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Abstract— Unintended changes in the utilization of resources
like CPU and memory can lead to severe problems for the
operation of robotics and intelligent systems. Still, systematic
testing for such performance regressions has largely been
ignored in this domain. We present a method to specify
and execute performance tests for individual components of
component-based robotics systems based on their component
interfaces. The method includes an automatic analysis of each
component revision against previous ones that reports potential
changes to the resource usage characteristics. This informs
developers about the impact of their changes. We describe the
design of the framework and present evaluation results for the
automatic detection of performance changes based on tests for
a variety of robotics components.

I. INTRODUCTION

Nowadays, most robotics and intelligent systems are com-
plex software systems. In order to fulfill increasingly com-
plicated missions, these systems often comprise a multitude
of hardware and software components and are developed by
larger and often distributed teams. With the emergence of
common frameworks (e.g. ROS [1] or YARP [2]), systems
often contain off-the-shelf components, with implementa-
tions outside of the control of system integrators. This makes
the task of maintaining such a system and ensuring its proper
functionality a challenge. Nevertheless, many applications
require a high reliability and availability of the deployed
systems in order to meet the users’ demands and to ensure
their safety. Consequently, verification techniques become
more important during development to ensure the proper
functionality of individual components and the integrated
system. Apart from common software engineering methods
like unit testing at class-level and integration testing at
component-level, simulation is a common method applied
in robotics to verify the functionality robotics applications
at system level [3].

Most of the currently applied testing techniques aim at
the delivery of the promised functionality of the system and
its components. However, an aspect that has been largely
ignored so far in this domain is a systematic verification
of the required computational resources. Unplanned changes
in the consumption of resources like CPU time, memory,
or network bandwidth can lead to various undesired effects
on the system, e.g., increased power consumption, delays,
reduced accuracies, or component crashes. Depending on
the affected subsystems and the application domain, the
outcomes of these effects can range from the unnecessary
consumption of energy or vanishing user acceptance to
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severe injuries in case of safety-critical systems. Therefore,
the computational performance of robotics systems needs to
be closely observed and suitable tools are required to detect
performance regressions as soon as possible during develop-
ment. Such tools need to be applicable for non-experts users,
should perform their task automatically for each new revision
of a software component, and they should integrate with
modern development workflow (e.g. continuous integration
(CI) servers [4]) to foster wide adoption and to ensure a high
coverage of systems and component revisions.

In this work we present a method for generating and
analyzing performance tests for individual components of
robotics and intelligent systems. It aims to automatically
detect performance regressions introduced by code changes
as soon as possible. The method exploits the fact that
most current systems are composed of components which
communicate via a middleware. A new performance testing
framework tests the components using their component in-
terfaces and provides methods to automatically detect and
report changes in the performance characteristics. Tests are
based on an event generation language which defines abstract
test cases that are instantiated for different parameter com-
binations to explore the runtime behavior of the components
under different loads. The framework is designed to integrate
into automated build processes. We report on the design of
the framework and evaluation results on our systems.

II. RELATED WORK

In contrast to robotics, systematically testing software
for performance regressions is a common practice in other
disciplines, most notable being large scale enterprise systems
and website operation. These disciplines are origin of the
“Application Performance Management” (APM) method [5],
[6], which combines different practices and tools with the
aim to detect performance issues before becoming a problem
in the field. In this area, application performance is usually
defined along two dimensions of key performance indicators
(KPIs): service-oriented (e.g. response times, number of
requests) and efficiency-oriented (e.g. CPU) KPIs [6], where
efficiency-oriented KPIs match our general motivation. Test-
ing performance in these systems is usually performed on
a much coarser-grained level with the whole system being
deployed for testing as a monolithic unit. Tests are often
performed based on mimicking or abstracting the human
users of the systems (e.g. through http interactions) and can
last up to several hours or days [5].

A recent survey by Jiang and Hassan [7] provides a good
overview on how research addresses the issue of performance



testing of large-scale systems. The authors separate the test-
ing process into three successive steps: test design, execution
and analysis and categorize publications along several axes
inside each step. The review does not mention any work that
specifically focuses on individual components as the unit of
testing. Instead, most approaches follow the APM idea of
focusing on the complete system.

Following the proposed separation, several distinct meth-
ods to design performance tests exist. Tools like Apache
JMeter [8] and Tsung [9] focus on testing via network pro-
tocols like HTTP or XMPP and provide methods to generate
tests for these protocols. Often, recording capabilities exist
to generate interactions based on prototypes and loops and
parallel execution can be used to generate extended loads
using an abstract specification of the interactions. In JMeter,
most interactions are primarily GUI-based, while Tsung uses
an XML configuration file and command line utilities for
defining tests. Other tools like Locust [10], NLoad [11],
The Grinder [12], and Chen et al. [13] use the programming
language level to define load tests while tools like Gatling
[14] are in between these categories by generating code from
exemplary executions. In contrast, Da Silveira [15] presents
an approach which uses a Domain Specific Language (DSL)
to formulate performance tests inside the model-based test-
ing paradigm. Generally, the presented approaches usually
provide a way to structure the performance or load test into
distinct units like test cases or test phases.

For executing tests, frameworks have the duty to generate
the load and to log metrics during the test. Depending on
the framework, load can be generated from one or several
hosts, e.g. [8]–[10]. Most IP-based frameworks automatically
log metrics like response times for the issued requests.
Additionally, some of them incorporate ways to also log
resource usage on the tested systems, e.g. [8], [9], [12].

For analyzing the results of performance tests with the
aim to automatically detect performance regressions, several
methods have been proposed. One common method is the
use of control charts [16]–[18]. However, control charts
assume normal distributions for the measured values, which
is usually not the case for performance counters like CPU
usage under varying load. Another category of approaches
exploits the fact that several performance counters in a test
run are usually correlated and changes in these correlations
could indicate a performance regression. Moreover, correla-
tion might be used to reduce the amount of counters that
needs to be analyzed. Foo et al. [19] and Žaleźničenka
[20] implement this approach by applying association rule
learning techniques while Shang et al. [21] present a method
based on clustering and regression. Additionally, Malik et al.
[16] present another clustering and a PCA-based approach.

Generally, the existing work mostly focuses on perfor-
mance testing integrated systems. While such tests are also
desirable for robotics and intelligent systems, they are much
harder to set up and maintain due to the complex interactions
of robots with the real world and the non-standard interfaces
in contrast to e.g. HTTP. Moreover, performance regressions
detected in such integrated tests are harder to point down

to individual components for fixing the issues. Therefore,
testing performance for individual components provides a
parallel, and currently better applicable method in robotics
and intelligent systems.

Finally, in addition to the presented data-driven methods
for detecting performance regressions, there is also research
on prediction resource consumption based on software mod-
els. For instance, Becker et al. [22] present the quite popular
Palladio Component Model, which allows to model complete
software architectures with respect to performance-relevant
aspects. Comparable approaches have been reviewed in Kozi-
olek [23]. In case a complete model of the system exists,
performance regressions can be derived from the model.
However, these models often do not exist or are out of sync
with the real system. Additionally, specifying the resource
usage of a manually implemented or third-party component
is a non-trivial task and therefore, models often present
a level of abstraction that might miss certain performance
degradations that are practically important or noticeable.

III. CONCEPT

Most current robotics systems are constructed as dis-
tributed component-based systems where individual com-
ponents implement isolated aspects of the system func-
tionality [24]. A component is thereby a specification of
an interface of how potentially multiple different imple-
mentations interact with the rest of the software system.
While the interface usually remains relatively stable, the
implementation might change frequently and therefore also
its performance characteristics. For our case, we assume that
a component’s interface is defined and realized in terms of
communication patterns [25] and data types of a middleware
framework like ROS or YARP. With the ongoing adoption
of a limited set of such frameworks, a reasonable part of
components is reused across different systems. Additionally,
current systems are often maintained by multiple persons and
no single person has in-depth knowledge of all components
which form the system. Therefore, we think that it is viable
to implement performance testing on a per-component basis
instead of or in addition to the complete system because:

1) testing a complete robotics system for performance
regressions in an automated fashion is very hard to
achieve due to the interaction with the real world like
speech-based dialog or computer vision problems.

2) the middleware-based component interface allows to
write performance tests that are quite stable during
component and system evolution.

3) detected performance regressions can be attributed
easily to the component as a code unit.

4) component developers have the best knowledge about
their components and the expected loads and behav-
iors. Therefore, developers can test the complete range
of functionality and loads and not only the require-
ments of a single target system.

5) components often exist longer than individual systems
and therefore test results should be available and
comparable even if systems change.



Therefore we present a framework to specify, execute and
analyze performance tests for individual components of
robotics systems. These tests are maintained alongside the
component in a similar fashion to unit tests1. This ensures
that tests are kept up to date with the component by the com-
ponent developers and test results are immediately available
after component changes.

Depending on the connectivity of a component with the
remaining system or the underlying operating system and
hardware, testing via the middleware interface can be more
or less complicated. E.g. a controlling state machine usually
communicates with many other components in the system.
Therefore, it is hard to test it in isolation. While it is possible
to test such a component (e.g. by implementing mock
components for the tests), our approach primarily targets
what Brugali and Scandurra [24] call “vertical components”,
which capture isolated domain knowledge in a functional
area and contribute most to reuse.

IV. REALIZATION

In the following subsections we describe the realiza-
tion of our approach. According to Malik et al. [16], a
common load or performance test (terms are often used
interchangeably [7]) consists of “a) test environment setup,
b) load generation, c) load test execution, and d) load test
analysis”. We agree with this and the following descriptions
of our framework follow this separation (with a changed
order). The framework has been developed using the RSB
middleware [26], but the concepts can easily be applied for
other common frameworks like ROS or YARP, as long as
tools exist to record and replay communication.

A. Load Generation

For vertical components, we assume that the resource
demands of the component at runtime are to a large extent
related to the communication a component is exposed to. For
instance, a face detection algorithm might impose higher or
lower CPU usage depending on the rate and size of images
it received via the middleware. Similarly, a person tracker’s
CPU and memory usage might relate to the number of person
percepts it receives via its communication channels. There-
fore, generating load in terms of middleware communication
provides a way to abstract the ongoing development changes
inside the component while enabling to test the aspects of
components that are relevant to its use inside a robotics
system.

In order to generate such middleware-defined loads we
have implemented a testing framework which allows to
specify middleware interactions with components via a Java
API. We have chosen Java as our target language as it
provides the required performance to generate heavy loads
(e.g. in contrast to Python) while consisting of a relatively
easy to use programming language and environment (e.g.
compared to C++) which is usable for most developers.

1Either inside the component’s source code repository or in a closely
coupled one.
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Fig. 1. Structure of the testing API.

Inside this framework we define a performance test to
consist of multiple test cases (cf. Figure 1. Each test case
consists of one or more test phases and a parameter provider.
A test phase is a named entity which consists of a tree
of parameterized actions to perform via the middleware
which specify the actual interaction of the test with the
component. These actions have variable parameters, like
e.g. a sending rate for messages or a number of faces to
include in a face detection message. The parameter provider
generates parameter sets which specify the actual values for
all variable parameters. When executing the test case, the
action tree is executed sequentially for all parameter sets,
thereby generating different load levels on the component.

Parameters allow to specify the load profile of tests,
while actions specify the semantics of the interaction. Such
parameters can for instance be:

• communication rates
• number of generated messages
• different data sizes
• sets of pre-computed control/data messages
• middleware communication channels

By extracting these parameters from the actual definition of
the interaction we gain several benefits:

• The influence of these parameters on the component can
be systematically analyzed.

• By changing parameter sets, different test granularities
can be achieved.

• Test cases can be reused across different, functionally
comparable components by changing parameter sets.

Test phases provide the ability to group operations to perform
with the component under test, which are identifiable for a
later analysis step. As test phases are executed sequentially
inside each test case for all parameter combinations, this
allows to define transactions in case a component like a
database requires a defined protocol.

The actions that can be performed in order to interact
with the component under test form a limited specification
language suitable for the needs of performance testing. Each
action generally is a function that takes the current parameter
set as the input and optionally returns a result, which may
be processed by parent actions. We have identified and
implemented the actions shown in Table I as a result of
testing our own components. Performance tests are created
by forming a tree of these actions and potentially user-
defined ones for specific use cases. We have provided specific
support for generating variable data for our middleware
based on the parameters as this is a very common task.
The ProtobufData action allows to construct Protocol
Buffers [27] data (which is primarily used in RSB) from



TABLE I
IDENTIFIED ACTIONS FOR PERFORMANCE TESTING

Data

Parameter Resolve a value from a parameter set
StaticData Resolve to a pre-defined, static value

Flow

Sequence Execute actions sequentially
Loop Loop an action n times or indefinitely

Parallel Execute multiple actions in parallel
WithBackground Execute one main action with multiple background

actions. Background is interrupted when the main
action finishes.

Timing

Sleep Sleep for a specified time
LimitedTime Execute an action up to a time limit

FixedRate Execute an action at a fixed rate

Middleware (RSB)

InformerAction Send an RSB event (message)
RpcAction Call an RPC server method
WaitEvent Wait for an event to arrive
BagAction Replay recorded communication

DynamicEvent Construct an event (for Informer or RPC action)
ProtobufData Generate protocol buffers payloads from parameters

template messages by scaling (repeated and string) fields
based on parameters. For this purpose, API users provide
data generators for the individual items. Additionally, the
BagAction provides a method to replay pre-recorded data,
optionally with modulations like speed or channel selection.
If a user requires further actions or methods for generating
test data, the action tree can be extended with custom im-
plementations. Figure 2 visualizes the action trees that have
been used to construct a test for a leg detector component.

Each test case is equipped with a parameter provider
which generates one or more sets of parameter combinations.
Each parameter itself is a programming language object
and has a printable name for the analysis. We provide two
implementations of parameter providers: a table, where the
user manually specifies the row values, and a Cartesian
product, where combinations of individual parameter values
are created, optionally with constraints. For easily specifying
the constraints, scripting languages like Groovy can be used.
Since parameters will be reported during test execution using
the middleware, they must be serializable by the middleware.

B. Environment Setup

For executing performance tests, the API contains a test
runner. The first step of this test runner is to set up the test
environment based on a configuration file, which specifies
the following aspects:

• locations of utility programs required by the testing API
• middleware configuration
• processes which act as a test fixture (e.g. daemons,

mock components)
• component processes to test
• test cases to execute and their parameter providers

(references to Java classes)

Legdetector Test
TestCase smoke
TestPhase fire
FixedRateTiming
StaticData 10000 // length (ms)
Parameter scanFrequency
InformerAction
DynamicEvent
StaticData rst.vision.LaserScan
StaticData /sensors/laserscan/
GenerateData
Parameter numberOfPersons

StaticData rsb.Informer
TestCase real-recording
TestPhase replay
RecordedTimeBagReplay
Parameter tideFile

TestCase recording-modulated
TestPhase replay
FixedRateBagReplay
Parameter tideFile
Parameter scanFrequency

Fig. 2. Structure of a performance test for a component which detects legs
in a laser scanner. The test consists of three distinct test phases.

Using this configuration, the initialization of the test envi-
ronment is performed in the following steps:

1) Configuration of the middleware to ensure that test
execution is isolated from the remaining system.

2) Creation of a temporary workspace for the test execu-
tion. The workspace is used as the working directory
for executed processes and stores intermediate logs
which can be retained for debugging.

3) Start of all defined fixture processes. These could
be daemons required for the middleware, database
services used by the tested component etc.

C. Test Execution
See Figure 3 for a visualization of the following aspects.
1) Orchestration: After the environment setup, the con-

figuration is used to instantiate and execute the performance
test. First, the configured test case and parameter provider
instances are created and a static validation for invalid
parameter references is performed. If validation succeeds,
the defined components to test are started. While usually
only a single component is started, it is also possible to
test a combination of components in cases where such a
constellation is easier to test than an isolated component due
to the required interactions. After starting all components,
the test cases are executed sequentially. Inside each test
case, the defined test phases are executed for all parameter
sets returned by the parameter provider. Finally, all started
components and the test fixture are terminated. We have
decided to use a single execution of the component processes
without intermediate restarts, e.g. for each parameter set. On
the one hand, test runs require more time with component
restarts and on the other hand, most robotics components
usually operate for a longer time without restarting and
artificial restarts would make it harder to detect performance
issues like memory leaks, which slowly build up over time.



Configure Middleware

Start Fixture

Create Workspace

Validate Test

Start Components

Stop Processes

Start Process Monitoring

Start Recording

Clean Workspace

Report Test Case Start

Get Next Parameter Set

Report Parameter Set

Report Test Phase

Execute Action Tree

Report Test Phase End

[No more test cases]

[More test phases]

Fig. 3. Visualization of steps performed to execute a performance test.
Cyan: environment setup, orange: test setup, red: test case execution, gray:
clean up.

2) Data Acquisition & Recording: In order to generate
and record data for later performance analysis, we apply the
following approach: The test runner instantiates an external
monitoring process, which obtains performance counters (or
KPIs) for each of the started component processes by using
the Linux proc filesystem, which includes aspects like CPU,
memory, I/O and threads. The monitor is implemented as
efficient as possible in order to minimize the load it addi-
tionally imposes on the system (e.g. below 2 % CPU usage
per process on an Intel Xeon E5-1620). Acquired counters
are exposed via the middleware using dedicated channels per
component. In addition, the test runner exposes information
about the executed test cases, phases and parameter sets
via dedicated middleware messages, so that the counters
can be related to this structure. For persisting the generated
data, the test runner launches an instance of the middleware
recording tool, in our case rsbag, which is configured
to record the entire communication. This way, recording
results can be replayed completely for detailed analysis and
debugging purposes. The recording method has previously
been described in Wienke et al. [28], including details about
the performance counters. Figure 4 shows an excerpt of a
test case recording for a single test case with two test phases
which are executed for different parameters.

D. Test Analysis

1) Data Preparation: The output of a performance test is
a file with all middleware events including the component
communication, information about the test progress, and
performance counters for the tested component. While this
provides a good basis for detailed analyses, the file size
usually prohibits to store these files for a longer time to
build a database of the performance changes inside the
component and random access times are slower compared
to other formats. Therefore, we first transform information
about the test progress and counters into a HDF5 file using
the Python pandas library [29]. Here, information about the
represented component revision are attached to the data,
which are a human readable title (e.g. a Git hash for tests
per Git commit or a time stamp for nightly builds) and a
machine-sortable representation (e.g. the Git commit date
or an ISO 8601 formatted date) so that executions can be
ordered accordingly. In case a test has been executed multiple

Fig. 4. Excerpt from a test for a logging component. Two test phases are
executed for different parameter combinations, in this case frequency and
size of events to display by the logger.

times for the same component revision, it is assumed that title
and sort representation have the same value for all revisions
(a test execution date is added to the data automatically and
allows to later distinguish between test executions). These
HDF5 files are the artifacts which are usually persisted
for each test execution. For this purpose, a command line
analysis tools was implemented, which realizes the complete
analysis step. It is designed to be integrated into shell scripts,
e.g. for a CI server integration.

2) Plots: As a first means of manually inspecting the
performance of a component, the analysis tool allows to
generate several plots from recorded data. These include the
raw performance counter time series of a single execution,
correlations between counters and numeric test parameters
and several plots which show how performance counters
have evolved with component revisions. For this purpose,
counters are summarized for each test case, test phase and
parameter set via mean and standard deviation and plotted
for each revision of the component. This allows to track how
the usage of individual counters has evolved. Figure 4 shows
an excerpt from one of the generated plots.

3) Automatic Regression Detection: To detect changes
in the resource consumptions of a component, we have
implemented three different methods in the analysis tool.
All methods take one or more test execution results (as
HDF5 files) and compare the observed performance against a
baseline from one or more test executions. We do not enforce
a method of defining executions as baseline and test data, but
at least the following modes can be found in the literature:

• “no-worse-than-before” principle [7]: the current revi-
sion is compared to the previous one (or a window of
n previous revisions) to ensure that the current state is
at least as good as the previous one.

• Comparison to a hand-selected baseline: all revisions
can be compared to a manually selected baseline to
ensure that the criteria of this baseline are met. The
baseline needs to be reselected to match intended per-
formance changes.

These modes can easily be realized using the analysis tool
with different sets of HDF5 files.

Most existing methods for detecting performance regres-
sions actually detect any change in the performance charac-



teristics of the tested system. While an automatic categoriza-
tion whether a change is a degradation or and improvement
in the performance would be a desirable feature, this is
often not easily possible. In our own experiments we found
cases where e.g. a new component revision resulted in a
higher CPU usage for small workloads while the usage
was improved for higher workloads. Therefore, we have
implemented a mode where any change is reported and the
developer has to decide (e.g. based on the plots), whether
the change is acceptable.

For the actual detection of performance changes we have
implemented the following methods:

• The method proposed by Foo et al. [19] as an example
for an association rule learning based approach.

• The method proposed by Shang et al. [21] as a reference
for a recent method based on clustering and regression.

• A basic two sample Kolmogorov-Smirnov test for each
performance counter. For this purpose, the individual
measurements of each performance counter across the
whole test execution time (of potentially multiple ex-
ecutions) are assumed to form an observation and the
observation from the test executions is compared to the
observation from the baseline.

4) Automation: The analysis tool reports results using
JUnit XML files, which can be parsed by many automation
tools, e.g. the Jenkins CI server. This allows to integrate
the approach with such tools which can then give feedback
on potential performance regressions. Since HDF5 files from
previous test executions are required to perform the analysis,
we have provided a utility command which allows to use
the Jenkins job artifacts feature as a lightweight database
for these files. In Jenkins, a job can store build artifacts
(files) as part of the execution. Jenkins persists these artifacts
and makes them available via its API. The provided utility
command downloads archived HDF5 files from previous
test executions for use in the analysis step. This Jenkins
integration is an easy way to trigger a test execution for
each new software revision with automatic notification. In
the future, more sophisticated tools like LNT [30] might be
required to archive test results and make them browsable.

Generally, acquired performance results are coupled to the
execution platform due to the system-specific execution times
and measurements. Therefore, a dedicated host should be
used for all test executions and this host should be free from
other tasks to avoid resource sharing issues, which might
influence the measurements. For instance, this can be realized
by adding a dedicated performance testing slave to a Jenkins
server. Also, dynamic frequency scaling techniques might
influence the results. We therefore advise to enable the Linux
performance CPU governor, at least for the test runtime.

V. EVALUATION

In order to validate the automatic detection of performance
changes, we have implemented performance tests for several
vertical components from our systems, which cover a range
of different programming environments:

• 2dmap: A Java-based visualization for person tracking
results in a smart environment.

• legdetector: A Java-based component for detecting
legs in laser scans, used by our mobile robots.

• objectbuilder: A C++-based component which
generates stable person hypotheses from detected legs
and the SLAM position of a robot.

• logger-*: A console-based logger for middleware
events with different output styles (Common Lisp).

• bridge: An infrastructure component which routes
parts of the middleware communication to other net-
works (Common Lisp).

For all of these components, tests have been written using
the presented Java API and results have been processed
using the aforementioned analysis methods. All tests could
be generated with the provided actions which suggests that
the provided set of actions is generally sufficient for writing
tests for vertical components.

We have tested the presented components using the “no-
worse-than-before” principle by comparing each revision
against the previous one, as this is automatically possible
without the necessity for a manual baseline selection. For the
2dmap, legdetector and objectbuilder component
all Git commits that could still be compiled have been used
while for the logger and bridge archived component
nightly builds were used.

All available analysis methods have been applied to com-
pare their performance. Each of them requires a threshold for
a numeric score to decide whether a test execution represents
a performance change or not. We have used this score to
compute the Area Under Curve (AUC) on ROC curves as
the target metric for the classification. Since all analysis
methods actually return multiple scores per test (Shang et
al. [21] returns one score per cluster, Foo et al. [19] returns
one score per frequent item set, and the KS-test returns one
score per performance counter), these individual scores need
to be combined into a single one to enable computing the
AUC. We have used the min, max and mean functions for
this purpose.

To get ground truth information, the generated plots
displaying the evolution of performance counters across
revisions have been manually examined and annotated. Ad-
ditionally, the commit logs have been used, especially in
cases where a decision was not easily possible from the
representation. While we took great care with the anno-
tations, we still expect some amount of errors since it is
sometimes very hard to decide whether visible changes are
real performance changes or caused by possible external dis-
turbances. Especially for the nightly builds, the Git commit
log was not sufficient to trace all possible changes, e.g.
to the compilation environment used to create each build.
These annotation issues are expected to decrease the AUC
scores. Table II displays the amount of available data per
component. The column “execs” indicated how often the
test has been executed per revision and “changes” shows
how many revisions have been manually tagged to contain
performance changes.



TABLE II
AVAILABLE EVALUATION DATA PER COMPONENT

revisions execs changes

2dmap 25 4 10
legdetector 14 4 4

objectbuilder 23 4 7
logger-compact 306 2 16
logger-detailed 306 2 7
logger-monitor 228 2 6

bridge 176 2 6

Based on the available data we receive the evaluation
results visible in Table III. The highest scores per component
are highlighted. These show that for component tests the
basic Kolmogorov-Smirnov test works best. Only for some
settings the method by Shang et al. shows comparable or
slightly better scores. Especially the method proposed by
Foo et al. does not seem to work on this kind of data.

For the results shown in Table III, the tests have been
executed multiple times (cf. Table II for the actual numbers).
This has been done, because several aspects of the com-
ponent performance characteristics differ across runs of the
same revisions. For instance, due to garbage collection timing
in Java or Common Lisp programs, the memory footprint
might be different across runs. Generally, we have observed
that memory is usually one of the most common causes
for false-positives due to such issues and averaging across
multiple runs provides a way to counteract this. In contrast
to component restarts during test execution (e.g. for each
parameter set and test phase) this is still faster to perform
due to less restarts while retaining the ability to detect
performance issues like memory leaks. Additionally, effects
of component initialization (warming up caches, loading files
and libraries etc.) are less visible in the data. To quantify
the effect of the number of test executions on the detection
of performance changes, we have varied the amount of
executions for all components that have been tested four
times in total. Figure 5 shows the results for the most
promising detection methods. While there seems to be a
slight improvement for Shang et al. with the number of
test executions, the results for the KS-test are inconclusive.
On the other hand, both methods already show a reasonable
performance with a single execution of the tests.

Fig. 5. Influence of the number of test executions on the two most
promising detection methods. For Shang et al. the max aggregation method
was used and for the KS-test the mean of all counter scores.

TABLE III
ROC-AUC SCORES FOR THE DIFFERENT ANALYSIS METHODS

Foo et al. Shang et al. KS-test
min max ø min max ø min max ø

2dmap 0.50 0.72 0.71 0.81 0.81 0.83 0.50 0.50 0.89
legdetector 0.50 0.51 0.47 0.75 0.97 0.97 0.50 0.50 0.97

objectbuilder 0.50 0.63 0.66 0.28 0.76 0.55 0.50 0.50 0.84
logger-compact 0.50 0.49 0.51 0.45 0.56 0.48 0.59 0.59 0.76
logger-detailed 0.50 0.39 0.39 0.46 0.60 0.57 0.61 0.50 0.84
logger-monitor 0.50 0.57 0.57 0.69 0.82 0.80 0.48 0.50 0.72

bridge 0.50 0.59 0.59 0.55 0.56 0.48 0.44 0.49 0.61

ø 0.50 0.56 0.56 0.57 0.73 0.67 0.52 0.51 0.81

VI. DISCUSSION

We have presented a method to test individual components
of robotics and intelligent systems for performance regres-
sions introduced by code changes. The implemented frame-
work consists of a Java API to specify tests which operate on
the component’s middleware interface. Special care has been
taken to provide abstractions suitable for vertical components
and the required data generation tasks. After test executions
an analysis tool automatically decides whether a new test
execution shows performance changes compared to a base-
line from previous executions. By specifically supporting
automation systems like the Jenkins CI server, this allows to
easily construct an automated verification of performance as-
pects. Consequently, developers are better informed about the
impact of their changes on the performance characteristics.
We have verified the applicability of the concepts defined
in the testing API and the effectiveness of the automatic
performance change detection based on components drawn
from different robotics and intelligent systems which are in
active use at our labs. The idea of testing individual com-
ponents for performance characteristics is a new perspective
which is easier to apply than testing the whole system in the
robotics context. Detected performance regression can easily
be attributed to individual code units. Nevertheless, in the
future, work on testing complete systems is an additional
axis that needs to be performed to detect further categories
of performance regressions.

The presented testing API is eventually meant only as a
base tool for specifying performance tests. Java was chosen
as a compromise between an acceptable coding experience
and the required efficiency to generate load tests. However,
the syntax is verbose and requires many code-level constructs
for specifying semantic tasks. Therefore, we envision the
use of a suitable DSL with embedded scripts for specifying
performance tests in a more natural and readable way.

Our current implementation of the framework uses the
RSB middleware as its basis. However, the concepts are gen-
erally applicable for comparable middlewares. In the testing
API, the RSB-related methods are already separated and can
be exchanged with other backends. A similar separation is
possible also for the analysis tool.

In the future, we will also focus on further improving the
detection of anomalies. One aspect commonly found in load



tests for large-scale websites are explicit warm up or tickle
loads which are ignored in the final analysis and shall reduce
the impact of system initialization. It is currently already
possible to manually add test cases or test phases to achieve
a similar behavior, but adding such a concept as a first class
citizen will ensure that users of the API are aware of the
issue. Despite having ignored these effects in the current
evaluation, the presented detection scores already show that
the system is usable. Another issue we have observed is the
discretization of rarely used resources by the Linux kernel.
This results in peaks in the resource usage at unpredictable
times during the tests and some of the presented detection
methods are sensitive to such peaks. We will improve on this
in future versions. Despite the potential for improvement,
the framework already provides a good foundation to detect
performance degradations and has helped to identify several
previously unknown regressions in our own components.
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