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Chapter 1

Introduction

Over the past few decades, teamwork has gained more and more in importance and it

is surely but steadily replacing individual work in the workplace. At the same time,

there is evidence from psychology (e.g., Brennan and Enns (2015)) and management

science (e.g., Harvard Business School Press (2004)) that working in teams is more

e�cient than working alone. Therefore, it is not surprising that teamwork is becoming

more and more popular. This trend is especially visible in academia. Wuchty, Jones,

and Uzzi (2007) have shown that in an increasing number of �elds, the number of

research done in teams dominates single-authored works not only in numbers but also

in average citations. But teamwork is not just restricted to the workplace. Working in

groups is also popular in classrooms all over the world (Hutchinson (2001)) and even

in sports, team-based sports usually overshadow individual sports in popularity.

But working in teams creates problems, which do not occur when working alone. In

this work, I will discuss three di�erent problems inherent to teamwork: Coordination

problems, moral-hazard problems and how to evaluate and compare the results of dif-

ferent teams.

Coordination problems, are problems in which the incentives of the team members

are perfectly aligned but they have to coordinate on one of the available options. An

example for this is agreeing on norms or technical standards, like a communications

protocol for computers.

However, when working in a team, incentives are rarely perfectly aligned. When team

members share a common goal but have to exert private e�ort, which cannot be ob-

served, moral-hazard problems come into play. The most commonly known e�ect of

moral hazard is free-riding: Having more team members can lead to everyone working

at ine�ciently low levels.

The last problem discussed in this work is how to evaluate and compare the results of
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CHAPTER 1. INTRODUCTION

di�erent teams or parts of teams. This is a problem occurring in many di�erent set-

tings, however, here we are going to focus on an application in sports: What ranking

scheme should we use when teams only compete one-on-one?

In this thesis I am going to address each of the three aforementioned problems, using

di�erent methods, including game theory (Chapters 2 and 3), laboratory experiments

(Chapter 2) and statistical modeling (Chapter 4).

In Chapter 2, based on a joint work with Davit Khantadze, we are analyzing coordi-

nation problems. A coordination problem might occur if you have lost your spouse in

a department store and both of you are trying to �nd each other. In this example you

have to try to guess the place your spouse will go to. At the same time she has to

guess where you are going to be. This complicates the (seemingly simple) question of

�Will she look for me at the co�ee bar or at the exit?� which now depends not only on

the answer to the question �Does she think I am looking for her at the co�ee bar or at

the exit?� but also on the answers to �Does she think that I think that she thinks that

I am looking for her at the co�ee bar or at the exit?� and on in�nitely more levels of

so-called beliefs.

We are using a game theoretic model to analyze if higher-order beliefs play an im-

portant role in coordination problems when the players are facing a pure coordination

game, i.e., a game in which the players have perfectly aligned preferences. To do so,

we are using a laboratory experiment in which we introduce cognitive types into a pure

coordination game in which there is no common knowledge about the distribution of

cognitive types. In our experiment, around 76% of the subjects managed to coordi-

nate on the payo�-dominant equilibrium despite the absence of common knowledge.

However, around 9% of the players had �rst-order beliefs that lead to coordination

failure and another 9% exhibited coordination failure due to higher-order beliefs. Fur-

thermore, we compare our results with predictions of di�erent models of higher-order

beliefs, commonly used in the literature.

In Chapter 3, I am analyzing a model in which there is not only unobservable e�ort

choice but in addition uncertainty about the requirements to complete a project, i.e.,

the players don't know how much they have to work to complete it.

In the model, I analyze a dynamic moral hazard problem in teams with imperfect

monitoring in continuous time. In the model, players are working together to achieve a

breakthrough in a project while facing a deadline. The e�ort needed to achieve such a

breakthrough is unknown but players have a common prior about its distribution. Each

player is only able to observe their own e�ort, not the e�ort of others. I characterize

the optimal e�ort path for general distributions of breakthrough e�orts and show that,

in addition to free-riding, a delay of e�ort and an encouragement e�ect, similar to

Bolton and Harris (1999) arises. In this model, the encouragement e�ect increase and
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CHAPTER 1. INTRODUCTION

decrease the work players put into the project, depending on the type of uncertainty

faced. Furthermore, the delay of e�ort is also a result of rational and even welfare-

maximizing behavior.

In Chapter 4, a joint work with Johannes Tiwisina, we develop a statistical model to

describe results in sports and discuss its implications on di�erent ranking schemes.

In most sports, we don't just have teams competing against each other but these

teams are usually also organized in associations like the FIFA or UEFA for soccer or

the NCAA for college sports in the United States. In these organizations there are

frequent discussions about the way a tournament or league should be organized to

ensure that, in the end, the best team wins. One example for this is the discussion

during the recent (2016) European Championship in which the system was changed to

accommodate more teams into the tournament. But also leagues change their system.

In soccer, most countries changed from a 2-points-for-a-win to a 3-points-for-a-win sys-

tem between 1980 and 2000 and in 2014 the NCAA made a widely discussed change

to the scoring system of the �rst devision of college football.

We seek to �nd the statistical model that most accurately describes empirically ob-

served results in sports. The idea of transitive relations concerning the team strengths

is implemented by imposing a set of constraints on the outcome probabilities. We

theoretically investigate the resulting optimization problem and draw comparisons to

similar problems from the literature. We propose a branch-and-bound-algorithm for an

exact solution and a heuristic method for quickly �nding a good solution. Finally we

apply the described methods to panel data from soccer, American football and tennis

and also use our framework to compare the performance of empirically applied ranking

schemes.
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Chapter 2

Higher-order Beliefs about Cognitive

Skills Can Lead to Coordination

Failure

2.1 Introduction

If you have lost your spouse in a department store and both of you are trying to �nd

each other, the answer to the (seemingly simple) question of �Will she look for me at

the co�ee bar or at the exit?� depends not only on the answer to the question �Does

she think I am looking for her at the co�ee bar or at the exit?� (i.e., something we

will call the �rst-order belief) but also on the answers to �Does she think that I think

that she thinks that I am looking for her at the co�ee bar or at the exit?� (i.e., the

second-order belief or �What is her �rst-order belief?�) and on in�nitely more levels of

beliefs. This chapter addresses the question if people actually use beliefs of a higher

order.

When modeling human behavior, we usually assume that players have common knowl-

edge about the structure of the game, i.e., that all players know the structure, that

all players know that everyone else knows the structure and so on ad in�nitum. Fur-

thermore, we assume that players do not only have common knowledge about publicly

known properties of the game but also about the distributions of unknown factors of

the game, like the other players' types (for example if I'd rather wait at the co�ee bar

or the exit). As the absence of common knowledge leads to complex belief hierarchies,

so called higher-order beliefs, common knowledge is usually assumed for tractability

reasons. The �rst level of these beliefs, so called �rst-order beliefs, might be a belief

over the other player's type. A second-order belief would then be a belief over the be-
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CHAPTER 2. HIGHER-ORDER BELIEFS AND COORDINATION FAILURE

lief of the other player about your type (i.e., a belief over the other player's �rst-order

belief) and so on. The question we are trying to answer in this chapter is, how large

the in�uence of the assumption of common knowledge is and if people use higher-order

beliefs in coordination games.

More important applications than the search for ones husband or wife in a department

store are suggested by recent studies in sociology and development studies, for example

by Bicchieri (2005). She claims that common knowledge plays a signi�cant role in the

�ght against female genital mutilation.1 Female genital mutilation is practiced in,

predominately African, communities and is required in many of these communities to

�nd a husband and to prevent social exclusion. Despite being very dangerous and

unnecessary, it has a long standing tradition and is, in areas where it is still practiced,

very common. It is estimated to e�ect up to 200 million women in 2016 (UNICEF

(2016)). In game theoretic terms the problem is one of equilibrium selection: There

is one equilibrium in which everyone accepts and uses female genital mutilation and

one in which no one does. The latter equilibrium is, given enough knowledge about

the subject, clearly better for everyone, but we still observe the former equilibrium in

many communities.

An important tool in the �ght against female genital mutilation is to inform people

about the dangers and (lack of) bene�ts of it. However, studies like Bicchieri (2005)

suggest that just educating might not be enough. She claims that common knowledge of

this education plays an important role because negative beliefs about the opinion of the

other members of a community might prevent a coordination on the better equilibrium

(i.e., the one without female genital mutilation): Even if I am convinced that this

practice should be abolished, I might still partake in it, to prevent my daughters from

being excluded from the community, as the others might not be convinced (i.e., my

�rst-order belief is that others have not been educated). I also might think that others

will continue this practice because they think I wasn't educated (i.e., because of my

second-order belief) and so on.

That means, that just educating a family (or, in game theoretic terms: changing their

type) does not necessarily lead them to change their stance on female genital mutilation.

But is there any evidence that families use beliefs? Mackie (1996) and Mackie and

LeJeune (2009) have compared the old Chinese tradition of foot binding2 and female

genital mutilation and pointed out that both are similar: Both are required to �nd a

1Most studies, however, don't use the terms �beliefs� or �common knowledge� but describe this

concepts in their own words, frequently restricting their attention to �rst-order and therefore ignoring

higher-order beliefs.
2Foot binding was a Chinese practice of bending and binding the four lower toes of young girls

tightly under the foot.
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husband, while being very painful and dangerous without having any known bene�ts.

Furthermore, they have a long-standing tradition (both can be traced back more than

1000 years) and were widely spread in their respective cultures. However, around 1910,

foot binding has dropped in certain parts of China from 99% to under 1% prevalence

over the course of just 20 to 30 years, without any change in policy (Gamble (1943),

Keck and Sikkink (1998)), whereas even a combined e�ort of the UN, several NGOs and

governments over the last 40 years resulted only in a moderate decline from about 51%

to 37% of women e�ected by female genital mutilation in certain countries (UNICEF

(2016)). Mackie (1996) claims that the main di�erence is the method of information

transmission: In China, societies have been founded in which members publicly pledged

to not bind their daughters' feet and to prevent their sons from marrying women with

bound feet, whereas the e�ort to prevent female genital mutilation was mainly focused

on changing the laws and educating the people about the dangers and problems. The

societies �ghting foot binding made the education and position of the families common

knowledge whereas most organizations �ghting female genital mutilation focused on

changing the opinion of the families without changing the higher-order beliefs.

But also between projects �ghting female genital mutilation there have been di�er-

ences. Tostan, a Senegal-based NGO, has, according to World Bank Group (2012)

successfully reduced the number of female genital mutilation in some parts of Senegal

signi�cantly. So, why did Tostan succeed where others have failed? They claim that

not only education but �[...] public declarations are critical in the process for total

abandonment [of female genital cutting]� (Tostan (2016)) and are supported by World

Bank Group (2012) who emphasizes that education together with public discussion

and public declaration was an important factor in Tostan's success.

These examples suggest that beliefs might play an important role, as the more suc-

cessful campaigns against foot binding and female genital mutilation also addressed

higher-order beliefs by introducing common knowledge whereas others who focused on

pure education have been less successful. However, it is not clear that common knowl-

edge is required to achieve coordination. It might be su�cient to explain that others

have also been educated (i.e., to take care of the �rst-order beliefs), which would be

much cheaper than providing common knowledge. Therefore, the question if people

actually use higher-order beliefs is an important one.3

Unfortunately, the game theoretical literature is not able to model these higher-order

beliefs consistently: In practice many di�erent assumptions and models of higher-order

beliefs exist and many of these lead to very di�erent predictions even in simple games

3More examples in which common knowledge plays an important role can be found in Chwe (2013).
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CHAPTER 2. HIGHER-ORDER BELIEFS AND COORDINATION FAILURE

like the pure coordination game we are using in this chapter.4 The question, what kind

of model of higher-order beliefs players actually use, seems to be an empirical question

which we are trying to address in this chapter.

We are analyzing the e�ect of absence of common knowledge in an experimental setting,

using a certain type of simple coordination games to ensure that the e�ect of strategic

uncertainty is reduced to a minimum, i.e., players have no incentive to �outsmart� the

other players. In these games, there is uncertainty about the type of the other player,

but no common knowledge about the distribution of these types. We are building on

the work of Blume and Gneezy (2010) who have shown that �beliefs matter�, i.e., that

some people use beliefs that cause coordination failure. Using and extending their

design, we are trying to answer the following three questions:

� Are players able to coordinate in the absence of common knowledge?

� Can coordination fail because players underestimate the skill of the other players?

Or, in other words, do �rst-order beliefs matter?

� Can coordination fail because players think �too much� about what others might

think? Or, in other words, do higher-order beliefs matter?

Using Blume and Gneezy's (2000) 5-sector disc, we were able to �nd answers to all three

questions: In the experiment, the majority of players had no problem coordinating on

the Pareto-dominant equilibrium of the game. However, some players switch to the

worse equilibrium because of �rst- and higher-order beliefs.

This chapter is organized as follows: In Section 2.1.1, we will give an overview of the

relevant literature and how our work �ts into it. Then we will explain an example of

the game we use in Section 2.2. In Section 2.3 we will explain the model and brie�y

discuss predictions made by some commonly used models of higher-order beliefs for this

game and formalize the three questions stated before in Section 2.4. This is followed by

the experimental design in Section 2.5 and the results of the experiment in Section 2.6.

Finally, we will conclude in Section 2.7.

2.1.1 Related works

There is a large theoretical literature, beginning with the seminal paper on the �email

game� by Rubinstein (1989), showing that higher-order beliefs play a role in determin-

ing the outcome of a game. For instance, Carlsson and Van Damme (1993) use higher-

order beliefs (in their model of global games) to identify the risk-dominant equilibrium

as the unique rationalizable outcome of the coordination game. This uniqueness result

4A brief overview of some models of higher-order beliefs can be found in Section 2.1.1 and a more

detailed discussion in Section 2.9.
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CHAPTER 2. HIGHER-ORDER BELIEFS AND COORDINATION FAILURE

spawned a large applied literature on, among other areas, bank runs and arms races,

in e.g. Morris and Shin (1998), Morris and Shin (2004), Baliga and Sjöström (2004),

Corsetti, Dasgupta, Morris, and Shin (2004), and Goldstein and Pauzner (2005). We-

instein and Yildiz (2007b), however, have shown that this uniqueness result, that this

whole literature depends on, is fragile to the exact speci�cation of the higher-order

belief model. Other �nearby� higher-order belief models have very di�erent �unique�

predictions. In fact, they show that any rationalizable outcome of the original game,

can be obtained as the unique rationalizable strategy pro�le of some higher-order belief

model.

Weinstein and Yildiz (2007a) establish a condition, called �global stability under un-

certainty�. This condition implies that, if the change in equilibrium actions is small

in the change of kth-order beliefs and higher, equilibria can be approximated by the

equilibrium with at most kth-order beliefs. Unfortunately, pure coordination games do

not ful�ll �global stability under uncertainty�.

Strzalecki (2014) and Kneeland (2016) develop di�erent non-equilibrium approaches,

inspired by the experimental literature discussed later, using bounded levels of reason-

ing to explain behavior in coordinated attack problems (e.g. Rubinstein's (1989) email

game).

A more in-depth discussion of models of higher-order beliefs and their predictions of

the results of our experiment can be found in Section 2.9.

The experimental literature, however, has so far mostly focused on strategic uncer-

tainty. The most prominent example for this is probably the literature on level-k

thinking or cognitive hierarchy models, which was started by Nagel (1995) and Stahl

and Wilson (1995). In recent years, there have been many studies conducted, using

and analyzing level-k reasoning, for example Ho, Camerer, and Weigelt (1998), Costa-

Gomes, Crawford, and Broseta (2001), Camerer, Ho, and Chong (2004) and Crawford,

Gneezy, and Rottenstreich (2008). For a recent survey, see Crawford, Costa-Gomes,

and Iriberri (2013).

But there also have been works which do not focus on strategic uncertainty. For

example Heinemann, Nagel, and Ockenfels (2004), Cornand (2006), Cabrales, Nagel,

and Armenter (2007) and Du�y and Ochs (2012) who directly test implications of the

theory of global games, i.e. individuals play an incomplete information game as in

Carlsson and Van Damme (1993). The results however, are mixed and range from full

support to full rejection of the predictions made by global games.

Another, closely related work is Kneeland (2015), in which she explores the level of

rationality, a requirement for higher-order beliefs, of players experimentally. She shows

that, in her experiment, 94% of all players are rational with decreasing numbers for
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second- (71%), third- (44%) and forth-order (22%) rationality.

We explore experimentally the �depth of reasoning� individuals employ when playing

slightly di�cult coordination games. In fact we want to abstract away from purely

strategic concerns by only looking at coordination games in which the incentives of

the players are perfectly aligned and a Pareto-dominant equilibrium exists. The fun-

damental uncertainty in the model will be one about the cognitive abilities of the

opponents.

Di�erences in cognitive abilities have been studied before, for example by Gill and

Prowse (2016), who have shown that more cognitively able subjects converge, in re-

peated p-beauty contests, more frequently to equilibrium play and earn more. Further-

more, Proto, Rustichini, and So�anos (2014) have shown that intelligence a�ects the

results of repeatedly played prisoner's dilemmas, in which groups of higher intelligence

tend to cooperate more frequently in later stages of the game. Agranov, Potamites,

Schotter, and Tergiman (2012) have shown, by manipulating the perception of the

cognitive levels of other players, that beliefs about the level of reasoning do play a sig-

ni�cant role in the presence of strategic uncertainty. Alaoui and Penta (2015) establish

a framework in which the depth of reasoning is endogenously determined by di�erent

cognitive costs of reasoning.

The way we model cognitive di�erences however, builds on another branch of literature.

Motivated by Schelling's (1960) discussion of focal points, a variety of authors have tried

to formally capture his ideas, most notably Bacharach (1993) and Sugden (1995). The

importance of focal points is supported by many experiments, for example by Mehta,

Starmer, and Sugden (1994), who have replicated Schelling's results and have shown

that coordinating on a focal point is di�erent from accidental coordination. Crawford,

Gneezy, and Rottenstreich (2008) have shown that, in a pure coordination game with

symmetric payo�s, salient labels lead to a high percentage of coordination whereas

even slight asymmetries in payo�s might lead to a coordination failure. Isoni, Poulsen,

Sugden, and Tsutsui (2013) extend the analysis to bargaining problems and show that

payo�-irrelevant clues help to improve coordination, even if there is no e�cient or equal

division.

In the absence of clues however, the theory of focal points can not be applied. Formally,

the absence of clues can be modeled as symmetries between strategies and players in

a given game. In fact Nash (1951), has already discussed equilibrium under symmetry

restrictions (and shown existence also of such symmetric (mixed) equilibria for �nite

games). Crawford and Haller (1990) have de�ned symmetries in games and used these

de�nitions to see what focal points in highly symmetric repeated coordination games

9
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would look like.5 Blume (2000) has further developed this symmetry concept to talk

about play under the absence of a common language. Other notions of symmetries

have been put forward and studied in Harsanyi and Selten (1988), Casajus (2000)

and Casajus (2001). Alós-Ferrer and Kuzmics (2013) have then clari�ed the di�erence

between di�erent notions of symmetries and characterized all the possible ways a frame

(the way a game is presented to players in the lab, for instance) could lead to di�erent

symmetry restrictions (and therefore to di�erent focal points).

All these models of symmetries and restrictions are implicitly or explicitly investigated

under the assumption of perfectly rational individuals. However, identifying all sym-

metries (and especially non-symmetries) in a game can be a di�cult task. Bacharach

(1993) has proposed his variable frame theory to allow for individual players with dif-

ferent states of mind or, as developed by Blume (2000) and employed by Blume and

Gneezy (2000) and Blume and Gneezy (2010), with di�erent cognitive abilities.

This �nally brings us to the goal of our study. We want to take up the experimental

results and setup of Blume and Gneezy (2010), in which there is an issue of cognitive

di�culties, to analyze the e�ects of higher-order beliefs. Blume and Gneezy (2010)

were able to show that participants form beliefs about the cognitive abilities of other

participants and, if these beliefs are pessimistic, they hinder coordination between the

players. However, they have not taken into account the e�ect of higher-order beliefs

about cognitive abilities. Therefore, we modify their experimental setup in order to

distinguish the e�ect of �rst-order beliefs players form about the cognitive ability of

their opponents (i.e., if players trust in the cognitive ability of their partners) and

higher-order beliefs.

2.2 Example

In this example, players only have access to two strategies l and h and are trying to

coordinate on one of them; the payo�s are as depicted in the payo� matrix in Figure 2.1.

As (h, h) has a higher equilibrium payment it would therefore be the focal point (and

the risk- and payo�-dominant Nash equilibrium) of this particular game.6

However, if we introduce cognitive di�erences, i.e., if action h is only available to a

high-cognition player and low-cognition players are forced to play l, beliefs about the

5Bhaskar (2000) and more comprehensively Kuzmics, Palfrey, and Rogers (2014), have studied

theoretically and in the latter case also experimentally, what the possible focal points of the symmetric

repeated battle-of-the-sexes and its generalizations could be.
6Or, in the words of Luce and Rai�a (1957) and Schelling (1960) a solution in the strict sense.
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l h

l 1,1 0,0

h 0,0 3,3

Figure 2.1: Payo� matrix of a high-cognition player

other player's type might lead to coordination failure,7 even if both players are high-

cognition players. The driving force of this result is the absence of common knowledge

about the players' type or the fraction of high cognition players.

The following two examples show how beliefs could lead to coordination failure between

two high-cognition players: First imagine that the �rst player (she) thinks that the

other player (he) is a low-cognition player. Then she would play l, as he would have

no other choice than playing l. This is what we will call coordination failure due to a

�rst-order belief. The second example is that she thinks that his type is high, he thinks

she is a high-type player but she thinks that he thinks her type is low. Again, she would

play l as she thinks that he will play l. Here we have a coordination problem due to her

second-order belief. Therefore, even if both players have the ability to coordinate on

the best equilibrium, they might end up failing to coordinate on the better equilibrium

(h, h).

The existence of in�nitely many levels of beliefs and that a �bad� belief at any level

makes the player switch to the �bad� strategy l makes one wonder, if, even with a

high fraction of high-cognition players, coordination on the good equilibrium (h, h) is

possible.

Therefore, the �rst main question this chapter addresses is if coordination on the good

equilibrium can be expected even in the absence of common knowledge. The second

question is if systematic underestimation of other players' skills can be a source of

coordination failure, or if �rst-order beliefs matter. The third and last question is if

higher-order beliefs, e.g. if she thinks that he thinks that she is a low type, are a

possible cause for coordination failure or if these levels of reasoning are too complex

and play no signi�cant role in coordination games.

The concepts of coordination games and higher-order beliefs will be formalized in the

following section.

7In this chapter, we follow the notion for coordination failure of Van Huyck, Battalio, and Beil

(1990), i.e., the failure to coordinate on the best achievable outcome. That means, even if two

high-cognition players coordinate on a Pareto-inferior equilibrium we will call it coordination failure.
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2.3 The model

We begin by de�ning a pure coordination game for two players.

De�nition 1 (Pure coordination game). A pure coordination game is a game with 2

players, who each have access to m di�erent actions ({a1, a2, . . . , am}).
In this game payo�s of a player i are de�ned as

ui(ai, aj) =

xi ∀i, j : i = j

0 otherwise

with xm > xm−1 > · · · > x1.

This means that each player can choose from the same set of actions and whenever

they have picked the same action they get the same payo� and if they don't manage to

coordinate their actions, both get nothing. Furthermore, there is a Pareto ordering of

these equilibria. Figure 2.2 shows an example of a pure coordination game with three

possible actions.

a1 a2 a3

a1 1, 1 0,0 0,0

a2 0,0 2, 2 0,0

a3 0,0 0,0 4, 4

Figure 2.2: A pure coordination game

Let us now introduce cognitive di�erences into this pure coordination game. For the

sake of simplicity, we are only introducing two cognitive types, a low-cognitive type

and a high-cognitive type. The latter has access to a �better� strategy, which is not

available to the low type. Furthermore, the low type is unaware of the existence of the

high type, as proposed by Bacharach (1993).

De�nition 2 (Pure coordination game with cognitive di�erences). A pure coordination

game with cognitive di�erences is a game with 2 players. Each of the players has a

type ti ∈ {low, high} and has access to di�erent strategies, depending on his type ti.

The types of a player are her private information. Low cognition players have access

to {a1, a2, . . . , am−1} whereas high cognition players also have access to the action am,

i.e., to {a1, a2, . . . , am}.
In this game payo�s of a player i are de�ned as

ui(ai, aj) =

xi ∀i, j : i = j

0 otherwise

with xm > xm−1 ≥ · · · ≥ x1.

12



CHAPTER 2. HIGHER-ORDER BELIEFS AND COORDINATION FAILURE

These cognitive di�erences can also be thought of as symmetry constraints on attainable

strategies, as proposed by Crawford and Haller (1990) and further developed by Blume

(2000) and Alós-Ferrer and Kuzmics (2013). Here, the high-cognition player has less

symmetry constrains and has therefore more attainable strategies.

In the experiment we are using the notion of cognitive di�erences as proposed by

Blume and Gneezy (2010) (a generalization of Bacharach's variable frame theory, using

di�erent symmetry constraints on the attainable strategies as used in Blume (2000)).

For a formal description of the belief hierarchy of these games, we would like to refer

to Section 2.8.1. However, we believe for understanding the results of this work, the

idea conveyed in Section 2.2 should su�ce.

2.4 Hypotheses

Before investigating the three original research questions, we will have a look at some

preliminaries. First, we expect Nash equilibria and, if these equilibria can be Pareto-

ranked, the Pareto-better equilibrium to be played in the pure coordination game. This

is supported by the literature (e.g., Van Huyck, Battalio, and Beil (1990) or Cooper,

DeJong, Forsythe, and Ross (1990)) and was also corroborated by the choice data of

the experiment. For low-cognition player that means that the Pareto-dominant action

am−1 will be chosen over all other actions, as, for him, the game is a simple pure

coordination game, because he does not know about the existence of the high type.

The high-cognition player, however, has two valid options: am and am−1. As we have

seen in the example, the answer to the question if the high-cognition player chooses the

payo�-dominant strategy am or the second-best strategy am−1, depends on her beliefs.

We have chosen the game in such a way that the fraction of high-cognition players is

high enough (i.e., > xm
xm−1+xm

), so that playing am is the payo�-dominant strategy.

Unfortunately, neither the theoretical nor the experimental literature on higher-order

beliefs can tell us which of the two will be chosen. Even small variations in the theoret-

ical models of higher-order beliefs can generate both equilibria. Table 2.1 shows us the

predictions of a few common models of higher-order beliefs for the game as described

in Section 2.3. The derivation of these predictions and a more detailed discussion can

be found in Section 2.9.

From the table we can see that even the question if there is coordination in this game

depends very much on the model of higher-order beliefs.

Hypothesis 1 (Coordination is possible). High-cognition players use the �rst-best

strategy am which is not available to the low-cognition players, despite the absence

13



CHAPTER 2. HIGHER-ORDER BELIEFS AND COORDINATION FAILURE

Model Coordination First-order be-

lief coordination

problems

Higher-order be-

lief coordination

problems

Common

knowledge

Full coordination No No

Common

p-belief

Full coordination No No

Global games No coordination Yes Yes

Almost com-

mon knowl-

edge

No coordination No Yes.

Table 2.1: Models of higher-order beliefs

of common knowledge about the cognitive types.

The next two hypotheses extend on Blume and Gneezy's (2010) hypothesis that �beliefs

matter�: Hypothesis 2 formalizes the question �Does coordination fail because some

high-cognition players underestimate the fraction of high-cognition players? �.

Hypothesis 2 (First-order beliefs matter). There is coordination failure due to �rst-

order beliefs.

Most of the problems in models of higher-order beliefs stem from the fact that there

are in�nitely many levels of beliefs. However, evidence from the laboratory indicates

that people are not able to use higher-order rationality,8 a requirement for coordination

problems due to higher-order beliefs. Furthermore, even in studies of level-k reasoning,

where players are framed and incentivized on using higher-order beliefs, players still

rarely use high-levels of reasoning.9

Hypothesis 3 (Higher-order beliefs matter). There is coordination failure due to

higher-order beliefs.

In the following section we are going to explain the experimental design to test the

three hypothesis.

8Kneeland (2015) shows that only about 22% of all players use more than third-order rationality.
9In Arad and Rubinstein's (2012) 11-20 game, 80 % of the players only use 3rd-order beliefs or

lower despite the game being designed to facilitate higher-order reasoning.
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Figure 2.3: 5-sector-disc

2.5 Experimental design

Measuring higher-order beliefs is very complicated, as there is an �uncertainty prin-

ciple� (as already discussed by Blume and Gneezy (2010)) at work; i.e., it is hard to

measure beliefs without introducing or changing them.10 Introducing absence of com-

mon knowledge is di�cult. When told that they are given a random number, subjects

usually assume that it is drawn from a uniform distribution. Explicitly stating that the

distribution is unknown leads to a myriad of other problems. Subjects could for exam-

ple assume a strategic selection of the distribution by the experimenter. Furthermore,

we need to have some sort of control over the fraction of high-cognition players, so

that the action only available to the high-cognition players is the one with the highest

expected payo� (see Section 2.9).

We solve all three problems by utilizing Blume and Gneezy's (2000) 5-sector disc. This

is a disc with 5 equally large sectors on it, 2 black and 3 white, as depicted in Fig-

ure 2.3.11 The disc has the same sectors on the front- and backside of the disc and can

be �ipped and rotated. As the disc can be �ipped, the subjects face symmetry con-

straints and can therefore not distinguish all �ve sectors. These symmetries cannot be

overcome and therefore not all Nash equilibria are possible given the particular frame.

Only certain �attainable� equilibria are possible, as de�ned originally in Crawford and

Haller (1990), and further developed by Blume (2000) and Alós-Ferrer and Kuzmics

(2013).

The property of this disc which is most important for this chapter is that it has a single

distinct white sector: The sector adjacent to both black sectors (Figure 2.3).12

10Either by making the subjects realize that there might be something like a higher-order belief or

by them trying to be a good subject (Orne (1962)).
11There is a second version of this disc, with a signi�cantly harder to �nd distinct sector, with

adjacent black sectors. However, for this disc, the fraction of players who were able to identify the

distinct sector is too small.
12More about the properties of this disc can be found in Blume and Gneezy (2000).
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For the subjects there are then, in principle, three distinguishable sets of sectors: the

black sectors (B), the uniquely identi�able white sector (D), and the other white sec-

tors (W').

The key assumption behind the experiment (and also behind Blume and Gneezy (2000)

and Blume and Gneezy (2010) and very much supported by their �ndings), is that not

all subjects realize that there is a uniquely identi�able sector, which leads to two dif-

ferent cognitive types, the high type, who can identify the distinct sector, and the low

type, who cannot. The low type then faces an additional symmetry constrain and has

only two distinguishable sectors to choose from: One of the two black sectors (B) or

one of the three white sectors (W).

The subjects then played three treatments in a random order without feedback after

hearing and reading the instructions and completing an extensive quiz:13

The Self Treatment in which the subject gets the disc twice, every time randomly

turned and rotated, and gets ¿5 if she picks the same sector twice.

In the Prediction Treatment one subject (she) is told that another subject (he)

plays the Self Treatment (with a possibly di�erently turned and rotated disc). She has

to pick one sector and every time he picks the sector she picked, she gets ¿2.5.

Finally, the Coordination Treatment, in which two players pick simultaneously a

sector on a (randomly turned and rotated) disc and, if both players pick the same

sector, both receive ¿5.

2.5.1 Hypotheses

In the Self Treatment a high-cognition player has 9 possible choices: She can pick any

of three actions (D,B,W') in the �rst stage and then pick any of the three actions in

the second stage. This decision problem for the high-cognition player has a unique

optimal solution: pick the distinct sector twice, giving her a probability to win of 1.

A low-cognition player is only aware of four possible choices: He can pick B or W in

the �rst stage and then pick B or W in the second stage. The low-cognition player

also has a unique optimal choice: pick B in both stages, giving him a probability to

win of 1
2
.

Therefore, we would expect a high-cognition player to choose the distinct sector twice

and a low-cognition player to pick a black sector twice.

In the Prediction Treatment, the action taken by a subject should only depend on

her type and her �rst-order belief about the type of the other player. A low-cognition

player will always choose B, whereas a risk-neutral, high-cognition player should pick D

13For the complete instructions and a description of the quiz see the Sections 2.9.3 and 2.9.4.
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if his belief that the other player is also of the high type is at least 1
3
and B otherwise.14

The coordination treatment is best depicted as a bi-matrix game with three (for the

high-cognition player) and two (for the low-cognition player) pure strategies, with

winning probabilities as depicted in Figure 2.4 and Figure 2.5. We expect a low-

cognition player to play B, as it is the payo�- and risk-dominant equilibrium, whereas

a high-cognition player's choice depends on her belief hierarchy: If anywhere in her

complete hierarchy a belief lower than 1
3
(or 1

2
for very risk averse players) that the

other player is a high-cognition player or that the other player thinks that she is a

high-cognition player, . . . (or, in short, that there is no common-p belief of 1
3
or higher,

that both players are high-cognition players), she will choose B, otherwise she will

choose D.

W ′ B D

W ′ 1
2

0 0

B 0 1
2

0

D 0 0 1

Figure 2.4: High-cognition player win-

ning probabilities

W B

W 1
3

0

B 0 1
2

Figure 2.5: Low-cognition player win-

ning probabilities

We are using a within-subject design to test the hypotheses as stated in Section 2.4. In

the following we will use a shorthand for players' strategies: "W'W' B D" means that

a player selected one of the two white sectors twice in the Self Treatment, one of the

black sectors in the Prediction Treatment and the distinct sector in the Coordination

Treatment.

Using our design, we can reformulate the hypotheses as stated in Section 2.3:

Hypothesis 1 (Coordination is possible). High-cognition players choose in the Coor-

dination Treatment D more often than any other choice.

The idea is straight forward: Only high-cognition players can identify the best equi-

librium, so we don't have to consider other types. We can identify these players with

the help of the the Self Treatment. If high-cognition players, i.e., the ones who have

been able to identify �D� in the Self Treatment, coordinate on D in the Coordina-

tion Treatment we know that coordination is possible, even in the absence of common

knowledge.

The second question we want to answer is, if pessimistic beliefs about the other players'

14Allowing for risk-averse players, this fraction has to be between 1
3 and 1

2 , depending on the degree

of risk aversion.
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types can lead to coordination failure.

Hypothesis 2 (First-order beliefs matter). There are high-cognition subjects who

choose a black sector in the Prediction Treatment and Cooperation Treatment, i.e.,

play �DD B B�.

We already know that we can identify players' types with the help of the Self Treatment.

Furthermore, the Prediction Treatment identi�es players who think that more than 1
3

of the other players can not identify the distinct sector.

Hypothesis 3 (Higher-order beliefs matter). There are high-cognition subjects who

play the distinct sector in the Prediction Treatment and a black sector in the Coopera-

tion Treatment, i.e., play �DD D B�.

Our design allows for another robustness check: There is an attainable strategy which

is very similar to the one we use to identify �rst- and higher-order beliefs: �DD B D�.

This strategy will only be chosen if players belief that their partner is of the low type,

but still plays �D� in the in the Coordination Treatment. This strategy can therefore

not be explained using our model.

Hypothesis (Robustness check). �DD B D� is played less often than �DD B B� and

�DD D B�.

2.6 Results

The experiment was conducted at the DR@W Laboratory at the University of War-

wick using the experimental software "z-Tree" developed by Fischbacher (2007). 130

subjects where recruited and received payments between ¿3 and ¿18. Before showing

the results, let us brie�y discuss the preliminaries of the experiment design.

The �rst preliminary is the focality of the distinct and the two black sectors. From the

choice data in Figure 2.6 we can see that more than 95% of all players have chosen one

of these sectors in the Coordination Treatment. The second preliminary is that there

are enough high-cognition players, so that playing the high-cognition exclusive action

is a payo�-dominant equilibrium for the players. In Figure 2.7 we can see that 58% of

all players have chosen the distinct sector and are therefore considered high-cognition

players. Therefore, playing the distinct sector would maximize the expected utility of

high-cognition players in a game with common knowledge about the type distribution,

independently of the degree of risk aversion (see Section 2.9).

These results are in line with Blume and Gneezy's (2010) results where around 52%

(58% in our experiment) have been able to identify the distinct sector and around

23% (34%) have chosen the black sector. We contribute the signi�cantly lower level of
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Figure 2.6: Results of the Coordination Treatment

noise (8% vs 25%) to the extensive instructions and the quiz we conducted before the

experiment.15

Due to the lower level of noise we are, unlike Blume and Gneezy (2010), able to use

a within-subject design, in which each player has access to 625 possible strategies.16

Of these strategies we consider 96.32% as �noise�.17 As the number of strategies which

support our hypothesis are very low (1, 4 and 2 out of 625), the probability that

someone chooses them by mistake is very low. For a detailed overview of all possible

strategies and how we categorize them see Table 2.2.

Given the preliminaries, we can test hypotheses 1 through 3.

Hypothesis 1 (Coordination is possible). High-cognition players choose in the coor-

dination treatment D more often than any other choice.

The choice data from our experiment con�rms this hypothesis. In Figure 2.8 we can

see that 80% have chosen the strategy �DD D D�. As this strategy represents only

0.16% of all available strategies (or 4% when excluding the Self Treatment), we can

reject the null hypothesis of this high level of coordination being a result of random

15For the instructions and an overview of the quiz see the Sections 2.9.3 and 2.9.4.
16We are here ignoring the order in which treatments are played.
17This noise includes not only players not understanding the experiment or behaving randomly but

also �Eureka�-learning (which was a big problem in Blume and Gneezy (2010), see Section 2.9.1),

making a mistake (e.g., picking a not distinct white sector instead of the distinct sector, a mistake,

which both of the authors made multiple times while testing the experiment) and beliefs of low-

cognition players.
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Figure 2.7: Results of the Self Treatment

Description Hypothesis # of strategies Proportion

DD D D 1: Coordination is possible 1 0.16%

DD B B 2: First-order beliefs matter 4 0.64%

DD D B 3: Higher-order beliefs matter 2 0.32%

BB B B (Low-cognition players) 16 2.56%

�Noise� - 602 96.32%

WW-W-W (part of �Noise�) 80 12.80%

Table 2.2: Overview of the strategies

play (p < 0.00001).

Blume and Gneezy (2010) claim that �beliefs matter� and we test in Hypothesis 2

if there are subjects whose pessimistic beliefs about the other players' skills lead to

coordination failure.

Hypothesis 2 (First-order beliefs matter). There are high-cognition subjects who

choose a black sector in the Prediction Treatment and Cooperation Treatment, i.e.,

play �DD B B�.

Our data con�rms this hypothesis. Figure 2.9 shows us the results of all players,

Figure 2.10 of the high-cognition players. In these �gures we can see that about 9%

of the high-cognition players (or 5% of all players) have a �rst-order belief problem,

leading to coordination failure. As the fraction of strategies leading to this conclusion
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Figure 2.8: Results of the Coordination Treatment (high-cognition players)

is very small (0.64%) we can reject the null hypothesis that this result is due to chance

(p < 0.00001).

But do players really use higher-order beliefs in this type of games? Hypothesis 3 tests

for this question.

Hypothesis 3 (Higher-order beliefs matter). There are high-cognition subjects who

play the distinct sector in the Prediction Treatment and a black sector in the Coopera-

tion Treatment, i.e., play �DD D B�.

From Figure 2.9 and Figure 2.10 we can see that there are high-cognition players who

think that their partner is with a high probability of the high type, they, however, still

think there are coordination problems. Again, we can reject the null hypothesis at the

1% level (p < 0.00001).

Hypothesis (Robustness check). �DD B D� is played less often than �DD B B� and

�DD D B�.

All these results are statistically signi�cant at the 1% level, however, our design allows

for another robustness check: There is a strategy which should not be played by rational

players: �DD B D�, which is about as likely to be picked at random as �DD B B� and

�DD D B� but can not be explained by our model. Figure 2.11, shows us that only 2

subjects have chosen this strategy.

We expected to have signi�cant order e�ects, as in Blume and Gneezy (2010). However,

it turns out, that the only robust order e�ect is a weak e�ect in the Self Treatment
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Figure 2.11: Robustness check

(i.e., more subjects have been able to choose the distinct sector twice later in the ex-

periment).18 We attribute this to a small change in design. We have explained every

treatment before the experiment started and we have conducted a quiz (Section 2.9.4),

testing if the instructions have been understood. This probably lead to �Eureka learn-

ing� before instead of during the experiment.

2.7 Conclusion

We have seen that, in this game, absence of common knowledge was not enough to

prevent coordination on the Pareto-optimal equilibrium, as 76% of the high-cognition

players have chosen the Pareto-optimal equilibrium. However, we still have a fraction

of players who have beliefs that lead to coordination failure (around 18%) and of these

only half could be attributed to �rst-order beliefs.

Of the models of higher-order beliefs discussed in Section 2.4 and Section 2.9, only

�assuming common knowledge� or a common p-belief were able to explain coordination

on the payo�-dominant equilibrium. However, these assumptions can not explain any

coordination failure due to beliefs, as the beliefs are �xed by the model, whereas the

models which can explain this type of coordination failure predict no coordination on

the payo�-dominant equilibrium.

18For the full analysis of order e�ects see Section 2.9.1.
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Therefore, as we have observed a coordination rate of about 76%, assuming common

knowledge (or a common p-belief) might be the best tractable approximation available

in coordination games without common knowledge, depending on the focus of the

research.

But coming back to the example mentioned in the introduction, ignoring the higher-

order beliefs can have severe negative consequences. Our results can explain why

education without considering problems due to higher-order beliefs can have signi�cant

e�ect but they can also explain why NGOs like Tostan have signi�cantly more success.

Furthermore, these results give reason to belief that just explaining if others have

been educated and are against female genital mutilation (i.e., changing the �rst-order

beliefs) might not be su�cient and making this education common knowledge might

be necessary to achieve all possible bene�ts from it.

However, the results from this experiment conducted with students at a European

university should of course not be generalized to explain behavior in small rural com-

munities without further research but just gives us reason to belief that higher-order

beliefs do matter.

This opens up some questions for future research: Can these results be generalized

to other populations? Are there certain parts of the populations who are more likely

to exhibit �rst- or higher-order beliefs which lead to coordination failure? Are there

other, maybe easier methods to make something common knowledge? Furthermore,

it might be worthwhile to check more general structures of higher-order beliefs or

if non-equilibrium models like Strzalecki (2014) or Kneeland (2016) can explain this

phenomenon better.

2.8 Appendix

2.8.1 Belief hierarchies

Let B0
i := Tj and Bk

i = Tj × ∆(Bk−1
i ) with ∆ (B) being the space of probability

measures on B and ∆(X) being the space of probability measures on the Borel �eld

of X, endowed with the weak topology. Using this notation, we can de�ne a belief

hierarchy as follows.

De�nition 3 (Belief hierarchy). A k-th order belief is de�ned as

bki ∈ ∆(Bk
i )

with B0
i = Tj and Bk

j = Tj × ∆(Bk−1
j ). Furthermore, let us set b0

i := ti. A belief

hierarchy of a player i is then b = {b0
i , b

1
i , . . . .}
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We therefore have a �rst order belief b1
i ∈ ∆({low, high}) = [0, 1] and higher-order

beliefs bki ∈ [0, 1]k.

Furthermore, we assume these beliefs to be coherent, i.e., that beliefs of di�erent orders

do not contradict one another,19 and that a low-cognition type does not know about

higher cognitive types, i.e., bki = 0⇒ bk+1
i = 0 ∀k ≥ 0.

This excludes, on the one hand, that a low-cognition player thinks that the other player

is a high-cognition player and, on the other hand, that a player has a �rst-order belief

that the other player is of a the high type and a higher-order belief that the player is

of the low type.

2.9 Equilibrium selection and models of higher-

order beliefs

In this section we are going to discuss how di�erent models of beliefs and frequently

used assumptions on the structure of higher-order beliefs in�uence the speci�c game

we analyze.

Using the results from the literature on focal points in coordination games (as discussed

in Section 2.1.1), we know that we can restrict our attention on the two actions with

the highest payo�s am−1 and am. This simpli�es the game to a Bayesian game with

two types, a low type whose only attainable action is am−1 and a high type, who has

access to am−1 and am, without common knowledge about the type distribution. Then,

we can denote, with a small abuse of notation, the strategy of a player as the action

she chooses if she is of the high-type, i.e., am or am−1, knowing that she will play am−1

if she is of the low type.

Let us �rst start with the most common assumption, that the distribution of types is

common knowledge. Then the expected utility of a (risk neutral) high-cognition player

is as depicted in Table 2.3, given her and her partners strategies.20 p denotes the

probability of a player being of the high type. We can see that the prediction of the

model then depends on p. If the probability of a player being of the high type p is

too low (p < xm−1

xm−1+xm
), only (am−1, am−1) will be an equilibrium. In this chapter we

are going to assume that p ≥ xm−1

xm−1+xm
which makes sure that the �better� equilibrium

19I.e., higher-order beliefs of a player mapped onto the space of beliefs of a lower order are the same.
20In the analysis we restrict our attention to risk-neutral players. However, the analysis for the case

of risk-averse players is analogous and the experimental results are valid for every possible degree of

risk aversion.
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always exists.21 For risk-averse players, it is required that p ≥ u(xm−1)
u(xm−1)+u(xm)

, so we

know that as long as p ≥ 1
2
the high-type equilibrium always exists, independently of

the degree of risk aversion. Furthermore, if the equilibrium exists, it is payo� dominant.

am−1 am

am−1 xm−1, xm−1 (1− p)xm−1, 0

am 0, (1− p)xm−1 pxm, pxm

Table 2.3: Expected utilities of two high-cognition players

Therefore, the prediction of assuming that the distribution of types is common knowl-

edge is that, for a high-enough p, we should expect full cooperation.

Monderer and Samet's (1989) common p-belief is a generalization of the concept of

common knowledge and generates, in this model, the same predictions as assuming

that the distribution of types is common knowledge, given a high-enough p.

The game we are analyzing is very close to the original description of a global game

as introduced by Carlsson and Van Damme (1993). Written down as in Table 2.3

it is a very similar game as the main example used in Carlsson and Van Damme

(1993). Therefore, we know that, given xm−1

xm
≤ p ≤ 2xm−1

xm+xm−1
(i.e., (am, am) is still

a Nash equilibrium but (am−1, am−1) is risk dominant), (am−1, am−1) will be the only

rationalizable solution to the global game. Furthermore, Hellwig (2002) shows that

higher-order uncertainty about preferences leads to results similar to Carlsson and

Van Damme's (1993) higher-order uncertainty about payo�s, i.e., coordination on the

"less risky" equilibrium.

Rubinstein (1989) shows that truncating common knowledge at any �nite level is equiv-

alent to the situation without any common knowledge at all and therefore suggests that

players choose the save strategy am−1.

Weinstein and Yildiz (2007a) establish a condition, called �global stability under uncer-

tainty� which implies that the change in equilibrium actions is small in the change of

kth-order beliefs and higher. Therefore, under this condition, equilibria can be approx-

imated by the equilibrium with lower-order beliefs. Unfortunately, pure coordination

games do, in general, not ful�ll the conditions for �global stability under uncertainty�

as the best responses are very sensitive to every order of beliefs and even a small change

in some higher-order belief might make a player change from am to am−1.

21In the experiment this assumption requires p > 1
3 . As the fraction of high-cognition players is

58%, this assumption is not problematic.
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Model Coordination First-order be-

lief coordination

problems

Higher-order be-

lief coordination

problems

Common

knowledge

Full coordination No No

Common

p-belief

Full coordination No No

Global games No coordination Yes Yes

Almost com-

mon knowl-

edge

No coordination No Yes.

Table 2.4: Models of higher-order beliefs

2.9.1 Order e�ects

In the introduction we have brie�y discussed an uncertainty principle, in which higher-

order beliefs can not be measured without inducing them. This theory is a related

to the �good subjects hypothesis� (Orne (1962)) according to which some subjects try

to �gure out the research question and then change their behavior to con�rm said

hypothesis. However, in this case the di�erence is more subtle: As soon as they realize

that there is a higher-order belief problem, they might overestimate it.

Blume and Gneezy (2010) have encountered a di�erent case of this uncertainty hy-

pothesis. �Having a player play against himself may trigger an insight that switches a

player from low to high cognition ("Eureka!" learning). There may be an uncertainly

principle at work here in that we cannot measure a player's cognition without altering

it.� (Blume and Gneezy (2010)) This suggests, that the order of treatments might be

important. Therefore, we implemented a random order. However, it turns out that we

have (almost) no order e�ect, as can be seen in Table 2.5. The only statistically signi�-

cant e�ect is that, if the self treatment was the �rst treatment, there was a signi�cantly

higher number of �Other� results than when it was the second (p = 0.0062) or third

treatment (p = 0.0139). Furthermore, the distinct sector was played more often in

the coordination treatment if it was the second than the �rst treatment (p = 0.0277),

however, there were no signi�cant e�ects when comparing the �rst and third and the

second and third.22The former has a intuitive explanation (i.e., practicing the task

makes it less likely to make a mistake) whereas the later is considered to be a type II

error by the authors.

22Using the one-tailed Fisher's exact test.
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Treatment Self Prediction Coordination

Order DD BB Other D B W D B W

1st 18 10 8 23 15 3 22 22 3

2nd 32 24 2 20 16 2 24 10 0

3rd 25 10 1 32 15 4 23 15 5

Table 2.5: Order e�ects of the di�erent treatments

The question now is, why did Blume and Gneezy (2010) encounter strong "Eureka!"-

learning e�ects whereas we had (almost) no signi�cant e�ect. The authors attribute

this to the fact that we used more extensive instructions and a quiz to make sure the

instructions where understood. More importantly, the participants were instructed in

all three treatments before they played the �rst game which most likely triggered the

learning before the �rst decision, whereas in Blume and Gneezy (2010) the instructions

for the second treatment were distributed after completion of the �rst treatment.
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2.9.2 Data
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2.9.3 Instructions

Welcome to this experiment in economic decision making. It will take approximately

60 minutes. First of all, please check that the number on the card handed to you

matches the number on the cubicle that you are seated in and that your mobile phones

are turned o�.

Before we start, we will explain the rules of this experiment. You will also �nd these

rules on the paper provided, so you can read along and check again during the experi-

ment. If you have any questions, please do not speak up but raise your hand and we

will come to you and answer your question privately.

From now on, please do not talk, and listen carefully. In this experiment you will earn

a minimum of £3, and potentially up to £18. How much money you earn will depend

on your decisions and those of the other participants. Your reward will be paid out at

the end of the experiment. None of the other participants will know how much money

you made.

In this experiment you will be asked to make decisions related to a disc that has 5

sectors, similar to the disc provided to you. The disc has two identical sides. Your goal

will be to pick the same sector twice (more on that later). During this experiment the

disc will be �ipped and/or rotated randomly.

Pictures on page 2 illustrate rotation and �ipping. Since you will not be told if the

disc was �ipped and/or rotated, it might even be the case that disc looks exactly the

same though sectors have changed their positions.

The arrow tracks one speci�c sector that changes its position as the disc is rotated

and/or �ipped.

This is an example of rotating the disc by two sectors:
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This is an example of �ipping the disc:

In the experiment the disc will be surrounded by the letters A, B, C, D, and E. These

labels are not part of the disc! They are only included to allow you to choose a

sector.

In the experiment you will make decisions in the following environments (the order will

be chosen randomly):

(Self Game) You will be asked to pick a sector twice; �rst you choose a sector; then

the disc might be �ipped and/or rotated. After this you are shown the same disc and

have to choose a sector again. You will not observe the �ipping/rotation of the disc.

If you manage to guess the same sector twice, your payo� will be £5. Otherwise, you

will receive 0. Therefore, to earn more money you want to maximise your chances to

pick the same sector twice.

Here is an example of the choices made in a Self Game, using a simpler disc with only

2 instead of 5 sectors:

First you picked the black sector; then you picked the black sector again. Therefore,

you pick the same sector twice and earn ¿5.

(Prediction Game) You are matched randomly with another person and you have

to guess the choice of this person, while she plays the Self Game. First, you choose
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a sector on the disc; each time the other person picks the sector you chose, you will

receive £2.5. As the other player picks twice in the Self Game, you can earn £0, £2.5

or £5 in this situation, depending on your and the other person's choice. Therefore,

to earn more money you want to guess what the other player is playing in the Self

Game described above.

Here is an example of the choices made in a Prediction Game, again with the simpler

disc:

First you picked the black sector. The other player then plays the Self Game. He

�rst picks the black sector and therefore you earn £2.5. Then he picks the white sector

and therefore you earn £0. Thus you earn £2.5 in total.

(Coordination Game) You are matched randomly with another person and both of

you are asked to pick a sector on the disc simultaneously. Both of you know that you

play the Coordination Game. You both see the same disc but possibly di�erently

�ipped and rotated. If both of you pick the same sector, then your payo� will be £5.

Otherwise, you will receive £0. Therefore, to earn more money you want to guess the

sector your partner is picking here, while he is trying to do the same.

Here is an example of the choices made in a Coordination Game, again with the

simpler disc.

You picked the black sector. The other player picked the white sector. You therefore

failed to coordinate and both of you earn £5 each.

The experiment consists of two periods. Each period consists of the three games as

described above, using a 5-sector disc; the order of the games is random. At the end

of the experiment one of the two periods will be randomly chosen. The earnings made

in this period will be paid out in cash.

Again, please do not talk during this experiment! If you have questions just raise your
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hand.

Before the experiment there will be a quiz to check your understanding. Read hints

carefully if you get stuck during the quiz.

2.9.4 Quiz

In this appendix you can �nd screenshots of the quiz which was conducted before the

experiment. Participants who made a mistake in some part of the quiz were given a

small hint and then were asked to repeat this part of the quiz.

Figure 2.12: Quiz part 1
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Figure 2.13: Quiz part 2

Figure 2.14: Quiz part 3
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Figure 2.15: Quiz part 4

Figure 2.16: Quiz part 5
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Figure 2.17: Quiz part 6

Figure 2.18: Quiz part 7
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Figure 2.19: Quiz part 8
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Chapter 3

Rational Delay of E�ort in Projects

with Uncertain Requirements1

3.1 Introduction

You start doing it in school with your homework, continue while writing a term paper

in college and are probably still doing it when you have to do your taxes: You postpone

working on it until the very last minute, despite having a deadline. This phenomenon

is not restricted to work you conduct on your own, sometimes it is even stronger when

you work in a team.

Naturally this causes problems, not only for you, but for the whole team. In this chap-

ter I will focus on project work, i.e., working together towards a �xed goal after which

your team will be terminated. Project work is generally said to be more e�cient and

is frequently used in the workplace (Harvard Business School Press (2004)) and the

classroom (Hutchinson (2001)).

Another important part of managing projects, apart from teamwork, is requirements

management. According to a survey by Taylor (2000) unclear objectives and require-

ments are the most common cause for failure of IT projects. In this chapter, I am

trying to establish a connection between uncertainty in the requirements of a projects

and the often observed last-minute rush, in which workers delay much of the required

work until the very end of the project.

This work proposes a continuous-time model of working in projects, which explains

delaying e�ort not only in teams but also when working alone, not as a result of inef-

�ciency or time-inconsistency but as an e�cient, team-value maximizing consequence

1Parts of this chapter can be found in Külpmann (2015).
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of a deadline. The range of applications is quite broad, from large scale multi-national

research projects to a single worker trying to write a report.

The main features of this model are:

� public bene�ts, which are realized upon completion of a project in the form of

a lump-sum payment,

� private costs, which are assumed to be quadratic,

� an unknown threshold for success or uncertain requirements, with a com-

monly known distribution,2

� unobservable e�orts, so only the player's own e�ort is known,

� and a deadline, after which the project cannot be completed anymore.

In the model, the players exert e�ort over time until either the deadline is reached

or the project is successful. While doing so, they only know that they have not been

successful yet. Projects in this model are described by the assumed distribution of

the breakthrough e�ort. This breakthrough-e�ort distribution can cover many di�erent

projects, e.g., projects in which only the current e�ort in�uences the probability of

success or projects during which players learn about the quality of the project while

trying to complete it. One simple example for a breakthrough-e�ort distribution is the

uniform distribution on [e, e]. This means that the players think that the project needs

e�ort between e and e to be completed. For examples of di�erent types of projects and

the corresponding breakthrough-e�ort distributions see Section 3.3.

I �nd that in the equilibrium there are three di�erent e�ects at work: free-riding,

which reduces the overall e�ort the more players are working on the project. The

second e�ect is encouragement, which depends on the threshold distribution: Given

a decreasing hazard rate my own e�ort encourages the other players to work less, while

given an increasing hazard rate, my work encourages my coworkers to work more in

the future. The last e�ect is delay of e�ort, which causes players to work later rather

than earlier, even with the presence of a discount rate which lets players want to have

a breakthrough as soon as possible.3

Free-riding is a common e�ect in moral hazard problems and already well understood.

Encouragement also occurs frequently in the literature, however usually either only as a

positive encouragement e�ect (for example in Georgiadis (2014)) or only as a negative

2Which we will call breakthrough-e�ort distribution.
3This e�ect is more than just a consequence of discounting, as the discount rate does not only

e�ect the costs but also the bene�ts. As the bene�ts are, by design, later than the costs and higher

than the expected costs a discount rate lets players work earlier.
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encouragement e�ect (as in many bandit models).4 The positive encouragement e�ect

is very similar to strategic complementarity and the negative encouragement e�ect to

strategic substitutability. My model, however, can incorporate both e�ects and the

occurrence of positive or negative encouragement depends on the type of the project

(i.e. the breakthrough-e�ort distribution).

Delay of e�ort as a result of rational players, has, to the best of my knowledge, not

been analyzed before in this context. In this model it is caused by convex costs, which

make it optimal for the players to spread their e�ort as evenly as possible, a deadline

and uncertainty about the e�ort required for a breakthrough. When they start working

on a project, the players have a belief about the threshold that includes very low e�ort

levels and they are trying to �nd an optimal e�ort level given this belief. If they do

not succeed at �rst, they realize that the threshold e�ort level is not that low and that

they have to update their beliefs about the threshold. Therefore, they also have to

increase their e�ort level to re�ect the updated beliefs. Hence, we can expect some

delay even with a rational social planner trying to maximize social welfare. Close to

the deadline, the e�ect even outweighs any other e�ect, including encouragement and

even strong discounting. Therefore, we can observe a last-minute rush.

These results have implications on the evaluation of projects: Not only should man-

agers avoid the negative encouragement e�ect but, using a positive encouragement

e�ect, they might be able to counteract the ever-present incentives to free-ride. As

this encouragement e�ect depends on the type of requirements uncertainty it might be

possible to switch from a negative e�ect to a positive e�ect by resolving some of these

uncertainties or sometimes even by introducing new uncertainty into the project's ob-

jectives.

Another point to take away from the results of this chapter is the occurrence of a

last-minute rush in the welfare-maximizing solution. This might have further impli-

cations on the evaluation of the often observed increased workload around deadlines.

This e�ect is usually dismissed as a result of (irrational) procrastination. This chapter,

however, shows that it might not only be a rational consequence of unclear objectives

but possibly even welfare maximizing.

This chapter is organized as follows: In the next section, I will give an overview of the

relevant literature and how this work �ts into it. Then, I will explain the model in Sec-

tion 3.2, followed by an explanation of the breakthrough-e�ort distribution and how it

translates to di�erent projects in Section 3.3. In Section 3.4, I derive the optimal e�ort

for the non-cooperative and the welfare maximizing case. Additionally, I show that

there is a last-minute rush, i.e., delay of e�ort which leads to a peak of e�ort towards

4One example is Bonatti and Hörner (2011) in which the negative encouragement e�ect is the

unnamed e�ect leading to procrastination in their model.
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the end in both cases. Then I will brie�y discuss the e�ect of deadlines (Section 3.5.1),

the model without discounting (Section 3.5.3) and how di�erent types of projects react

to changes in costs and changes in the quality of the project (Section 3.5.5). I will give

some concluding remarks in Section 3.5.6.

3.1.1 Literature

This chapter is related to di�erent �elds of the literature: Holmstrom (1982) started

the game theoretic literature on moral hazard in teams, which was then expanded by

Ma, Moore, and Turnbull (1988), Legros and Matthews (1993) and Winter (2004), to

mention only a few important contributions. A common theme is the focus on free-

rider problems due to shared rewards but costly private e�ort. My work adds to this

literature as it analyzes a dynamic moral hazard problem, in which players have very

restricted information about the actions of others, which leads to free-riding and a

delay of e�ort.

In parts, this model is related to the literature on strategic experimentation as it models

the behavior of players who optimize their decisions while gathering information at the

same time. In these games every player has to divide her time between a �safe� and a

�risky� action (as in the arms of a two-armed bandit) with unknown but common pay-

o�s. Bolton and Harris (1999) analyze a two-armed bandit problem with many players

in which the arms yield payo�s which behave like a Brownian Motion, with di�erent

drifts for the safe and the risky arm. They characterize the unique symmetric Markov

Perfect equilibrium and are able to identify free-rider and encouragement e�ects. In

Keller, Rady, and Cripps's (2005) model of strategic experimentation, in which the

risky arm yields a lump-sum with a certain intensity if the the risky arm is good and

nothing if the risky arm is bad, new information arrive as a Poisson process, as in most

of the recent literature on bandit problems. Two examples for this literature are Klein

and Rady (2011), where the risky arms are negatively correlated, and Klein (2013) who

extended the model to three armed bandits.

My work is very closely related (and was inspired by) Bonatti and Hörner (2011).5

They analyze a bandit model, similar to Keller, Rady, and Cripps (2005), in which

e�orts are private information and only outcomes are observable. After a success the

game ends and payo�s are realized.

The model presented in this chapter is a very particular model of strategic exper-

imentation: Not only is the information a player gathers about the actions of the

other players very restricted, but furthermore, players' payo�s are perfectly correlated.

However, models of strategic experimentation usually assume the news arrival to be

5In fact, their benchmark model is a special case of my model with an incomplete exponential

distribution and linear instead of quadratic costs. See Example 2 for more information.
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a Poisson process, whereas my model has hardly any restriction on this news arrival

process.

Bonatti and Hörner (2011) also exempli�es another strand of literature which this chap-

ter is related to: dynamic contribution games. Already suggested by Schelling (1960),

these models analyze the dynamic contributions to public goods. Admati and Perry

(1991) and Lockwood and Thomas (2002) are examples for games in which contribu-

tions are observable. In Georgiadis (2014), there is no uncertainty about the valuation

of the public good but about how e�ort a�ects the provision of the public good. He

assumes that e�ort a�ects the drift of a standard Brownian motion towards a (com-

monly known) threshold and is able to not only identify free-riding and encouragement

e�ects, but also to show that the optimal contract only compensates on success. Al-

though in this chapter the uncertainty is about the threshold and not about the e�ect

of e�ort, these two models are closely related when hazard rates are increasing as shown

in Example 3. My work introduces uncertainty about the e�ort needed to provide the

public good. Therefore, players also have to incorporate information gathering into

their decision process. Furthermore, I show that, due to the presence of a deadline,

delaying e�ort is optimal.

There is a huge literature on procrastination in economics and psychology. However,

these usually attribute procrastination to self-control problems (O'Donoghue and Rabin

(2001)) or time-inconsistencies like hyperbolic discounting (Laibson (1997)). Another

explanation for procrastination is given by Akerlof (1991): According to him, procras-

tination is a consequence of �repeated errors of judgment due to unwarranted salience

of some costs and bene�ts relative to others� (Akerlof, 1991, p. 3).

The literature on procrastination in psychology is much more prominent than in eco-

nomics but, like the economic literature, it almost exclusively focuses on some form of

cognitive biased decisions (e.g., Wolters (2003) or Klingsieck (2015)).

This chapter adds to this literature, as it models not only decision processes of a single

person but also delayed e�ort in teams, i.e. in a game-theoretic model. Furthermore,

it provides an explanation for observed procrastination as rational and even welfare-

maximizing behavior and therefore gives rise to completely di�erent measures that

should (or should not) be taken.

Bergemann and Hege (2005) use a very similar information structure to the one pre-

sented in this chapter, but analyze a problem in discrete time with linear costs and a

memoryless investment. Second, Khan and Stinchcombe (2015) analyze decision prob-

lems in which changes can occur at random times and require a costly reaction. They

have identi�ed situations in which delayed reaction is optimal, depending on the form

of the hazard rate of the underlying changing probability distributions. The relation-
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ship of this model to the latter paper is mostly in the use of the hazard rate as a

description of the projects players are working on.

To summarize, this chapter contributes to the literature in two di�erent ways: On the

one hand, it provides a tractable model to analyze a very general class of dynamic

contribution games in continuous time with many players and incomplete informa-

tion about e�ort contribution. The model deals with very di�erent types of projects:

Projects in which the success probability decreases in e�ort already spent,6 e.g. through

learning about the quality of the project (which is very common in bandit models),

investment projects similar to Georgiadis (2014) where the past e�ort increases the

chance of success now and even projects in which past e�ort increases chance of suc-

cess on some intervals and decreases on others.

Furthermore, this model can explain situations in which delaying e�ort is not only

rational (which was also observed in Bonatti and Hörner (2011))7 but even welfare

maximizing and arises without the assumption of time-inconsistencies or cognitive bi-

ased players. In addition to this, I was able to identify a strategic encouragement e�ect

which can be bene�cial or harmful to the projects success, depending on the type of

uncertainties the players are facing.

3.2 The model

Consider n risk neutral players working together on a project in continuous time t ∈
[0, T ]. Players can only observe their own past e�ort and whether the project was

successful. After a success the players get a lump sum payment, normalized to 1, and

the game ends. Every player i chooses at every point in time t whether to exert a

costly e�ort ui : [0, T ] → R+ with quadratic instantaneous costs at t: cui(t)
2. If the

project was not successful at time T , the deadline of this project, the game ends and

the project can therefore never be completed.

The utility function of player i is, given a breakthrough at time t̄, therefore given by

Ṽi(ui, t̄) = re−rt̄ − r
t̄∫

0

e−rtcui(t)
2 dt

with r being the common discount rate. We can see the two parts of the utility function

here: the �rst part is the lump sum payment, which occurs only once at time t̄ and

is therefore discounted by re−rt. The second part is the cost cui(t)
2 which occurs at

6Covered by decreasing hazard rates of the breakthrough e�ort distribution.
7However, what they call procrastination, is, in the terms of my model, a result of the (negative)

encouragement e�ect.
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every point in time (and depends on the e�ort ui(t)) up until t̄.

Therefore, we have to �gure out the point in time t̄ at which the project is successful.

De�nition 4 speci�es this time t̄ as the time at which the players have accumulated

enough e�ort:

De�nition 4 (E�ort Threshold). The project is successful in t̄ if the players have

exerted enough e�ort, i.e. if

x ≤
t̄∫

0

∑
∀i

ui(t) dt

Remark. This de�nition implies the assumptions of symmetric, additively separable

and linear e�ects of e�orts and non-depreciation of e�ort.

This threshold x is drawn before the game and is unknown to all players. They have a

common prior about its probability density function f and hence, about its cumulative

distribution function F . This breakthrough e�ort distribution can be interpreted as

the type of task or project (see Section 3.3).

Due to De�nition 4 we can de�ne x(t) as the overall e�ort already spent up until t:

x(t) :=
t∫

0

∑
∀i
ui(s) ds and u−i(t) =

∑
∀j 6=i

uj(t) as the e�ort of all players except i at a

certain time t without loss of information.

From the de�nition of the game above, we can derive the expected utility for player i,

given e�ort pro�le {ui, u−i}:

Vi (ui(t), u−i(t), x(t)) = r

T∫
0

e−rt(1−F (x(t)))


f(x(t))

(∑
∀j
uj(t)

)
1− F (x(t))

− cui(t)2

 dt (3.1)

To �nd the expected utility, as stated in Equation (3.1), one has to take the expec-

tations with respect to t̄, using De�nition 4. For a detailed derivation please refer to

Section 3.6.1.

The expected utility has an intuitive interpretation: The factor in front of the squared

brackets 1 − F (x(t)) gives the probability that we had no success before time t or,

in other words, that we reach time t. The two terms in squared brackets give us the

updated belief of the player about having success at time t minus the costs they have

to bear.
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3.3 The breakthrough e�ort distribution

The most important characteristic of a project in this model is the �breakthrough-e�ort

distribution� or, in other words, how much e�ort one has to spend for a certain chance

of success, given the e�ort that has been spent by the team in the past. Therefore,

this distribution describes how likely every possible e�ort threshold is at the present

stage of the project. If the player thinks �nding a cure for a disease costs around 100

billion man hours of research, she could assume for example some normal distribution

around 100 billion. If I am certain I lost my keys in my apartment (again), but have

no idea where they could be, assuming a uniform distribution over every place in my

apartment seems reasonable.

In this section I am going to give examples of three basic classes of distributions and

how they can be interpreted in the context of the model. The distributions will be

denoted by their hazard rates h(x(t)) := f(x(t))
1−F (x(t))

, which basically describes the e�ect

of past e�ort on the e�ectiveness of current e�ort.

Example 1 (Constant hazard rate). The �rst type of distribution has a constant hazard

rate, i.e., the exponential distribution (F (x) = 1− e−λx with a rate parameter λ > 0).

This distribution conveys the idea that the chance of success only depends on the current

e�ort and past e�ort does not matter at all, for example if you are trying to push a

boulder out of your way or trying to force a door open.

Example 2 (Decreasing hazard rate). A variation of the exponential distribution is an

incomplete exponential distribution8 (i.e., an exponential distribution with a probability

mass at in�nity). Although technically a distribution with a decreasing hazard rate,

the intuition is similar to the example of the memoryless distribution: The probability

distribution itself is memoryless, however there is a chance of failure. As time proceeds,

the expected probability of failure is updated and therefore increases in the e�ort already

spent. A popular example for a decreasing hazard rate is a search model, similar to

Keller, Rady, and Cripps (2005), where you search at the most likely places �rst or

investments into R&D: the more you invest without success, the higher is your belief

that there is no solution to the problem.

Example 3 (Increasing hazard rate). The last example is the class of increasing hazard

rates (e.g., when the breakthrough e�ort is distributed uniformly on some interval).

Possible applications are projects with a strong learning-by-doing e�ect and projects

where the success in a certain period depends on the cumulative e�ort, not on current

e�ort.9 A simple example for this class is moving something heavy from A to B.

8Using this distribution in my model yields us a model very similar to the so-called good news

bandit models. One example is Bonatti and Hörner's (2011) benchmark model, the only di�erence

being that I use quadratic instead of linear costs.
9One example is Georgiadis (2014). In his model the uncertainty is about the e�ect of e�ort and
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For more examples I would like to refer to Section 2 in Khan and Stinchcombe (2015),

who provide an overview about the meaning of success probability distributions, their

hazard rates and their relations to di�erent projects.

Although all examples in this chapter will be from one of the three classes, the results

also hold for general distributions.

3.4 Results

3.4.1 Non-cooperative solution

The best response of player i to the strategies of the other players u−i(t) can be stated

as the following optimal control problem (omitting the time index t from x(t) and

ui(t)):

max
ui,x

Vi = r

T∫
0

e−rt(1− F (x))

(
f(x)(ui + u−i)

1− F (x)
− cu2

i

)
dt (3.2)

with boundary conditions x(0) = 0 for the cumulative e�ort at time 0.

The following technical assumption restricts our attention to distributions for which

there is neither a certain success nor a certain failure.

Assumption 1. The hazard rate h(x) := f(x)
1−F (x)

> 0 is continuous in x and bounded

above for every �nite x.

Note that this assumption allows for a probability mass point at ∞. Given Assump-

tion 1 on the hazard rate of the breakthrough-e�ort distribution we can �nd the sym-

metric equilibrium path.

Theorem 1 (Equilibrium E�ort). There exists a unique symmetric Nash equilibrium

in which, on the equilibrium path, u (i.e., the individual e�ort of a player) evolves

according to

u̇ =
2n− 1

2
h(x)u2 + ru− r

2c
h(x)

and reaches uT = 1
2c
h(xT ) at the deadline T .

To �nd this equilibrium e�ort path, I use the Pontryagin maximum principle to solve

the optimal control problem given by Equation (3.2) and then use symmetry to �nd

not the threshold, but this is just a di�erent way to model uncertainty about the relationship between

e�ort spent and success. One can therefore generate a very similar model in the framework presented

by choosing the appropriate breakthrough e�ort distribution, which would have an increasing hazard

rate.
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a candidate for the equilibrium e�ort. I then verify existence and uniqueness of this

symmetric equilibrium and show su�ciency via a convexity argument. For the complete

proof see Section 3.6.2.

Remark (Nash equilibria). All equilibria in this chapter are symmetric Nash equilibria

in pure strategies. To see that these are Nash equilibria, it helps to check the possible

histories of the players: At every point in time they only know the time t, their past

e�ort and that they where not successful so far. Therefore, every information set is

just a point in time t. It follows from Assumption 1 that each information set (i.e.,

each time t) is reached with a positive probability. Hence, every information set is part

of the Nash equilibrium. From this reasoning we also know that the symmetric Nash

equilibrium in pure strategies is also a perfect Bayesian Nash equilibrium, given correct

beliefs: ûj = uj, ∀j 6= i for every player i. However, the o�-equilibrium behavior is still

discussed later in this section.

Remark (Asymmetric equilibria). In this chapter I am not analyzing asymmetric equi-

libria, as, given the symmetric setting, restricting our attention to symmetric equilibria

seems natural. In addition, it is clear that every asymmetric equilibrium is, in terms

of welfare and as a consequence of the convex cost structure, inferior to the symmetric

equilibrium, as can be seen in Lemma 1 in the following section.

Example 1 (continuing from p. 45). For the exponential distribution with rate param-

eter λ, the solution from Theorem 1 reduces to:

u̇ =
2n− 1

2
λu2 + ru− r

2c
λ

uT =
1

2c
λ

(3.3)

which has an explicit solution given in Section 3.6.6. Given this solution, some ob-

servations about this class of distributions can already be made: Independent of the

number of players (and the discount rate), the individual e�ort right before the dead-

line is always the same. Furthermore, we can see that the individual e�ort decreases in

the number of players, despite the fact that the reward for completion for each player is

independent of the number of players. Figure 3.1 shows an example of the equilibrium

e�ort path for one and three players.

Remark (O�-equilibrium behavior). In the following, I am going to focus my attention

on the equilibrium behavior. However, let me brie�y discuss the o�-equilibrium behavior

that arises if one player deviates from the equilibrium path. If she exerts less e�ort at

time t, her continuation strategy after t depends on the hazard rate of the underlying

breakthrough e�ort distribution:

� Given a constant hazard rate, nothing changes for her. In this special case,

behavior is independent of the past, hence she will immediately revert to the equi-

librium e�ort.
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Figure 3.1: Equilibrium e�ort (con-

stant hazard rate)
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Figure 3.2: Equilibrium e�ort (decreasing haz-

ard rate)

� Given an increasing hazard rate, her belief about the probability of success

is now lower than that of her collaborators. Therefore, she will also exert less

e�ort in the future. Given a high enough slope of the hazard rate, this leads to

divergence of her belief (and therefore e�ort) and the beliefs of the other players.

� Given a decreasing hazard rate, her belief about the probability of success is

now higher than that of her collaborators. This leads to a higher e�ort until her

belief coincides again with the belief of the other players, as soon as she has made

up the e�ort she previously failed to exert exerted. So, given enough time, in this

case the player will revert to the symmetric equilibrium.

3.4.2 Welfare maximizing solution

To solve the problem of the social planner, we have to solve a problem similar to

Equation (3.2). However, now we maximize the combined utility and therefore:

max
ui

Vi = r

T∫
0

e−rt(1− F (x))

nf(x)(
∑
∀i
ui)

1− F (x)
−
∑
∀i

cu2
i

 dt (3.4)

We can focus on the symmetric problem in which every player exerts ū(t) without loss

of generality, as the following Lemma shows us:

Lemma 1. Every welfare-maximizing e�ort path has to be symmetric.

The intuition for Lemma 1 is as follows: Due to the assumptions of symmetric and

additive-separable e�ects of e�orts (De�nition 4) and convex costs an equal distribution

of the e�orts exerted at every point in time results in the same probability of success

but a lower sum of costs. For a short proof see Section 3.6.4.
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Figure 3.3: Nash equilibrium e�ort
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Figure 3.4: Welfare maximizing e�ort

Therefore we get the social planners optimization problem

max
ū

Vi = r

T∫
0

e−rt(1− F (x))

(
f(x)(n2ū)

1− F (x)
− ncū

)
dt (3.5)

And its solution which is derived in a similar fashion to Theorem 1 in Section 3.6.5.

Theorem 2 (Welfare Maximizing E�ort). The unique e�ort u that every player has to

exert that maximizes the social planners problem (Equation (3.4)) evolves according

to

u̇ =
1

2
h(x)u2 + ru− nr

2c
h(x)

and reaches uT = n
2c
h(xT ) at time T .

Now let us compare the welfare maximizing solution to the (non-cooperative) equilib-

rium e�ort for the case of the constant hazard rate:

Example 1 (continuing from p. 45). If we have constant hazard rates, we can directly

compare the non-cooperative equilibrium and the socially optimal e�ort. It turns out

that in this case the socially optimal e�ort is always larger than the equilibrium e�ort.

This can be checked by simply calculating the di�erence between the welfare-maximizing

e�ort and the equilibrium e�ort, as stated in Section 3.6.6.

Given this example, one might suspect that the welfare maximizing solution is to

always exert more e�ort than in the equilibrium. While this can be observed with an

increasing or a constant hazard rate, it is not true for decreasing hazard rates, as can be

seen in the following example in Figure 3.3 and Figure 3.4 (which uses the incomplete

exponential distribution with rate α and failure rate 1− β). Here we can see that the

welfare-maximizing e�ort starts o� being higher but, due to the decreasing belief in

the success of the project, decreases much faster than in the equilibrium.
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3.4.3 Free-riding, encouragement e�ect and delay of e�ort

In this section I analyzing free-riding, the encouragement e�ect and delay of e�ort.

Free-riding

Free-riding is usually de�ned as players exerting less e�ort because there are others

who also exert e�ort, i.e., a players lets the others do the work. As can be expected

there will always be free-riding in this model. One can verify this by looking at the

best response function in Section 3.6.2. The instantaneous e�ort of a player is strictly

decreasing in the instantaneous e�ort of the other players. This is due to the fact that

the e�ort of every player in one period are perfect substitutes. An illustration of this

behavior can be found in Figures 3.1 and 3.2

Encouragement e�ect

This e�ect is de�ned as: My actions a�ect the e�ciency of e�ort for every player in

the future and therefore their choice of e�ort. The direction in which my e�ort a�ects

the e�ort of others depends on the hazard rate. For an increasing hazard rate, the

e�ect is called encouragement e�ect for a good reason:10 Every e�ort I spend now

increases the e�ciency and therefore the e�ort of everyone in the future. Clearly, this

also leads to higher e�orts now. However, with a decreasing hazard rate, this e�ect is

a negative encouragement or discouragement e�ect: If I spend much e�ort now and we

do not succeed, we have a lower belief about the chance of succeeding in the future and

therefore we will work less. This leads to less e�ort, especially in the earlier periods.

Remark (Strategic complements/substitutes and the encouragement e�ect). As al-

ready mentioned in the introduction, the positive encouragement e�ect (due to an in-

creasing hazard rate of the breakthrough-e�ort distribution) is very similar to strategic

complementarity: My e�ort now is a strategic complement to all players' future e�orts.

In the same sense, the negative encouragement e�ect is similar to a strategic substitute

for future e�orts.

If that is the case, why can't one just say that with increasing hazard rates, current

e�orts and future e�orts are strategic complements, and with decreasing hazard rates

they are strategic substitutes? The problem is that current e�orts of di�erent players

are substitutes (and therefore strategic substitutes), which is the source for free-riding.

Hence, we cannot clearly say if, given an increasing hazard rate, e�orts are strategic

substitutes or complements. However, for decreasing (and constant) hazard rates, we

know that the e�orts of all players at all times are strategic substitutes.

10For example by Georgiadis (2014), where past e�orts always have a positive e�ect on the

e�ectiveness of e�ort, or in terms of this chapter: projects always have a breakthrough e�ort dis-

tribution with an increasing hazard rate.
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Delay of e�ort

It is not surprising that the e�ort of players increases if they assume an increasing

hazard rate. But what does the optimal e�ort for a decreasing hazard rate look like?

From the example depicted in Figure 3.2 we already get a good idea of what the typical

optimal e�ort path might look like:11 At �rst, we have a decrease in e�ort. This is

due to the encouragement e�ect: At �rst the (perceived) probability of success is high,

but due to the decreasing hazard rate as more e�ort is invested, the success rate and

therefore the e�ort level decreases. However, we can see that, after some time, the

e�ort increases again. What might be the reason for this behavior? By investing

early we discourage players to invest at every following point in time, so they postpone

investment to a later point in time. However, looking at the case of only one player

in Figure 3.2 we see the same e�ect, albeit less pronounced. Therefore, as a single

player is neither a�ected by the encouragement e�ect nor by free-riding we can clearly

identify another e�ect: delay of e�ort.

To investigate if this is a general e�ect let us �rst de�ne "last-minute rush".

De�nition 5 (Last-minute rush). Player i exhibits a last-minute rush if and only if

∃δ > 0 s.t. ui is increasing on [T − δ, T ].

If we observe a last-minute rush, we know that the delay of e�ort outweighs every

opposing e�ect (e.g. the e�ect of strong discounting) near the deadline.

Given Theorem 1, we can show that a last-minute rush can be observed for every

variation of the model:

Theorem 3 (Last-minute rush). For every possible breakthrough-e�ort distribution

that ful�lls Assumption 1, players delay there e�ort, as de�ned in De�nition 5, on the

symmetric equilibrium path.

For the complete proof I would like to refer to Section 3.6.3. The interpretation,

however, is clear: Whatever e�ects are at work during the �rst parts of the project,

towards the end delay always dominates the other e�ects.

As this e�ect is independent of the number of players it can not be explained by free-

riding and it can not be a result of discounting, as it does not depend on the discount

factor. Furthermore, it is di�erent and independent from the encouragement e�ect,

which can be shown by the following example (and Figure 3.1). Therefore, we know

that there is another e�ect, which shifts e�ort towards the end.

Example 1 (continuing from p. 45). Let us now have another look at the case of

constant hazard rates. This case is special, as current e�ort is not in�uenced by past

e�ort at all. Therefore, we have no encouragement e�ect (only pure free-riding) and

11In this example the required e�ort for a breakthrough is distributed according to the incomplete

exponential distribution with rate α and a mass point 1− β at ∞.
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it is easy to see that, without a deadline (i.e., T =∞), the e�ort would be constant12.

However, if we introduce a deadline, this changes and we see an increasing e�ort as

depicted in Figure 3.1 and Equation (3.3).

Now we know that we have a last-minute rush in the competitive case, but what about

the social optimum? The following proposition shows that we can expect a rational

social planner to delay e�ort.

Theorem 4 (Last-minute rush of the social planner). The welfare-maximizing behav-

ior always leads to a last-minute rush as de�ned in De�nition 5, independent of the

breakthrough-e�ort distribution.

The proof of Theorem 4 is analogous to the proof of Theorem 3 and can be found in

Section 3.6.5.

We have seen that even in the welfare maximizing case without memory (i.e. the

exponential distribution), more e�ort is invested close to the deadline. However, it

is not present in Bonatti and Hörner (2011), a very similar model with linear instead

of quadratic costs.13 Therefore, we can safely assume that this e�ect is only present

when we have convex costs, a deadline and when there is uncertainty about the amount

of work we have to put into a project to succeed. Section 3.5.3 shows us that a higher

discount rate can dampen this e�ect, but we know from Theorem 3 that it can never

eliminated completely. As this e�ect is also present in the welfare maximizing case we

can conclude: Delaying e�ort is not only commonly observed in reality, but might also

be rational and even part of the welfare-maximizing solution.

3.5 Discussion

In this section, we are going to have a look at a few results and implications of this

model. in Section 3.5.1, we discuss the implications of variable deadlines. In Sec-

tion 3.5.2, we show that delay of e�ort can not exist without uncertain objectives.

Furthermore, we discuss the special case of patient players in Section 3.5.3, the e�ect

12To do so, we can compare the problem at t0 = 0 and any other time t: The only di�erences

between these two problems are the past time t and the e�ort already exerted x(t). As t in the past

has no in�uence on the best response now, time left is the same and, due to the special properties of the

exponential distribution, x(t) has no e�ect on the beliefs about the success, the problems we are facing

at t0 and t are the same. Therefore, assuming we also have a unique best response, the continuation

strategies at t0 and t are the same for every t, i.e. players exert a constant e�ort, independently of t.
13In their model, the welfare-maximizing e�ort is as follows: As the chance of success decreases in

the invested e�ort, players invest the maximal amount of e�ort until the marginal bene�ts of e�ort

are lower than the marginal costs. After that point is reached, no e�ort is invested anymore.
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of di�erent costs and di�erent qualities of projects (Section 3.5.5) and the e�ect of

changing the number of players (Section 3.5.4).

3.5.1 Deadlines

We have already seen that deadlines induce delay of e�ort, i.e. an accumulation of

e�ort shortly before the deadline. But is it possible to improve welfare by a deadline?

Given that we only consider rational individuals, one would not expect a deadline to be

bene�cial if the hazard rate of the breakthrough-e�ort distribution is constant or even

increasing. Now, Bonatti and Hörner (2011) have shown that, in their setup (i.e., with

certain type of decreasing hazard rates and linear costs), there is always a deadline

that improves welfare.

However, with quadratic costs, I was not able to identify any situation in which dead-

lines improve welfare. Simulations suggest that the welfare maximizing deadline is

always the least restrictive (i.e. the deadline which allows the most time to complete

the task) one. This is probably due to the smoothing e�ect of convex costs, which

makes it optimal to spread costs over time as evenly as possible. In Figure 3.5 you can

2 4 6 8 10

t

0.1

0.2

0.3

0.4

u

n= 2 , c= 1 , Α= 1 , Β= 0.9 ,r= 0.1

T= 7

T= 4

T= 1

T= 11

Figure 3.5: E�ect of deadlines on e�orts

see that the e�orts behave as expected: Shorter deadlines lead to overall higher e�orts

and, given a short enough deadline, we can even prevent the decrease of e�ort early on.

However the e�ect of a (shorter) deadline on the utility (and therefore the welfare) is,
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at least in my simulations, always negative, as shown in the example in Figure 3.6.14

The question whether deadlines can improve welfare is therefore still open. However,

simulations suggest that, (shorter) deadlines are never bene�cial.
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T0.0

0.1
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0.3

0.4

0.5

0.6

V

Figure 3.6: E�ect of deadlines on welfare

3.5.2 Full information

One might expect that delaying e�ort is also optimal in the full information case, i.e.

when the players (or the social planner) already know the e�ort threshold x̄. The

following simple example shows that this is not true, if the costs or the threshold are

su�ciently low or if the discount rate is su�ciently high:

Example 4. Assume that the the costs are low enough, s.t. (abusing the notation of

c(·)): c
(
x̄
n

)
≤ 1 − e−rT . Then the losses due to delay until the end T are higher then

the highest possible costs that can occur in the symmetric equilibrium.

Let us compare the utility from getting the work done at t = 0: V0 = 1 − c
(
x̄
n

)
and

from getting the work done at t = T : VT = e−rT − cT where cT are some non-negative

costs. Then we know that:

V0 = 1− c
( x̄
n

)
> e−rT − cT = VT

14The last example uses again a incomplete exponential distribution as in Bonatti and Hörner

(2011).
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Completing the project at t = 0 is strictly better (but not necessarily optimal). There-

fore, working until the end can never be optimal.

Solving the problem with full information15 shows that the optimal solution is to dis-

tribute the required e�ort between 0 and some time t∗ ≤ T , such that the discounted

marginal costs are the same at every point in time. This means that, due to discounting,

the e�ort is increasing until t∗ and zero afterwards.

3.5.3 Patient players

So far, we have only considered the problem in which players are impatient. For patient

players (r = 0), the solution from Theorem 1 simpli�es to

u̇ =
2n− 1

2
h(x)u2

uT =
1

2c
h(xT )

As we know that h(x) and u are always positive, the following Proposition 1 is an

obvious result:

Proposition 1. The equilibrium e�ort of patient players (i.e. r = 0) is increasing

everywhere, concave for decreasing hazard rates and convex for increasing hazard rates.

It is not surprising that, without an incentive to work early, we observe even more delay

of e�ort, i.e. e�ort is shifted to the end. A very nice example for this phenomenon can

be seen in Figure 3.7, where equilibrium e�orts paths of di�erent discount rates r are

shown. Furthermore, we can see that in our model decreasing e�orts, which are for

example observed in Figure 3.2 and in Bonatti and Hörner (2011) are, only possible if

impatience is strong enough to counteract the delay of e�ort.

Example 1 (continuing from p. 45). For the exponential distribution with rate param-

eter λ and r = 0, the solution from Theorem 1 reduces to:

x(t) =
2λ(log(2c+ (2n− 1)T )− log(2c+ (2n− 1)(T − t)))

2n− 1

which is clearly increasing in t.

3.5.4 The e�ect of the number of players

We have assumed a �xed number of players. What happens if the number of players

changes? Assuming increasing hazard rates, the e�ect is pretty clear: we have stronger

15For example by �nding the best path u∗(t) for the problem max
u∗

e−rt
∗ −

t∗∫
0

e−rtc (u∗(t)) dt

s.t.
t∗∫
0

c (u∗(t)) dt = x̄, for every t∗, and then �nding the best t∗.
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Figure 3.7: Equilibrium e�ort for di�erent discount rates

free-riding but in turn have more overall e�ort which, due to the encouragement e�ect,

leads to higher e�orts by the players. With a constant hazard rate, we only have have

free-riding, so every individual will work less but thanks to quadratic costs and the

fact that the payout does not depend on the number of players, we can expect higher

overall e�orts. As the encouragement e�ect only depends on the cumulative e�ort, we

can also expect the same e�ect with a decreasing hazard rate, which can be observed

in the example of an incomplete exponential distribution in Figure 3.8 and Figure 3.9.

Here we can see the lower individual e�orts and higher cumulative e�orts for higher

number of players.

3.5.5 E�ect of costs and project quality on di�erent projects

One might expect that costs and the general quality of a project (i.e., the chance of

success), might have very simple e�ects on the e�orts of the players: Higher costs

should lead to lower e�orts, while higher probabilities of success should lead to to

higher e�orts. While this intuition is true for the constant and increasing hazard rates,

this e�ect is not that simple if we have a project that is described by a decreasing

hazard rate, for example if there is a chance of failure. In this case, we might observe

that due to the negative encouragement e�ect, the instantaneous e�ort starts out being

higher but declines faster and �nally is even lower than in the case with higher costs

(Figure 3.10) or a better quality project (Figure 3.11). In the latter case we can even
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Figure 3.8: E�ort for di�erent num-

bers of players
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Figure 3.9: Cumulative e�ort for di�erent num-

bers of players

observe that it is possible that the cumulative e�ort is lower, due to faster updating of

the failure probability.

3.5.6 Concluding remarks

We have analyzed a problem of a team working together on a project where the indi-

vidual team members are unable to observe each others' e�orts and have only a rough

idea about the amount of e�ort that will be needed to complete the project. This

leads to free-riding and encouragement, as well as to delay e�ort. The delay analyzed

here is not a result of ine�cient behavior but a necessary consequence of the deadline

and convex costs, given the information structure. Although di�erent types of projects

lead to very di�erent behavior, a last-minute rush always occurs as long as a deadline

is present. The encouragement e�ect on the other hand has very di�erent e�ects, de-

pending on the type of project. In this model, delay of e�ort is so prominent that close

to the deadline, it is stronger than every other e�ect.

This chapter opens up a lot of questions for further research, examples being an anal-

ysis of the optimal compensation scheme for di�erent projects, or whether choosing

deadlines is an e�cient tool for a social planner or a principal who is only interested in

a breakthrough. Another interesting question is the e�ect of team size, which is brie�y

touched upon in Section 3.5.4.

57



CHAPTER 3. PROJECTS WITH UNCERTAIN REQUIREMENTS

0 2 4 6 8

t0.0

0.1

0.2

0.3

0.4

u

T= 8 , n= 2 , Α= 1 , Β= 0.9 , r= 0.1

c= 0.125

c= 0.5

c= 1

c= 2

Figure 3.10: Equilibrium e�ort paths for di�erent costs
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Figure 3.11: Equilibrium e�ort paths for di�erent project qualities
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3.6 Appendix

3.6.1 Derivation of the expected utility

We know that the breakthrough e�ort is drawn from a distribution with the probability

distribution function f and the cumulative distribution function F and that x(t) is by

De�nition 4

x(t) =

t∫
0

ui(s) + u−i(s) ds

with u−i(s) =
∑
∀j 6=i

uj(s). The breakthrough time t̄ is the �rst time enough e�ort (i.e.,

the breakthrough e�ort) is accumulated:

t̄ = inf{t ≥ 0|x(t) ≥ x̄}.

The expected utility is then, given breakthrough time t̄

Ṽi(ui, t̄) = re−rt̄ − r
t̄∫

0

ertc(ui(t)) dt.

Therefore we know that the payo� part of the expected utility is equal to the distribu-

tion of t̄: f(t̄). As we know that the CDF F (t̄) of t̄ is

Ft̄(t) = P [t ≥ t̄] = P [x(t) ≥ x̄] = F (x(t))⇒ ft̄(t) = f (x(t)) (ui(t) + u−i(t)) ,

so the expected payo� is

Et̄
[
re−rt̄

]
= r

T∫
0

e−rtf (x(t)) (ui(t) + u−i(t)) dt. (3.6)

For the expected costs r
t̄∫

0

ertc(ui(t)) dt, we have to distinguish between two cases: One

in which the project is successful (i.e., t̄ < T ) and we pay until t̄ and one in which it

is unsuccessful (t̄ ≥ T ) and we only pay until T . As we know that 1− Ft̄(∞) = P [t̄ =

∞] = P [x̄ > x(∞)] = 1− F (x(∞)) we get:
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∫ ∞
0

∫ min{t,T}

0

e−rscu(s) ds dF (x(t)) + (1− F (x(∞))

∫ T

0

e−rsc(u(s)) ds

=

∫ ∞
0

∫ ∞
0

1s<t1s<T e
−rsc(u(s)) ds dF (x(t)) + (1− F (x(∞))

∫ T

0

e−rsc(u(s)) ds

=

∫ ∞
0

∫ ∞
0

1s<t1s<T e
−rsc(u(s)) dF (x(t)) ds+ (1− F (x(∞))

∫ T

0

e−rsc(u(s)) ds

=

∫ ∞
0

1s<T e
−rsc(u(s))

∫ ∞
0

1s<t dF (x(t)) ds+ (1− F (x(∞))

∫ T

0

e−rsc(u(s)) ds

=

∫ ∞
0

1s<T e
−rsc(u(s))(1− F (x(s)) ds

=

∫ T

0

e−rsc(u(s))(1− F (x(s)) ds. (3.7)

If we add the expected payo� (Equation (3.6)) and the expected costs (Equation (3.7)),

we get the expected utility, as stated in Equation (3.1):

Vi = r

T∫
0

e−rt(1− F (x(t)))

f(x(t))(
∑
∀j
uj(t))

1− F (x(t))
− c(ui(t))

 dt.

3.6.2 Theorem 1 (Optimal E�ort)

Candidate solution

Finding the best response ui of some player i to the strategies of the other players

u−i in the problem stated in equation (Equation (3.2)) is a discounted optimal control

problem of the following form

H(x, u, λ, t) = f(x)(ui +
∑
j 6=i

uj)− cu2
i (1− F (x)) + λ(ui + u−i)

ẋ = ui +
∑
j 6=i

uj

x(0) = 0

λ(T ) = 0

ui, x ∈ R+ ∀i

Using the Pontryagin maximum principle (Pontryagin, Boltyanskii, and Gamkrelidze

(1962)) in the version of Kamien and Schwartz (2012), we know that the necessary
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conditions for a maximum are

∂H

∂u
= 0 (3.8)

∂H

∂x
= rλ− λ̇ (3.9)

∂H

∂λ
= ẋ (3.10)

λ(T )x(T ) = 0 ⇒ λ(T ) = 0 (3.11)

with the Hamiltonian (Equation (3.8)), the equation of motion for the state variable

(Equation (3.9)), the equation of motion for the costate variable (Equation (3.10)) and

the transversality condition (Equation (3.11)) for x(T ) being free. In addition we can

see that the optimal control does not depend on the ujs of the other players but only

on the sum u−i :=
∑
j 6=i

uj. Therefore we get

ui =
f(x) + λ

2c (1− F (x))

λ̇ = rλ− f ′(x)(ui + u−i)− cu2
i f(x)

ẋ = ui + u−i

x(0) = 0, λ(T ) = 0

From here on, we only consider symmetric equilibria, therefore we can replace u−i by

(n− 1)ui. Hence, necessary conditions for a best response are:

ui =
f(x) + λ

2c (1− F (x))

λ̇ = rλ− f ′(x)nui − cu2
i f(x)

ẋ = nui

x(0) = 0, λ(T ) = 0.

Using ui we get

λ̇ = rλ− f ′(x)n

(
f(x) + λ

2c (1− F (x))

)
− c

(
f(x) + λ

2c (1− F (x))

)2

f(x)

ẋ = n

(
f(x) + λ

2c (1− F (x))

)
x(0) = 0, λ(T ) = 0.

So, the equation of motion for the costate and its time derivative are

λ =
2c

n
(1− F (x)) ẋ− f(x)

λ̇ =
2c

n
(1− F (x)) ẍ− 2c

n
f(x)ẋ2 − f ′(x)ẋ
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Using these, we get the boundary value problem:

(1− F (x)) ẍ = −nr
2c
f(x)− 1

2n
f(x)ẋ2 + f(x)ẋ2 + r (1− F (x)) ẋ

x(0) = 0,

λ(T ) =
2c

n
(1− F (xT )) ẋT − f(xT ) = 0

Introducing the hazard rate h(x) := f(x)
1−F (x)

, we have necessary conditions for Equa-

tion (3.2)

ẍ = −rn
2c
h(x) +

2n− 1

2n
h(x)ẋ2 + rẋ

x(0) = 0,

ẋT =
n

2c
h(xT )

(3.12)

Or, in terms of the individual e�ort:

u̇ = − r

2c
h(x) +

2n− 1

2
h(x)u2 + ru

uT =
1

2c
h(xT ),

(3.13)

which is a non-linear boundary value problem of the second order.

Existence, uniqueness and su�ciency of the solution

Now that we have necessary conditions for the equilibrium e�ort, we still have to check

for existence of the solution initial value problem and therefore the Nash equilibrium

and if the necessary conditions are su�cient.

Checking for existence and uniqueness �rst gives us the following

Proposition 2 (Existence and Uniqueness). A solution to the initial value problem

from Equation (3.12) (and therefore also for Equation (3.13)) exists and is unique.

Proof. As ui : [0, T ] → R+ is continuous and maps from a compact space to a metric

space, we know that it is bounded. Therefore, r
2c
h(x) + 2n−1

2n
h(x)u2 − ru is Lipschitz-

continuous in u and t. Thus (by Picard-Lindelöf), we know that a unique solution to

the initial value problem for ui exists.

As x(t) =
t∫

0

nu(s) ds and x0 = 0 and u exists and is unique, x(t) also exists uniquely.

Now we know that the candidate solution from Equation (3.13) exists and is unique,

we have to show that it is in fact the maximum:
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Proposition 3 (Maximum). The candidate equilibrium strategy ui as de�ned in Equa-

tion (3.13) is the solution to the maximization problem in Equation (3.2) and therefore

maximizes Vi.

Proof. Given Assumption 1 and Proposition 2 we know that ui exists, is unique and

continuous and we know that Vi is continuous in ui. Furthermore, we know that

(abusing the notation of ui = c as ui(t) = c ∀t ∈ [0, T ]):

ui = 0⇒ Vi = 0

∃ε > 0 : ui = ε⇒ Vi > 0

lim
ui→∞

Vi = −∞

Therefore Vi is concave in ui and, as it is also continuous in ui, the necessary conditions

for a maximum from Equation (3.13) are su�cient.

Therefore we have established the necessary and su�cient conditions for an equilibrium

and have shown that, given Assumption 1, this equilibrium always exists uniquely, as

stated in Theorem 1.

3.6.3 Theorem 3 (Last-minute rush)

To prove Theorem 3, we use continuity of x to show that the negative part of u̇ vanishes

near the deadline and is therefore strictly positive.

Proof. As h(xt) is continuous in x, it is also continuous in t. We also know from

Theorem 1 that ut is continuous in t and that it satis�es

u̇ =
2n− 1

2
h(x)u2 − r(u− 1

2c
h(x)), uT =

1

2c
h(xT )

As ut and h(xt) are continuous in t, we know that:

⇒ lim
t→T

(u− 1

2c
h(x))→ (uT −

1

2c
h(xT )) = 0

Now de�ne ε(t) = 2n−1
2r

h(xt)u
2
t . Then we know,

∃δ > 0 : t̂ := T − δ ⇒
(
ut −

1

2c
h(xt)

)
< ε(t̂) =

2n− 1

2r
h(xt̂)u

2
t̂

⇒ u̇t̂ =
2n− 1

2
h(xt̂)u

2 − r(ut̂ −
1

2c
h(xt̂)) > 0.

Therefore, we know that there is always an interval [t̂, T ] in which the e�ort is strictly

increasing.
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3.6.4 Lemma 1 (Asymmetric equilibria)

Proof. Assume there is an asymmetric equilibrium that is welfare maximizing. Then

∃i, t, j : ui(t) > uj(t). However, it would be possible to improve welfare by setting a new

u∗i (t) and u
∗
j(t) as follows: u

∗
i (t) = u∗j(t) = ui(t)+ui(t)

2
as this does not change the overall

e�ort (and therefore the chance of success) but reduces, due to the quadratic costs,

the combined expected costs of the project. Therefore, an asymmetric equilibrium can

never be welfare maximizing.

3.6.5 Theorem 2 (Social planner)

Applying similar methods as in Section 3.6.2, we get the welfare maximizing cumulative

e�ort:

ẍ = −rn
2

2c
h(x) +

1

2
h(x)ẋ2 + rẋ

x(0) = 0,

ẋT =
n2

2c
h(xT )

Or, in terms of instantaneous e�ort u:

u̇ =
1

2
h(x)u2 + ru− nr

2c
h(x)

which reaches uT = n
2c
h(xT ) at time T .

Furthermore, the properties derived in Proposition 2 and Proposition 3 for the optimal

e�ort in the game also apply to the solution of the social planner's problem (Theorem 2).

3.6.6 Constant hazard rate

For the exponential distribution with rate parameter λ, the solution from Theorem 1

evolves according to

u̇ =
2n− 1

2
λu2 + ru− r

2c
λ

uT =
1

2c
λ,

which has the following explicit solution:

u(t) =

λ

(
e

(t−T )
√
cr(cr+λ2(2n−1))

c + 1

)(
λ2(2n− 1) + cr −

√
cr (cr + λ2(2n− 1))

)
+ 2
√
cr (cr + λ2(2n− 1))

2c (cr + λ2(2n− 1))

((
1− 2cr+λ2(2n−1)

2
√
cr(cr+λ2(2n−1))

)
e

(t−T )
√
cr(cr+λ2(2n−1))

c + 2cr+λ2(2n−1)

2
√
cr(cr+λ2(2n−1))

+ 1

) .
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The welfare maximizing e�ort has the following explicit solution

u(t) =

λne
−T
√
r
(
λ2n
c +r

)((
r −

√
r
(
λ2n
c + r

))
e
t

√
r
(
λ2n
c +r

)
−
(√

r
(
λ2n
c + r

)
+ r

)
e
T

√
r
(
λ2n
c +r

))

λ2n

(
e
(t−T )

√
r
(
λ2n
c +r

)
− 1

)
+ 2cr

(
e
(t−T )

√
r
(
λ2n
c +r

)
− 1

)
− 2
√
cr (cr + λ2n)

(
e
(t−T )

√
r
(
λ2n
c +r

)
+ 1

) .

Calculations show that the non-cooperative equilibrium e�ort is always lower than the

welfare maximizing e�ort.
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Chapter 4

Probabilistic Transitivity in Sports1

4.1 Introduction

In many situations we are confronted with data about a certain set of objects which

only include an array of comparisons about two of these objects at a time. Then all

too often the task arises to �nd the "fairest" or "most legitimate" ranking among all

of the objects in the considered set reaching from the "best" one to the "worst" one.

The probably most popular application of such paired comparisons is sports. In most

sports games two opponents face each other in a duel. The result can be a win for one

of the teams or, depending on the sport, also a tie.

An important attribute of a ranking is that it expresses a transitive relation between

all of its objects. This means that if object or team A precedes B and B precedes C, it

automatically implies that A precedes C. In contrast to this, paired comparison data

can include circular relations, which seem to be inconsistent with this property. In a

tournament it is possible that A beats B, B beats C, but C beats A. It is easy to

imagine that as the number of teams rises, the probability of the occurrence of such

inconsistencies rapidly increases. In the literature many suggestions have been made to

overcome these inconsistencies and �nd a ranking with a good �t according to di�erent

concepts. A good overview of the classical models for obtaining rankings from data

sets gives Brunk (1960). One approach that deserves attention is the one proposed by

Slater (1961). Here the observed number of inconsistencies (in the sense mentioned

above) is minimized. This nontrivial problem later became known as a particular form

of the so called linear ordering problem. For a good survey on the linear ordering

problem see for example Charon and Hudry (2010).

1Parts of this chapter can be found in Tiwisina and Külpmann (2014).
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The major issue concerning the mentioned approaches is that despite all of them having

some intuitive appeal, they seem to be rather arbitrary in �nding the "right" ranking.

The di�erence of our approach is that we assume that there actually exists a correct

ranking. Of course we cannot directly observe it, but we can try to �nd the ranking

which is most likely identical to it. To be more precise, we �rst of all make the

assumption that the outcome of each match follows a trinomial distribution, with a

�xed probability for a loss, a tie, and a win. These unobservable probabilities ful�ll

a certain form of transitivity. Applying the respective conditions we can then use a

likelihood function to gauge the chance of the observed set of results given a particular

set of probabilities. Maximizing this likelihood function while ful�lling the transitivity

conditions answers the question about the most likely correct ranking.

In the literature there can be found plenty of works using the concepts of the so called

weak and strong stochastic transitivity. These are de�nitions, which transfer the very

intuitive concept of transitivity to the world of probabilities. Because in our model

we consider ties and also home/away asymmetries, we are forced to de�ne our own

concept which goes beyond WST and SST.

At this point the optimization problem, which is the main object of the chapter, is

completely de�ned by the set of probabilities for three outcomes for each game, the

likelihood function which shall be maximized, and �nally the set of constraints im-

posed by the stochastic transitivity de�ned above. We are not the �rst authors trying

to �nd a maximum likelihood ranking while applying probabilistic transitivity condi-

tions. Thompson and Remage (1964) propose a similar problem of ranking pairwisely

compared objects. The analysis is extended in Singh and Thompson (1968) by the

incorporation of ties. However, Thompson uses only constraints of WST.2 This con-

tributes a lot to the simplicity of the problem and enables Decani (1969) to formulate it

as a linear program and later propose in Decani (1972) a branch and bound algorithm

to solve the problem even more e�ciently.

Unfortunately the new set of constraints make things much more complicated. Increas-

ing the number of teams leads to a huge number of constraints. And it is straightfor-

ward to see that the space of transitive probability sets of a particular dimension is not

convex. So it is not a surprise that state of the art solvers do not succeed in �nding

the optimal solution to this non-linear, non-convex problem as soon as the number of

teams is increased to more than 5 or 6.

This is why we split up the problem in two parts. The �rst one is to �nd the probability

sets and the likelihood for a �xed ranking and the second one is to �nd the ranking

2After the incorporation of ties he naturally can't use the WST constraints, but has to alter his

concept. However, it still di�ers substantially from ours which makes a comparison very di�cult.
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with the greatest likelihood.

When the goal is to �nd probabilities for a �xed ranking, while still sticking to the

transitivity de�nition, the constraints become much simpler.

The problem we arrive at is now very close to the so called isotonic regression problem

in which a set of probabilities needs to be estimated, while one knows their order

according to their magnitude (see Barlow and Brunk (1972) or Van Eeden (1996) for

an overview). A reference much closer to the subject of this chapter is Brunk (1955).

Here the random variables (in our case the match results) are assumed to follow a

distribution belonging to an exponential family. The single distribution parameter

follows a function depending monotonically on potentially multiple variables. These

variables would in this work correspond to the two teams that are playing. The very

e�cient method developed in this chapter later became known as the pool adjacent-

violators algorithm (PAVA). The major di�erence of Brunk's chapter to our approach

is that the trinomial distribution we will be using does not belong to the exponential

family he is referring to. It also has not one but two distribution parameters. So we

are very unfortunate to not being able to apply the PAVA. To be able to estimate not

only ordered binomial but also ordered multinomial distribution parameters Jewell and

Kalb�eisch (2004) developed a modi�cation of this algorithm, the so called m-PAVA.

This algorithm is technically able to solve our �rst problem, but turns out to be very

ine�cient and slow. But there is an alternative. Lim, Wang, and Choi (2009) �nd that

a program of the kind we are facing can be formulated as a geometric program, which

then can be transformed into a convex program. By applying state of the art interior

point solvers, we are then able to �nd a solution very e�ciently.3

The second part of the problem is more complicated. If we increase the number of

teams, the possible number of orderings rises very quickly. For 4 teams there are 24

possibilities, for 5 teams there are 120 and for 18 teams there are more than 6× 1015.

But even if we're not able to �nd the optimal ranking, we are still able to compare

di�erent rankings created by the application of empirically relevant ranking systems.

And this is exactly what we do in the empirical subsection of the chapter. Among the

candidates are the classical "three points for a win" and "two points for a win" systems

from soccer and also the Elo system applied e.g. in chess.

To be able to make a good judgment about the true quality of the systems when

applied to di�erent sports, we develop a statistical test. It assumes the trueness of the

null hypothesis stating that one of two ranking systems under consideration is able to

�nd the correct ordering. Then we estimate all the probabilities and simulate a test

3In Lim, Wang, and Choi (2009) investigations geometric programming is more than 150 times

faster.
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statistic. Combined with the empirically observed likelihoods, we are then ideally able

to reject the null hypothesis which lets us state that here the considered system is not

able to generate the correct ranking.

The chapter proceeds as follows. In Section 4.2 the formal model is introduced. In

Section 4.4 the problem solution for a known ranking is described, before in Section 4.5

we discuss strategies for �nding optimal rankings. The next two sections then describe

the sports data and provide a thorough empirical analysis. Section 4.9 concludes.

4.2 Setup

Many sports have in common that n teams or individuals are competing in a number

of repeated one-on-one games. The results of these games should be aggregated to one

�nal complete ranking. Let pij be the probability that team i beats team j.

Naturally, we must have ∀ i, j ∈ {1, . . . , n}

pij ∈ [0, 1]

pij + pji ≤ 1 (4.1)

It can be observed that playing at home (meaning in i's stadium) and playing away

makes a di�erence to the winning probabilities. Therefore we introduce di�erent prob-

abilities for at home and away games: pijh is the probability that i beats j at home and

pjia that team j wins against i at i's stadium.

Therefore Equation (4.1) changes to

pijh + pjia ≤ 1 ∀i, j ∈ {1, . . . , n}

Since in many sports there exists the possibility of a draw, there is no strict equality.

In fact, the probability of a draw is

qijh = qjia = 1− pijh − pjia.

In this chapter, we want to make only one assumption concerning a set of those proba-

bilities. This assumption is based on the concept of weak and strong stochastic transi-

tivity, which formalizes the very intuitive thought that if team i is better than team j

and j is better than k then i has to be better than k, as well. In a model of symmetric

paired comparison without ties this can be translated fairly easily into stochastic terms.

pij ≥ 1/2 ∧ pjk ≥ 1/2 =⇒ pik ≥ 1/2 (WST)

pij ≥ 1/2 ∧ pjk ≥ 1/2 =⇒ pik ≥ max{pij, pjk} (SST)
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Where Equation (SST) is equivalent to

pij ≥ 1/2 =⇒ pik ≥ pjk.

The concept of stochastic transitivity has been widely used in the literature on paired

comparisons, especially in the 60s and 70s (see e.g. Tversky (1969), Chung and Hwang

(1978), Morrison (1963) or Davidson and Solomon (1973)).

The introduction of ties and in addition to that the introduction of a home/away

asymmetry forbid to use this concept directly. Equation (SST) is best interpreted by

saying "if team i is better than team j, it has to have a higher chance of beating any

third team k". But in a world with draws and home advantage we cannot interpret

"being better" as pij > 1/2. Thats why one has to alter this point. This is done in the

following de�nition.

De�nition 6 (Transitivity). A set of probabilities will be called transitive if the fol-

lowing holds for every i, j, k, l ∈ {1, . . . , n}, x, y ∈ {a, h} and ∃i′, j′, k′, l′ ∈ {1, . . . , n}:

pikx ≥ pjkx ⇔ pily ≥ pjly

pkix ≥ pkjx ⇔ pliy ≥ pljy

pi′k′x > pj′k′x ⇒ pl′j′x > pl′i′x

(4.2)

The set of transitive probability sets will be called T .

The �rst proposition shows that our concept is in fact a generalization of SST.

Proposition 4. De�nition 6 is, when assigning 0 to all draw probabilities and ignoring

away/home di�erentiation, equivalent to Equation (SST).

De�nition 7 (Transitive Ranking). A ranking will be called transitive if for all i ranked

above j the following holds:

pikh ≥ pjkh, pkih ≤ pkjh, pika ≥ pjka, pkia ≤ pkja ∀ k ∈ {1, . . . , n}\i, j

The set of probability sets according to this de�nition will be called T ′.

The fact that a transitive ranking has a set of transitive probabilities and every set of

transitive probabilities has a transitive ranking is established in the following Proposi-

tion.

Proposition 5. A set of probabilities P is in T if and only if it is in T ′.

For the proofs of Proposition 4 and Proposition 5 see Section 4.10.1.

The structure of the constraints and hereby the problem we have to solve becomes

clearer, if we write down the set of pijx values in matrix form and add the constraints

using one particular ranking.

70



CHAPTER 4. PROBABILISTIC TRANSITIVITY IN SPORTS



∗ ≤ p12h ≤ p13h ≤ · · · ≤ p1nh

≤ ≤ ≤ ≤ ≤

p21h ≤ ∗ ≤ p23h ≤ · · · ≤ p2nh

≤ ≤ ≤ ≤ ≤

· · · ≤ · · · ≤ · · · ≤ · · · ≤ · · ·
≤ ≤ ≤ ≤ ≤

pn1h≤ pn2h≤ pn3h≤ · · · ≤ ∗


,



∗ ≤ p12a ≤ p13a ≤ · · · ≤ p1na

≤ ≤ ≤ ≤ ≤

p21a ≤ ∗ ≤ p23a ≤ · · · ≤ p2na

≤ ≤ ≤ ≤ ≤

· · · ≤ · · · ≤ · · · ≤ · · · ≤ · · ·

≤ ≤ ≤ ≤ ≤

pn1a≤ pn2a≤ pn3a≤ · · · ≤ ∗


Figure 4.1: Transitivity matrices for home and away probabilities

4.3 The optimization problem

By assumption, each outcome in a set of paired comparisons is trinomially distributed.

The probability distribution is

Pr{xij = wij} = p
wijh

ijh p
wjia

jia (1− pijh − pjia)mij−wijh−wjia (4.3)

where wij is the vector consisting of the elements wijh and wjia. xij is the analogously

de�ned vector of a realization of the corresponding random variable. Equation (4.3)

tells us the probability of a certain outcome of a game between two particular teams

in one particular stadium. By taking the exponential of the natural logarithm of the

left side, we can write the above equation as

Pr{xij = wij} = exp(wijh ln(pijh) + wjia ln(pjia)

+ (mij − wijh − wjia) ln(1− pijh − pjia))

Let

F [xij, pij] := wijh ln(pijh) + wjia ln(pjia) + (mij − wijh − wjia) ln(mij − pijh − pjia)

The likelihood of a set of particular results to occur will be

Pr{(xij, . . . , xi′j′) = (wij, . . . , wi′j′)} = exp(F [wij, pij] + · · ·+ F [wi′j′ , pi′j′ ])

Let E be the set of all valid (i, j) combinations E = {(i, j)|i, j ∈ {1, ..., n}, i 6= j}. Then
Equation (4.2) implies that, in order to maximize the likelihood of a set of outcomes,

we have to solve the following maximization problem

max
pij

J [p] =
∑

(i,j)∈E

F [wij, pij] s.t. {pijx | (i, j) ∈ E, x ∈ {h, a}} ∈ T
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This is a rather complicated optimization problem, �rst because the objective function

(the log of the likelihood function) is not linear, and second because we have a huge

number of non-linear constraints, which make the space we are dealing with highly

convoluted and non-convex. We can achieve convexity by �xing a particular ranking

of teams. In this case we face a total number of 2(2(n − 2)n + (n − 1)) constraints.

Note that a simple transformation of parameters cannot help us making the problem

convex. Also it cannot make the problem linear after �xing a ranking. In this highly

simpli�ed case, where the untransformed constraints can be expressed in a linear form,

a logarithmic transformation would make the objective function linear but take away

linearity from the constraints. More details on this will follow in Section 4.4.2.

4.4 Optimization under a known ranking

Note that the probabilities depicted in Figure 4.1 are only the constraints that apply

for one ranking. So the optimization problem can be split into �rst �nding the optimal

(i.e., likelihood maximizing) probabilities that satisfy the monotonicity constraints from

the matrix and second �nding the best ranking. It should become clear that if we

consider the indices as variables of the functions ph(i, j) and pa(i, j), then this function

is monotone non-increasing in the �rst variable and monotone nondecreasing in the

second one. In the considered case the two matrices are only insofar dependent on

each other as the sum of an element of the upper right half of the �rst matrix depicted

in Figure Figure 4.1 and the corresponding element of the bottom left half of the second

matrix has to be less than or equal to unity.

4.4.1 Transitivity without draws

Now, let us again compare the original problem to the one in the much simpler case

without ties. Here, the problem of estimating the probabilities is much easier. Given the

above assumptions, the number of wins when two teams play each other a particular

amount of times follows an elementary binomial distribution. This instant allowed

Brunk (1955) to develop an algorithmic approach, building the foundation of what

later became known as the Pool Adjacent Violators Algorithm (PAVA). See also Brunk

(1960) for an application to paired comparisons. It follows a short description of the

estimation procedure.

A lower interval is the set of all points (i, j) for which i ≥ i′, j ≤ j′. So it includes a

point in one of the above matrices as well as all the points in its south-west quadrant.

An upper interval is analogously de�ned. A lower layer is a union of lower intervals

and an upper layer is a union of upper intervals.
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The procedure is now to �nd the largest upper layer within which the average number

of wins is maximized. That is, we have to �nd an upper layer with the property that

the number of wins divided by the number of games it comprises is maximal. For each

pij in this layer the maximum likelihood estimate under the monotonicity constraints

we de�ned is this average number of wins. Next step is to repeat the procedure on the

remaining set of the matrix of results.

To illustrate the approach, consider the following example of a tournament of 4 teams

in which each two teams played each other once. (For simplicity we only consider home

games of the row teams, here.)

Figure 4.2: PAVA example: Result matrix and p-Matrix

On the left there is the matrix of tournament results. The solid line shows the �rst

upper layer with an average number of wins of 3/5, giving us the p-value listed in the

right matrix. The second layer includes all the numbers above and to the right of the

dashed line. Here the average value is 1/2 and so on. Having the p-Matrix at hand, it is

straightforward to calculate the maximum likelihood of the tournament to be 0.03888.

Please note that this algorithm, while being very e�cient at �nding the probabilities

for a �xed ranking, does not help �nding the optimal permutation of the teams. To

�nd it, one is still forced to apply this algorithm 4! = 24 times for this example.

Unfortunately including the chance of draws forbids to use this very simple and e�cient

procedure. In the next subsection we show how to arrive at a solution nonetheless.

4.4.2 Solution process for the case including draws

Again focusing on the part of the problem where the ranking is already �xed, allowing

for ties makes the solution procedure much more complicated. Now, the task is not

to estimate ordered binomial, but rather ordered trinomial distribution parameters.

Jewell and Kalb�eisch (2004) developed an extension of the PAVA algorithm discussed

above. The Authors call this algorithm the modi�ed- or m-PAVA algorithm. In the

process the problem is iteratively broken down into many one dimensional optimization

problems. Since the number of these subproblems grows very quickly with the number

of teams and also the number of adjacent violators, the required computational e�ort

also does. This is the main reason for Lim, Wang, and Choi (2009) to reconsider
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the problem, �nding that it can be formulated as a geometric program. Then it can

be transformed into a convex optimization problem, for which one can �nd a global

solution very e�ciently with the help of e.g. interior-point algorithms. Lim, Wang, and

Choi (2009) compare the computational e�ciency of the two approaches and �nd that

geometric programming is much faster than the m-PAVA algorithm. These �ndings

facilitate the choice for us in this chapter.

Let us take a look at it in detail. We de�ne wijh to be the empirically observed number

of times team i beats team j at home and tijh = tjia as the number of times team i

ties team j. Let mij be the total number of games between i and j at i's stadium.

Consider the optimization problem for a �xed ranking in its raw form.4

min
p

∏
(i,j)∈E

p
−wijh

ijh p
−wjia

jia (1− pijh − pjia)−(mij−wijh−wjia)

s.t.
pijx
pikx
≤ 1 ∀ (i, j) ∈ E, (i, k) ∈ E, j � k, x ∈ {h, a}

pijh + pjia ≤ 1

pijx ≥ 0

(4.4)

This is a geometric program. The objective function as well as the left side of the �rst

constraint are monomial and the left side of the second constraint are polynomials. The

third constraint re�ects the fact that the domain of our objective function is positive,

as in all geometric programs. The program can easily be transformed to a convex

optimization problem.

min
p

∑
(i,j)∈E

−wijh ln(pijh)− wjia ln(pjia)− (mij − wijh − wjia) ln(1− pijh − pjia)

s.t. ln(pijx)− ln(pikx) ≤ 0 ∀ (i, j) ∈ E, (i, k) ∈ E, j � k, x ∈ {h, a}
ln(eln(pijh) + eln(pjia)) ≤ 0

It is straightforward to show that the logarithm of a posynomial is convex in ln(x),

which proves the fact that this is indeed a convex program. To solve this kind of

program we make use of the software package IPOPT (see Wächter and Biegler (2006)).

In addition to the program it requires the input of the Jacobian and Hessian matrices

of the constraints. It then applies an interior point algorithm and solves our problem

very e�ciently, given a �xed ranking. This allows us to compare di�erent ranking

systems.

4The only change made is the conversion to a minimization instead of a maximization problem.
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4.5 Ranking methods

4.5.1 The Linear Ordering Problem

At this point, before proceeding with our e�orts of �nding solutions to the proposed

problem, it makes sense to consider a related, but as we will see, clearly di�erent prob-

lem. As one of the classical combinatorial optimization problems the linear ordering

problem (LOP) attracted many authors resulting in a huge amount of literature on it.

See for example Marti and Reinelt (2011) for a good introduction to the problem as

well as a review of suitable algorithms. Also feel referred to Charon and Hudry (2010)

for a detailed survey.

If one is given a complete directed graph Dn = (Vn, An) with arc weights cij for ev-

ery ordered pair (i, j) ∈ Vn × Vn, the linear ordering problem consists of �nding an

acyclic tournament T (which corresponds to a permutation of the set of objects or

teams), which maximizes the sum of the arcs which are in agreement with the direc-

tion of the arcs from Dn. So the sum
∑

(i,j)∈T cij has to be maximal. Equivalently one

could formulate the problem as minimizing the so called remoteness corresponding to

minimizing the arc weights pointing in the opposite direction.

A more illustrative representation of the problem is the maximization of the sum of

superdiagonal elements in a matrix by manipulating the row/column ordering. This is

the so called Triangulation Problem.

The reader might already be able to grasp a sense of similarity here. To establish

a direct connection between the LOP and the problem dealt with in this chapter,

consider a situation where we �x the probabilities of wins and losses at homogeneous

values below and above the diagonal of the matrix independently of which teams are

in question. This means we set pijh = ph above diagonal and pijh = p
h
below it and

analogously for the away probabilities. Let us consider the case where ph > p
h
and

pa > p
a
. Remember that the goal is to maximize∑

(ij)∈E

wijh ln(pijh) + wjia ln(pjia) + (1− wijh − wjia) ln(1− pijh − pjia)

=
∑

(ij)∈E

wijh ln(ph) + wija ln(pa) + tijh ln(1− ph − pa)

+
∑

(ij)∈E

wijh ln(p
h
) + wija ln(p

a
) + tijh ln(1− p

h
− pa)

where E and E represent the sets of elements above and below the diagonals, respec-

tively.
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The results of a particular team in his two games against a particular opponent makes

a certain contribution to the sum. This contribution might be higher because it is

multiplied by higher probabilities if the records are superdiagonal. So we are confronted

with a triangulation problem just like the one described above. Many Authors suggest

an application of the LOP in sports rankings (see e.g. Marti and Reinelt (2011)). And

since it indeed seems well suited for our purposes, we will include it in the analysis.

4.5.2 Branch and Bound Algorithm

Branch and Bound Algorithms are particularly well suited for combinatorial optimiza-

tion problems. As opposed to the other methods we are proposing, this one leads with

certainty to the optimal ranking. For an early survey on Branch and Bound methods

feel referred to Lawler and Wood (1966).

The following steps describe the execution of the algorithm:

1. Take the next team from the list of all teams

2. Put it in the list of previously selected teams at each possible position

3. For each position calculate an upper bound L above which the likelihood cannot

rise going further down the tree (i.e., after all teams were inserted)

4. Leave the team at the position with the highest upper bound

5. If all teams are inserted go to 6., otherwise go to 1.

6. Compare the likelihood to the best one found so far

7. Cut of the tree at all nodes where L is below the best likelihood

8. Go to the best of the lowest hanging nodes that could not be deleted and start

with 1. from there

Before asking how the upper bound estimate L is calculated, lets �rst focus on the

procedure itself. To understand it better, consider a simple example of three teams

"a" "b" and "c".

We start by inserting team "a". The upper bound for the log likelihood at this point

is still 0, which is indicated in brackets in Figure 4.3. Then team "b" is added at each

possible position. We see upper bounds of -1.3 and 0, respectively. So we continue by

leaving "b" at the second position and then insert team c at each possible location.

Since the example only includes three teams, we can now calculate the value of the

real objective function instead of calculating L the way it was done previously. The

highest value of the objective function is found using the ordering "bac". This value of

-1.2 now enables us to cut of all hanging nodes, which have an upper bound below -1.2.
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a(0)

ba ab(-1.3) (0)

cab bca bac(-2.4) (-1.9) (-1.2)

Figure 4.3: Branch and Bound Algorithm: An example

So we cut of the tree at "ba", since there is no way, we could get a better likelihood

going down the tree from this node. It is easy to see how the procedure can save

computational e�ort (even in this tiny example) compared to calculating the MLE for

all permutations.

The upper bound L is calculated as follows. First the optimization problem (for a �xed

ranking) is applied to the teams that have been inserted so far.

Lemma 2. Adding an additional team into an existing ranking without changing the

relative order of the already existing teams can not increase L.

Proof. It is trivial to see that adding a variable (team) to the maximization problem

without adding additional constraints (results) does not change the maximum like-

lihood (i.e., we are multiplying by 1). Now, adding additional constraints without

changing the objective function or changing the other constraints can never increase

the maximum likelihood and therefore the new L has to be less or equal to the L with

1 team less.

At this stage we could already use this maximum likelihood of the considered subset

of teams for L. But there is a way to reduce the upper bound even further and

thereby make the algorithm a lot more e�cient. For each team that is still pending

to be inserted we already know a subset of the constraints that will be applied to the

corresponding probabilities when going further down the tree, no matter where this

particular team will be inserted. Consider a situation where teams 1, ..., k have already

been inserted. Now, for each team l ∈ {k + 1, ..., n} we know that pilx ≤ pi′lx and

plix ≥ pli′x for every i, i
′ ∈ {1, ..., k} and x ∈ {h, a} such that i is ranked above i′. For

k = 3 this is depicted in Figure 4.4.

For every team that has not been inserted yet, we know this subset of constraints. So

we have another optimization problem for each team. The results of these optimization

problems (, having the form of log likelihood values) can be added to the value L.
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Figure 4.4: Calculation of the upper bound L

As mentioned, the algorithm leads for sure to the optimal ordering. The drawback

is that despite of the fairly sophisticated upper bound that we are suggesting, it is

still not e�cient enough to be applied to tournaments with more than 11-12 teams5.

Nevertheless the branch and bound algorithm deserves to be included in the empirical

subsection of this chapter.

4.5.3 Tabu Search

The third ranking algorithm we are suggesting is a heuristic search method. The

advantage of tabu search lies in the combination of local search and a diversi�cation

mechanism. The local search systematically browses through neighborhood solutions,

checking for a possible improvement of the objective value. That the algorithm doesn't

get stuck in local optima is assured by a memory structure, avoiding previously visited

regions of the solution space, giving a tendency for diversi�cation. A reference with a

related application is Laguna, Marti, and Campos (1999).

The algorithm works as follows:

1. Start from a randomly generated order of teams (call it ρ)

2. Calculate the maximum likelihood for the current ranking L(ρ)

3. Randomly select a team that is not on the "Tabu List" and remove it from the

order

4. Insert the team at position i and calculate di�erence between the maximum

likelihood of the new and the original ranking: MoveV alue = L(ρ′)− L(ρ)

5. Repeat 4. for 1 ≤ i ≤ n except for the original position

6. Insert the team at the position with the highest MoveV alue

7. Put the team on the "Tabu List" so that it won't be selected for the next

"TabuTenure" iterations

8. Go to 2.

5Depending on the structure of results in the tournament, as well as the users patience.
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Basically what the algorithm does is taking a team from the ranking and trying out

every possible position for it, except for the original one. Important is that the best

among the new positions is selected even if the "MoveV alue" is negative. Di�erent

convergence criteria are possible for the procedure. Since in our analysis the computa-

tional e�ort in each iteration is fairly large, we use a �xed number of iterations for the

algorithm, so that we can best control the amount of time it takes for the algorithm

to �nish.

4.5.4 Popular ranking methods

Finally, we want to take a more practical approach and compare di�erent ranking

systems, which have been used in di�erent �elds of sports. We chose the 3 point

system (also known as "Three points for a win"), which awards zero points for a loss,

one point for a draw and three points for a win. The sum of the points together with

the goal di�erence as a tie breaker then decides upon the ranking. This system has

been used in most soccer leagues since it was o�cially adopted in 1995 by FIFA.6

Before the 3 point system was introduced, the analogously structured 2 point system

had been widely used in soccer. Here the only di�erence is that two instead of three

points are awarded for a win.

These two systems are fairly easy to apply and (unfortunately) also very similar to each

other. As a third candidate for a ranking scheme, we use the Elo rating system. The Elo

rating system is a system invented by Elo (1978) originally intended as a rating system

for chess. Today it is not only used as for di�erent chess organizations, including the

FIDE and the United States Chess Federation, but also the European Go Federation,

many di�erent computer games and even the National Collegiate Athletic Association,

the organization which is responsible for the organization of many American college

sport programs, notable college football and college basketball. The main di�erences

to the three points for a win is that it factors in the strength of the opponent: winning

against a strong opponent yields more points than winning against a weak one. This

results in the major weakness for our needs: a relatively high number of games is

needed to give meaningful results and the order in which the teams play matters a lot.

6England introduced the system already in 1981. The �rst time it was used internationally was in

the 1994 World Cup �nals.
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4.6 Comparing the explanatory power of rank-

ings

To further enhance our comparative analysis of ranking systems, we will apply a statis-

tical hypothesis test. In this test two ranking systems are compared, call them system

a and system b. We solve problem Equation (4.4) for both rankings. The p-matrix

calculated with the constraints generated by one of the rankings, say system a, will

yield a likelihood for the observed season at least as great as the one generated by the

other one, say system b.

L(P̂a(w)|w) ≥ L(P̂b(w)|w)

where P̂a(w) and P̂b(w) are the estimated p-matrices. So we could say, a allows one to

calculate a p-matrix with a higher explanatory value, so it must be the better system.

But in fact, it might have happened by chance, that this ranking system performed

better than the other one. The central question concerns the degree of the odds that

a performed better than b by the observed amount. Let us de�ne the likelihood ratio

as follows

LRa,b = log(L(P̂a(w)|w)))− log(L(P̂b(w)|w)).

We assume a Hypothesis H0 stating that "b is the correct ranking system". Correct

means that it allows us to estimate the right p-values. Using these probabilities for each

match, we simulate a complete season and get a new tournament ŵ for which we again

calculate the likelihoods given P̂a(w) and P̂b(w). This way a few thousand seasons are

simulated and we receive a distribution over the di�erence of the log-likelihood. In the

ideal case, the probability (suggested by the simulated distribution) of the observed

di�erence between the likelihoods is small enough to be able to reject H0 with this very

test size α.

P [LRa,b(ŵ) ≤ LRa,b(w)] < α

So, roughly what we do is assuming that one of the systems is correct, and then we

try to reject this hypothesis, by showing that the probability for another system to be

as much better as empirically observed is very small.

The weakness of this approach is pretty obvious. We are only able to reject the hy-

pothesis that a particular system is perfectly correct. Even though the data allows us

to make a guess about it, the test does not allow us to make a statement about which

of the two systems in consideration is actually better. So in fact, both of the systems

might be incorrect, but we are only able to reveal the inadequacy of one of them.
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4.7 Data

We obtain the data from di�erent sources. For soccer we focus on the German Bun-

desliga and the British Premier League. For the former we have data from the seasons

1968/69 till 2012/13, for the latter the sample from the seasons 1997/98 till 2012/2013.

Additionally, we included the season 2012/2013 from the the Austrian Bundesliga, be-

cause of its advantage of having only 10 Teams. The scores for all matches, which

are translated to win/draw/loss data, are obtained from the website www.kicker.de.

Notable about the soccer data is that each team plays each other team exactly once at

home and once away in each season. This introduces a symmetry to the data which,

even though it is not necessary, might be considered as desirable and certainly in�u-

ences the results of our analysis.

Regarding tennis, we face a di�erent situation. Since there is no league of players in

which each player faces another one a �xed number of times per season we have to go

a di�erent way. We will focus only on the top 10 players according to the o�cial ATP

ranking at the end of each year (obtained from http://www.atpworldtour.com). Then

we collect the data for all the ATPmatches played in this season from http://www.tennis-

data.co.uk. Of course these data sets will be highly asymmetric, because some players

play against each other more that once, and some might not face each other at all

during a season. Another special fact about the tennis data is that we don't have a

real home away situation.7 Even more importantly, in tennis there is no possibility

of ties. So we face only a binomial distribution for the outcome of each match which

considerably facilitates the optimization procedure.

Concerning American football, we will focus exclusively on the NFL. We have data on

the scores of every NFL game since 1978 from the website http://www.re

pole.com/sun4cast/data.html. The NFL comprises from 28 in the season 1978 to 32

teams in 2012. This is by far the largest group of teams. Almost naturally it follows that

among the samples there is a huge number of teams that don't face each other during

a season. Which team is playing which is determined by a complicated system, which

shall not be further discussed here. In football draws are possible, but only happen

very rarely. Along with the fact that American football enjoys great popularity, this

makes NFL data very interesting for our analysis.

7Of course some players might feel more at home when a tournament is taking place in their country

of origin. But since this is very di�erent to the situation of a team playing in its very own stadium in

its city, we will assume that every game takes place on neutral ground.
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4.8 Empirical analysis

We now want to apply the presented methods to real data from sports. Countless

di�erent types of sports are imaginable and probably the readers preferences for what

he would like to see in this section are very heterogeneous. Nevertheless for reasons of

space we want to focus on three types, namely soccer, tennis and American football.

The main questions we seek to answer are, "Is there a tendency for one of the ranking

schemes to be superior to the others according to the criterion we de�ned?", "If yes,

which one is it?", "Does it depend on the type of sport?" and �nally "Are we able to

improve on the rankings found by the simple ranking methods using one of the algo-

rithms presented in Section 4.5?"

4.8.1 Soccer in Austria: Finding an optimal ranking

With the branch and bound algorithm we �nd our selves equipped with a very powerful

instrument to �nd the optimal ranking. Unfortunately this algorithm can only be

applied to sets of teams that have a limited size. The �rst object of our investigation

shall be the Austrian Bundesliga. Its size of 10 teams enables us to apply the discussed

bnb-method. During a season each team plays against each other team four times, two

times at home and two times away. This is di�erent from most other soccer leagues,

but doesn't increase the computational complexity by much. Here, we consider the

season 2012/2013. To draw a �rst comparison between the performances of the other

ranking schemes, Table 4.1 shows the maximum likelihoods that have been calculated.

Method BnB 2-Point 3-Point LOP Elo Tabu-Search

MLE -129.844 -131.742 -135.561 -140.024 -131.703 -130.465

Table 4.1: Log likelihood values for the Austrian Bundesliga 12/13

While the ranking corresponding to the solution to the linear ordering problem gives a

relatively low likelihood, the two point system as well as the Elo-system seem to explain

the results a lot better. Nevertheless, none of the systems generates the optimal ranking

found by the branch and bound algorithm. The ranking produced by the Tabu Search

gives a higher likelihood than all the systems, but still is not the optimal one.

Figure 4.5 compares the optimal ranking that we found with the actually applied

order, namely the 3-Point ranking. One can see that there are indeed some di�erences.

Perhaps most striking is that in this season SV Mattersburg was relegated, while in the

optimal ranking Wacker Insbruck would have been relegated. This team was actually

ranked 8th.
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3 P Optimal

Figure 4.5: Rankings resulting from 3-point system and Branch and Bound algorithm

Unfortunately most leagues are larger than the Austrian Bundesliga. The resulting

computational e�ort makes it virtually impossible for us to �nd optimal rankings.

which is why in the next subsection we focus on the other methods and compare the

di�erent ranking schemes across panel data from di�erent leagues in di�erent sports.

4.8.2 Ranking systems and maximum likelihood estimates

To give the reader an impression of how a matrix of estimated outcome probabilities

for each game looks like after the optimization, Figure 4.6 depicts the probabilities for

home game wins for the Bundesliga season 2012/13 estimated using the "three points

for a win" system.

0.18 0.31 0.69 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
0 0.31 0.69 0.69 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.92 0.92 0.92 0.92 0.92 1
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0 0.31 0.31 0.46 0.46 0.46 0.46 0.52 0.7 0.7 0.7 0.7 0.7 0.86 0.92 0.92 0.92 0.95
0 0.31 0.31 0.46 0.46 0.46 0.46 0.49 0.49 0.49 0.49 0.61 0.7 0.85 0.85 0.85 0.85 0.85
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0 0 0.31 0.31 0.31 0.31 0.31 0.41 0.41 0.45 0.49 0.49 0.49 0.49 0.49 0.85 0.85 0.85
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Figure 4.6: MLE for pijh using 3-point system

Generally, a striking feature about the structure of the estimated probably matrices

is the occurrence of homogeneous values in certain areas of the matrix, reminding of

the layer structure discussed in Section 4.4.1. Remarkable in this particular matrix is

the large number of "1"s in the upper right corner and "0"s in the lower left corner.

The reader might be tempted to argue that these values are fairly unrealistic, because

intuition tells us that even if the strongest team plays the weakest one, in the current

case Bayern München against Greuter Fürth, the chance of the former to win against
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the latter will be high, but never 100%. The point is that we only hold this intuition,

because probably at some point in the past we have seen top teams occasionally loosing

against teams that were ranked very low. But since this kind of information is not part

of our estimation procedure, it is only natural that estimates look like this.8

Next, we want to try to improve this ranking by using one of the algorithms presented

in Section 4.5. Unfortunately the sample of 18 teams is too large for an application of

the branch and bound algorithm, which would technically allow us to �nd the optimal

ranking. So we use the Tabu search method, which we run for 100 iterations. The

resulting ordering as well as the corresponding maximum likelihoods are shown in

Figure 4.7.

3 P TabuSearch

Figure 4.7: Rankings resulting from 3-point system and Tabu Search

The Tabu Search �nds a ranking that is partly very di�erent from the one determined

using the 3-point system. The biggest di�erence is the position of "Mainz 05" jumping

from the 13th position to the 4th. The cause of this di�erence can only be that "Mainz

05" has won the matches in this season that were particularly important in the sense of

being in accordance with the team having fairly high winning probabilities in general.

However, despite of di�erences in parts, a great similarity between the rankings can be

observed. This similarity can be measured using Spearman's rank correlation coe�cient

de�ned as ρ = 1− 6
∑

(ri−si)2
n(n2−1)

with ri being the original (3 point) ranking of team i and

si the ranking with the highest maximum likelihood as calculated with the Tabu Search

algorithm. The correlation between the 3-point ranking and the one found by the Tabu

Search is indeed fairly high with a value of about 0.87616. The di�erence between the

8We have to add, that in case the reader has seen Bayern München play in the season 2012/13, he

most certainly would agree that estimating some probabilities in the right of the upmost row with a

value of 1 most probably only involves a very small error.
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maximum likelihood values however, is in fact very large. The probabilities found using

the Tabu Search ranking make the observed season 3318 times more likely compared

to the probabilities found using the 3 point ranking.

As mentioned above, we have data not only on this one Bundesliga season, but on the

ones from the last 50 years.9 For every season that we have data on, we calculated

the maximum likelihood p-matrices as well as the objective function values using the

"2 points for a win", the "3 points for a win", Elo system and the ranking from the

solution to the linear ordering problem. Finally, we used the Tabu search method to

�nd out, whether or not one is able to improve on one or all of the ranking schemes.

Because from season to season the likelihood values �uctuate heavily, it makes sense

to use the likelihood found by one of the systems as a reference value and plot the

di�erences to these values in a diagram. As opposed to just plotting the absolute

likelihoods of every system in each year, this technique allows us to better compare the

quality of the rankings throughout the panel data. The system of reference will be "2

points for a win".
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(a) Bundesliga

Figure 4.8 (a) and (b) reveal that the two and three point systems are in fact very

close in the maximum likelihoods they "produce". This is not least because in most

cases the rankings determined by the two systems only di�er in a few spots. And if the

rankings do not di�er much, it's only natural that the likelihood values won't be very

far apart either. The two point system allows for a calculation of p-matrices that make

the observed seasons on average across the Bundesliga samples by about 9.8% more

likely than when using the three point system. In the Premier League the three point

system has a 5.2% higher explanatory power. The Elo-system also gives us likelihoods

9Because in the seasons 1963/64, 1964/65 and 1991/92 the number of teams in the Bundesliga was

di�erent from 18, we excluded these seasons from the sample. Sacri�cing these three data points for

a higher comparability seems reasonable.
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Figure 4.8: Maximum Likelihoods for Bundesliga and Premier League panel data

in the same range, indicated by the green lines. Actually this is a bit of a surprise,

since there were some hopes that the intuitively very reasonable mechanism of getting

more points for winning against relatively strong opponents would enable us to explain

the observed results better. Still it is not worse than the conventional two and three

point systems. But because of its higher complexity we clearly refrain from making a

recommendation for using this system. The ranking resulting from solving the linear

ordering problem is by far the worst performer in the diagram. One observes it to yield

likelihoods that are on average more that 1000 times smaller that the ones from the

two point system. So we have to clearly reject the suggestion for a possible application

of the LOP in soccer that has been made in the literature.

Another striking feature about the graphs is the position of the likelihood curves corre-

sponding to the tabu search. The heuristic algorithm is able to improve on every single

ranking from the sample, except for the Premier League seasons 04/05 and 05/06. On

average it helps to explain the results about 457 times better. The graph shows us

that even though the simple ranking schemes produce fairly "good" orderings in the

sense of a high correlation (as seen above), they are far away from being the most likely

correct ones.

Next, Figure 4.9 shows the analogue results for the tennis panel data from the last

14 years. The �rst thing to note is that the two and three point systems produce the

same likelihoods throughout the whole sample, which is why in this graph there is no

curve comparing the two, since it would lie on the x-axis. The reason for this is that in

tennis we do not have draws, so in both systems the players are only ranked according

to their number of victories. In Figure 4.9, in addition to the curves from Figure 4.8,

the likelihoods from the o�cial ATP ranking from the end of each year are listed.
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Figure 4.9: Maximum Likelihoods for ATP panel data

This ranking is determined by awarding di�erent amounts of points for a stage that

is reached in the Grand Slam Tournaments, the ATP World Tour Finals, the Masters

1000, Olympics etc. Of course this method is very sophisticated and includes also the

results of the matches of the top 10 players against others that might not be in the

top 10. This data is not part of the other systems we are analyzing. According to the

criterion of this work, the ATP ranking performs fairly bad in explaining the observed

results. Interestingly in this tennis sample, the linear ordering ranking produces fairly

high likelihoods, in fact on average higher ones than the n-point and Elo system. Again,

in every year the tabu search algorithm is able to improve on all of the discussed

rankings.

Finally, Figure 4.10 illustrates the results form the same calculations as above, now for

American football results from the National Football League in the US. There is little

di�erence between 2- and 3 point systems, because draws are very unlikely to occur.

However, the 3 point system is almost at every point at least as good as the 2 point

system. The LOP and Elo systems operate in the same range of likelihoods as well.

With NFL data, applying the tabu search is more e�ortful and thus takes more time

for the same number of iterations, because of the higher number of teams. However,

again, the tabu search improves upon all the rankings in the sample.

In general, the di�erence in the relative likelihoods when applying the Elo/LOP system

and the n-point systems between soccer on the one hand and tennis and American

football on the other could be due to the heterogeneity in the number of games played

between the teams in tennis and football as opposed to the symmetric situation in

soccer. Certainly a system like "two points for a win" doesn't seem to be particularly

well suited in a situation where teams play di�erent amounts of matches. And as
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Figure 4.10: Maximum Likelihoods for NFL panel data

explained further above, here it could be justi�ed to give 1 and -1 points instead of

0 and 2 for a win and a loss, respectively. However, implementing this changes not

much and even reduces the average likelihood a bit. Another explanation could be the

sport itself. It might be due to the result generating probabilities themselves, that for

one sport di�erent ranking schemes are better suited then others. Indeed, it is easy to

show that in the space of transitive probability matrices, there are areas where each

of the considered systems is most likely to generate a ranking closest to the real one.

This is an interesting direction for further theoretical research.

4.8.3 Hypothesis testing

Now we are going further in the analysis of ranking systems than just observing which

ordering scheme is able to generate a higher maximum likelihood value. We will con-

sider two examples, which will help deepen the understanding of the problem, but will

also clearly highlight the limitations of this hypothesis testing approach, as described

in Section 4.6.

Consider the Bundesliga season 2011/2012. Looking at Figure 4.8 reveals that for this

data set the 3 point system performed better than the 2 point system. The di�erence

between the two maximum likelihood logs is 0.564. But the central question is "did

this MLE di�erence appear because the underlying unobservable probabilities make

the 3 point system more appropriate than the 2 point system in this season or could it

in fact be the other way around with the observation just happening by chance?".

To answer this question, assume the correctness of the Hypothesis H0: "The 2 point

system puts the teams in the correct order". We will test H0 against the alternative
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Hypothesis H1: "The 3 point system puts the teams in the correct order". Now, for the

two systems the probability matrices P̂2p(w) and P̂3p(w) are estimated. Using P̂2p(w)

5000 seasons are simulated. Then L(P̂2p(w)|ŵ) and L(P̂3p(w)|ŵ) are calculated for

each of the seasons. Their respective frequency distribution is depicted in Figure 4.11

(a) and (b). The distribution of their di�erence, which corresponds to the ratio of the

likelihoods without logs is plotted in Figure 4.11 (c).

Looking closely at the �rst two diagrams reveals that the distribution of L(P̂3p(w)|ŵ)

is shifted a little bit to the left relative to the one of L(P̂2p(w)|ŵ). This is intuitively

correct because it is only natural that the probability matrix that generated the seasons

of the sample gives the higher likelihood values than the matrix P̂3p(w), which has

nothing to do with the season simulation. Now to �nd out the con�dence level with

which we would be able to reject H0 one has to compare the observed likelihood ratio

to the likelihood ratio distribution in Figure 4.11 (c). This procedure shows us that

assuming the correctness of H0, the probability of the likelihood ratio being ≤ 0.564

is only 11%. So we are able to reject the hypothesis that the 2 point system gives the

correct ranking with test size α = 0.11, meaning that the probability of not making

an error of the �rst kind is 0.89. One has to be careful not to misinterpret this result.

It means that we are able to reject the hypothesis that the 2 point system gives the

correct ranking. However, this does by no means imply that the 3 point system gives

the correct ranking.

Now let us conduct a second hypothesis test, this time using tennis data. A good

experiment would be to test for the correctness of the LOP system against the 3 point/2

point system in the year 2012. In this year the LOP produced a considerably higher

likelihood than the 2 point system (see Figure 4.9 ), so we would like to know if this was

just a random result or if we can actually conclude that the underlying probabilities

favor the LOP scheme in the sense of telling us the truth about the ordering of tennis

players. The hypothesis are:

1. H0: "The 2 point system puts the teams in the correct order"

2. H1: "The solution to the LOP puts the teams in the correct order"

Assuming the correctness of H0, we again estimate the probability matrices and then

simulate 5000 seasons. Hereby we always assume that the mij values stay constant,

i.e., the amount of times players meet is the same in every simulation. We proceed as

above by calculating the test statistic for the likelihood ratio and then comparing it to

the empirically observed one. We have:

LR2p,LOP = log(L(P̂2p(w)|w)))− log(L(P̂LOP (w)|w)) = −6.9103

The simulated test statistic tells us that in case H0 is correct, the probability of an
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Figure 4.11: Simulated test statistic for Bundesliga hypothesis test
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occurrence of such a small likelihood ratio is only 0.02%. It follows that we can reject

H0 with test size α = 0.02 (i.e., a con�dence level of 99.98%).

This method is, as already mentioned in Section 4.6, only useful to test if a ranking

scheme gives us the correct ranking. If one is very con�dent that a ranking system gives

a very good approximation to the optimal ranking, one could test the results of this

ranking system against the optimal ranking (either approximated by the Tabu Search

Algorithm or calculated by the Branch and Bound Algorithm). If this test fails to

reject that the ranking system is the correct ranking system, one could be very certain,

that there is no (signi�cantly) better ranking system. However, in the data we have

analyzed so far there has been no candidate for this good ranking system and every

test performed like this would lead to rejection of the hypothesis.

4.9 Conclusion

We constructed a statistical model describing the outcomes of sports matches. The

model assumes a transitive relationship between the relative strengths of the teams.

The resulting constraints turn out to be very restrictive, which is illustrated by the

rapidly shrinking size of the parameter space shown in appendix B. The incorporation of

ties as well as home/away asymmetries makes our model much more complicated than

the related isotonic regression problem. The discussed branch and bound algorithm is

capable of solving the problem for up to 12 teams. For larger data sets, a tabu search

heuristic has been proposed. The empirical subsection of the chapter �rst illustrates

the structure of an optimized probability matrix with an example. We have shown

that in the example the maximum likelihood produced by the tabu search is more that

3000 times higher than the one resulting from an application of the 3-point system.

But this does not mean that the two rankings are strongly uncorrelated as seen from

the high value of Spearman's rank correlation coe�cient. Panel data has been used

to compare di�erent ranking systems in three types of sports. In soccer, data from

German Bundesliga and English Premier League have shown that the 2- and 3-point

systems are very close to each other in the maximum likelihoods they produce, which

is not a surprise when considering their structural similarity. Hopes were higher for the

performance of the Elo system, because as opposed to the traditional point systems

it considers the opponents strength. However, on average the generated MLEs were

in the same range as the ones from the n-point systems. This result also applies for

ATP tennis and NFL American football data. So the additional degree of complexity

seems to be enough of a justi�cation for not giving a recommendation towards an

introduction of the Elo system. A di�erence worth mentioning is that the ranking,
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which results from the LOP performs fairly well in tennis and American football, but

worse than everything else in soccer. We show that almost in every sample across

all considered types of sports we are able to improve on the rankings produced by

the considered systems by using tabu search. This illustrates that there might be a

system that is much better at �nding the most likely correct ranking, possibly without

the inclusion of a great complexity. As a �nal remark, we want to mention that the

framework presented in this chapter has its natural limitations and leaves out many

important aspects that should be considered when choosing or designing a ranking

scheme. Things like opponents incentives during a match and the resulting e�ects on

the observers level of thrill or the occurrence of winning decision as late as possible

during a season could be interesting points for further research.
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4.10 Appendix

4.10.1 Proofs

Proof of Proposition 4: Ignoring the away/home di�erentiation, we can write pikx as

pik. With 0 probabilities of draws, Equation (4.1) is now

pik = 1− pki

and therefore Equation (4.2) is then equivalent to

pik ≥ pil ⇔ pjk ≥ pjl

pi′k′ > pj′k′ ⇒ pl′j′ > pl′i′
(4.5)

Now we have to show that (SST ) =⇒ (4.5) and (4.5) =⇒ (SST ).

(SST ) =⇒ (4.5):

We are dividing this case into two cases: For pik ≥ 1
2
≥ pjk we can see:

pij ≥ pkj = 1− pjk ≥
1

2

SST
==⇒ pix ≥ pjx ∀x

For every other case we can assume wlog that pik ≥ pjk ≥ 1
2

pij ≥
1

2

SST
==⇒ pix ≥ pjx ∀x

pij <
1

2
=⇒ pji >

1

2

SST
==⇒ pjk > pik

Which is a contradiction to the assumption, therefore pij ≥ 1
2
.

(4.5) =⇒ (SST ):

pjk > pik
(5)
=⇒ pli > plj ∀l

⇒ pii > pij
pii=1/2
====⇒ pij <

1

2

Proof of proposition Proposition 5: De�ne a ranking from best to worst ρ(i) : {1, .., n}(
{1, ..., n} such that pikx ≥ pjkx ⇒ ρ(i) < ρ(j) and pkix ≤ pkjx ⇒ ρ(i) < ρ(j).

pikx ≥ pjkx ⇔ ρ(i) < ρ(j)⇔ pily ≥ pjly ∀i, j, k, l, x, y
pkix ≥ pkjx ⇔ ρ(j) < ρ(i)⇔ pily ≥ pjly ∀i, j, k, l, x, y

pi′k′x > pj′k′x ⇔ ρ(j) < ρ(i) and ρ(i) � ρ(j)∃i′, j′, k′, x
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4.10.2 Parameter space

In this subsection we explore the e�ect of transitivity conditions on the parameter

space of winning probabilities to illustrate the limitations enforced by it. To do that

we compare the size of the parameter space with transitivity to the space of unrestricted

winning probabilities Sn, e.g. every pij, pji ful�lling pij + pji = 1.

The space of parameters including the transitivity conditions is a subset of this set

Sn. Sn(R) is hereby de�ned as the size of this space relative to Sn only considering

the restrictions for pij ∈ R. The unrestricted parameter space is in this simple case:

Sn = [0, 1]
n(n−1)

2 which can be easily seen by the fact that every pji is completely

determined by pij. The restricted space for n players and the transitivity conditions

for every (i, j) ∈ Kn with Kn = {(i, j)|i, j ∈ {1, 2, ..., n}, i < j} is therefore

Sn(Kn) =

bi,j+1∫
bi+1,j

Sn(Kn\{(i, j)})dpij

with

Sn((i0, j0)) =

bi0,j0+1∫
bi0+1,j0

dpi0j0

and

bi,j :=


pij, for (i, j) ∈ Kn

0.5, for i = j

0, else

As this fairly complicated recursive integral may be hard to interpret, Table 4.2 gives

the values for the relative size of the transitive parameter space for up to �ve teams.

It can be seen that the size rapidly shrinks and it is not hard to imagine that for a

league comprising e.g. 18 teams the conditions are in this sense very strict.

n 2 3 4 5 6 7

Relative

size

1 1
4

1
120

1
40320

1
203212800

1
19313344512000

Approximation 1 0.25 8.3× 10−3 2.5× 10−5 4.9× 10−9 5.2× 10−14

Table 4.2: Relative size of the transitive parameter space
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4.10.3 Code

The �rst code listing shows the problem de�nition of an optimization with �xed team

ordering, so that the ipopt framework will understand it.

1 #inc lude " nf l_nlp . hpp"

2

3 #inc lude <ca s s e r t >

4 #inc lude <iostream>

5 #inc lude <math . h>

6

7 s t a t i c i n t t=50;

8

9 s t a t i c i n t w [ 3 ] [ 5 0 ] [ 5 0 ] ;

10 s t a t i c double p [ 2 ] [ 5 0 ] [ 5 0 ] ;

11

12

13 us ing namespace Ipopt ;

14

15 // cons t ruc to r

16 nfl_NLP : : nfl_NLP ( i n t myw [ ] [ 5 0 ] [ 5 0 ] , double * myp [ ] [ 5 0 ] [ 5 0 ] , double*& ←↩
zielwert , i n t myt )

17 {

18 zielwert = &zw ;

19 t=myt ;

20

21 f o r ( i n t h=0; h<3; h++) {

22 f o r ( i n t k=0; k<t ; k++) {

23 f o r ( i n t l=0; l<t ; l++) {

24 w [ ht ] [ k ] [ l ]=myw [ ht ] [ k ] [ l ] ;

25 myp [ ht ] [ k ] [ l]=&p [ ht ] [ k ] [ l ] ;

26 }

27 }

28 }

29

30 }

31

32 // de s t ru c t o r

33 nfl_NLP : : ~ nfl_NLP ( )

34 {}

35

36 // r e tu rn s the s i z e o f the problem

37 bool nfl_NLP : : get_nlp_info ( Index& n , Index& m , Index& nnz_jac_g ,

38 Index& nnz_h_lag , IndexStyleEnum& ←↩
index_style )

39 {
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40 // The problem desc r ibed in nfl_NLP . hpp has 4 va r i ab l e s , x [ 0 ] ←↩
through x [ 3 ]

41 n = 2*pow (t , 2 ) ;

42

43 // one equa l i t y c on s t r a i n t and one i n e qua l i t y c on s t r a i n t

44 m = pow (t , 2 ) + 4*t*(t−1) ;
45

46 // in t h i s example the jacob ian i s dense and conta in s 8 nonzeros

47 nnz_jac_g = 2*m ;

48

49 // the he s s i an i s a l s o dense and has 16 t o t a l nonzeros , but we

50 // only need the lower l e f t corner ( s i n c e i t i s symmetric )

51 nnz_h_lag = 2*n−4*t ;
52

53 // use the C s t y l e index ing (0−based )
54 index_style = TNLP : : C_STYLE ;

55

56 re turn true ;

57 }

58

59 // r e tu rn s the va r i a b l e bounds

60 bool nfl_NLP : : get_bounds_info ( Index n , Number* x_l , Number* x_u ,

61 Index m , Number* g_l , Number* g_u )

62 {

63 // here , the n and m we gave IPOPT in get_nlp_info are passed back ←↩
to us .

64 // I f des i r ed , we could a s s e r t to make sure they are what we think ←↩
they are .

65

66 // the v a r i a b l e s have lower bounds o f 0

67 f o r ( Index i=0; i<2*t*t ; i++) {

68 x_l [ i ] = 0 . 0 ;

69 }

70

71 // the v a r i a b l e s have upper bounds o f 1

72 f o r ( Index i=0; i<2*t*t ; i++) {

73 x_u [ i ] = 1 . 0 ;

74 }

75

76

77 Index i = 0 ;

78 f o r ( Index k=0; k<t ; k++) {

79 f o r ( Index l=0; l<t ; l++) {

80 g_l [ i ] = −2e19 ;
81 g_u [ i ] = 1 . 0 ;

82 i++;
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83 }

84 }

85 f o r ( Index h=0; h<2; h++) {

86 f o r ( Index k=0; k<t ; k++) {

87 f o r ( Index l=0; l<t ; l++) {

88 i f (l<t−1) {

89 g_l [ i ] = −2e19 ;
90 g_u [ i ] = 0 . 0 ;

91 i++;

92 }

93 i f (k<t−1) {

94 g_l [ i ] = −2e19 ;
95 g_u [ i ] = 0 . 0 ;

96 i++;

97 }

98 }

99 }

100 }

101

102 re turn true ;

103 }

104

105 // r e tu rn s the i n i t i a l po int f o r the problem

106 bool nfl_NLP : : get_starting_point ( Index n , bool init_x , Number* x ,

107 bool init_z , Number* z_L , Number* ←↩
z_U ,

108 Index m , bool init_lambda ,

109 Number* lambda )

110 {

111 assert ( init_x == true ) ;

112 assert ( init_z == f a l s e ) ;

113 assert ( init_lambda == f a l s e ) ;

114

115 // i n i t i a l i z e to the g iven s t a r t i n g po int

116 f o r ( Index i=0; i<2*t*t ; i++) {

117 x [ i ] = 0 . 4 ;

118 }

119

120 re turn true ;

121 }

122

123 // r e tu rn s the value o f the ob j e c t i v e func t i on

124 bool nfl_NLP : : eval_f ( Index n , const Number* x , bool new_x , Number& ←↩
obj_value )

125 {

126 assert (n == 2*t*t ) ;
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127

128 obj_value=0;

129 Index i=0;

130 f o r ( Index k=0; k<t ; k++) {

131 f o r ( Index l=0; l<t ; l++) {

132 i f (k !=l ) {

133 obj_value += (−w [ 0 ] [ k ] [ l ]* log (x [ t*k+l ]+0.000001) − w←↩
[ 1 ] [ l ] [ k ]* log (x [ t*t+t*l+k ]+0.000001) − (w [ 2 ] [ k ] [ l]−w←↩
[ 0 ] [ k ] [ l]−w [ 1 ] [ l ] [ k ] ) *log(1−x [ t*k+l]−x [ t*t+t*l+k←↩
]+0.000001) ) ;

134

135 i++;

136 }

137 }

138 }

139

140 re turn true ;

141 }

142

143 // return the grad i en t o f the ob j e c t i v e func t i on grad_{x} f ( x )

144 bool nfl_NLP : : eval_grad_f ( Index n , const Number* x , bool new_x , Number*←↩
grad_f )

145 {

146 Index i=0;

147 f o r ( Index h=0; h<2; h++) {

148 f o r ( Index k=0; k<t ; k++) {

149 f o r ( Index l=0; l<t ; l++) {

150 i f (k !=l ) {

151 i f (h==0)

152 grad_f [ i ] = −w [ ht ] [ k ] [ l ] / ( x [ t*t*h+t*k+l←↩
]+0.000001) + (w [ 2 ] [ k ] [ l]−w [ ht ] [ k ] [ l]−w [1−h←↩
] [ l ] [ k ] ) /(1−x [ t*t*h+t*k+l]−x [ t*t*(1−h )+t*l+k←↩
]+0.000001) ;

153 e l s e

154 grad_f [ i ] = −w [ ht ] [ k ] [ l ] / ( x [ t*t*h+t*k+l←↩
]+0.000001) + (w [ 2 ] [ l ] [ k]−w [ ht ] [ k ] [ l]−w [1−h←↩
] [ l ] [ k ] ) /(1−x [ t*t*h+t*k+l]−x [ t*t*(1−h )+t*l+k←↩
]+0.000001) ;

155 }

156 e l s e {

157 grad_f [ i ] = 0 ;

158 }

159 i++;

160 }

161 }

162 }
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163

164 re turn true ;

165 }

166

167 // return the value o f the c on s t r a i n t s : g ( x )

168 bool nfl_NLP : : eval_g ( Index n , const Number* x , bool new_x , Index m , ←↩
Number* g )

169 {

170 Index i = 0 ;

171 f o r ( Index k=0; k<t ; k++) {

172 f o r ( Index l=0; l<t ; l++) {

173 g [ i ] = x [ t*k+l ]+x [ t*t+t*l+k ] ;

174 i++;

175 }

176 }

177 f o r ( Index h=0; h<2; h++) {

178 f o r ( Index k=0; k<t ; k++) {

179 f o r ( Index l=0; l<t ; l++) {

180 i f (l<t−1) {

181 g [ i ] = x [ t*t*h+t*k+l]−x [ t*t*h+t*k+l+1] ;

182 i++;

183 }

184 i f (k<t−1) {

185 g [ i ] = x [ t*t*h+t*(k+1)+l]−x [ t*t*h+t*k+l ] ;
186 i++;

187 }

188 }

189 }

190 }

191 re turn true ;

192 }

193

194 // return the s t r u c tu r e or va lue s o f the jacob ian

195 bool nfl_NLP : : eval_jac_g ( Index n , const Number* x , bool new_x ,

196 Index m , Index nele_jac , Index* iRow , Index ←↩
*jCol ,

197 Number* values )

198 {

199 i f ( values == NULL ) {

200 // return the s t r u c tu r e o f the jacob ian

201

202 // t h i s p a r t i c u l a r jacob ian i s dense

203

204

205 Index z=0;

206 Index r=0;
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207 f o r ( Index k=0; k<t ; k++) {

208 f o r ( Index l=0; l<t ; l++) {

209 iRow [ z ] = r ;

210 jCol [ z ] = t*k+l ;

211 z++;

212 iRow [ z ] = r ;

213 jCol [ z ] = t*t+t*l+k ;

214 z++;

215

216 r++;

217 }

218 }

219 f o r ( Index h=0; h<2; h++) {

220 f o r ( Index k=0; k<t ; k++) {

221 f o r ( Index l=0; l<t ; l++) {

222 i f (l<t−1) {

223 iRow [ z ] = r ;

224 jCol [ z ] = t*t*h+t*k+l ;

225 z++;

226 iRow [ z ] = r ;

227 jCol [ z ] = t*t*h+t*k+l+1;

228 z++;

229 r++;

230 }

231 i f (k<t−1) {

232 iRow [ z ] = r ;

233 jCol [ z ] = t*t*h+t*k+l ;

234 z++;

235 iRow [ z ] = r ;

236 jCol [ z ] = t*t*h+t*(k+1)+l ;

237 z++;

238 r++;

239 }

240 }

241 }

242 }

243 assert (z==nele_jac ) ;

244 }

245 e l s e {

246 Index z=0;

247 Index r=0;

248 f o r ( Index k=0; k<t ; k++) {

249 f o r ( Index l=0; l<t ; l++) {

250 values [ z ] = 1 ;

251 z++;

252 values [ z ] = 1 ;
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253 z++;

254

255 r++;

256 }

257 }

258 f o r ( Index h=0; h<2; h++) {

259 f o r ( Index k=0; k<t ; k++) {

260 f o r ( Index l=0; l<t ; l++) {

261 i f (l<t−1) {

262 values [ z ] = 1 ;

263 z++;

264 values [ z ] = −1;
265 z++;

266 r++;

267 }

268 i f (k<t−1) {

269 values [ z ] = −1;
270 z++;

271 values [ z ] = 1 ;

272 z++;

273 r++;

274 }

275 }

276 }

277 }

278 assert (z==nele_jac ) ;

279 }

280

281 re turn true ;

282 }

283

284 // return the s t r u c tu r e or va lue s o f the he s s i an

285 bool nfl_NLP : : eval_h ( Index n , const Number* x , bool new_x ,

286 Number obj_factor , Index m , const Number* lambda←↩
,

287 bool new_lambda , Index nele_hess , Index* iRow ,

288 Index* jCol , Number* values )

289 {

290 i f ( values == NULL ) {

291 // return the s t r u c tu r e . This i s a symmetric matrix , so we f i l l←↩
the lower l e f t

292 // t r i a n g l e only .

293 Index i=0;

294 f o r ( Index h=0; h<2; h++) {

295 f o r ( Index k=0; k<t ; k++) {

296 f o r ( Index l=0; l<t ; l++) {
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297 i f (k !=l ) {

298 iRow [ i ] = t*t*h+t*k+l ;

299 jCol [ i ] = t*t*h+t*k+l ;

300 i++;

301

302 iRow [ i ] = t*t*h+t*k+l ;

303 jCol [ i ] = t*t*(1−h )+t*l+k ;
304 i++;

305 }

306 }

307 }

308 }

309 }

310 e l s e {

311 // return the va lue s . This i s a symmetric matrix , f i l l the ←↩
lower l e f t

312 // t r i a n g l e only

313

314 Index i=0;

315 f o r ( Index h=0; h<2; h++) {

316 f o r ( Index k=0; k<t ; k++) {

317 f o r ( Index l=0; l<t ; l++) {

318 i f (k !=l ) {

319 i f (h==0){

320 values [ i ] = obj_factor *( w [ ht ] [ k ] [ l ]* pow (x←↩
[ t*t*h+t*k+l ]+0.000001 , −2) + (w [ 2 ] [ k ] [ l←↩
]−w [ ht ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) *pow((1−x [ t*t←↩
*h+t*k+l]−x [ t*t*(1−h )+t*l+k ]+0.000001)←↩
,−2) ) ;

321 i++;

322 // std : : cout << " va lues [ " << i << " ] = " << ←↩
va lue s [ i ] << std : : endl ;

323 values [ i ] = obj_factor *0 . 5* ( (w [ 2 ] [ k ] [ l]−w←↩
[ ht ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) *pow((1−x [ t*t*h+←↩
t*k+l]−x [ t*t*(1−h )+t*l+k ]+0.000001) ,−2) )←↩
;

324 }

325 e l s e {

326 values [ i ] = obj_factor *( w [ ht ] [ k ] [ l ]* pow (x←↩
[ t*t*h+t*k+l ]+0.000001 , −2) + (w [ 2 ] [ l ] [ k←↩
]−w [ ht ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) *pow((1−x [ t*t←↩
*h+t*k+l]−x [ t*t*(1−h )+t*l+k ]+0.000001)←↩
,−2) ) ;

327 i++;

328 // std : : cout << " va lues [ " << i << " ] = " << ←↩
va lue s [ i ] << std : : endl ;
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329 values [ i ] = obj_factor *0 . 5* ( (w [ 2 ] [ l ] [ k]−w←↩
[ ht ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) *pow((1−x [ t*t*h+←↩
t*k+l]−x [ t*t*(1−h )+t*l+k ]+0.000001) ,−2) )←↩
;

330 }

331 i++;

332 }

333 }

334 }

335 }

336 }

337

338 re turn true ;

339 }

340

341 void nfl_NLP : : finalize_solution ( SolverReturn status ,

342 Index n , const Number* x , const ←↩
Number* z_L , const Number* z_U ,

343 Index m , const Number* g , const ←↩
Number* lambda ,

344 Number obj_value ,

345 const IpoptData* ip_data ,

346 IpoptCalculatedQuantities* ip_cq )

347 {

348 // here i s where we s t o r e the s o l u t i o n to v a r i a b l e s

349 // so we could use the s o l u t i o n .

350

351 f o r ( Index h=0; h<2; h++) {

352 f o r ( Index k=0; k<t ; k++) {

353 f o r ( Index l=0; l<t ; l++) {

354 // std : : cout << x [ t * t *h+t *k+l ] << " " ;

355 p [ ht ] [ k ] [ l ]=x [ t*t*h+t*k+l ] ;

356 }

357 // std : : cout << " " << std : : endl ;

358 }

359 // std : : cout << " " << std : : endl ;

360 }

361

362 zw = obj_value ;

363 }

The second code snippet shows how the program reads 5 NFL seasons, puts them in

di�erent orders, and then optimizes the probabilities and prints them.

1 i n t main ( i n t argv , char * argc [ ] )
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2 {

3

4 // Create a new in s t ance o f the nlp

5 SmartPtr<TNLP> mynlp ;

6 SmartPtr<TNLP> mynlp2 ;

7

8 // Create a new in s t ance o f IpoptApp l i ca t ion

9 SmartPtr<IpoptApplication> app = IpoptApplicationFactory ( ) ;

10

11 // Change some opt ions

12 app−>Options ( )−>SetIntegerValue ( " p r i n t_ l ev e l " , 0) ;

13 app−>Options ( )−>SetNumericValue ( " t o l " , 1e−4) ;
14 app−>Options ( )−>SetStringValue ( "mu_strategy" , " adapt ive " ) ;

15 app−>Options ( )−>SetStringValue ( " output_f i l e " , " ipopt . out" ) ;

16

17 // I n t i a l i z e the IpoptApp l i ca t ion and proce s s the opt ions

18 ApplicationReturnStatus status ;

19 status = app−>Initialize ( ) ;
20 i f ( status != Solve_Succeeded ) {

21 std : : cout << std : : endl << std : : endl << "*** Error during ←↩
i n i t i a l i z a t i o n ! " << std : : endl ;

22 re turn ( i n t ) status ;

23 }

24

25 srand ( time ( NULL ) ) ;

26

27

28 double * z ; // Var iab le f o r the l i k e l i h o o d

29 i n t tempW50 [ 3 ] [ 5 0 ] [ 5 0 ] ; // temporary r e s u l t matr i ce s

30

31 f o r ( Index h=0; h<3; h++)

32 f o r ( Index k=0; k<50; k++)

33 f o r ( Index l=0; l<50; l++)

34 tempW50 [ ht ] [ k ] [ l ]=w050 [ ht ] [ k ] [ l ] ;

35

36 double l [ 1 4 ] [ 6 ] ;

37

38 // f o r the years 2000 t i l l 2005 , the n f l data i s read from the f i l e s

39 f o r ( i n t jahr=100; jahr<105; jahr++) {

40 i n t t ;

41 i f (jahr<95)

42 t=28;

43 e l s e i f (jahr<99)

44 t=30;

45 e l s e i f (jahr<102)

46 t=31;
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47 e l s e

48 t=32;

49

50 t=10;

51

52

53 einlesenNfl (jahr , t ) ;

54

55 // order accord ing to the 2 po int system and run the ←↩
opt imiza t i on

56 ordneNachPunkteSystem50 (2 , w50 , t ) ;

57 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;

58 app−>OptimizeTNLP ( mynlp2 ) ;
59 l [ jahr ] [1]=−*z ;
60

61 // order accord ing to the 3 po int system and run the ←↩
opt imiza t i on

62 ordneNachPunkteSystem50 (3 , w50 , t ) ;

63 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;

64 app−>OptimizeTNLP ( mynlp2 ) ;
65 l [ jahr ] [2]=−*z ;
66

67 // order accord ing to the LOP system and run the opt imiza t i on

68 ordneNachLOP50 (w50 , t ) ;

69 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;

70 app−>OptimizeTNLP ( mynlp2 ) ;
71 l [ jahr ] [3]=−*z ;
72

73 // order accord ing to the ELO system and run the opt imiza t i on

74 ordneNachSchach50 (w50 , t ) ;

75 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;

76 app−>OptimizeTNLP ( mynlp2 ) ;
77 l [ jahr ] [4]=−*z ;
78

79 // run the tabu search f o r 100 i t e r a t i o n s and then run the ←↩
opt imiza t i on

80 l [ jahr ] [ 5 ]= tabuSearch50 (100 ,t ) ;

81

82 // p r in t out the r e s u l t s

83 cout<<l [ jahr ][0]<<" "<<l [ jahr ][1]<<" "<<l [ jahr ][2]<<" "<<l [ jahr←↩
][3]<<" "<<l [ jahr ][4]<<" "<<l [ jahr ][5]<<endl ;

84 cout<<endl ;

85 }
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