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Motivation Predict single polarity label using recurrent neural network:
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SUUDP- NN * 5-fold cross validation on provided training data
* Evaluate only Positive/Negative aspect terms

Features
Word Embeddings Word Nearest Neighbors Aspect Term extraction
* Skip Gram Model [1] speed spped
» Trained on Amazon Reviews [2] 252223 Features F, Precision Recall
— Domain-Specific Embeddings 25mbs WE+POS 0.684 0.659 0.710
Part-of-Speech Tags covboard ;I;;Ei:;;es WE+POS+Sentics 0.679 0.663 0.697
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* Encode as 1-of-K vector zaggmate * Predict polarity labels for ground truth aspect terms
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Aspect Term Extraction

Aspect Term extraction as sequence labeling: Conclusion
* Encode aspect terms using IOB2 tags [5]:

* Two-Step approach with recurrent neural networks seems promising
* Sentics beneficial for aspect-specific sentiment extraction:
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Predict tag sequence using recurrent neural network: - Shorter training needed
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