of (fS|Ω, fΩ) and (fSn|Ω, fΩ), have a closer look at Bayes’ updating

rule: The posterior conditional distribution after a signal realization ŝ of

information system (fSn|Ω, fΩ) is represented by the function

fΩ|Sn : Ω× [0, 1], (ω, ŝ) 7→
fSn(ŝ|ω)fΩ(ω)

fSn(ŝ)

fn
Sn(ŝ)=1 for all ŝ

=
fS|Ω(F

−1
S (ŝ)|ω)fΩ(ω)

fS(F
−1
S (ŝ))

.

Therefore, the observation of ŝ when using (fSn|Ω, fΩ) implements exactly the

same posterior conditional state distribution as the observation of s = F−1
S (ŝ)
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when using (fS|Ω, fΩ), i.e.

fΩ|Sn(ω|ŝ) = fΩ|S(ω|F
−1
S (ŝ)) for all (ŝ, ω) ∈ [0, 1]× Ω.

Moreover, since F−1
S (s̃n) and s̃ are stochastically equal (i.e. have the same dis-

tributions), this implies that the random variables fΩ|Sn(ω|s̃n) and fΩ|S(ω|s̃)

are stochastically equal. Hence, (fS|Ω, fΩ) and (fSn|Ω, fΩ) convey exactly the

same information about ω̃ and, therefore, they are called informationally

equivalent.

However, even if the marginal cdf FS is not continuous or strictly in-

creasing, as for example in case of finite S or S(fS|Ω, fΩ) ( S, Lehmann

(1988) shows that it is always possible to define an informationally equiva-

lent information system such that the corresponding marginal distribution is

continuous and strictly increasing. This result by Lehmann (1988) implies

that, even if the original signal set is finite, it is without loss of further gen-

erality to assume that the marginal distribution of the signals is uniform on

[0, 1]. Or in other words, for all information systems (fS|Ω, fΩ) considered in

this work, there is an informationally equivalent system (fSn|Ω, fΩ) such that

ex ante the signals are uniform on [0, 1], i.e. fSn(s) = 1 for all s ∈ [0, 1] =: Sn.

The following example explains how an normalized information system

can be achieved from an non-normalized one.

Example 1 (Continued). Consider again (fS|Ω, fΩ) as given above. Following

Lehmann (1988), define the random variable s̃n by

s̃n = sn(s̃) =

{

fS(s1)ũ = 5
8
ũ if s̃ = s1

fS(s1) + fS(s2)ũ = 5
8
+ 3

8
ũ if s̃ = s2

where ũ is uniform on [0, 1] and independent of s̃. Then s̃n is a random

variable on [0, 1]. Moreover, if the realization s ∈ [0, fS(s1)], then

s = fS(s1)u ≤ s′ ⇐⇒ u ≤
s′

fS(s1)
.
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Therefore, for s ∈ [0, fS(s1)]

FSn(s) = Prob(s̃n ≤ s) =Prob(s̃ = s1)Prob

(

ũ ≤
s

fS(s1)

)

=fS(s1)
s

fS(s1)
= s. (2.9)

For a realization s ∈ (fS(s1), 1], then

s = fS(s1) + fS(s2)u ≤ s′ ⇐⇒ u ≤
s′ − fS(s1)

fS(s2)

and, therefore,

FSn(s) = Prob(s̃n ≤ s) =Prob(s̃n ≤ fS(s1)) + Prob (fS(s1) < s̃n ≤ s)

(2.9)
= fS(s1) + Prob(s̃ = s2)Prob

(

ũ ≤
s− fS(s1)

fS(s2)

)

=fS(s1) + fS(s2)
s− fS(s1)

fS(s2)
= s (2.10)

for s ∈ (fS(s1), 1]. Equations (2.9) and (2.10) imply that s̃n is uniform on

[0, 1]. Last, the normalized system (fSn|Ω, fΩ) is given by

fn
Sn|Ω =

{
f(F−1

S (s)|ω)

fS(F
−1
S (s))

}

s∈[0,1],ω∈{ω1,ω2}

=







8
5

if (s, ω) ∈ [0, 5/8]× {ω1}

0 if (s, ω) ∈ (5/8, 1]× {ω1}
2
5

if (s, ω) ∈ [0, 5/8]× {ω2}

2 if (s, ω) ∈ (5/8, 1]× {ω2} .

2.5 Concluding Remarks

This chapter introduces the reader to the basic framework of decision making

under risk. A formalization of a decision maker’s attitude towards risk and

two concepts to measure this are introduced. The concept of an information

system formalizes the generation of random signals that contain information

about the state of the world. The following chapter 3 deals with ordering of

information systems in terms of informativeness.



Chapter 3

Information and Informativeness

The concept of an information system was introduced in the previous sec-

tion. In contrast to the traditional literature on information, where the prior

belief is typically kept fixed, this work considers a more general notion of an

information system by allowing for different priors. Assume that a decision

maker can choose between different information systems. What criterion

can she use to order them in terms of informativeness? The purpose of this

chapter is to provide various approaches, including two novel ones, to an-

swer this question. As starting point, section 3.1 discusses natural requests

and desirable properties of informativeness criteria. Building on this, sec-

tion 3.2 presents Blackwell’s informativeness criterion and the weaker infor-

mativeness concepts by Lehmann/Persico and Kim. Section 3.3 introduces

two new informativeness criteria defined by Eckwert and Zilcha (2008) and

Brandt et al. (2013, 2014).

Intuitively, the informativeness of an information system can be viewed

as the statistical relatedness of the signals and the states. Increasing infor-

mativeness means ‘adding correlation’ between signals and states. Since an

information system consists of an information structure fS|Ω and a prior be-

lief fΩ, this can be achieved by modifying either the information structure

or the prior. Thus, in such a setting, the informativeness of the system is

jointly determined by the prior and the information structure.

In order to give an answer to the question above for fixed prior beliefs,

25
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Blackwell formalizes the intuitive idea that an information structure fS|Ω is

more informative than/sufficient for f̄S̄|Ω (regardless of the prior belief), if

the observation of signal s̄ of the letter one is the same as a noisy observa-

tion of a signal s from the former one. Blackwell showed that every Bayesian

decision maker prefers an information structure fS|Ω to another structure

f̄S̄|Ω if and only if s̃ is more informative/sufficient for ˜̄s. This strong equiva-

lence connects inforamtiveness (in the sense of Blackwell) with its value for

the decision makers. Unfortunately, the strengh of Blackwell’s theorem also

shows that Blackell’s criterion is quite restrictive (i.e. there are only a few

information structures that are comparable with this criterion), because an

information structure can only be more informative than another one, if it

delivers higher ex ante expected utility for all expected utility maximizers.

Since then various papers have proposed weaker criteria that can be applied

to a broader set of information systems.

Lehmann (1988) and Persico (2000) use a criterion according to which

all decision makers in a restricted class (those with single-crossing indirect

utilities) prefer an information structure. This criterion has been successfully

applied in auction theory.

Following similar lines, Kim (1995) proposes a criterion that is particu-

larly useful for ranking information systems in an agency framework.

Following a different idea, namely that ‘better’ information implies more

‘aggressive’ Bayesian updating, Ganuza and Penalva (2010) equate more in-

formativeness with (various kinds of) higher dispersion of posterior expec-

tation. They show that an auctioneer provides too little information, and

that both the socially efficient amount and the auctioneer’s optimal choice

of information increase with the number of bidders.

Similary, Li (2012) studies the effect of information and bias on NIH grant

allocations. Reviewers who are related to applicants through citations are

assumed to be better informed about the grant quality of a grant proposal.

When estimating the model, her identifying assumption is that this difference

in information ranks the dispersion of the reviewers’ conditional expectations

of quality.

Finally, Eckwert and Zilcha (2008) study screening mechanisms of indi-
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vidual skills in systems of higher education. Measuring the precision of a

screening mechanism by a dispersion concept for conditional expectations,

they show that better screening leads to more inequality in the distribution

of actual incomes, but less inequality in the distribution of income opportu-

nities.

3.1 Desirable Properties of Informativeness Cri-

teria

Concerning the properties of an informativeness ranking, consider as a first

step the two extreme information systems (f 0
S0|Ω, fΩ) and (f 1

S1|Ω, fΩ). No

matter what the true state of the world is and regardless of the prior, the

signals generated by the information system (f 0
S0|Ω, fΩ) and the state variable

are not correlated at all. Consequently, these signals do not contain any

additional information about the state of the world. I.e. the application of

(f 0
S0|Ω, fΩ) is equivalent to applying of no information system at all, i.e. it

is fully uninformative. Hence, no system (fS|Ω, fΩ) should be ranked strictly

smaller than (f 0
S0|Ω, fΩ). On the other extreme, the observation of a signal

generated by a fully informative system (f 1
S1|Ω, fΩ) fully reveals the true state.

Therefore, no system (fS|Ω, fΩ) should be ranked strictly higher in terms

of informativeness than (f 1
S1|Ω, fΩ). In order to formulate these properties

formally, the following notation is used for any informativeness ranking %inf

:

• (fS|Ω, fΩ) %
inf

(f̄S̄|Ω, f̄Ω) that means (fS|Ω, fΩ) is more informative than

(f̄S̄|Ω, f̄Ω).

• (fS|Ω, fΩ) ≻
inf

(f̄S̄|Ω, f̄Ω) means that (fS|Ω, fΩ) is strictly more informa-

tive than (f̄S̄|Ω, f̄Ω),i.e. (fS|Ω, fΩ) %
inf

(f̄S̄|Ω, f̄Ω) and (f̄S̄|Ω, f̄Ω) 6%
inf

(fS|Ω, fΩ).

• (fS|Ω, fΩ) ∼
inf

(f̄S̄|Ω, f̄Ω) means that (fS|Ω, fΩ) and (f̄S̄|Ω, fΩ) are equally

informative, i.e. (fS|Ω, fΩ) %
inf

(f̄S̄|Ω, f̄Ω) and (f̄S̄|Ω, f̄Ω) %
inf

(fS|Ω, fΩ).
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With this notation, the two natural, minimal properties for any informative-

ness ranking %inf

can be formalized as follows:

(f 0
S0|Ω, f̄Ω) 6≻

inf

(fS|Ω, fΩ) (P0)

(fS|Ω, fΩ) 6≻
inf

(f 1
S1|Ω, f̄Ω) (P1)

for any information system (fS|Ω, fΩ) and priors f̄Ω, fΩ ∈ ∆(Ω). Property

(P0) means that an informativeness ranking should not rank any informa-

tion system (fS|Ω, fΩ) strictly smaller than the completely uninformative sys-

tem (f 0
S0|Ω, f̄Ω) while (P1) means that no system fS|Ω, fΩ) should be ranked

strictly higher than the fully informative (f 1
S1|Ω, f̄Ω). Clearly, these minimal

requests can be tightend: desirable properties of an informativeness ranking

are that (f 0
S0|Ω, f̄Ω) should be ranked weakly smaller than any information

system (fS|Ω, fΩ) and that (f 1
S1|Ω, f̄Ω) should be ranked weakly higher than

any system (fS|Ω, fΩ). I.e.

(fS|Ω, fΩ) %
inf

(f 0
S0|Ω, f̄Ω) (P0′)

and (f 1
S1|Ω, f̄Ω) %

inf

(fS|Ω, fΩ) (P1′)

for any information system (fS|Ω, fΩ) and priors f̄Ω, fΩ ∈ ∆(Ω). Observe that

(P0′) implies (P0) and that (P1′) implies (P1).

Further natural requests of an information ranking are transitivity and

reflexivity, i.e.

Transitivity: If (fS|Ω, fΩ) %
inf

(f̂Ŝ|Ω, f̂Ω) and (f̄S̄|Ω, f̄Ω) %
inf

(fS|Ω, fΩ)

then (f̄S̄|Ω, f̄Ω) %
inf

(f̂Ŝ|Ω, f̂Ω), (P2)

Reflexivity: (fS|Ω, fΩ) %
inf

(fS|Ω, fΩ), (P3)

for all information systems (fS|Ω, fΩ), (f̂Ŝ|Ω, f̂Ω) and (f̄S̄|Ω, f̄Ω). In particular

this means, that an information ranking should define a preorder on the set

of information systems.

Moreover, an information criterion should be invariant to injective trans-

formations of the state space t : Ω → Ω′. Since such transformations
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are one-to-one, each state ω can be inferred from t(ω) without noise, and

vice versa. Hence, the information revealed by (fS|Ω, fΩ) about Ω is the

same as the information revealed by (fS|t(Ω), ft(Ω)) about t(Ω), with fS|t(Ω) =
{
fS|t(Ω)(s|ω

′)
}

s∈S,ω′∈t(Ω)
defined by

fS|t(Ω) : S × t(Ω) → R, (s, ω′) 7→ fS|Ω(s|t
−1(ω′)) (3.1)

and ft(Ω) by

ft(Ω) : t(Ω) → [0, 1], ω′ 7→
fΩ(t

−1(ω′))

|t′(t−1(ω′))|
, (3.2)

where t−1 : Ω′ → Ω denotes the inverse function of t and t′ its derivative

with respect to ω (which is assumed to exist because of technical reason).

Since the state space is ordered,5 it is possible (and sometimes also needed) to

weakening this property to a condition called ordinality of states. A ranking

with this property is invariant to strictly increasing, F -measurable transfor-

mations t : Ω → Ω′ of the state space. Since such transformations are also

one-to-one from Ω to t(Ω), the intuition keeps the same as for injective, F -

measurable transformation: the information revealed by (fS|Ω, fΩ) about Ω

is the same as the information revealed by (fS|t(Ω), ft(Ω)) about t(Ω), where

ft(Ω) and fS|t(Ω) are defined as above.

Definition 3.1. (i) An information criterion %inf

satisfies the indepen-

dence of state space property (IS), if

(fS|Ω, fΩ) %
inf

(f̄S̄|Ω, f̄Ω) ⇒ (fS|t(Ω), ft(Ω)) %
inf

(f̄S̄|t(Ω), f̄t(Ω)) (IS)

for all injective t : Ω → Ω′, fΩ, f̄Ω ∈ ∆(Ω) and all information struc-

tures fS|Ω, f̄S̄|Ω.

(ii) An information criterion %inf

satisfies the ordinality of states property

5Remember: Ω = [ω
¯
, ω̄] ⊆ R. Moreover, if Ω would be finite, it is w.o.l.g. to assume

that it is ordered.
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(OS) if

(fS|Ω, fΩ) %
inf

(f̄S̄|Ω, f̄Ω) ⇒ (fS|t(Ω), ft(Ω)) %
inf

(f̄S̄|t(Ω), f̄t(Ω)) (OS)

for all strictly increasing functions t : Ω → Ω′, fΩ, f̄Ω ∈ ∆(Ω) and all

information structures fS|Ω, f̄S̄|Ω.

The independence of state space property implies that the distance and

the order of the states can be changed without changing informativeness

ranking. Since any utility function u : Ω → R could be viewed as state

transformation, the IS property additionally has the implication that all de-

cision makers with different, injective vNM-prefecrences share a common

view on the informativeness of a set of considered information systems. Un-

fortunately, IS is quite restrictive. Therefore, it is reasonable to impose the

weaker condition of ordinality of states in some economic environments. Con-

sider for instance an environment where the state space is a subset of the

real line and different states represent different wealth levels. In such a set-

ting one could argue that it suffices to restrict attention to strictly increasing

state transformations as any other does not respect the fundamental under-

lying ranking of the state space. Moreover, in economic theory attention

is frequently restricted to strictly increasing utility functions on the state

space. Those utility functions constitute increasing state transformations.

Thus, the OS property of information orders has the important implication

that expected utility maximizers who have different strictly increasing vNM-

preferences will share a common view on the informativeness of a set of

considered information systems.

By the definitions of IS and OS it is clear that OS is weaker than IS, i.e.

IS implies OS.

A decision maker cares about information only in so far as her wellbe-

ing is affected. Hence, a rational decision maker will always choose that

information system that delivers her the highest expected welfare. Hence,

Bonnenblust et al. (1949) call an information system more valuable if it in-

duces higher ex ante expected utility for all decision makers. In order to

introduce the term ‘more valuable’ formally, define the optimal action after
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a signal observation equal to s by

a∗ : S → A, s 7→ argmax
a∈A

EΩ [v(a, ω̃)|s] . (3.3)

Building on Bonnenblust et al. (1949), the value of information is defined as

follows:

Definition 3.2. For an arbitrary strategy a : S → A, s 7→ a(s), an informa-

tion system (fS|Ω, fΩ) and an indirect utility function v : A× Ω → R define

the ex ante expected utility by

V ((fS|Ω, fΩ), a, v) := ES [EΩ [v(a(s), ω̃)|s̃]] .

An information system (fS|Ω, fΩ) is more valuable than the information sys-

tem (f̄S̄|Ω, fΩ) if for every expected utility maximizer with prior fΩ holds that

V ((fS|Ω, fΩ), a
∗, v) ≥ V ((f̄S̄|Ω, fΩ), ā

∗, v). (3.4)

This concept induces a preorder on the set of information systems. It is

unclear how this ordering relates to information orders. This will be studied

in the following sections.

3.2 Blackwell’s Sufficiency Criterion

Blackwell (1951) defines an criterion for the comparison of two information

structures regardless of the prior. As already mentioned, Blackwell’s criterion

formalizes the intuitive idea that an information structure fS|Ω is more infor-

mative than f̄S̄|Ω regardless of the prior belief, if the observation of an signal

s̄ of the latter one is the same as an noisy observation of an signal s from the

former. In particular, this means the following: Suppose the decision maker

is not able to observe the signal s directly anymore and that there is a ran-

dom transformation f̂S̄|S that randomly transforms an unobservable signal

s ∈ S into an observable signal s̄ ∈ S̄. Therefore, f̂S|S̄ can be interpreted
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as information structure with state space S and signal space S̄.6 Intuitively

it is clear that the observation of the signal s̄ is not more informative than

the direct observation of s. The following definition etablishes Blackwell’s

sufficiency criterion for infinite signal spaces which easily can be modified for

the case of a finite sets of signals. In contrast, whether Ω is finite or infinite

does not play any role in the definition of Blackwell’s criterion.

Definition 3.3 (Blackwell’s Sufficiency Criterion). An information structure

fS|Ω is sufficient for the structure f̄S̄|Ω, fS|Ω %b f̄S̄|Ω, if and only if there exists

an information structure f̂S̄|S such that F̂S̄|S(C|·) =
∫

S̄

1C(s̄)f̄S̄|S(s̄|·)ds̄ is S-

measurable for all C ∈ S̄7 and

f̄S̄|Ω(s̄|ω) = ES

[

f̂S̄|S(s̄|s̃)|ω
]

=

∫

S

f̂S̄|S(s̄|s)fS|Ω(s|ω)ds for all ω ∈ Ω.

Important is that the information structure f̂Ŝ|S is independent of the

state ω. This independence implies that f̂S̄|S is an information structure

which convey information about s̃. Therefore, an observation of a signal from

f̄S̄|Ω does not contain more information about the state than a direct obser-

vation of an signal from fS|Ω. Additionally, this implies that if an information

structure is more informative than another one, then the corresponding in-

formation systems are ranked in the same way for all prior distributions,

i.e.

(fS|Ω, fΩ) %
b

(f̄S̄|Ω, fΩ) :⇔ fS|Ω %b f̄S̄|Ω,

for all prior beliefs fΩ ∈ ∆(Ω). Hence, an information system (fS|Ω, fΩ) is

more informative than the system (f̄S̄|Ω, fΩ) if and only if underlying infor-

mation structure fS|Ω is more informative than f̄S̄|Ω.

Next, observe that Blackwell’s sufficiency criterion fulfill all natural re-

quests and desirable properties of informativeness criteria stated in section

6Compare chapter 2.
7In particular, since f̂S̄|S(·|s) is a probability distribution on (S̄, S̄) this means that

F̂S̄|S is a stochastic kernel.
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3.1.

Lemma 3.1. Blackwell’s sufficiency criterion satisfies the basic properties

(P0′), (P1′), (P2), (P3) and (IS).

The properties (P2) and (P3) imply that Blackwell’s sufficiency criterion

defines a (partial) preorder on the set of information structures. Addition-

ally, (P0′) and (P1′) imply that for any prior fΩ ∈ ∆(Ω), the minimal ele-

ment of this preorder is the system (f 0
S0|Ω, fΩ) while the maximal element is

(f 1
S1|Ω, fΩ).

Moreover, Blackwell’s criterion allows to compare information systems

which signal spaces have different dimensions. This in turn allows for the

comparison of combinations of independent information structures. As men-

tioned above, intuitively it is clear that the observation of additional signals

reveal additional information about the state.

Proposition 3.1. For all independent information structures fS|Ω and f̄S̄|Ω,

the information structure f(S,S̄)|Ω with f(S,S̄)|Ω(s, s̄|ω) := fS|Ω(s|ω)f̄S̄|Ω(s̄|ω) is

sufficient for fS|Ω and f̄S̄|Ω, respectively.

The combination of two information structures is always more informa-

tive than the underlying structures itsself. This observation is useful for

the construction of information structures and systems with parametrized

informativeness, which on their part are useful by modeling the demand and

supply of information (compare chapter 4). As an example consider a frame-

work in which only one (kind of) information structure is available, but it is

possible to use several of these technologies simultaneously (compare Exam-

ple 2). Proposition 3.1 implies that the informational content is increasing

in the number of simultaneously used technologies. Therefore, this number

parametrizes informational content.

As mentioned above, it is not so clear how informativeness criteria relate

to individual ex ante expected utilities. However, Blackwell (1951, 1953)

proofed that the preorder induced by his sufficency criterion is equivalent to

the preorder induced by the ‘more valuable’ criterion by Bonnenblust et al.

(1949).
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Theorem 3.1 (Blackwell’s theorem). For any fixed prior belief fΩ ∈ ∆(Ω) is

an information system (fS|Ω, fΩ) more informative than a system (f̄S̄|Ω, fΩ)

if and only if it is more valuable all for expected utility maximizers.

A more informative information system is always valuable for a single

decision maker. Crucial for this result is, that the set of possible actions

is independent of the signal realization. In most economic circumstances,

as for example in a general equilibrium framework, this might not be the

case. Hirshleifer (1971) was the first who demonstrated that in equilibrium

information might make everybody worse off. He considers a small exchange

economy with a single consumption good, risk avers agents and complete

markets for state-contingent claims. Each agent is endowed with a risky en-

dowment of the consumption good. The agents can share risks by trading

state-contingent claims in complete markets before the state of the world is

realized. If they were perfectly informed about the state before the mar-

kets for state-contingent claims are open, no trade at all will take place and

the agents consume according to their endowments. Therefore, from an ex

ante perspective, perfect information make the agents worse off by breaking

down the risk sharing markets. A more detailed discussion of the value of

information in equilibrium models will be provided in chapter 4.

3.2.1 Weaker criteria

Up to now this section studied Blackwell’s sufficiency criterion. For fixed

prior, an information system is sufficient for another one if and only if it

delivers higher ex ante expected utility for all expected utility maximizers.

In particular, a system is sufficient for another one if and only if it is more

valuable in the sense of Definition 3.2. This powerful equivalence has the cost

that only a few systems are comparable in terms of Blackwell’s criterion. In

order to relax this problem and to be able to compare more information

systems with respect to their value, various information concepts has been

developed which are applicable in different economic scenarios. This section

will briefly introduce the definitions of two such criteria and relate them to

the value of information for particular classes of decision makers.
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The criterion by Lehmann and Persico

Lehmann (1988) and Persico (1996, 2000) define an information ranking, in

this work reffered as accuracy, based on the intuition that the more infor-

mative a system, the more correlated are signals and states. By defining

accuracy, they restrict attention to information structures with the mono-

tone likelihood ratio property (MLRP). In order to avoid confusion, remem-

ber that attention is restricted to state and signals spaces which are convex

subsets of the real line. Under these assumptions the MLRP is defined as

follows:

Definition 3.4 (Monotone Likelihood Ratio Property). An information struc-

ture fS|Ω has a monotone likelihood ratio if and only if fS|Ω(s|ω)/fS|Ω(s|ω
′) is

decreasing in s for all ω, ω′ ∈ Ω such that ω′ ≥ ω.

Milgrom (1981) relates this property of information structures with the

slope of posterior conditional expectation (as a function of the signals real-

ization s). He calls an information system (fS|Ω, fΩ) monotone (in s) if for

any s, s′ ∈ S with s′ ≥ s it follows that FΩ|S(·|s
′) first order stochastically

dominates FΩ|S(·|s).
8 Then Milgrom (1981) shows that an information sys-

tem (fS|Ω, fΩ) is monotone regardless of the prior if and only if the underlying

structure, fS|Ω, has the MLRP:

Proposition 3.2. An information system (fS|Ω, fΩ) is monotone (in s) for

all prior fΩ ∈ ∆(Ω) if and only if fS|Ω have the MLRP.

Denote by M the set of information structures with MLRP. In order to

give the definition of accuracy, define the quantile function of an conditional

signal cdf, FS|Ω, by

F−1
S|Ω : [0, 1]× Ω → S, (p, ω) 7→ inf

{
s ∈ S|FS|Ω(s|ω) ≥ p

}
.

For fixed prior belief, Lehmann (1988) and Persico (1996) define accuracy

as follows:

8Let FΩ and F̄Ω denote two distributions of Ω. FΩ first order stochastically dominates
F̄Ω if and only if FΩ(ω) ≤ F̄Ω(ω) for all ω ∈ Ω.
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Definition 3.5. Let fS|Ω, f̄S̄|Ω ∈ M. Information structure fS|Ω is more

accurate than the structure f̄S̄|Ω, fS|Ω %a f̄S̄|Ω, if and only if

T : S̄ × Ω → S, (s̄, ω) 7→ F−1
S|Ω(F̄S̄|Ω(s̄|ω)|ω)

is nondecreasing in ω for all s̄ ∈ S̄.

The function T (·, ω) : S̄ → S is a state dependent transformation of

signals in S̄ into signals in S. In order to get an intuition for this definition

suppose for the moment S = S̄. Since T (s̄, ω) is nondecreasing in ω it adds

correlation to the signal s̄ in the following sense: If ω is low the transformed

signal is lower than the original one and vice versa if ω is high. Hence, at least

intuitively, the more accurate an information system, the more correlated are

signals and states.

Similar to Blackwell’s criterion, accuracy was originally defined for the

comparison of information structures, however, throughout this work, an

information system (fS|Ω, fΩ) is more accurate than the system (f̄S̄|Ω, fΩ) if

and only of the underlying information structure fS|Ω is more accurate then

f̄S̄|Ω. Formally,

(fS|Ω, fΩ) %
a

(f̄S̄|Ω, fΩ) :⇔ fS|Ω %a f̄S̄|Ω

for all fΩ ∈ ∆(Ω). Moreover, since the transformation T : S̄ × Ω → S has

to be increasing in ω for fixed s̄ ∈ S̄ it follows that underlying ranking of

the states (i.e. the ranking of the reals) is important for defining accuracy.

Hence, it is obvious that accuracy cannot fulfill the independence of state

property. However, it is easy to check that it has the ordinality of states

property.

Proposition 3.3. The accuracy ranking by Lehmann (1988) and Persico

(1996) satisfies the basic properties (P0′), (P1′), (P2), (P3) and (OS).

Within class of information structures with MLRP and for fixed prior

belief Persico (1996, 2000) proofed that increasing accuracy is equivalent to

increasing ex ante expected utility for all decision makers with single-crossing
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preferences. In order to formulate this result formally, it is necessary to define

single crossing-preferences:

Definition 3.6 (Single-crossing preferences). Suppose the set of possible ac-

tions is a subset of the real line, i.e. A ⊆ R. A decision maker posses

single crossing preferences if and only if her indirect elementary utility has

the single-crossing property. That is, for all a, a′ ∈ A such that a′ ≥ a and

for all ω, ω′ ∈ Ω such that ω′ ≥ ω it holds that

v(a, ω)− v(a′, ω) > 0 ⇒ v(a, ω′)− v(a′, ω′) > 0.

The single crossing property implies that difference v(a, ·)−v(a′, ·) crosses

0 at most once and if so, it crosses from below. Therefore, loosely speaking

a decision maker with single-crossing preferences want to coordinate small

actions with small states and high actions with high states. For this class of

decision problems Athey (2002) showed that the optimal action a∗(s) is non-

decreasing in the signal realization s if the underlying information structure

posses the MLRP. The following theorem by Persico (1996, 2000) etablishes,

as already mentioned above, a tight relationship between accuracy and the

value of information for decision makers with single-crossing preferences.

Theorem 3.2. Let fS|Ω, f̄S̄|Ω ∈ M, fΩ ∈ ∆(Ω) and A ⊆ R compact. The

information structure fS|Ω is more accurate than the structure f̄S̄|Ω if and

only if V ((fS|Ω, fΩ), a
∗, v) ≥ V ((f̄S̄|Ω, fΩ), ā

∗, v) for all decision makers with

single-crossing preferences.

Similar to Blackwell’s theorem which characterizes the ex ante expected

utility for all decision makers in terms of sufficiency, theorem 3.2 character-

izes the ex ante expected utility for all decision makers with single-crossing

preferences in terms of accuracy. Of course, since the set of decsision makers

with single-crossing preferences is a subset of all decision makers, the theo-

rems 3.1 and 3.2 imply that if attention is restricted to information structures

with MLRP, then accuracy is weaker than sufficiency.

Cororally 3.1. Let fS|Ω, f̄S̄|Ω ∈ M. Then, fS|Ω %b f̄S̄|Ω ⇒ fS|Ω %a f̄S̄|Ω.
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Kim’s Criterion

As mentioned above, Blackwell’s sufficiency criterion is quite restrictive. Ad-

ditionally, Kim (1995) argues that it is not appropriate for the use in a

principal-agent framework. As reason for this Kim mentions that sufficiency

is based on forecasting the unobservable variable rather than on controlling it

which is the objective in a principal-agent framework. Therefore, the crucial

point is the (local) sensitivity of the signals with respect to a change in the

state of the world rather than the correlation of signals and states. Kim intro-

duces a new criterion which takes this objective into account. Kim’s criterion

measures the sensitivity of the conditional signal distribution, fS|Ω(·|ω), for

marginal changes in ω. In particular, the basic idea of Kim’s criterion is the

more sensitive the conditional signal distribution (for marginal changes in ω),

the more informative is the corresponding information structure. In order to

make this more clear, consider the fully uninformative information structure.

Its conditional signal distributions are independent of the state variable and,

hence, its sensitivity to marginal changes in ω is zero. If an information

structure is partially informative, then the conditional signal distribution is

not independent of the state and, hence, the sensitivity is different than zero.

Again, let Ω and S be convex subsets of the real line and assume that

information structures are given by a family of conditional signal densities,
{
fS|Ω(·|ω)

}

ω∈Ω
, which are (twice) continuously differentiable. Denote the set

of those information structure by D. Kim measures the relative sensitivity

of the conditional signal distribution by using the likelihood ratio

∂fS|Ω/∂ω

fS|Ω
(s|ω) :=

∂fS|Ω(s|ω)/∂ω

fS|Ω(s|ω)
.

This ratio measures the relative change of the conditional signal density

caused by a marginal change in the state variable. Define the cdf of the

likelihood ratio as

LfS|Ω
(x, ω) := Prob

(
∂fS|Ω/∂ω

fS|Ω
(s̃|ω) ≤ x

)

.
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This function determines the conditional probability that, given state ω, the

information structure produces a signal which is less sensitive than x.

Kim compares the sensitivities of two information structures in terms of

their likelihood ratio distributions by using the concept of a mean preserving

spread (MPS).9

Definition 3.7. Let fS|Ω, f̄S̄|Ω ∈ D. The information structure fS|Ω is locally

more informative than the structure f̄S̄|Ω, denoted by fS|Ω %l-inf

f̄S̄|Ω, if and

only if the likelihood ratio distribution LfS|Ω
(·, ω) is a MPS of the likelihood

ratio distribution Lf̄S̄|Ω
(·, ω) for all ω ∈ Ω.

Intuitively, if the distribution LfS|Ω
(·, ω) is a MPS of the distribution

Lf̄S̄|Ω
(·, ω), then extremely sensitive signals (positive or negative) are more

likeli to occur under fS|Ω than under f̄S̄|Ω.

As for the criterea defined above, an information system (fS|Ω, fΩ) is

called locally more informative than the system (f̄S̄|Ω, fΩ) if and only if the

underlying information structures are ordered in the same way. I.e. for any

fΩ ∈ ∆(Ω) and fS|Ω, f̄S̄|Ω ∈ D set

(fS|Ω, fΩ) %
l-inf

(f̄S̄|Ω, fΩ) :⇔ fS|Ω %l-inf

f̄S̄|Ω.

Concerning the basic properties observe that, since the fully informative

information structure is never continuously differentiable, it is not necessary

(and not possible) to prove whether property (P1) holds or not. Secondly,

since fS|t(Ω) has to be differentiable in ω, it suffices to show independence to

increasing, differentiable state transformations.

Definition 3.8. Let fS|Ω ∈ D. An informativeness criterion %inf

satisfies

9Let x̃ and ỹ be random variables with cumulative distribution functions FX and
FY , respectively. x̃ is a mean preserving spread (MPS) of ỹ iff EX [x̃] = EY [ỹ] and
x∫

−∞

FX(x′)dx′ ≥
x∫

−∞

FY (x
′)dx′ for all x ∈ R. This is equivalent to the convex order

for random variable with equal mean. For more details on this consider for instance
Shaked and Shantbikumar (2007).
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the weak ordinality of states property (wOS) if and only if

fS|Ω %inf

f̄S̄|Ω ⇒ fS|t(Ω) %
inf

f̄S̄|t(Ω)

for all strictly increasing, differentiable state transformations t : Ω → R.

The following proposition summarizes the basic properties of information

ranking which are respected by Kim’s criterion.

Proposition 3.4. Local informativeness has the basic properties (P0), (P2),

(P3) and (wOS).

In order to relate local informativeness with the ex ante expected utility,

consider a principal-agent framework. Assume that the principal is risk neu-

tral while the agent is assumed to be risk avers. The agent chooses a level of

effort ω ∈ Ω which is unobservable for the principal. Instead, she observes a

signal s ∈ S, e.g. the outcome of a production process, which is correlated to

the agent’s choice. The statistical dependence (or correlation) of signals and

states is determined by an information structure fS|Ω. The conditional signal

densities of this information structure are assumed to be twice continuously

differentiable, i.e. fS|Ω ∈ D. In order to implement a certain level of effort,

the principal provides a bonus payment scheme b : S → R. In particular,

this means that if s is observed, the agents gets a payoff in amount of b(s).

Moreover, assume that the agent’s preferences for wealth and effort are addi-

tively separabel, increasing in wealth and decreasing in the effort level. More

precisely, the agent’s preferences are represented by v(b, ω) = u(b) − w(ω)

with v′ > 0, v′′ < 0 and w′ > 0. Moreover, the reservation utility or outside

option of the agent is ū which is her utility in case of not signing a contract

with the principal. Then, if the principal want to implement an effort level

ω ∈ Ω at minimum expected costs, she has to solve the following problem:

min
s(·)≥k

s̄∫

s
¯

b(s)fS|Ω(s|ω)ds
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s. t.

s̄∫

s
¯

u(b(s))fS|Ω(s|ω)dω − w(ω) ≥ v̄ (PC)

s̄∫

s
¯

u(b(s))∂fS|Ω(s|ω)/∂ω(s|ω)ds− w′(ω) = 0 (IC)

Condition (PC) is called participation constraint which assures that the

agents gets at least her reservation utility ū and, hence, assures that the

agent is willing to sign the contract. (IC) is called incentive compatibility

constraint. In particular, (IC) is equal to the first order condition (FOC) in

the agents optimization problem and, hence, it guarantees that ω is in fact

the optimal choice for the agent.10 The lower bound of the agent’s bonus

payment k assures the existence of a solution to the principals problem, i.e.

the existence of an optimal payment scheme b∗ : S → R. Let

B : Ω×D, (ω, fS|Ω) 7→

∫

S

b∗(s)fS|Ω(s|ω)ds

denote the principal’s ex ante expected cost for implementing ω under in-

formation structure fS|Ω. The following theorem, which was proven by Kim

(1995) and Jewitt (1997), relates local informativeness with the ex ante ex-

pected implementing costs of some action ω.

Theorem 3.3. Let fΩ ∈ ∆(Ω) and fS|Ω, f̄S̄|Ω ∈ D. Information struc-

ture fS|Ω is locally more informative than the structure f̄S̄|Ω if and only if

B(ω, fS|Ω) ≤ B(ω, f̄S̄|Ω) for all ω ∈ Ω.

An information structure fS|Ω is locally more informative than another,

f̄S̄|Ω, if and only if the ex ante expected costs for implementing ω under the

first system, (fS|Ω, fΩ) are less or equal to those under the second system,

(f̄S̄|Ω, fΩ).

Since Grossman and Hart (1983) prove that the necessary part of Black-

10Given a payment scheme b : S → R the agents optimization problem is:

max
ω∈Ω

s̄∫

s
¯

u(b(s), ω)ds with corresponding FOC:
s̄∫

s
¯

u(b(s))∂fS|Ω(s|ω)/∂ω(s|ω)ds− w′(ω) = 0.
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well’s Theorem holds also in the principal-agent framework (i.e. fS|Ω %b f̄S̄|Ω ⇒

B(ω, fS|Ω) ≤ B(ω, f̄S|Ω)). Together with Theorem 3.3 this imply that local

informativeness is weaker than sufficiency.

Cororally 3.2. Let fS|Ω, f̄S̄|Ω ∈ D. If fS|Ω %b f̄S̄|Ω then fS|Ω %l-inf

f̄S̄|Ω.

3.3 Information and the Dispersion of Poste-

rior Expectations

Most parts of this section are based on Brandt et al. (2013)

and Brandt et al. (2014). I am grateful to Prof. Dr. Bern-

hard Eckwert, Dr. Burkhard Drees and Dr. Felix Várdy for

these collaborations.

The previous section discussed Blackwell’s sufficiency criterion. Its intuition

is than an information structure is more informative than another one, if a

signal observation of the latter one is equal to an disturbed signal observation

of the first one. Therefore, Blackwell’s criterion is by definition independent

of the prior belief.

This subsection introduces two different notions of informativeness, weak

and strong informativeness, that follow a different intuition: the more in-

formative an information system, the more ‘aggressive’ Bayesian updating

and, hence, the more disperse the conditional expectations. Indeed, when

signals are completely uninformative, beliefs are not updated at all. In that

case, the posterior is equal to the prior, and the dispersion of the conditional

expectation is zero. At the other extreme, perfectly informative signals fully

reveal the state of the world. Thus, they induce ‘complete’ updating, which

makes the dispersion of the posterior equal to the dispersion of the underly-

ing states. In between, intermediate levels of informativeness lead to partial

updating and, hence, tend to lead to intermediate levels of dispersion of

posterior beliefs about the expected underlying state.

On the basis of this observation, some recent papers equate informa-

tiveness with the dispersion of conditional expectations. That is, they use

dispersion orderings as full-fledged information concepts (compare Li (2012),
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Ganuza and Penalva (2010) and Eckwert and Zilcha (2008)). These appli-

cations illustrate the usefulness of dispersion orderings of conditional expec-

tations as means to do economic analysis and, in particular, comparative

statics excercises. However, an important question is whether these disper-

sion orderings really qualify as meaningful information criteria. As mentioned

above, a desirable property for any information ranking is the ordinality of

states property (OS).11 Injective (increasing) transformations of the state

space should not affect the informativeness and ranking of information sys-

tems, because the systems reveal the exact same information before and after

the transformation. As shown above, the information concepts of Blackwell

(1951), Lehmann (1988)/Persico (1996) and Kim (1995) satisfy this invari-

ance property. However, the dispersion orders used by Ganuza and Penalva

(2010) and others do not. A second problem with using dispersion orders as

information criteria is that it is not clear what they mean in terms of the

primitives of the model, i.e. the joint distribution of states and signals.

To remedy this problem and better understand the connection between

information and the dispersion of conditional expectations, in this section,

the weakest information criteria inducing some dispersion orders used in the

literature will be derived. The starting points are the two dispersion con-

cepts for conditional expectations of the state studied in Ganuza and Penalva

(2010): supermodular dispersion and mean-preserving spread (MPS) disper-

sion. Then two information criteria are derived, each being compatible with

one of these dispersion orders. The stronger criterion, which is compatible

with supermodular dispersion, is denoted by ‘strong informativeness’ while

the weaker criterion, which is compatible with MPS dispersion, is denoted

by ‘weak informativeness’.

More broadly, this section relates to the extensive literature on the ef-

fects of risk on individual behavior (see, e.g., Leland (1968); Sandmo (1971);

Levhari and Weiss (1974)). In this context, Baker (2006) compares the effect

of higher prior uncertainty versus a more informative signal on optimal de-

11The desirable, but more restrictive property of independence of states (IS), is not
appropriate in this framework, since any non-monotone state transformation does not
respect the underlying order of the state space. Hence, the monotonicity of information
systems, a primitive of the model, gets lost under non-monotone state transformations.
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cisions. For sequential decision problems, she identifies conditions such that

the comparative statics of increasing informativeness are the same as those

of increasing ex ante risk (dispersion of the prior). While Baker establishes

a comparative statics similarity between higher risk and better information,

she does not address the question whether risk and information are system-

atically related. Thus, both her focus and set-up are different from this work,

even though the analyses are clearly related.

Closest to this section are the works by Ganuza and Penalva (2010) and

by Eckwert and Zilcha (2008) suggesting that informativeness can simply be

measured by the impact of (normalized) signals on the distribution of condi-

tional expectations. This idea has also been applied in a recent paper by Li

(2012) which tries to identify the effects of information and bias (relatedness

between reviewer and applicant) on expert evaluations in the context of de-

cisions about medical research grants. To separate these effects, one of her

identifying assumptions ranks the variance of the expectations of posterior

beliefs between ‘unrelated’ reviewers and ‘related’ reviewers.

The remainder of the subsection proceeds as follows: section 3.2.1 defines

and discusses the two dispersion concepts for the expectations of posterior

beliefs that are used as information orders by Ganuza and Penalva (2010).

In section 3.2.2, two informativeness criteria are defined and graphically il-

lustrated. Section 3.2.3 the information orders in section 3.2.2 are related to

the dispersion orders in Section 3.2.1. In section 3.2.4 disentangles the effects

of the prior and the information structure on informativeness and dispersion

of posterior beliefs. Finally, section 3.2.5 concludes.

3.3.1 Supermodular- and MPS-Precision

Ganuza and Penalva (2010) define informativeness concepts for the class of

information systems with monotone signals. They follow the intuition, that

the more informative an information system, the more aggressive Bayesian

updating and formalize this idea by equating informativeness with the disper-

sion of posterior state expectations. If, in addition, the information systems

are monotone, a greater dispersion of posterior conditional expectation at
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least intuitively implies that signals and states are more correlated, i.e. small

(high) signals are more likeli to co-occur in the state is small (high). it is

meaningful to restrict attention to information systems which are monotone

regardless of the prior (in the sense of Milgrom (1981)), i.e. to information

systems with the MLRP. Moreover, since otherwise a comparison in terms of

dispersion of posterior expectations is not senseful, the signal space as well

as the marginal signal distributions must be equal across the set of informa-

tion systems in consideration. Hence, attention is restricted to normalized

information systems as introduced in section 2.4. Summing up, let Γ(fΩ)

denote the set of information structures with the monotone likelihood ratio

property and normalized signals given the prior belief fΩ ∈ ∆(Ω), i.e.

Γ(fΩ) :=






fS|Ω : [0, 1] × Ω → R+

∣
∣
∣
∣
∣
∣

fS|Ω ∈ M with

fS(s) =
∫

Ω

fS|Ω(s|ω)fΩ(ω)dω = 1 ∀ s ∈ [0, 1]






.

Moreover, define the set of all normalized information systems with MLRP

by

Γ :=
{
(fS|Ω, fΩ)|fΩ ∈ ∆(Ω) and fS|Ω ∈ Γ(fΩ)

}
. (3.5)

Since signals are normalized, i.e. S = S̄ = [0, 1] for all (fS|Ω, fΩ), (f̄S̄|Ω, f̄Ω) ∈

Γ, notation can be simplified: the signal set of an normalized information

system is always denoted by S := [0, 1].

Building on Ganuza and Penalva (2010), supermodular- and mean pre-

serving spread (MPS)-precision are defined as follows:

Definition 3.9. Let (fS|Ω, fΩ), (f̄S|Ω, f̄Ω) ∈ Γ.

(i) Information system (fS|Ω, fΩ) is more supermodular (SM) precise than

(f̄S|Ω, f̄Ω), denoted by (fS|Ω, fΩ) %
sm

(f̄S|Ω, f̄Ω), iff EΩ [ω̃|s]− ĒΩ [ω̃|s] is

non-decreasing in s for all s ∈ [0, 1].

(ii) Information system (fS|Ω, fΩ) is more mean preserving spread (MPS)

precise than (f̄S|Ω, fΩ), denoted by (fS|Ω, fΩ) %
mps

(f̂S|Ω, fΩ), iff EΩ [ω̃|s̃]−

EΩ [ω̃] is a MPS of ĒΩ [ω̃|s̃]− ĒΩ [ω̃].
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Note that higher SM-dispersion uniformly raises the slope of the posterior

state expectation as a function of the signal s. Therefore, SM precision

implies MPS precision.

The dispersion of posterior expectations is related to informativeness in

an intuitive sense: the greater the dispersion of posterior expectations the

greater the correlation of signals and states. Indeed, Ganuza and Penalva

(2010) use supermodular dispersion and MPS-dispersion as information con-

cepts. Yet, while these concepts often provide convenient tools of analysis,

they have two major shortcomings. First, the dispersion concepts are not

based on primitives of the model, because they impose restrictions on the ex-

pectations of the posterior state distributions rather than on the information

systems (i.e., the conditional signal distributions or the joint distribution of

states and signals). And secondly, these concepts do not satisfy ordinality of

states property. Even more problematic, a (ordinal) relabeling of the states

that leaves all conditional signal distributions unchanged can turn around

the ordering of information systems. This will be shown in the following

example.

Example 2. Let Ω = [0, 1] and fΩ(ω) = 2ω for all ω ∈ [0, 1]. Consider

the information systems (fS|Ω, fΩ) and (f̄S|Ω, fΩ) given by fS|Ω(s|ω) = 1 +
1
2
(1 − 2s)(1 − 2ω2) and f̄S|Ω(s|ω) = 1 + (1 − 2s)(1 − ω2)(1 − 3ω2) for all

(s, ω) ∈ [0, 1]2 = S × Ω, respectively. Both information structures have

the monotone likelihood ratio property (MLRP). Hence, by Milgrom (1981),

(fS|Ω, fΩ) and (f̄S|Ω, fΩ) are monotone for all prior fΩ on Ω. Moreover, since

fS(s) =

1∫

0

fS|Ω(s|ω)fΩ(ω)dω = 1 =

1∫

0

f̄S|Ω(s|ω)fΩ(ω)dω = f̄S(s)

for all s ∈ [0, 1], follows (fS|Ω, fΩ), (f̄S|Ω, fΩ) ∈ Γ. Computing the conditional

state expectations yields that the difference of posterior, conditional state
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expectations,

ĒΩ [ω̃|s]− EΩ [ω̃|s] =

1∫

0

ω2(6ω4 − 6ω2 + 1)(1− 2s)dω

=
1− 2s

105

[
(90ω4 − 126ω2 + 35)ω3

]1

ω=0
=

2s− 1

105
,

is (strictly) increasing in s. This implies (f̄S|Ω, fΩ) ≻
sm

(fS|Ω, fΩ) and (f̄S|Ω, fΩ)

≻
mps

(fS|Ω, fΩ).

Now consider the ordinal relabeling of states t : [0, 1] → [0, 1], ω 7→ ω4

and define x̃ := t(ω̃). Then,

ĒX [x̃|s]− EX [x̃|s] = ĒΩ [t(ω̃)|s]− EΩ [t(ω̃)|s] =

1∫

0

ω5(6ω4 − 6ω2 + 1)(1 − 2s)dω

=
1− 2s

60

[
(36ω4 − 45ω2 + 10)ω6

]1

ω=0
=

1− 2s

60

is (strictly) decreasing in s. Therefore, (fS|t(Ω), ft(Ω)) ≻
sm

(f̄S|t(Ω), ft(Ω)) and

(fS|t(Ω), ft(Ω)) ≻
mps

(f̄S|t(Ω), ft(Ω)).

s s
1 10 0

R R

EX [x̃|s]

ĒX [x̃|s]

EΩ [ω̃|s]
ĒΩ [ω̃|s]

Figure 3.1: Conditional Expectations of ω̃ and x̃ = t(ω̃).

The following proposition compares SM- and MPS-precision with the ear-

lier approaches by Blackwell, Lehmann/Persico and Kim for the case of fixed

priors. In particular, if the prior is fixed and the information structure has

the MLRP, then MPS-precision is weaker than any other informativeness

notion considered above. In contrast, sm-dispersion is neither weaker nor
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stronger than the informativeness concepts by Blackwell, Lehmann/Persico

and Kim.

Proposition 3.5. (i) Let fΩ ∈ ∆(Ω). If the prior belief is fixed accross

information systems, then MPS-precision is strictly weaker than suffi-

ciency, accuracy and local informativeness. Formally,

(fS|Ω, fΩ) %
x

(f̄S|Ω, fΩ) ⇒ (fS|Ω, fΩ) %
mps

(f̄S|Ω, fΩ)

and

(fS|Ω, fΩ) %
mps

(f̄S|Ω, fΩ) 6⇒ (fS|Ω, fΩ) %
x

(f̄S|Ω, fΩ)

for all fS|Ω, f̄S|Ω ∈ Γ(fΩ) if x ∈ {a, b} and for all fS|Ω, f̄S|Ω ∈ Γ(fΩ)∩D

if x = l-inf.

(ii) Let fΩ ∈ ∆(Ω). Even if the prior is fixed accross information systems

is SM-precision neither stronger nor weaker than sufficiency, accuracy

and local informativeness. Formally,

(fS|Ω, fΩ) %
x

(f̄S|Ω, fΩ) 6⇒ (fS|Ω, fΩ) %
sm

(f̄S|Ω, fΩ)

and

(fS|Ω, fΩ) %
sm

(f̄S|Ω, fΩ) 6⇒ (fS|Ω, fΩ) %
x

(f̄S|Ω, fΩ)

for all fS|Ω, f̄S|Ω ∈ Γ if x ∈ {a, b} and for all fS|Ω, f̄S|Ω ∈ Γ ∩ D if

x = li.

This proposition is a combination of existing results.12 Therefore, the

proof is also a combination of those results: First, Ganuza and Penalva

(2006) show that accuracy implies MPS-precision but does not imply SM-

precision. Since sufficiency implies accuracy (see Cororally 3.1) and since

accuracy and local informativeness are equivalent for information structures

with MLRP (see Jewitt (1997)), this implies that both concepts, sufficiency

12See Hermelingmeier (2010) and below.
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and local informativeness, imply MPS-precision. This in turn implies that

the information structures in Example 2 are neither ordered in terms of

sufficiency nor in terms of accuracy/local informativeness,13 Consequently,

neither MPS- nor SM-precision imply any of the other three information

orders.

3.3.2 Strong and Weak Informativeness

In this section two information orders, strong and weak informativeness, are

defined that satisfy the ordinality of states property. Additionally, they are

linked to the dispersion orders of Definition 3.9. The approach to ranking

the informational content about ω builds on the idea of Ganuza and Penalva

(2010): the greater the dispersion of posterior conditional (state) expectation,

the more correltated are signals and states and ,hence, the more informative is

the information system. As mentioned above, the starting points are the two

dispersion concepts studied in Ganuza and Penalva (2010): supermodular-

and MPS-dispersion. As argued in the previous section 3.1, these concepts

do not satisfy the OS property which causes problems when using them as

informativeness criteria. This problem is solved by the following definition

of weak and strong informativeness:

Definition 3.10 (Strong and Weak Informativeness). Let (fS|Ω, fΩ), (f̄S|Ω, f̄Ω) ∈

Γ.

(i) Information system (fS|Ω, fΩ) is strongly more informative than (f̄S|Ω, f̄Ω),

denoted by (fS|Ω, fΩ) %
s-inf

(f̄S|Ω, f̄Ω), iff

ω∫

ω
¯

fS,Ω(s, ω
′)− f̄S,Ω(s, ω

′)dω′

13This follows from the fact that sufficiency and accuracy/local informativeness all imply
MPS-precision for fixed but arbitrary prior belief (i.e. the prior is arbitrary but the same
in both information systems). Since the systems considered in example 3 have equal prior
and since their ordering in terms of MPS-precision depends on this prior belief it follows
immediately that those systems cannot be ordered in terms of sufficiency or accuracy/local
informativeness.
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is non-increasing in s ∈ [0, 1] for all ω ∈ Ω.

(ii) Information system (fS|Ω, fΩ) is weakly more informative than (f̄S|Ω, f̄Ω),

denoted by (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, f̄Ω), iff

FS,Ω(s, ω)− sFΩ(ω) ≥ F̄S,Ω(s, ω)− sF̄Ω(ω)

for all (s, ω) ∈ [0, 1]× Ω.

The intuition for the weak informativeness criterion is as follows: Let the

set Ls := [0, s] corresponds to the information that the signal is smaller than

s. According to Milgrom (1981) such information always represent bad news.

Indeed, the conditional state distribution conditional on the information Ls is

dominated by the prior state distribution, because s
[
FΩ|S(ω|Ls)− FΩ(ω)

]
=

FS,Ω(s, ω) − sFΩ(ω) ≥ 0.14 In the same spirit, Ls is said to be better news

under (fS,Ω, fΩ) than under (f̄S,Ω, f̄Ω), if

FΩ|S(ω|Ls)− FΩ(ω) ≤ F̄Ω|S(ω|Ls)− F̄Ω(ω) ∀ ω ∈ Ω

⇔FS,Ω(s, ω)− sFΩ(ω) ≤ F̄S,Ω(s, ω)− sF̄Ω(ω) ∀ ω ∈ Ω

Hence, definition 3.10(ii) says that an information system (fS|Ω, fΩ) is weakly

more informative than (f̄S|Ω, f̄Ω), iff any set of small signals, Ls, is worse news

under the former system than under the latter one. Equivalently, all sets of

high signals, S\Ls, are better news under a weakly more informative systems.

To intuitively understand the strong informativeness criterion, notice that

signal s is better news under (fS|Ω, fΩ) than under (f̄S|Ω, f̄Ω), iff FΩ|S(ω|s)−

F̄Ω|S(ω|s) ≤ 0 ∀ ω ∈ Ω. Likewise, an increase in s is a greater improvement

of news under (fS|Ω, fΩ) than under (f̄S|Ω, f̄Ω), iff FΩ|S(ω|s) − F̄Ω|S(ω|s) is

non-increasing in s ∀ ω ∈ Ω. Now observe that FΩ|S(ω|s) − F̄Ω|S(ω|s) =
ω∫

ω
¯

fS,Ω(s, ω
′) − f̄S,Ω(s, ω

′)dω′, because signals are uniformly distributed on

14The inequality FS,Ω(s, ω) − sFΩ(ω) ≥ 0 is implied by the MLRP: if FS|Ω has the
MLRP, then FS,Ω(s, ω) is a concave in s all ω ∈ Ω. Since FS,Ω(s, ω) = sFΩ(ω) for s = 0
and s = 1 this implies FS,Ω(s, ω) ≥ sFΩ(ω) for all (s, ω) ∈ S × Ω.
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[0,1]. Hence, definition 3(i) says that an information system (fS|Ω, fΩ) is

strongly more informative than (f̄S|Ω, f̄Ω), if and only if a rise in s consti-

tutes a greater improvement of news under (fS|Ω, fΩ) than under (f̄S|Ω, f̄Ω).

As their names suggest, the strong criterion implies the weak criterion.

This follows from the definition of (fS|Ω, fΩ) %
s-inf

(f̄S|Ω, f̄Ω) and the fact that
1∫

0

ω∫

ω
¯

[fS,Ω(s, ω
′)− fΩ(ω)]−

[
f̄S,Ω(s, ω

′)− f̄Ω(ω
′)
]
dω′ds = 0.

For an illustration of weak and strong informativeness consider the fol-

lowing example which highlights their differences.

Example 3. Suppose Ω = [0, 1] and fix fΩ(ω) = 1 ∀ ω.

(i) First, consider the family of information systems (f θ
S|Ω, fΩ)θ∈[0,1] de-

fined by

f θ
S|Ω(s|ω) = 1 + θ(1− 2s)(1− 2ω).

Then, (s̃, ω̃)θ∈[0,1] is distributed according to the Farlie-Gumbel-Morgenstern

copula F θ
S,Ω(s, ω) = Cθ(s, ω) = sω + θsω(1 − s)(1 − ω). In particular,

this implies f θ
S(s) = 1 for all s ∈ [0, 1] and θ ∈ [0, 1]. Moreover, since

∂/∂s
(
fθ
S|Ω

(s|ω)/fθ
S|Ω

(s|ω′)
)
= 4θ(ω−ω′)/(fθ

S|Ω
(s|ω′))2 ≤ 0 for all ω′ ≥ ω, f θ

S|Ω has the

MLRP and, hence, (f θ
S|Ω, fΩ) ∈ Γ.

Next, observe that an increase in θ uniformly raises (lowers) the slope of

f θ
S|Ω in s for ω high (low). Since f θ

S|Ω(s|ω) is linear in s for all ω ∈ Ω, this

implies for θ ≥ θ̄ that f θ
S|Ω(s|ω) − f θ̄

S|Ω(s, ω) is increasing (decreasing) in s

for ω high (low). Consequently, (f θ
S|Ω, fΩ) %

s-inf

(f θ̄
S|Ω, fΩ). Formally,

Dω(s) :=

ω∫

0

f θ
S,Ω(s, ω

′)− f θ̄
S,Ω(s, ω

′)dω′ = (θ − θ̄)(1− 2s)(ω − ω2)

is decreasing in s whenever θ ≥ θ̄. Hence, the family (f θ
S|Ω, fΩ)θ∈[0,1] is ordered

in terms of strong informativeness: (f θ
S|Ω, fΩ) %

s-inf

(f θ̄
S|Ω, fΩ) ⇔ θ ≥ θ̄.



CHAPTER 3. INFORMATION AND INFORMATIVENESS 52

1
0

R

(θ − θ̄)(ω − ω2)

Dω(s) =
ω∫

0

f θ
S,Ω(s, ω

′)− f θ̄
S,Ω(s, ω

′)dω′

s′ s

F θ
S,Ω(s

′, ω)− F θ̄
S,Ω(s

′, ω) =
s′∫

0

Dω(s)ds ≥ 0

(θ̄ − θ)(ω − ω2)

Figure 3.2: Farlie-Gumbel-Morgenstern Copula.

(ii) Now consider the family of information systems ((fϑ
S|Ω,Ω, S), fΩ)ϑ∈[0,1]

with

fϑ
S|Ω(s|ω) = [1 + ϑ(ϑ ln(s) ln(1− ω)− ln(s(1− ω))− 1)] e−ϑ ln(s) ln(1−ω).

Then, (s̃, ω̃)ϑ are distributed according to the Gumbel-Barnett copula F ϑ
S,Ω(s, ω) =

Cϑ(s, ω) = s − s(1 − ω)e−ϑ ln(s) ln(1−ω). This implies that fϑ
S (s) = 1 for all

s ∈ [0, 1] and ϑ ∈ [0, 1]. In order to proof that fS|Ω has the MLRP consider

fϑ
S|Ω(s|ω)

fϑ
S|Ω(s|ω

′)
=

1 + ϑ(ϑ ln(s) ln(1− ω)− ln(s(1− ω))− 1)

1 + ϑ(ϑ ln(s) ln(1− ω′)− ln(s(1− ω′))− 1)
︸ ︷︷ ︸

=:k(s,ω,ω′)

e−ϑ ln(s) ln(1−ω)

e−ϑ ln(s) ln(1−ω′)
︸ ︷︷ ︸

=:l(s,ω,ω′)

.

Observe that for ω′ ≥ ω it follows that

∂k(s, ω, ω′)

∂s
=

ϑ3 [ln(1− ω′)− ln(1− ω)]

[1 + ϑ(ϑ ln(s) ln(1− ω′)− ln(s(1− ω′))− 1)]2 s
≤ 0

and that

∂l(s, ω, ω′)

∂s
=

ϑ [ln(1− ω′)− ln(1− ω)]

s
l(s, ω, ω′) ≤ 0.

Since l(s, ω, ω′) ≥ 0 and k(s, ω, ω′) ≥ 0 for all (s, ω, ω′) ∈ S × Ω2,15 these

15Since ex ≥ 0 for all x ∈ R, it is obvious that l(s, ω, ω′) ≥ 0 for all (s, ω, ω′) ∈ S × Ω2.
Then, k(s, ω, ω′) ≥ 0 for all (s, ω, ω′) ∈ S ×Ω2 follows from the fact that k(s, ω, ω′) is the
product of the likelihood ratio fϑ

S|Ω(s|ω)/fϑ

S|Ω(s|ω′) ≥ 0 and 1/l(s,ω,ω′) ≥ 0.
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observations imply

∂fϑ
S|Ω

(s|ω)/fϑ
S|Ω

(s|ω′)

∂s
= k(s, ω, ω′)

∂l(s, ω, ω′)

∂s
+ l(s, ω, ω′)

∂k(s, ω, ω′)

∂s
≤ 0

which shows that fϑ
S|Ω has the MLRP and, hence, (fϑ

S|Ω, fΩ) ∈ Γ.

Concerning informativeness, observe that Cϑ(s, ω) is increasing in ϑ and,

hence, (fϑ
S|Ω, fΩ) %w-inf

(f ϑ̄
S|Ω, fΩ) ⇔ ϑ ≥ ϑ̄. However, in constrast to the

information system considered in (i), fϑ
S|Ω(s|ω) is not linear in s or ω and,

hence, it depends on ω and s whether an increase in ϑ increases or decreases

the slope of fϑ
S|Ω(s|ω). Consequently, (fϑ

S|Ω, fΩ)ϑ∈[0,1] can not be ordered by

strong informativeness.16

0

R

Dω(s) =
ω∫

0

fϑ
S,Ω(s, ω

′)− f ϑ̄
S,Ω(s, ω

′)dω′

s
ŝ

Fϑ
S,Ω(s

′, ω)− F ϑ̄
S,Ω(s

′, ω) =
s′∫

0

Dω(s)ds ≥ 0

s′ 1

Figure 3.3: Gumbel-Barnett-Copula.

The following proposition establishes that none of the two information

criteria rank an information system above the fully informative system or

below the fully uninformative one.

Proposition 3.6. The weak and the strong informativeness criterion satisfy

(P0′), (P1)-(P3) and OS.

Suppose for the moment that fΩ = f̄Ω. Since signals are already nor-
malized, this implies that the marginal distributions of states and signals
are identical across information systems. Hence, the strong and weak in-
formation criteria can be expressed in terms of properties of the copulas

16For a formal treatment consider the continuation of this example below.



CHAPTER 3. INFORMATION AND INFORMATIVENESS 54

associated with (s̃, ω̃), CS,Ω(s, v) = FS,Ω(s, F
−1
Ω (v)), (s, v) ∈ [0, 1] × [0, 1].

Since CS,Ω(s, FΩ(ω)) = FS,Ω(s, ω), definition 3.10 implies

(fS|Ω, fΩ) %w-inf

(f̄S|Ω, f̄Ω) ⇔ CS,Ω(s, FΩ(ω)) ≥ C̄S,Ω(s, F̄Ω(ω)) for all (s, ω) ∈ [0, 1]× Ω,

while

(fS|Ω, fΩ) %s-inf

(f̄S|Ω, f̄Ω) ⇔ CS,Ω(s, FΩ(ω))− C̄S,Ω(s, F̄Ω(ω)) is concave in s ∀ ω ∈ Ω.

As examples for these characterizations of weak and strong informativeness in

terms of properties of copulas consider again the Farlie-Gumbel-Morgenstern

copula and the Gumbel-Barnett-Copula.

Example 4 (Continued). (i) Again, consider the family of information sys-

tems (f θ
S|Ω, fΩ)θ∈[0,1] as defined in Example 3. From the first part of Exam-

ple 3 it is (f θ
S|Ω, fΩ) %

s-inf

(f θ̄
S|Ω, fΩ) ⇔ θ ≥ θ̄ ⇔ ∂2

∂s2
[Cθ(s, ω)− Cθ̄(s, ω)] =

−2ω(1− ω)(θ − θ̄) ≥ 0.

(ii) Next, consider again the family ((fϑ
S|Ω,Ω, S), fΩ)ϑ∈[0,1] as defined above.

From the first part of this example it is known that (fϑ
S|Ω, fΩ) %w-inf

(f ϑ̄
S|Ω, fΩ)

⇔ ϑ ≥ ϑ̄. Moreover, without a formal proof, it was claimed the ϑ ≥ ϑ̄ 6⇒

(fϑ
S|Ω, fΩ) %

s-inf

(f ϑ̄, fΩ). With the characterization of strong informativeness

in terms of copulas, the formal proof of the statement is quite easy: For ϑ > ϑ̄

it is ∂2

∂s2
(Cϑ(s, ω)−Cϑ̄(s, ω))

>
≤ 0 ⇔ s

<
≥ ŝ :=

(
ϑ̄(ϑ̄ ln(1−ω)−1)
ϑ(ϑ ln(1−ω)−1)

)− 1
(ϑ−ϑ̄) ln(1−ω)

≥ 0.

And hence, (fϑ
S|Ω, fΩ) 6%

s-inf

(f ϑ̄
S|Ω, fΩ).

Relating strong and weak informativeness with the dispersion of

posterior expectations

Definition 3.9 introduced two dispersion concepts for the comparison of pos-

terior conditional (state) expectations. The next proposition characterizes

the relationship between strong and weak informativeness and these disper-

sion concepts.
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Proposition 3.7. Let fS|Ω ∈ Γ(fΩ) and f̄S|Ω ∈ Γ(f̄Ω).

(i) (fS|Ω, fΩ) %
s-inf

(f̄S|Ω, f̄Ω) ⇔ (fS|t(Ω), ft(Ω)) %
sm

(f̄S|t(Ω), f̄t(Ω)) for all strictly

increasing t : Ω → R.

(ii) (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, f̄Ω) ⇔ (fS|t(Ω), ft(Ω)) %
mps

(f̄S|t(Ω), f̄t(Ω)) for all

strictly increasing t : Ω → R.

Proposition 3.7 establishes a tight relationship between information or-

ders and dispersion orders of conditional expectations. Broadly speaking,

under a more informative structure the posterior state densities react more

sensitively to changes of signals and, hence, the conditional expectation of

the state (or monotone function thereof) is more dispersed. In other words,

conditional expectations are more dispersed when systems are more informa-

tive.

One may of a relabeling of states as a strictly increasing utility function

defined on the state space. With this interpretaation in mind, Proposition

3.7 has the important implication that even when expected utility maximiz-

ers have different increasing vNM-preferences and different priors, they will

nevertheless share a common view on dispersion comparisons with respect

to conditional expected state utilities if the information systems in question

can be ordered by strong or weak informativeness. Even stronger, regardless

of preferences and priors,

• an information system becomes strongly more informative if and only

if a higher signal induces a larger gain in expected utility.

• an information system becomes weakly more informative if and only if

(normalized) conditional expected utilities become more MPS-dispered.

Comparison with other informativeness concepts

This part deals with the question how strong and weak informativeness relate

to the other informativeness concepts considered in this work. Since all

informativeness concepts in section 3.2 satisfies at least OS, the Propositions

3.5 and 3.7 imply that for equal but arbitrary prior, weak informativeness is

weaker than the criteria by Blackwell, Lehmann/Persico and Kim.
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Cororally 3.3. Let fΩ ∈ ∆(Ω).

(i) (fS|Ω, fΩ) %
x

(f̄S|Ω, fΩ) ⇒ (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, fΩ) for all fS|Ω, f̄S|Ω ∈

Γ(fΩ) and x ∈ {s-inf, a, b}.

(ii) (fS|Ω, fΩ) %
l-inf

(f̄S|Ω, fΩ) ⇒ (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, fΩ) for all fS|Ω, f̄S|Ω ∈

Γ(fΩ) ∩ D.

In contrast, for strong informativeness the same arguments (Propositions

3.5 and 3.7 plus OS of the informativeness concpets by Blackwell, Lehmann/

Persico and Kim) implies that it is neither stronger nor weaker than the

criteria by Blackwell, Lehmann/Persico and Kim.

The value of strong and weak informativeness

The next natural question is how weak and strong informativeness relate to a

decision maker’s ex ante expected utility. Indeed, weak informativeness plus

equal priors characterizes higher ex ante expected welfare for all supermod-

ular decision problems. In order to define supermodular decision problems,

assume for the moment A ⊆ R. Then, a decsision problem is supermodular

if the indirect elementary utility function v(a, ω) = u(o(a, ω)) is supermod-

ular in (a, ω). An indirect elementary utility function v : A × Ω → R is

supermodular in (a, ω) if and only if the incremental returns

r(ω) := v(a′, ω)− v(a, ω)

is non-decreasing in ω for all a′, a ∈ A with a′ ≥ a.17 Denote the class

of supermodular indirect utility functions by R. Simple examples for su-

permodular objective functions are the profit function of a firm with risky

output or a coordination game in which one player is nature which randomly

chooses an action. More examples can for instance be found in the books by

Topkis (1998) and Cooper (1999).

17Remark: If v : A×Ω → R is twice differentiable in both arguments, supermodularity

is also characterized by a positive cross-derivative, i.e. ∂2v(a,ω)
∂a∂ω

≥ 0.
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Theorem 3.4. Let fS|Ω ∈ Γ(fΩ) and f̄S|Ω ∈ Γ(f̄Ω). The information system
(fS|Ω, fΩ) is more valuable than the system (f̄S|Ω, f̄Ω) for all decision makers

with supermodular utility functions if and only if (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, f̄Ω)
and FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω. Formally,

[

V ((fS|Ω, fΩ), a
∗, v) ≥ V ((f̄S|Ω, f̄Ω), ā

∗, v)

for all supermodular v : A× Ω → R

]

⇔

[

(fS|Ω, fΩ) %w-inf
(f̄S|Ω, f̄Ω)

and FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω

]

.

An increase in weak informativeness plus equal priors increases the joint

probability of signals smaller (greater) than s and states smaller (greater)

than ω, FS,Ω(s, ω) (1− FS(s)− FΩ(ω) + FS,Ω(s, ω)). Hence, the ability to

coordinate small (high) actions with small (high) states increases as weak

informativeness increases and the prior keeps constant. If the indirect utility

is supermodular in (a, ω), exactly this coordination of actions and states is

the goal of the decision maker. Hence, weak informativeness plus equal priors

characterize more valuable for all decision makers with supermodular payoff

functions.

Remark. If the prior is fixed the weak information criterion simplifies to

FS,Ω(s, ω) ≥ F̄S,Ω(s, ω) for all (s, ω) ∈ S×Ω. This is equivalent to the MIO-

ND condition in the theorem by Athey and Levin (2001). For fixed priors,

their result is slightly more general than proposition 3.4. They characterize

‘more valuable’ for utility functions with various types of incremental returns

(i.e. different curvatures of r(ω) = v(a, ω) − v(a′, ω), a, a′ ∈ A, a ≥ a′)

in terms of their MIO condition. In particular, for the utility functions with

non-decreasing incremental returns, i.e. supermodular utility functions, their

MIO-ND condition is equal to weak informativeness for fixed priors.

Now consider strong informativeness. Since weak informativeness is im-

plied by strong informativeness, a direct consequence of Theorem 3.4 is that

strong informativeness is sufficient to guarantee higher ex ante expected wel-

fare for all decision makers with supermodular preferences. In contrast to

this, the next Proposition is an impossibility result which shows that, if the

prior is fixed, there exists no class of utility functions such that the strong

information criterion is necessary for a comparison of information systems in

terms of their ex ante value for this class of utilities. Formally,
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Proposition 3.8. Let fΩ ∈ ∆(Ω) and fS|Ω, f̄S|Ω ∈ Γ(fΩ). There exists no
class of payoff functions U such that:

V ((fS|Ω, fΩ), a
∗, u) ≥ V ((f̄S|Ω, fΩ), ā

∗, u) ∀ u ∈ U ⇒ (fS|Ω, fΩ) %s-inf

(f̄S,Ω, fΩ). (3.6)

There is no class of utility functions such that the strong informativeness

criterion is a necessary condition for an order of information systems with re-

spect to their ex ante value. The reason is that strong informativeness is not

weaker than sufficiency, which in turn is equivalent to an order of information

systems in terms of their ex ante value for all expected utility maximizers.

In other words, strong informativeness is too restrictive for being necessary

for an order of information systems in terms of their ex ante value.

The Role of the Prior and the Information Structure

The informativeness and dispersion properties of an information system are

determined jointly by the prior and the structure of an information system.

In particular, the informativeness of an information system with a fixed struc-

ture typically varies under different priors. Informativeness depends on the

statistical correlation between signals and states of nature which changes

with the prior even when the information structure remains the same. Con-

sider, for example, an information structure fS|Ω that associates with all

states ω ≤ ω0 the same conditional signal distribution, while it associates

different conditional signal distributions with states ω ≥ ω0. If the prior

fΩ is concentrated on [ω
¯
, ω0] then the information system (fS|Ω, fΩ) is fully

uninformative, while it becomes (partially) informative otherwise. Hence, it

is important look at both - the impact of the prior on the informativeness of

an information system while the structure is fixed (testing the structure for

different prior) and, conversely, the impact of the structure on the informa-

tiveness of the system while keeping the prior fixed. For this purpose, the

analysis first looks at the impact of a change in the prior while the informa-

tion structure is fixed. Next, the prior is fixed and the analysis disentangles

the impact of the information structure on the informativeness of the system.
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Keeping the Information Structure fixed

Intuitively, if the prior becomes more dispersed, e.g., in the sense of a

mean-preserving spread or fatter tails, then a high signal constitutes better

news due to the greater upward potential offered by the prior distribution.

Similarly, as the downward potential of the prior has also increased, a low

signal constitutes worse news. If this intuition is correct, then a more dis-

persed prior should lead to higher dispersion of the information system. This

can, however, be quite misleading, as is demonstrated by the following ex-

ample. The example illustrates that under a fixed information structure,

fS|Ω, a robust relationship between the dispersion of the prior, fΩ, and the

informativeness of the associated information system, (fS|Ω, fΩ), does not ex-

ist. More precisely, a more dispersed prior does not necessarily lead to more

dispersion of the conditional expectation, or higher informativeness of the

system. Indeed, it will be shown that, for suitably chosen (fS|Ω, fΩ), a mean

preserving spread (MPS) of the prior raises the expectation of any monotone

increasing transformation t : Ω → R of ω̃ conditional on the lowest signal

s = 0. This implies, of course, that an information system with structure

fS|Ω does not become more MPS-disperse or weakly more informative under

a more MPS dispersed prior. A fortiori, the system does not become strongly

more informative.

Example 5. Let fΩ, f̄Ω ∈ ∆Ω and assume that f̄Ω differs from fΩ by a MPS,

i.e. EΩ [ω̃] = ĒΩ [ω̃] and
ω∫

ω
¯

FΩ(ω
′)dω′ ≤

ω∫

ω
¯

F̄Ω(ω
′)dω′ for all ω ∈ Ω. Further

assume that there exists ω̂ ∈ (ω
¯
, ω̄) such that FΩ : Ω → R is strictly concave

and F̄Ω is strictly convex on [ω
¯
, ω̂] (cf. Figure 3.4 below).

Define ρ(ω) := FΩ(ω)/FΩ(ω̂) and ρ̄(ω) := F̄Ω(ω)/F̄Ω(ω̂). Clearly, ρ(ω
¯
) = ρ̄(ω

¯
) = 0

and ρ(ω̂) = ρ̄(ω̂) = 1. Since ρ(ω) is strictly concave and ρ̄(ω) is strictly

convex on [ω
¯
, ω̂] this implies

ρ(ω) > ρ̄(ω) ∀ ω ∈ (ω
¯
, ω̂).
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ω
¯

ω̄ω̂

FΩ

F̄Ω

Figure 3.4: FΩ and F̄Ω.

The information structure is defined as follows: Let ζ : Ω → [0, 1] with

ζ(ω) =

{

0 if ω ∈ [ω
¯
, ω̂]

1 if ω ∈ (ω̂, ω̄].

Then the information structure is given by

fS|Ω(s|ω) = 1 + ζ(ω)β(s), (3.7)

where β : [0, 1] → [−1, 1] is an increasing function with β(0) = −1, β(1) = 1,

and
1∫

0

β(s)ds = 0. Therefore, the ratio

fS|Ω(s|ω)

fS|Ω(s|ω′)
=

1 + ζ(ω)β(s)

1 + ζ(ω′)β(s)
=

{

1 if ω, ω′ ∈ [ω
¯
, ω̂] or ω, ω′ ∈ (ω̂, ω̄]

1
1+β(s)

if ω ∈ [ω
¯
, ω̂] and ω′ ∈ (ω̂, ω̄]

is (weakly) decreasing in s for all ω ≤ ω′ and, hence, the information structure

has the MLRP. Finally, to make sure that the signals ex ante are uniformly

distributed, the signals need to be normalized under both priors (compare

chapter 2). For this purpose define

s̃n := FS(s̃) and ˜̄sn := F̄S(s̃),

where the marginal cdf’s of the signals, FS : S → [0, 1] and F̄S : S → [0, 1],
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are defined as in equation (2.6).

Now consider the normalized signal realization sn = 0 = s̄n, which corre-

sponds to s = 0 = s̄. Equation (3.7) implies

FΩ|Sn(ω|sn = 0) = FΩ|S(ω|s = 0) =

ω∫

ω
¯

fS|Ω(ω
′|s = 0)dω′

(3.7)
=

1

FΩ(ω̂)

min{ω,ω̂}∫

ω
¯

fΩ(ω
′)dω′ =

{

ρ(ω) if ω ≤ ω̂

1 else

≥

{

ρ̄(ω) if ω ≤ ω̂

1 else
=

1

F̄Ω(ω̂)

min{ω,ω̂}∫

ω
¯

f̄Ω(ω
′)dω′

(3.7)
=

ω∫

ω
¯

f̄S|Ω(ω
′|s̄ = 0)dω′ = F̄Ω|S(ω|s̄ = 0) = F̄Ω|Sn(ω|s̄n = 0).

Hence, F̄Ω|Sn(·|s̄ = 0) strictly dominates FΩ|Sn(·|sn = 0) in the sense of

first-order stochastic dominance. This implies

EΩ [ω̃|sn = 0]− EΩ [ω̃] < ĒΩ [ω̃|s̄n = 0]− ĒΩ [ω̃] .

Thus, conditional on the lowest signal, the riskier distribution has a higher

expectation than the less risky one. This shows that ĒΩ [ω̃|˜̄sn]− ĒΩ [ω̃] is not

a MPS of EΩ [ω̃|s̃n]− EΩ [ω̃] and, hence, (fS|Ω, f̄Ω) 6%
w-inf

(fS|Ω, fΩ).

The intuition behind the result is that, conditional on the lowest signal,

the riskier distribution dominates the less risky distribution in the first-order

sense. According to the information structure in (3.7), under the lowest

signal all conditional probability density is shifted proportionally towards

[ω
¯
, ω1]. By assumption, f̄Ω is increasing and fΩ is decreasing on [ω

¯
, ω1]. Under

f̄Ω, therefore, high states benefit more from the conditional probability shift

than low states; and under fΩ, low states benefit more than high states. This

explains why FΩ|Sn(·|0) dominates FΩ|Sn(·|0) in terms of first-order stochastic

dominance.

The example shows that a MPS of the prior does not necessarily result



CHAPTER 3. INFORMATION AND INFORMATIVENESS 62

in more MPS-dispersion of the conditional expectations and, hence, does

not result in an increase in terms of weak informativeness. The same holds

true with respect to sm-dispersion and strong informativeness, because sm-

dispersion and strong informativeness are stronger than MPS-dispersion and

weak informativeness, respectively.

Randomizing the Prior

The above example has shown that a more dispersed prior does not necessar-

ily translate into higher dispersion of the conditional expectation or higher

informativeness of an information system. In this section it will be shown that

some such transformations of the prior do have analogues in terms of disper-

sion and informativeness. Consider two information systems with the same

structure fS|Ω, and assume that these systems can be ranked with respect

to (weak or strong) informativeness. Below it is shown that ‘randomiza-

tion’ of the priors yields a new information system with intermediate (weak

or strong) informativeness and dispersion, respectively. To ensure that this

is a meaningful exercise, first it is established that, for a fixed information

structure, fS|Ω, the projection of Γ on the priors yields a convex set.

Lemma 3.2. The set

∆(fS|Ω) :=
{
fΩ ∈ ∆Ω|(fS|Ω, fΩ) ∈ Γ

}

of all priors of information systems in Γ with structure fS|Ω is convex.

For given fΩ, f̄Ω ∈ ∆(fS|Ω), f̂Ω := αfΩ + (1− α)f̄Ω is called ‘randomized’

prior.18 The next proposition shows that the process of randomizing the

prior of two ordered information systems with the same structure leads to an

intermediate level of informativeness.

Proposition 3.9. Let fΩ, f̄Ω ∈ ∆(fS|Ω), α ∈ [0, 1], and define f̂Ω := αfΩ +

(1 − α)f̄Ω. If (fS|Ω, fΩ) %
x

(fS|Ω, f̄Ω) then (fS|Ω, fΩ) %
x

(fS|Ω, f̂Ω) %
x

(fS|Ω, f̄Ω)

for x ∈ {w-inf, s-inf}.

18Such ‘randomized’ prior play an important role in the theory on Knigthian uncertainty.
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In combination with Proposition 3.7, Proposition 3.9 implies that the

system (fS|Ω, f̂Ω) with a randomized prior not only exhibits intermediate

informativeness but also intermediate dispersion of posterior conditional ex-

pectations.

Keeping the Prior fixed

This section studies information structures that can be ordered in terms

of informativeness for fixed priors. In economic applications, signals are

often generated from the states of nature by adding a noise term, i.e., s̃ =

ω + ǫ̃. In such a setting, the conditional dispersion of the signal coincides

with the dispersion of the noise term. The signal is fully informative, if

it has zero conditional dispersion (i.e., when the noise term is a constant).

Otherwise, higher conditional signal dispersion reduces the informativeness

of the system, because it makes the signal noisier. Thus, with an additive

information structure in mind, it seems that conditional signal dispersion is

inversely related to the informativeness of the signal.

Yet, in more general informational settings, this intuition is no longer ac-

curate. For instance, a system is uninformative whenever all states generate

the same conditional signal distribution. In that case, conditional signal dis-

persion and informativeness are unrelated. The following considers suitably

restricted classes of information structures within which informativeness and

conditional signal dispersion are, in fact, inversely related. These classes in-

clude all randomizations (i.e., convex combinations) of pairs of information

systems with identical priors that can be ranked in terms of informativeness.

Following similar lines as in the proof of lemma 3.2, it can be verified that

Γ(fΩ), the set of normalized information structures with MLRP, is a convex

set.

Lemma 3.3. For fixed prior fΩ ∈ ∆Ω, the set Γ(fΩ) of all normalized in-

formation structures with MLRP is convex.

By Lemma 3.3, if the prior is fixed then the set of normalized structures

with MLRP is closed under ‘randomization’. Moreover, randomizing the

signals of any two systems (with structures in Γ(fΩ)) that can be ranked in
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terms of informativeness yields a new information system with intermediate

informativeness and intermediate dispersion.

Proposition 3.10. Let fS|Ω, f̄S|Ω ∈ Γ(fΩ), α ∈ [0, 1], and define f̂S|Ω :=

αfS|Ω+(1−α)f̄S|Ω. If (fS|Ω, fΩ) %
x

(f̄S|Ω, fΩ) then (fS|Ω, fΩ) %
x

(f̂S|Ω, fΩ) and

(f̂S|Ω, fΩ) %
x

(f̄S|Ω, fΩ) for x ∈ {w-inf, s-inf}.

In combination with Proposition 3.7, Proposition 3.10 implies that the

system with the randomized information structure exhibits intermediate dis-

persion. Moreover, as any system (fS|Ω, fΩ) is strongly more informative

than the uninformative system (f 0
S0|Ω, fΩ), it follows from Proposition 3.10

that randomizing the structure of any information system with the uninfor-

mative strutcture f 0
S0|Ω reduces both informativeness and dispersion of the

system. This holds true for both dispersion concepts in Definition 3.9 and

both informativeness concepts in Definition 3.10.

3.4 Concluding Remarks

This chapter presented some fundamental and desirable properties of infor-

mativenss criteria and introduced different notions of informativeness. Black-

well’s sufficiency criterion (Blackwell (1951, 1953)) is statistically motivated

and it is based on the idea of that a signal observation of a less informa-

tive system is equal to the distorted observation of a more informative sys-

tem. Sufficiency is linked with the value of information through the strong

equivalence that an information system is sufficient for another one if and

only if every expected utility maximizer is better of under the first system

than under the latter one. Since sufficiency is very restrictive, Lehmann

(1988)/Persico (1996, 2000) and Kim (1995) proposed weaker criteria which

link informativeness with the value of information for smaller classes of ex-

pected utility maximizers. All these three criteria are from the traditional

literature on economics where the prior belief is typically kept fixed. In con-

trast, in the second part of the chapter it is argued that informativeness is

jointly determined by an information structure and the prior belief. In or-

der to take this into account two new information criteria, weak and strong
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informativeness (Brandt et al. (2013, 2014)), are defined which are based on

the idea, the more informative an information system the more spread out

are the posterior conditional state expectations. It is shown that, if the prior

is fixed again, these criteria are more valuable for all decision makers with

supermodular preferences.



Chapter 4

The Value of Information

As mentioned earlier, a decision maker cares about an information system

only in so far as his wellbeing is affected. This chapter studies the impact

of information on individual ex ante expected utility in different economic

frameworks. In particular, the current chapter deals with the value of in-

formation. Recall from Definition 3.2 that an information system is more

valuable for a decision maker if it delivers him higher ex ante expected util-

ity. In particular, for a decision maker with indirect utility v : A × Ω → R

and prior belief fΩ is an information system (fS|Ω, fΩ) more valuable than an

information system (f̄S̄|Ω, fΩ) iff

V ((fS|Ω, fΩ), a
∗, v) ≥ V ((f̄S̄|Ω, fΩ), ā

∗, v),

where V ((fS|Ω, fΩ), a
∗, v) and V ((fS|Ω, fΩ), a

∗, v) denote the ex ante expected

utilities of an agent with indirect utility v under the systems (fS|Ω, fΩ) and

(f̄S̄|Ω, fΩ), respectively.19 This notion of ‘more valuable’ defines a preorder

on the set of information structures.

It is quite intuitive that better information lead to higher welfare, because

better information reduces the risk to a larger extent and, hence, improves

decision making. Conversely, it is not so clear when more valuable (for a

certain class of decision makers) implies more informative in the some sense.

The current chapter studies this in two different economic frameworks.

19Compare Def. 3.2.
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First, in section 4.1 the value of costly information is analyzed. In this

framework a more precise information system reduces the decision makers

budget. Therefore, increasing informativeness has two contrary effects: a

precision effect and a budget effect. The precision effect is that ‘better’

information improves the decision maker’s choice and, therefore, increases

his expected utility. The budget effect decreases the decision maker’s budget

and, hence, has negative impact on the decision maker’s expected utility.

Secondly, section 4.2 studies the value of information in a complete risk

sharing market. For this purpose, section 4.2.1 presents conditions under

which risk avers consumers and firms fully insure. Building on this, section

4.2.2 shows that in the presence of efficient and complete risk sharing markets

and if the the productivity is state-independent, then the value of information

is negative for all risk avers decision makers. This is a generalization of the

result by Schlee (2001) to an production economy with risky endowments.

These two environment have in common that the decision makers’ sets

of feasible actions are not independent of the underlying information sys-

tem. In the first framework information are costly and, hence, the choice of

an information system reduces the decision makers’ budget which, in turn,

reduces the decision makers’ possible payoffs. In the second framework the

prices for state-contigent claims depent on both: the information system and

the particular signal realization which, in turn, changes the decision mak-

ers’ set of feasible consumption bundles. Consequently, information has a

direct impact on the decision makers’ budget and, hence, on his set of fea-

sible payoffs/consumption bundles in both frameworks under consideration.

Therefore, it is not clear whether the impact of information on individual ex

ante expected utility is positive or negative.

However, in a more simple framework where the set of possible actions

is independent of the information system itsself and the signal realizations,

Blackwell’s Theorem (Theorem 3.1, Blackwell (1951, 1953)) etablishes that

Blackwell’s sufficiency criterion and the order by Bonnenblust et al. (1949)

are equivalent: An information structure is more sufficient for another if and

only if the former one is more valuable than the latter one for all expected

utility maximizers. For special classes of decision makers and information
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systems similar results are valid for the informativeness concepts of Lehmann

(1988)/Persico (1996) and Kim (1995). Crucial for these results is, that the

set of possible actions is independent of underlying information system and

the signal realization. Eckwert and Zilcha (2000) relax this assumption and

look at the value of information in production economies. In their model,

better information not only limits the risk sharing opportunities, i.e. the set

of possible actions, but also improves the input allocation in the economy.

Therefore, the impact of better information on welfare is ambigious - it could

be positive or negative. However, they show that in the absence of risk

sharing markets Blackwell’s Theorem remains valid in their framework.

In contrast, Hirshleifer (1971) was the first who demonstrated that in

equilibrium information might make everybody worse off. He considers a

small exchange economy with a single consumption good, risk avers agents

and complete markets for state-contingent claims. Each agent is endowed

with a risky endowment of the consumption good. The agents can share

risks by trading state-contingent claims in complete markets before the state

of the world is realized. If they were perfectly informed about the state be-

fore the markets for state-contingent claims are open, no trade at all will

take place and the agents consume according to their endowments. There-

fore, from an ex ante perspective, perfect information make the agents worse

off by breaking down the risk sharing markets. Schlee (2001) generalized

Hirshleifer’s result to an exchange economy with one commodity and com-

plete and competitive risk sharing markets. Green (1981) examines a model

with futures markets (without production). And in partial-equilibrium mod-

els, the failure of Blackwell’s result has been shown by Schlee (1996) for a

monopoly with random demand and by Sulganik and Zilcha (1996) for an

exporting firm in the presence of a futures market for currency. The reasom

for failure of Blackwell’s theorem is, as in Hirshleifer (1971), that the sets of

feasible action are signal-dependent.
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4.1 Endogenous Risk in an Economy with In-

formation Markets

This section is based on Brandt and Szczutkowski (2012). I

am grateful to Dr. Andreas Szczutkowski for this collabora-

tion.

The purpose of this section is to study the market for information in a microe-

conomic framework. Information services are described by a set of possible

signals which are correlated to the state of the world.20 Agents demand infor-

mation services in order to reduce the uncertainty they face in their individual

decision problems. Information markets have special properties which cre-

ate difficulties in describing them theoretically (see e.g. Arrow (1978, 1999,

2003); Varian (2000)):

First, on the demand side, the willingness to pay for information depends

on its ‘informational content’, i.e. on how much the information accounts

for the reduction of risk.21 Agents who employ an information service derive

utility solely via the correlation of signals and states.22 A criterion is needed

which describes the informational content of an information system which

consists of an information service and a prior belief. In this section Black-

well’s sufficiency criterion is used in order to compare the informativeness of

different information systems.

Secondly, it is not clear how information are produced. Additionally, it is

problematic that the law of diminishing returns does not hold for the produc-

tion of information. Once an information is produced/known it can be copied

arbitrarily often which leads to linear costs in the ‘quantity of information’.

In the current section this problem does not play a role because it is assumed

that production costs (for information) are convex in informativeness (of the

20In the context of this section, it seems more appropriate to use the term information
service instead of information structure. Hence, in the rest of this section an information
service denotes an information structure.

21This is also true for firms which use information as a production factor (e.g. a news-
paper). On the one hand information may be necessary for certain production processes,
but on the other hand information will not be used up in the production process so that
the law of diminishing returns does not hold.

22An agent with prior belief fΩ who employs an information service fS|Ω, posses the
information system (fS|Ω, fΩ).
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service) and each decision maker demands an individual information service

which is useless for all other decision makers.23

Furthermore, information services often exhibit characteristics of a public

good. There is no rivalry in consumption, i.e. many agents can observe in-

formation signals simultaneously. This can e.g. be due to the informational

function of market prices, workers mobility or reverse engineering. This prob-

lem plays no role in the current analysis because, as mentioned before, each

decision maker demands an individual information service which is useless

for all other decision makers.

Marschak (1971) states two central problems which are still not yet com-

pletely resolved in the literature. The first problem is to understand the

system of demand and supply of information goods. The second problem is

the question how social welfare is affected by the manner in which resources

are allocated to information goods or services. This section addresses the

first question.

An example economy is presented where agents demand information ser-

vices with prices which differ according to their informational content. This

is modeled via a class of parametrized information systems which can be

ordered by Blackwell’s sufficiency criterion (Blackwell (1953)). The focus

of the analysis lies on the demand for information, which is fully described

by the agents’ decision problems. In particular, the question is which is

the demanded level of informativeness? Supply is modelled by firms which

produce information services with costs of production which depend on the

informational content of the information services. The public good character

of information plays no role in the analysis as each agent’s decision problem

is assumed to be independent from the decision problems of others, i.e. state

spaces differ and coordination via market prices only occurs on the market

for information services.

Each agent on the demand side plays a lottery where he has to guess the

right state of nature. If he is right, then his resources will increase, otherwise

they will remain constant. As an example one can think of the agents as

farmers in different regions who forecast future, local weather conditions.

23As an example for such a situation consider screenings for cancer.
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Each state of the weather is related to a best farming strategy so that a

correct forecast is rewarded by a high crop.

The main results are driven by two simple effects. On the one hand

better information leads to higher (ex ante) welfare as the chances of winning

improve (‘precision effect’). But on the other hand better information leads

to less budget available for consumption as it exhibits a higher price (‘budget

effect’). In an interior equilibrium these effects cancel out. It is shown that

under these circumstances even risk neutral agents invest in information.

Furthermore, and perhaps more surprisingly, risk averse agents do not invest

in information if their degree of risk aversion is sufficiently high. The main

result shows that the demand for information is negatively correlated to the

degree of (relative) risk aversion for a broad range of parameters. In this case

equilibrium risk in this economy is negatively linked to the agents’ degree of

risk aversion.

Closest to this study are the works of Kihlstrom (1974), Radner and Stiglitz

(1984) and Chade and Schlee (2002).

Kihlstrom (1974) models the demand for information in a setting with

normally distributed random variables and CES-utility. He shows, similar

to the present findings, that the demand for information depends positively

on the agents’ income and negatively depends on the information price. In

contrast to the present analysis, he restricts the analysis to the demand side

and does not analyze comparative statics with respect to the agents attitude

towards risk.

Radner and Stiglitz (1984) and Chade and Schlee (2002) analyze the value

of information in a much more general setting where, contrary to this ap-

proach, decision problems have sets of possible actions which are independent

of the realized information. Furthermore information is costless and a com-

plete, separable metric action space is assumed. Different to this section’s

findings, small improvements of information (starting from no information)

are not welfare improving in their analysis.



CHAPTER 4. THE VALUE OF INFORMATION 72

4.1.1 The Model

The model consists of an infinite set of agents I who demand information

and an infinite set of producers on the supply side. Each agent i ∈ I faces

uncertainty in his decision problem described by a probability distribution,

given by a probability mass function fΩi
, over a finite and individual set of

states of nature Ωi = {ω1,i, . . . , ωn,i} with n > 1. The assumption of an

individual state space captures the idea of focussing on a market for private

information where the public good-character of information plays no role.

Even if an agent observes an information signal produced by an information

system owned by a different agent this does not help him in reducing his own

uncertainty because it is assumed that individual states are uncorrelated

accross the decision makers. Formally, risk in this economy is described by

the product space of all individual state spaces, i.e. ΩEcon =
⊗

i∈I

Ωi. Moreover,

a priori the individual states are equally likely, i.e. fΩi
(ωi) = 1/n for ωi ∈ Ωi

and all i ∈ I.

The supply of information

There is an infinite number of producers who are able to produce information

services f ǫ
Si|Ωi

with parameter levels ǫ ∈ [0, 1]. An information service f ǫ
Si|Ωi

is only applicable to state space Ωi and produces a signal s ∈ Si = Ωi.
24

The statistical relationship between states and signals is thereby given by a

stochastic transformation which assigns a probability distribution over fore-

casts s to a given state of nature ω ∈ Ωi. In this section a specification from

Nermuth (1982) is employed which is given by

f ǫ
Si|Ωi

(s|ω) =

{

1− n−1
n
ǫ if s = ω

1
n
ǫ else,

where f ǫ
Si|Ωi

(s|ω) denotes the probability of a produced signal realization s

given the state ω. n−1
n
ǫ then is the probability of an erroneous forecast, i.e.

24If the information service is used by agent i, he combines f ǫ
Si|Ωi

with his prior fΩi
.

This results in the information system (f ǫ
Si|Ωi

, fΩi
).
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for a signal s 6= ω. ǫ ∈ [0, 1] parametrizes the ‘accuracy’ of the forecast. In

case of ǫ = 0 the forecast is always perfect whereas ǫ = 1 stands for a useless

signal that has no effect on the agents’ prior beliefs over Ωi. Nermuth (1982)

shows that this family of information services is ordered by ǫ with respect to

Blackwell’s sufficiency criterion (Blackwell (1951), Blackwell (1953)). Higher

values of ǫ correspond to lower informativeness according to this criterion

and, hence, ǫ will be referred to as the ‘error level’ of an information structure

f ǫ
S|Ωi

.

The costs of production of an information service negatively depend on

the error level ǫ by assumption. Since ǫ = 1 corresponds to an fully unin-

formative service it senseful to set c(1) = 0. Furthermore it is assumed that

c′(ǫ) < 0 and that c′′(ǫ) ≥ 0 for all error levels ǫ.

In this model the market for information services (for each given error

level) is competitive so that the price for an information service with error

level ǫ, P (ǫ), will be equal to c(ǫ) in equilibrium. Therefore, in the further

analysis it is P (1) = 0, P ′(ǫ) < 0 and P ′′(ǫ) ≥ 0.

The demand for information

Let I be a infinite set of homogeneous, risk averse agents. As mentioned

above, each agent i ∈ I faces risk described by a set Ωi = {ω1,i, . . . , ωn,i} of

n > 1 future states of nature.

Each agent is endowed with a budget of m > 0 units of a consumption

good. In the first stage (ex ante), this budget can be spend for exactly

one information structure with price P (ǫ) in order to reduce the risk in the

interim decision problem. Interim, the agent faces a (personal) lottery in

which the rest of the budget m − P (ǫ) is invested and where the agent has

to forecast the underlying state of nature. In particular, the set of possible

actions is equal to set of states of the world, i.e. Ai = Ωi. If the forecast

is right, then the lottery pays out a multiple α(m − P (ǫ)) (α > 1) of the

investment m − P (ǫ). In case of a wrong forecast the lottery simply pays

out the amount of the stake m− P (ǫ). Due to symmetry the parameter i is

dropped in the further description of the lottery and analysis of the model.
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In the following ω̂ denotes the agent’s forecast and ω stands for the prevailing

state of nature. Then each agent’s payoff is formally given by

o(ω̂, ω) :=

{

α(m− P (ǫ)) if ω = ω̂

m− P (ǫ) else
,

where α > 1. Each agent faces a different personal lottery so that the

aggregate payoff (which is equal to the sum of individual payoffs) of the

economy as a whole is risky. Better forecasts in the economy increase the

individual expected payoffs and, therefore, the aggregate expected payoff in

the economy.

Agents are Bayesian decision makers with preferences over consumption

described by a von Neumann–Morgenstern utility function u : R → R with

u′ > 0. Therefore, the indirect utility of an agent is equal to v : A ×

Ω → R, (a, ω) 7→ u(o(a, ω)). As mentioned above, all agents have symmetric

prior beliefs so that an agent ex ante assigns probability fΩ(ω) = 1/n to any

ω ∈ Ω. Bayes’ Theorem then implies that the marginal distribution of the

signals produced by an information system is also given by f ǫ
S(s) = 1/n for all

s ∈ S. In order to forecast the correct state the agents calculate the posterior

probablities f ǫ
Ω|S of the states for a given signal:

f ǫ
Ω|S(ω|s) =

{

1− n−1
n
ǫ if ω = s

1
n
ǫ else.

Agent i’s interim forecast problem for a given signal realization s ∈ S then

is:

max
a∈A=Ω

∑

ω∈Ω

f ǫ
Ω|S(ω|s)v(a, ω) = max

a∈A=Ω

∑

ω∈Ω

f ǫ
Ω|S(ω|s)u (o(a, ω)) .

Since f ǫ
Ω|S(s|s) ≥ f ǫ

Ω|S(ω|s) for any ω 6= s it is clear that

a∗(s) = s,

i.e. the agent always decides for the most probable state of nature.
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According to Definition 3.2, the ex ante expected utility of an agent is

W (ǫ) := V ((f ǫ
S|Ω, fΩ), a

∗, v) =
∑

s∈Ω

f ǫ
S(s)

∑

ω∈Ω

f ǫ
Ω|S(ω|s)u (o(a

∗(s), ω))

=

(

1−
n− 1

n
ǫ

)

u (α(m− P (ǫ))) +
n− 1

n
ǫu (m− P (ǫ)) . (4.1)

The agents now choose an information service with an error level which
maximizes their ex ante welfare. Changing the error level ǫ has two effects
which can be seen by calculating the first derivative with respect to ǫ:

W ′(ǫ) =
n− 1

n
[u (m− P (ǫ))− u (α(m− P (ǫ)))]

︸ ︷︷ ︸

=:PE(ǫ)<0

+

[

−P ′(ǫ)

[(

1−
n− 1

n
ǫ

)

αu′ (α(m− P (ǫ))) +
n− 1

n
ǫu′ (m− P (ǫ))

]]

︸ ︷︷ ︸

=:BE(ǫ)>0

.

The first term will be called the ‘precision effect’ PE(ǫ) which accounts

for the negative welfare effect through a worse forecast induced by a higher

error level ǫ and holding utilities constant. A change of ǫ changes the success

and failure probabilities in a linear way.

The second term, BE(ǫ), will be called ‘budget effect’ and describes the

positive effect of higher error levels through a reduced information price

(when holding probabilities constant). Note that the budget effect is de-

termined by marginal utilities and the shape of the price function.

This decision problem is formally given by

max
ǫ∈[ǭ,1]

W (ǫ), (4.2)

where ǭ := P−1(m) denotes the error level which leads to zero consumption

and therefore is never optimal. Error levels below ǭ do not lie in the agents’

budget set.

In order to understand the structure of the optimal error level as a func-

tion of the model parameters it is instructive to first consider the case of risk

neutral agents.
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Risk neutrality

Let the agents’ preferences be represented by u(c) = c. From (4.1) ex ante

welfare then gets:

W (ǫ) =

(

1−
n− 1

n
ǫ

)

α(m− P (ǫ)) +
n− 1

n
ǫ(m− P (ǫ))

and it follows that the agents’ information demand is uniquely determined

by an interior solution of the problem (4.2), i.e. even risk neutral agents

demand information.

Proposition 4.1 (information demand of risk neutral agents). For finite

|P ′(1)| and m (budget) sufficiently high, risk neutral agents always demand

information.

Why do even risk neutral agents invest in information? To get an intu-

ition, note that the price for ‘null’ information (maximal error level ǫ = 1)

is zero and |P ′(1)| is small, that is, the budget effect is relatively small at

ǫ = 1. In other words, small information improvements from ‘null’ are com-

parably cheap. Furthermore, changes of the error level affect not only the

risk related to the lottery but expected welfare as well due to its effect on

the probability of success. This precision effect is maximal at ǫ = 1. Hence,

for m sufficiently large, the precision effect dominates the budget effect at

ǫ = 1. Consequently, improvements in informativeness when starting from

no information (ǫ = 1) increase the agents expected payoffs and, hence, ǫ = 1

is not optimal. At the minimal error level ǭ, on the contrary, the precision

effect is equal to zero as P (ǭ) equals m while the budget effect is maximal

as P ′′(ǫ) ≥ 0. Hence, at ǫ = ǭ the budget effect dominates the precision

effect. Consequently, reductions of informativeness when starting from full

information (ǫ = 0) and, hence, ǫ = ǭ is not optimal. Therefore the optimal

error level is characterized by an interior solution.

Analyzing this interior solution shows that information always is a normal

good under the given specifications:

Cororally 4.1. The optimal error level ǫ∗ depends negatively on the number

of states n and the budget m.
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An increase in the number of states can be interpreted as an increase in

risk. Therefore, it should be intuitively clear that an increase in the number

of states, n, leads to an decrease of the optimal error level ǫ∗. The intuition

for an increase of the budget m is similar: An increase in m increases the

riskyness of the lottery o(·, ω̃). Therefore, an increase in m leads to an

decrease of the optimal error level. Formally, an increase in the number of

states or the budget strengthens the precision effect (i.e. dPE(ǫ)/dn, dPE(ǫ)/dm <

0) while it keeps the budget effect constant (i.e. dBE(ǫ)/dn, dBE(ǫ)/dm = 0)

and, hence, decreases the optimal error level. Moreover, this means that

information are normal goods in this economy.

Now consider a more general formulation of preferences accounting for

risk aversion. This is natural as the central characteristic of an information

signal is the reduction of uncertainty or indeterminacy. The main question is

how information trade is related to the agents’ attitude towards risk in such

an economy.

Constant relative risk aversion

Assume that the agents’ preferences are of the constant relative risk aversion

type (CRRA). The utility representation is given by

u(c) :=

{
c1−σ

1−σ
for σ > 0, σ 6= 1

ln(c) for σ = 1.

This leads to the following ex ante welfare function:

W (ǫ) =

(

1−
n− 1

n
ǫ

)
(α(m− P (ǫ)))1−σ

1− σ
+

n− 1

n
ǫ
(m− P (ǫ))1−σ

1− σ
.

It follows that the demand for information is well defined for a broad range

of parameters:

Proposition 4.2 (Interior solution, uniqueness).

(i) For |P ′(1)| finite and m sufficiently high, the agents demand informa-

tion with error level ǫ∗ ∈ (ǭ, 1).
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(ii) The optimal error level ǫ∗ is uniquely determined for σ ∈ (0, 1].

(iii) For σ > 1 and P ′′′ = 0 the optimal error level ǫ∗ is uniquely determined.

Intuitively it should be clear that costly information will not be demanded

if the agents are endowed with a very small budget m.

Uniqueness of ǫ∗ is ensured if expected welfare is strictly concave in ǫ.

This curvature depends on the shape of u as well as on the shape of P in a

non-trivial way. It is easy to show that for relative risk aversion σ ∈ (0, 1] the

precision effect as well as the budget effect negatively depend on the error

level ǫ implying that welfare is indeed strictly concave in ǫ. For σ > 1 this

need not be true in general but e.g. in the case of quadratic P it is.

In order to obtain comparative statics results it is further assumed that

the agents’ information demand is characterized by an interior and uniquely

determined solution ǫ∗.

The next result shows that corollary 4.1 holds true in the more general

case of constant relative risk aversion, i.e. information is a normal good:

Proposition 4.3. (i) The optimal error level ǫ∗ depends negatively on the

number of possible future states of nature n and negatively on the budget

m.

(ii) ǫ∗ depends negatively on the premium α for a sufficiently high degree

of relative risk aversion.

As argued above, increasing the number of possible states or increasing

the budget increases the riskyness of the lottery o(·, ω̃) which naturally leads

to a higher information demand.

A higher α leads to a higher spread in the payoffs which increases the

riskiness of the lottery and strengthens the precision effect. On the other

hand the impact on the budget effect is ambigous. For sufficiently high

degrees of risk aversion the first effect dominates and leads to a lower error

level in equilibrium.

In order to gain further intuition for the main result, consider the case of

a linear price function P . The relation between the error level and the level

of risk aversion may be non monotonic in this economy:



CHAPTER 4. THE VALUE OF INFORMATION 79

Proposition 4.4 (Non-monotonicity of the error level in the degree of rela-

tive risk aversion). If prices for information are linear, i.e. P (ǫ) = b(1 −

ǫ), b ≥ m, the following holds true:

(i) For sufficiently high degrees of relative risk aversion, σ ≥ 2, the agents

keep uninformed, i.e. ǫ∗ = 1.

(ii) If α is sufficiently high, then there is a degree of relative risk aversion

0 < σ̄ < 2 such that

dǫ∗(σ)

dσ







< 0 if σ < σ̄

= 0 if σ = σ̄ or σ ≥ 2

> 0 if σ̄ < σ < 2

.

The chosen error level is convex in the degree of relative risk aversion, or,

put differently, information demand is convex in the degree of relative risk

aversion. For low levels of risk aversion the result is intuitive: higher risk

aversion leads to a smaller error level which increases the chances of winning

the prize α(m − P (ǫ)) and leads to higher expected payoff. But for higher

degrees of agents’ risk aversion (but not too high, i.e. σ < 2) this relation

turns into a positive one. In order to get a better understanding of this effect

it is instructive to reformulate the lottery in the following form:

o(ω̂, ω) = m− P (ǫ)
︸ ︷︷ ︸

fixed payment

+

{

(α− 1)(m− P (ǫ)) if ω = ω̂

0 else.
︸ ︷︷ ︸

uncertain payment

So the lottery prize consists of a certain and an uncertain component. In-

vesting in information decreases the certain component of the lottery. If risk

aversion is sufficiently high but not too high, then the attractivity of the un-

certain payment decreases with the level of relative risk aversion and, hence,

the agents decrease their investment in information. This explains the posi-

tive relationship between the error level and risk aversion for medium degrees

of relative risk aversion. If reletive risk aversion then becomes large enough,

then the agents completely avoid the uncertain component and maximize
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their fixed payment, i.e. they do not invest in information at all.

The agents’ information decisions endogenously determines the amount

of risk in this economy. In this interpretation the result reads as follows:

higher degrees of risk aversion may lead to higher risk.

4.1.2 Concluding Remarks

The uncertainty in this model is endogenously determined by the agents’

information decisions. Information services are costly with an equilibrium

price which depends on the informativeness. The main goal of the section is

to demonstrate that the demand for private information can be negatively

correlated to the level of risk aversion. Given a sufficiently high level of risk

aversion agents do not demand any information at all. As the information

is related to the risky outcome component of the lottery, this maximizes the

certain component in the payoff structure.

This effect will also be present in more elaborated economies with risk

sharing, goods markets or an additional public signal. These extensions

would be valuable at the expense of possibly loosing the clear cut - nature of

the results.

4.2 The Value of Information in Economies with

Production

The effects of better information in production economies are not clear: On

the one hand, as pointed out by Eckwert and Zilcha (2000), better informa-

tion might increase ex ante expected welfare by improving the input alloca-

tion. On the other hand, information might lower ex ante expected welfare

by destroying risk sharing opportunities.

The purpose of this section is to examine the value of information in a

many commodity production economy with risky (input) endowments and

efficient risk sharing. Compared to a pure exchange economy (with only

one commodity) as analyzed by Schlee (2001), the risk sharing opportunities

are much richer in a many commodity production economy: First, if there
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is only one commodity, individuals can share risks only through shifting

consumption from one state to another. In contrast, if there are many com-

modities, then individuals can substitute consumption of some commodity in

some state by consuming some (potentially) other commodities in some other

states. Secondly, the introduction of production increases the risk sharing

opportunities even more. In particular, production introduces risk sharing

opportunities which are not present without production. For example, if the

aggregate endowment of a commodity is zero in some state, this can not be

insured without production. With production, it is possible to compensate

this by producing the commodity from others. And third, as pointed out by

Eckwert and Zilcha (2000), in production economies (with state dependent

productivity) better information might improve the allocation of commodi-

ties used as inputs which might overcome its negative effect on risk sharing.

Nevertheless, the main result is that if risk sharing markets are complete and

efficient, then information are harmful for all risk avers agents. The intuition

for this result is that since, in contrast to Eckwert and Zilcha (2000), the

productivity of the firms is state-independent, better information does not

lead to an improvement of the input allocation which might overcome its the

negative effects on the risk sharing opportunities in the economy.

In particular, in this section a two-period model with many commodities

which can be used for consumption and production is considered. There are

two different types of agents, risk avers consumers and risk neutral firms.

Both types of agents possess a risky endowment of commodities (inputs as

well as outputs). At date 0, after receiving information but before observing

the state of the world, the agents trade state-contingent claims in a com-

petitive market. After the state realization, at date 1, the agents consume

or produce according to their state-contingent claim. Moreover, since the

firms’ profits are determined by the trade of state-contingent claims which

are traded before the state realization, the firms’ profits independent of the

particular state relization.
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4.2.1 The Model

Consider a competitive economy with I consumers, J firms, C ≥ 2 commodi-

ties and N states of the world. Denote by I the set of consumers, by J the

set of firms, by C ⊆ RC
+ the commodity space and by Ω = {ω1, . . . , ωN} the

state space. Let the prior belief be given by the probability mass function

fΩ and assume w.o.l.g. ω1 < ω2 < . . . < ωN .25 The space of commodity

c ∈ {1, . . . , C} is denoted by Cc ⊆ R+. Assume that C is convex and com-

pact. A commodity can be a physical good or a service and it can be used

for consumption as well as for production.

In the following an agent i can be a consumer i ∈ I or a firm i ∈ J .

In state ω ∈ Ω agent i is endowed with wc(ω, i) units of commodity c. The

vector

w(ω, i) := (w1(ω, i), . . . , wC(ω, i)) ∈ C

denotes agent i’s endowment vector in state ω. The agent’s tupel of endow-

ment vectors for each state is denoted by

w(i) := (w(ω1, i), . . . , w(ωN , i)) ∈ CN .

Moreover, let

wc(ω) :=
∑

i∈I∪J

wc(ω, i)

be the aggregate endowment of commodity c in state ω and

w(ω) := (w1(ω), . . . , wC(ω)) ∈ C

the corresponding aggregate endowment vector in state ω.

Each firm j ∈ J has a non-empty, state-independent technology, or pro-

25I.e. Prob(ω̃ = ω) = fΩ(ω).
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duction set, given by

Yj :=
{
y ∈ RC |Tj ≤ 0

}
⊆ RC ,

where Tj : RC → R denotes firm j’s transformation function. Throughout

this section Tj is assumed to be continuously differentiable, increasing in each

component and convex. A production vector,

y(ω, j) := (y1(ω, j), . . . , yC(ω, j) ∈ Yj,

describes firm j’s net outputs of the c commodities in state ω. Positive

numbers denote outputs while negative numbers denote inputs. Moreover,

state-independency of the firms’ technologies implies that the firms, as the

consumers, are exposed to endowment risk rather than productivity risk.

Since state-contingent commodity claims are traded before the state realiza-

tion and, hence, the firms’ profits are not risky, the firms are assumed to be

pure profit maximizers.

Each consumer i ∈ I has a twice (continuously) differentiable utility

function ui : C → R. ui is assumed to be increasing in each commodity, i.e.

∂ui(x1,...,xC)/∂xc ≥ 0 for all c ∈ {1, . . . , C}. Moreover, each consumer owns a

claim to a share θij ∈ [0, 1] of the profits of firm j such that
∑

i∈I

θij = 1.

The model has two stages: stage 0 is before the state realization while

stage 1 is after the state realization. Before the state realization at stage 0,

the agents trade state-contingent commodity claims for each commodity in

a competitive market. Such a claim of commodity c for state ω pays exactly

one unit of commodity c in state ω and nothing in other states. In particular,

for the consumers this results in state-contingent consumption plans while

for firms this results in state-contingent production plans. Denote by

p := (p1,ω1 , . . . , pC,ω1, p1,ω2 , . . . , pC,ω2, . . . , p1,ωN
, . . . , pC,ωN

) ∈
(
RC

+

)N

the price vector for state-contingent claims, where pc,ω denotes the price

for one unit of commodity c in state ω. After the state realization, the

commodities are allocated according to the agents’ state-contigent claims and
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production takes place according to the firms’ state-contingent production

plans. For an overview of the timing see figure 4.1 below.

State of the world is realized and
agents consume/produce according
to their state-contingent claims.

Agents have common
prior belief and trade
state-contingent claims
in competitive markets

0 1

Figure 4.1: Timing of events.

Consumer i’s consumption vector in state ω is denoted by x(ω, i) ∈ C.

Equivalently, y(ω, j) ∈ Yj denotes firm j’s production vector in state ω. An

allocation in state ω,

(x(ω), y(ω)) := (x(ω, 1), . . . , x(ω, I), y(ω, 1), . . . , y(ω, J)) ∈ CI ×
⊗

j∈J

Yj

is a vector which assigns non-negative consumption levels xc(ω, i) of each

commodity c ∈ {1, . . . , C} to each consumer i ∈ I and a production plan

y(ω, j) ∈ Yj to each firm j ∈ J . An allocation in state ω is feasible if total

consumption of each commodity does not exceed its total endowment plus

its net output, i.e.

∑

i∈I

xc(ω, i) ≤
∑

i∈I

wc(ω, i) +
∑

j∈J

(yc(ω, j) + wc(ω, j))

for all ω ∈ Ω and c ∈ {1, . . . , C}. Denote by

x(i) := (x(ω1, i), . . . , x(ωN , i)) ∈ CN

consumer i’s state-contingent consumption plan and by

y(j) := (y(ω1, j), . . . , y(ωN , j)) ∈ Y N
j

firm j’s state-contingent production plan. An allocation of contingent com-
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modities,

(x, y) := (x(1), . . . , x(I), y(1), . . . , y(J)) ∈
(
CS
)I

×
⊗

j∈J

Y N
j ,

is a tupel which determines a commodity allocation for all states ω ∈ Ω. An

allocation of contingent commodities is feasible if (x(ω), y(ω)) is feasible for

all states ω ∈ Ω.

Using this, a Walrasian equilibrium for this economy is defined as follows:

Definition 4.1. A Walrasian equilibrium with complete markets, (x∗, y∗, p∗) ∈
(
CN
)I
×
⊗

j∈J

Y N
j ×

(
RC

+

)N
, consists of a feasible allocation of contingent claims

(x∗, y∗) ∈
(
CN
)I

×
⊗

j∈J

Y N
j and a price system p∗ ∈

(
RC

+

)N
such that for all

firms j ∈ J

y∗(j) = arg max
y∈Y N

j

(p∗)T (y + w(j)) (profit maximization)

and for all consumers i ∈ I

x∗(i) = argmax
x∈Bi

EΩ [ui(x(ω̃, i))] , (utility maximization)

where consumer i’s budget set is defined by

Bi :=

{

x ∈ CN | (p∗)T
(

x∗(i)− w(i)−
∑

j∈J

θij(y
∗(j) + w(j))

)

≤ 0

}

.

Moreover, risk aversion is defined as usual: For any lottery on his con-

sumption set, a risk averse consumer prefers the certainty equivalent of an

lottery over the lottery itsself. Therefore, by Jensen’s inequality, if an con-

sumer is risk avers (neutral, affin) his utility is strictly concave (linear, con-

vex) in x ∈ C. Moreover, ui is strictly concave (linear, convex) in each

component. Since ui is assumed to be twice differentiable this implies that

the second derivatives with respect to some xc, c ∈ {1, . . . , C}, are negative

(zero, positive).

If risk premia are zero it is intuitively clear that risk avers agents would
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like to insure fully. The next Proposition etablishes conditions under which

a full insurance is possible and optimal.

Proposition 4.5. Consider the competitive, private ownership economy de-

scribed above. If all consumers are risk averse and if there is

(i) either one risk neutral consumer who owns enough to insure all other

agents,

(ii) or one firm with constant marginal rate of transformation (MRT) which

owns enough to insure all others,

(iii) or no aggregate risk,

then in every Walrasian equilibrium with complete markets (if it exists) the

(risk avers) consumers fully insure in terms of consumption and all firms

(with non-constant MRT) fully insure in terms of production vectors. In

particular,

x∗(ω, i) = x∗(ω′, i) and y∗(ω, j) = y∗(ω′, j)

for all risk avers consumers i, all firms j with non-constant MRT and ω, ω′ ∈

Ω.

In equilibrium prices are fair. This means, the price for a state-contingent

claim is equal to the commodity price in the ‘certainty equivalent economy’

multiplied with the state probability, i.e. p∗c,ω = fΩ(ω)p̄
∗
c , where p̄∗ ∈ RC

>0

denotes the equilibrium price in the certainty equivalent economy.26 In par-

ticular, this means that there are no risk premia. Hence, in the absence of

aggregate risk (case (iii)), it is optimal for all agents to choose a full insur-

ance.27 In case (i) (or (ii)) the equilibrium price ratios are equal the risk

neutral consumer’s MRS (or to the MRT of that firm with constant MRT).

26The only difference of the certainty equivalent of this economy to this economy is that
the risky endowments are replaced by their expectations.

27In more detail: In the absence of aggregate risk, the agents’ optimal consump-
tion/production bundles are feasible in all states. Since prices are fair it follows that
the agents choose an full insurance which delivers the consumption bundle of the certainty
equivalent economy.
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Therefore, the risk neutral consumer (or the firm with constant MRT) is in-

different between consumption (production) of commodity c in state ω and

commodity c′ in state ω′, i.e. these are perfect substitutes. Hence, the risk

neutral consumer (firm with constant MRT) is willing and, by assumption,

also able to insure the other agents. Together with the observation that

risk premia are zero, this implies that it is optimal for risk averse consumers

to smooth their consumption to the optimal consumption bundle of the cer-

tainty equivalent. Similary, as production sets are state independent and risk

premia are zero, its optimal for firms (with non-constant MRT) to produce

the same production vector in each state. In particular, this means that in all

states, the optimal state-contingent production plan is equal to that in the

certainty equivalent. Moreover, fair prices and state-independent production

sets also imply that the optimal production plan and the firms profits are

independent of the state distribution.

Cororally 4.2. If any of the conditions (i)-(iii) of Proposition 4.5 hold, then

the firm’s equilibrium state-contingent production plan is independent of the

state distribution.

As argued above, equilibrium prices have no risk premia and they are

determined by the (constant) MRS of the risk neutral consumer (or by the

constant MRT of the firm with this). Hence, each firm’s optimal state-

contingent production plan is state independent and equal to its optimal

production plan in the certainty equivalent economy. Therefore, also its

profits are equal to its profits in the certainty equivalent.

4.2.2 The Model with Information

This section studies an extension of the previous model. In particular, it is

additionally assumed that the agents may have access to some information

before the market for state-contigent claims is open. Therefore, let fΩ ∈ ∆(Ω)

as before and assume that the agents (consumers and firms) may have access

to a public information structure fS|Ω ∈ Γ(fΩ) that produces a signal s from
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the signal set S = [0, 1].28 See figure 4.2 for an overview of the timing in this

model.

State of the world is realizes;
and the agents consume
according to their state-
contigent claims.

Agents have common
prior fΩ about the
state of the world.

A signal s realizes and
the agents update beliefs
via Bayes’ rule and trade
state-contingent claims in
competitive markets.

ex ante interim ex post

Figure 4.2: Timing with information.

The following analysis is based on a special informativeness concept. In

order to compare as much as possible information systems, the weakest infor-

mativeness notion (introduced in this work) is chosen as information concept.

By Proposition 3.3, this is, if the prior belief is fixed, the weak informativeness

concept. Since the prior belief is fixed, the definition of weak informativeness

becomes (compare Definition 3.10):

(fS|Ω, fΩ) %
w-inf

(f̄S|Ω, fΩ) ⇔ FS,Ω(s, ω) ≥ F̄S,Ω(s, ω) for all (s, ω) ∈ S × Ω.

The equilibrium allocation after observing s from information system

(fS|Ω, fΩ) solely depends on the (updated) posterior state distribution and,

hence, on the information system (fS|Ω, fΩ) and the signal realization s. In or-

der to makes this clear let (x∗((fS|Ω, fΩ), s), y
∗((fS|Ω, fΩ), s), p

∗((fS|Ω, fΩ), s))

denote the equilibrium allocation after a signal realization s from information

system (fS|Ω, fΩ). Similar to Definition 3.2, the ex ante expected utility of

consumer i is defined as follows:

V ((fS|Ω, fΩ), x
∗
i , ui) := ES

[
EΩ

[
u(x∗(ω̃, i; (fS|Ω, fΩ), s))

]]
,

28Recall that Γ(fΩ) denotes the set of all monotone and for the prior fΩ normalized infor-
mation structures and that Γ denotes the set of all monotone and normalized information
structures (compare page 49).
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where, analogously to the previous section, x∗(ω, i; (fS|Ω, fΩ), s) denotes agent

i’s (optimal) consumption bundle in state ω under information system (fS|Ω, fΩ)

after a signal observation equal to s.

Firms are owned by consumers, therefore, the following definition of

pareto efficiency (of information) restricts attention to consumers rather than

to firms. Information are pareto superior (inferior) if ‘better information’ in-

creases (decreases) the ex ante expected utility of at least one consumer with-

out lowering (increasing) the ex ante expected utility of any other consumer.

Formally,

Definition 4.2. Better information are pareto superior (inferior) iff for

(fS|Ω, fΩ), (f̄S|Ω, fΩ) ∈ Γ:

(fS|Ω, fΩ) %w-inf

(f̄S|Ω, fΩ)

⇒




V ((fS|Ω, fΩ), x

∗
i , ui)

(≤)

≥ V ((f̄S|Ω, fΩ), x
∗
i , ui) for all i ∈ I and

V ((fS|Ω, fΩ), x
∗
i′ , ui′)

(<)
> V ((f̄S|Ω, fΩ), x

∗
i′ , ui′) for at least one i′ ∈ I



 .

As seen in section 4.2.1, in equilibrium, the prices for state-contingent

commodity claims depend on the state distribution. Therefore, from ex

ante perspective, the improvement of information increases security price

risk which makes risk averse consumers worse off.

Proposition 4.6. If all consumers are risk avers and have monotone en-

dowments and if there is

(i) either one risk neutral consumer who owns enough to insure all other

agents,

(ii) or one firm with constant marginal rate of substitution which owns

enough to insure all others,

then information are pareto inferior in every Walrasian equilibrium with com-

plete markets.

The intuition is similar to that of the result by Schlee (2001): Although

better information reduces interim risk, from ex ante perspective, it also
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introduces or increases price risk making each risk averse consumer worse

off. Since, in contrast to Eckwert and Zilcha (2000), production sets are

state-independent, better information cannot improve the input allocation

in such a way such that the improvement overcomes these negative effects.

In equilibrium, the price for a state-contingent claim for commodity c

in state ω is p∗c,ω((fS|Ω, fΩ), s) = fΩ|S(ω|s)p̄
∗
c, where p̄∗ ∈ RC

+ is the equilib-

rium price vector in the certainty equivalent economy (where each agent is

endowed with his conditional expected endowment). This price vector is de-

termined through the consumers’ MRSs and the firms’ MRTs which, in the

certainty equivalent, are independent of the of the underlying state distribu-

tion, i.e. these are independent of the particular signal realization and the

underlying information system. Hence, consumer i’s conditional expected

utility after a signal realization s from (fS|Ω, fΩ) is equal his utility in the

certainty equivalent economy, i.e.

EΩ

[
ui(x

∗(ω̃, i; (fS|Ω, fΩ), s))|s
]
= ui(x̄

∗(i, p̄∗, p̄∗TEΩ [w(ω̃, i)|s])),

where x̄∗(, i, p̄∗, p̄∗TEΩ [w(ω̃, i)|s]) ∈ C denotes agent i’s optimal consumption

bundle in the certainty equivalent economy.29 Now, risk aversion implies that

ui(x̄
∗(i, p̄∗, m)) is concave as a function of m and, hence, it follows that better

information makes every risk avers consumer worse off.

The theorem by Schlee (2001) presents three conditions conditions under

which information are pareto inferior in a single good, exchange economy

with complete risk-sharing markets: first, all agents are risk avers and there

is no aggregate risk. Secondly, all agents are risk averse and there exists

one risk neutral who owns enough to insure all other. This condition is

equivalent to the conditions (i) and (ii) above. And last, all agents are risk

averse and the economy has a representative agents who satisfies the expected

utility hypothesis with a concave, differentiable vNM-utility function. In

contrast to the second condition, the first and the last conditions are not

caputered here for the following reason: As under conditions (i) and (ii) of

29In particular, x̄∗(i, ·, ·) : RC
>0 × R≥0 → C denotes agent i’s Marshallian demand

function, i.e. if agent i’s budget is m ≥ 0 and prices are p ∈ RC
>0 then agent i’s optimal

consumption bundle is x̄∗(i, p,m).
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Prop. 4.5, consumer i’s interim conditional expected utility is equal to his

utility in the certainty equivalent economy. But under Schlee’s first and third

condition there might be no agent with constant MRSs or MRTs. Hence, it

follows that the price system of the certainty equivalent economy might not

be independent of the signal realization, i.e. p̄∗((fS|Ω, fΩ), s) might not be

constant in s. Hence, the agents conditional expected utility,

EΩ

[
ui(x

∗(ω̃, i; (fS|Ω, fΩ), s))|s
]

=ui(x̄
∗(i, p̄∗((fS|Ω, fΩ), s), p̄

∗T ((fS|Ω, fΩ), s)EΩ [w(ω̃, i)|s])),

might not be concave in s which implies that the value of information might

not necessarily be negative.

Cororally 4.2 implies that firm j’s optimal, state-contingent production

plan, y∗(j; (fS|Ω, fΩ), s), is independent of the information system and the

particular signal realization. More precisely, y∗(ω, j; (fS|Ω, fΩ), s) is equal

to the optimal production plan in the certainty equivalent which in turn is

independent of the underlying state distribution, i.e. y∗(ω, j; (fS|Ω, fΩ), s) =

ȳ∗(j) ∈ Yj for all ω ∈ Ω, where ȳ∗(j) ∈ Yj is the equilibrium production plan

of firm j in the certainty equivalent economy. These two observations imply

that the profit of firm j after a signal realization equal to s is equal to the

firm’s profit in the certainty equivalent economy:

Πj((fS|Ω, fΩ), s) =
∑

ω∈Ω

C∑

c=1

p∗c,ω((fS|Ω, fΩ), s)
(
y∗c (j; (fS|Ω, fΩ), s) + wc(ω, j)

)

=
C∑

c=1

p̄∗c (ȳ
∗
c (j) + EΩ [wc(ω̃, j)|s]) ,

where p̄∗c ∈ R+ denotes the equilibrium price of commodity c in the certainty

equivalent economy. Because of the law of iterated expectation this implies

the the ex ante expected profits of each firm are independent of the underlying

information system:

Proposition 4.7. Under any of the condition (i)-(ii) of Proposition 4.6 and

for any information system (fS|Ω, fΩ) ∈ Γ, the firms’ ex ante expected profits
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are equal the their profits in the certainty equivalent economy. Formally,

ES

[
Πj((fS|Ω, fΩ), s̃)

]
= (p̄∗)T (ȳ∗(j) + EΩ [w(ω̃, j)]) for all (fS|Ω, fΩ) ∈ Γ.

On one hand, the firms’ technologies are by assumption independent of

the state of the world and the state distribution. Therefore, and by Coro-

rally 4.2, the optimal production plans are independent of the underlying

information system. On the other hand, prices depend on the state distribu-

tion and, therefore, on the signal realization and the underlying information

system. Hence, the firms’ interim profits depent on the signal realization

and information system. But since prices are fair, the ex ante expected prof-

its are always equal to that of the certainty equivalent independent of the

underlying information structure.

4.2.3 Concluding Remarks

This section studied the value of information in a production economy with

many commodities and complete risk sharing markets. Altough the risk

sharing opportunities are much richer in an economy with many commodities

and production possibilities than in a pure exchange economy with only one

single good, it is shown that in the presence of complete risk sharing markets,

information make every risk avers agent worse off. The intuition of this result

is that from ex ante perspective better information increases price risk which

makes risk avers agents worse off. This a generalization of the results by

Hirshleifer (1971) and Schlee (2001).



Chapter 5

The Role of the Strategy Space in

a Setting with Asymmetric

Information

This chapter is based on a joint work with Dr. Dennis Heit-

mann.

Up to now this work has focused on event risk rather than on market risk

which will be done in the current section. As mentioned in the introduction,

market risk is related to the limited knowldge about endogenous variables

as for instance other market participants’ actions. Hence, market risk might

origin from an asymmetric allocation of information. Information is asym-

metric if some market participants know more than others. An example for

such a situation is the Stackelberg game (Stackelberg (1934)). The Stack-

elberg game is a standard model in oligopoly theory, which is one of the

most intensively discussed topics in mathematical economics and based on

the pioneering works of Cournot (1838) and Betrand (1883). In the former

one the firms simultaneously choose quantities while in the latter prices are

the strategic variables. Despite these classical simultaneous move games, the

model of Stackelberg (1934), as already mentioned above, describes a situa-

tion with asymmetric information in which one firm, the leader, decides at

first and the follower observes this before deciding about an optimal strategy.

There exist a huge literature on these models for homogeneous and as well as

93
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for horizontal differentiated goods (see e.g. Amir and Jin (2001), Dastidar

(2004), Kreps and Scheinkman (1983), Vives (1985) and Vives (2005)). It is

well established in the literature that for the goods being perfect substitutes

and the firms being quantity setters, the leader is better off than the fol-

lower because the cross-effect is positive. The opposite is true for Bertrand

competition.

In most of the literature on industrial organization the strategy space is

exogenously given whereas the endogenous determination of roles and strat-

egy spaces is rarely discussed. Based on a horizontally differentiated duopoly

model by Dixit (1979), Singh and Vives (1984) considered a model in which

the strategy space (price or quantity) is endogenously determined by the

firms. The firms are allowed to offer two types of binding contracts to the

consumers, i.e. a price or quantity contract in the first stage and in the sec-

ond stage, the market stage, the firms compete simultaneously contingent on

the type of contract. They showed that it is a dominant strategy for a firm

to set strategically the quantity (price) if the goods are substitutes (comple-

ments). Boyer and Moreaux (1987) transferred the endogenously determined

strategy spaces into the leader-follower model and compared consumer, pro-

ducer and total surplus with the related values for the Nash equilibrium of

the simultaneous move game. Using a very restrictive demand structure30

they showed that it is always more profitable to be a quantity (price) setter

if the goods are substitutes (complements). Concerning total and consumer

surplus they proved that price competition is dominant for all degrees of

product differentiation. Furthermore, they derived a unique ranking of the

leader’s and follower’s prices, quantities and profits depending on the type

of competition and the products being complements or substitutes.31

The purpose of this chapter is to provide these comparisons for a more

general demand structure introduced by Dixit (1979) with different cross-

effects and reservation prices for the goods. It is shown that some of Boyer

and Moreaux’s results are still valid in this more general framework, while

30In this setting the degree of product differentiation and reservation prices are corre-
lated.

31For further details see Boyer and Moreaux (1987) Propositions 1 and 2.
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others are not.

5.1 The Model

Consider an economy with a monopolistic sector and two firms, each one

producing a horizontal differentiated good, and a competitive numeraire sec-

tor as introduced by Dixit (1979). Following Singh and Vives (1984) and

Boyer and Moreaux (1987) assume that each firm can select whether to be-

have as a price or quantity setter. Furthermore, assume a duopoly with

asymmetric information in which firm 1 is the market leader and firm 2 the

follower, i.e. a Stackelberg setting with endogenous strategy space. Contin-

gent on the strategy space decision, the price or quantity is chosen optimally.

The game structure and some notations are summarized in figure 5.1. In

particular, if firm 1 sets a price and firm 2 sets a quantity then πpq
i (qpqi , ppqi )

denotes firm i’s profit (quantity, price). The subgame perfect equilibrium

Firm 1

Firm 2

(πpp
1 , πpp

2 )

(qpp1 , qpp2 )

price setting

price setting

(ppp1 , ppp2 )

(πpq
1 , πpq

2 )

(qpq1 , qpq2 )

(ppq1 , ppq2 )

bb bb

bb
quantity setting

price setting
quantity setting quantity setting

(πqp
1 , πqp

2 )

(qqp1 , qqp2 )

(pqp1 , pqp2 )

(πqq
1 , πqq

2 )

(qqq1 , qqq2 )

(pqq1 , pqq2 )

Figure 5.1: The game structure and notations.

of this two-stage game will be derived.

The utility function of the representative consumer is assumed to be

quadratic and strictly concave and given by

u(q1, q2) = α1q1 + α2q2 −
β1q

2
1 + 2γq1q2 + β2q

2
2

2
−

2∑

i=1

piqi

with αi, βi ∈ R+, i = 1, 2, β1β2 − γ2 > 0 (concavity condition) and αiβj −
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αjγ > 0 (positive market size). For arbitrary αi, βi ∈ R+ this leads to the

following domain of γ:

(

−
√

β1β2,min

{
√

β1β2,
α1β2

α2
,
α2β1

α1

})

.

Moreover, utility maximization of the representative consumer gives rise to

a linear demand structure

q̃i(pi, pj) = ai − bipi + cpj, i, j = 1, 2, i 6= j, (5.1)

with ai =
αiβj−αjγ

β1β2−γ2 > 0, bi =
βj

β1β2−γ2 > 0 and c = γ
β1β2−γ2 . The corresponding

inverse demand system is

p̃i(qi, qj) = αi − βiqi − γqj , i, j = 1, 2, i 6= j. (5.2)

The degree of product differentiation is determined by γ: The goods are com-

plements, independent or substitutes according to whether γ S 0. Demand

for good i is downward sloping in its own price and increasing (decreasing)

in the competitor’s price if the goods are substitutes (complements). The

goods are perfect substitutes whenever α1 = α2 and β1 = β2 = γ. Moreover,

for α1 = α2 =
1

1+α
β1 = β2 =

1
1−α2 and γ = − α

1−α2 , the demand structure is

equal to that which is considered by Boyer and Moreaux (1987).

Firms have constant marginal costs, C1, C2 ≥ 0. W.o.l.g. it is assumed

that prices are net of marginal costs.32 Then, profits of firm i are given by

πi = piqi. In order to maximize profits, the firms can offer two different

types of contracts with the consumers: a price and a quantity contract. If a

firm chooses to offer the price contract, then the firm will have to supply that

amount which the consumers demand at a predetermined price independently

of the competitor’s action. If a firm chooses to offer the quantity contract,

then the firm have to supply a predetermined quantity independently of the

competitor’s action. Moreover, still following Singh and Vives (1984), it is

assumed that the costs associated with changing the type of contract are

32Since Ci ≥ 0 one may replace αi and ai by αi − Ci and ai − bimi + cmj , i, j = 1, 2,
i 6= j, respectively.
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extremely high such that firms make the decision about the type contract

once and then stick to it. Hence, first the firms decide about the type of

contract offered to the consumers, and afterwards they compete contingent

on their chosen types of contract.

In case of pure quantity competition equation (5.2) is used for the profit

maximization of the firms, whereas equation (5.1) is used in case of pure

price competition. If one firm is a price setter and the other firm chooses the

quantity, a third system is introduced, which easily can be derived by using

equations (5.1) and (5.2):

q̂i(pi, qj) =
αi − γqj − pi

βi

(5.3)

p̂j(pi, qj) =
aj + cpi − qj

bj
, i, j = 1, 2, i 6= j.

The demand system (5.3) is used if firm i sets the price and firm j chooses

strategically the quantity.

Without loss of generality firm 1 is assumed to be the Stackelberg leader

and before firm 1 decides about price setting or quantity setting, he computes

all possible reactions of the follower firm 2. This leads to the following four

cases:

Case 1: firm 1 sets a price

1. If firm 2 is also a price setter, this leads to the classical Stackelberg-

Betrand competition and with equation (5.1) the profit of firm 2 is

given by

πpp
2 (p1, p2) = p2 q̃2(p2, p1).

The first order condition
∂πpp

2

∂p2
= 0 leads to the standard Bertrand re-

action function

p2 = Rpp
2 (p1) =

a2 + cp1
2b2

=
α2β1 − α1γ + γp1

2β2
. (5.4)
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2. If firm 2 sets quantity, its profits are derived by using equation (5.3).

This yields

πpc
2 (p1, q2) = q2 p̂2(p1, q2).

The first order condition
∂πpc

2 (p1,q2)

∂q2
= 0 leads to the following reaction

function of firm 2

q2 = Rpq
2 (p1) =

a2 + cp1
2

=
α2β1 − γα1 + γp1

2(β1β2 − γ2)
. (5.5)

Case 2: firm 1 sets a quantity

1. If firm 2 sets the price, then equation (5.3) implies for its profits

πqp
2 (q1, p2) = p2 q̂2(p2, q1)

which leads to the reaction function

p2 = Rqp
2 (q1) =

α2 − γq1
2

. (5.6)

2. For the case that firm 2 sets a quantity the firms compete in the stan-

dard Stackelberg quantity competition and the profit of firm 2 is given

by

πqq
2 (q1, q2) = q2 p̃2(q2, q1).

This leads to the standard Cournot reaction function

q2 = Rqq
2 (q1) =

α2 − γq1
2β2

. (5.7)

Until now the followers best reply functions were derived. Now these are

used for the derivation of the Stackelberg leader’s optimal strategy.



CHAPTER 5. ROLE OF STRATEGY SPACE 99

Analysis of case 1 - the market leader sets a price

Case 1.a: firm 2 sets a price

In this case both firms, the leader and the follower, set prices. The leader

uses the reaction function of the follower to maximize his profit given by

π̃pp
1 (p1) : = πpp

1

(
p1, R

pp
2 (p1)

)
= p1 q̃1

(
p1, R

pp
2 (p1)

)
(5.8)

=
2a2b2p1 + ca2p1 − 2b1b2p

2
1 + c2p21

2b2
.

The first order condition
∂π̃pp

1

∂p1
= 0 gives rise to the optimal price

ppp1 =
2a1b2 + ca2
2(2b1b1 − c2)

=
2β1β2α1 − β1α2γ − α1γ

2

2(2β1β2 − γ2)
> 0 (5.9)

which induces the price of the other good that firm 2 selects by using equation

(5.4)

ppp2 = Rpp
2 (ppp1 ) =

(3α2β1 − α1γ)(β1β2 − γ2) + β1β2(α2β1 − α1γ)

4β1(2β1β2 − γ2)
> 0. (5.10)

Using this prices it follows for the quantities and profits

qpp1 =
2β1β2α1 − β1α2γ − α1γ

2

4β1(β1β2 − γ2)
> 0,

qpp2 =
(3α2β1 − α1γ)(β1β2 − γ2) + β1β2(α2β1 − α1γ)

4(β1β2 − γ2)(2β1β2 − γ2)
> 0,

πpp
1 =

(2β1β2α1 − β1α2γ − α1γ
2)2

8β1(β1β2 − γ2)(2β1β2 − γ2)
> 0,

πpp
2 =

((3α2β1 − α1γ)(β1β2 − γ2) + β1β2(α2β1 − α1γ))
2

16β1(β1β2 − γ2)(2β1β2 − γ2)2
> 0.
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Case 1.b: firm 2 sets the quantity

In this case the leader sets prices while the follower reacts with quantity

setting. The leader uses the reaction function of the follower in order to

maximize his profit

π̃pq
1

(
p1
)
: = πpq

1

(
p1, R

pq
2 (p1)

)
= p1 q̂1

(
p1, R

pq
2 (q1)

)

=
(2a1 − 2b1p1 + 2cα2 + cγa1)p1 − (2b1 + cγb1)p

2
1

2(1 + γc)
. (5.11)

Maximizing with respect to p1 yields the optimal price for good 1 which

coincides with ppq1 in (5.9), i.e. ppq1 = ppp1 . By using the best reply of firm 2

given in (5.4) this implies qpq2 = qpp2 .

Now consider the case in which firm 1 is a quantity setter.

Analysis of case 2 - the market leader sets the quantity

Case 2.a: firm 2 sets the price

In this case the follower reacts with price setting and the profit of the leader

is given by

π̃qp
1

(
q1
)
: = πqp

1

(
q1, R

qp
2 (q1)

)
= q1 p̂1(q1, R

qp
2 (q1))

=
(2α1 − γa2 + cα1γ)q1 − β1(2 + γc)q21

2(1 + γc)
. (5.12)

The optimality condition
∂πqp

1

∂q1
= 0 leads to the optimal quantity of firm 1

qqp1 =
2β2α1 − α2γ

2(2β1β2 − γ2)
.

And by using equation (5.6) it is

pqp2 = Rqp
2 (qqp1 ) =

4β1β2α2 − α2γ
2 − 2β2α1γ

4(2β1β2 − γ2)
. (5.13)
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The remaining values of the variables are given by

pqp1 =
2β2α1 − α2γ

4β2
,

qqp2 =
4β1β2α2 − α2γ

2 − 2β2α1γ

4β2(2β1β2 − γ2)
,

πqp
1 =

(2β2α1 − α2γ)
2

8β2(2β1β2 − γ2)
,

πqp
2 =

(4β1β2α2 − α2γ
2 − 2β2α1γ)

2

16β2(2β1β2 − γ2)2
.

Case 2.b: firm 2 sets the quantity

This is the standard Stackelberg competition and the profit of firm 1 is given

by

π̃qq
1 (q1) : = πqq

1 (q1, R
qq
2 (q1)) = q1 p̃1

(
q1, R

qq
2 (q1)

)

=
(2β2α1 − γα2)q1 − (2β1β2 − γ2)q21

2β2
(5.14)

from which the optimal quantity follows as qqq1 = qqp1 .

In order to solve for the leader’s optimal choice, these four cases need to

be compared. It follows that equilibrium prices, quantities and profits are

predetermined by the leader’s choice. In particular,

Proposition 5.1. Independently of the follower’s decision, the prices, quan-

tities and profits of both firms are predetermined by the leader’s decision. If

the leader chooses to set a price then the following holds true:

pppi = ppqi , qppi = qpqi and πpp
i = πpq

i , i = 1, 2.

If the leader chooses to set a quantity, then the following holds true:

pqqi = pqpi , qqqi = qqpi and πqq
i = πqp

i , i = 1, 2.

The economic interpretation is as follows: After the decision of the leader

on the first stage, the follower acts as a monopolist on the remaining market
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and, hence, price and quantity setting by the follower yield the same outcome.

This result also shows that the maximal profit of the follower is predetermined

by the action of the market leader, who is able to anticipate the follower’s

best replies to the different types of contracts.

Proposition 5.1 implies that two distinct types of values for the variables

are possible depending on the leader’s choice. One is for the case in which

firm 1 chooses price competition denoted by the upper index p. Whereas the

upper index q denotes the case in which firm 1 chooses quantity competition.

In particular,

(πp
1 , π

p
2) := (πpp

1 , πpp
2 ) = (πpq

1 , πpq
2 )

(qp1 , q
p
2) := (qpp1 , qpp2 ) = (qpq1 , qpq2 )

(pp1, p
p
2) := (ppp1 , ppp2 ) = (ppq1 , ppq2 )

(πq
1, π

q
2) := (πqq

1 , πqq
2 ) = (πqp

1 , πqp
2 )

(qq1, q
q
2) := (qqq1 , qqq2 ) = (qqp1 , qqp2 )

(pq1, p
q
2) := (pqq1 , pqq2 ) = (pqp1 , pqp2 ).

In order to solve for the leaders optimal decision on the type of contract, these

two scenarios need to be compared. It follows that the leader’s decision on

the type of contract solely depends on the degree of product differentiation,

i.e. wheter the goods are complements or substitutes. In particular, it is:

Proposition 5.2. For the goods being substitutes (complements) the leader’s

price, quantity and corresponding profits are higher under quantity (price)

setting than under price (quantity) setting. Under quantity (price) leadership

also the follower’s profit and price is higher than that under price (quantity)

leadership of firm 1, while its quantity under quantity leadership is always

lower than under price leadership.

The comparison of all variables is summarized in figure 2.2. A direct im-

plication of Proposition 5.2 is that if goods are substitutes (complements),

then producers’ surplus33 is higher in the quantity (price) leader model than

33 Producers’ surplus in this case is defined as the sum of profits.
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in the price (quantity) model. Only if goods are independent, i.e. γ = 0 ,and

both firms are monopolists, the firms are indifferent between the strategic

variables.

Firm 1

price setting
bb

quantity setting

πp
1

πp
2

qp1

qp2

pp1

pp2

πq
1

πq
2

qq1

qq2

pq1

pq2

>
=
<

if γ
<
=
>

0

>
=
<

if γ
<
=
>

0

if γ
<
=
>

0
>
=
<

> for all γ

< for all γ

>
=
<

if γ
<
=
>

0

Figure 5.2: Comparison of case 1 and 2

As mentioned above, if α1 = α2 = 1
1+α

, β1 = β2 = 1
1−α2 and γ = − α

1−α2

then the current demand structure is equal to that which was analyzed by

Boyer and Moreaux (1987). Hence, their demand structure is a special case

of that by Dixit (1979) which is also used in the current work. Moreover,

it is easy to see that for the parameterization the reservation prices and the

degree of product differentiation are correlated. Therefore, there exist unique

ranking of the leader’s and follower’s prices, quantities and profits depend-

ing on the type of competition (price or quantity) and the property of the

goods (complements or substitutes).34 The following examples show that

these rankings do not hold for the more general demand structure used here.

34For the price leader model Boyer and Moreaux (1987) show: pp1 > pp2 and qp1 < qp2

for all γ and πp
1

{
>
<

}

πp
2 if and only if γ

{
<
>

}

0. And for the quantity leader model:

pq1 < pq2 and qq1 > qq2 for all γ and πq
1

{
>
<

}

πq
2 if an only if γ

{
>
<

}

0.
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Example 6 (price leader). Set α1 = β1 = 1.

1. Prices: For β2 = 4 and α2 = 2 it is pp1 < pp2 ∀ γ.

2. Quantities: For β2 = 1 and α2 =
1
2

it is qp1 > qp2 ∀ γ.

3. Profits: (a) For β2 = 1/4 and α2 = 1/2 it is πp
1 > πp

2 ∀ γ.

(b) For β2 = 4 and α2 = 2 it is πp
1 < πp

2 ∀ γ.

Example 7 (quantity leader). Set α1 = β1 = 1.

1. Prices: For β2 =
1
4

and α2 =
1
2

it is pq1 > pq2 ∀ γ.

2. Quantities: For β2 = 1 and α2 = 2 it is qq1 < qq2 ∀ γ.

3. Profits: (a) For β2 = 1 and α2 = 2 it is πq
1 < πq

2 ∀ γ.

(b) For β2 = 1 and α2 =
1
2

it is πq
1 > πq

2 ∀ γ.

These examples suggest that the ordering of the reservation prices (or

market size) is crucial for the ordering of the leader’s and follower’s profits.

The last result in this section compares the consumers’ and total surplus

under price and quantity leadership:35

Proposition 5.3. Total and consumers’ surplus are always higher in the

price leader model than in the quantity leader model, whether the goods are

complements or substitutes. Only if the goods are independent quantity com-

petition is as good as price competition in terms of total and consumer sur-

plus.

This result confirms and generalizes the result of Boyer and Moreaux

(1987) who showed that consumers’ and total surplus are higher under price

leadership than under quantity leadership independently of the goods beeing

substitutes or complements. The same holds true in the simulanous move

game by Singh and Vives (1984): Independent of the goods beeing substi-

tutes or complements, consumers’ and total surplus are always higher under

price competition than under quantity competition.

35Here total surplus is equivalent to welfare, i.e. the sum of profits and consumer surplus.
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5.2 Comparison between sequential and simul-

taneous move game

The previous section has shown that some but not all of the results by

Boyer and Moreaux (1987) can be confirmed in the current model. In partic-

ular, the previous section compared the two possivle Stackelberg equilibria,

given by ppi , qpi and πp
i in case of price leadership and pqi , qqi and πq

i under

quantity leadership. Still following Boyer and Moreaux (1987) this section

provides a comparison of these Stackelberg equilibria and the Nash equilibria

of the underlying simultaneous move games as introduced by Singh and Vives

(1984). Therfore, the analysis again has to distinguish between four different

cases: both set quantities, both set prices and two cases in which firm i sets

the price and firm j sets the quantity. Following Singh and Vives (1984) it is:

1. case: both firms are price setters

Using equation (5.1) the equilibrium prices and quantities of the simultaneous

move game can be derived as

pBB
i =

2aibj + caj
4bibj − c2

=
2αiβiβj − αiγ

2 − βiαjγ

4βiβj − γ2
, i, j = 1, 2, i 6= j

and

qBB
i = bip

B
i =

βj (2αiβiβj − βiαjγ − αiγ
2)

4β2
i β

2
j − 5βiβjγ2 + γ4

, i, j = 1, 2, i 6= j.

The profits can easily be derived as πBB
i = pBB

i qBB
i .

2. case: both firms are quantity setters

Profit maximization under consideration of the inverse demand system (5.2)

leads to the following equilibrium prices and quantities

qCC
i =

2αiβj − αjγ

4βiβj − γ2
, i, j = 1, 2, i 6= j
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and

pCC
i =

βi(2αiβj − αjγ)

4βiβj − γ2
, i, j = 1, 2, i 6= j

Clearly, the profits are πCC
i = pCC

i qCC
i .

3. case: firm 1 sets the price and firm 2 sets the quantity

The equilibrium is characterized by

pBC
1 =

2a1b1 + a2c

4b1b2 − 3c2
=

2α1β1β2 − α1γ
2 − α2β1γ

4β1β2 − 3γ2
, (5.15)

pBC
2 =

2a2b1 + a1c−
a2c2

b2

4b1b2 − 3c2
=

(2α2β1 − α1γ) (β1β2 − γ2)

β1 (4β1β2 − 3γ2)

and

qBC
1 = b1b2−c2

b2
pBC
1 = 2α1β1β2−α2β1γ−α1γ2

β1(4β1β2−3γ2)
,

qBC
2 = b2p

BC
2 = 2α2β1−α1γ

4β1β2−3γ2 ,
(5.16)

with corresponding profits πBC
i = pBC

i qBC
i .

4. case: firm 1 sets the quantity and firm 2 sets the price

By arguments of symmetry just interchange indices i and j and the super-

scripts BC to CB in (5.15), (5.16) in order to get the equilibrium values.

The comparison if these equilibrium values of the simultanous move game

and the equilibrium values of the Stackelberg-game confirms Boyer and More-

aux’s result that the equilibrium prices and quantities of the Stackelberg-

game are bounded from above and below by the equilibrium prices and quan-

tities of the simulanuous move game, respectively. In particular,

Proposition 5.4. 1. Under price leadership in the Stackelberg-game the

following holds

pBB
1 < pp1 < pBC

1 and qBC
1 < qp1 < qBB

1 ∀ γ, (5.17)
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pBB
2

(>)
< pp2

(>)
< pBC

2 and qBB
2

(>)
< qp2

(>)
< qBC

2 for γ
(<)
> 0 (5.18)

πBC
1 < πBB

1 < πp
1 , (5.19)

πBB
2

(>)
< πp

2

(>)
< πBC

2 for γ
(<)
> 0. (5.20)

2. Quantity leadership implies

qCC
1 < qq1 < qCB

1 and pCB
1 < pq1 < pCC

1 , (5.21)

pCC
2

(<)
> pq2

(<)
> pCB

2 and qCC
2

(<)
> qq2

(<)
> qCB

2 for γ
(<)
> 0 (5.22)

πCB
1 < πCC

1 < πq
1 ∀ γ, (5.23)

πCB
2

(>)
< πq

2

(>)
< πCC

2 for γ
(<)
> 0. (5.24)

This result confirms Boyer and Moreaux (1987) but under weaker con-

ditions in which no correlations between cross-effects and market size exist.

Moreover, since the leader’s profits are larger than the profits of the simulanu-

ous move game (compare equation (5.19) and (5.23)), i.e. the (informational)

advantage of beeing the leader (compared to the situation in the simulanuous

move game) is also reflected the leader’s profits.

For an illustration of Proposition 5.4 consider the following example.

Example 8. Consider α1 = α2 = 4, β1 = β2 = 2. This implies that
γ2

β1β2
= γ2

4
> 0 measures the degree of product differentiation. For this

parameter constellation the equations (5.17), (5.18), (5.19) and (5.20) 36

yield the following figures 5.3, 5.4 and 5.5.

36Examples for (5.21), (5.22), (5.23) and (5.24) is omitted.
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R

−2 0 2

qq1

qCB
1

qCC
1

R

−2 0 2

pq1

pCB
1

pCC
1

Figure 5.3: Quantity and price of firm 1.

R

−2 0 2

qq2

qCB
2

qCC
2

R

−2 0 2

pq2

pCB
2

pCC
2

Figure 5.4: Quantity and price of firm 2.

R

−2 0 2

πq
1

πCB
1

πCC
1

R

−2 0 2

πq
2
πCB
2

πCC
2

Figure 5.5: Profits of firm 1 and 2.
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A direct consequence of Proposition 5.4 is that if the goods are substitutes

(complements), then producers’ surplus is higher in the Stackelberg-game

under price (quantity) leadership than in the Bertrand (Cournot) equilibrium

of the simultanuous move game.

Next, the last result compares total and consumers’ surplus in the Stack-

elberg game with those of the simultanuous move game. Loosely speaking it

is shown that consumers’ and total surplus are increasing in the number of

price-setting firms.

Proposition 5.5. Total and consumer surplus is always highest in the Bertrand

equilibrium and lowest in the Cournot equilibrium. In between the price

(quantity) Stackelberg is always better (worse) than the mixed Nash in which

firm 1 sets a price (quantity)37.

This generalizes the results of Boyer and Moreaux (1987), i.e. total and

consumer surplus are increasing in the number of price-setting firms. More-

over, both, Proposition 5.5 and the result of Vives (1985), imply that simul-

taneous Bertrand competition is optimal in terms of welfare and consumer

surplus.

5.3 Concluding Remarks

In this chapter the model by Boyer and Moreaux (1987) was generalized by

using a less restrictive utility function which was introduced by Dixit (1979).

The implications of this more general utility function are twofold: First, the

demands for the two goods as a function of prices do not coincide and second

the cross-effects are different. In contrast to Boyer and Moreaux (1987) it

is shown that the leader’s price (quantity) in the price Stackelberg model is

not necessarily higher (lower) than the follower’s one. Moreover, it is shown

that price setting of at least one firm is preferable in terms of welfare and

consumers’ surplus independently of the game structure (simultaneous or

sequential).

37The ranking of the mixed Nash in which firm 1 sets a price (quantity) and the quantity
(price) Stackelberg depends on the exact parameter constelation.
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Last, in contrast to Boyer and Moreaux (1987), the orderings of prices,

quantities and profits of the different simultaneous move (Cournot, Bertrand,

mixed) and leader-follower games by Boyer and Moreaux (1987) are verified

only for firm 1. For firm 2 these orderings depend on both: the market size

and the nature of the goods (substitutes or complements).



Chapter 6

Summary and Concluding

Remarks

In general a decision maker’s knowledge about future states of the world

is imperfect and, hence, he faces risk when making a decision. However,

the sourcing of additional information may increase the decision maker’s

knowledge and reduce the riskyness in the decision problem. A novel concept

of information systems has been introduced in Chapter 2. In contrast to the

traditional literature on economics where the prior is typically kept fixed, this

new approach allows for different priors. Similar to the traditional literature,

it formalizes the idea that information are revealed through the observation

of a signal that is correlated with the state of the world. In particular, an

information system consists of an information structure and a prior belief.

Intuitively, the correlation of signals and states is jointly determined by the

information structure and the prior belief.

Building on this, some fundamental and desirable properties of informa-

tiveness concepts have been discussed in Chapter 3 and two novel informa-

tiveness concepts, weak and strong informativeness, have been introduced.

These two informativeness concepts take the impact of the prior on infor-

mativeness into account. Moreover, it is shown how these concepts relate to

informativeness concepts of Blackwell (1951, 1953), Lehmann (1988)/Persico

(1996) and Kim (1995): If the prior belief is fixed, then weak informative-

111
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ness is weaker than any other informativeness concept considered in this work

while strong informativeness is neither stronger nor weaker than the tradi-

tional concepts. Furthermore, an information system is more valuable for

all decision makers with supermodular preferences if and only if the former

information system is weakly more informative than the latter one and if

additionally the information systems have equal underlying prior beliefs.

The following Chapter 4 analyzed the value of information in two different

economic environments. The main result of the first model is that the demand

for costly information is decreasing in the degree of (relative) risk aversion for

broad range of parameters. The main result of the second model generalizes

parts of the result by Schlee (2001) showing that the value of information is

negative in a production economy with many commodities as well as complete

and efficient risk-sharing markets.

Finally, Chapter 5 studies the role of information in a Stackelberg game.

In particular, the value of information about the competitor’s strategy space

is zero. The intuition for this result is that after observing the leader’s choice,

the follower acts as a monopolist on the remaining market and, hence, it

does not matter whether he sets a quantity or a price because his profits

are predetermined by the leader’s choice. Consequently, it does not matter

for the leader whether the follower sets a price or a quantity and, hence,

information about the follower’s strategy space are worthless.

Some interesting research questions are not considered here. First, the

production and supply of information. Suppose, for instance, the model of

Chapter 4.1. How are the information systems produced? And, how does

the production cost put together? Second, what about the equilibrium value

of information in an economy where the consumers’ preferences and/or the

firms’ production sets are state-dependent? And third, how are weak and

strong informativeness characterized in terms of their value? Is it possible

to characterize these concepts in terms of ex ante expected utility also for

different prior beliefs? I am currently working on these questions in a joint

project with Prof. Dr. Bernhard Eckwert and Dr. Felix Várdy. Our prelim-

inary result is, loosely speaking, that a system is weakly more informative

than another one if and only if it is more valuable for all decision makers
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with quasi-linear preferences who are indifferent (in a certain sense) without

information.



Appendix A

Notation

Information systems: States and signals

• Ω - state space; F - σ-algebra of subsets in Ω;

ω̃ - state variable; ω - realization of state variable;

FΩ, fΩ - cdf and pdf (or probability mass function) of prior belief on Ω;

∆(Ω) - set of pdfs (or probability mass functions) on Ω.

• S - signal space; S - σ-algebra of subsets in S;

s̃ - signal variable; s - signal realization;

FS, fS - cdf and pdf (or probability mass function) of (marginal) signal

distributions.

• FS,Ω, fS,Ω - cdf and pdf of joint distribution of signals and states.

• FΩ|S, fΩ|S - cdf and pdf of the posterior/conditional state distribution.

• F 0
S0|Ω, f

0
S0|Ω - fully uninformative information structure;

F 1
S1|Ω, f

1
S1|Ω - full informative information structure.

• %inf

- arbitrary informativeness concept;

%b - Blackwell’s sufficiency criterion;

%a - Accuracy;

%l-inf

- Local informativeness;

I
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%mps

- MPS-precision;

%sm - SM-precision;

%w-inf

- weak informativeness;

%s-inf

- strong informativeness.
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• M - set of information structures with MLRP;

D - set of information structures which conditional signal densities

are twice continuously differentiable with respect to ω.

Γ(fΩ) - set of information structures with MLRP and normalized signals

given the prior fΩ;

Γ - set of all information systems with MLRP and normalized signals.

Decisions and utility

• A - action set.

• O - set of outcomes.

• u - (fundamental) utility;

U(a, ω̃) - expected utility;

v(a, ω) - indirect utility (from an action and an state of world);

V ((fS|Ω, fΩ), ·, v) - ex ante expected utility under information system

(fS|Ω, fΩ) for an agent with indirect or direct utility v.

Chapter 4

Section 4.1

• I - set of consumers;

• n - number of individual states;

• ǫ - error level;

• f ǫ
Si|Ω

- information service with error level ǫ;

• c(ǫ) - cost of producing an information service with error level ǫ;

• P (ǫ) - price for an information service with error level ǫ;

Section 4.2

• N - number of states;

• J - set of firms;

J - number of firms;
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• I set of consumers;

I - number of consumers;

• C ⊆ RC
+ - commodity space;

C - number of different commodities;

Cc ⊆ R+ - space of commodity c ∈ {1, . . . , C}.

• w(ω, i) ∈ C - endowment vector of agent i ∈ I ∪ J in state ω;

wc(ω, i) - endowment of commodity c of agent i in state ω;

w(i) ∈ CN - agent i’s tupel of endowment vectors for each state;

wc(ω) ∈ Cc - aggregate endowment of commodity c in state ω;

• Yj - firm j’s technology/production set;

y(ω, j) ∈ Yj - firm j’s production vector (positive=output; negative=input);

y(j) - firm j’s state-contingent production plan;

• x(ω, i) ∈ C - consumer i’s consumption vector in state ω;

x(i) ∈ CN - consumer i’s state-contingent consumption plan;

Bi - consumer i’s budget set;

• (x(ω), y(ω)) ∈ CI ×
⊗

j∈J

Yj - allocation in state ω;

(x, y) ∈
(
CS
)I

×
⊗

j∈J

Y N
j - allocation of state-contingent commodities;

• p ∈
(
RC

+

)N
- price vector for state-contingent claims.

In particular, pc,ω denotes the price for a claim which pays one unit

of commodity c if the state is ω and nothing otherwise.

Chapter 5

• πpq
i (qpqi , ppqi ) - firm i’s profit (quantity, price) if firm 1 sets a price and

firm 2 sets a quantity;

πqp
i (qpqi , ppqi ) - firm i’s profit (quantity, price) if firm 1 sets a quantity

and firm 2 sets a price;

πpp
i (qppi , pppi ) - firm i’s profit (quantity, price) if both firms set a price;

πqq
i (qqqi , pqqi ) - firm i’s profit (quantity, price) if both firms set quantities.



Appendix B

Proofs of Chapter 3

Proof of Lemma 3.1 (P0′): Define f̂ 0
S0|S : S0×S, (s0, s) 7→ f 0

S0(s0). Then,

ES

[

f̂ 0
S0|S(s

0|s̃)|ω
]

= ES

[
f 0
S0(s0)|ω

]
= f 0

S0(s0) = f 0
S0|Ω(s

0|ω) ∀ s0 ∈ S0, ω ∈ Ω.

This implies fS|Ω %b f 0
S0|Ω for all information structures fS|Ω.

(P1′): Consider f 1
S1|Ω. Define implicitly

ω1 : S1 → Ω, s1 7→ ω1(s1),

such that s1 ∈ C1(ω(s1)). This implies

s1 ∈ C1(ω) ⇒ ω1(s1) = ω. (B.1)

For an information structure fS|Ω define

f̂S|S1 : S × S1, (s, s1) 7→ f̂S|S1(s|s1) = fS|Ω(s|ω(s
1)). (B.2)

Then

ES1

[

f̂S|S1(s|s̃1)|ω
]

(B.2)
= ES1

[
fS|Ω(s|ω

1(s̃1))
] (??),(B.1)

= fS|Ω(s|ω)

for all s ∈ S, ω ∈ Ω. This implies f 1
S1|Ω %b fS|Ω for all information structures

fS|Ω.

V
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(P2): Consider information structures f̄S̄|Ω, fS|Ω and f̌Š|Ω such that f̄S̄|Ω %b fS|Ω

and fS|Ω %b f̌Š|Ω. Therefore,

fS|Ω(s|ω) = ĒS̄

[
ˆ̄fS|S̄(s|˜̄s)|ω

]

∀ s ∈ S, ω ∈ Ω (B.3)

and

f̌Š|Ω(š|ω) = ES

[
ˆ̌fŠ|S(š|s̃)|ω

]

∀ š ∈ Š, ω ∈ Ω. (B.4)

Now define

¯̌fŠ|S̄ : Š × S̄ → R+, (š, s̄) 7→ ES

[
ˆ̌fŠ|S(š|s̃)|s̄

]

.

Then,

ĒS̄

[
¯̌fŠ|S̄(š|˜̄s)|ω

]

= ĒS̄

[

ES

[
ˆ̌fŜ|S(š|s̃)|˜̄s

]

|ω
]

=

∫

S̄

∫

S

ˆ̌fŠ|S(š|s)
ˆ̄fS|S̄(s|s̄)f̄S̄|Ω(s̄|ω)dsds̄

Fubini,(B.3)
=

∫

S

ˆ̌fŠ|S(š|s)fS|Ω(s|ω)ds
(B.4)
= f̌Š|Ω(š|ω)

for all š ∈ Š, ω ∈ Ω.

(P3): Define f̂S|S(s|s
′) = 1{s′}(s), where δ{s′} denotes the indicator func-

tion of the set {s′} ∈ S.38 Then

ES

[

f̂S|S|ω
]

= fS|Ω(s|ω) ∀ s ∈ S, ω ∈ Ω

shows fS|Ω %b fS|Ω for all information structures fS|Ω.

(IS): Suppose fS|Ω %b f̄S̄|Ω and let t : Ω → Ω′ be bijective. Hence, there

exists an information structure f̂S̄|S such that

f̄S̄|Ω(s̄|ω) = ES

[

f̂S̄|S(s̄|s̃)|ω
]

∀ s̄ ∈ S̄, ω ∈ Ω.

38Remember: 1{s′}(s) =

{
1 if s = s′

0 else.
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Since fS|t(Ω)(s|ω
′) = fS|Ω(s|t

−1(ω′)) and f̄S̄|t(Ω)(s̄|ω
′) = f̄S̄|Ω(s̄|t

−1(ω′)) for all

s ∈ S, s̄ ∈ S̄ and ω′ ∈ t(Ω), this implies

f̄S|t(Ω)(s̄|ω
′) = f̄S̄|Ω(s̄|t

−1(ω′)) = ES

[

f̂S̄|S(s̄|s̃)|t
−1(ω′)

]

∀ s̄ ∈ S̄, ω′ ∈ t(Ω).

Hence, fS|t(Ω) %
b

f̄S̄|t(Ω). �

Proof of Proposition 3.1 Define

γS|(S̄,S) : S × S̄ × S, (s, s̄, s′) 7→

{

1 if s = s′

0 else.

Then,

E(Ŝ,S)

[

γS|(S̄,S)(s, ˜̂s, s̃
′)|ω
]

=

∫

S̄

∫

S

γS|(S̄,S)(s, s̄, s
′)f(S,S̄)|Ω(s̄, s

′|ω)ds′ds̄

=

∫

S̄

f̄S̄|Ω(s̄|ω)fS|Ω(s|ω)ds̄ = fS|Ω(s|ω).

�

The proof of Proposition 3.3 makes use of the following Lemma:

Lemma B.1. (i) fS|Ω ∈ M =⇒ FS|Ω(s|ω) ≥ FS|Ω(s|ω
′) for all ω, ω′ ∈ Ω,

ω′ ≥ ω, and all s ∈ S.

(ii) fS|Ω ∈ M =⇒ F−1(p|ω) ≤ F−1(p|ω′) for all ω, ω′ ∈ Ω and all

p ∈ [0, 1].

Proof: (i) Let fS|Ω ∈ M. The MLRP is equivalent to

fS|Ω(s
′|ω′)fS|Ω(s|ω) ≥ fS|Ω(s|ω

′)fS|Ω(s
′|ω) for all ω′ ≥ ω and s′ ≥ s. (B.5)
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Integration of (B.5) over s from s to s′ delivers

fS|Ω(s
′|ω′)FS|Ω(s

′|ω) ≥ fS|Ω(s
′|ω)FS|Ω(s

′|ω′) for all ω′ ≥ ω and s′ ∈ S

⇐⇒
fS|Ω(s

′|ω′)

fS|Ω(s|ω)
≥

FS|Ω(s
′|ω′)

FS|Ω(s′|ω)
for all ω′ ≥ ω and s′ ∈ S. (B.6)

Next, integration of (B.5) over s′ from s to s̄ delivers

(1− FS|Ω(s|ω
′))fS|Ω(s|ω) ≥ fS|Ω(s|ω

′)(1− FS|Ω(s|ω)) for all ω′ ≥ ω and s ∈ S

⇐⇒
1− FS|Ω(s|ω

′)

1− FS|Ω(s|ω)
≥

fS|Ω(s|ω
′)

fS|Ω(s|ω)
for all ω′ ≥ ω and s ∈ S. (B.7)

Combining equations (B.6) and (B.7) gives

1− FS|Ω(s|ω
′)

1− FS|Ω(s|ω)
≥

FS|Ω(s|ω
′)

FS|Ω(s|ω)
for all ω′ ≥ ω and s ∈ S

⇐⇒
1− FS|Ω(s|ω

′)

FS|Ω(s|ω′)
≥

1− FS|Ω(s|ω)

FS|Ω(s|ω)
for all ω′ ≥ ω and s ∈ S.

Hence, FS|Ω(s|ω
′) ≤ FS|Ω(s|ω) for all ω ≤ ω′ and s ∈ S.

(ii) Part (i) implies that FS|Ω(s|ω) is decreasing in ω for all ω ∈ Ω. Therefore,

F−1
S|Ω(p|ω) := inf

{
s ∈ S|FS|Ω(s|ω) ≥ p

}
must be increasing in ω for all p ∈

[0, 1]. �

Proof of Proposition 3.3 (P0′): Let f 0
S0|Ω, fS|Ω ∈ M. Since f 0

S0|Ω is fully

uninformative it follows f 0
S0|Ω(s

0|ω) = f 0
S0|Ω(s

0|ω′) for all ω, ω′ ∈ Ω and all

s0 ∈ S0. This implies that F 0
S0|Ω(s

0|ω) is constant in ω for all s0 ∈ S0. Since

fS|Ω has the MLRP, Lemma B.1 (ii) now implies that

T : S0 × Ω, (s0, ω) 7→ F−1
S|Ω(F

0
S0|Ω(s

0|ω)|ω)

is nondecreasing in ω for all s0 ∈ S0 which shows fS|Ω %a f 0
S0|Ω.

(P1′): Now consider f 1
S1|Ω, fS|Ω ∈ M. First, observe that the definition of

f 1
S1|Ω implies F 1−1

S1|Ω(p|ω) ∈ C1(ω) for all p ∈ [0, 1]. Next observe that for
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an information structure with MLRP, f 1
S1|Ω ∈ M, the following holds: Let

s ∈ C1(ω) and s′ ∈ C1(ω′). Since C1(ω) ∩ C1(ω′), ω′ ≥ ω implies s ≤ s′.

These two observations imply that

T : S × Ω → S1, (s, ω) 7→ F 1−1

S1|Ω(F (s|ω)|ω)

is nondecreasing in ω for all s ∈ S.

(P2): Let fS|Ω, f̄S|Ω, f̂Ŝ|Ω ∈ M such that fS|Ω %a f̄S̄|Ω and f̄S̄|Ω %a f̂Ŝ|Ω. Hence,

T̄ : S̄ × Ω → S, (s̄, ω) 7→ F−1
S|Ω(F̄S̄|Ω(s̄|ω)|ω)

and

ˆ̄T : Ŝ × Ω → S̄, (ŝ, ω) 7→ F̄−1
S̄|Ω

(F̂Ŝ|Ω(ŝ|ω)|ω)

are nondecreasing in ω for all s̄ ∈ S̄ and ŝ ∈ Ŝ, respectively. Since the

composition of two nondecreasing functions is in turn nondecreasing, this

implies that

T̂ : Ŝ × Ω → S, (ŝ, ω) 7→ F−1
S|Ω(F̂Ŝ|Ω(ŝ|ω)|ω) = T̄ ◦ ˆ̄T (ŝ, ω)

is nondecreasing in ω for all ŝ ∈ Ŝ.

(P3): Let fS|Ω ∈ M. Then,

T : S × Ω → S, (s, ω) 7→ F−1
S|Ω(FS|Ω(s|ω)|ω) = s

is the projection of (s, ω) on s and, hence, constant in ω for all s ∈ S.

(OS): First, observe that for fS|Ω ∈ M and a strictly increasing state trans-

formation t : Ω → R it is obvious that fS|t(Ω) ∈ M.39 Moreover, for

39In particular: fS|Ω(s|ω)/fS|Ω(s|ω′) is decreasing in s for all ω, ω′ ∈ Ω such that ω′ ≥ ω
t strictly increasing

⇐⇒ fS|t(Ω)(s|ω̄)/fS|t(Ω)(s|ω̄
′) = fS|Ω(s|t−1(ω̄))/fS|Ω(s|t−1(ω̄′) is decreasing in s for all

ω̄, ω̄′ ∈ t(Ω) such that ω̄′ ≥ ω̄.
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fS|Ω, f̄S̄|Ω ∈ M and t : Ω → R strictly increasing, it is

T : S̄ × t(Ω) → S, (s, ω) 7→ F−1
S|t(Ω)(F̄S̄|t(Ω)(s̄|ω)|ω) = F−1

S|Ω(F̄S̄|Ω(s̄|t
−1(ω))|t−1(ω))

Since t is strictly increasing this implies that if F−1
S|Ω(F̄S̄|Ω(s̄|ω)|ω) is nonde-

creasing in ω for all s̄ ∈ S̄, then F−1
S|t(Ω)(F̄S̄|t(Ω)(s̄|ω

′)|ω′) is nondecreasing in

ω′ for all s̄ ∈ S̄. �

Proof of Proposition 3.4 (P0): Consider f 0
S0|Ω, fS|Ω ∈ D. Since f 0

S0|Ω is

state independent it follows that ∂f0
S0|Ω

(s0|ω)/∂ω = 0 for all s0 ∈ S0 and ω ∈ Ω.

Hence, ES

[
∂f0

S0|Ω/∂ω

f0
S0|Ω

(s̃|ω)|ω

]

= 0 for all ω ∈ Ω and

Lf0
S0|Ω

(x, ω) =

{

0 , if x < 0,

1 , if x ≥ 0.
for all ω ∈ Ω.

• Case A: Suppose there is ω ∈ Ω such that ES

[
∂fS|Ω/∂ω

fS|Ω
(s̃|ω)|ω

]

6= 0.

Then, whether Lf0
S0|Ω

(·, ω) is a MPS of LfS|Ω
(·, ω) nor LfS|Ω

(·, ω) is a

MPS of Lf0
S0|Ω

(·, ω). Hence, fS|Ω 6%l-inf

f̄S̄|Ω and f̄S̄|Ω 6%l-inf

fS|Ω.

• Case B: Suppose ES

[
∂fS|Ω/∂ω

fS|Ω
(s̃|ω)|ω

]

= 0 for all ω ∈ Ω. In particular,

this implies the following: If
∂fS|Ω

∂ω
(s|ω) 6= 0 for some ω ∈ Ω and s ∈

S (i.e. fS|Ω is not fully uninformative), then there exist x < 0 s.t.

LfS|Ω
(x, ω) > 0. Hence,

x∫

−∞

Lf0
S0|Ω

(x′, ω)− LfS|Ω
(x′, ω)dx′ = −

x∫

−∞

LfS|Ω
(x′, ω)dx′ < 0.

This implies that LfS|Ω
(·, ω) is not a MPS of Lf0

S0|Ω
(·, ω), i.e. fS|Ω 6%l-inf

f 0
S0|Ω.

(P2): Let fS|Ω, f̄S|Ω, f̂Ŝ|Ω ∈ D such that fS|Ω %l-inf

f̄S̄|Ω and f̄S̄|Ω %l-inf

f̂Ŝ|Ω. In

particular, this implies that LfS|Ω
(·, ω) is a MPS of Lf̄S̄|Ω

(·, ω) for all ω ∈ Ω

and that Lf̄S̄|Ω
(·, ω) is a MPS of Lf̂

Ŝ|Ω
(·, ω) for all ω ∈ Ω. Consequently,

LfS|Ω
(·, ω) and Lf̂

Ŝ|Ω
(·, ω) have equal mean for all ω ∈ Ω. And since the
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convex order is transitive this implies fS|Ω %l-inf

f̂Ŝ|Ω.

(P3): Obvious.

(wOS): This part of the proof makes use of the following equality: For any

fS|Ω ∈ D and for any strictly increasing, (twice) continuously differentiable

function t : Ω → R the following holds

LfS|t(Ω)
(x, ω) =Prob

(
∂fS|t(Ω)/∂ω

fS|t(Ω)

(s̃|ω′) ≤ x

)

=Prob

(
∂fS|Ω/∂ω

fS|Ω
(s̃|t−1(ω′))

(
t−1
)′
(ω′) ≤ x

)

=LfS|Ω

(
x

(t−1)′ (ω′)
, t−1(ω′)

)

. (B.8)

Now consider fS|Ω, f̄S̄|Ω ∈ D such that fS|Ω %l-inf

f̄S̄|Ω and let t : Ω → R

be strictly increasing and twice continuously differentiable. First, observe

that this implies that LfS|t(Ω)
(·, ω′) and Lf̄S̄|t(Ω)

(·, ω) have equal mean for all

ω′ ∈ t(Ω), i.e.

ES

[
∂fS|t(Ω)/∂ω

fS|t(Ω)

(s̃|ω′)|ω′

]

= ES

[
∂fS|Ω/∂ω

fS|Ω
(s̃|ω′)|t−1(ω′)

]

=ES

[
∂f̄S|Ω/∂ω

f̄S|Ω
(s̃|ω′)|t−1(ω′)

]

= ES

[
∂f̄S̄|t(Ω)/∂ω

f̄S̄|t(Ω)

(s̃|ω′)|ω′

]

for all ω′ ∈ t(Ω). Then, the inequality

x∫

−∞

LfS|t(Ω)
(x′, ω′)dx′ =

(
t−1
)′
(ω′)

︸ ︷︷ ︸

const.

x

(t−1)′(ω′)∫

−∞

LfS|Ω
(x′, t−1(ω′))dx′

≤
(
t−1
)′
(ω′)

︸ ︷︷ ︸

const.

x

(t−1)′(ω′)∫

−∞

Lf̄S̄|Ω
(x′, t−1(ω′))dx′ =

x∫

−∞

Lf̄S̄|t(Ω)
(x′, ω′)dx′
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holds for all x ∈ R and ω′ ∈ t(Ω). The equalities follow from equation (B.8)

and the transformation theorem while the inequality follows by assumption

(fS|Ω %l-inf

f̄S̄|Ω). Summing up, it follows fS|t(Ω) %
l-inf

f̄S̄|t(Ω). �

Proof of Proposition 3.6 (P0′): Consider f 0
S|Ω ∈ Γ(f 0

Ω), the normalized,

fully uninfomative information structure, and fS|Ω ∈ Γ(fΩ). Then the MLRP

implies that

ω∫

ω
¯

fS,Ω(s, ω
′)− f 0

S,Ω(s, ω
′)dω′ = FΩ|S(ω|s)− FΩ(ω).

is decreasing in s and, hence, (fS|Ω, fΩ) %
s-inf

(f 0
S|Ω, f

0
Ω) and (fS|Ω, fΩ) %

w-inf

(f 0
S|Ω, f

0
Ω).

(P1): Let f 1
S|Ω denote the for the prior f 1

Ω normalized, fully informative

information structure with MLRP (i.e. f 1
S|Ω ∈ Γ(f 1

Ω) and f 1
S|Ω fully informa-

tive) and let fS|Ω ∈ Γ(fΩ). Now consider

D(s, ω) :=

ω∫

ω
¯

fS,Ω(s, ω
′)− f 1

S,Ω(s, ω
′)dω′ =

{

FΩ|S(ω|s) if ω < ω1(s)

FΩ|S(ω|s)− 1 if ω ≥ ω1(s)

D(s, ω) :=

ω∫

ω
¯

fS,Ω(s, ω
′)− f 1

S,Ω(s, ω
′)dω′ =

{

FΩ|S(ω|s) if ω < ω1(s)

FΩ|S(ω|s)− 1 if ω ≥ ω1(s)

where ω1(s) : S → Ω is implicitly defined by s ∈ C1(ω1(s)). The MLRP im-

plies that ω1(s) is non-decreasing in s. Next fix ω̂ ∈ Ω such that FΩ|S(ω̂|ŝ) < 1

where ŝ := inf(C1(ω′)). If fS,Ω 6≡ f 1
S,Ω,40 then exists s′ < ŝ with ω̂ < ω1(s′)

and D(s′, ω̂) = FΩ|S(ω̂|s
′)−1 < 0. Since for any s′′ ≥ ŝ it is ω̂ ≥ ω1(ŝ), which

implies D(s′′, ω̂) = FΩ|S(ω̂|s
′′) ≥ 0, it follows that D(s, ω̂) is increasing in ŝ.

This shows (fS|Ω, fΩ) 6%
s-inf

(f 1
S|Ω, f

1
Ω) and (fS|Ω, fΩ) 6%

w-inf

(f 1
S|Ω, f

1
Ω).

(P2): Consider (fS|Ω, fΩ), (f̄S|Ω, f̄Ω), (f̂S|Ω, f̂Ω) ∈ Γ such that (fS|Ω, fΩ) %
x

(f̄S|Ω, f̄Ω)

40 fS,Ω ≡ f1
S,Ω, then both systems are fully informative.
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and (f̄S|Ω, f̄Ω) %
x

(f̂S|Ω, f̂Ω) for x ∈ {s-inf, w-inf}. For x = s-inf it follows that

ω∫

ω
¯

fS,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′

=

ω∫

ω
¯

fS,Ω(s, ω
′)− f̄S,Ω(s, ω

′)dω′ +

ω∫

ω
¯

f̄S,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′

is non-increasing in s for all ω ∈ Ω, i.e. (fS|Ω, fΩ) %
s-inf

(f̂S|Ω, f̂Ω).

x = w-inf implies

FS,Ω(s, ω)− sFΩ(ω) ≥ F̄S,Ω(s, ω)− sF̄Ω(ω) ≥ F̂S,Ω(s, ω)− sF̂Ω(ω) ∀ (s, ω) ∈ S × Ω

and, hence, (fS|Ω, fΩ) %
w-inf

(f̂S|Ω, f̂Ω).

(P3): Obvious.

(OS): Consider a strictly increasing, differentiable state transformation t : Ω →

R and define x̃ := t(ω̃). For an information system (fS|Ω, fΩ) ∈ Γ, equations

(3.1) and (3.2) imply for the joint distribution of x̃ = t(ω̃) and s

fS,t(Ω)(s, x) =
fS,Ω(s, t

−1(x))

t′(t−1(x))
.

Hence,

x∫

x
¯

fS,t(Ω)(s, x
′)dx′ =

x∫

x
¯

fS,Ω(s, t
−1(x′))

t′(t−1(x′))
dx′ =

t−1(x)∫

ω
¯

fS,Ω(s, ω)dω (B.9)
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and

FS,t(Ω)(s, x)− sFt(Ω)(x) =

s∫

0

x∫

x
¯

fS,t(Ω)(s
′, x′)− ft(Ω)(x

′)dx′ds′

=

s∫

0

t−1(x)∫

ω
¯

fS,Ω(s
′, ω)− fΩ(ω

′)dωds′

=FS,Ω(s, t
−1(x))− sFΩ(t

−1(x)). (B.10)

The claim follow from Definition 3.10 and equations (B.9) and (B.10). �

The proof of Proposition 3.7 makes use of the following Lemma which is a

variation of Theorem (3.A.5) in Shaked and Shantbikumar (2007).

Lemma B.2. Let s̃ be uniformly distributed on S = [0, 1] and let gi : [0, 1] →

R, i = 1, 2, be integrable and increasing functions with ES [g1(s̃)] = ES [g2(s̃)].

Then x̃1 := g1(s̃) is a MPS of x̃2 := g2(s̃), iff

s∫

0

g1(s
′)− g2(s

′)ds′ ≤ 0 ∀ s ∈ [0, 1]

⇐⇒

1∫

s

g1(s
′)− g2(s

′)ds′ ≥ 0 ∀ s ∈ [0, 1]

Proof of Proposition 3.7 Integration by parts yields for any fS|Ω ∈ Γ(fΩ),

any fΩ ∈ ∆(Ω) and any (strictly) increasing state transformation t : Ω → R

EΩ [t(ω̃)|s] = t(ω̄)−

∫

Ω

ω∫

ω
¯

fS,Ω(s, ω
′)t′(ω)dω′dω = t(ω̄)−

∫

Ω

FΩ|S(ω|s)t
′(ω)dω.

(B.11)

First, consider the strong informativeness criterion. The weak information

criterion will be dealt with subsequently.
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(i) "⇒": Let fS|Ω ∈ Γ(fΩ), f̄S|Ω ∈ Γ(f̄Ω) and assume (fS|Ω, fΩ) %
s-inf

(f̄S|Ω, f̄Ω).

Using equation B.11 yields

EΩ [t(ω̃)|s]− ĒΩ [t(ω̃)|s]

=−

∫

Ω

ω∫

ω
¯

[
fS,Ω(s, ω

′)− f̄S,Ω(s, ω
′)
]
t(ω′)dω′dω (B.12)

(fS|Ω, fΩ) %
s-inf

(f̄S|Ω, f̄Ω) implies that
ω∫

ω
¯

fS,Ω(s, ω)−f̄S,Ω(s, ω) is non-increasing

in s for all ω ∈ Ω. Therefore, the LHS of B.12 is non-decreasing in s. Together

with OS this shows (fS|t(Ω), ft(Ω)) %
sm

(f̄S|t(Ω), ft(Ω)) for all (strictly) increasing

state transformations t : Ω → R.

"⇐": This direction is shown by contradiction: (fS|Ω, fΩ) %
sm

(f̄S|Ω, f̄Ω)

and (fS|Ω, fΩ) 6%
s-inf

(f̄S|Ω, f̄Ω) =⇒∃ t : Ω → R s.t. (fS|t(Ω), ft(Ω)) 6%
sm

(f̄S|t(Ω), f̄t(Ω)).

Therefore, suppose (fS|Ω, fΩ) %
sm

(f̄S|Ω, f̄Ω) and (fS|Ω, fΩ) 6%
s-inf

(f̄S|Ω, f̄Ω).

Now define

D(s, ω) :=

ω∫

ω
¯

fS,Ω(s, ω
′)− f̄S,Ω(s, ω

′)dω′. (B.13)

Since (fS|Ω, fΩ) 6%
s-inf

(f̄S|Ω, f̄Ω) for some s′, s′′ ∈ S = S, s′ > s′′, there exists

Ω0(s, s
′) ⊂ Ω (with positive measure) such that

D(s′, ω)−D(s′′, ω) > 0 for any ω ∈ Ω0(s
′, s′′). (B.14)

Choose ǫ > 0 and define a state transformation such that

t′(ω) =

{

1 if ω ∈ Ω0(s
′, s′′),

ǫ if ω 6∈ Ω0(s
′, s′′).

(B.15)

This yields

EΩ [t(ω̃)|s]− ĒΩ [t(ω̃)|s]
(B.12),(B.21)

= −

∫

Ω

D(s, ω)t′(ω)dω. (B.16)
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Thus,

(
EΩ(t(ω̃)|s

′)− ĒΩ [t(ω̃)|s′]
)
−
(
EΩ(t(ω̃)|s

′′)− ĒΩ [t(ω̃)|s′′]
)

(B.15),(B.16)
= −

∫

Ωo(s′,s′′)

(D(s′, ω)−D(s′′, ω)) t′(ω)dω −

∫

Ω\Ω0(s′,s′′)

(D(s′, ω)−D(s′′, ω)) t′(ω)dω

(B.15)

≤ −

∫

Ωo(s′,s′′)

(D(s′, ω)−D(s′′, ω))dω + ǫ

∫

Ω\Ω0(s′,s′′)

|D(s′, ω)−D(s′′, ω)|dω

which is by (B.14) negatice for ǫ sufficiently small. Hence, (fS|t(Ω), ft(Ω)) 6%sm

(f̄S|t(Ω), f̄t(Ω)).

(ii) "⇒": Suppose (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, f̄Ω). From the Definition of the

weak informativeness criterion follows

0 ≥

∫

Ω

[
F̄S,Ω(s, ω)− sF̄Ω(ω)

]
− [FS,Ω(s, ω)− sFΩ(ω)]dω (B.17)

Fubini
=

s∫

0

∫

Ω

[
F̄Ω|S(ω|s)− F̄Ω(ω)

]
−
[
FΩ|S(ω|s)− FΩ(ω)

]
dωds (B.18)

(B.11)
=

s∫

0

[
ĒΩ|S [ω̃|s]− ĒΩ [ω̃]

]
−
[
EΩ|S [ω̃|s]− EΩ [ω̃]

]
ds (B.19)

Together with Lemma B.2 and OS this implies (fS|t(Ω), ft(Ω)) %
mps

(f̄S|t(Ω), f̄t(Ω))

for all strictly increasing t : Ω → R.

"⇐": Along the same lines as the "⇐"-part of (i) above. �

Proof of Theorem 3.4 "⇒": First suppose there is ω0 ∈ Ω such that

FΩ(ω0) > F̄Ω(ω0). Then there exists t1 : Ω → R, t1 strictly increasing, such

that EΩ [t1(ω̃)] > ĒΩ [t1(ω̃)]. Now define vt1 : A× Ω → R, (a, ω) 7→ −t1(ω).

Obviously, vt1 is (weakly) supermodular in (a, ω) and

V ((fS|Ω, fΩ), a
∗, vt1) = −EΩ [t(ω̃)] < −ĒΩ [t(ω̃)] = V ((f̄S̄|Ω, fΩ), ā

∗, vt1)

Secondly, suppose the opposite, there exists ω0 ∈ Ω such that FΩ(ω0) <
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F̄Ω(ω0). Then there exists t2 : Ω → R, t2 strictly increasing, such that

EΩ [t2(ω̃)] < ĒΩ [t2(ω̃)]. Now define vt2 : A × Ω → R, (a, ω) 7→ t(ω). Obvi-

ously, ut2 is (weakly) supermodular in (a, ω) and

V ((fS|Ω, fΩ), a
∗, vt2) = EΩ [t(ω̃)] < ĒΩ [t(ω̃)] = V ((f̄S̄|Ω, f̄Ω), ā

∗, vt2)

This shows

[

V ((fS|Ω, fΩ), a
∗, v) ≥ V ((f̄S̄|Ω, fΩ), ā

∗, v)

for all supermodular v : A× Ω → R

]

⇒ FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω.

Next suppose (fS|Ω, fΩ) 6%
w-inf

(f̄S̄|Ω, f̄Ω) and FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω.41

Then, by Prop. 2 in Brandt et al. (2014), there exists a strictly increasing

function t : Ω → R such that EΩ [t(ω̃)|s̃] is not a MPS of ĒΩ [t(ω̃)|s̃].42 Hence,

Lemma 1 implies that there is ŝ ∈ [0, 1] such that

EΩ [t(ω̃)|s̃ ≥ ŝ] < ĒΩ [t(ω̃)|s̃ ≥ ŝ] . (B.20)

For arbitrary â ∈ A define

vt,ŝ(a, ω) :=

{

C if a < â

t(ω) if a ≥ â

where C := EΩ [t(ω̃)|ŝ] is constant. For a′, a ∈ A such that a′ ≥ a it is

v(a′, ω)− v(a, ω) =

{

0 if a ≤ a′ < â or â ≤ a ≤ a′

t(ω) if a < â ≤ a′.

Since t : Ω → R is strictly increasing this implies that vt,ŝ : A × Ω → R is

41The assumption of equal priors, i.e. FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω, is only for simplification.
Along similar lines as follows it is possible to show the necessarity of weak informativeness
without this restriction.

42FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω implies EΩ [t(ω̃)] = ĒΩ [t(ω̃)] for all t : Ω → R.
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supermodular in (a, ω). Moreover, for a′′ ≥ â > a′ the MLRP implies

EΩ [v(a′′, ω̃)|s] = EΩ [t(ω̃)|s]
≥

≤
EΩ [t(ω̃)|ŝ] = EΩ [v(a′, ω̃)|s]

MLRP
⇔ s

≥

≤
ŝ.

Hence, under information system (fS|Ω, fΩ) it is optimal to choose an action

a < â if s < ŝ and to choose an action a ≥ â whenever s ≥ ŝ.43 Formally,

a∗ : S → A, s 7→

{

a′ if s < s1

a′′ if s ≥ s1

for some a′ < â ≤ a′′. The optimal ex ante expected utility under information

system (fS|Ω, fΩ) is given by

V ((fS|Ω, fΩ), a
∗, ut,ŝ) = ŝEΩ [t(ω̃)|ŝ] + (1− ŝ)EΩ [t(ω̃)|s̃ ≥ ŝ]

(B.20)
< ŝEΩ [t(ω̃)|ŝ] + (1− ŝ)ĒΩ [t(ω̃)|s̃ ≥ ŝ]

= V ((f̄S̄|Ω, f̄Ω), a
∗, ut,ŝ)

optimality

≤ V ((f̄S̄|Ω, f̄Ω), ā
∗, ut,ŝ)

This implies that V ((fS|Ω, fΩ), a
∗, v) ≥ V ((f̄S̄|Ω, f̄Ω), ā

∗, v) does not hold for
all supermodular functions v : A× Ω → R and, hence,

[

V ((fS|Ω, fΩ), a
∗, v) ≥ V ((f̄S̄|Ω, fΩ), ā

∗, v)

for all supermodular v : A× Ω → R

]

⇒

[

(fS|Ω, fΩ) %w-inf
(f̄S̄|Ω, f̄Ω) and

FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω

]

.

"⇐": (fS|Ω, fΩ) %
w-inf

(f̄S̄,Ω, f̄Ω) plus FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω imply FS,Ω(s, ω) ≥
F̄S,Ω(s, ω) for all (s, ω) ∈ S × Ω. Since FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω and
FS(s) = F̄S̄(s) ∀ s ∈ S = S̄ = [0, 1] this is the concordance order as pro-
posed by Joe (1990). By Müller and Scarsini (2000) the concordance order

43Remark: This is one optimal strategy, there might be others.
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is equivalent to the supermodular stochastic order.44 Hence,

[

(fS|Ω, fΩ) %w-inf

(f̄S̄|Ω, f̄Ω)

and FΩ(ω) = F̄Ω(ω) ∀ ω ∈ Ω

]

=⇒






ES,Ω [u(a(s̃), ω̃)] ≥ ĒS̄,Ω [u(a(s̃), ω̃)]

for all supermodular u and monotone

increasing a : S → A.






(B.21)

Additionally, from Theorem 2 in Athey (2002) it follows that if v : A×Ω → R

is supermodular and fS|Ω has the MLRP, then the optimal strategy a∗ : S →

A is non-decreasing in s. Therefore, if v : A×Ω → R is supermodular, then

v : S × Ω, (s, ω) 7→ v(a∗(s), ω) is supermodular in (s, ω). Hence,

V ((f̄S̄|Ω, f̄Ω), ā
∗, v)

(B.21)

≤ V ((fS|Ω, fΩ), ā
∗, v)

optimality

≤ V ((fS|Ω, fΩ), a
∗, v)

for all supermodular functions v : A× Ω → R. �

Proof of Proposition 3.8 Proposition 1(ii) in Ganuza and Penalva (2010)

together with Proposition 3.7 show that ‘sufficiency’ does not imply ‘strongly

more informative’. Now suppose equation (3.6) would hold for some arbitrary

class of payoff functions U . Then, by Blackwell’s theorem, ‘sufficiency’ would

imply ‘strong informativeness’ which is a contradiction to the observation

above. �

Proof of Lemma 3.2 Let (fS|Ω, f̄Ω), (fS|Ω, f̂Ω) ∈ Γ and for α ∈ [0, 1] define

f̌Ω := αf̄Ω + (1− α)f̂Ω. Since fS|Ω has the MLRP, it suffies to show that the

signals under (fS|Ω, f̌Ω) are normalized, i.e. f̌S(s) = 1 ∀ s ∈ [0, 1]:

f̌S(s) =

∫

Ω

fS|Ω(s|ω)f̌Ω(ω)dω =

∫

Ω

fS|Ω(s|ω)
[

αf̄Ω(ω) + (1− α)f̂Ω(ω)
]

dω

=αf̄S(s) + (1− α)f̂S(s) = 1

�
44A random vector x̃ = (x̃1, . . . , x̃n) is said to be smaller than the random vector

ỹ = (ỹ1, . . . , ỹn) in the supermodular (stochastic) order iff E [f(x̃)] ≤ E [f(ỹ)] for all
supermodular functions f : Rn → R. Remark: A function Rn → R is supermodular, iff
f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) for all x, y ∈ Rn.
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Proof of Proposition 3.9 Let (fS|Ω, f̄Ω), (fS|Ω, f̂Ω) ∈ Γ such that (fS|Ω, f̄Ω) %
x

(fS|Ω, f̂Ω),

x ∈ {w-inf, s-inf}, and for α ∈ [0, 1] define f̌Ω := αf̄Ω + (1− α)f̂Ω. Straight-

forward calculation shows

ω∫

ω
¯

f̌S,Ω(s, ω
′)dω′ = α

ω∫

ω
¯

f̄S,Ω(s, ω
′)dω′ + (1− α)

ω∫

ω
¯

f̂S,Ω(s, ω
′)dω′ (B.22)

and

F̌S,Ω(s, ω)− sF̌Ω(ω) = α
[
F̄S,Ω(s, ω)− sF̄Ω(ω)

]
− (1− α)

[

F̂S,Ω(s, ω)− sF̂Ω(ω)
]

(B.23)

Equation (B.22) implies

ω∫

ω
¯

f̄S,Ω(s, ω
′)− f̌S,Ω(s, ω

′)dω′ =(1− α)

ω∫

ω
¯

f̄S,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′ (B.24)

ω∫

ω
¯

f̌S,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′ =α

ω∫

ω
¯

f̄S,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′. (B.25)

For x = w-inf the claim follows from equation (B.23) while for x = s-inf the

claim follows from equations (B.24) and (B.25). �

Proof of Lemma 3.3 Let fΩ ∈ ∆(Ω), f̄S|Ω, f̂S|Ω ∈ Γ(fΩ) and for α ∈ [0, 1]

define f̌S|Ω := αf̄S|Ω + (1− α)f̂S|Ω.

(i) The signals under (f̌S|Ω, fΩ) are normalized:

f̌S(s) =

∫

Ω

f̌S|Ω(s|ω)fΩ(ω)dω =

∫

Ω

[

αf̄S|Ω(s|ω) + (1− α)f̂S|Ω(s|ω)
]

fΩ(ω)dω

=αf̄S(s) + (1− α)f̂S(s) = 1

(ii) f̌S|Ω has the MLRP: To see this consider the posterior, conditional
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cumulative state distribution under (f̌S|Ω, fΩ). That is

F̌Ω|S(ω|s)
f̌S(s)=1
=

ω∫

ω
¯

fS,Ω(s, ω
′)dω′ =

ω∫

ω
¯

αf̄S,Ω(s, ω
′) + (1− α)f̂S,Ω(s, ω

′)dω′

=αF̄Ω|S(ω|s) + (1− α)F̂Ω|S(ω|s).

Since f̄S|Ω and f̂S|Ω have the MLRP, this together with proposition 3.2

imply

F̌Ω|S(ω|s
′) =αF̄Ω|S(ω|s

′) + (1− α)F̂Ω|S(ω|s
′)

≥αF̄Ω|S(ω|s
′′) + (1− α)F̂Ω|S(ω|s

′′) = F̌Ω|S(ω|s
′′)

for all s′, s′′ ∈ S, s′ ≤ s′′, and for all fΩ ∈ ∆(Ω). Hence, again by

proposition 3.2, f̌S|Ω has the MLRP.

�

Proof of Proposition 3.10 Let fΩ ∈ ∆(Ω), f̄S|Ω, f̂S|Ω ∈ Γ(fΩ) such that

(f̄S|Ω, fΩ) %
x

(f̂S|Ω, fΩ), x ∈ {w-inf, s-inf}, and for α ∈ [0, 1] define f̌S|Ω :=

αf̄S|Ω + (1− α)f̂S|Ω. Straightforward calculation shows

ω∫

ω
¯

f̌S,Ω(s, ω
′)dω′ = α

ω∫

ω
¯

f̄S,Ω(s, ω
′)dω′ + (1− α)

ω∫

ω
¯

f̂S,Ω(s, ω
′)dω′ (B.26)

and

F̌S,Ω(s, ω)− sF̌Ω(ω) = α
[
F̄S,Ω(s, ω)− sF̄Ω(ω)

]
− (1− α)

[

F̂S,Ω(s, ω)− sF̂Ω(ω)
]

(B.27)
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Equation (B.26) implies

ω∫

ω
¯

f̄S,Ω(s, ω
′)− f̌S,Ω(s, ω

′)dω′ =(1− α)

ω∫

ω
¯

f̄S,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′ (B.28)

ω∫

ω
¯

f̌S,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′ =α

ω∫

ω
¯

f̄S,Ω(s, ω
′)− f̂S,Ω(s, ω

′)dω′. (B.29)

For x = w-inf the claim follows from equation (B.27) while for x = s-inf the

claim follows from equations (B.28) and (B.29).

�



Appendix C

Proofs of Chapter 4

Proof of Proposition 4.1 Calculating the first and second order conditions

for (4.2):

W ′(ǫ) =
n− 1

n
(1− α)(m − P (ǫ)) − P ′(ǫ)

[(

1−
n− 1

n
ǫ

)

α+
n− 1

n
ǫ

]

W ′′(ǫ) =2
n − 1

n
P ′(ǫ)(α − 1)− P ′′(ǫ)

[(

1−
n− 1

n
ǫ

)

α+
n− 1

n
ǫ

]

< 0. (C.1)

This implies that W is strictly concave with respect to ǫ. Regarding the

limits it follows:

lim
ǫ→ǭ

W ′(ǫ) =− P ′(ǭ)

[(

1−
n− 1

n
ǭ

)

α+
n− 1

n
ǭ

]

> 0

lim
ǫ→1

W ′(ǫ) =
n− 1

n
(1− α)m− P ′(1)

α + (n− 1)

n
< 0,

where last inequality holds for finite |P ′(1)| and m (or n) sufficiently high.

Then there is a unique ǫ∗ ∈ (ǭ, 1) which maximizes W (ǫ) on [ǭ, 1]. �

Proof of Cororally 4.1
dW ′(ǫ)

dn
= 1−α

n2 [m− P (ǫ)− ǫP ′(ǫ)] < 0 due to

P ′ < 0 and α > 1. Together with equation (C.1) this implies:

dǫ∗

dn
= −

dW ′(ǫ)/dn

W ′′(ǫ)

∣
∣
∣
∣
ǫ=ǫ∗

< 0.

XXIII
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Similarly: dW ′(ǫ)
dm

= n−1
n
(1− α) < 0. Using (C.1):

dǫ∗

dm
= −

dW ′(ǫ)/dm

W ′′(ǫ)

∣
∣
∣
∣
ǫ=ǫ∗

< 0.

�

Proof of Proposition 4.2 The proof for σ = 1 is straightforward and

therefore omitted here. Now assume σ ∈ R>0, 6=1.

(i) The FOC of the maximization problem is

W ′(ǫ) =
n− 1

n(1− σ)
(1− α1−σ)(m− P (ǫ))1−σ

− P ′(ǫ)(m− P (ǫ))−σ

[(

1−
n− 1

n
ǫ

)

α1−σ +
n− 1

n
ǫ

]

= 0 (C.2)

⇐⇒−
m− P (ǫ)

P ′(ǫ)
︸ ︷︷ ︸

=:LS(ǫ)

=
n(1− σ)

α1−σ − 1
·

(
1− n−1

n
ǫ
)
α1−σ + n−1

n
ǫ

n− 1
︸ ︷︷ ︸

=:RS(ǫ)

. (C.3)

RS(ǫ) is affine linear in ǫ, i.e. RS(ǫ) = A(σ) +B(σ)ǫ with

A(σ) :=
nα1−σ(1− σ)

(α1−σ − 1)(n− 1)
, B(σ) := σ − 1. (C.4)

Moreover, we get

RS ′(ǫ) =σ − 1

{

> 0 if σ > 1

< 0 if σ < 1

RS ′′(ǫ) =0

RS(ǭ) =
n(1− σ)

α1−σ − 1
·

(
1− n−1

n
ǭ
)
α1−σ + n−1

n
ǭ

n− 1
> 0 (C.5)

RS(1) =
n(1− σ)

n− 1

(
1

n
+

1

α1−σ − 1

)

(C.6)
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Similarly, for LS(ǫ):

LS ′(ǫ) =1 +
(m− P (ǫ))P ′′(ǫ)

(P (ǫ))2
> 0

LS ′′(ǫ) = (P ′(ǫ))
2
[−P ′(ǫ)P ′′(ǫ) + (m− P (ǫ))P ′′′(ǫ)] (C.7)

LS(ǭ) =0 (C.8)

LS(1) =−
m

P ′(1)
> 0 (C.9)

Using the equations (C.5), (C.6), (C.8) and (C.9) yields:

LS(ǭ) <RS(ǭ)

LS(1) >RS(1) for m sufficiently high (and |P ′(1)| small);

which shows (i).

ǫ

LS,RS

ǭ

LS(ǫ)

RS(ǫ) für σ < 1

RS(ǫ) für σ > 1

1

Figure C.1:

(ii) Follows from strict concavity:

W ′′(ǫ) =− 2
n− 1

n
(1− α1−σ)(m− P (ǫ))−σP ′(ǫ)

−
[

P ′′(ǫ) + σ (P ′(ǫ))
2
] [(

1−
n− 1

n
ǫ

)

α1−σ +
n− 1

n
ǫ

]

(m− P (ǫ))−σ−1

< 0 for σ < 1
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(iii) Equation (C.7) implies that LS ′′(ǫ) is convex for P ′′′ = 0 which im-

plies uniqueness. It should be clear at this point that this is true for many

other cases as well. �

Proof of Proposition 4.3 The proof is straightforward for σ = 1. In the

following consider the case σ > 0, σ 6= 1.

(i) Differentiating W ′(ǫ) with respect to n gives:

dW ′(ǫ)

dn
=
(m− P (ǫ))−σ

n2

[
1− α1−σ

1− σ
(m− P (ǫ))

︸ ︷︷ ︸

< 0

+ P ′(ǫ)ǫ(α1−σ − 1)
︸ ︷︷ ︸

<0 if σ<1

]

< 0.

This shows the claim for σ < 1. To verify the claim for σ > 1 we rewrite the

derivative in the following way:

dW ′(ǫ)

dn
=

(α1−σ − 1) (m− P (ǫ))−σ

(σ − 1)n2

︸ ︷︷ ︸

< 0

[

(m− P (ǫ))− P ′(ǫ)ǫ(σ − 1)
︸ ︷︷ ︸

>0 if σ>1

]

< 0.

Differentiating W ′(ǫ) with respect to m yields:

dW ′(ǫ)

dm

∣
∣
∣
∣
ǫ=ǫ∗

=
n− 1

n
· (m− P (ǫ∗))−σ (1− α1−σ)

+ σP ′(ǫ) (m− P (ǫ∗))−σ−1

[(

1−
n− 1

n
ǫ∗
)

α1−σ +
n− 1

n
ǫ∗
]

=
W ′(ǫ∗)

m− P (ǫ∗)
︸ ︷︷ ︸

=0

+(1 + σ)P ′(ǫ) (m− P (ǫ))−σ−1

·

[(

1−
n− 1

n
ǫ∗
)

α1−σ +
n− 1

n
ǫ∗
]

< 0.
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(ii) Differentiating W ′(ǫ) with respect to α gives:

dW ′(ǫ)

dα
=−

n− 1

n
(m− P (ǫ))1−σ α−σ

− P ′(ǫ) (m− P (ǫ))−σ

(

1−
n− 1

n
ǫ

)

(1− σ)α−σ

︸ ︷︷ ︸

>0 if σ>1 since P ′(ǫ)<0

< 0.

�

Proof of Proposition 4.4 (i) Determination of the minimal financiable

error level ǭ: Since m ≤ b the minimal financiable error level solves P (ǭ) =

b(1− ǭ) = m ⇔ ǭ = 1− m
b
. Hence, ǭ := 1− m

b
. Since P (ǫ) is linear it follows

from Prop. 4.2 that ǫ∗ is uniquely determined. Moreover, σ ≥ 2 > 1 implies

lim
ǫ→ǭ

W (ǫ) = −∞ and, hence, ǫ∗ = ǭ cannot be optimal. Moreover, equations

(C.3) and (C.4) imply that an interior optimal ǫ∗ holds:

LS(ǫ∗) =
m− b(1− ǫ∗)

b
!
= A(σ) +B(σ)ǫ∗ = RS(ǫ∗). (C.10)

This yields

ǫ∗ =
A(σ)− LS(0)

2− σ

{

> ǭ if σ < 2

< ǭ if σ > 2,

where the last inequalities hold because

α1−σ

α1−σ − 1

{

> 1 if σ < 1

< 0 if σ > 1

ǭ∈[0,1)
=⇒

n

n− 1

α1−σ

α1−σ − 1

{

> ǭ if σ < 1

< ǭ if σ > 1

=⇒ A(σ) > (1− σ)ǭ

=⇒
A(σ) + ǭ

2− σ

{

> ǭ if σ < 2

< ǭ if σ > 2.

This implies that for σ ≥ 2 there is no ǫ∗ ∈ (ǭ, 1) which solves the optimality
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condition (C.10). This implies ǫ∗ = 1 whenever σ ≥ 2. Moreover, ǫ∗ can be

characterized as a function of σ by

ǫ∗(σ) =

{

min
{

A(σ)+ǭ
2−σ

, 1
}

if σ < 2

1 if σ ≥ 2
, (C.11)

which shows (i).

(ii) Differentiating ǫ∗(σ) as given in equation (C.11) with respect to σ

gives (for σ < 2)

dǫ∗(σ)

dσ
=

A′(σ)(2− σ) + A(σ) + ǭ

(2− σ)2
.

For the limit follows

lim
σ→0

dǫ∗

dσ
=

1

4

[

ǭ+
n

n− 1
·
α(1− α + 2ln(α))

(α− 1)2
︸ ︷︷ ︸

=:H(α)

]

.

This expression is less than zero for α sufficiently high, because

lim
α→∞,σ→0

dǫ∗(σ)

dσ
=

1

4

(

ǭ−
n

n− 1

)

= −
1

4
·
(n− 1)m+ nb

(n− 1)b
< 0

and H ′(α) = n
n−1

· 3(α−1)−2ln(α)(α+1)
(α−1)3

< 0 for all α > 1. To see that H ′(α) < 0

consider

h(α) := 3(α− 1)− 2ln(α)(α+ 1).

Its first and second derivatives are

h′(α) = 1−
2

α
− ln(α), h′′(α) =

2(1− α)

α2
< 0.
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It follows:

h′(α) < h′(1) = − 1 < 0 ∀α > 1

=⇒ h(α) < h(1) = 0 ∀α > 1

=⇒ H ′(α) < 0 ∀ α > 1.

Now define I(σ) := A′(σ)(2− σ) +A(σ) + ǭ.45 If A′′(σ) > 0 for all σ > 0

(which will be shown below) the following holds true:

I ′(σ) = A′′(σ)(2− σ) > 0 for σ < 2.

Since dǫ∗(σ)
dσ

= I(σ)
(2−σ)2

and since dǫ∗(σ)
dσ

∣
∣
∣
σ=0

< 0 (for α large enough) follows

that I(0) < 0. In combination with I ′(σ) > 0 for σ < 2 and I(2) > 0 this

implies that there is a unique σ̄ ∈ (0, 2) such that

I(σ)







< 0 if σ < σ̄

= 0 if σ = σ̄ or σ ≥ 2

> 0 if σ̄ < σ < 2

,

which shows (ii).

It remains to show that A′′(σ) > 0 for all σ > 0. To see this consider

A′′(σ) =
n

n− 1
·
α1−σln(α)

(α1−σ − 1)3
︸ ︷︷ ︸

=:g(σ)

[
(1− σ)ln(α)(α1−σ + 1) + 2(1− α1−σ)

]

︸ ︷︷ ︸

=:h(σ)

.

It is

g(σ), h(σ)

{

> 0 if σ < 1

< 0 if σ > 1

and hence A′′(σ) = n
n−1

g(σ)h(σ) > 0 ∀ σ.

45I.e. dǫ∗(σ)
dσ

= I(σ)
(2−σ)2 .
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Details for the analysis of h(σ):

h(σ1) > h(1) = 0 > h(σ2)

for σ1 < 1 < σ2 holds because

h′(σ) =ln(α)
(
α1−σ − 1 + (1− σ)(α1−σ + 1) + 2(1− α1−σ)

)

h′′(σ) =ln(α)(1− σ)ln(α)2α1−σ







> 0 if σ < 1

= 0 if σ = 1

< 0 if σ > 1.

(C.12)

By equation (C.12) follows:

h′(σ2) > h′(1) = 0 > h′(σ1) ∀ σ1 < 1 < σ2

=⇒ h(σ1) >h(1) = 0 > h(σ2) ∀ σ1 < 1 < σ2

�

Proof of Proposition 4.5

(i) In order to characterize the Walrasian equilibrium define (x̄∗, ȳ∗, p̄∗) ∈

CI×
⊗

j∈J

Yj×RC
+ as the Walrasian equilibrium of the certainty equivalent

economy (where each agent is endowed with his expected endowment).

The FOC of the risk neutral consumer determines the equilibrium price

ratios (in this certainty equivalent economy). In particular, p̄∗c/p̄∗
c′

=
ac/ac′ , where ac = ∂ui(x)/∂xc is the risk neutral agent’s marginal utility of

commodity c. In equilibrium x̄∗(i) solves

max
x∈C

ui(x) s.t. (p̄∗)T



x− EΩ [w(ω̃, i)]−
∑

j∈J

θij(ȳ
∗(j) + EΩ [w(ω̃, j)])



 ≤ 0

(C.13)

while ȳ∗(j) solves

max
y∈Yj

(p̄∗)T (y + EΩ [w(ω̃, j)]) . (C.14)
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Now turn back to the uncertain economy and define consumer i’s state-

contingent consumption vector by

x∗(ω, i) := x̄∗(i) ∀ ω ∈ Ω,

each firm j’s production plan by

y∗(ω, j) := ȳ∗(j) ∀ ω ∈ Ω

and the state-contingent commodity prices by

p∗ := (fΩ(ω1)p̄
∗, . . . , fΩ(ωN)p̄

∗) ∈ RC×N
+

where fΩ denotes the prior belief in the risky economy. Then (x∗, y∗, p∗)

is a Walrasian equilibrium of the original economy with risky endow-

ment and complete markets. To see this, first observe that the price

ratios p∗c,ω/p∗
c′,ω′ are equal to the risk neutral consumer’s MRS for con-

sumption of commodity c in state ω and consumption of commodity c′

in state ω′, i.e.

p∗c,ω
p∗c′,ω′

=
fΩ(ω)ac
fΩ(ω′)ac′

for all ω, ω′ ∈ Ω and c, c′ ∈ {1, . . . , C} . (C.15)

This implies that the risk neutral consumer is indifferent between con-

sumption of commodity c in state ω and consumption of commodity c′

in state ω′.

Secondly, observe that x∗(i) solves the (original) optimization problem

of a risk avers consumer i. This is given by

max
x∈Bi

EΩ [ui(x(ω̃, i))] ,

with Bi :=

{

x ∈ CS | (p∗)T
(

x(i)− w(i)−
∑

j∈J

θij(y
∗(j) + w(j))

)

≤ 0

}

.46

46Compare Definition 4.1.
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The corresponding FOC is

fΩ(ω)
∂ui(x(ω,i))
∂xc(ω,i)

fΩ(ω′)∂ui(x(ω′,i))
∂xc′(ω

′,i)

!
=

p∗c,ω
p∗c′,ω′

(C.15)
=

fΩ(ω)ac
fΩ(ω′)ac′

∀ ω, ω′ ∈ Ω; c, c′ ∈ {1, . . . , N}

⇐⇒

∂ui(x(ω,i))
∂xc(ω,i)

∂ui(x(ω′,i))
∂xc′(ω

′,i)

!
=
ac
ac′

for all ω, ω′ ∈ Ω; c, c′ ∈ {1, . . . , N} . (C.16)

This is equal to the FOC of (C.13) and, hence, if x̄∗(i) ∈ C is opti-

mal in the certainty equivalent economy, then, if financiable, x∗(i) =

(x̄∗(i), . . . , x̄∗(i)) ∈ CN is optimal in the risky economy. Financiability

follows by plugging (x∗, y∗, p∗) into consumer i’ budget constraint Bi:

(p∗)T (x∗(i)− w(i) −
∑

j∈J

(θijy
∗(j) + w(j))

Def.
=
∑

ω∈Ω

fΩ(ω) (p̄
∗)T



x̄∗(i) −w(ω, i) −
∑

j∈J

(θij ȳ
∗(j) + w(j))





=(p̄∗)T



x̄∗(i)− EΩ [w(ω̃, i)]−
∑

j∈J

(θij ȳ
∗(j) + w(j))




(C.13)

≤ 0 .

This implies x∗(i) ∈ Bi, i.e. x∗(i) is financiable, and since the con-

sumers’ FOCs (C.13) and (C.16) of the certainty equivalent and the

risky economy, respectively, coincide this implies x∗(i) = argmax
x∈Bi

EΩ [x(ω̃, i)].

Next, observe that y∗(j) solves firm j’s optimization problem in the

original, risky economy with complete markets. This is given by

max
y(j)∈Y N

j

(p∗)T (y(j) + w(j))

with corresponding FOC

fΩ(ω)
∂Tj(y(ω,j))

∂yc(ω,j)

fΩ(ω′)
∂Tj(y(ω′,j))

∂yc′(ω
′,j)

!
=

p∗c,ω
p∗c′,ω′

(C.15)
=

fΩ(ω)ac
fΩ(ω′)ac′

∀ ω, ω′ ∈ Ω; c, c′ ∈ {1, . . . , C} .

⇐⇒

∂Tj(y(ω,j))

∂yc(ω,j)

∂Tj(y(ω′,j))

∂yc′(ω
′,j)

=
ac
ac′

∀ ω, ω′ ∈ Ω; c, c′ ∈ {1, . . . , C} . (C.17)
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This is equal to the FOC of (C.14) and, hence, y∗(j) = (ȳ∗(j), . . . , ȳ∗(j)) =

arg max
y(j)∈Y N

j

(p∗)T (y(j) + w(j)).

Last, by assumption, the risk neutral consumer owns enough to fully

insure all others, i.e. (x∗, y∗) is feasible. This completes the proof of

part (i).

(ii) Analogue to that of part (i). The only difference is that the equilib-

rium price ratios are determined by the firm with constant marginal

rates of transformation. This firm is indifferent between production of

commodity c in state ω or c′ in state ω′. Additionally, by assumption,

this firm also owns enough to insure the consumers and all other firms.

Therefore, (x∗, y∗) as defined in part (i) is also feasible.

�

Proof of Cororally 4.2 The optimal production vector is determined

by equating a firm’s MRTs with the price ratios. Since prices are fair, the

state distribution cancels out of these FOCs (compare (C.17)) and, hence,

the optimal production plan is independent of the underlying state distribu-

tion. �

The proof of Proposition 4.6 makes use of the following Lemmata:

Lemma C.1. Let (fS|Ω, fΩ), (f̄S|Ω, fΩ) ∈ Γ such that (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, fΩ)

and Ω = {ω1, . . . , ωN} ⊆ R with ω1 < ω2 < . . . , ωN . Then the following is

true for all weakly monotone functions t : Ω → R:

s∫

0

EΩ [t(ω̃)|s′] ds′ ≤

s∫

0

ĒΩ [t(ω̃)|s′] ds′.

By Theorem (3.A.5) in Shaked and Shantbikumar (2007) this implies that

EΩ [t(ω̃)|s̃] is a MPS of ĒΩ [t(ω̃)|s̃].



APPENDIX C. PROOFS OF CHAPTER 4 XXXIV

Proof: Let (fS|Ω, fΩ), (f̄S|Ω, fΩ) ∈ Γ such that (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, fΩ)

and Ω = {ω1, . . . , ωN} ⊆ R with ω1 < ω2 < . . . , ωN . First, observe that for

any weakly increasing function t : Ω → R the following holds:

EΩ [t(ω̃)|s] =
N∑

n=1

fΩ|S(ωn|s)t(ωn)

fΩ|S(ωn+1|s)=FΩ|S(ωn+1|s)−FΩ|S(ωn|s)
= t(ωN )−

N−1∑

n=1

FΩ|S(ωn|s)(t(ωn+1)− t(ωn)).

(C.18)

Now, if (fS|Ω, fΩ) %
w-inf

(f̄S|Ω, fΩ) it follows for s ∈ [0, 1]:

s∫

0

EΩ [t(ω̃)|s′]− ĒΩ [t(ω̃)|s′]ds′

(C.18)
= −

s∫

0

N−1∑

n=1

(
FΩ|S(ωn|s

′)− F̄Ω|S(ωn|s
′)
)
(t(ωn+1)− t(ωn))ds′

=−

N−1∑

n=1

(t(ωn+1)− t(ωn))

s∫

0

FΩ|S(ωn|s
′)− F̄Ω|S(ωn|s

′)ds′

=−
N−1∑

n=1

(t(ωn+1)− t(ωn))
︸ ︷︷ ︸

≥0

(
FS,Ω(s, ωn)− F̄S,Ω(s, ωn

)

︸ ︷︷ ︸

≥0

≤ 0

This implies that EΩ [t(ω̃)|s̃] is a MPS of ĒΩ [t(ω̃)|s̃] for all weakly increasing

functions t : Ω → R. Theorem 3.A.12 in Shaked and Shantbikumar (2007)

now implies that EΩ [−t(ω̃)|s̃] is a MPS of ĒΩ [−t(ω̃)|s̃] for all weakly in-

creasing functions t : Ω → R, which proof the claim for all weakly decreasing

function. �

Lemma C.2. Let fS|Ω, f̄S|Ω ∈ Γ(fΩ). For i = 1, . . . , n, n ∈ N, let gi :

R → R be monotone (increasing or decreasing). If EΩ [gi(ω̃)|s̃] is a MPS of

ĒΩ [gi(ω̃)|s̃] for all i = 1, . . . , n, then is
n∑

i=1

λiEΩ [gi(ω̃)|s̃] a MPS of
n∑

i=1

λiEΩ [gi(ω̃)|s̃]

for all λi ≥ 0.



APPENDIX C. PROOFS OF CHAPTER 4 XXXV

Proof: EΩ [gi(ω̃)|s̃] is a MPS of ĒΩ [gi(ω̃)|s̃] implies

s∫

0

EΩ [gi(ω̃)|s
′] ds′ ≤

s∫

0

ĒΩ [gi(ω̃)|s
′]ds′

=⇒

s∫

0

n∑

i=1

λiEΩ [gi(ω̃)|s
′] ds′ ≤

s∫

0

n∑

i=1

λiĒΩ [gi(ω̃)|s
′] ds′

which shows the claim. �

Proof of Proposition 4.6 State-contingent claims are traded after the

signal realization. Therefore, the equilibrium allocation (of state-contingent

claims) depends on the posterior state distribution conditional on the signal

realization from the information system (fS|Ω, fΩ). Denote by

(x∗((fS|Ω, fΩ), s), y
∗((fS|Ω, fΩ), s), p

∗((fS|Ω, fΩ), s)) ∈
(
CN
)I

×
⊗

j∈J

Y N
j × (RC

+)
N

the Walrasian equilibrium after a signal realization equal to s when the in-

formation system is (fS|Ω, fΩ).

Next observe that under any of the conditions (i)-(ii) the equilibrium price

system, p̄∗, of the certainty equivalent economy (after a signal realization

equal to s)47 is independent of s.48

Moreover, Proposition 4.5 implies that under any of the conditions (i) or

(ii), in equilibrium each risk avers consumer i smooth her consumption, i.e.

x∗(ω, i; (fS|Ω, fΩ), s) = x̄∗(i, p̄∗, p̄∗
T

EΩ [w(ω̃, i)|s]) ∀ i = 1, . . . , I;

where x̄∗(i, p̄∗, p̄∗
T

EΩ [w(ω̃, i)]) denotes agent i’s optimal consumption bundle

in the certainty equivalent economy.49 This implies that the conditional

47I.e. that economy in which the agents random endowments are replaced by their
expected endowments E [w(ω̃, a)|s] for a = 1, . . . , I or a = 1, . . . , J .

48In case (i) it is determined by the risk neutral consumer’s MRSs. In case (ii) by the
MRT of the firm with constant MRTs.

49In particular, x̄∗(i, ·, ·) : RC
>0 × R≥0 → R denotes agent i’s Marshallian demand

function, i.e. if agent i’s budget is m ≥ 0 and prices are p ∈ RC
>0 then agent i’s optimal
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expected utility after a signal realization equal to s is

EΩ

[
ui(x

∗(ω̃, i; (fS|Ω, fΩ), s))|s
]
= ui(x̄

∗(i, p̄∗, p̄∗
T

EΩ [w(ω̃, i)|s])).

Risk aversion implies that ui(x̄
∗(i, p̄, m)) is concave as a function of m ∈ R≥0

for all price vectors p̄ ∈ RC
+.50 Hence, by Lemma C.1 and Lemma C.2, it is

V ((fS|Ω, fΩ), a
∗, ui) = ES

[
EΩ

[
ui(x

∗(ω̃, i; (fS|Ω, fΩ)))|s̃
]]

= ES

[

ui(x̄
∗(i, p̄∗, p̄∗

T

EΩ [w(ω̃, i)|s̃]))
] concavity & MPS

≤ ES

[

ui(x̄
∗(i, p̄∗, p̄∗

T

ĒΩ [w(ω̃, i)|s̃]))
]

= ES

[
ĒΩ

[
ui(x

∗(ω̃, i; (f̄S|Ω, fΩ)))|s̃
]]

= V ((f̄S|Ω, fΩ), ā
∗, ui)

which proofs the claim. �

Proof of Proposition 4.7 Cororally 4.2 implies

y∗(ω, j; (fS|Ω, fΩ), s) = ȳ∗(j) ∈ Yj ∀ ω ∈ Ω,

where ȳ∗(j) ∈ Yj is the equilibrium state-contingent production plan of firm

j in the certainty equivalent economy. Since equilibrium prices are fair, i.e.

p∗c,ω((fS|Ω, fΩ), s) = fΩ|S(ω|s)p̄
∗
c, where p̄∗c is the equilibrium price in the cer-

tainty equivalent, this implies the claim. �

consumption bundle is x̄∗(p,m).
50For a reference of this statement consider Quah (2000) on page 921.
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Proofs and algebraic

manipulations of Chapter 5

Proof of Proposition 5.2 Simple algebraic calculations lead to the follow-

ing differences in prices, quantities and profits of case 1 and 2:

∆π1 := πp
1 − πq

1 = γ3

<0
︷ ︸︸ ︷

β1α
2
2γ + β2α

2
1γ − 2β1β1α1α2

8β1β2(β1β2 − γ2)(2β1β2 − γ2)
︸ ︷︷ ︸

>0

,

∆π2 := πp
2 − πq

2 = γ5

<0
︷ ︸︸ ︷

β1α
2
2γ + β2α

2
1γ − 2β1β1α1α2

16β1β2(β1β2 − γ2)(2β1β2 − γ2)2
︸ ︷︷ ︸

>0

,

∆p1 := pp1 − pq1 = γ3

<0
︷︸︸︷
−α2

4β2(2β1β2 − γ2)
︸ ︷︷ ︸

>0

,

∆p2 := pp2 − pq2 = γ2

<0
︷ ︸︸ ︷

α1γ − 2α2β1

4β1(2β1β2 − γ2)
︸ ︷︷ ︸

>0

,

XXXVII
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∆q1 := qp1 − qq1 = γ3

<0
︷ ︸︸ ︷

α1γ − α2β1

β1(β1β2 − γ2)(2β1β2 − γ2)
︸ ︷︷ ︸

>0

,

∆q2 := qp2 − qq2 = γ2

>0
︷ ︸︸ ︷

2β1β2α2 − β2α1γ − α2γ
2

4β2(2β1β2 − γ2)(β1β2 − γ2)
︸ ︷︷ ︸

>0

.

By using this it follows

∆π1







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,

∆π2







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,

∆p1







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,

∆p2 < 0 for all γ,

∆q1







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,

∆q2 > 0 for all γ.

The results stated in Proposition 5.2 follow immediately. �

Proof of Proposition 5.3 Consumers’ surplus: The idea of the proof is

to show that the difference in consumers’ surplus u("price equilibrium") −

u("quantity equilibrium"), as a function of γ has a global minimum at γ = 0.
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Hence, for l ∈ {p, q} define

ul(γ) := u
(
ql1, q

l
2

)∣
∣
p1=pl1, p2=pl2

.

For l = p (l = q), then up(γ) (up(γ)) describes the consumer’s utility in
equilibrium as a function of γ if firm 1 acts as price (quantity) setter. Now,
by using the equilibium values it follows

up(γ) =
1

32β1(2β1β2 − γ2)2(β1β2 − γ2)

[

− 3α2
1γ

6 + 2α1α2β1γ
5 + (16α2

1β1β2 + 5α2
2β

2
1)γ

4

− 4α1α2β
2
1β2γ

3 − (28α2
1β

2
1β

2
2 + 20α2

2β
3
1β2)γ

2 + 16(α2
1β

3
1β

3
2 + α2

2β
4
1β

2
2)

]

and

uq(γ) =
1

32

1

(2β1β2 − γ2)2β2

[

5α2
2γ

4 + 4α1α2β2γ
3 − (20α2

2β1β2 + 12α2
1β

2
2)γ

2

+ 16(α2
1β1β

3
2 + α2

2β
2
1β

2
2)

]

.

The ’utility-difference-function’ is defined by

d(γ) :=up(γ)− uq(γ)

=
γ2

32

1

β1β2(2β1β2 − γ2)2(β1β2 − γ2)

[

(5α2
2β1 − 3α2

1β2)γ
4 + 6α1α2β1β2α

3

+ (4α2
1β1β

2
2 − 20α2

2β
2
1β2)γ

2 − 8α1α2β
2
1β

2
2γ + 16α2

2β
3
1β

2
2

]

. (D.1)

The first and second derivatives are equal to

d′(γ) =
γ

16

1

(β1β2 − γ2)2(2β1β2 − γ2)3

[

− 3α1α2γ
7 + 11(β1α

2
1 − 5β1α

2
2)γ

6

− 9β1β2α1α2γ
5 + (38β2

1β2α
2
2 − 26β1β

2
2α

2
1)γ

4 + 34β2
1β

2
2α1α2γ

3

+ (16β2
1β

3
2α

2
1 − 64β3

1β
2
2α

2
2)γ

2 − 24β3
1β

3
2α1α2γ + 32β4

1β
3
2α

2
2

]
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and

d′′(γ) =
1

16(β1β2 − γ2)3(2β1β2 − γ2)4

[

6α1α2γ
11 + (15α2

2β1 − 33α2
1β2)γ

10 + 66α1α2β1β1γ
9

+ (53α2
1β1β

2
2 − 155α2

2β
2
1β2)γ

8 − 216α1α2β
2
1β

2
2γ

7 + (68α2
1β

2
1β

3
2 + 340α2

2β
3
1β

2
2)γ

6

+ 152α1α2β
3
1β

3
2γ

5 − (228α2
2β

4
1β

3
2 − 180α2

1β
3
1β

4
2)γ

4 + 80α1α2β
4
1β

4
2γ

3

+ (96α2
1β

4
1β

5
2 − 32α2

2β
5
1β

4
2)γ

2 − 96α1α2β
5
1β

5
2γ + 64α2

2β
6
1β

5
2

]

.

Since d′(0) = 0 and d′′(0) =
α2
2

4β1β2
2
> 0 it follows that d(0) = 0 is a local

minimum of d(γ), i.e. ∃ǫ > 0 s.t. up(γ) > uq(γ) ∀ γ ∈ (−ǫ, ǫ).

Moreover, since α1, α2, β1, β2, γ ∈ R equation (D.1) implies

d(γ) = 0 ⇔ up(γ) = uq(γ) ⇔ γ = 0.

This implies that at γ = 0 is also a global minimum of d(γ) which proofs the

claim.

Total surplus: Analog to the proof for consumers’ surplus. �

Proof of Proposition 5.4 First, consider the equations (5.17), (5.18),

(5.19) and (5.20). The profit of firm 1 for the case if firm 2 chooses also price

competition is given by equation (5.8):

π̃pp
1 (p1) := πpp

1

(
p1, R

pp
2 (p1)

)

= p1 q̃1
(
p1, R

pp
2 (p1)

)

= p1 (a1 − b1p1 + cRpp
2 (p1))

with Rpp
2 (p1) given in equation (5.4). The first order condition can be written

to

∂π̃pp
1

∂p1
=

∂πpp
1

∂p1
︸ ︷︷ ︸

Direct effect

+
∂π1

∂p2

∂Rpp
2

∂p1
︸ ︷︷ ︸

Strategic effect

=
∂πpp

1

∂p1
+

γ

β1β2 − γ2

γ

2β1
p1.

The strategic effect is positive for all feasible γ. In the equilibrium of the
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simultaneous Bertrand game on the second stage it holds that
∂πpp

1

∂p1
(pBB

1 ) = 0

which implies that

∂π̃pp
1

∂p1
(pBB

1 ) =
γ2

2β1 (β1β2 − γ2)
pBB
1 > 0 for all γ.

As the profit function is concave it follows directly

pBB
1 < pp1. (D.2)

The profit of firm 1 for the case if firm 2 chooses quantity competition is

given by (5.11), i.e.

π̃pq
1

(
p1
)
: = πpq

1

(
p1, R

pq
2 (p1)

)

= p1 q̂1
(
p1, R

pq
2 (q1)

)

= p1
α1 − γRpq

2 (q1)− p1
β1

with Rpq
2 (p1) given in (5.5). The first order condition can be written to

∂π̃pq
1

∂p1
=

∂πpq
1

∂p1
︸ ︷︷ ︸

Direct effect

+
∂π1

∂q2

∂Rpq
2

∂p1
︸ ︷︷ ︸

Strategic effect

=
∂πpq

1

∂p1
−

γp1
β1

γ

2(β1β2 − γ2)
.

The strategic effect is negative for all feasible γ. In the equilibrium of the

simultaneous move it holds that
∂πpq

1

∂p1
(pBC

1 ) = 0 which implies that

∂π̃pq
1

∂p1
(pBC

1 ) = −
γ2

2β1 (β1β2 − γ2)
pBC
1 < 0 for all γ.

It follows directly by concavity of the profit function that

pBC
1 > pp1 (D.3)

holds. Together with equation (D.2) this implies inquality (5.17). The other
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inequalities follow directly by using simple algebraic manipulations which are

omitted here.

It remains to prove the equations (5.21), (5.22), (5.23) and (5.24). The

profit of firm 1 for the case if both firms select quantity competition is given

in equation (5.14):

π̃qq
1 (q1) : = πqq

1 (q1, R
qq
2 (q1))

= q1 p̃1
(
q1, R

qq
2 (q1)

)

with Rqq
2 (q1) given in equation (5.7). The first order condition can be written

to

∂π̃qq
1

∂q1
=

∂πqq
1

∂q1
︸ ︷︷ ︸

Direct effect

+
∂π1

∂q2

∂Rqq
2

∂q1
︸ ︷︷ ︸

Strategic effect

=
∂πqq

1

∂q1
+

γ2

2β2
q1.

The strategic effect is positive for all feasible γ. In the equilibrium of the

simultaneous Cournot game it holds that
∂πqq

1

∂q1
(qCC

1 ) = 0 which implies that

∂π̃qq
1

∂q1
(qCC

1 ) =
γ2

2β2
qCC
1 > 0 for all γ.

Concavity of the profit function implies

qCC
1 < qq1. (D.4)

The profit of firm 1 for the case if firm 2 chooses price competition is given

in equation (5.12)

π̃qp
1

(
q1
)
: = πqp

1

(
q1, R

qp
2 (q1)

)

= q1 p̂1(q1, R
qp
2 (q1))

with Rqp
2 (q1) given in equation (5.6). The first order condition can be written
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to

∂π̃qp
1

∂q1
=

∂πqp
1

∂q1
︸ ︷︷ ︸

Direct effect

+
∂π1

∂p2

∂Rqp
2

∂q1
︸ ︷︷ ︸

Strategic effect

=
∂πqp

1

∂q1
−

γ2

2β2
q1.

Obviously, the strategic effect is negative for all feasible γ. In the equilibrium

of the simultaneous move it holds that
∂πqp

1

∂q1
(pCB

1 ) = 0 which implies that

∂π̃pq
1

∂q1
(qCB

1 ) = −
γ2

2β2
qCB
1 < 0 for all γ.

It follows directly by concavity of the profit function that

qCB
1 > qq1. (D.5)

Together with equation (D.4) this implies the second inequality of equation

(5.17). The other inequalities follow analogoulsy. �

The explicit algebraic expressions of figures 5.3, 5.4 and 5.5 in Ex-

ample 8:

qq1 =
16− 4γ

2(8− γ2)
, qCC

1 =
16− 4γ

16− γ2
, qCB

1 =
16− 4γ

16− 3γ2
,

pq1 =
4− γ

2
, pCC

1 =
8

4 + γ
, pCB

1 =
2(4− γ)(4− γ2)

16− 3γ2
,

qq2 =
16− 4γ − γ2

2(8− γ2)
, qCC

2 =
16− 4γ

16− γ2
, qCB

2 =
2(8− 2γ − γ2)

16− 3γ2
,
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pq2 =
16− 4γ − γ2

8− γ2
, pCC

2 =
8

4 + γ
, pCB

2 =
4(8− γ2)− 8γ

16− 3γ2
,

πq
1 =

(4− γ)2

8− γ2
, πCC

1 =
32

(4 + γ)2
, πCB

1 =
8(4− γ)2(4− γ2)

2(16− 3γ2)2
,

πq
2 =

(4− γ)2

8− γ2
, πCC

2 =
32

(4 + γ)2
, πCB

2 =
8(8− 2γ − γ2)2

(16− 3γ2)2
.

Proof of Proposition 5.5 Analog to the proof of Proposition 5.3. �
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