Cluster of Excellence Cognitive Interaction Technology

Aspect-Based Sentiment Analysis Using a Two-Step Neural Network Architecture

Soufian Jebbara and Philipp Cimiano

Motivation

- Millions of customer reviews available in the World Wide Web
- Valuable insights for customers and businesses
- Overall polarity of a sentence too coarse-grained

More fine-grained

- Sentiment analysis as a relation extraction problem
- the sentiment of some opinion holder towards a certain aspect of a product needs to be extracted:

Features

Word Embeddings

- Skip Gram Model [1]
- Trained on Amazon Reviews [2]
- → Domain-Specific Embeddings

Part-of-Speech Tags

- Stanford POS Tagger [3] with 45 tags
- Encode as 1-of-K vector

Sentics

- SenticNet 3 [4] concepts
- 5 sentics per word: pleasantness, attention, sensitivity, aptitude, polarity

Word	Nearest Neighbors			
speed	spped			
	speeds			
	speeed			
	25mbs			
	speedwise			
keyboard	keyboard's			
	typing			
	keyboad			
	zaggmate			
	keypad			
service	customer			
	serivce			
	servce			
	company			
	courtious			

Aspect Term Extraction

Aspect Term extraction as sequence labeling:

• Encode aspect terms using IOB2 tags [5]:

"The sake menu should not be overlooked!"

Predict tag sequence using recurrent neural network:

	Input Layers BiGR	U Layer	Dense Layer	Output Layer
				віо
the	$\begin{bmatrix} \mathbf{w}_1 & \mathbf{s}_1 & \mathbf{p}_1 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{g} & \mathbf{g} & \mathbf{g} \end{bmatrix}$	\mathfrak{f}_1 \mathfrak{g}_1	h' ₁	\rightarrow 000
sake	$\begin{bmatrix} \mathbf{w}_2 & \mathbf{s}_2 & \mathbf{p}_2 \end{bmatrix} \longrightarrow \begin{bmatrix} \bar{\mathbf{g}} & \bar{\mathbf{g}} \end{bmatrix}$	$\frac{1}{2}$ $\frac{1}{2}$	h'2	→ • • • • • • • • • • • • • • • • • • •
menu	$\begin{bmatrix} \mathbf{w}_3 & \mathbf{s}_3 & \mathbf{p}_3 \end{bmatrix} \longrightarrow \begin{bmatrix} \bar{\mathbf{g}} & \bar{\mathbf{g}} & \bar{\mathbf{g}} \\ \bar{\mathbf{g}} & \bar{\mathbf{g}} & \bar{\mathbf{g}} \end{bmatrix}$	3 93	h'3	→ ○●○
should		\mathfrak{g}_4	h' ₄	→ ○○●
not	$\mathbf{w}_{5} \mathbf{s}_{5} \mathbf{p}_{5} \longrightarrow \mathbf{g}$	5 9 ₅	h' ₅	→ ○○●
be		6 96	h' ₆	→ ○○●
overlooked		9 7	h' ₇	→ ○○●
!	$\mathbf{w_8} \mid \mathbf{s_8} \mid \mathbf{p_8} \longrightarrow \bar{\mathbf{g}}$	i 8 g 8	h'8	→ ○ ○

Aspect-Specific Sentiment Extraction

Predict polarity label of each extracted aspect term separately:

Mark aspect term in sentence using relative word distances:

"The sake menuers should not be overlooked!"

-1 0 0 1 2 3 4 5

• Learn embedding vectors for (discrete) distance values on-the-fly

Predict single polarity label using recurrent neural network:

Evaluation

- 5-fold cross validation on provided training data
- Evaluate only Positive/Negative aspect terms

Aspect Term extraction

Features	\mathbf{F}_{1}	Precision	Recall
WE+POS	0.684	0.659	0.710
WE+POS+Sentics	0.679	0.663	0.697

Aspect-Specific Sentiment extration

Predict polarity labels for ground truth aspect terms

Features Accuracy		0.9				- WE+POS+Dist+Sentics			
WE+POS+Dist	0.776	0.8							
WE+POS+Dist+Sentics	0.811	ccuracy 2.0					~~~	~~~~	
• Sentics improve accuracy and allov		V 0.6							
for less training iteration	ons:	0.4	1	20	40	60	80	100	

Conclusion

- Two-Step approach with recurrent neural networks seems promising
- Sentics beneficial for aspect-specific sentiment extraction:
 - Higher accuracy
 - Shorter training needed

Acknowledgements

This work was supported by the Cluster of Excellence Cognitive Interaction Technology 'CITEC' (EXC 277) at Bielefeld University, which is funded by the German Research Foundation (DFG).

References

- [1] Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient Estimation of Word Representations in Vector Space. In: Proceedings of the International Conference on Learning Representations (2013)
- [2] McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 43–52. ACM (2015)
- [3] Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The Stanford CoreNLP Natural Language Processing Toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. pp. 55–60 (2014)
- [4] Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and commonsense knowledge base for cognition-driven sentiment analysis. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. pp. 1515–1521 (2014)
- [5] Tjong Kim Sang, E.F., Veenstra, J.: Representing text chunks. In: Proceedings of EACL'99. pp. 173–179. Bergen, Norway (1999)