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Abstract. Named Entity Disambiguation (NED) is the task of disam-
biguating named entities in a natural language text by linking them to
their corresponding entities in a knowledge base such as DBpedia, which
are already recognized. It is an important step in transforming unstruc-
tured text into structured knowledge. Previous work on this task has
proven a strong impact of graph-based methods such as PageRank on
entity disambiguation. Other approaches rely on distributional similar-
ity between an article and the textual description of a candidate entity.
However, the combined impact of these different feature groups has not
been explored to a sufficient extent. In this paper, we present a novel
approach that exploits an undirected probabilistic model to combine dif-
ferent types of features for named entity disambiguation. Capitalizing on
Markov Chain Monte Carlo sampling, our model is capable of exploit-
ing complementary strengths between both graph-based and textual fea-
tures. We analyze the impact of these features and their combination on
named entity disambiguation. In an evaluation on the GERBIL bench-
mark, our model compares favourably to the current state-of-the-art in
8 out of 14 data sets.

Keywords: entity disambiguation, collective entity disambiguation, named
entity disambiguation, probabilistic graphical models, factor graphs

1 Introduction

The problem of resolving the real-world reference of entity mentions in textual
data, which are already recognized, by linking them to unique identifiers in a
knowledge base has received substantial attention in recent years. This entity
disambigation task is an important first step towards capturing the semantics of
textual content.

Earlier approaches to entity disambiguation resolved mentions independently
of each other (e.g., DBpedia Spotlight [7], etc.). Recently, several approaches
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have been presented that perform collective entity disambiguation, attempting
to resolve several mentions at the same time within one inference step. Such
joint inference approaches can capture dependencies in the choice of identifiers
for different mentions.

The features used in entity disambiguation models vary widely. Many ap-
proaches rely on features that measure textual coherence. This is typically im-
plemented by a measure of similarity between the context in which a mention
appears and the context of the linking candidate. These contexts are of a tex-
tual nature and Bag-of-Words (BOW) based similarity as measured by cosine
similarity, for instance, can be applied here. A prominent representative of sys-
tems using textual coherence is DBpedia Spotlight. Other approaches rely on
graph connectivity features exploiting the connectedness between different dis-
ambiguation candidates in a knowledge base. Examples of these are the Babelfy
[21] and AGDISTIS [26] systems. Finally, recent work has shown the power of
using prior probabilities as features on the task. For instance, Tristram et al.
[25] have shown that using the PageRank of linking candidates alone can yield
quite high results.

Building on these previous results, in this paper we present a novel sys-
tem that performs collective entity disambiguation by combining all the above-
mentioned types of features within one model that is trained discriminatively.
In particular, we propose an undirected probabilistic graphical model based on
factor graphs. Each factor in the model measures the suitability of the resolution
of some mention to a given linking candidate, relying on a set of features that
are linearly combined by weights. For inference during training and testing, we
rely on a Markov Chain Monte Carlo (MCMC) [2] approach. For training, we
rely on the SampleRank [29] algorithm.

We evaluate our approach on standard benchmarking data sets for the entity
disambiguation task as available in the GERBIL framework [27]. We show the
impact of the features we propose in isolation and in combination. We thus
enhance our understanding of the features that work well on the task. Overall,
we show that our system outperforms state-of-the-art systems on 8 out of 14
publicly available datasets.

All the data and code used to build our approach are publicly available.1

2 Related Work

Given the variety of previous approaches to named entity disambiguation, we
structure our discussion of related work according to the features and combina-
tions of features that have been proposed.

One of the first named entity disambiguation systems, DBpedia Spotlight
[7], mainly relied on features scoring the textual coherence between the context
of the mention and the context of a given linking candidate. Recent approaches
include different types of similarities. One example is the approach by Liu et

1 https://github.com/ag-sc/NED
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al. [19], which considers entity-entity similarity, mention-entity similarity, and
mention-mention similarity. The prior probability of a mention is shown to be
a strong indicator. A related system is the one of Hoffart et al. [13], which
also combines a popularity prior, mention-entity similarity as well as a score
of the graph-based coherence between linking candidates. All these features are
combined in a linear model. Our approach is related, but extends the feature set
used by the above-mentioned approaches, studying in particular the impact of
each feature in isolation and in combination.

The connectedness between different linking candidates can also be estimated
by the Topic-sensitive PageRank [12] of a linking candidate given another com-
peting candidate or via a random walk over the KB graph, as in Guo & Barbosa
[10]. Other approaches relying mainly on graph connectedness include Babelfy
[21], TagMe [23] as well as the approaches by Hakimov et al. [11], Alhelbawy &
Gaizauskas [1], Usbeck et al. [26], and Jin et al. [15].

By combining different sources of information comprising knowledge about
entities, names, context, and the Wikipedia graph in a probabilistic framework,
Barrena et al. [3] observe complementary effects between these features. However,
they impose strong independence assumptions (i) on the level of features, which
essentially renders their model an instance of Näıve Bayes classification, and (ii)
on the level of entities as well.

In contrast, we aim at collective entity disambiguation in this paper, and
frame the task as an inference problem in a probabilistic graphical model to
disambiguate all mentions in a text through joint prediction. Previous work on
joint entity disambiguation comprises the graph-based approach by Alhelbawy
and Gaizauskas [1], for instance: All candidates pertaining to the NEs in the
text are represented as nodes in a so-called solution graph that serves as input
to a ranking model based on PageRank. As features for the ranking, both an
initial confidence (corresponding to prior popularity or mention-entity similar-
ity, respectively) and edge weights in the graph (corresponding to entity-entity
coherence) are taken into account. Houlsby and Ciaramita [14] apply a genera-
tive probabilistic model, viz. Latent Dirichlet Allocation (LDA; [4]), to the task.
They construct a “knowledge base-specific” topic model where each topic corre-
sponds to a Wikipedia article. The word-topic proportions inferred by LDA for
each entity mention are directly used in order to link the mention to its most
likely Wikipedia concept.

More recently, Ganea et al. [9] and Zwicklbauer et al. [30] have proposed col-
lective entity disambiguation methods as well. Ganea et al. [9] have proposed a
joint probabilistic model for collective entity disambiguation that is not trained
on any particular data set, but relies on sufficient statistics over all hyperlinks in
Wikipedia, considering each anchor text as a mention and the Wikipedia page it
refers to as the ground truth entity label. These statistics essentially capture co-
occurrence probabilities of mention-entity and entity-entity pairs. Zwicklbauer
et al. [30] proposed a method using semantic embeddings of entities for entity
disambiguation. They embed entities using Word2Vec [20] by constructing se-
quences of entities using random walks over the RDF Graph.
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Undirected probabilistic graphical models have been successfully applied to
a variety of related NLP tasks: Passos et al. [22] propose a method for learn-
ing neural phrase embeddings to be applied to Named Entity Recognition by
leveraging factor graphs. Singh et al. [24] use factor graphs for cross-document
coreference resolution. Our approach differs in that we apply factor graphs for
NED while using features specific to the task. We give an overview of how we
formulate the NED task with factor graphs in Section 3.2.

3 Named Entity Disambiguation with Undirected Factor
Graphs

In this work, we present an approach based on imperatively defined factor graphs
that addresses Named Entity Disambiguation (NED) with textual and graph-
based features. By employing factor graphs, our system is able to disambiguate
entity mentions in a document separately and collectively, benefitting from both
paradigms. Before we give a formal description of our factor graph approach, we
present our candidate retrieval component for retrieving URI candidates for a
given entity mention.

3.1 Candidate Retrieval

To reduce the number of possible candidate URIs for a given mention, we imple-
ment a retrieval component based on an index that retrieves a subset of k related
candidates for this mention. The retrieval component is designed as to provide a
high recall, while keeping k as small as possible. Our index is constructed using
two different data sources of mention-related surface forms, in particular DBpe-
dia and Wikipedia anchors. In the following, we briefly describe both data sets
as well as the generation of our index.

DBpedia data We create an index of surface forms of named entities using
DBpedia data sets in their 2015-04 version.2 We collected a set of labeleling
properties from these data sets to detect surface forms. All 〈surface form, URI〉
pairs are extracted from these data sets while keeping track of the frequency of
occurrence of each pair. In addition to label properties, we convert all redirect
page URIs into surface forms and pair them with the target page URI. The data
set names, label properties, surface form data and all other data sets can be
found on our page.

Wikipedia anchors We extracted all links in Wikipedia pages and extracted
the text mentioned in the anchor and the target link. The text of an anchor
refers to the surface form, and the actual link refers to some Wikipedia page
(URI). By counting the co-occurrences of 〈surface form, URI〉 pairs, we built
another table of 〈surface form, URI, frequency〉 tuples.

2 http://wiki.dbpedia.org/Downloads2015-04
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Candidate Retrieval Performance In order to assess the candidate retrieval
performance of our index, we compute the Recall@k, measuring in how many
cases we retrieve the correct candidate among the top k results from our index.
The results of Recall@k are plotted in Figure 1 for different values of k. The
evaluation is based on the AIDA/CoNLL [13] and MicroPost2014 [6] training
sets. We consider three settings: (i) using only the DBpedia table, (ii) using
the Wikipedia anchors table, and (iii) We combine both data tables where the
frequency of the same 〈surface form, URI〉 pairs are summed and the frequency
of unique pairs are kept as they are in respective tables. Our results show that
the combination approach yields the highest recall. The results also show that
considering a number of k = 10 represents a reasonable trade-off between recall
and efficiency; thus, we rely on this setting in all our experiments. The Recall@10
is 0.934 for the AIDA/CoNLL and 0.814 for the MicroPost2014 training sets,
respectively. These figures represent an upper bound in terms of F-Measure for
the overall task of entity disambiguation.

Fig. 1. Recall@k scores for candidate retrieval

3.2 Imperatively Defined Factor Graphs

In this section, we introduce the concept of factor graphs [17], following the
notations in [29] and [16]. A factor graph G is a bipartite graph that defines
a probability distribution π. The graph consists of variables V and factors Ψ .
Variables can further be divided into sets of observed variables X and hidden
variables Y . A factor Ψi connects subsets of observed variables xi and hidden
variables yi and computes a scalar score based on the exponential of the scalar
product of a feature vector fi(xi, yi) and a set of parameters θi: Ψi = efi(xi,yi)·θi .
The probability of the hidden variables given the observed variables is the prod-
uct of the individual factors:

π(y|x; θ) =
1

Z(x)

∏
Ψi∈G

eΨi =
1

Z(x)

∏
Ψi∈G

efi(xi,yi)·θi (1)
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where Z(x) is the normalization function. For a given set of observed variables,
we generate a factor graph automatically making use of factor templates T . A
template Tj ∈ T defines the subsets of observed and hidden variables (x, y) with
x ∈ Xj and y ∈ Yj for which it can generate factors and a function fj(x, y)
to generate features for these variables. Additionally, all factors generated by a
given template Tj share the same parameters θj . With this definition, we can
reformulate the conditional probability as follows:

π(y|x; θ) =
1

Z(x)

∏
Tj∈T

∏
(x,y)∈Tj

efj(x,y)·θj (2)

Thus, we define a probability distribution over possible configurations of ob-
served and hidden variables, i.e., assigned URIs. This enables us to explore the
joint space of observed and hidden variables in a probabilistic fashion.

Data Representation In the following, we show how to apply this approach
of probabilistic factor graphs to the NED task. We define a document as d =
(w,a) that consists of a sequence of words w = (w1, . . . , wNw

) and a set of
annotation spans (or entity mentions) a = {a1, . . . , aNa

}. Documents, words and
annotation spans constitute the observed variables X. The assigned URIs of a
set of annotation spans u = {u1, . . . , uNa

} are considered to be hidden variables
Y , where ui corresponds to annotation span ai. A disambiguated document, i.e.,
the collective of words, annotation spans and assigned URIs (w,a,u), is referred
to as a configuration and in the context of sampling as a state. Consequently,
we can apply Eq. (2) to a disambiguated document to compute its probability
given the underlying factor graph. Figure 2 shows a schematic visualization of a
disambiguated document along with its factor graph.

Istanbul  is  the  capital  of  Turkey  and  the  largest  City  in  the  E.U.

Istanbul European_UnionTurkey

a1 a2 a3

u1 u2 u3

Document

Observed Variables

Hidden Variables

d:

Fig. 2. An exemplary depiction of a factor graph for a disambiguated document with
three NEs. The figure shows the division between observed and hidden variables as
well as different factors (black boxes) between all variables.
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3.3 Inference

This section shows how we infer URIs for a given document using the above for-
mulation of factor graphs. We perform a Markov Chain Monte Carlo (MCMC)
sampling procedure [2] that explores the search space of a document in an itera-
tive fashion. The inference procedure performs a local search and can be divided
into (i) generating possible successor states for a given state by applying atomic
changes, and (ii) selecting a successor state from the set of generated states.

Assuming a document d = (w,a), our goal is to obtain a configuration (or
state) s∗ = (w,a,u∗) with the correct URI assignment u∗ for the given anno-
tation spans. For that, we perform an iterative sampling procedure of m steps
that performs a local search at each step to find a better disambiguation for a
given document.

As a first step, we create an initial state s0 = (w,a,u0), where URIs u0 are
randomly assigned from the top-k retrieved candidates. This state is used as the
starting point of our sampling procedure.

For each annotation span ai in the state, we retrieve a set of k candidate URIs
Cand(ai) = {ci1, . . . , cij , . . . , cik} from our candidate retrieval component, using
the text of ai as query. We generate Na ·k modified states that differ from the cur-
rent state st in only a single atomic change. Specifically, the modified state s′ij =
(w,a,u′ij) comprises the same observed variables w and a, but changes exactly
one “hidden” assignment of a URI to u′ij = {u1, . . . , ui−1, cij , ui+1, . . . , uNa},
while leaving all other URIs untouched. We consider this pool of generated states
to be the collection of all valid states that can be reached from the current state
with one atomic change.

Next, we compute the probability of each generated state s′ij using Eq. (2)

and obtain a probability distribution over all generated states.3 We select a
single candidate state s′t by sampling from the distribution of generated states4

to obtain a potential successor state. We accept the sampled successor state s′t
as our next state st+1 if it has a higher probability than the previous state st:

st+1 =

{
s′t, if π(s′t) > π(st)

st, otherwise
(3)

Following this procedure for m iterations yields a sequence of states (s0, . . . , sm)
that are sampled from the distribution defined by the underlying factor graphs.
The final state sm in this sequence represents the predicted configuration s∗.
With a reasonable choice of model parameters θ (see Section 3.4 below), it is
expected that the URI assignments u∗ in s∗ constitute a good disambiguation
of the entity mentions in the document. A more pseudo-algorithmic description
of the inference procedure is given in Algorithm 1 and a schematic visualization
of the generation of neighboring states is shown in Figure 3.

3 After re-normalizing the probabilities such that
∑

s′ij
π(s′ij) = 1.

4 Our experiments show that a greedy approach that always prefers the state with the
highest probability works best.
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Istanbul  is  the  capital  of  Turkey  and  the  largest  City  in  the  E.U.

a1 a2 a3
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Istanbul_Atatürk_Airport Turkey European_Commission
State st

State st+1sample

Fig. 3. An exemplary depiction of the sampling procedure. Starting from state st we
generate states {sij} in its local neighborhood performing only atomic modifications.
Specifically, we generate a state for each annotation span and each retrieved candidate
URI. Each state is scored according to the current model and the successor state st+1

is selected from these generated states.

3.4 Learning Model Parameters

In order to optimize parameters θ, we use an implementation of the SampleRank
[29] algorithm. The SampleRank algorithm obtains gradients for these parame-
ters from pairs of states (e.g. st and s′t) by observing the individual steps in the
inference routine. For that, the algorithm requires a preference function P(s′, s)
that indicates which of two states is “objectively” preferred. We implement P
based on an objective function O(s) that computes a score for a state compared
to the ground truth assignments for the respective training document in terms of
the ratio of correctly linked entity mentions Na,correct of a state s and the total
number of entity mentions Na in s, i.e., O(s) = Na,correct/Na. The preference
function is thus:

P(s′, s) =

{
1, if O(s′) > O(s)

0, otherwise
(4)

We modify the original SampleRank algorithm such that we select the best
scoring successor state based on the objective function score O(.) rather than
the probability given by the model in Eq. (2). This small modification ensures
that the training procedure is guided towards a good solution when updating
the model parameters.

The final training algorithm is similar to the inference procedure in Algo-
rithm 1, with two changes, however: Line 5 of the inference algorithm is changed
to s′ ← arg maxs′′∈{s′ij}(O(s′′)) and an additional call is inserted between line
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Algorithm 1 Inference procedure

1: function Inference(w,a,u0)
2: s← (w,a,u0)
3: for t=1,2 . . . m do
4: {s′ij} ← Neighbors(s)
5: s′ ← arg maxs′′∈{s′ij}

(π(s′′))

6: if π(s′) > π(s) then
7: s← s′

8: else
9: break

10: end if
11: end for
12: return s
13: end function

1: function Neighbors(s)
2: for i=1,2 . . .Na do
3: {cj} ← Candidates(s.ai)
4: for j=1,2 . . . k do
5: s′ij ← s
6: s′ij .uj ← cj
7: end for
8: end for
9: return {s′ij}

10: end function

6 and 7: θ ← Update(s′, s, θ), in order to update the model parameter at each
step according to the regular SampleRank algorithm [29].

3.5 Templates

In the following, we describe the templates that are used to automatically instan-
tiate the factors between variables in a configuration and, thus, for the extraction
of the features that determine the probability of a configuration (see Eq. (2)).
Throughout this discussion, we use ai to denote the ith annotation span, and
Cand(ai) = {c1, . . . , ck} to denote the set of entity candidates for ai. Further,
we denote the actually assigned URI for ai as ui ∈ Cand(ai).

Relative Term Frequency This template instantiates a factor between each
assigned URI ui and its corresponding annotation span ai in order to reflect
the co-occurrence of ui and ai in our index (see Section 3.1). The feature value
RTF (ai, ui) for such a factor is defined by the term-candidate frequency nor-
malized across all candidate URIs that are retrieved for ai:

RTF (a, u) =
freq(a, u)∑

c∈Cand(a) freq(a, c)
(5)

Edit Similarity In this template, we add a factor between each annotation
span ai and its assigned URI ui that reflects the string similarity l(ai, ui) between
those two based on the Levenshtein distance [18]. We use the maximum length to
normalize the string similarity l(ai, ui) and it is calculated as follows v(ai, ui) =

1− l(ai,ui)
max(len(ai),len(ui))

which is added as a feature to the factor. Further, we create

n equally distributed thresholds tj ∈ (0, 1]. For each tj ≤ v(ai, ui), an additional
boolean feature is added.
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Document Similarity Following [5], we hypothesize a positive impact of the
textual context on named entity disambiguation, in particular for NEs that share
the same surface form (e.g., apple). We represent the content of a document as a
bag-of-words vector that is constructed from all of its tokens. Each document is
preprocessed by applying tokenization, case normalization, stemming and stop-
words removal. Vector components are weighted by their term frequency tf and
their inverse document frequency idf . The latter is computed on the Wikipedia
abstract corpus. Given a document d, we denote its document vector as vd. The
document vector of an assigned URI ui is denoted as vui which is computed
analogously from its corresponding Wikipedia abstract. For each ui in d, we add
a factor to the factor graph whose feature is defined by the cosine similarity of
vd and vui :

cos(v,w) =

∑n
i=1 viwi√∑n

i=1 v
2
i

√∑n
i=1 w

2
i

(6)

Relative Page Rank The Relative Page Rank template instantiates a fac-
tor for each assigned URI ui to measure its a-priori popularity in Wikipedia.
The PageRank scores PR(ui) are computed on a subgraph of the Wikipedia
PageLinks data set5 excluding all category, disambiguation and file pages. We
calculate the PageRank scores based on the approach explained in [21] that uses
the random walk algorithm by Das Sarma et al.[8]. We normalize the raw PageR-
ank scores over all c ∈ Cand(ai) as described in Eq. (7) and add the relative
score RPR(ai, ui) as a feature to the factor.

RPR(a, u) =
PR(u)∑

c∈Cand(a) PR(c)
(7)

Topic-specific PageRank To measure the degree of coherence between all
assigned URIs (u1, . . . , uNa

) in a state, we introduce the Topic-specific PageRank
template. Topic-specific PageRank [12] is computed on the Wikipedia graph
using the random walk with restart (RWR) algorithm as described by Moro et
al. [21]. Following the notation by Moro et al. [21], we set the RWR parameters as
follows: the minimum hit threshold η = 100, the restart probability alpha = 0.85,
the number of iterations n = 1.000.000 and the transition probability P as
uniformly distributed for all neighbor nodes.

For each pair of URIs pij = (ui, uj) where i 6= j, we add a new factor to the
factor graph connecting ui and uj . The feature value for pij is determined by the
sum of the Topic-Specific PageRank values of TSPR(ui, uj) and TSPR(uj , ui).
For pairs where ui = uj the feature value is set to 1 in order to encourage
repetitions of the same URI.

5 http://wiki.dbpedia.org/Downloads2015-04
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Table 1. Micro F1 scores of models trained on combinations of features RPR (Relative
PageRank), RTF (Relative Term Frequency), ES (Edit Similarity), DS (Document
Similarity), TSPR (Topic Specific PageRank) as defined in Section 3.5

Feature Combinations AIDA/CoNLL Test-A MicroPost2014 Test
RPR 0.720 0.66
RTF 0.619 0.60
ES 0.500 0.49
DS 0.230 0.29
TSPR 0.725 0.29
RPR + RTF 0.723 0.68
RPR + ES 0.724 0.67
RPR + TSPR 0.747 0.65
RPR + DS 0.720 0.66
RPR + RTF + ES 0.718 0.70
RPR + RTF + TSPR 0.747 0.67
RPR + RTF + DS 0.721 0.68
RPR + RTF + ES + DS 0.737 0.69
RPR + RTF + ES + TSPR 0.781 0.64
RPR + RTF + ES + TSPR + DS 0.775 0.65

4 Experiments

In this section, we present our experimental results on different data sets. First,
we evaluate the performance of different subsets of features on development
data from the AIDA/CoNLL and Micropost2014 data sets in Section 4.1. In
Section 4.2, we compare the performance of our model using the best feature
configuration on the GERBIL benchmark [27] (version 1.2.2), addressing the
D2KB task in which the named entities are pre-annotated so that only the
actual disambiguation, but not the recognition, is evaluated.

4.1 Model Training and Feature Selection

We trained several models with various combinations of features as defined in
Section 3.5, using training data from the AIDA/CoNLL [13] and Micropost2014
[6] data sets. We trained and tested models on documents where each annotation
has a valid link in a knowledge base, e.g. DBpedia. Each model was trained by
iterating 5 times over the training data using the training split of both data sets.
Micro F1 scores for each model are shown in Table 1. Note that the main focus
of these experiments is to determine the optimal feature combination. Due to
differences in the underlying data splits and evaluation, the results reported in
Table 1 are not comparable to official GERBIL results.

The results show that the single best-performing features are the PageRank
(RPR) and the Topic-specific PageRank (TSPR) features, which yield an F1

score of around 0.72. PageRank acts as a strong prior, while TSPR models the
connectedness between different linking candidates in a pairwise fashion. Both
features are mildly complementary, which can be seen from the fact that they
yield the best combination of two features on AIDA/CoNLL, obtaining an F1

score of 0.747. No combination of three features improves upon this result. The
overall best model capitalizes on four features: PageRank, TSPR, relative term
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frequency and edit similarity. This combination yields an overall performance of
F1=0.78.

On the MicroPost2014 data set that contains a significantly smaller amount
of annotations compared to AIDA/CoNLL (2.1 vs. 20 annotations per document
on average), the best model combines PageRank, relative term frequency and
edit similarity, yielding an F1 score of 0.70. Obviosuly, the Topic-specific Page-
Rank is less effective in this text genre, due to its considerably lower degree of
connectedness and the lower number of links to explore. Being the only feature
that incorporates connectedness of all candidates, the strong individual perfor-
mance of TSPR on AIDA/CoNLL is indicative of the advantages of a collective
disambiguation strategy over an approach that resolves entities independently
of one another.

4.2 Comparative Evaluation

In this experiment, we use the best-performing model configurations as deter-
mined by feature selection (see Table 1). Our system uses the model with RPR
+ RTF + ES + TSPR features when the number of annotations in a given
document is higher than 3. When the number of annotations is equal or lower
than 3, the model with RPR + RTF + ES features is used. We use the top 10
candidates from the Candidate Retrieval component of the system as explained
in Section 3.1. Returning 100 or more candidates increases the runtime while
having no significant improvement on performance.

We compare our system to other state-of-the-art systems on 14 publicly
available data sets via GERBIL version 1.2.2 [27]. We implemented a web ser-
vice called NERFGUN (Named Entity disambiguation by Ranking with Factor
Graphs over Undirected edges), with the two best models after feature selec-
tion and submitted to GERBIL. The results of our system6 and state-of-the-art
annotation systems7 that are integrated into GERBIL are presented in Table 2.
Since Ganea et al. [9] and Zwicklbauer et al. [30] evaluated their systems with re-
spect to older versions of GERBIL (version 1.1.4) and these systems do not have
submitted a publicly available API to the framework, we cannot fairly compare
to them. Thus, we ommited these systems from comparison. This is in particular
the case because the evaluation metrics have changed in recent versions of the
GERBIL framework. Note that all results presented in Table 2 are based on
GERBIL version 1.2.2.

In Table 2 we report Micro F1 and Macro F1 measures of compared systems
for 14 data sets. Based on Micro F1 and Macro F1 measures, NERFGUN obtains
the best result on 8 out of 14 data sets. Kea [28] outperforms all systems on the
AQUAINT and the DBpedia Spotlight data. On the AQUAINT, the results of
our system are comparable to the best annotation system (Micro F1 0.73 com-
pared to 0.77, Macro F1 0.72 compared to 0.76, respectively). Babelfy achieves

6 Our results, GERBIL v1.2.2:
http://gerbil.aksw.org/gerbil/experiment?id=201604290045

7 State-of-the-art annotation systems’ results, GERBIL v1.2.2:
http://gerbil.aksw.org/gerbil/experiment?id=201604270003
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the highest score for the KORE50 data set with 0.74 and 0.71 while NERFGUN
obtains 0.44 and 0.40 for Micro F1 and Macro F1 measures respectively.

Table 2. Macro F1 and Micro F1 measures for the D2KB task (named entity disam-
biguation) based on GERBIL v1.2.2; N/A : Not Available. The best scoring system for
each data set is highlighted (using boldface for the best Micro F1 result and italics
for Macro F1, respectively).
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AGDISTIS
Micro F1 0.63 0.54 0.54 0.52 0.55 0.52 0.27 0.47 0.32 0.67 0.33 0.43 0.61 0.65
Macro F1 0.77 0.52 0.49 0.53 0.53 0.51 0.28 0.49 0.3 0.64 0.6 0.61 0.61 0.71

AIDA
Micro F1 0.14 0.54 0.54 0.52 0.55 0.16 0.19 0.18 0.65 0.3 0.36 0.44 0.44 0.39
Macro F1 0.44 0.5 0.47 0.5 0.5 0.16 0.17 0.19 0.59 0.28 0.57 0.58 0.38 0.32

Babelfy
Micro F1 0.52 0.66 0.65 0.68 0.66 0.68 0.53 N/A 0.74 0.64 0.48 0.51 0.45 N/A
Macro F1 0.69 0.6 0.59 0.62 0.61 0.68 0.52 N/A 0.71 0.59 0.63 0.61 0.39 N/A

DBpedia Spotlight
Micro F1 0.47 0.5 0.48 0.52 0.5 0.53 0.71 0.3 0.45 0.39 0.5 0.49 0.2 0.34
Macro F1 0.67 0.49 0.47 0.5 0.5 0.52 0.69 0.29 0.41 0.39 0.66 0.61 0.17 0.27

Dexter
Micro F1 0.52 0.51 0.49 0.5 0.52 0.52 0.29 0.21 0.2 0.38 0.41 0.43 0.37 0.36
Macro F1 0.68 0.48 0.45 0.47 0.48 0.51 0.26 0.21 0.14 0.4 0.59 0.56 0.3 0.31

Entityclassifier.eu NER
Micro F1 0.49 0.5 0.47 0.47 0.51 0.41 0.25 0.14 0.29 0.45 0.41 0.48 0.34 0.37
Macro F1 0.66 0.48 0.47 0.46 0.48 0.38 0.2 0.16 0.26 0.44 0.6 0.6 0.32 0.34

FOX
Micro F1 0 0.51 0.49 0.47 0.51 0 0.15 0.02 0.29 0.02 0.23 0.32 0.57 0.55
Macro F1 0.37 0.48 0.44 0.47 0.49 0 0.12 0.02 0.25 0.02 0.5 0.49 0.55 0.59

FREME NER
Micro F1 0.69 0.6 0.59 0.57 0.61 0.78 0.82 0.43 0.32 0.53 0.65 0.65 0.42 0.51
Macro F1 0.81 0.6 0.57 0.59 0.6 0.78 0.83 0.42 0.3 0.56 0.78 0.76 0.38 0.48

Kea
Micro F1 0.65 0.62 0.61 0.6 0.63 0.77 0.74 0.48 0.59 0.7 0.64 0.65 0.44 0.51
Macro F1 0.76 0.59 0.56 0.59 0.6 0.76 0.73 0.47 0.53 0.67 0.77 0.74 0.39 0.46

NERD-ML
Micro F1 0.56 0.2 0 0.01 0.28 0.59 0.55 0.43 0.32 0.54 0.5 0.51 0.38 0.41
Macro F1 0.72 0.12 0.01 0.01 0.17 0.57 0.53 0.42 0.26 0.54 0.65 0.62 0.31 0.35

WAT
Micro F1 0.65 0.71 0.7 0.71 0.71 0.72 0.66 0.41 0.61 0.65 0.6 0.63 0.44 0.51
Macro F1 0.77 0.68 0.66 0.68 0.68 0.72 0.68 0.4 0.51 0.62 0.74 0.73 0.37 0.43

xLisa
Micro F1 0.47 0.15 0.41 0.4 0.4 0.42 0.22 0.57 0.24 0.45 0.24 0.51 0.43 0.32
Macro F1 0.63 0.45 0.37 0.33 0.37 0.37 0.22 0.58 0.25 0.38 0.24 0.63 0.37 0.29

NERFGUN
Micro F1 0.73 0.72 0.71 0.71 0.72 0.70 0.49 N/A 0.40 0.65 0.65 N/A 0.57 0.65
Macro F1 0.85 0.72 0.68 0.71 0.72 0.69 0.51 N/A 0.37 0.79 0.76 N/A 0.58 0.65

5 Conclusion and Future Work

We have proposed a new approach to collective entity disambiguation that frames
the task as a joint inference problem. Our approach relies on an undirected prob-
abilistic graphical model to model dependencies between different factors that
score the suitability of assignments of named entities to identifiers in a KB. The
model is defined through imperatively defined factor graphs and in particular
by templates that ‘roll out‘ the factor graph structure for a given input text
by generating corresponding factors. Our model allows to combine and investi-
gate different features in terms of their impact on the task. In particular, our
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model considers three text-based features, namely i) term frequency scores, ii)
a similarity measure based on the Levenshtein distance and iii) the document
similarity. Further, our model includes features measuring the degree of connect-
edness between pairs of linking candidates via the Topic Specific PageRank Score
and the PageRank of each linking candidate as a prior. We have shown that a
combination of all features with exception of the document similarity feature
performs best on the AIDA/CoNLL data sets. Based on Micro F1 and Macro
F1 measures we outperform well-known annotation systems such as DBpedia
Spotlight, Babelfy, WAT and AGDISTIS in 8 out of 14 datasets. In future work,
we will extend the approach to also solve the problem of recognition of entities,
thus performing named entity recognition and linking within one model in which
statistical dependencies between both tasks can be modeled.
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