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Abstract

Large margin nearest neighbor classification (LMNN) is a popular
technique to learn a metric that improves the accuracy of a simple k-
nearest neighbor classifier via a convex optimization scheme. However,
the optimization problem is convex only under the assumption that the
nearest neighbors within classes remain constant. In this contribution
we show that an iterated LMNN scheme (multi-pass LMNN) is a valid
optimization technique for the original LMNN cost function without this
assumption. We further provide an empirical evaluation of multi-pass
LMNN, demonstrating that multi-pass LMNN can lead to notable im-
provements in classification accuracy for some datasets and does not nec-
essarily show strong overfitting tendencies as reported before.

1 Introduction
Metric learning is concerned with inferring a metric from data that supports
further processing of said data. The most common application of metric learning
is the support of classification schemes. In simple terms this can be described
as a distance that makes data points from the same class look more similar and
data points from different classes look more dissimilar. Large margin nearest
neighbor classification (LMNN) is one of the most popular techniques in the
metric learning zoo [12, 1, 9], which specifically aims to improve the accuracy
of a k-nearest neighbor classifier. It has been sucessfully applied in pattern
recognition tasks such as pedestrian recognition [4], face identification [6] and
movement classification [8].

As most other metric learning approaches, LMNN introduces a positive
semidefinite matrix M to the standard Euclidean metric and optimizes this
matrix according to a cost function that models the k-nearest neighbor clas-
sification error. This optimization is an instance of semidefinite programming,
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Figure 1: A schematic illustration of a scenario where changes in the target
neighborhood make the LMNN optimization easier. Left: The initial configu-
ration where the data point x1 is closest to x3 within the same class. Middle:
After a first metric learning step, x2 becomes the target neighbor. x1 would still
not be correctly classified, because x4 is closer to x1 than x2. Right: Another
metric learning step can now transform the space such that x1 and x2 are close
but x1 and x4 are far apart.

which implies that a global optimum can be found [12, 2]. However, this de-
sirable property only holds under the assumption that the closest k neighbors
from the same class - the so-called target neighbors - remain constant. It is
easy to imagine a setting where this assumption is violated. Consider Figure 1
(left and middle), for example. Here, the optimization of the convex problem
does not find the global optimum in the LMNN cost function but a local one.
The global optimum can only be found if neighborhood changes induced by the
metric change are taken into account. This gives reason to suspect that classic
LMNN might fail for data sets where changes in the neighborhood are likely to
occur. Therefore it seems worthwhile to investigate the theoretical validity of
LMNN in more detail.

In this contribution we show that the constant neighborhood assumption
leads to an overestimation of the LMNN cost function, which implies that an
update of the target neighborhood leads to an improvement in the cost func-
tion value. After updating the target neighbors, another LMNN run can be
applied, resulting in a multi-pass LMNN scheme, converging to a local optimum
(Section 5). We also demonstrate that such an iterative scheme does indeed
improve the classification accuracy on artificial data (Section 6), and does not
show strong overfitting tendencies on real data, that have been reported before
[12].

2 Related Work
Several properties of large margin nearest neighbor classification (LMNN) have
been investigated in the literature. For example, Do and colleagues have shown
that LMNN can be regarded as learning a set of local SVM variants in a
quadratic space [5]. Further, Ying and Li have reformulated LMNN as an
Eigenvalue optimization problem [13]. Finally, several extensions of the original
LMNN approach have been proposed, such as varied cost functions that sup-
port faster optimization [11], hierarchical LMNN [3], multi-task LMNN [10] and
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several more [1, 9]. However, these extensions still assume a constant target
neighborhood. To our knowledge, only Weinberger and Saul have attempted to
adapt the target neighborhood in a multi-pass LMNN scheme [12]. However,
they do not provide theoretical justification for this approach.

3 Quadratic Form Distances
Most metric learning schemes - LMNN among them - focus on a so-called Ma-
halanobis metric [9, 1]. More precisely, assume that we have N data points
X = {x1, . . . , xN} ⊂ Rn. We define dM as a binary function

dM (xi, xj) :=

√
(xi − xj)T ·M · (xi − xj) (1)

Note that dM is a metric iff M ∈ Rn×n is positive semidefinite. If M is the
n-dimensional identity matrix, this is the standard Euclidean distance. Inter-
estingly, positive-semi-definiteness of M also implies that M can be refactored
into a productM = LT ·L for some matrix L ∈ Rn×n. L can then be interpreted
as a linear transformation to a space, where dM corresponds to the Euclidean
metric. The challenge of a metric learning algorithm is to adapt M , such that
the target task - e.g. classification - becomes simpler.

4 Large Margin Nearest Neighbor Classification
The aim of large margin nearest neighbor classification (LMNN) is to ensure
good classification accuracy of a k-nearest neighbor classifier. A k-nearest neigh-
bor classifier assigns the class label of the majority of the k nearest neighbors.
Thus, to guarantee correct classification for each point, it has to be ensured
that the majority of the k nearest neighbors belong to the correct class. LMNN
formalizes this objective in a cost function with two parts: the first ensures that
certain data points from the same class are close together, the second ensures
that data points from different classes are not close together.

More precisely, given a data set X = {x1, . . . , xN} ⊂ Rn with the respective
class labels yi, the LMNN cost function E is given as [12]:

E(M) :=

N∑
i=1

∑
j∈Nk

M (i)

d2M (xi, xj)+

N∑
l=1

(1−yi ·yl) ·
[
d2M (xi, xj)+γ

2−d2M (xi, xl)
]
+

(2)
where γ is a positive real number called the margin; [·]+ denotes the hinge-
loss defined as [r]+ := max{0, r}; and N k

M (i) are the indices of the k nearest
neighbors (regarding dM ) of point xi that belong to the same class. N k

M (i) is
also called the target neighborhood of xi.

Note that N k
M depends on M . Therefore, a direct minimization of E by

adaptingM is infeasible. However, if the target neighborhood is fixed, a semidef-
inite program results, which can be solved efficiently [12, 2]. We call this the
constant target neighborhood assumption. It can be formalized as the minimiza-
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tion of Ẽ, where

Ẽ(M,N k) :=

N∑
i=1

∑
j∈Nk(i)

d2M (xi, xj)+

N∑
l=1

(1−yi·yl)·
[
d2M (xi, xj)+γ

2−d2M (xi, xl)
]
+
.

(3)
and the second argument is fixed to some assignment of k target neighbors for
each point. Note that Ẽ(M,N k

M ) = E(M).

5 Multi-Pass LMNN
We intend to show that an indirect minimization of E is possible using an
alternating optimization scheme. We proceed in two steps: First we prove that
the classic LMNN solution overestimates E. Then we provide a convergence
proof for our proposed alternating scheme.

Theorem 1. Let M and M ′ be positive-semidefinite n × n matrices. Then it
holds:

N k
M = N k

M ′ ⇒ Ẽ(M ′,N k
M ) = Ẽ(M ′,N k

M ′) (4)

N k
M 6= N k

M ′ ⇒ Ẽ(M ′,N k
M ) > Ẽ(M ′,N k

M ′) (5)

Proof. If N k
M = N k

M ′ , then Ẽ(M ′,N k
M ) = Ẽ(M ′,N k

M ′) = E(M ′) and the asser-
tion in Equation 4 is clear.

If N k
M (i) 6= N k

M ′(i) for some i ∈ {1, . . . , N}, then for each j ∈ N k
M (i) \

N k
M ′(i), j

′ ∈ N k
M ′(i), and l ∈ {1, . . . , N}, we have

dM ′(xi, xj′) < dM ′(xi, xj) (6)

and[
d2M ′(xi, xj′) + γ2 − d2M ′(xi, xl)

]
+
≤

[
d2M ′(xi, xj) + γ2 − d2M ′(xi, xl)

]
+

(7)

Thus, the summand for i of Ẽ(M ′,N k
M ) is strictly larger than the corresponding

summand of Ẽ(M ′,N k
M ′). As every other summand is either equal to or larger

than the corresponding one in Ẽ(M ′,N k
M ′), the assertion in Equation 5 follows.

If the constant target neighborhood assumption is guaranteed to lead to an
overestimation of the actual cost function value, a minimization of Ẽ under con-
stant neighborhood assumption also decreases E. This suggests an alternating
optimization scheme as shown in Algorithm 1, which is equivalent to multi-pass
LMNN as proposed by Weinberger and Saul [12]. We optimizeM w.r.t. Ẽ, then
update the target neighborhoods. If at least one target neighborhood changes,
we continue, otherwise the algorithm has converged.

Theorem 2. Algorithm 1 is guaranteed to converge to a local optimum after a
finite number of steps.
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Algorithm 1 An alternating optimization scheme for the LMNN cost function
shown in Equation 2.
Initialize M ← In.
converged← false
while ¬converged do

Optimize M w.r.t. Ẽ(M,N k
M ) via classic LMNN techniques.

converged← true
for i ∈ {1, . . . , N} do

Update N k
M (i).

if N k
M (i) has changed then
converged← false.

end if
end for

end while
return M .

Proof. Let (Mt)t be a sequence of matrices produced by a run of Algorithm 1.
Then we know that Ẽ(Mt+1,N k

Mt
) ≤ Ẽ(Mt,N k

Mt
) due to the convex optimiza-

tion step and Ẽ(Mt+1,N k
Mt+1) ≤ Ẽ(Mt+1,N k

Mt
) due to Theorem 1. Thus,

E(Mt+1) ≤ E(Mt) for all t.
If the algorithm terminates after T steps, then N k

MT
= N k

MT−1
. This implies

that Ẽ reached a local optimum because no change in the matrix can be made
anymore that would decrease the value - otherwise it would have been chosen
in the last step. This, in turn, implies a local optimum of E. Therefore, the
stopping criterion of Algorithm 1 corresponds to a local optimum.

Now, assume that the algorithm does not stop. Since there is only a finite
number of target neighborhoods to choose from, there must be t, t′ with t′ > t,
such that N k

Mt
= N k

Mt′
. Since the optimization step of the algorithm finds a

global optimum w.r.t. the current neighborhood it has to hold Ẽ(Mt′+1,N k
Mt′

) =

Ẽ(Mt+1,N k
Mt

). Because Ẽ decreases monotonously, Ẽ has to be constant for all
iterations between t and t′. No two successive neighborhoods of NMt

, . . . ,NMt′

are the same, otherwise the algorithm would stop. But according to Theorem 1,
Ẽ decreases strictly whenever the target neighborhood changes.

Therefore, we conclude that algorithm 1 searches through the possible target
neighborhoods without repetition, until a local optimum is achieved. As only
a finite number of target neighborhoods exist, convergence is achieved after a
finite number of steps.

6 Experiments
In order to assess multi-pass LMNN experimentally, we applied the current ver-
sion (3.0) of the LMNN toolbox provided by Weinberger [12] in several iterative
runs. Note that this recent version is a gradient-boosted variant of the opti-
mization, unlike the original suggestion. As in the original paper, we set the
neighborhood parameter to k = 3 for LMNN, and evaluated the performance of
a k-nearest neighbor classifier on the learned metric after each iteration in a 10-
fold cross-validation. For the sake of practicality, we did not run the algorithm
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Figure 2: The initial zebra stripes dataset, as well as the projected data points
LT · xi after the first iteration and the last iteration.

dataset N n train error std. test error std.

zebra 200 2 0.019 0.004 0.015 0.023
iris 128 4 0.024 0.008 0.040 0.053
wine 152 13 0.000 0.000 0.021 0.028
bal 535 4 0.063 0.019 0.073 0.036
isolet 7,797 617 0.000 0.000 0.030 0.003
letters 20,000 16 0.002 0.000 0.027 0.005

Table 1: The number of data points N , the number of features/dimensions n,
and the resulting classification error for each of the experimental data sets. The
classification error is given for training and test set respectively, with standard
deviation.

until convergence but stopped after 5 iterations.

Artificial Data: To illustrate a typical situation where multi-pass LMNN
is superior to single-pass LMNN we use a two-dimensional dataset suggested
in Weinberger and Sauls original paper, namely a zebra-striped pattern, where
stripes of points of the first and the second class alternate [12] (see Figure 2, left).
Such a dataset does not only highlight the value of a localized cost function,
it also illustrates the importance of updating the target neighborhood. In the
initial configuration, some of the target neighbors belong not to the same stripe,
but to a different stripe, which makes the LMNN cost function under constant
neighborhood assumption hard to optimize. However, after a first pass of LMNN
metric learning, we expect that the learned metric “shrinks” the y dimension of
the dataset, such that points in the same stripe move closer together. Thereby,
more target neighbors belong to the same stripe and the LMNN cost function
becomes easier to optimize.

Indeed, we observe this effect in the experimental evaluation. In each suc-
cessive pass the y dimension shrinks, thereby increasing the accuracy of a k-NN
classifier. In Figure 2 we show the data as projected by the matrix L after
each iteration. Figure 3 (left) displays the training and test error versus LMNN
iteration, averaged in a 10-fold cross-validation.

Real datasets: In order to assess the performance on real data we also re-
peated most of the experiments with multi-pass LMNN reported in [12]. In par-
ticular, we experimented on the USPS letter dataset, the isolet dataset, the iris
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Figure 3: The classification error on the training (blue) and on the test set
(red) plotted for all datasets, averaged over 10 cross-validation trials. The x-
axis shows the current LMNN iteration. The error bars signify the standard
deviation across trials.

dataset, the bal dataset and the wine dataset. Statistics regarding the datasets
as well as the final classification error are shown in Table 1. The development
of the classification error over time is displayed in Figure 3.

All in all, we observe no strong benefit of multi-pass LMNN over 1-pass
LMNN. However, we also did not observe noticeable over-fitting effects as re-
ported by [12], which is likely due to relatively early stopping with five iterations.

7 Conclusion
We have shown that local optima of the LMNN cost function can be found
using multi-pass LMNN. We have also demonstrated that data sets, for which
an adapted metric changes the structure of the target neighborhood, can profit
noticeably from multiple passes of LMNN metric learning. As a simple formula,
multi-pass LMNN can be considered to be beneficial if the ideal target neigh-
borhood is not obvious to the original metric. Interestingly, this benefit seems
to be rather minor in the tested real datasets. Also, we did not notice (strong)
over-fitting effects as reported by [12].

Overall, we conclude that multi-pass LMNN is a relatively risk-free and easy-
to-use extension of classic LMNN approach that can be easily combined with
other extensions of choice and comes with a theoretical convergence guarantee,
which the original LMNN approach does not provide. Additionally, it might lead
to noticeable performance improvements in datasets, where the initial target
neighborhood leads to suboptimal learning impulses.
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