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Zusammenfassung

In dieser Arbeit wird die Hypothese überprüft, dass die suprasegmentale Zeitstruktur

von gesprochener Sprache – also die Gesamtheit von Erscheinungen, die die zeitliche Aus-

dehnung von Silben und größeren Einheiten wie Wörtern und Phrasen in der gesproch-

enen Sprache betreffen – als Konsequenz eines Ökonomieprinzips verstanden werden

kann: Einerseits sind Menschen bestrebt, den Aufwand bei der Sprachproduktion gering

zu halten; andererseits muss für erfolgreiche Kommunikation hinreichende Verständlich-

keit gewährleistet sein, was wiederum ohne Aufwand nicht zu erreichen ist. Grundan-

nahme der Arbeit ist, dass die tatsächlich produzierten suprasegmentalen Zeitstrukturen

in der gesprochenen Sprache effizient sind, das heißt, mit dem bestmöglichen Verhältnis

von Aufwand zu Verständlichkeit produziert werden, und dass sich eine Reihe von em-

pirisch beobachteten Timingphänomenen in der gesprochenen Sprache durch ebendiesen

Umstand erklären lässt. Diese Annahme wird in der vorliegenden Arbeit in einem Com-

putermodell formalisiert und durch Simulationsexperimente überprüft.

Die theoretischen Grundlagen für den verfolgten Modellierungsansatz werden im zweiten

Kapitel der Arbeit gelegt. Das postulierte Ökonomieprinzip in der Sprachproduktion

wird hier näher erläutert und es werden Befunde diskutiert, die die Plausibilität dieses

Prinzips als Erklärung für eine Reihe von phonetischen und phonologischen Phänomenen

untermauern. Insbesondere wird auf bereits existierende Computermodelle eingegangen,

die Ökonomieprinzipien als Erklärung für verschiedene Phänomene der gesprochenen

Sprache mit mathematischen Optimierungsalgorithmen formalisieren. Der Erfolg dieser

Modelle untermauert das Vorhaben, den optimierungsbasierten Modellierungsansatz auf

die Ebene der suprasegmentalen Zeitstruktur gesprochener Sprache auszuweiten, für die

ein solches Modell bislang noch nicht existiert. In diesem Kapitel werden außerdem

häufig geäußerte Kritikpunkte an ökonomiebasierten Erklärungen in der Phonetik und

Phonologie diskutiert.

Das dritte Kapitel der Arbeit gibt einen Überblick über die zu modellierenden em-

pirischen Befunde, suprasegmentale Timingphänomene in den Sprachen der Welt, wobei

sich die Darstellung in dieser Arbeit größtenteils auf Betonungssprachen beschränkt.

Diese Phänomene werden in vier Klassen unterteilt: Erstens Längungseffekte aufgrund

von prosodischer Prominenz auf der Wort- (Betonung) und Phrasenebene (Akzent);

zweitens Längungseffekte an prosodischen Grenzen; drittens Kürzungseffekte als Funk-

tion der Anzahl der Silben in größeren prosodischen Einheiten und viertens “globale”

äußere Einflüsse wie Anforderungen an das Sprechtempo oder Bedingungen, die einen

besonders hörerorientierten Sprechstil erfordern. Besonderes Augenmerk wird auf die

Interaktionen zwischen diesen Effekten gelegt. Ein Ergebnis des Literaturüberblicks ist,



dass die dritte Kategorie, Kürzungseffekte als Funktion der Anzahl der Silben in größeren

prosodischen Einheiten, vermutlich ein Artefakt der phrasalen Prominenz ist, und damit

keine eigene Kategorie darstellt. In diesem Kapitel werden auch mögliche Interpretatio-

nen der verschiedenen Kategorien mit Blick auf die postulierten Okönomieprinzipien in

der Sprachproduktion vorgestellt. Die Darstellung zeigt, dass sich insbesondere Promi-

nenzeffekte sehr gut in dieses Schema einordnen lassen, wenn man prosodische Promi-

nenz als lokal stärkere Gewichtung der Maximierung von Wahrnehmbarkeit auffasst.

Es wird argumentiert, dass Positionseffekte ebenfalls kommunikative Signale darstellen,

die der Strukturierung der gesprochenen Sprache dienen; allerdings ist diese Einord-

nung weniger eindeutig, da in der Literatur auch die alternative Erklärung vorgebracht

wurde, dass Längungseffekte an prosodischen Grenzen biomechanische Konsequenzen

der menschlichen Vokaltraktphysiologie sind.

Im vierten Kapitel werden existierende Modelle diskutiert, die Erklärungen für supraseg-

mentale Timingphänomene anbieten. Es wird argumentiert, dass die vorgestellten Mo-

delle in den meisten Fällen keine adäquaten Erklärungen für die beobachteten Phänomene

liefern. Insbesondere gehen einige dieser Modelle davon aus, dass suprasegmentales Tim-

ing in gesprochener Sprache auf quasi-periodischen Mechanismen basiert, was mit Blick

auf die Erkenntnisse aus dem dritten Kapitel als unwahrscheinlich anzusehen ist. Einige

der besprochenen Modelle weisen außerdem dahingehend Unzulänglichkeiten auf, dass

sie beobachtete Phänomene lediglich nachbilden, anstatt sie wirklich zu erklären.

Im fünften Kapitel der Arbeit wird die Architektur des verwendeten optimierungs-

basierten Modells erläutert. Herzstück des Modells ist ein mathematischer Optimie-

rungsalgorithmus. Dieser berechnet Silbendauern in einer simulierten Äußerung derge-

stalt, dass eine Kostenfunktion minimiert wird. Die Terme dieser Kostenfunktion sind

ihrerseits Funktionen der Dauern von Silben und anderen prosodischen Einheiten in der

simulierten Äußerung. Diese Funktionen verkörpern die hypothetischen Anforderungen

an Minimierung von Aufwand und Maximierung von Verständlichkeit; außerdem lassen

sich Variationen im globalen Sprechtempo als unabhängige Größe manipulieren. Gewich-

tungsfaktoren erlauben es, die Balance zwischen den verschiedenen Anforderungen lokal

und global zu variieren und so inner- und außersprachliche Einflüsse auf die Zeitstruk-

tur gesprochener Sprache zu simulieren. Ein zentraler Aspekt des Modelldesigns ist,

dass die mathematischen Funktionen, die die Anforderungen hinsichtlich Aufwand und

Verständlichkeit verkörpern, nicht willkürlich gewählt, sondern durch unabhängige Ev-

idenz aus Sprachproduktions- und Perzeptionsforschung motiviert sind.

Bevor die Vorhersagen dieses Modells überprüft werden, werden im sechsten Kapitel die

Vorhersagen einiger der im vierten Kapitel vorgestellten Modelle in den Blick genom-

men. Im Einzelnen werden zwei Phänomene betrachtet, die in der Literatur als Belege



für quasi-periodische Timingmechanismen herangezogen wurden. Das in dieser Arbeit

verwendete optimierungsbasierte Modell sagt Nulleffekte für beide Phänomene voraus.

Korpusanalysen und Simulationsexperimente, die in diesem Kapitel beschrieben werden,

stützen diese Vorhersage und legen nahe, dass die betrachteten Phänomene statistis-

che Artefakte der Verteilung bestimmter linguistischer Kategorien in der gesprochenen

Sprache sind und keine periodischen Timingmechanismen als Erklärung erfordern.

Im siebten Kapitel werden zunächst empirische Analysen von gesprochenen Korpora in

verschiedenen Sprechgeschwindigkeiten präsentiert. Die Analysen liefern Evidenz für

die Intuition, dass Silben in der gesprochenen Sprache nicht beliebig kurz produziert,

sondern nur bis zu einer bestimmten Untergrenze gekürzt werden können. Simulation-

sexperimente zeigen, dass das Modell dieses Ergebnis reproduziert und auch beobachtete

Unterschiede hinsichtlich der Daueruntergrenzen betonter und unbetonter Silben korrekt

voraussagt. Eine modifizierte Version des Modells reproduziert auch die Beobachtung,

dass Silben zwar nur bis zu einer bestimmten Untergrenze gekürzt, wohl aber kom-

plett getilgt werden können. Diese Version des Modells sagt den Einfluss der Betonung

allerdings nicht korrekt voraus.

Im achten Kapitel werden schließlich Ergebnisse von Simulationsexperimenten vorgestellt,

die die im dritten Kapitel beschriebenen suprasegmentalen Timingeffekte und deren

Interaktionen in den Blick nehmen. Dabei zeigt sich, dass das optimierungsbasierte

Modell insbesondere im Bezug auf Effekte und Interaktionen der prosodischen Promi-

nenz sehr gute Ergebnisse liefert: Die Strategie, Prominenz als lokale stärkere Gewich-

tung der Wahrnehmungsseite zu modellieren, liefert korrekte Voraussagen und plausi-

ble Erklärungen für eine Reihe von prominenzbasierten Timingphänomenen. Bei der

Modellierung von Positionseffekten wird ein etwas spekulativerer Ansatz verfolgt, der

ebenfalls einige korrekte Voraussagen macht. Auch wenn nicht alle der im dritten

Kapitel vorgestellten Ergebnisse korrekt reproduziert werden, bleibt als Gesamtergeb-

nis festzuhalten, dass das vorgestellte Modell, besonders eingedenk seiner Einfachheit,

ermutigende Ergebnisse erzielt. Das postulierte Ökonomieprinzip wird dadurch als plau-

sibler Erklärungsmechanismus für suprasegmentale Timingmuster in der gesprochenen

Sprache etabliert.
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Chapter 1

Introduction

This thesis is concerned with the optimal use of time in talking. It investigates the

hypothesis that patterns of suprasegmental speech timing – i.e., the timing of syllables

and larger units in speech – emerge from trade-offs between the conflicting demands of

minimizing production effort and maximizing perceptual clarity, or, ultimately, commu-

nicative success. The idea that such principles are a governing factor in human speech

production is not new; it has been formulated most prominently in the Hyper- and

Hypoarticulation (H&H) theory by Lindblom (1990). As we shall see, a large body of

evidence suggests that similar principles provide promising explanations for a wide range

of phenomena in human speech production and other domains. Our contribution will

be to show that this also applies to suprasegmental speech timing, for which currently

no such unified account exists.

As such, this work could be conceived as a purely theoretical enterprise, involving a

review of empirical results and theoretical speculations about their interpretation. How-

ever, this methodology is bound to reach its limits when it comes to deriving actual

predictions: for example, one team of researchers cited in this work argues that H&H

theory predicts stressed vowels to shorten less strongly under increased speaking rate

than unstressed vowels, while we argue the exact opposite. Both hypotheses can be

well motivated by theoretical reasoning and are thus equally valid a priori. External

evidence is necessary to decide between them. For this reason, we have chosen to adopt

a different strategy: the hypothetical goals to minimize effort and maximize commu-

nicative success in speech production have been formalized in a computational model.

Predictions made by this model will be evaluated against attested speech timing pat-

terns. The adequacy of our initial hypothesis can then be established by the capacity of

the model to reproduce empirically observed phenomena.

1
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How can our assumptions be implemented? We think it reasonable to assume that any

given speech event cannot perfectly satisfy both demands at the same time: the least

effortful behavior, for example, is obviously to do nothing and remain silent, but this

is also the worst choice for communicative success. However, it may be possible to

produce speech such that it is efficient, meaning that it exhibits the highest possible

“clarity-to-effort ratio”, given that clarity and effort are parametrized in a meaningful

way. Nonlinear optimization algorithms present a powerful method for formalizing this

problem. Two prerequisites are necessary for this, 1) a device that simulates speech

production, or at least generates representations of speech events which embody the

aspect of speech that is of interest, and, 2) as stated above, well-defined metrics that

score simulated speech events with regard to how well they satisfy the hypothetical

demands efficiency, i.e., minimizing effort while maximizing perceptual clarity.

Once these requirements are in place, the degree of satisfaction of the demands for min-

imizing effort and maximizing clarity can be implemented as mathematical cost func-

tions, whose particular design should be based on independently motivated assumptions

about speech production and perception. The optimization algorithm then determines

the parameters of the production model such that the simulated speech output incurs the

lowest overall cost, corresponding to the optimal trade-off between minimizing effort and

maximizing clarity, and, hence, a maximally efficient speech output. Numerical weights

can be used in this approach to simulate global or local conditions that modulate the

relative importance of effort minimization and clarity maximization. If our assumptions

are correct, then this speech output form should exhibit characteristics that are also

observed in real speech.

Are our assumptions realistic? Intuitively, the idea that speakers strive for successful

communication would seem to be a truism. Likewise, to assume that humans should

possess a predilection for minimizing effort appears plausible, “as displayed by the popu-

larity of chairs and automobiles”, as (Kochanski and Shih 2003:324) put it. Moreover, the

plausibility of our assumptions is supported by evidence from non-speech domains, which

shows that similar explanations based on trade-offs between minimization of metabolic

energy expenditure and the necessity to perform certain actions account for a range of

motor and behavior patterns in living organisms. A famous example has been provided

by Hoyt and Taylor (1981): the authors put horses on a treadmill and measured oxy-

gen consumption per traveled distance at different gaits. In subsequent observations,

they found that horses running freely in a paddock tended to move at precisely those

speeds that had been found to minimize oxygen consumption at the respective gaits in

the treadmill experiment. Thus, it appears that locomotion in horses is optimized for

metabolic energy expenditure as measured by oxygen consumption. In wildlife biology,

Optimal Foraging Theory, which claims that animals attempt at minimizing gain and



Chapter 1. Introduction 3

maximizing costs such as time consumption in searching for food, has been demonstrated

to account for a range of observations. (see Smith 1982 for an overview). Modeling work

by Anderson and Pandy (2001) has shown that similar principles may apply to loco-

motion in humans, as demonstrated by the reproduction of several physiological char-

acteristics of human walking in an optimization model that derives solutions for motion

equations by minimizing different measures of energy expenditure. Further examples of

such studies are listed in the review by Todorov (2004). More importantly, we will see

that efficiency-based approaches have been successful in accounting for various speech-

related phenomena. At the same time, there are also researchers who have disputed

the adequacy of such accounts. An integral part of our argument, therefore, will be to

assess evidence for efficiency-based explanations in speech science, as well as potential

counterarguments.

Before introducing the structure of this thesis, some fundamental methodological reflec-

tions are in order. Although it is concerned with similar phenomena, the computational

model of speech timing we are going to introduce here belongs to an entirely different

class of models than the duration models commonly employed in speech technology ap-

plications. The crucial difference is that most of these models are purely descriptive.

The task of such models is, unsurprisingly, to provide the best possible description of

durational data. They do so by directly approximating observed durations of speech

events, utilizing any suitable mathematical technique. The goodness of these models is

measured by assessing how well they perform in minimizing the numerical error between

observed and predicted timing patterns. To date, various statistical techniques, such as

decision trees, neural networks or regression models are available for predicting speech

timing based on linguistic and phonetic features. Importantly, no theoretical status is

attached to the components of descriptive models, and the decision whether to include

a particular feature is guided only by its potential to improve prediction.

While such descriptive models are often very successful at predicting speech timing pat-

terns, they “do not embody fundamental insights in the communicative, linguistic, phys-

iological and acoustic processes underlying temporal patterning in speech” (Nooteboom

1991:230). For example, a linear regression model may yield a very accurate description

of the commonly observed positive correlation between vowel duration and the degree

of jaw opening, but it does not provide an account of the underlying physiological rea-

sons for this relationship. This is of course entirely unproblematic in the applications

where descriptive models are used, because underlying mechanisms are usually not of

interest in these applications as long as surface observations are faithfully reproduced.

An explanatory account, on the other hand, requires hypotheses about precisely such

underlying mechanisms. As for the relationship between jaw opening and vowel dura-

tion, the work by Lindblom (1967) represents an attempt of this kind: in this approach,
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the jaw is modeled as a mass-spring system, representing different degrees of opening

by the displacement of the mass. The explanation this model yields for the effect of jaw

opening on duration is that with a larger displacement, it takes longer for the spring

to return to its resting position, provided that the parameters of the spring are kept

constant.

Thus, to recapitulate, while descriptive models approximate observed phenomena di-

rectly, explanatory models approximate hypothesized underlying mechanisms, with the

goal that empirically observed phenomena emerge automatically from the implementa-

tion of these mechanisms. If this happens, the model can be said to provide a sufficient

(although by no means a necessary) explanation of the phenomenon under study. Ex-

planatory models are thus also concerned with minimizing a prediction error of sorts,

in the sense that the model output should “resemble” the empirical observation along

some dimension for the model to be judged adequate. Yet, this resemblance is typically

evaluated at a much coarser level for explanatory than for descriptive models; the focus

of explanatory models usually lies on reproducing qualitative patterns, rather than on

matching exact numerical results. For example, in the (Lindblom 1967) model, the cru-

cial outcome is the general relationship between displacement and oscillation period in

a mass-spring system, which replicates the relationship between jaw displacement and

vowel duration. No further insights would be gained from fitting spring parameters to

match any particular set of durational measurements, not least because it is not clear

what particular set of measurements should serve as reference for the model.1

The boundary between descriptive and explanatory models is not always clear cut. First,

despite the above considerations, it is of course possible to design models that achieve

both descriptive and explanatory adequacy. For example, the intonation models by

Fujisaki and Hirose (1984) and Prom-On et al. (2009) are based on hypothesized physi-

ological production mechanisms and yet can be used to generate numerical predictions

of intonation contours in actual applications. Prom-On et al. (2009) give an impressive

demonstrations of this by showing how the phenomenon of peak delay – the property

of intonation contours to reach their peak after the accented syllable – emerges auto-

matically from the physiologically motivated modeling assumptions, without the need

to prescribe it by a dedicated parameter. Second, some models that purport to be ex-

planatory are actually rather descriptive. The philosophical problem that is at issue

here is circularity: if the very results that the model reproduces are used to motivate

modeling assumptions, then very little is achieved – the model in this case merely demon-

strates that a phenomenon can be implemented using a particular modeling technique,

1This is not to say that an explanatory model would not be judged better than another one that
matches observed data less well. The crucial point is that the better fit must be achieved by indepen-
dently motivated model components, not by tuning parameters to match observations.
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but it does not provide a satisfactory explanation (Turk and Shattuck-Hufnagel 2014b).

Explanatory models, in other words, “must necessarily invoke information (explanans

principles) independent of the facts observed (the explananda) to avoid circularity and

to count as genuine explanations” (Lindblom and Engstrand 1989:109). In our model,

the hypothesized tendencies towards minimizing effort and maximizing perceptual clar-

ity represent this independent information. An important point of our argument will be

to assess the plausibility of our own modeling assumptions, as well as those that underlie

other explanatory models of speech timing.

The remainder of this thesis is structured as follows: Part I covers the theoretical back-

ground. It starts with a review of efficiency-based accounts of speech patterns in Chapter

2. We shall provide a thorough discussion of H&H theory and discuss theoretical, ex-

perimental and model-based accounts that are built upon similar principles. In Chapter

3, we present a concise overview of the empirical phenomena to be modeled, supraseg-

mental timing patterns in speech. The theoretical exposition is completed by Chapter

4, where we review and critique existing explanatory accounts of suprasegmental speech

timing. In Part II of this thesis, we introduce the design of our model and present

results of simulation experiments and empirical studies on corpus data that explore its

predictions. It starts out with Chapter 5, which contains the formal definition of our

model. The individual model components are introduced and motivated, and the op-

timization procedure is described. Before examining predictions made by our model,

we focus on some of the alternative models introduced in our review: two phenomena

predicted by these models, for which our model predicts null results, are investigated

using corpus analyses and simulation experiments in Chapter 6. We show that both

effects are likely to be artifacts of language structure, and do not require dedicated

timing mechanisms. Chapters 7 and 8, finally, deal with predictions of our own model.

In Chapter 7, we investigate the low-level phenomenon of durational incompressibility

in speech on corpus data and report simulation experiments showing that our model

provides a convincing account of the observed durational patterns. In Chapter 8, we

return to timing phenomena arising from higher-level linguistic structure as reviewed in

Chapter 3 and demonstrate their reproduction in our model. A general discussion of

our findings and some concluding remarks are provided in Chapter 9.

Parts of this thesis and the work presented therein have been published in the following

articles:

• Windmann, A., Šimko, J., Wrede, B., & Wagner, P. (2013). Modeling durational

incompressibility. Proceedings of Interspeech 2013, Lyon, 1375–1379.

• Windmann, A., Šimko, J., & Wagner, P. (2014). Probing theories of speech timing

using optimization modeling. Proceedings of Speech Prosody 7, Dublin, 346–350.
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• Windmann, A., Šimko, J., & Wagner, P. (2014). A unified account of prominence

effects in an optimization-based model of speech timing. Proceedings of Interspeech

2014, Singapore, 159–166.

• Windmann, A., Šimko, J., & Wagner, P. (2015). What do regression analyses of

inter-stress interval duration really measure? Proceedings of ICPhS 2015, Glasgow,

A-66.

• Windmann, A., Šimko, J., & Wagner, P. (2015). Polysyllabic shortening and word-

final lengthening in English. Proceedings of Interspeech 2015, Dresden, 36–40.

• Windmann, A., Šimko, J., & Wagner, P. (2015). Optimization-based modeling of

speech timing. Speech Communication 74, 76–92.
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Chapter 2

Efficiency-Based Explanations of

Speech Patterns

2.1 Introduction

In this chapter, we shall review evidence pertaining to efficiency-based explanations and

models of speech patterns. The term “efficiency” here is used as a shorthand for our

assumption that speech patterns are shaped by the resolution of trade-offs between min-

imizing production effort and maximizing perceptual clarity (an alternative formulation

would be to speak of economy principles, and we will use both terms interchangeably

throughout this work). We will provide a concise and somewhat selective overview of

theoretical, empirical and computational approaches in speech science that are based on

similar principles, paying special attention to existing implementations of optimization-

based models. We will start by reviewing Lindblom (1990)’s Hyper- and Hypoarticu-

lation theory, which represents the most prominent formulation of efficiency principles

in speech. Then, we will proceed to introduce approaches formulated within the theo-

retical frameworks of Optimality Theory and Articulatory Phonology, and discuss some

works we failed to find a more specific common label for but still consider relevant for

our argument. A separate subsection will be devoted to criticisms of efficiency-based

explanations of speech patterns. The goal of the chapter is to show how the notions of

minimizing production effort and maximizing perceptual clarity can be conceptualized,

and, ultimately, to provide evidence from a variety of subfields of speech research in

order to show that these assumptions provide promising explanations for a variety of

speech-related phenomena.

While we regard Lindblom (1990) as the seminal theoretical contribution in terms of

efficiency-related accounts of speech patterns, similar ideas have been discussed earlier.

8
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Kul (2007) provides a useful historical overview of related work. One particularly promi-

nent example mentioned in her review is the work by Zipf (1935, 1949). Zipf states that

a principle of least effort underlies all human behavior (indeed, he claims it to be a basic

operating principle of the physical universe), and, in the 1935 work, argues this point

specifically for language, using evidence such as phoneme frequency patterns in support

of his proposition. The hypothesis advanced in this work obviously points in a similar

direction, but we would claim that “least effort” is only half the picture and must be

considered in relation to the other side of the equation, maximizing communicative suc-

cess. It is clear from the elaborations of Zipf and other authors who propose similar ideas

that consideration of communicative success is to some extent implied by their thinking

– as we said above, the least effortful speech-related behavior is, obviously, to remain

silent, whereas Zipf’s principle of least effort probably refers to something like “the least

effort that still allows for communication to succeed”. In any case, we deem it important

that both aspects are explicitly addressed, and in what follows, we will concentrate on

approaches that take both effort- and clarity-related criteria into account.

2.2 Review

2.2.1 Hyper- and Hypoarticulation Theory

Hyper- and Hypoarticulation (H&H) theory as formulated by Lindblom (1990) provides

the central theoretical foundation of our work. Its essence can be briefly summarized:

human speech production, according to this theory, is characterized by “a continual tug-

of-war between demands on the output on the one hand and system-based constraints

on the other” (Lindblom 1990:420): on the one hand, “unconstrained, a motor system

tends to default to a low-cost form of behavior’ referred to as hypoarticulation in the

speech domain (Lindblom 1990:413). On the other hand, successful transmission of the

information conveyed by a given utterance has to be ensured, which requires orientation

towards the listener’s demands. Lindblom (1990) uses the term hyperarticulation to refer

to a clear and listener-oriented speaking style, which, by hypothesis, requires effort on

part of the speaker. The core tenet of H&H theory is that humans produce speech such as

to optimally satisfy these conflicting requirements. The variation in speech, on this view,

arises because different linguistic and extra-linguistic conditions under which speech is

produced modulate the relative importance of both requirements. These conditions may

apply at any level of speech description, from entire utterances or discourses down to,

possibly, individual gestures.
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Lindblom (1990) exemplifies some global production- and perception-related conditions

that favor hypo- or, conversely, hyperarticulation. On the speech production side, he

mentions physiological and cognitive factors. One may hypothesize that for example

speaker age, health, physical exhaustion or situational cognitive load influence speech

production by requiring the conservation of effort to a greater or lesser degree. As for

the perceptual dimension, Lindblom names social and communicative variables such

as “channel, listener, situation, degree of formality” (1990:419) as relevant variables

for introducing variation on the continuum between hyper- and hypoarticulation. For

example, it may be assumed that talking to an unfamiliar or non-proficient listener or in

a formal setting will prompt speakers to lean more strongly towards hyperarticulation.

Evidence for the assertion that speakers default to low-cost behavior comes from an

older result by the same author: Lindblom (1963) measured formant frequencies of

vowels in uniform consonantal contexts across a range of speaking rates, which were

elicited by asking a speaker to temporally align productions with a periodic auditory

stimulus. Lindblom (1963) found that hypothetical formant targets for the vowels were

systematically undershot under time pressure, indicating that the relevant articulators

in these cases did not fully reach their targets. Lindblom (1990) also discusses articula-

tory evidence from a study by Nelson et al. (1984): these authors had subjects produce

alternating jaw opening and closing movements as well as repetitive /sa/ syllables at

increasing rates. Nelson et al. (1984) found movement amplitudes to decrease with

increasing rate. Lindblom (1963) and Nelson et al. (1984) put forward a common ex-

planation for their findings: speakers avoid very high movement velocities, as would

be required to reach articulatory targets in short time intervals. Nelson et al. (1984)

explicitly hypothesize that the peak velocity of articulatory movements can be used as

a measure of physical effort, and conclude that speakers tend to produce speech in such

a way that effort is conserved.

Further studies reviewed by Lindblom (1990), however, have put these results into per-

spective. He refers to findings (e.g. Gay 1978, Kuehn and Moll 1976) showing that

duration-dependent undershoot as observed by Lindblom (1963) does not necessarily oc-

cur; speakers are capable of fully reaching articulatory targets in very short time. H&H

theory would explain this result as arising from the simultaneous necessity to ensure

successful communication. Thus, speakers can willfully invest more effort if speaking

conditions necessitate it. Lindblom (1983) illustrates this plasticity property of the

speech production system using a mechanical model of a single articulator, in which a

force is applied to a mass attached to a damped spring. Such a system “moves slug-

gishly in response to a force that is applied and removed abruptly” (1983:227), as can

be seen in panel (a) of Figure 2.1. Due to this sluggishness (which is a consequence of

the damping), the response of the system will fail to attain the movement target if the
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(a) (b) (c)

Figure 2.1: Target undershoot in a mass-spring model of articulation (adapted from
Lindblom (1983). Shown are input forces and system responses. Panel (a): Input force
acting upon the system (solid line) and (damped) system response (dashed line). Panel
(b): undershoot due to short time interval. Panel (c): Avoidance of undershoot by

increasing input force (and introducing opposite impulse).

time interval during which the force is applied is very short, as shown in panel (b) of

Figure 2.1. This target undershoot can be avoided by increasing the force impulse and

adding an opposite impulse “to bring the system back on time” (Lindblom 1983:230), as

shown in panel (c) of Figure 2.1. Thus, target undershoot can be prevented by spending

extra effort, if perceptual constraints require it. (Lindblom 1983:231) states that “(t)he

system is indeed capable of raising the level of its performance, but as any phonetician

will testify, it “prefers” not to”.

A case in point for this assertion, according to Lindblom (1983), are coarticulation

phenomena in speech, exemplified by Öhman (1966)’s data on formant transitions in

VCV-sequences. These data suggest that in normal speech, consonant articulations are

displaced towards vowel targets. Lindblom (1983, 1990) interprets this pattern as arising

from synergy constraints between the tongue body and the tongue tip that facilitate the

avoidance of large displacements, and, hence, secure the achievement of motor economy.

However, results from bite-block experiments (Lindblom et al. 1979) show that even with

an object in the mouth that enforces an unusually large jaw opening, speakers are capable

of producing intelligible renditions of the required utterances by using extraordinarily

large, compensatory tongue movements. (Lindblom 1983:224) states that “(n)ormal

speech seems to exploit no more than a fraction of the degrees of freedom that are in

principle available for articulation”. If necessary, however – as in the case of a bite block

experiment – the system is capable of instantiating such large displacements, to ensure

that perceptual requirements are met.
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Lindblom (1990) discusses more evidence to demonstrate how H&H variation caused by

changes in external conditions influences the speech signal. Some particularly intriguing

examples com from singing: Lindblom (1990) cites a study by Johnson et al. (1983),

which shows that singers use a tongue configuration resembling that of an /a/ when

producing /u/ and /i/ vowels when the fundamental frequency (F0) exceeds the first

formant. The interpretation in terms of H&H theory is that with an F0 this high,

perceptual cues for F1 are unavailable anyway, and singers can revert to the tongue

configuration for /a/, which Lindblom deems the most neutral of the three vowels.

Another interesting finding concerns the “singer’s formant”, a term which denotes the

proximity of the third, fourth and fifth formant typically found in voiced sounds sung by

classical singers. Lindblom (1990) cites research by Sundberg (1987), who argues that

this is a feature deliberately used by singers to increase the perceptual contrast between

their singing and the accompanying orchestra, whose spectrum does usually not include

a peak in this region. The singer’s formant is, however, not found in soprano singing,

which Sundberg (1987) attributes to the fact that the spectrum of soprano singers is

by default more distinct from that of the orchestra due to their higher pitch range.

Lindblom (1990) interprets this as an instance of H&H variation: there is no need for

soprano singers to instantiate the vocal tract modifications necessary to produce the

singer’s formant, because their singing is distinctive enough without it.

A crucial assumption of H&H theory that is related to output-oriented considerations

is that speech perception is aided by signal-complementary processes. Lindblom (1990)

discusses results by Luce (1986) as an example of this. Luce (1986)’s Neighborhood Ac-

tivation Model predicts spoken word recognition to be a function of both the frequency

of the word itself as well as the density of the neighborhood, i.e., the number of acousti-

cally similar words in the lexicon. Luce (1986)’s results cited in Lindblom (1990) suggest

that these predictions are borne out by experimental data. H&H theory assumes that

speakers are aware of such additional sources of information that are available to lis-

teners, and adapt their productions to these circumstances. Thus, H&H theory would

predict highly frequent words with low neighborhood densities to be particularly prone

to acoustic reduction, because for these words, there is a low probability of confusion,

and speakers can accordingly afford to reduce them. We will discuss studies that provide

support for similar predictions later in this chapter.

Claims about the importance of signal-complementary processes relate H&H theory to

one of the most fundamental problems in speech research, the invariance problem. The

essence of this problem is the question how listeners can extract linguistic categories such

as phonemes or words from the speech signal despite the massive contextual variation in

speech, or, in other words, the apparent lack of invariant acoustic correlates of linguistic
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categories. Various solutions to this problem have been proposed and discussed in Lind-

blom (1990), some of which claim that invariance resides in the articulatory domain,

which is directly perceived by listeners (Motor Theory, Liberman and Mattingly 1985;

Direct Realism, Fowler 1986), while others assert that invariance is indeed to be found in

the acoustic domain (Miller 1989, Stevens 1986). H&H theory takes an entirely different

stance towards this problem (Lindblom 1990:431):

In contrast, the H&H theory assumes that, in all instances, speech perception

is the product of both signal-driven and signal-independent information, that

the contribution made by the signal-independent processes show short-term

fluctuations, and that speakers adapt to those fluctuations. It says that –

whether communicatively successful or not – that [sic] adaptive behavior is

the reason for the alleged lack of invariance in the speech signal. Hence it

predicts that the quest for signal-based definitions of invariance will continue

to remain unsuccessful as a matter of principle. In the H&H model the need

to solve the invariance issue disappears. But the problem is replaced by

another [...]: That of describing the class of speech signals that satisfy the

condition of “sufficient discriminative power”.

A core tenet of H&H theory is that regularities commonly ascribed to phonological rules

originate from motor economy principles. Lindblom exemplifies this for the frequent

class of phonological assimilations in the languages of the world: “(a)n assimilation

[...] invariably implies shortened movement (glottal or subglottal). If once more we [...]

examine the efficiency of such a system in terms of energy expenditure, we see that

assimilation, defined as reduced distance between two sequentially timed articulatory

targets, implies less work per unit time” (1983:237). Lindblom (1983) furthermore posits

that properties of the syllable as an organizational unit in speech may emerge from trade-

offs between effort minimization and maximization of perceptual clarity. He discusses an

intriguing interpretation of the sonority hierarchy, which describes the fact that within

a syllable, “consonants in clusters vary with respect to their preferred distance to the

sonority peak (vowel)” (1983:240 f.). Lindblom reports results from an articulatory

study showing that the degree of jaw opening during consonant articulation in VCV

sequences correlates with their sonority, i.e., distance to the vowel. Lindblom takes this

finding to suggest that syllable structure has evolved to support the efficient production

of speech by facilitating coarticulation: “Segments that are more difficult to coarticulate

show up in positions remote from each other, whereas more compatible sounds tend to

be relatively more adjacent in the syllable”(Lindblom 1983:241; italics in original).

Lindblom (1983) and Lindblom (1990) also discuss evidence from the typology of sound

systems. For instance, Lindblom (1983) notes that the languages of the world seem to
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prefer non-dorsal articulations for consonants, whereas vowels are mostly dorsal. His

interpretation of this patterning is that “the preferred consonant-vowels (CV) sequence

is one that makes temporal overlap of adjacent gestures possible” (1983:240). Lindblom

(1983) speculates that simultaneously, the alternation of acoustic segments with high-

pass (consonants) and low-pass (vowels) characteristics may be perceptually beneficial.

Lindblom (1990) also discusses an observation on cross-linguistic tendencies in phoneme

inventories: the incidence of elaborated and complex phoneme segments, i.e., segments

with one and two superimposed secondary articulations, respectively, correlates with

phoneme inventory size. Lindblom links this observation to economy principles: in

small phoneme inventories, basic articulations are sufficient for discrimination, and more

complex articulations can be avoided. In larger inventories, the perceptual space is more

“crowded”, hence secondary and tertiary articulations have to be invoked in order to

ensure sufficient perceptual contrast.

Finally, earlier work by Lindblom raises the possibility that, beyond economy or op-

timization principles as a mechanism for selecting among phonological categories, the

categories themselves may be a product of optimization. This idea is developed in Lil-

jencrants and Lindblom (1972), which to our knowledge represents the earliest example

of computationally implemented optimization modeling in linguistics. Liljencrants and

Lindblom (1972) hypothesize that maximization of perceptual contrast is a universal or-

ganizing principle in vowel systems and set up a numerical model to test this hypothesis:

they define a mel-scaled acoustic space delimited by the first two formant frequencies

that corresponds to the acoustic space typically found in human speech and implement

an algorithm that, for a given number of vowel categories, determines their first (F1)

and second (F2) formant values such that the sum of the squared acoustic distances

between all pairs of vowels is maximized. The algorithm is initialized by placing the

vowels at arbitrary equidistant points in the acoustic space. (Liljencrants and Lindblom

1972:842) give the following informal explanation of the optimization algorithm, which

we quote in full here because we will encounter similar algorithms in various places in

this work:

First the point is moved a certain distance, and checked for being still in-

side the boundary; if this is the case, a new value of E [the reciprocal of

the summed acoustic distances, A.W.] is computed. This is repeated for a

number of directions, usually six, out from the original location of the point.

Then the optimum direction is selected, and the point is repeatedly adjusted

in this direction until either the boundary is hit or E no longer decreases.

Then another direction search is made, and so on until a minimum for this

point is established. This whole procedure is repeated for all the points.
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After this has been done once, it is started from the beginning one or more

times until E does not decrease any more.

Liljencrants and Lindblom (1972) assign broad phonemic transcriptions to the F1F2

pairs predicted by their model and compare them to preliminary survey data on vowel

systems in the languages of the world. They report that the model delivers fairly accurate

predictions of actually occurring inventories with a given number of vowels, especially for

small inventories. For example, the model, quite unsurprisingly, predicts the three most

peripheral vowel qualities, transcribable as /a/, /i/ and /u/, for inventories with three

vowels, and this is also a frequently occurring configuration found among languages that

distinguish between three phonemic vowel qualities. For larger inventories, observed

systems are matched less well in some cases, and the comparison to the survey data

is somewhat speculative in that these consist of purely impressionistic transcriptions

rather than acoustic measurements, but overall, the predictions of the model match the

empirical data reasonably well.

Lindblom (1986) presents some refinements to the initial model, introducing more real-

istic assumptions about auditory processing in humans. He shows that with these mod-

ifications, the model generates somewhat more realistic predictions. Lindblom (1986)

concedes that correspondence between the model’s predictions and attested inventories

is still far from perfect, and he also acknowledges that many potentially relevant factors

other than contrast in the F1F2 space are not taken into account. Moreover, in an

ideal model, the size of the inventory would also be an emergent property, rather than

a fixed parameter. Finally, Liljencrants and Lindblom (1972) mention the problem that

the optimization algorithm is not guaranteed to produce a globally optimal solution; the

solution found by the algorithm “merely represents that system which exhibits greater

over-all contrast then the other systems examined during the computations” (1972:855).

This is indeed a general problem of optimization algorithms. An obvious question, fi-

nally, is why some languages have vowel systems that are apparently non-optimal. We

will discuss related questions later in this chapter.

Despite these reservations, the modeling approach by Liljencrants and Lindblom (1972)

and Lindblom (1986) provide an intriguing demonstration of the explanatory potential

of H&H assumptions. In particular, these works show how linguistic categories may

emerge from more general properties of human communication. Thus, they place H&H

theory in a larger context of substance-based theories of linguistics, and in contrast to

formal approaches of the generative tradition (Chomsky 1957) which adhere to the view

that linguistic forms are arbitrary and explicitly deny that they could originate from

some more fundamental biological, psychological or communicative principles. In our

opinion, a substance-based account as advocated by H&H theory represents a more
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fruitful approach to the study of language: as we said in the introduction to this work,

only by invoking more fundamental principles that are rooted in human biology and

psychology will it be possible to derive genuine explanations of observed phenomena.

In the remainder of this chapter, we will review further evidence for the plausibility of

H&H assumptions in speech.

2.2.2 Optimality Theory and Related Approaches

Optimality Theory (OT; Prince and Smolensky 2008) may be viewed as a generalization

of the principles underlying H&H theory: it utilizes the same mechanism, namely the

idea that linguistic forms are shaped by the interaction between conflicting constraints,

but is more general in that the constraints are not necessarily related to effort mini-

mization and maximization of perceptual clarity. Instead, OT posits that faithfulness

and markedness constraints interact in the shaping of linguistic structure. The marked-

ness of a linguistic entity relates to its being “more complex than an alternative along

some dimension” (Prince and Smolensky 1997:1605), whereas the faithfulness criterion

requires that a linguistic entity to be produced be as similar as possible to its hypoth-

esized underlying representation. In short, OT assumes that linguistic surface forms

are determined by evaluating all possible forms against the relevant constraints. It is

assumed that these constraints are hierarchically ranked. The candidate that violates

the lowest-ranking constraints – i.e., that is optimal with regard to the set of constraints

– is the winner and surfaces in the speech output.

Faithfulness and markedness do not correspond directly to hyper- and hypoarticula-

tion, but it is obvious that the general mechanisms of both theories are compatible,

and some proponents of OT have employed constraints that are directly motivated by

minimization of effort and maximization of perceptual clarity as functional principles in

speech production. A prominent approach of this kind, Flemming (2001b), focuses on

the role of auditory representations in phonology. His “dispersion theory of contrast”,

in line with H&H theory, claims that sound inventories are shaped by three principles,

(1) maximization of the number of contrasts, (2) maximization of the distinctiveness of

contrasts, and (3) minimizing articulatory effort. The first two principles can be related

to hyperarticulation or at least to output-oriented control, whereas the third principle

is identical to Lindblom’s hypoarticulation. Flemming (2001b) utilizes interaction of

constraints based on principles (1)–(3) in phonological analyses of a variety of sound

patterns from the languages of the world.
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By way of an example, we will consider Flemming (2001b)’s analysis of stop voicing

contrasts in English. Flemming (2001b) maintains that the voicing contrast in word-

initial stops is realized primarily as an aspiration contrast, that is, underlyingly voiceless

stops are realized as voiceless aspirated, and underlyingly voiced stops are commonly

realized as voiceless unaspirated. Flemming (2001b) proposes the following analysis: a

top-ranked constraint to maximize the number of VOT contrasts penalizes all solutions

that neutralize the contrast. Surviving forms are analyzed with respect to two effort

minimization constraints, one that penalizes initial voiced stops, and one that penalizes

aspiration. A contrast between /t/ and /d/ in initial position would violate the former,

higher-ranked constraint and therefore lose to the actually observed pattern, which vi-

olates only the constraint with the lowest ranking. This analysis, however, highlights

several unsatisfactory aspects of the basic OT formalism: the ranking of the constraints

appears arbitrary; Flemming (2001b) supplies no external evidence for the particular

rank order of constraints, and if it were different, different patterns would be predicted.

Moreover, the motivation of the constraints is based on intuition, rather than on actual

measurements or model-based validation. The assumption that word initial stop voicing

and aspiration require more effort than their absence may be plausible, but, again, no

external evidence is presented to support these claims; (Flemming 2001b:47) acknowl-

edges this with the tentative statement that “(a)spiration might be disfavored because

of the effort involved, or because of the devoicing effect on a following vowel”. Finally,

“classical” OT with its strict ranking of discrete constraints is not suited to the analysis

of continuous phonetic phenomena.

Some approaches in the OT tradition have combined phonological analyses with com-

putational models of speech production, in order to allow for precise quantifications

of effort and thus to obtain something better than purely speculative effort estimates.

Kirchner (1998) offers an OT analysis of consonant lenition phenomena in the languages

of the world that is based on H&H-compatible principles. Kirchner (1998) claims that a

constraint termed LAZY that minimizes effort, but is balanced against faithfulness and

perceptual distinctiveness constraints, is responsible for lenition phenomena in speech.

He develops a simple computational mass-spring model in order to obtain estimates of

physical effort involved in different articulatory gestures. The mass-spring system rep-

resents an abstract articulator, which can be displaced in the direction of a boundary

at an arbitrary location, representing the opposite vocal tract wall. Effort in this model

is estimated as the force integral over a the time course of a “gesture”, i.e., over the

time interval during which the spring is displaced. The model utilizes an optimization

algorithm in order to find the trajectory that minimizes effort for a gesture, given a

user-specified spatial and temporal target.
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As a concrete example, we may consider Kirchner (1998)’s account of spirantization,

a putative phonological process by which stops are replaced by non-strident fricatives.

Kirchner models stops by specifying a spatial target that actually lies beyond the vocal

tract boundary, so that full closure is achieved, i.e., the model articulator achieves the

displacement necessary to reach the vocal tract boundary, and is compressed against it.

As for fricatives, Kirchner presupposes that the target lies shortly before the opposite

vocal tract boundary, so that a narrow constriction is achieved. Moreover, he assumes

that strident fricatives “require a relatively precise, sustained close constriction, in order

to generate highly turbulent airflow” (Kirchner 1998:111), which is modeled by an an-

tagonistic force active during the constriction interval of the gesture. Evaluation of the

model yields the lowest energy cost for non-strident fricatives, whereas strident fricatives

are even more “expensive” than stops. The non-strident version thus wins on the LAZY

constraint in the OT evaluation and emerges as the overall winner. This, according to

Kirchner (1998), accounts for the observation that unaffricated stops frequently lenite

to non-strident but not to strident fricatives.

Kirchner (1998)’s modeling approach is a well-motivated attempt at quantifying artic-

ulatory effort, even though our above points about the somewhat arbitrary OT formal-

ism apply to his work as well. An interesting feature of the mass-spring model is the

utilization of an optimization algorithm for deriving the trajectory of the mass. The

optimization problem is to find the energetically most efficient trajectory given a fixed

spatial (and temporal) target, which is adjusted in the case of lenition. Thus, the model

assumes that lenition implies the active readjusting of articulatory targets. This may

come across as somewhat surprising; an arguably more intuitive view would be to inter-

pret lenition as undershoot of an invariant underlying stop target. In modeling terms,

this would require relaxation of the condition that the target must be reached. In order

for this to be achieved, the model would presumably have to incorporate a (perceptual)

cost on target undershoot directly in the optimization, rather than in a separate OT

evaluation step. We will encounter an articulatory model conceived in exactly this way

later in this chapter.

Boersma (1998) presents a somewhat similar computational OT framework based on

efficiency-related assumptions. His basic tenet is that since language serves a commu-

nicative purpose, it is organized according to functional principles corresponding to the

notions of minimization of effort and maximization of perceptual clarity. An interesting

aspect of Boersma’s work is that he aims at a more precise characterization of these

principles. As for effort, he states that it “depends on at least six primitives: energy, the

presence of articulatory gestures, synchronization of gestures, precision, systemic effort,

and coordination” (Boersma 1998:149). Boersma introduces different constraints that

implement these primitives, for example by penalizing articulatory displacement, speed,
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duration, or the number of realized gestures. As for perception-related factors,Boersma

posits minimization of perceptual confusion, minimization of categorization,1 maximiza-

tion of recognition (by using all available acoustic information on part of the listener)

and maximization of information flow.

Boersma (1998) develops a fully-fledged articulatory synthesizer and a perception model

based on psycho-acoustically motivated assumptions, which allow him to arrive at quan-

titative estimates of articulatory effort and perceptual clarity. Since the muscle forces

in his articulatory model are conceptualized as mass-spring systems, articulatory effort

is evaluated in a similar fashion as in Kirchner (1998)’s work: the effort estimate for a

given model muscle is the force applied to it integrated over time, force being defined as

the product of mass and acceleration. The effort computation also includes an estimate

of the muscle’s velocity, based on the reasoning that swifter movements are energeti-

cally more expensive. Moreover, Boersma (1998) assumes that holding a muscle in a

non-resting position requires effort, which is incorporated by an “isometric contraction”

constant. Boersma’s approach also incorporates effort estimates that are not directly

evaluated in model terms, such as the assumptions that gestural precision and coordina-

tion require effort. As for the perception model, Boersma (1998) recurs to findings on the

psychoacoustics on speech perception to derive estimates of perceived spectrum, inten-

sity and pitch – for example, his perception model non-linearly transforms the spectrum

generated by the articulatory synthesizer into a “perceptual spectrum” hypothesized

to reflect properties of the hearing system. These perceptual estimates are combined

into a perceptual contrast metric that scores perceptual confusion probabilities based

on perceptual difference limens established in psychoacoustic studies.

Boersma analyzes a multitude of empirical phenomena in his framework, which we can-

not possibly discuss in their entirety. A single example, concerning the first formant

(F1) value of the vowel /a/ in stressed and unstressed syllables, shall serve to illustrate

the broad principle. Boersma (1998)’s perception model yields a confusion probabil-

ity function, which increases with distance from the “prototypical” F1 value of a given

vowel category. At the same time, the articulatory model yields an energy cost estimate

that increases with jaw opening. Using a rough approximate transformation for trans-

lating jaw opening into F1 values allows Boersma (1998) to evaluate candidates with

different F1 values. To this end, he splits the energy-minimization and the confusion-

minimization constraints up into various sub-constraints penalizing increasing deviations

from the acoustic target and increasing jaw opening, respectively. The sub-constraints

1(Boersma 1998:2) assumes that “in a world of large variations between and within speakers, the
disambiguation of an utterance is facilitated by having large perceptual classes into which the acoustic
input can be analyzed”. Interestingly, this seems to be in direct conflict with Flemming (2001b)’s
assumption that the number of perceptual contrasts is maximized.



Chapter 2. Efficiency-Based Explanations of Speech Patterns 20

are ranked in alternating fashion: [jaw opening > 4 cm] > [F1 ≤ 600 Hz] > [jaw open-

ing > 3 cm] > [F1 ≤ 700 Hz] etc. Boersma (1998) assumes that in unstressed vowels,

the constraint ranking is re-ordered such that the perceptual constraint is on the whole

ranked relatively lower than in stressed vowels. This reproduces the frequent observation

of vowel reduction in unstressed contexts in some languages, as the winning candidate

would have a higher F1 with the stressed than with the unstressed constraint hierarchy.

In this particular example, the constraint ranking appears less arbitrary than in the

Flemming (2001b) one, as the assumption of higher-ranked perceptual constraints in

contexts associated with perceptual prominence is intuitively compelling. One interest-

ing aspect of Boersma (1998)’s alternate constraint ranking, moreover, is that it turns

the strict hierarchy into a more fine-grained scale. If this approach was taken further,

the jaw displacement and the minimum F1 constraint could be turned into cost func-

tions that could be evaluated in a fully continuous fashion, and Boersma (1998) also

hints at this possibility. In what follows, we will devote our attention to studies that

have followed this approach, replacing interaction of discrete constraints by continuous

cost functions. In these approaches, constraint ranking is replaced by numerical weights

that control the relative importance of the individual constraints. We will provide a

fairly detailed discussion of these works, Flemming (1997) and Katz (2010), because

their models focus on speech timing at the segmental level, and thus on a phenomenon

that is very similar to what our model will be concerned with.

Flemming (1997) presents an approach of this kind which focuses on two phonetic phe-

nomena, transitions of the second formant (F2) and duration ratios in consonant-vowel

sequences. The crucial characteristic in both cases is contextual variation: vowel du-

rations display a systematic (inverse) relationship with the duration of the following

consonant. At the same time, consonant duration also co-varies inversely with vowel

duration. A similar pattern is observed for formant transitions in CV sequences, which

we already encountered in the discussion of Lindblom (1990)’s interpretation of Öhman

(1966)’s data: F2 at the consonant is linearly related to the value of F2 at the steady state

of the following vowel, a dependency that has been captured descriptively by so-called

locus equations. At the same time, there is target-locus proportionality : F2 measured

at the steady state of the following vowel also varies according to the F2 value at the

consonant release. Consonant and vowel F2 thus stand in a relationship of mutual in-

fluence, which, according to (Flemming 1997:75) suggests the interpretation “that there

are targets for the second formant of each consonant and vowel, [...] respectively, but

these targets are systematically undershot with the actual F2 values being displaced

towards each other”.
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Flemming (1997) proposes that this pattern is a consequence of the resolution of two

constraints: one constraint, which can be related to the concept of faithfulness in OT,

penalizes deviations from hypothetical targets. A second constraint penalizes fast move-

ments, based on the assumption that formant trajectories can serve as a proxy for artic-

ulatory movements, and that fast movements require more effort than slow movements,

all else being equal. This constraint thus incorporates the assumption that speakers

strive to minimize effort, and could be interpreted as a markedness constraint, in that

a production requiring more effort is considered more marked. Flemming (1997) im-

plements these two constraints as mathematical distance functions. The faithfulness

constraint comprises two terms, one that measures the distance between the actual F2

value at the release of the consonant, F2C and the hypothetical underlying production

target, or locus, for this value, F2L, and a second term that does the same for the F2

value at the steady state of the vowel, measuring the distance between the actual value

F2V and the hypothetical target F2T . The markedness constraint is simply the dis-

tance between the actual formant values F2C and F2V : since Flemming (1997) makes

the simplifying assumption that the duration of the transition is fixed, a greater distance

between these values would require a faster movement. With this parametrization, the

optimal resolution of the constraint system can be cast as a mathematical optimization

problem: the actual formant values F2C and F2V have to be chosen so as to minimize

the weighted sum c of the three (squared) terms:

c = wc(F2C − F2L)2 + wv(F2V − F2T )2 + we(F2C − F2V )2 (2.1)

It is obvious that, as long as F2L and F2T are not identical, the minimization of c will

involve a trade-off: “the first two constraint terms will be minimized when F2C and F2V

are equal to their target values, whereas the effort constraint is minimized when they are

equal to each other” (Flemming 1997:76). The weighting factors wc, wv and we can be

used to rank the constraints, analogously to the constraint hierarchy in OT. Crucially,

however, this hierarchy is not strict: a candidate solution that incurs a somewhat larger

violation of the top-ranked constraint than another solution can still be better if the

other solution incurs a massively larger violation of the lower-ranked constraint. The

optimization problem can be easily solved analytically for a given configuration of the

weighting factors by taking the partial derivatives of c with respect to F2V and F2C and

solving for the zeros in the resulting equations. Flemming (1997) shows how optimally

solving equation 2.1 in this way reproduces the empirically observed trading relation

between F2V and F2C , with the relative weights determining how strongly both values

diverge from their hypothetical targets.

The model obviously makes some strong simplifications – in addition to the assumption

of fixed duration, Flemming (1997) notes that formant trajectories only provide a coarse
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approximation of articulatory movements, and that supposedly different energy costs

for different articulators are not directly taken into account. Moreover, it would of

course be desirable for the model to account for the formant trajectory as a whole, not

just for its static endpoints. In any case, abstraction is necessary in modeling, and

Flemming (1997)’s technique offers a convincing and elegant account of the empirical

data. Importantly, and in contrast to the purely descriptive locus equation accounts,

Flemming’s model takes an explanatory stance towards the phenomenon: the faithfulness

and markedness constraints are directly related to securing information transmission

(by faithful realization of acoustic targets) and minimizing effort, and thus constitute

independent underlying principles in the sense of Lindblom and Engstrand (1989).

Flemming (1997) applies a similar optimization approach to a second acoustic-phonetic

phenomenon, duration ratios in consonant-vowel sequences. in many languages, the du-

ration of a vowel is found to vary inversely with the duration of the following consonant,

and consonant duration simultaneously varies inversely with preceding vowel duration.

Flemming assumes that this pattern is a consequence of constraint resolution between

target durations of segments and larger constituents. He proposes the following model

to capture this relationship:

c = wc1(C1−C1T )2 +wv(V −VT )2 +wc2(C2−C2T )2 +wσ((C1+V +C2)−σT )2 (2.2)

Here, C1, V, C2 and C1T , VT , C2T are actual durations and hypothetical duration tar-

gets, respectively, for the onset consonant, the vowel, and the coda consonant in the

target monosyllable, and σT is a hypothetical target duration of the syllable as a whole.

Again, this quite clearly predicts a compensatory relationship: “E.g. if C2 is length-

ened, V will shorten in compensation to prevent excessive violation of the syllable-level

constraint, but the constraint on C2 duration will generally prevent total compensation”

(Flemming 1997:89). Despite the identical form, equations 2.1 and 2.2 are conceptually

different, however: the duration model 2.2 does not uphold the differentiation between

faithfulness and markedness; rather, one would interpret it as a case of two conflict-

ing faithfulness constraints at different linguistic levels. Consequently, there is also no

consideration of effort proper in this model. We will provide a detailed critique of this

approach below, after a discussion of the successive modeling work by Katz (2010).

Katz (2010) provides a detailed treatment of the intrasyllabic durational relationships

already briefly addressed by Flemming. Katz (2010)’s experimental results inform a

mathematical model that is based on the same principles, but appreciably more elabo-

rate than Flemming’s approach, and accounts very elegantly for the observed empirical

patterns. Katz (2010) frames his account of intra-syllabic timing patterns in English

in a broader theory of compression effects, which incorporates the basic principles of
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Flemming’s model 2.2: constraints on syllable and segment duration compete in speech

production; hence vowel duration is shortened if consonants are added to a syllable. An

important qualification raised by Katz (2010)’s results is that these effects vary with

consonant manner. Katz reports a production study comparing vowel duration in syl-

lables with zero, one or two consonants in either the onset or the coda, produced in

uniform sentence contexts by six speakers of American English. An important feature

of the analysis is the separate treatment of the duration of the steady states of vowels,

and of the transitions between vowels and consonants. Results indicate that vowels are

shorter in syllables with one than with zero consonants in either onset or coda, although

effects sizes vary with consonant class. The situation is more complex for incremental

shortening induced by adding a further consonant: additional shortening of a vowel if

two consonants rather than one are included in either the onset or the coda is reliably

observed if the consonant directly adjacent to the vowel is a liquid. With vowel-adjacent

nasals, this effect is only observed if an additional consonant is added before an onset,

but not after a coda nasal. With a vowel-adjacent obstruent, adding another consonant

triggers no incremental shortening in either position.

Katz (2010) hypothesizes that this asymmetry is due to differences in perceptual recov-

erability of vowel information from consonants: liquids contain more cues to the identity

of the adjacent vowel than obstruents and nasals. Therefore, speakers can “afford” to

shorten vowels more strongly in the vicinity of liquids without jeopardizing perception,

which is rewarded by a smaller violation of the hypothesized syllable duration constraint.

This hypothesis is supported by a perception study: Katz (2010) reports an experiment

on the identification of vowels from acoustically presented syllables as utilized in the

production study, but with the vowel itself truncated or removed. Results indicate that

subjects’ performance in vowel identification co-varies with the type of consonant adja-

cent to the manipulated vowel, in a fashion that mirrors the durational patterns found in

the production study: for example, truncated and removed vowels are identified better

in syllables with vowel-adjacent liquids than in syllables with vowel-adjacent obstruents.

As a first pass, Katz (2010) proposes the following formal model to account for the

timing relations within a simple consonant-vowel syllable:

c = w1((dx+dt+dy)−tσ)2+w2((ndy+mdt+ldx)−tx)2+w2((kdx+jdt+idy)−ty)2 (2.3)

This model is similar to Flemming (1997)’s equation 2.2, but appreciably more complex,

as it incorporates the notion that segments are partially recoverable from acoustic infor-

mation contained in adjacent segments. The first term penalizes the difference between

the hypothetical target duration of the syllable, tσ, and its realized duration, which is

defined as the sum of the durations of the steady state of the vowel dx, the transition dt
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and the consonant dy. The two other terms penalize deviations of actual consonant and

vowel duration from their respective targets tx and ty. As can be seen, realized duration

terms for both segments (the inner brackets in the second and third quadratic term)

are also functions of all three intrasyllabic constituent durations. Crucially, they are

modified by the recoverability coefficients i − n, which implement the assumption that

acoustic information from adjacent segments contributes to the recognition of a segment.

Coefficients l and i, which represent the consonant- and vowel-internal acoustic cues, are

set to 1. The other coefficients are set to values between 0 and 1, with the exact values

reflecting the hypotheses about the amount of perceptual information the respective part

of the syllable contributes to the perception of the vowel or the consonant, respectively.

For example, k is set to a higher value for a liquid than for an obstruent, implementing

the assumption that a liquid contains more acoustic information about an adjacent vowel

than an obstruent. Katz (2010) shows that this model provides a convincing account of

his experimental data for the case of simplex compression, i.e., the difference between

zero and one onset or coda consonant.

Katz (2010) extends the model to cases where two consonants are added to a syllable

onset or coda, in order to model incremental shortening effects. He reports that this

model is not restrictive enough: it invariably predicts incremental vowel shortening,

contrary to experimental results. For this reason, Katz introduces an additional as-

sumption: he defines a minimum duration threshold for a given segment, by assigning

arbitrarily high cost to segmental durations below a certain value. This idea is borrowed

from the descriptive duration model by Klatt (1973), who hypothesized that segment

durations in speech are characterized by incompressibility, i.e., a durational floor value

beyond which they cannot be shortened. We will have to say quite a bit more about

the concept of incompressibility in the course of this work. For the moment, suffice it to

note that the introduction of this additional assumption allows Katz’s model to repro-

duce the observed empirical patterns for incremental vowel shortening, with additional

shortening if a second consonant is added to a vowel-liquid syllable, but not in the case

of a vowel-obstruent syllable.

The models by Flemming and Katz offer intriguing accounts of the empirical phenomena

under study. Katz’s duration model in particular proves capable of predicting fine-

grained temporal phenomena to a remarkable degree of detail, and his perception study

of vowel recoverability from adjacent segments yields convincing independent motivation

for his modeling assumptions. These studies thus provide powerful examples of how

independently motivated assumptions can be utilized in rigorous mathematical models

to derive empirically testable predictions. Nevertheless, some critical points may be

raised. One underlying conceptual issue concerns the heavy reliance of this type of

model on the notion of production targets that are apparently assumed to reside in
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speakers’ mental representations. While the assumption of targets that speakers attempt

to realize is certainly reasonable for Flemming (1997)’s formant data, the idea that

speakers represent duration targets for phonetic segments may be more debatable. The

notion of duration targets for syllables in Katz (2010)’s model in particular appears to

be somewhat awkward; Katz himself acknowledges that this constraint may be difficult

to justify. As a possible motivation, he refers to a study by Quené and Port (2005), who

reports temporal regularity of (stressed) syllable onsets to have a beneficial influence

on spoken word recognition. Katz thus explicitly assumes that the syllable duration

target constraint in his model is tantamount to the claim that syllable durations exhibit

a tendency towards regularity. We think that this is not necessarily the case, however;

granted that syllable duration targets of some sort exist, it may easily be conceivable

that different syllables have different target durations. In any case, one may note that,

whereas Flemming (1997)’s formant transition model exhibits a clear division of labor

between economy- and clarity-related factors, this distinction is not so clear in the case

of the duration models; as we said above, it is rather different types of faithfulness

constraints that interact.

Katz’s invoking of incompressibility in order to secure correct prediction of the incremen-

tal shortening results may come across as a somewhat ad-hoc device, but it is certainly

a plausible and well-motivated one. He implements incompressibility as a hard floor,

but also discusses a more elegant technique, whereby the faithfulness constraint is im-

plemented as a hyperbolic function of deviation from the minimum duration. Katz does

not implement this solution due to technical difficulties. In the course of this work, we

will see how a somewhat similar modeling technique reproduces empirical findings on

incompressibility, and that it can also be assigned independent motivation.

A final minor issue, which is also acknowledged by both authors, is that their models

crucially rely on the quadratic form of equations 2.1 – 2.3 to derive the empirically ob-

served patterns. The reason they give for this modeling decision is that the quadratic

form ensures that costs grow quickly with constraint violations. While this is perfectly

acceptable, an ideal model would include independent motivation not only of the gen-

eral architecture, but also of the precise functions used to implement the individual

constraints. For example, the cost functions that implement the faithfulness constraints

could be designed so as to implement explicit assumptions about the perception of tem-

poral or spectral properties of speech.

Despite these critical points, we would like to re-state our appreciation of the models by

Flemming and Katz. Even if some of their assumptions may be better motivated than

others, the success of the models in accounting for observed patterns is interesting in its

own right, and definitely establishes their modeling approach as a promising research
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direction. The model to be developed in this work is concerned with a similar phe-

nomenon to the ones by Flemming and Katz, and it will be based on somewhat similar

principles. We shall discuss commonalities and differences once we have introduced our

own modeling approach.

2.2.3 Embodied Task Dynamics

We will now review the Embodied Task Dynamics (ETD) model of gestural sequencing

in articulation (Šimko 2009). In our opinion, this model represents the best worked-out

attempt at implementing optimality assumptions as an explanatory device for speech

phenomena, and it will serve as the primary source of inspiration for our own model to

be developed in the course of this work. In what follows, we shall provide a non-technical

overview of the model architecture and discuss the results that ETD has achieved. For

an in-depth discussion of the model architecture, see Šimko and Cummins (2010).

ETD is an extension of the task-dynamic implementation of Articulatory Phonology

(Browman and Goldstein 1986, Saltzman and Munhall 1989), henceforth AP-TD. Artic-

ulatory Phonology assumes that articulatory gestures, as opposed to acoustically defined

segments, are the primary phonological units in speech. AP-TD models these gestures as

mass-spring systems, using the mathematical apparatus of linear second-order dynamics,

based on the assumption that the behavior of the muscles acting upon the articulators

is adequately described by the mathematics of dynamical systems. ETD introduces two

crucial modifications to conventional AP-TD. The first is the embodiment: in AP-TD,

the mass of the articulators is disregarded and set to unity for all articulators. By con-

trast, ETD crucially relies on the assumption that different articulators have different

masses. ETD also takes into account collisions between articulators and the boundaries

of the vocal tract, and, moreover, explicitly assumes that all articulators are anatom-

ically linked and thus mutually influence each other, whereas AP-TD abstracts away

from this property of speech and models individual gestures as context-independent.

The second modification concerns the specification of the temporal sequencing of in-

dividual gestures. This is done either manually or by using techniques such as neural

networks in AP-TD. In ETD, this is where optimization comes in: the temporal sequenc-

ing of gestures is specified using an optimization algorithm that, for a given utterance,

determines the optimal sequencing and realization of gestures with regard to a para-

metric cost function, encompassing component costs related to measures of articulatory

effort, perceptual clarity and overall time, as explained below.

At the core of ETD is a highly simplified model of the human vocal tract, as shown in

the left panel of Figure 2.2: masses representing the jaw, tongue body, tongue tip, upper
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and lower lip are attached to hard boundaries by springs, as shown in the Figure. The

model thus ignores most of the details of human vocal tract anatomy, but it captures the

basic anatomical facts of the modeled articulators: the tongue body is attached to the

jaw, and the tongue tip, in turn, to the tongue body; the lower lip is also attached to the

jaw, but independently of the tongue, whereas the upper lip is attached to the maxilla.

The different sizes of the black circles in the Figure represent the different masses of the

articulators – for example, the jaw has a greater mass than the tongue tip. This model

is capable of representing differences in the vertical position of the tongue body – i.e.,

differences in vowel height – as well as alveolar and bilabial closures.

Figure 2.2: Left panel: schematic overview of the ETD model (reproduced from
Šimko and Cummins 2011). Right panel: illustration of different model configurations

that lead to the same constriction.

In ETD as well as in AP-TD, any articulatory movement is instantiated by an underlying

task specifying the spatial goal of the movement. These tasks are encoded in terms of

the values of tract variables, parameters describing the location and degree of relevant

vocal tract constrictions. The movements necessary to reach the articulatory targets are

described by linear second-order dynamical systems equations, as shown in equation 2.4

Mz̈ = −K(z − z0)−Bż (2.4)

Here, M refers to the mass, K to the stiffness and B to the damping coefficients, z0

to the target positions of the tract variables, and z, ż and z̈ refer to position, velocity

and acceleration, respectively, of the articulators involved. The stiffness parameter is

related to the resistance of the spring to external forces acting upon it, with higher

stiffness values leading to a more resistant spring and, hence, swifter movements. The

damping parameter is related to the nature of the oscillatory behavior of the spring.

In articulatory modeling, the value of this parameter is usually set to a certain value

analytically related to mass and stiffness that is referred to as critical damping, which

ensures that the movement smoothly approximates its target and does not continue to

oscillate after the target has been reached (Šimko 2009).
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The specification of tasks in terms of constrictions (rather than absolute positions of all

articulators involved) has an important consequence: there are many different vocal tract

configurations that will result in the same constriction, as shown for the example of an

alveolar closure in the right panel of Figure 2.2. The problem that the model faces, then,

is to select among these possible alternatives. In technical terms, the model, for a given

gesture, has to select an activation interval, i.e., the temporal interval during which the

dynamic that instantiates the gesture is active, and a stiffness value for the gesture. This

degrees-of-freedom problem of how to choose from a potentially vast space of alternative

possibilities to achieve a certain behavioral goal is thought to be a pervasive characteristic

of speech production, as well as other types of coordinated movement (Lindblom 1999).

The basic hypothesis of ETD is that this problem is solved by optimization: articula-

tory gestures are shaped and coordinated so as to optimally satisfy the requirements of

minimizing articulatory effort and maximizing perceptual clarity. This is implemented

using a parametric cost function that quantifies the degree to which a given rendition

of an utterance satisfies these two requirements (as well as a third one, as introduced

below), and an optimization algorithm that finds this optimal gestural score. Weighting

factors allow for specifying the relative impact of the individual components of the cost

function. The parametric cost function is defined as in Equation 2.5:

C = αEE + αPP + αDD (2.5)

Component E is related to articulatory effort. The framework of mass-spring equations

allows for a straightforward parametrization of effort in ETD: it is computed by summing

all forces that act upon the model’s articulators during the realization of a simulated

utterance, the force for an individual articulator being defined as the product of its mass

and its acceleration. Articulatory effort is thus causally related to the stiffness of the

movement, as higher stiffness will result in swifter movements. There may be alternative

definitions of effort in speech, but this metric makes intuitively plausible predictions: all

else being equal, moving a heavier articulator will be more costly than moving a lighter

one, and stiffer movements will also be more costly than less stiff ones.

The parsing cost P in the model represents the hypothesized impetus towards maxi-

mizing perceptual clarity. It comprises two sub-costs: first, Šimko (2009) assumes that

failure to fully reach articulatory targets will result in acoustically degraded output and

impede perception. This is captured by a gestural precision estimate, which for a given

tract variable is inversely proportional to the difference between its target and its actual

value. The gestural precision estimate for a given articulator is normalized to the differ-

ence between the target and the resting position of that articulator, so that inherently

smaller movements are not evaluated as inherently more precise, and may thus take on
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values between 0 and 1. Second, (Šimko 2009) assumes that longer realizations of ges-

tures will facilitate perception. This is implemented by a temporal realization estimate,

which monotonically increases with the duration of a gesture’s realization in the interval

[0, 1]. Gestural precision estimate and temporal realization estimate are combined in

a single parameter, realization degree rg, by multiplying their respective maxima for a

given gesture. The parsing cost Pi for a given gesture i, then, is defined as Pi = 1− rgi
(recall that rg has an upper bound of 1), and the parsing cost for an utterance is the

sum over the parsing cost terms for all the gestures in the utterance.

Before going further, we shall provide some more details on the temporal realization esti-

mate, dg(t). Šimko assumes that this estimate is not a linear function of the duration of

a gesture, but: “that it increases dramatically within a few first tens of milliseconds after

the onset of gestures [sic] prominence interval, and then remains virtually unaffected.”

(Šimko 2009:137). The particular function used given in Equation 2.6:

dg(t) =
2

π
arctan(c(t− t11)) (2.6)

The t and t1 parameters in Equation 2.6 refer to the start and end point of a gesture,

respectively, and c is a constant that can be used to adjust the slope of the function.

Resulting trajectories for some values of c are shown in Figure 2.3.
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Figure 2.3: Plot of the temporal realization estimate in ETD for c = 2 (solid), c = 1
(dashed) and c = 0.5 (dotted).

Is dg(t) a realistic estimate of temporal realization of a gesture? Šimko and Cummins

(2011) cite Gray (1942) in support of this modeling decision. Gray (1942) presented

subjects with isolated vowels of varying duration and recorded the number of correct

identifications. Inspection of his numerical results does indeed tentatively suggest a
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function similar to dg(t). In this thesis we will discuss some more recent results from

speech perception research that support Šimko’s modeling of the temporal realization

estimate for larger prosodic units, and an integral part of our own model to be developed

in the course of this work will rest on this argument.

The model components E and P implement the hypothesized trade-off between ten-

dencies towards hypo- and hyperarticulation. In addition, Šimko (2009) introduces a

temporal dimension to the model by invoking the third component, D. He motivates this

by the observation that the H&H continuum is to some extent independent of changes

in speaking rate: speakers can, within certain limits, speak quickly and still articulate

carefully, or, conversely, articulate both slowly and imprecisely. Component D, which is

simply a linear function of the time interval between the onset of the first and the offset

of the last gesture of a simulated utterance, implements this temporal dimension, pro-

viding an independent control mechanism for overall speaking rate. The parameters αE ,

αP and αD in Equation 2.5 are scalar weighting factors that can be used to manipulate

the relative importance of the three components. For example, a relatively high value of

αP would simulate conditions that favor hyperarticulation, such as speaking in a noisy

environment, or to a non-proficient listener. Given a specification of a sequence of ges-

tures and a set of values of the weighting factors, the problem the model has to solve is

to find activation intervals and stiffness coefficients for the individual gestures such that

cost function C is minimized. This is implemented in ETD using simulated annealing, a

standard method for solving nonlinear optimization problems, which is roughly similar

to the algorithm utilized by Liljencrants and Lindblom (1972) as described above.

Figure 2.4 shows results of an ETD simulation of two utterances, /abi/ (left plot) and

/iba/, i.e., sequences of two vowels of different height flanking a bilabial stop (arbitrarily

defined as voiced). The upper panels show the optimal gestural scores, i.e., the temporal

sequences of activation intervals for the three gestures in both utterances. The lower

panels plot the trajectories of the jaw (thick solid line), tongue body (thin solid line)

and lips (dashed lines) over time. Two observations can be made on this plot. First, it

shows that the model reproduces a fundamental property of speech at the articulatory

level, namely the fact that gestures are co-produced, i.e., that there is temporal overlap

of consonantal and vocalic gestures. Šimko (2009) argues that this result is non-trivial,

given that both types of gestures exert simultaneous and sometimes contradictory pres-

sures on articulators. Moreover, optimization in the model is initialized with gestural

scores with no overlap. Co-production, according to Šimko (2009) thus emerges as the

optimal way of coordinating consonantal and vocalic gestures given the articulatory,

perceptual and temporal constraints acting upon the system.
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Figure 8: Optimal scores and kinematic traces for /abi/ (left) and /iba/ (right). Mid-range values
of 4 for αP and 8 for αD were used.

speaker DR, for whom the tongue movement consistently leads the bilabial movement onset, this
lead is more pronounced for the sequences starting with a high vowel /i/ than for the sequences
/abi/, /api/. Given that the lips are closer together during production of an /i/ vowel than an /a/
vowel, this makes sense. Movement towards closure of the jaw, and hence also the tongue body,
can start later for a medial bilabial consonant uttered after /i/ than after /a/, as the distance to
be traversed to the point of consonantal closure is smaller.

Model outputs for “moderate” speaking rate and precision requirement (αP = 4, αD = 8),
expressed both as gestural scores, and as associated kinematic traces, for sequences /abi/ and
/iba/ are shown in Fig. 8. The optimal constellations discovered by the optimization technique
we employ reproduce the qualitative aspects of the observations of Löfqvist and Gracco. Tongue
movement onset precedes oral closure (vertical solid line) in each case. Furthermore, consonantal
activation occurs slightly before the intervocalic switch for /abi/ but after it for /iba/. Moreover, as
we show below, these aspects of the optimal gestural constellation are quite stable for most values
of the cost coefficients, although the order of intervocalic switch and consonantal activation onset
are reversed for low values of αP (as in the left hand panel of Fig. 6).

4.2. Search for invariance: Relative phasing

In describing any pattern of coordination, we can express the relative timing of one gesture with
respect to the temporal unfolding of another. One well established procedure for doing this is to use
the underlying undamped oscillatory cycle of one gesture as a referent for the other, and to express
relative timing as phase, φ, where tan(φ) = −ẋ/x. This method was introduced in Kelso and Tuller
(1985), and has been applied widely since (e.g. Saltzman et al., 2008). The method is motivated
by the need to refer to the instantaneous dynamical state of the gesture constellation itself, rather
than relating each gesture to an extrinsic time scale. This allows coordinative invariants to be
readily expressed, irrespective of changes, e.g. in speaking rate.

Within the Articulatory Phonology framework, the working assumption was made that fixed

25

Figure 2.4: Plot of /abi/ (left) and /iba/ simulations in ETD (reproduced with
modifications from Šimko and Cummins 2011). See text for details.

Closer inspection of Figure 2.4 reveals a more interesting result: one may note that for

the /abi/ sequence, the onset of the closing movement of the lips (red arrow) precedes

the onset of the tongue body movement towards the /i/ (black arrow), whereas in

the /iba/ sequence, it is the tongue body movement that starts first, before the lip

movement. This asymmetry is precisely what Löfqvist and Gracco (1999) have found

in an articulatory study of VCV sequences in Swedish. Šimko and Cummins (2011)

report that this pattern is reproduced across a range of parameter settings. They argue

that their embodied optimization account offers a straightforward interpretation of the

effect: “Given that the lips are closer together during production of an /i/ vowel than

an /a/ vowel, this makes sense. Movement towards closure of the jaw, and hence also

the tongue body, can start later for a medial bilabial consonant uttered after /i/ than

after /a/, as the distance to be traversed to the point of consonantal closure is smaller”

(Šimko and Cummins 2011:552). Another interesting finding is that the phasing, i.e., the

relative timing of the onset of the second vocalic gesture with respect to the consonantal

gesture is remarkably stable over a range of parameter settings, whereas the relative

timing between the onset of the first vowel and that of the consonant varies widely.

Šimko and Cummins (2011) interpret this outcome with regard to the cross-linguistic

and developmental preference for CV over VC structures, arguing that it points towards

the emergence of syllable structure from the model’s optimization principles.

Subsequent studies using ETD have provided further interesting results. Šimko et al.

(2014b) investigate the contrast between singleton and geminate consonants in Finnish,

modeling gemination by locally increasing the parsing cost weight αP for the medial

bilabial consonant gesture in a VCV sequence. This leads to a longer closure duration,

which is of course not surprising. However, the authors report an interesting observation

on the relative phasing between the consonantal and the following vocalic gesture in the

sequence: the duration of the inter-onset-interval between both gestures varies with
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linearly increasing αP in a highly nonlinear fashion, exhibiting a sudden quasi-discrete

jump between two relatively stable plateau regions, in which relative phasing is not

strongly affected by αP variation. The authors interpret this result as showing that

discrete phonological contrast, in this case between singleton and geminate consonants,

may emerge from optimization over continuous dynamical parameters.

In a further study, Beňuš and Šimko (2014) investigate the emergence of prosodic bound-

aries in speech under continuous variation in speaking rate and articulatory precision.

They analyze VCV sequences occurring after a syntactic clause boundary from two

sentences produced by four speakers of Slovak, under the instruction to produce these

sentences with continuously varying speaking rate and articulatory precision. Beňuš

and Šimko (2014) observe that, as speaking rate is reduced, speakers introduce prosodic

boundaries before the test sequence. The strength of these boundaries also correlates

with rate; weaker boundaries marked by glottalization are introduced at medium rates,

while even stronger slowing also triggers the occurrence of silent intervals. A particularly

interesting result is observed on the relative phasing between the consonantal release be-

fore the boundary and the onset of the medial consonantal gesture in the VCV sequence:

this relative phasing exhibits a quadratic relationship with speaking rate; the medial (bi-

labial) consonant in the VCV sequence is more in-phase at medium than at fast or slow

rates. Beňuš and Šimko (2014) report simulations using a modified version of ETD that

zooms in on modeling lip aperture and ignoring the rest of the vocal tract architecture,

modeling the prosodic boundary by locally relaxing the duration cost weight αD at the

boundary location. They show that inducing continuous rate variation in the model

simulations (by means of globally varying αD) reproduces the qualitative pattern of re-

sults observed in the real data: the relative phasing of the medial consonantal gesture

varies in a non-linear fashion as a function of overall speaking rate.

These results are quite interesting, because they highlight the potential of local param-

eter variation in the model. In these cases, some questions may be warranted about the

motivation of the particular modifications – how does “a local increase in perceptual

clarity demands” represent gemination, and likewise, what is the independent motiva-

tion for modeling final lengthening by locally adjusting the speaking rate parameter –

but the results are interesting enough by themselves. Local variations in the weighting

parameters that govern H&H scale variation will feature importantly in our own model

to be presented in this work.

An important principle emphasized in Šimko (2009) and subsequent work is that ETD

with its computationally costly optimization of dynamical parameters is not to be viewed

as a real-time production model of speech. Rather, (Šimko 2009:149) hypothesizes that
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“the trade-offs captured by our cost function definition play their role during the devel-

opment of speech as a skilled human activity, and are thus reflected in the phonological

laws underlying speech production”. Whatever the interpretation, modeling results sug-

gest that the trade-off between minimizing effort and maximizing perceptual clarity

as implemented in ETD offers an intriguing account of various gestural coordination

phenomena in speech. In particular, the embodied nature of the model provides physio-

logically plausible explanations for the modeled phenomena. The underlying assumption

that the degrees-of-freedom problem in the coordination of speech gestures also provides

a unifying link with other successful models from non-speech domains. Of course, ETD

is highly simplified in many respects, but the fact that it still makes realistic predictions

is all the more encouraging. For these reasons, the ETD model will serve as the primary

source of inspiration for the design of our own model to be developed in this work.

2.2.4 Other Approaches

One line of research that is closely related to the approaches discussed so far investigates

the relationship between measures of predictability or information density in language

and acoustic-phonetic parameters of the speech signal. These studies generally support

the conclusion that speakers strive to transmit information in an efficient manner: in

regions of the speech signal that convey important information, great care must be taken

to secure successful transmission of these regions; conversely, in parts of the speech signal

that are informationally redundant or predictable from the context, speakers can afford

to be less concerned about the demands of the listener. These opposite poles are thus

readily interpretable in terms of hyper- and hypoarticulation. In a classical study of this

kind, Lieberman (1963) had three speakers of English read sentences with target words

varying in predictability from their contexts, such as nine in A stitch in time saves nine

(high predictability) versus The word that you will hear is nine (low predictability).

He reports higher durations and amplitudes for target words in the low-predictability

condition and concludes that “in connected fluent speech the speaker calls attention to

the words that he thinks are non-redundant” (Lieberman 1963:181).

The study by Aylett and Turk (2004) provides a more recent example of this way of

reasoning. The authors frame their investigation of the relationship between speech tim-

ing and language redundancy in an information-theoretic account of speech production

and processing. They argue that “the drive for speakers to achieve robust information

transfer in a potentially noisy environment while conserving effort” (2004:32) predicts

smooth signal redundancy, i.e., a negative correlation between syllable duration and the

predictability of syllables, so as to ensure that syllables with a low predictability – and,

thus, a high information load – are successfully transmitted. The idea that effort is
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conserved plays a crucial role in this argument: “another way of ensuring that elements

with low levels of language redundancy are recognized correctly would be for speakers

to produce all elements in an utterance with maximal duration and clarity. However

producing speech in this way would be highly inefficient compared to producing more

predictable elements with reduced duration and effort” (2004:33).

Aylett and Turk (2004) investigate their hypothesis in a corpus of task-oriented dia-

logues in Glasgow English, by regressing syllable durations on three measures of lan-

guage redundancy, word frequency, syllable trigram probability and givenness, the latter

operationalized as the number of times the referent of the word that a syllable is part

of has been mentioned before. Controlling for prosodic prominence and boundaries,

they find that, as predicted, all three measures exhibit significant negative correlations

with syllable duration. Investigating the relationship between redundancy, duration and

prosodic prominence further, the authors find that the durational variation explained

by language redundancy and prosodic structure overlap to a large extent, i.e., prosodi-

cally prominent syllables also tend to be non-redundant. They conclude that prosodic

structure in English is in fact primarily used to modulate linguistic information flow.

Prominence marking is thus interpreted as a means to secure the transmission of low-

redundancy items, by making them acoustically more salient.2 Results from further

studies (e.g. Aylett and Turk 2006, Baker and Bradlow 2009, Jurafsky et al. 2001,

Pluymaekers et al. 2005, Samlowski et al. 2013, Van Son and Van Santen 2005) support

the conclusion that efficient information transmission plays an important role in speech

production, by showing that measures of language redundancy correlate with temporal,

and also with spectral reduction in speech. If it is taken for granted that these reduction

processes reflect speaker strategies for saving effort, these findings provide a strong ar-

gument for the plausibility of the assumption that trading off between minimizing effort

and maximizing communicative success play a decisive role in shaping speech patterns.

Howard and Messum (2011) present Elija, a computational model of speech acquisition

in infants that makes use of optimization principles. It is implemented as a production-

perception loop, featuring a “vocal tract” based on an articulatory synthesizer and a

simple speech recognition algorithm that allows the model to perceive speech. Elija starts

speech acquisition by “babbling”, that is, initializing the articulatory synthesizer with

control parameters determined by optimization, as explained below. During this process,

Elija forms categories, by clustering produced sounds in the acoustic and articulatory

space. In the following learning phase, the caregiver – a human experimenter – trains

the model by repeating those sounds that resemble actual human speech sounds, which

2This view is somewhat relativized by Turk (2010), who states that facts such as the existence of
language-specific stress assignment rules argue against viewing prosodic prominence structure as being
entirely explained by information density modulation.
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the model then utilizes to tune its parameters so that its productions gradually become

more adult-like. Howard and Messum (2011) report that they were able to teach the

model to produce a variety of English-like sounds and CV sequences, and even a number

of simple English words.

The optimization-based babbling routine in Elija works as follows: the model selects

those vocal tract actions that minimize a weighted sum of measures of production effort

and acoustic salience. Effort is estimated based on cost metrics that score the actions of

the articulatory synthesizer and salience is evaluated based on analysis of the acoustic

output as “perceived” through Elija’s own microphone, based on features such as acous-

tic power and high to low frequency ratio. The optimization also comprises a further

component, “diversity”, which penalizes similarity of a vocal tract action to previously

tried vocal tract action, providing an impetus for the model to try out a variety of vocal

tract actions. Interestingly, Howard and Messum (2011) report that many of the sounds

Elija discovers in the (unsupervised) babbling phase do already resemble actual English

vowels, which lends plausibility to the employed optimization assumptions.

We will discuss the effort estimate in some more detail here. It comprises two compo-

nents, articulatory and voicing effort. The former is proportional to the velocities of all

articulators involved in a vocal tract action, based on the reasoning that fast movements

are energetically expensive. The second term is designed to serve as an estimate of the

effort necessary to sustain phonation over time. This is suggested by a plot of the two

effort components for a short utterance as produced by Elija, as shown in Figure 2.5:
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Figure 7 — Reward signals for a speech utterance generated by Elija. The plot shows time 
traces for the speech signal, its acoustic power, HF/LF power ratio, LF/HF power ratio, 
touch contact, voicing and articulator effort and the corresponding computed overall reward.
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Figure 2.5: Articulatory (dashed line) and voicing effort (solid line) over time as
computed by the Elija model for the utterance /ti:/ (reproduced from Howard and

Messum 2011).

The “voicing effort” component is a particularly interesting feature of Elija. Discussions

of effort in speech are often narrowly focused on energy costs of articulatory movements.

However, we think that once one accepts the conclusion that minimization of effort

is a relevant parameter in speech production, the metabolic energy needed to sustain

phonation over time is in fact a quite natural thing to consider. This is especially true

for a model that looks at speech in terms of larger time scales, such as the one we are

going to introduce in this thesis. Consequently, Howard and Messum (2011)’s technique

of splitting effort into an articulatory and a phonatory component will be taken into

consideration in the design of our optimization-based model of speech timing.
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Kochanski and Shih (2003) describe Stem-ML, a quantitative intonation model that

incorporates assumptions compatible with those of H&H theory. Stem-ML models into-

nation contours using an overall phrase curve, onto which local accents are superimposed.

These accents come with tags, containing specifications of the tonal target and shape of

the accent, and also with specific strength values, which are related to their semantic or

pragmatic importance in their respective utterance context. The actual F0 trajectory

that is predicted is a product of optimization: Kochanski and Shih (2003) assume that

speakers trade off maximization of communicative success and minimization of effort

in the realization of intonation contours. As in the models already described, this is

implemented using and optimization algorithm that minimizes the weighted sum of an

effort-related and a perception-related term. Effort in Stem-ML is primarily related to

the smoothness of the intonation curve, based on the assumption that a non-smooth F0

trajectory will put high strain on the muscles controlling the vocal folds, as they have

to perform fast and strongly accelerated movements in such circumstances. Perceptual

clarity is conceptualized as an error term that penalizes deviations between the actual F0

contour and the target heights and shapes specified by the accent tags. The strengths

of the accent tags function as optimization weights: high strength values assign high

costs to deviations from target and shape specifications, whereas for accents with low

strength, it is more acceptable to undershoot F0 targets, so that effort can be saved.

While Stem-ML incorporates physiologically and cognitively plausible assumptions, its

main purpose is to provide quantitative descriptions of intonation contours, and not so

much to derive principled explanations for qualitative patterns. Kochanski and Shih

(2003) show that their model delivers close approximations of tonal contours in Man-

darin Chinese, but this is achieved by explicitly fitting the model parameters to the data.

Yet, Stem-ML does seem to capture some general qualitative patterns of tonal contours.

Kochanski and Shih (2003) discuss two such effects, tonal coarticulation in terms of the

height and the shape of tones. In connected speech, both parameters are typically af-

fected be the environment of a tone, manifested in effects such as the lowering of a high

tone in a low neighborhood, or pitch range compression, compared to tones produced

in isolation. Kochanski and Shih (2000) state that such effects are borne out by the

optimization assumptions implemented in their model: smoothness constraints and per-

ceptual constraints interact and give rise to trading relations between neighboring tones.

Moreover, while empirical tests of Stem-ML seem to have focused on Mandarin Chinese,

a tone language, Kochanski and Shih (2003) argue that the supposed universality of

optimization assumptions should earn the model cross-linguistic applicability.
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2.2.5 Criticisms of Efficiency-Based Explanations in Speech Science

In the Introduction to this work, we already briefly touched upon the question whether

the assumptions of H&H theory and related approaches are realistic. In what follows,

we shall address commonly phrased criticisms of efficiency-based explanations of speech

patterns. One such objection, portrayed by Pouplier (2012) (without adopting this

position), is based on the question why not all languages are the same if they are

the product of efficiency constraints, which are supposedly universal. This argument

may initially seem plausible, particularly with a view to the optimization models of

vowel systems discussed earlier in this chapter: why are there some languages with

apparently non-optimal vowel systems? As a basic response, however, one may note

that the argument seems to assume that the current state of the languages of the world

represents the end point of language evolution. In reality, language evolution is an

ongoing process, and the current situation cannot be evaluated as if it marked the end

point of the phylogenetic development of the world’s languages.

More importantly, if language evolution is envisioned in terms of optimization, the real

optimization problem posed by the evolution of a language over time is by orders of

magnitude more complex than simulation approaches centered on isolated subsystems,

such as vowel inventories or gestural coordination, are able to convey. Complete repre-

sentation of the hypothetical optimization problem implied by language evolution would

require considering an enormous variety of language-internal and external factors. Our

discussion so far has revealed that even much simpler optimization problems may entail

the possibility of converging onto solutions that are only locally optimal, and one may

assume that this is even more likely for an optimization problem as complex and multidi-

mensional as language evolution. On this view, different languages could be conceived as

corresponding to local minima of the cost landscape, onto which linguistic communities

have converged through repeated interaction. The most important point, finally, is that

the putative optimization problem that is language evolution incorporates social and

cultural factors, which include those that directly counteract convergence between dif-

ferent linguistic communities, such as the desire to express group identity and distinction

from other social groups through language use. The language variation as a function of

social class in English presents a prime example. The argument that economy principles

predict sameness of all languages is simply näıve and simplistic.

A more serious criticism of efficiency-based approaches in speech research concerns their

involvement of effort as an explanatory device. Physical effort in speech is difficult to

quantify, and no single agreed-upon measure exists. Pouplier (2012) offers a nuanced

critique of the concept, arguing that commonly employed metrics, such as the number of

gestures or the distance traveled by an articulator, are overly simplistic. Pouplier points
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out that invoking effort as an explanatory device for phonological processes or language

change in particular entails the danger of circularity if the mere observation of a process

is taken as an indication of minimization of effort without supplying external evidence.

She argues that lenition phenomena in particular reflect skill, rather than “laziness”

in speakers and may be deliberately used for information structure purposes. Pouplier

argues that different speaking styles are not more or less optimal, but equally efficient

in the contexts in which they are used. Moreover, various researchers have questioned

the proposition that conservation of effort plays any role in shaping speech, arguing

“that energetic considerations are at best marginal, as the relatively slight masses are

acted upon by disproportionately powerful muscles”. (Šimko and Cummins 2011:531,

referring to an argument in Keller 1987).

These objections need to be taken seriously. We definitely agree with Pouplier (2012)

that realistically estimating effort in speech is complex and multidimensional. Pouplier

(2012) underscores her point with evidence from tongue body movements in intervocalic

velar stops, which are characterized by trajectories that would be classified as non-

optimal if the distance traveled by the articulator were to be used as the relevant effort

metric. Pouplier states that the movement trajectory becomes explicable once bio-

mechanical properties of the tongue are taken into account. Following Šimko et al.

(2014b), however, we would argue that this does not constitute evidence against effort-

based explanations per se, but rather for using the right effort metrics. Based on results

from Perrier et al. (2003), Pouplier concludes that the observed trajectories result from

“the tongue muscle orientation and activation patterns and the interaction of the tongue

with the hard palate” (2012:154). We think it quite reasonable to assume that tongue

movements directed against tongue muscle orientation are energetically suboptimal on

measures other than the distance traveled by the the tongue body. This is, in fact,

quite compatible with the notion of articulatory synergies, which is often invoked in

efficiency-based accounts of speech patterns (Lindblom 1983, Šimko 2009). Pouplier

(2012) also contends that different speaking styles are equally efficient in the contexts

in which they are used. We fully agree with this statement, and find it rather surprising

that Pouplier seems to view it as an argument against economy-based explanations in

speech science: the notion that a speaking style that requires more effort than another

may still be more efficient in certain situations, for example if greater clarity is required,

in fact constitutes the very essence of such explanations; what they claim is precisely

that speech production is efficient, not that it is effortless in absolute terms.

In the absence of external evidence, we cannot directly refute the claim that energetic

considerations play no role in speaking due to the disproportionate relationship between

muscle forces and articulator masses. The same goes for Pouplier (2012)’s hypothesis
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that reduction phenomena in speech are not a consequence of “laziness”, but are ac-

tually actively employed by speakers for structuring information. Yet, the existence of

implemented models that successfully account for speech phenomena based on efficiency

principles argues for the relevance of these principles, even though models can of course

deliver only sufficient (and not necessary) proof. It is, in fact, a primary function of com-

putational modeling to assess the influence of factors that are not directly observable,

such as effort in speech. The model we are going to introduce in this work will contribute

further evidence for the plausibility of efficiency-related explanations in speech science.

2.3 Discussion

We have seen that efficiency-related approaches provide possible explanations for empir-

ical findings from a variety of sub-disciplines of speech research. This, in our opinion,

establishes the assumption that speech patterns are shaped by trade-offs between de-

mands to minimize effort and maximize perceptual clarity as a promising explanatory

device. In particular, the success of existing implementations of optimization-based mod-

els encourages us to apply this methodology to the domain of suprasegmental speech

timing, for which currently no such implementation exists.

Importantly, H&H theory and related approaches possess the potential to provide us

with genuine explanations for phenomena to be modeled, as these approaches are based

on independent principles that operate at a more basic level than the linguistic categories

we will be concerned with. This is most apparent from the treatment that phonological

structure receives in H&H theory: it is thought to emerge from constraints on speech

production and perception, rather than representing arbitrary structure that hedges

essentially random phonetic variation, as formalist approaches suggest. The appeal of

this functionalist stance towards speech, ultimately, comes from its compatibility with

more general theories of biological evolution. On this view, speech production represents

an adaptation to environmental conditions, and the speech forms that are phonologized

by linguistic communities are conceivable as the “survivors”, which are best adapted to

the environment they are used in.

One core insight from our discussion, finally, is the imperative that theoretical proposals

be implemented, so that they can be rigorously tested. The critical treatment by Pou-

plier (2012) in particular underscores this point, highlighting the fact that theoretical

reasoning alone is not sufficient to determine the suitability of a proposed mechanism

and may result in inadequate explanations and circular reasoning. As stated above, we

have identified the approach utilized in Šimko (2009) and related work as a particularly

apt methodology for implementing efficiency principles, and we will consequently adapt
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it to the modeling of suprasegmental speech timing phenomena. A concise review of

such phenomena is provided in the subsequent chapter of this work.



Chapter 3

Suprasegmental Speech Timing

3.1 Introduction

In this chapter, we shall present a concise review of results from research on supraseg-

mental speech timing, in order to obtain an overview of the phenomena that need to

be accounted for by our model. As for the definition of the term “suprasegmental”, we

adopt a formulation from (White 2002:6): suprasegmental timing effects are “those that

arise from the linguistic structure of a syllabified string”. White actually uses this def-

inition to denote suprasyllabic timing effects, while he refers to suprasegmental timing

effects as “those which result from the organisation of segments into a string of sylla-

bles” (2002:ibid.), including primarily lexical stress. We will conveniently subsume both

classes of effects under the cover term “suprasegmental”, as lexical stress is commonly

thought to apply to syllables, and we presume that it is perceptually established by

comparing the prominence levels of syllables in a sequence, alluding to Lehiste (1970)’s

classical definition of prosody. Quoting Klatt (1976), (White 2002:ibid.) states that

suprasyllabic (suprasegmental, in our terminology) timing effects fall into three cate-

gories: “boundary-related lengthening, lengthening due to prominence, and shortening

due to the phonological size of the constituent”. In this chapter, we will review cross-

linguistic evidence for these three classes of effects. Separate attention will, moreover,

be devoted to interactions of these effects with changes in overall speaking rate due to

different external conditions.

Our usage of the term “suprasegmental” may roughly be glossed as describing those

timing effects that apply at the syllabic level, and the model we are going to introduce

later will represent syllable durations. Many of the results we review in this section

are actually stated in terms of vowel rather than syllable duration. Yet, their common

characteristic, following from our above definition, is that they are hypothesized to

41



Chapter 3. Suprasegmental Speech Timing 42

be consequences of the suprasegmental organization of speech. We assume that by

and large, suprasegmental timing processes should have comparable effects on the net

duration of a syllable than on the duration of its nucleus, even if they may affect other

parts of the syllable to different degrees, or not at all.

Finally, it is important to note that the above categories of suprasegmental effects do

not apply to the description of all languages of the world. They are, in particular,

tailored to the description of stress-accent languages, which are defined precisely by their

usage of linguistically conventionalized prominence contrasts for expressing syntagmatic

relations between linguistic units (Hyman 2006). These categories do, for the most part,

not apply to tone languages, which utilize acoustically salient dimensions (in particular

F0) that would be employed for syntagmatic purposes in stress-accent languages mainly

for signaling paradigmatic contrasts between lexemes (Beckman 1986, Hyman 2006, Jun

2005).1 This review will consequently exclude purely tonal languages. Apart from

this distinction, we do not attempt at strict separation, however; for example, we will

consider evidence from French and Korean, which supposedly have neither stress nor

tone (Hyman 2006). Moreover, stress accent languages may or may not have lexical

pitch accents in addition to syntagmatic prominence relations (for example, Swedish

versus English, cf. Hyman 2006), but this will not concern us here. In any case, our

review cannot possibly be exhaustive cross-linguistically, and it will necessarily be biased

towards the well-researched languages, in particular English. We thus cannot claim that

the results we present are universals, but it should be possible to point out cross-linguistic

tendencies, and we will consider evidence from various languages wherever available.

3.2 Prominence Effects

3.2.1 Introduction

When we listen to a speech utterance, some of its parts seem to us to “stand out”

more than others. This phenomenon is commonly referred to as perceptual prominence.

Following Wagner (2002), we define it as the gradually perceived strength of a syllable

or a larger prosodic unit relative to its environment. Although this definition makes

prominence an inherently perceptual phenomenon, a large body of research has shown

that it correlates robustly with acoustic parameters of the speech signal: prominent units

in speech tend to be marked by enhancement of various intonation-related parameters,

1This explanation simplifies things somewhat. For example, prominence relations between words may
be expressed by prosodic means even in tone languages (Xu 1999). In any case, we want to exclude tone
languages from consideration because we believe that any satisfactory model of these languages must
take tonal (i.e., F0) properties into account, whereas our model will exclusively focus on timing.
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increased vowel space, intensity, and, crucially for the present study, duration (e.g. Fant

and Kruckenberg 1989, Fry 1958, Heuft et al. 2000, Streefkerk 2002). These parameters

may be employed for signaling prominence to different extents in different languages

and contexts. For the present discussion, it will be sufficient to note that increased

duration has been established as a reliable correlate of prominence in various languages

(cf. references in Wagner 2002).

In stress-accent languages, some prominence distinctions have become conventionalized

in the linguistic system. One such distinction is lexical stress: in these languages,

every content word typically contains one dominantly prominent syllable. Moreover,

many languages employ differences in relative prominence not only between syllables

in a word, but also between different words in a phrase or utterance. In particular,

there is often one dominantly prominent word within some larger prosodic domain, such

as the intonational phrase (Wagner 2002). This word is typically marked by placing

a pitch accent, that is, a local maximum in the F0 contour of the utterance, on the

primary stressed syllable, but also by a durational increase of the word or parts thereof,

as will be examined below. We shall employ the general term accent to refer to this

notion of prominence. No more fine-grained differentiation on linguistic grounds will

be attempted, as the model we are going to introduce will be rather simple and largely

agnostic to such differentiations.

In the discussion of Aylett and Turk (2004) in the preceding chapter, we already hinted

at the importance of prominence patterns for the structuring of information in speech.

On this view, rendering a linguistic unit prominent relative to its context may be un-

derstood as a strategy employed by speakers to draw the listener’s attention to this

unit because it transmits particularly important information. This perspective is most

straightforwardly demonstrated for accent: accentuation typically coincides with the

part of the message that the speaker considers to be most important in the context

in which the utterance is produced, often coinciding with new information. Thus, the

utterance Tim ate some BREAD yesterday (with capitalization indicating accentuation

of bread) would be expected as an answer to the explicit or implicit question what it

was that Tim ate yesterday; that it was bread is the new information. Bread is there-

fore highlighted by accentuation against the rest of the sentence, which is given by the

preceding discourse context.2 By contrast, shifting the accent, or reallocating the focus

(Bolinger 1958, Ladd 2008) of the utterance to yesterday would be expected in a context

where it is already established that Tim ate bread and it has been asked explicitly or

implicitly when this has happened. As for lexical stress, a similar argument may be

deployed based on the cross-linguistic observation that stress tends to fall on the root

2The same accent pattern would be used if all the information in the sentence were new, a situation
referred to as broad focus or citation form (Wagner 2002).
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morpheme in morphologically complex words (Echols and Newport 1992). Perhaps more

importantly, the existence of a more or less regular patterning of prosodically strong and

weak elements in speech provides listeners with potential cues for word segmentation,

even though they do not necessarily make use of this information (Cutler and McQueen

2014 and references therein). Some languages also employ stress placement in minimal

stress pairs, i.e., to distinguish between segmentally identical lexemes such as OBject

and obJECT in English.

This functional perspective on prominence lends itself well to interpretation within H&H

theory. On this view, the greater prominence of some syllables and words in relation

to their environment may be seen as a consequence of a greater demand for percep-

tual clarity, so as to ensure that these important items are successfully communicated.

This has been explicitly argued by De Jong (1995) in his account of prominence as

“localized hyperarticulation”. Alluding to the notion of “sufficient contrast” in H&H

theory, De Jong, hypothesizes that prominence should increase various types of phone-

mic contrasts, which is exactly what he finds in his articulatory study: stressed syllables

involve not only longer, faster and greater jaw movements than unstressed ones, but also

enhanced distinctions such as backness and roundedness in vowels. Other studies have

reported some evidence supporting this claim for linguistically meaningful contrasts such

as distinctive vowel quantity (De Jong 2004 for English, Heldner and Strangert 2001 for

Swedish) or postvocalic voicing (De Jong and Zawaydeh 2002 for English, but not for

Arabic). In the following review, we will encounter one more example of this kind,

enhancement of lexical stress contrasts in accented environments.

3.2.2 Review

A large body of research shows that in many languages, segments in lexically stressed

syllables are longer than in unstressed syllables, ceteris paribus, although the magnitude

of stress-induced lengthening may vary cross-linguistically (e.g. Delattre 1966, Lehiste

1970, Prieto et al. 2012). De Jong (1995) calls for caution in making such comparisons

in some languages, notably English, in which stressed and unstressed syllables tend to

exhibit vowel quality differences, with unstressed vowels being typically more central-

ized. Yet, we would argue that this is a direct consequence of stress, rather than a

confound. Moreover, studies featuring control for vowel quality differences document

reliable durational effects of stress (e.g. Okobi 2006, van Santen 1992 for English). A

further problem present in many older studies is that stress and accent have often not

been properly disentangled – if the effect of stress is investigated in sentences of the Say

X again type, as has often been done, the target word is likely to bear a nuclear accent,
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hence the data do not reveal anything about stress effects in unaccented contexts. Stud-

ies that did account for these factors have provided evidence that stress is marked by

increased duration even in unaccented words (e.g. Cambier-Langeveld and Turk 1999,

Okobi 2006, van Santen 1992 for English, Sluijter and Van Heuven 1996 for Dutch, Dogil

and Williams 1999 for German, Heldner and Strangert 2001 for Swedish).

In polysyllabic words, listeners tend to perceive secondary stress, that is, additional

subordinate prominences besides the main stress in many languages. Results regarding

durational consequences of secondary stress are mixed. Findings from reiterant speech

studies, in which subjects were instructed to produce repetitive syllable sequences with

stress patterns of existing words, suggest that secondary stress is marked only by some

speakers in American English (Nakatani et al. 1981) and Indonesian (Adisasmito-Smith

and Cohn 1996), whereas it seems to be consistently marked in Dutch (Rietveld et al.

2004). As for American English, evidence for secondary stress marking comes from the

corpus analysis by van Santen (1992): controlling for vowel and postvocalic consonant

identity as well as within-word position, he finds that speakers do lengthen secondary

stressed relative to unstressed vowels in accented and unaccented words. Kleber and

Klipphahn (2006)’s production study with stressed, secondary stressed and unstressed

vowels from word-initial syllables with matching onset and coda consonants does not

suggest durational consequences of secondary stress in German.3 In a similar study on

American English, Plag et al. (2011) find no durational differences between primary

and secondary stressed English vowels in both accented and unaccented contexts. No

comparison with unstressed vowels is attempted in this study, but since the lengthening

of primary stressed relative to unstressed vowels in English is well-established, it may be

conjectured from its result that secondary stressed vowels are also lengthened relative

to unstressed ones.

Much research has been devoted to stress shift, the hypothetical tendency of speakers to

change prominence patterns of words in order to avoid adjacency of stressed syllables, as

in the case of thirTEEN, which supposedly becomes THIRteen in the phrase THIRteen

MEN (capitalization indicates stress placement). However, evidence from English sug-

gests that stress shift, if it occurs, seems to be a primarily perceptual phenomenon with

very little acoustic consequences (e.g. Grabe and Warren 1995). Vogel et al. (1995) do

find a subtle durational effect: -teen in the above example is slightly shorter in a stress

shift context than in a context that does not trigger stress shift.

3A possible issue with this study is that in more than half of the test items, the secondary stressed
vowel comes from a longer word than the unstressed vowel. As we will see later, vowels are shorter in
longer words if they are accented, which is likely to be the case in Kleber and Klipphahn (2006)’s data,
given their use of Say X again-type carrier sentences. Durations of secondary stressed vowels may thus
be biased downward in this study.
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The remainder of this review will be concerned with phenomena related to accent. As

outlined above, we define accent as the dominant prominence of a particular word relative

to other words within a larger prosodic domain. A large body of research indicates

that words are longer when they are accented than when they are not (e.g. Cambier-

Langeveld 2000 for Dutch and English, Heldner and Strangert 2001 for Swedish, Dogil

and Williams 1999 for German, Botinis 1989 for Greek, Ortega-Llebaria and Prieto

2011 for Spanish and Catalan). Most of these studies have utilized controlled reading

paradigms, triggering accentuation or deaccentuation of a target word by capitalizing

either the word itself or other words in the surrounding carrier sentence in reading

materials given to subjects. We deem it irrelevant for the present purpose whether

accentual lengthening is a purely mechanical consequence of the need to accommodate

the pitch movement typically found in accented words, or an independent effect (cf.

White 2002 and references therein). Suffice it to note that accentual lengthening is a

consequence of prominence, whether it is mediated by pitch movement or not.

So far, we have been referring to accent as word prominence, but mixed results have

been reported as to which parts of an accented word actually undergo lengthening. Turk

and Sawusch (1997) report lengthening of the stressed syllable and following, but not

preceding unstressed syllables in accented words in English, whereas Turk and White

(1999), Cambier-Langeveld and Turk (1999) and (White 2002) report lengthening of all

syllables in accented words in English, and Cambier-Langeveld and Turk (1999) observe

this also for Dutch. Heldner and Strangert (2001) reports that in Swedish, only the

stressed and the immediately following unstressed syllable are lengthened in accented

words. Complex patterns may arise in very long words: Suomi (2007) observes no

significant accentual lengthening in final syllables of tetrasyllabic words with initial stress

in Finnish, and for English, Dimitrova and Turk (2012) find that only some locations

within tetrasyllabic words are lengthened. Word length may also be a factor in explaining

results from similar studies on German: Samlowski et al. (2014) find reliable accentual

lengthening only in the stressed syllable in tri- and tetrasyllabic words, and Dogil and

Williams (1999) reports no accentual lengthening at all in five-syllable words in German.

Thus, the generalization may be proposed that accentual lengthening affects a multisyl-

labic domain delimited by word boundaries, but not necessarily involving all syllables

in a word. The most important question for our review concerns the distribution of ac-

centual lengthening within this domain. Turk and White (1999) find varying degrees of

accentual lengthening in trisyllabic English words such as property : 23% in the (stressed)

initial, 11% in the medial, and 14% in the final syllable of the word, compared to the un-

accented baseline. This seems to suggest that position within the word, or lexical stress,

or a combination of both, may mediate accentual lengthening in English; however, the

authors rightly hesitate to make such claims, because the phonetic material is of course
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not the same in the three syllables. This is also the case in most of the other studies

reviewed above.

Comparing accentual lengthening in item pairs such as bake enforce and bacon force, Turk

and Sawusch (1997) and Cambier-Langeveld and Turk (1999) find that lengthening is

stronger and more consistent in word-final than in word-initial unstressed syllables in

English and Dutch. Comparisons between stressed and unstressed syllables are, again,

not possible because of segmental differences. The studies by Sluijter (1995) on English

and Sluijter and Van Heuven (1996) on Dutch allow for directly comparing the effect of

accent on stressed and unstressed syllable durations, by utilizing minimal stress pairs and

words composed of reiterant syllables such as “baba” in controlled reading experiments.

Generally, no significant interactions between stress and accent are found in these studies,

but this conclusion is based on omnibus ANOVAs on the combined datasets. Once

within-word position is controlled, a complex picture emerges (cf. Cambier-Langeveld

and Turk 1999): in word-initial position, lengthening percentages for stressed syllables

are between two and three times as large as for unstressed syllables. In contrast, the

proportional effect of accent in word-final position is roughly the same in stressed and

in unstressed syllables. Referring to earlier proposals (Klatt 1976, Nooteboom 1972),

Sluijter and Van Heuven (1996) suggest that prominence-induced lengthening becomes

weaker in the presence of final lengthening in order to prevent the syllable from exceeding

a hypothetical upper duration boundary.

This explanation would suggest that accentual lengthening interacts with stress and, ad-

ditionally, with word-final lengthening: stressed syllables are lengthened more strongly

in accented words than unstressed syllables, but this difference diminishes in word-final

position. However, an alternative explanation is conceivable: since accentual length-

ening is approximately similar percentage-wise in word-initial stressed and word-final

unstressed syllables, results reported so far are also consistent with the hypothesis that

accentual lengthening just spreads rightward from the stressed syllable onset, affecting

all syllables equally regardless of their stress status, whereas there is only some residual,

“spill-over” lengthening to the left of the stressed syllable onset. Turk and White (1999)’s

finding of approximately twice as much accentual lengthening in a word-initial stressed

than in following unstressed syllables in English argues for inherently stronger accen-

tual lengthening in stressed than in unstressed syllables, as do Heldner and Strangert

(2001)’s Swedish data and findings on Romanian by (Manolescu et al. 2009); yet, in

these studies, phonetic materials are not identical in stressed and unstressed syllables.

The corpus study by van Santen (1992) supports the view that accentual lengthening

affects stressed vowels inherently more than unstressed ones. van Santen (1992) analyzes

vowel durations from utterance-medial words produced by two speakers, controlling for
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vowel identity, post-vocalic consonant and within-word-position. The central finding

is that once these factors are controlled, stressed vowels are on average 39% longer in

accented words, but only 22% longer in unaccented words than unstressed vowels. which

suggests . From these figures it can be calculated that accentual lengthening is some

15% stronger in stressed than in unstressed vowels. Similar results have also been found

in an experimental study of bisyllabic words consisting of reiterant syllables in Greek

(Botinis 1989).

These studies thus do not suggest that accentual lengthening in stressed and unstressed

syllables is similar in word-final position. A possible issue with van Santen’s analysis

is that he does not report cell frequencies. In particular, since the majority of lexical

words in English have initial stress (Cutler and Carter 1987), one might suspect that

there are not many observations for polysyllabic words with stress on the final syllable

in an unbalanced database such as the one utilized by van Santen. As samples sizes are

even further reduced by the author’s data partitioning techniques, it is possible that van

Santen’s failure to find an interaction between stress, accent and word-final lengthening

is due to lack of statistical power. In any case, this explanation does not apply to the

study by Botinis (1989), which is similar in design to those by Sluijter (1995) and Sluijter

and Van Heuven (1996). Given this state of matters, one might tentatively conclude that

there is a cross-linguistic tendency for accentual lengthening to be stronger in stressed

than in unstressed syllables, with word-final position as a possible complicating factor

in some languages.

One language for which this relationship does not seem to hold, however, is Spanish.

Ortega-Llebaria and Prieto (2011) investigate durational effects of stress and accent in

Spanish and Catalan, using minimal stress pairs in these languages. The authors do not

report interactions between both effects explicitly, but graphical presentation of results

suggests that whereas Catalan follows the pattern reported for other languages, Spanish

does not. Data presented in Kim (2011) also suggest a simple additive combination of the

lengthening effects of stress and accent in Spanish. The difference between Spanish on

the one and Catalan and English on the other hand would appear to suggest that vowel

reduction in unstressed syllables may be a relevant factor. Indeed, spectral reduction

of unstressed vowels has also been reported for Greek (Fourakis et al. 1999), which

patterns with English and Catalan regarding the stress-accent interaction. It would

be an interesting perspective to investigate this possible connection in a larger cross-

linguistic study.4

4Okobi (2006) reports on a study of stress correlates in English that controls for pitch accent and,
additionally, explicitly examines full vowels in unstressed syllables. Unfortunately, the author reports
durational results only in terms of differences between vowels within the same target word, which makes
it impossible to assess possible stress-accent interactions.
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Another factor that has been found to influence the distribution of accentual lengthening

is the length of the accented word, in terms of the number of syllables. For example,

Turk and White (1999) find that accentual lengthening of the primary stressed syllable is

larger in both absolute and proportional terms in monosyllabic (e.g. “BAKE enforce” vs.

“bake ENFORCE”) than in bisyllabic target items “BAC on force” vs. “bacon FORCE”).

Total syllable duration is also greater in the monosyllabic than in the bisyllabic condition.

The same pattern of results is reported by White (2002): all constituents of the primary

stressed syllable are lengthened less strongly by pitch accent if the word contains more

syllables. The same applies to the duration of unstressed syllables immediately adjacent

to the stressed syllable in the bi- versus trisyllabic condition, such as /-@n/ in mason

versus masonry and /k@-/ in commend versus recommend. These findings suggest inverse

relationships between word length and durations of syllables in accented words. Such

inverse relationships have been taken to support broader claims about the temporal

organization of speech, which will be discussed at length in a subsequent section of this

chapter. For the moment, we may note that the relationship between the strength of

accentual lengthening and word length may offer an explanation for the negative findings

on accentual lengthening in very long words discussed above.

3.2.3 Summary

We have seen that prominence is robustly signaled by timing contrasts in many lan-

guages, at the word (stress) and at the phrase or utterance level (accent). As for accent,

the temporal lengthening effect is distributed over some larger domain, such as the word.

This lengthening is not uniformly distributed: It affects stressed more than unstressed

syllables, although differences may diminish in word-final position, possibly due to an

interaction with word-final lengthening. Moreover, the length of the domain seems to

play a role: accentual lengthening of individual syllables, as well as total lengthening of

the whole word diminishes in longer words, as will be discussed in more detail below.

Prominence is a particularly interesting phenomenon for this work, because its inter-

pretation as “localized hyperarticulation” suggests a straightforward implementation in

a H&H-based optimization account: prosodic prominence can be simulated in such an

approach by means of weighting factors that locally boost perceptual clarity. Whereas

the lengthening effects themselves will be obvious consequences of such a strategy, it will

be most interesting to see whether the stress-accent interaction described above will fall

out automatically from the modeling assumptions. The same goes for other interactions

involving prominence.
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3.3 Positional Effects

3.3.1 Introduction

The timing of suprasegmental units in speech is influenced not only by prominence, but

also by their position relative to other units. A large body of research has demonstrated

that boundary-adjacent lengthening is a pervasive phenomenon in speech: segments are

longer if they appear close to the boundaries of certain larger constituents than when

they appear constituent-internally. In particular, final lengthening at various levels of

the prosodic hierarchy is well-documented. In this section, we shall review research on

the location and scope of these effects, as well as potential interactions with prominence.

Positional effects on speech timing have traditionally been explained as automatic con-

sequences of biomechanical properties of the human vocal tract. Lengthening at the end

of prosodic constituents in particular was hypothesized to stem from inertial properties

of the vocal tract muscles (e.g. Fowler 1990). On this view, final lengthening is inter-

preted as an instance of a hypothesized general tendency of motor systems to decelerate

towards the end of movement trajectories. Indeed, Edwards et al. (1991) observe that

the articulatory changes involved in final lengthening resemble those involved in the

reduction of overall speaking rate.

Proponents of a different position claim that final lengthening, like prominence, has a

primarily perceptual motivation, signaling upcoming boundaries to the listener. This

position is put forward by White (2014), who argues that final lengthening is actively

employed for linguistic purposes, although he does not rule out that it originates from

biomechanical properties of the speech organs. He does, however, refer to findings

showing that final lengthening actually has to be learned in the course of first language

acquisition (Snow 1994). Referring to this work, White brings up the possibility that

final lengthening “is therefore an acquired skill rather than a product of articulatory

constraints” (2014:39).

In a similar vein, Turk and Shattuck-Hufnagel (2014a) put forward the hypothesis that

boundary marking in speech may be related to language redundancy, comparable to

Aylett and Turk (2004)’s ideas about prominence structure discussed in Chapter 2:

they argue that dividing the speech stream into shorter phrases reduces uncertainty by

limiting the number of possible word boundary parses. On this view, constituent-final

lengthening would be interpreted as means of information packaging for the listener.

Finally, the “biomechanical” explanation draws much of its appeal from the idea that

final lengthening effects in speech are a specific instance of a general pattern in the

human motor system, but the generality of such a pattern may, in fact, be debatable: for
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example, Turk and Shattuck-Hufnagel (2015) find no evidence for series-final lengthening

in a finger wagging experiment. In view of this body of evidence, we consider the

“communicative” explanation of positional effects in speech to be more likely than the

“biomechanical” explanation, although no definitive verdict can be given at this point,

and as stated by White (2014), both accounts are also not necessarily mutually exclusive.

3.3.2 Review

One of the best-documented findings in speech timing research across various languages

is lengthening at the end of large prosodic constituents, such as phrases or utterances

Fletcher (2010). Klatt (1976) in his review of speech timing effects in English reports

that a vowel in a phrase-final syllable may be twice as long as the same vowel in non-

final position. This lengthening effect occurs before silent pauses, but also if the phrase

boundary is not followed by a pause. An important question that arises is which kind of

phrase triggers the effect. First, an utterance may be divided into prosodic and syntactic

phrases, which often but not necessarily correspond to each other; as for this question,

White (2002) and research reviewed therein suggests that it is the prosodic phrasing

that mediates syntactic structure and effectively triggers suprasegmental timing effects.

The question remains what type of prosodic phrase triggers final lengthening effects. Sev-

eral researchers have posited prosodic hierarchies, systems of successively larger prosodic

constituents nested within each other. Distinctions are made, for example, between the

phonological phrase, intonational phrase and the phonological phrase (Nespor and Vo-

gel 2007), or between minor and major intonational phrases (Selkirk 1986). We will

not dwell on these distinctions, because the model we are going to introduce below is

agnostic towards the phonological features that characterize different levels of prosodic

hierarchies. We simply note that prosodic phrases can be conceived as hierarchically

organized, which seems to be reflected by timing characteristics: stronger lengthening

effects are observed at higher-level boundaries (e.g. Wightman et al. 1992 for English,

Horne et al. 1995 for Swedish, Prieto et al. 2012 for English, Spanish and Catalan).

Whereas lengthening towards the end of phrasal units in speech is a probably universal

phenomenon, it is less clear if there is reliable word-final lengthening in the absence of

phrasal boundaries. The problem, as hinted at by Klatt (1976), is precisely that word

and higher-level boundaries are difficult to separate. Klatt (1976) reports mixed results

from earlier research for word-final lengthening in the absence of phrasal boundaries in

English and states that where lengthening effects are reported, they may be too small

to be perceptually relevant. The reiterant speech study by Nakatani et al. (1981) yields

evidence for word-final lengthening in American English even in the absence of phrasal
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boundaries. Caution may be warranted in drawing conclusions from this finding, how-

ever; it is not unlikely that speakers employ an exaggerated style of contrastive prosodic

marking in reiterant productions, and the authors also do not supply information on

the distribution of pitch accents in their data. Beckman and Edwards (1990) analyze

productions of non-phrase-final pop opposed versus poppa posed sequences produced by

five speakers of American English at different rates and find word-final lengthening only

in the slow rate condition and for some speakers.

The corpus analysis by van Santen (1992) does support word-final lengthening in the

absence of at least utterance boundaries in American English. As we have seen in the

previous section, Sluijter and Van Heuven (1996) invoke word-final lengthening as a

possible cause for differences in accentual lengthening in word-final syllables in Dutch

and English. A study on utterance-medial and likely nuclear-accented reiterant CVCV-

words produced by five speakers of Greek (Arvaniti 2000) provides evidence for word-final

lengthening of stressed, but not of unstressed vowels. However, no clear effect is dis-

cernible for syllable durations, due to mixed durational behavior of the onset consonant

/p/, depending on the vowel. The similar study by Botinis (1989), moreover, yields no

evidence whatsoever for word-final lengthening in stressed or unstressed contexts, re-

gardless of accentuation. Prieto et al. (2010) study identical syllables in word-final and

word-penultimate position in accented words produced in sentence contexts by speakers

of Spanish and Catalan and find no consistent evidence for word-final lengthening. In a

methodologically comparable study on Italian, d’Imperio and Rosenthall (1999), report

that at least in open syllables, vowels are actually shorter word-finally than elsewhere.5

This small survey suggests that word-final lengthening in the absence of higher-level

boundaries may occur in some languages, where it may be style- or speaker-specific, but

it not universally attested.

There is ample evidence for effects of initial position in certain prosodic constituents on

acoustic and articulatory characteristics of speech. These initial strengthening effects,

however, are quite different from effects at final boundaries of prosodic constituents,

as they are narrowly localized on word-initial segments, and do not usually trigger du-

rational effects at the scale of domain-final lengthening (see Cho et al. 2007 for an

overview). Moreover, initial strengthening does not necessarily surface in acoustic du-

rations. For example, Cho and Keating (2009) find clear effects of utterance-initial

position on electropalatography measures, but no effects on the acoustic durations of

word-initial nasals in American English, whereas different degrees of prominence are

clearly mirrored in acoustic durations. Although it qualifies as a suprasegmental effect,

we will therefore not consider initial strengthening in this work, assuming that this is a

5As for stressed vowels, van Santen and d’Imperio (1999) note that this may have to do with seg-
mentation criteria, as stressed vowels in word-final position are often heavily glottalized in Italian.
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task for fine-grained articulatory modeling. The remainder of our review of positional

effects in speech will be concerned with final lengthening at major prosodic boundaries,

without attempting to introduce fine-grained distinctions between boundary types.

Evidence from a number of languages suggests that final lengthening before major

prosodic boundaries is not limited to the syllable that is directly adjacent to the bound-

ary: stressed syllables undergo lengthening in utterance-penultimate or antepenultimate

position (e.g. van Santen 1992, White 2002 for English, Cambier-Langeveld 2000 for En-

glish and Dutch, Kohler 1983 for German, Nakai et al. 2012 for Finnish, Berkovits 1994

for Hebrew). Turk and Shattuck-Hufnagel (2007) observe that in American English, even

stressed vowels in tetrasyllabic words with initial stress undergo some lengthening if the

word occurs utterance-finally, whereas word-medial unstressed syllables in utterance-

final words do no undergo reliable lengthening. Results on final lengthening in syllable

positions not directly adjacent to the boundary may also be mediated by pitch accent:

for example, Cambier-Langeveld (2000) for English and Nakai et al. (2012) for Finnish

observe lengthening in utterance-penultimate stressed syllables only in unaccented con-

texts. Berkovits observes a small lengthening effect (9%) also in word-initial unstressed

syllables if a word with final stress occurs in utterance-final position, but it is not clear if

this difference reaches statistical significance. What the cited studies generally agree on

is that the magnitude of final lengthening decreases with distance to the boundary: for

example, van Santen (1992) reports between 65 and 93% lengthening of stressed vowels

in utterance-final syllables relative to comparable utterance-medial vowels, compared

to 25% lengthening in utterance-penultimate syllables. It is not known if utterance-

penultimate or -antepenultimate vowels are lengthened as well if there is yet a word

boundary between the target vowel and the end of the utterance.

The foregoing review has already hinted at possible interactions between final length-

ening and lengthening due to prominence. As for lexical stress, surprisingly few studies

have investigated this question in a controlled fashion. In his corpus analysis of Ameri-

can English by van Santen (1992) compares utterance-final lengthening in stressed and

unstressed vowels, controlling for the identity of the vowel and the postvocalic conso-

nant. He finds approximately similar lengthening ratios for both categories in utterance-

final versus medial position. One caveat is that this conclusion is based on 70 observa-

tions from two speakers. Moreover, all observations come from pitch-accented words, so

that inference about unaccented contexts is not possible. Nakatani et al. (1981) have

investigated the interaction of stress and final lengthening in American English in an ex-

perimental study on reiterant “ma” syllables, instructing speaker to produce them so as

to match the stress patterns of existing words. No statistical analyses are reported, but

graphical presentation of results suggest that the absolute amount of lengthening due

to lexical stress is roughly identical in phrase-medial and phrase-final position, which is
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compatible with van Santen (1992)’s data. No information on the distribution of pitch

accents is given. By contrast, Klatt (1976:1214) states that the stressed/unstressed du-

rational contrast in English is “largest in a phrase-final syllable”, but it is not clear what

data this statement is based on.

Campos-Astorkiza (2014) reports an experimental comparison of stressed and unstressed

vowel durations in word-final open syllables in phrase-medial versus phrase-final position,

produced by four speakers of Tuscan Italian. Her results suggest that unlike in American

English, the durational contrast between stressed and unstressed vowels is proportionally

greater in phrase-final than in phrase-medial position in Tuscan Italian, which is also

robustly observed for all four speakers. One caveat is that pre-vocalic consonantal

context is not completely uniform across stress conditions, but confounding effects due

to this source are probably small and unsystematic. Target vowels in this study are

highly likely to bear a nuclear pitch accent.6 The study on bisyllabic Hebrew words

with initial and final stress in utterance-medial and final position by Berkovits (1994)

also provides evidence bearing on the interaction between stress and final lengthening:

the nucleus of the word-final syllable is /I/ in both stress conditions, and since the

postvocalic consonant is always a voiceless stop, results for utterance-final lengthening

in word-final stressed and unstressed syllables are comparable. These data suggest that

proportional final lengthening in Hebrew, at least for this vowel, is greater in unstressed

than in stressed syllables, 57 vs. 38%.

The interaction between lengthening induced by boundary adjacency and accent, i.e.,

prominence at the phrasal level, has been investigated in more studies. Most of these

studies report duration measurements for entire words. For example, Cooper et al.

(1985) investigate the effect of “contrastive stress”, i.e., contrastive focal accent on word

duration in different utterance positions in American English. They make no effort

whatsoever to control for segmental differences or even syllable count in test words in

different positions, but since their study includes a variety of different materials, one may

assume that segmental effects should be more or less randomly distributed with regard

to utterance position. Their results suggest that contrastive focus lengthens words in

utterance-final position by roughly 17% on average, compared to approximately 40%

lengthening on average in other positions.

The above-mentioned study by Cambier-Langeveld (2000) documents an interesting dif-

ference between English and Dutch regarding the interaction of final and accentual

lengthening: in English, absolute final lengthening of word duration is equal in accented

and unaccented contexts. In Dutch, there is evidence for an interaction: accented and

unaccented durations converge in utterance-final position, i.e., there is no accentual

6Valentina Schettino is gratefully acknowledged for this native intuition.
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lengthening at all in utterance-final words. While English and Dutch differ in that abso-

lute accentual and final lengthening interact in the latter but not in the former language,

both languages are similar in that proportional accentual lengthening is stronger in non-

final than in final contexts, even though the difference is more pronounced in Dutch. As

for English, this conclusion is also supported by comparisons of accented and unaccented

materials in utterance-medial and -final position reported in White (2002).

Heldner and Strangert (2001) examine durational effects of focal accent in different

positions in Swedish utterances. Their results suggest that in contrast to English and

Dutch, proportional accentual lengthening of bisyllabic words in Swedish tends to be

somewhat stronger in utterance-final than in initial and medial position. Differences

are small, however, and reach significance only for one of two test words. No results

for individual syllables are reported. Results more in line with English and Dutch

are reported in Roosman (2006) for Betawi Malay and Toba Batak, two Austronesian

languages: using a methodology similar to that of Cambier-Langeveld (2000), the author

finds that final lengthening of bisyllabic words is slightly less pronounced if the target

words are accented. Complete absence of lengthening due to focus in utterance-final

position is reported for both real and reiterant words in Italian by Farnetani and Zmarich

(1997). Nakai et al. (2012)’ Finnish data suggest that proportional accentual lengthening

of stressed vowels in Finnish is somewhat stronger in utterance-medial than in final

position, whereas there are no differences between both positions for unstressed vowels.

There are, however, large individual differences between test items attributable to the

contrastive vowel quantity in Finnish.

3.3.3 Summary

Lengthening at major prosodic boundaries is a pervasive and probably universal phe-

nomenon in speech. Some cross-linguistic tendencies in the distribution of final length-

ening can be pointed out: it starts earlier than the syllable that is directly adjacent

to the boundary, possibly at the main stress of the last word in the utterance. Within

this domain, lengthening is progressively stronger towards the boundary, although there

is the possibility that unstressed syllables between the last prominence in the prosodic

domain and its boundary are “skipped” by final lengthening (Dimitrova and Turk 2012).

Our review suggests that in most languages, prominence and positional effects do not

enhance each other in the way different levels of prominence do: prominence effects on

duration tend to be proportionally weaker in boundary-adjacent than in constituent-

medial position, sometimes to the extent that durational contrasts due to prominence

are completely neutralized in constituent-final position. Thus, while we favor the hy-

pothesis that positional effects on suprasegmental speech timing are actively employed
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for communicative purposes in a fashion similar to prominence effects, the behavior of

both classes of effects is to be quite different, rendering it less obvious how positional

effects should be incorporated in the envisaged model of speech timing.

3.4 Constituent Length Effects

3.4.1 Introduction

In addition to effects of prominence and position, it has often been claimed that dura-

tions of syllables or parts thereof are influenced by the number of syllables included in

larger prosodic constituents. It is usually assumed that these relationships are of a com-

pensatory nature, such that syllables or vowels become shorter as the number of them in

a given larger constituent increases. We will refer to these effects as constituent length

effects.7 Constituent length effects are a natural prediction of theories which assume

that speakers attempt at regularizing the durations of certain prosodic constituents, in

particular the widely discussed isochrony hypothesis (Abercrombie 1967, Pike 1945). As

we shall see later, a number of explanatory accounts of constituent length effects have

been proposed; in particular, the empirical status of such effects is of crucial importance

for the currently most prominent class of explanatory computational models of supraseg-

mental speech timing, coupled-oscillator models. On the other hand, the existence of

the entire class of constituent length effects as an independent phenomenon has been

called into question in recent work (White 2002, 2014). In what follows, we will provide

a concise review of current research.

3.4.2 Review

The study by Port (1981) provides a classical, although by no means the earliest ex-

ample of investigations of constituent length effects and shall serve us for expository

purposes. Port reports measurements of stressed vowel duration in sentences such as I

say d[i:]p/d[i:]per/d[i:]perly every Monday. The sentences thus differ in the number of

unstressed syllables following the test syllable within the same word. Port reports the

duration of the vowel in the test syllable to vary inversely with the number of follow-

ing syllables in the word: the stressed vowel is shorter in bisyllabic (deeper) than in

monosyllabic words (deep), and shortest in trisyllabic words (deeperly). This inverse re-

lationship is asymptotic, i.e., the difference in stressed vowel duration is greater between

monosyllables and bisyllables than between bisyllables and trisyllables. Port reports

7In preferring this term over the widely-used term polysyllabic shortening, we follow White (2002),
who reserves the term polysyllabic shortening for constituent length effects at the word level.
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similar effects, though weaker in magnitude, also for the preceding and following stop

closure, indicating that the syllable as a whole is affected.

Similar studies using reiterant materials (Lindblom and Rapp 1975 for Swedish, Noote-

boom 1972 for Dutch) also allow for assessing the effect in unstressed syllables, where it

is less pronounced than in stressed syllables. Constituent length effects have been inves-

tigated in many studies using methodologies similar to the above ones (e.g. Klatt 1973,

Lehiste 1972 for English, Lindblom 1968, Strangert 1985 for Swedish, Braun and Geisel-

mann 2011, Farnetani and Kori 1986, Vayra et al. 1999 for Italian, Kohler 1983, Rietveld

1975 for German). These studies report similar asymptotic shortening of stressed vowels

or syllables as a function of the number of syllables in larger constituents.

However, White (2002), in his extensive review of earlier work on constituent length

effects, points out two major methodological shortcomings present in most previous

studies on the subject: first, most previous results are ambiguous on the question which

constituent is actually responsible for the shortening effect. For example, the effect

observed by Port (1981) could also be a consequence of the increasing syllable count

in the utterance rather than the target word, as it has been conjectured that speakers

talk faster in longer utterances (e.g. Klatt 1976, Lehiste 1972). Moreover, the above-

mentioned isochrony hypothesis posits that speakers of “stress-timed” languages such as

English attempt at placing stressed syllable onsets at temporally regular intervals. This

would predict that the shortening is triggered by the syllable count in the inter-stress

interval (ISI), here presumably ranging from the target syllable to the first syllable of

again, and thus largely overlapping with the target word. It is also not clear if adding

syllables before the target vowel in the target word would trigger any shortening. White

(2002)’s second and more important concern is that many previous investigations of

constituent length effects have failed to control for phrasal prominence: White notes

that the word containing the target syllable in Port (1981)’s study, as well as in most of

the other studies listed above, is likely to bear a nuclear accent. As we have seen, accent

seems to have durational consequences throughout the word, so that it is very likely to

interfere with alleged constituent length effects.

The study by Turk and Shattuck-Hufnagel (2000) avoids many of the design flaws present

in earlier studies of constituent length effects. The authors report vowel duration mea-

surements from ambiguous phonetic sequences such as tuna choir/tune a choir/tune ac-

quire produced utterance-medially in uniform carrier phrases by six speakers of American

English. Thus, they sidestep the need to introduce additional syllables, which would in-

crease syllable count in both the target constituent and the whole carrier sentence. Turk

and Shattuck-Hufnagel (2000) use capitalization of certain words in their experimental

reading materials to control accentuation of target items. This design enables them
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to manipulate word length exclusively and to assess possible interactions with phrasal

prominence. Turk and Shattuck-Hufnagel find that both the first and the last vowel in

the test sequence are longer in a monosyllabic than in a bisyllabic word – that is, /u:/

is longer and /aI/ is shorter in tune acquire than in tuna choir. Differences are greater

in accented contexts and if the stressed syllable is followed rather than preceded by an

unstressed syllable within the same word. Effects are generally rather small, amounting

to differences of roughly 10% in accented and less than 5% in unaccented environments.

These results suggests shortening as a function of syllable count in the word as a unified

explanation, with the qualification that adding syllables after the stressed syllable has

a stronger effect than adding syllables before it.

The study by White (2002), which we already briefly discussed in the preceding section,

is, in our opinion, the most carefully-designed investigation of constituent length effects

to date. It consists of reading materials such as the following (cf. White 2002:148;

target syllables are printed in italics; “left-headed” and “right-headed” denote words

with initial and final stress, respectively):

Left-headed +Accent: Left-headed -Accent:

I saw the MACE unreclaimed again I SAW the mace unreclaimed AGAIN

I saw the MASON reclaimed it all I SAW the mason reclaimed it ALL

I saw the MASONRY cleaned again I SAW the masonry cleaned AGAIN

Right-headed +Accent: Right-headed -Accent:

John saw Jessica MEND it again JOHN saw Jessica mend it AGAIN

John saw Jessie COMMEND it again JOHN saw Jessie commend it AGAIN

John saw Jess RECOMMEND it again JOHN saw Jess recommend it AGAIN

This experimental design allows for studying constituent length effects at the word level

beyond the mono-versus bisyllabic comparison. It also allows for examining effects on

the duration of the unstressed syllable added next to the stressed syllable between the bi-

and the trisyllabic condition, since its segmental makeup and context are kept constant.

Utterance length is kept constant by removing a syllable from another word in the

sentence for every syllable that is added to the target word. The length of the ISI is also

the same across conditions, presumably ranging from the test syllable to “-claimed” or “-

gain”, respectively in the above examples. Target words are in phrase-medial position, so

that there should be no interference from boundary-adjacent lengthening. White finds

that adding syllables either before or after the stressed syllable consistently shortens

stressed syllable duration if the word is pitch-accented. In the unaccented condition,
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word length only has a significant effect in left-headed words, and even there, it is

minute in absolute and proportional terms.

Based on these results, White (2002) argues that the effect in accented words is not

a constituent length effect in the sense of a tendency towards delimiting or equalizing

word durations, but rather follows from redistribution of accentual lengthening: “Be-

cause total lengthening is no greater in polysyllables than in monosyllables, the effect

on particular subconstituents is attenuated when the word contains more syllables”

(White 2002:3). White (2002) prefers to analyze the weak shortening effect of syllable

count in unaccented left-headed words as progressive word-final lengthening, although he

does mention the alternative possibility that the pattern indicates a genuine constituent

length effect in the “word rhyme”, the interval between the stressed syllable onset and

the right word boundary. He concludes by suggesting a model of speech timing that

consists exclusively of localized lengthening effects at the heads and edges of prosodic

domains (stress, accent, final and initial lengthening at various constituent boundaries).

The status of genuine constituent length effects in such a model would be “at best,

marginal” (White and Turk 2010:469).

Studies on other languages with similar control of durational factors such as accent

support White (2002)’s conclusion. Suomi (2007) reports duration measurements on

vowels from mono- to tetrasyllabic accented and unaccented words in utterance-medial

position, produced by six speakers of Finnish. He observes large differences between

vowel duration in mono-versus polysyllabic words in some cases, especially in the ac-

cented condition (which would be explicable as a word-final lengthening effect), but

very little evidence for differences in the direction of a constituent length effect beyond

this comparison. Siddins et al. (2013) replicate White (2002)’s second experiment with

German materials and six speakers. They report the same pattern of results, with the

exception that in German, there seems to be no evidence whatsoever for a constituent

length effect in unaccented words. It may be noted that an earlier study on German by

Kohler (1983) does provide some evidence for shortening of stressed vowels by following

unstressed syllables within the word and also across the right word boundary, but as

this study is based on data from a single speaker – the author himself – caution may be

warranted in interpreting its result.

White also addresses the question of constituent length effects at the utterance level,

by including a series of test sentences with increasing syllable count while keeping the

target word constant. It has sometimes been hypothesized that speakers talk faster in

longer utterances (e.g. Klatt 1976, Lehiste 1972), but White finds no evidence for this

claim and concludes that alleged constituent length effects at the utterance level are

likely to be spurious. This conclusion is in line with results from an earlier experimental
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study by Flege and Brown Jr (1982) on utterance-final productions of words composed

of reiterant syllables in utterances of different length by eight speakers of American

English. No effects of utterance length on stressed or unstressed vowel durations are

reported in this investigation. The study by Hakokari et al. (2008) on two Finnish

speech corpora complements this picture: the authors find weak but significant negative

correlations between utterance length and segmental durations, which, however, vanish

once utterance-initial and -final segments are removed from the analysis. The most likely

explanation is that the apparent correlation between utterance length and segmental

duration is a trivial consequence of the fact that utterance-initial and final phones, which

are subject to boundary-adjacent lengthening, make up for a larger proportion of the

total number of phones in short than in long utterances. On the other hand, van Santen

(1992) does observe a correlation between utterance length and speaking rate whilst

controlling for final lengthening. Yet, there may be other confounding factors involved

in this finding; for example Crystal and House (1990) in a similar analysis report that

a large portion of the durational variance attributed to utterance length is actually

accounted for by the proportion of stressed syllables in the investigated utterances, and

since van Santen (1992) does not report control for prominence in this analysis, it is

possible that a greater proportion of stressed observations in shorter utterances may be

responsible for his finding.

Some experimental results (Fowler 1977, Huggins 1975, Lehiste 1972, Van Lancker et al.

1988) suggest that stressed syllables in English are shortened by added unstressed syl-

lables across the following word boundary, which is not investigated in the Turk and

Shattuck-Hufnagel (2000) and White (2002) studies. For example, Fowler (1977) finds

fact to be longer in the FACT STARted the argument than in the FACT has STARted

the argument (stressed syllables in capitals). Such findings are compatible with a con-

stituent length effect at the ISI level; however, White (2002) in his review notes that

these studies do not provide evidence for any effect beyond the comparison between

mono- and bisyllabic ISI, and reanalyzes it as “stress-adjacent lengthening”: word-final

stressed syllables are longer when followed by a stressed than when followed by an un-

stressed syllable. Shattuck-Hufnagel and Turk (2011) observe some evidence for an effect

beyond this comparison in an analysis of stressed vowel duration in limerick stanzas pro-

duced by speakers of English. However, the effect varies across speakers and contexts,

and the ecological validity of results from poetic speech, where speakers may put special

emphasis on regularity, is arguably limited. Pamies Bertrán (1999) reports experimen-

tal results on potential influences of the number of following unstressed syllables on

word-final stressed vowel duration from Spanish, Catalan, Portuguese, English, French,

Italian, and Russian. The study features controlled materials (even though phonological
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environments are not always held entirely constant) and several speakers for each lan-

guage. Pamies Bertrán finds no evidence whatsoever for shortening of stressed vowels

by the number of following unstressed syllables across the word boundary in any of the

investigated languages.

In his corpus study of American English, van Santen (1992) investigates effects of four

constituent-length variables on vowel duration: the number of following as well as pre-

ceding syllables in the word and in the ISI. His analyses are restricted to accented

utterance-medial words, controlling for vowel identity and phonological environment.

The values of the respective other three experimental variables are also held constant in

each of the four analyses. Results of this controlled analysis suggest that only one of the

experimental variables, the number of following syllables in the word, exerts shortening

on vowels. van Santen (1992) adds the revealing comment that syllable count in the

ISI does seem to exert a shortening effect on vowel duration if the location of a vowel

relative to the following word boundary is not controlled. This result casts doubt on

positive findings for a constituent length effects at the ISI level in English reported in

other corpus studies (Bouzon and Hirst 2004, Campbell 1988, Kim 2006, Krivokapić

2013, Williams and Hiller 1994), who have not controlled their data with equal rigor.

As we said earlier, a general caveat about van Santen (1992)’s study is that his findings

are restricted to data from two speakers, and to vowels from accented words, and a

possible downside of his very careful data partitioning technique is that it presumably

leads to rather small cell sizes, which may lead to issues with statistical power. Moreover,

the question remains how to interpret the shortening effect of the number of following

syllables in the word on vowel duration. In the review of similar findings by White

(2002), we already hinted at the alternative possibilities of “word-rhyme compression”

and progressive word-final lengthening. Neither van Santen (1992)’s nor White (2002)’s

study offers a definitive answer to this question.

3.4.3 Summary

Constituent length effects in speech are widely supported, but their interpretation is not

straightforward. What most studies do agree on is that such effects are reliably observed

in words that bear a pitch accent. In unaccented contexts, there is less unambiguous

evidence for such effects, and when they are observed, they are very weak in magnitude.

The most in-depth study of such effects, White (2002), argues that constituent length

effects are an artifact of phrasal prominence, but White’s results do not completely rule

out the possibility that such effects exist independently of prominence at the phrasal

level. As we hinted at earlier and will investigate in more detail in Chapter 4 of this work,
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various explanatory accounts of constituent length effects in speech have been posited.

In a later part of this work, we will therefore report on an empirical investigation of such

effects, which aims at answering open questions in this regard that have been posed by

previous studies.

3.5 Effects of Overall Speaking Rate

3.5.1 Introduction

In this section, we will discuss effects of external conditions on suprasegmental timing

patterns in speech. Speakers may change overall speaking rate, for example when being

under time constraints, and such changes are reliably reproduced under experimental

conditions (Xu 2010). Likewise, global variation on the H&H scale has been shown

to influence global speaking rate: one of the most robust findings from studies that

elicit “clear”, listener-oriented (and thus, by hypothesis, hyperarticulated) speech is

reduction of speaking rate in clear compared to normal conditions (e.g. Baker and

Bradlow 2009, Picheny et al. 1986, Smiljanić and Bradlow 2005). The same has been

found of Lombard speech, i.e., speech produced in noise (Šimko et al. 2014a and references

therein), and for child-directed speech (Gallaway and Richards 1994). In any case,

variations in speaking rate due to different causes may not be uniformly distributed

throughout the speech signal, but interact with other timing effects. Consequently, we

will consider studies of prominence and positional effects that examine speaking rate

changes due to (experimentally induced) time pressure or global H&H variation an

additional variable.

3.5.2 Review

Some controlled phonetic studies have investigated the durational interaction between

prosodic prominence and speaking rate, by having subjects read sentences including

target items that differ only in prominence level at different rates. Results are generally

in agreement, with one notable outlier: Fourakis (1991) for American English, Fourakis

et al. (1999) for Greek, den Os (1988) for Dutch (but not necessarily for Italian, where

evidence seems to be inconclusive) and Nadeu (2014) for Spanish and Catalan find

that stressed vowels shorten proportionally more than unstressed vowels in fast speech.

By contrast, one experimental study on Dutch, Janse et al. (2003), reports stronger

shortening of unstressed than stressed vowels and syllables in fast speech.
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One methodological difference is that Janse et al. (2003)’s study alone differentiates

stress and accent. However, as they report qualitatively identical results for the stressed-

unstressed comparison in accented and unaccented contexts, this difference is not a likely

cause for the different outcomes. Two methodological problems present in the Janse

et al. (2003) study may be more severe: first, while Janse et al. (2003) balance stress

position in the word and phonological vowel length, neither target vowel quality nor

phonological environments are matched across stress conditions. By contrast, the other

studies mentioned generally control for vowel identity and phonological environment

by utilizing minimal stress pairs or words composed of reiterant syllables. Second,

Janse et al. (2003) report assigning a default duration of 5 ms in cases where vowel

duration was found to be too short to be reliably measured in their fast condition. They

state that this was done in order to facilitate computation of fast/slow ratios for these

vowels, and they explicitly criticize den Os (1988) for disregarding unstressed vowel

tokens that were too short to be measured in their fast condition. If applied frequently,

however, this method may create markedly bimodal duration distributions, rendering

statistical analysis unreliable. Moreover, it may be hypothesized that at some point,

vowels are actually deleted in fast speech, so that discarding non-measurable tokens

would be justified.

For this to explain the difference between Janse et al. (2003)’s result and those from

other studies, one would have to assume that unstressed vowels shorten less strongly,

but are deleted earlier than stressed vowels. This may seem paradoxical, but it resonates

with the well-established intuition of incompressibility in speech timing, i.e., the idea

that there are lower thresholds to the durations of speech sounds for articulatory and

perceptual reasons (Klatt 1973). Unstressed vowels may be hypothesized to be already

closer to their compressibility threshold in slow speech than stressed vowels. This is

precisely the explanation Fourakis (1991) and Fourakis et al. (1999) suggest for their

finding of greater rate sensitivity of stressed than unstressed vowel duration: according

to this interpretation, stressed vowels are longer, and, hence, more compressible than

unstressed vowels. On this view, the hypothetical minimum duration would have to be

imagined not as a hard boundary, but rather as a point at which segments are deleted

rather than being subject to further gradual shortening. We will return to this idea

in the course of our modeling work. Without access to the original data, no definite

conclusion regarding diverging results on prominence and speaking rate is available; yet,

it may be noted that the majority finding of stronger rate sensitivity of more prominent

syllables also appears plausible given the observation that fewer syllables are perceived

as distinctly prominent in fast than in slower speech (e.g. Crystal and House 1990).

Interestingly, Janse et al. (2003) refer to H&H theory as an explanation of their results,
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arguing that stressed vowels shorten less strongly than unstressed vowels so as to pre-

serve the informationally most important parts of the signal. An alternative account

could be proposed based on the above considerations about incompressibility: stressed

vowels shorten more strongly than unstressed ones because they are longer and, hence,

there is “more room” for shortening without jeopardizing perceptual clarity. As a priori

hypotheses, both accounts are probably equally valid. As we said in the introduction to

this work, the theory needs to be implemented in order to determine which prediction

it really makes.

Some studies have investigated the influence of speaking rate on final lengthening at

major prosodic boundaries. Weismer and Ingrisano (1979) analyze data from different

renditions of the phrase “Bob hit the big dog” produced by three speakers of American

English at a “conversational” and a fast speaking rate. The authors report the phrase-

final word “dog” to be shortened by generally less than 20% on average in the fast relative

to the conversational rate condition, compared to 30–50% rate-induced shortening in

the other words in the test sentence. As for deriving conclusions about the interaction

between final lengthening and speaking rate, this study is obviously limited in that

segmental content and relative prominence levels of the individual words are generally

not controlled, but the words “bob” and “dog” may be roughly comparable, and in

any case, the large and robust difference lends confidence to interpreting the result. It

suggests that the duration of stressed monosyllables in American English is affected less

strongly by speaking rate in utterance-final than in non-final position.

The above-introduced study by Beckman and Edwards (1990) also investigates length-

ening of vowels at major intonational phrase boundaries under “fast”, “normal”, and

“slow” speaking rate. Results indicate that the absolute durational increase from “fast”

to “normal” tempo is roughly identical in phrase-final and non-final stressed vowels,

which would point to a proportionally greater effect of final lengthening in the fast con-

dition, in accordance with Weismer and Ingrisano (1979)’s results. One speaker even

shows greater absolute phrase-final duration in the “fast” than in the “normal” con-

dition. Results are inconclusive for the “slow” condition due to large between-speaker

variation. In addition to this, Beckman and Edwards (1990) is the only controlled study

we are aware of that examines final lengthening in unstressed vowels at different rates,

by measuring /@/ durations in poppa, posing versus pop, opposing sequences. Results

indicate that with the exception of one speaker, final lengthening in unstressed vowels

behaves differently under rate variation than in stressed vowels; final and non-final vowel

durations converge in progressively faster speech, indicating a proportionally weaker fi-

nal lengthening effect at fast rates in unstressed vowels. One caveat is that the non-final

baseline in these materials is, in fact, phrase-initial, which means that it may be subject

to prosodic timing effects as well.
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Berkovits (1991) investigates final lengthening in slow and fast versions of read sentences

in Hebrew, comparing target words in utterance-final and “phrase-final” position. In the

latter case, the finality is with respect to some syntactic phrase. Berkovits reports greater

target word duration in utterance-final than in phrase-final position in the fast condition,

whereas in the slow condition there is no evidence for utterance-final lengthening. This

result is open to multiple interpretations. It might be that there are really two processes,

utterance-final and phrase-final lengthening, which are not distinguished in slow, but

only in faster speech. Another possibility is that the difference between rate conditions

is a consequence of prosodic restructuring in the slow condition, such that “phrase-

final” and “utterance-final” in the slow condition really denote the same kind of phrase

boundary. Since no phrase-medial baseline condition is provided, it is impossible to

decide between these hypotheses. The study is also limited in that only two speakers

are included. Moreover, as target words are polysyllabic and results are stated in terms

of word duration, the exact domain of the final lengthening, as well as possible differences

between stressed and unstressed syllables remain unclear.

Cummins (1999) investigates the three-way interaction between accentual lengthening,

phrase-final lengthening and speaking rate in an experimental study with four speakers of

American English, eliciting speech materials with continuous rate variation. The general

conclusion is that final and accentual lengthening combine additively at all but extremely

fast rates, in line with other investigations of accentual and final lengthening cited above.

As for the influence of rate on evidence for final lengthening, results are not clear-

cut; all speakers show some tendency to proportionally increase final lengthening under

increasing rate, but individual results show that this trend may be reversed at extreme

rates. Cummins (1999)’s results, too, indicate that large between-speaker variation

characterizes the interaction between positional effects and speaking rate.

Smith (2002) investigates final lengthening at different rates in American English. The

author reports vowel duration measurements in stressed (and, presumably, pitch-accented)

monosyllables in phrase-medial and final position in carrier sentences read by 15 speak-

ers at a slow and a fast speaking rate. Average proportional final lengthening is shown

to increase from 43% in the slow to 63% in the fast condition, and this trend is also con-

sistently observed for 13 of 15 speakers. Thus, Smith (2002)’s results support the earlier

findings by Weismer and Ingrisano (1979), suggesting that in contrast to what most

studies have reported for prominence-induced lengthening, final lengthening increases

proportionally in faster speech in American English. Cross-linguistic generalizations are

obviously not possible without data from other languages.

Of particular interest for our work are studies that have investigated temporal correlates

of global variation on the H&H scale, either by explicit instructions to subjects, or by
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creating external conditions that prompt a more listener-oriented speaking style. The

latter strategy in particular has been applied in various studies of Lombard speech, i.e.,

speaking in noise. As mentioned above, one of the most robust findings from these

studies is that “clear”, hyperarticulated or Lombard speech is characterized by decreased

speaking rate. Moreover, some studies have explicitly looked at influences of variation

on the H&H scale on suprasegmental timing contrasts. By hypothesis, one may expect

increased prosodic contrasts in more hyperarticulated speech, and this is indeed reported

in Fant et al. (1991b)’s preliminary study of text reading in Swedish at different reading

modes. The authors observe increased stressed-unstressed syllable duration ratios in a

“distinct”, hyperarticulated rendition of a text compared to the “normal” reading mode.

However, as this study examines nine sentences comprised of uncontrolled materials read

by a single speaker, it provides anecdotal evidence at best.

Cutler and Butterfield (1991) investigate stressed and unstressed syllable durations in

speech produced by ten speakers of British English, eliciting variation on the H&H scale

by first prompting subjects to produce experimental materials in a “natural” way, then

asking them to repeat the utterances under the impression that a listener in another room

had misperceived the initial renditions. Cutler and Butterfield (1991) analyze word-

initial stressed and unstressed syllables matched for segmental material and find that

the proportional increase in duration from the baseline to the clear condition is weaker

in stressed than in unstressed contexts.8 One potential caveat is that the phonological

context of the target syllables is not always matched across stress conditions.

Patel and Schell (2008) report measurements on speech data gathered in an interac-

tive game task under different external noise conditions from 16 speakers of American

English. They present results grouped according to grammatical function, indicating

strong increases in syllable duration in “agents”, “objects” and “locations” from quiet

to noisy conditions, compared to minimal increases in syllable duration in “functors”

and “modifiers”. No exact information on prosodic labels is given, it may be assumed

that content words such as “agents”, “objects” and “locations” tend to be prosodically

prominent, whereas function words such as “functors” and “modifiers” are not. Seg-

mental composition of the target items, moreover, is not controlled, but the variety of

materials lends some confidence to interpreting the result as tentative support for the

hypothesis that durational contrasts related to prosodic prominence increase in more

hyperarticulated, or, more precisely, lombard speech.

Cho et al. (2011) investigate the effect of prosodic focus on vowel and syllable duration

in Korean in “casual” and “hyperarticulated” speech. Analyzing test word produced in

8The authors actually refer to strong versus weak syllables. Inspection of experimental materials
suggests that this is entirely commensurate to the stressed/unstressed distinction in their study.
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uniform contexts by eight speakers under explicit instructions to speak “casually” and

“clearly”, they find that focus lengthens all parts of a word it applies to, and that this

effect is proportionally stronger in hyperarticulated than in casual speech. Interestingly,

vowels may even be shorter in the focus than in the non-focus condition in “casual”

speech. The study does not allow for conclusions as to lexical stress, as Korean is said

not to have lexical stress. The general result does support the assumption that prosodic

contrasts are enhanced in hyperarticulated speech.

Arciuli et al. (2014) investigate durational patterns of utterance-medial trisyllabic words

in lombard speech obtained from 27 speakers of Australian English. They do not re-

port individual duration measurements, but rather quantify durational contrasts within

target words using the Pairwise Variability Index (PVI), that is, the average difference

between pairs of adjacent syllable durations, which are normalized to the respective pair-

wise means. The authors find divergent results for words with different stress patterns:

words with initial unstressed syllables show a slight increase in durational contrast in

the lombard compared to the quiet condition, whereas the opposite pattern is observed

for initially stresses words. This study, too, offers limited potential for generalization, as

segmental materials are not matched across stress conditions. Moreover, raw duration

measurements would have been more informative than the reported PVI scores.

As for the interaction between H&H scale variation and lengthening at prosodic bound-

aries, Garnier et al. (2006) report a preliminary study on controlled materials read by a

single speaker of French in quiet and noisy conditions. Results suggest that the propor-

tional increase in duration from the quiet to the noisy condition is considerably greater in

utterance-final than in utterance medial syllables, whereas word-initial syllables undergo

the strongest lengthening in utterance-initial position. Both observations are consistent

with the hypothesis that prosodic contrasts are enhanced in hyperarticulated or lombard

speech, but single-speaker studies can of course only provide tentative insights. A re-

cent study of controlled materials produced by three speakers of Slovak under increasing

noise conditions (Beňuš and Šimko 2015) indicates very small durational effects in the

first place, and inconclusive evidence regarding a possible interaction.

3.5.3 Summary

Changes in overall speaking rate interact in interesting ways with the local effects of

prominence and position. As for experimentally-induced changes in overall speaking

rate, where the rate variation may be traced back to time constraints rather than com-

municative requirements, the majority of studies we reviewed here suggest that dura-

tional contrasts related to prominence effects diminish in faster speech, whereas final
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lengthening at major prosodic constituent boundaries seems to increase proportionally

in faster speech. As for speaking rate changes induced by global variation on the H&H

scale, results are inconclusive, perhaps because different methodologies (application of a

lombard signal versus explicit instructions to speak clearly) have been applied in differ-

ent studies. A general caveat is that phenomena related to rate and global H&H scale

variation are subject to strong inter-speaker variation. Especially in the case of H&H

scale variation, moreover, further empirical study on a larger sample of languages is

necessary to reach firm conclusions.

3.6 Overall Summary

In this chapter, we have reviewed evidence pertaining to suprasegmental speech timing,

from the categories of prominence effects, positional effects, constituent length effects

and effects of external speaking conditions. Based on this review, we can now formulate

a “requirements specification” of suprasegmental timing effects that the model to be

developed in the course of this work should account for. We hypothesize that constituent

length effects can be eliminated as an independent category, because the evidence for

these effects can be reinterpreted more convincingly as an epiphenomenon of prominence

effects, and we will substantiate this by any empirical investigation in the course of this

work. We close the chapter by presenting a concise list of the most important effects

and interactions, grouped by the three remaining categories.

• Prominence Effects

– Prosodic prominence is used in many languages to signal important units in

the speech signal. At least two linguistically relevant levels of prominence can

be distinguished: lexical stress, which refers to the enhanced prominence of a

syllable within a word, and accent, which refers to the enhanced prominence

of a word within a larger prosodic unit. Both effects are marked by increased

duration of the unit they apply to in many languages.

– When the lengthening effects of stress and accent interact, the result is not

simply additive lengthening: there is a cross-linguistic tendency for accent to

lengthen stressed vowels (and hence, by hypothesis, syllables) proportionally

more than unstressed vowels. This may not be the case in word-final position.

– The syllable count of accented words impacts their durational characteristics:

absolute and proportional accentual lengthening of the word as a whole as well

as of the component syllables/vowels diminishes in longer words. Absolute

syllable/vowel durations are also shortened as a function of word length in
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accented words, in an asymptotic fashion. This effect appears to be stronger

in stressed than in unstressed syllables/vowels.

• Positional Effects

– Syllables are lengthened at the end of large prosodic constituents, such as

phrases or utterances.

– This lengthening effect seems to be progressive, stretching from the last

stressed syllable of a prosodic constituent to its end, given that there is no

word boundary intervening. Lengthening is stronger the closer a syllable is

to the boundary, with the possibility that unstressed syllables are “skipped”

by final lengthening.

– in contrast to different degrees of prominence, prominence and positional

effects do not enhance each other when they occur in combination; prominence

contrasts seem to be proportionally weaker in constituent-final than in non-

final position.

• Effects of overall speaking rate

– Stressed vowels/syllables shorten more strongly than unstressed vowels/syl-

lables as overall speaking rate is increased, possibly due to incompressibility.

– Available evidence from American English suggests that final lengthening at

major prosodic boundaries increases proportionally under increasing speaking

rates in stressed vowels, whereas the opposite may be true for unstressed

vowels.

– Hyperarticulated/clear/lombard speech is characterized by decreases in over-

all speaking rate. Empirical evidence as to interactions with prominence and

positional effects is inconclusive.



Chapter 4

Explanatory Accounts of

Suprasegmental Speech Timing

4.1 Introduction

In this chapter, we shall review existing explanatory accounts of suprasegmental speech

timing. We have discussed some explanatory models of speech phenomena already in

Chapter 2, but none of these was concerned with suprasegmental timing effects. Here we

will focus mostly on implemented models, but also include some conceptual models in

the discussion, which so far have not been explicitly formalized. We will assess how well

these models account for the suprasegmental speech timing phenomena discussed in the

previous chapter, and, crucially, how well they fulfill the criteria for truly explanatory

accounts, i.e., independent motivation of the mechanisms employed.

4.2 Review

4.2.1 Oscillatory Models

Oscillatory models of speech timing conceptualize the hierarchy of prosodic constituents

in speech as an ensemble of periodic oscillators at different prosodic levels such as the

syllable, the foot, or the phrase The fundamental periods of the individual oscillators

represent the durations of the respective prosodic constituents. Oscillatory models hold

that, being nested within each other, oscillators at different prosodic levels impose mu-

tual constraints on their fundamental periods, which are modeled by coupling functions

that modify the oscillators’ natural frequencies. This way, interacting oscillators can

70
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generate complex timing patterns, even though oscillators in isolation produce simple

periodic movement. In particular, since coupling between adjacent levels can be asym-

metric, it is possible to model hypothesized dominant timing influences of individual

prosodic levels, such that oscillators at some prosodic levels may be more or less suscep-

tible to depart from their natural frequency than others.

We will discuss the seminal work on coupled oscillator models in speech timing, O’Dell

and Nieminen (1999) at some length here. The starting point for this work is the

long-standing controversy about the isochrony hypothesis. As we said earlier, the orig-

inators of this hypothesis (Abercrombie 1967, Pike 1945) claimed that there are some

units in speech which speakers tend to produce at temporally regular, or isochronous

intervals. For the “stress-timed” languages, notably English, it was hypothesized that

speakers attempt at producing stressed syllables at regular intervals. A second group,

the “syllable-timed” languages, was believed to exhibit a tendency to place all syllable

onsets at temporally regular intervals, regardless of syllabic stress (ibid.). Subsequent

research (e.g. Dauer 1983 and references therein) falsified the strong form of this hy-

pothesis; in particular, the duration of the inter-stress interval (ISI) was found to be

well approximated by a linear equation of the form

I = a+ bn (4.1)

where I is ISI duration, n is the number of component syllables and a and b are re-

gression estimates for intercept and slope, respectively (Eriksson 1991). Based on a

cross-linguistic analysis, Eriksson reports that, while b is close to 100 ms regardless of

the language under study, the value of the intercept term a varies in an interesting way,

clustering around 100 ms in the “syllable-timed” languages Spanish, Greek and Italian,

and around 200 ms in the “stress-timed” languages English and Thai.

O’Dell and Nieminen (1999) hypothesize that this pattern results from an interaction

between two oscillators at the syllabic and the ISI level. When viewed in isolation,

both would oscillate at constant frequencies, which would be tantamount to generating

isochronous syllables and ISI. In reality, however, isochrony at both levels cannot be

maintained, because ISI may contain different numbers of syllables. Simply put, both

oscillators have to settle for a compromise as a result: they need to entrain to a stable

pattern, such that the frequency of the faster oscillator is an integer multiple of the

frequency of the slower one, for any value of n, the number of syllables in the respective

ISI. O’Dell and Nieminen hypothesize that the distinction between “stress-timed” and

“syllable-timed” languages could be a matter of relative dominance in the interaction

between the two oscillators: a “stress-timed” language would be one in which the ISI
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oscillator1 is more “dominant”, i.e., more reluctant to depart from its natural frequency

whereas in a “syllable-timed” language, the syllabic oscillator would be the dominant

one.

We make no attempt to introduce the complete mathematical apparatus utilized by

O’Dell and Nieminen (1999), and instead refer interested readers to the original paper,

where the formal model is fully developed. Suffice it to say that the “compromise”

between the two oscillators is modeled by altering their natural frequencies ω1 (ISI) and

ω2 (syllables) by a coupling function, H, that is added with opposite signs to both ω1

and ω2, so as to produce the actual frequencies θ̇1 and θ̇2:

θ̇1 = ω1 +H(φn)

θ̇2 = ω2 − rH(φn)
(4.2)

H is a function of both the average phase difference (φ) between both oscillators and the

number of syllables n to be assembled in the ISI in question, i.e., the number of periods

of the syllabic oscillator to be nested within one period of the ISI oscillator. The relative

dominance of both oscillators is controlled by the relative coupling strength parameter

r: for r > 1, the influence of H is stronger on the syllabic oscillator ω2 than on the ISI

oscillator ω1 (r being 1 for ω1, by implication). This makes the syllabic oscillator less

reluctant to depart from its natural frequency and hence generates “stress timing”. For

r < 1, the reverse applies, generating “syllable timing”. Crucially, the period of the ISI

oscillator as a function of the number of component syllables n can be expressed as

T1(n) =
r

rω1 + ω2
+

1

rω1 + ω2
n (4.3)

It is easy to see that equation 4.3 has the same form as equation 4.1: the period of the ISI

oscillator is a linear function of the number n of periods of the syllabic oscillator nested

within it, with a positive intercept term for r > 0. In particular, the two fractions in

equation 4.3, which correspond to a and b in equation 4.1, only differ in the enumerator,

being r for the a and 1 for the b term. From this, it follows that the relative coupling

strength parameter r is equal to the ratio between intercept and slope (r/1 = r = a/b)

in a linear equation of this type, and thus can be estimated from empirical data. The

values of r calculated from Eriksson (1991)’s results would be approximately 1 (100/100)

for the “syllable-timed” and 2 (200/100) for the “stress-timed” languages. This shows

that it is possible to account for the difference between the two putative language classes

by assuming a dominant syllabic oscillator (r < 1) for “syllable-timed” and a dominant

1O’Dell and Nieminen use the terms “stress oscillator” or “stress group oscillator”. These terms may
be preferable to “ISI oscillator”, because the focus of the original idea was on periodicity of stressed
syllable onsets, rather than on isochrony of ISI as a linguistic unit. We shall nevertheless stick with our
term, for the sake of consistency.
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ISI oscillator (r > 1) for “stress-timed” languages. Thus, O’Dell and Nieminen’s model

of interacting oscillators at the syllable and ISI level generates the empirically observed

timing pattern of ISI duration as a function of the number of component syllables.

O’Dell and Nieminen (1999) emphasize the abstract nature of their model. Their elab-

orations suggest that it is not intended as a real-time production model of speech –

equation 4.3 makes a prediction for an isolated period of the ISI oscillator only, and it

is probably not straightforwardly adaptable to real-life utterances, i.e. sequences of ISI

with different n, where the oscillators would need to entrain to different frequency pat-

terns in real time. The authors discuss some modifications to the model. In particular,

they suggest using a “stress function” that slows down the syllabic oscillator at a par-

ticular phase of the ISI oscillator, so as to fit the greater duration of stressed compared

to unstressed syllables. They state that this would only add a constant value, so that

the general form of quation 4.3 would remain valid. Similarly, O’Dell and Nieminen

describe how different “syllable types”, presumably referring to something like sylla-

bles of different complexity, can be incorporated, by introducing separate a and b for

each syllable type, which would have to be summed throughout the ISI oscillator pe-

riod. Finally, the authors discuss the possibility of including further hierarchical levels,

hypothesizing oscillatory mechanisms at other levels of the prosodic hierarchy as well.

They demonstrate that this would result in a straightforward generalization, leading to

“an expression of the slowest (θ1) oscillator which is a linear function of all the numbers

of different subunits contained in it” O’Dell and Nieminen (1999:1078).

The model by O’Dell and Nieminen (1999) provides a highly ingenuous and elegant

account of the empirical data reported by Eriksson (1991). The crucial question is of

course, how realistic are the assumptions it is based on – as we said earlier, computa-

tional modeling can demonstrate that a putative mechanism is sufficient, but not that

it is necessary for explaining a particular phenomenon. One may note that a linear

equation of the form I = a + bn is a very simple thing to obtain, and there are prob-

ably many mechanisms that would account for it. A possible alternative, suggested by

Eriksson (1991) himself and discussed by O’Dell and Nieminen, is that the empirical

pattern is generated by a simple concatenative process, with the intercept a reflecting

the greater duration of stressed compared to unstressed syllables.2 Thus, the differ-

ence between “stress-timed” and “syllable-timed” languages might simply be a matter

of higher stressed/unstressed syllable duration ratios in the former, without any need to

posit interacting oscillatory mechanisms. This is of course not a necessary interpretation

either; it assumes that syllable durations are independent of n, but as demonstrated by

2This can be demonstrated as follows: assume that syllable durations are independent of n. Stressed
syllable duration S is identical to ISI duration I for n = 1 and thus can be calculated as S = a + b.
Unstressed syllable duration U can be calculated as I − S for n = 2, hence U = (a+ 2b) − (a+ b) = b.
Thus, a is the difference between stressed and unstressed syllable duration: a = S − b = S − U .
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Eriksson (1991) and, in fact, by O’Dell and Nieminen’s model itself, this need not be the

case. The point is that both hypotheses are equally valid a priori, and that independent

evidence needs to be considered to decide between them.

An argument for the “stressed/unstressed ratio” hypothesis is that it converges with

differences in language structure: “stress-timed” languages are characterized by fea-

tures such as complex syllables attracting stress and reduction phenomena in unstressed

syllables to a greater degree than “syllable-timed” languages (Dauer 1983). These differ-

ences alone would predict higher stressed/unstressed duration ratios, and thus greater

r values in “stress-timed” than in “syllable-timed” languages. Results by Fant et al.

(1991a) lend preliminary support to this view: these authors report virtually identical

coefficients for “stress-timed” English and “syllable-timed” French in regression analyses

of ISI duration on the number of phones in the ISI. This indicates that the difference

reported by Eriksson (1991) may be primarily a function of language structure, possibly

of greater differences in syllabic complexity between stressed and unstressed syllables in

“stress-timed” compared to ”syllable-timed” languages.3 O’Dell and Nieminen (1999)

cite Delattre (1966)’s finding of higher stressed/unstressed duration ratios in French

than in English as counter-evidence, but as Delattre himself acknowledges, this com-

parison is confounded by positional effects: “stressed” syllables in French are always

constituent-final, whereas only some stressed syllables are constituent-final in English.

O’Dell and Nieminen (2001) provide a more compelling argument against the view that

cross-linguistic differences in ISI duration are purely a function of language structure:

they describe a regression analysis of ISI duration on the number of component syllables

for a corpus of Finnish, yielding an estimate of 104 ms for the intercept term a. O’Dell

and Nieminen (2001) argue that this value cannot be explained by the difference between

stressed and unstressed syllable duration, which they report to be only 13 ms on average

in this database. This is certainly correct, but aggregate statistics over a whole corpus

do not provide much information about the exact reasons for this discrepancy. It is

conceivable that oscillatory mechanisms are responsible for the pattern of results, but

it could also be due to interactions with other timing phenomena. As the authors

themselves state (O’Dell and Nieminen 1999), durational processes inside the ISI need

to be investigated in order to assess the predictions of their model.

As for this question, the key feature of O’Dell and Nieminen’s model is that it naturally

predicts a constituent length effect at the ISI level. O’Dell and Nieminen (1999) report

3Fant et al. (1991a) do report markedly more “stress-timed” coefficients for Swedish. This, however,
may have to do with the particular system of word accents in this language, and in any case, it is not
clear why English patterns with French and not with Swedish under a stress timing account.
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that the fundamental period of the syllabic oscillator is given in their model as

T2 =
a

n
+ b (4.4)

Thus, the period of the syllabic oscillator – and, hence, syllable duration – decreases as a

function of n, particularly strongly for large a/b ratios, i.e., in “stress-timed” languages.

There is actually only one extreme possibility of generating no constituent length effect

at all, namely for a perfectly “syllable-timed” language, where syllables are isochronous

and hence a = 0. This is the case at least in the basic model, where the frequency

of the syllabic oscillator is assumed to be constant throughout the period of the ISI

oscillator. O’Dell and Nieminen explicitly cite findings on alleged constituent length

effects in support of their model, stating that “it has long been established that in

numerous languages compression does occur (in all syllables) as the number of syllables

increases” (1999:1076). As we have seen in Chapter 3, however, the existence of such

effects is far from “established”, particularly at the ISI level.

This state of matters challenges the coupled oscillator model. One might of course posit

a superordinate oscillator at some constituent level other than the ISI which shows more

evidence for “compression” effects such as the NRU or the accented word. However, this

would mean giving up on the model’s explanatory power regarding Eriksson (1991)’s

results on ISI duration.4 Moreover, while the coupled oscillator model was probably not

originally intended as a real-time production model, some of its appeal stems from the

intuition that a continuously oscillating device models a continuous train of time points,

namely stressed syllable onsets in an utterance. This intuition would no longer be valid

if a superordinate oscillator was posited at the level of the NRU or the accented word,

because utterances can generally not be exhaustively parsed into these units.

In O’Dell and Nieminen (2008), the authors state that “(b)y letting syllable frequency

vary during the stress group (with first syllable slower) while simultaneously letting the

relative coupling strength of the syllable increase without limit, an extreme case can

be achieved with all of the extra duration of the stress group concentrated in the first

syllable” (2008:183). The accompanying figure confirms that in this case, the model

would predict no compression at all as a function of n, corresponding to the simple

case of concatenating a stressed and shorter unstressed syllables. Thus, these additional

assumptions would allow the model to generate a pattern with no constituent length

effects at all, but one might ask what would be the benefit of invoking a mechanism as

complex as interacting oscillators for generating such a simple pattern. Moreover, with

4In fairness, since Eriksson (1991)’s regression results come from aggregated data from corpora, the
model prediction would probably remain statistically valid if an oscillator at the NRU rather than the
ISI level were assumed, as both units overlap to a large extent.
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this parameter setting, the relative coupling strength parameter r would obviously lose

its explanatory value, especially regarding cross-linguistic differences.

A further unsatisfactory aspect of the O’Dell and Nieminen (1999)’s model is its treat-

ment of prosodic prominence. As we have seen, greater duration of stressed compared

to unstressed syllables is achieved by invoking a “stress function” that slows down the

syllabic oscillator at a particular phase of the ISI oscillator. The motivation O’Dell and

Nieminen (1999) give for using this technique is a post-hoc one – the stress function

is included because stressed syllables are typically longer than unstressed ones – rather

than suggesting a principled explanation as to why this is the case. Thus, the oscillatory

model misses out on a well-established intuition, namely that the lengthening of stressed

syllables is connected to perceptual prominence, as detailed in Chapter 3. One might of

course motivate the stress function by arguing that the syllabic oscillator is slowed down

at a specific phase so as to meet the perceptual requirement of longer duration, but

there is no explicit perceptually motivated mechanism in the model that would account

for this lengthening. In any case, it is not clear whether the stress function adds any

explanatory value to the model. O’Dell and Nieminen report no such results in any of

their papers, which suggests that the stress function is essentially a data fitting device

with no explanatory value on its own. In the model we are going to advance in this

thesis, prominence is modeled by a principled mechanism that is informed by results

from speech perception research, and we will show that several effects of prominence on

speech timing emerge automatically from this feature of the model.

Saltzman et al. (2008) present a model designed to combine high-level prosodic oscil-

lators and task dynamics at the gestural level, in order to develop a unified account

of effects of prosodic structure on articulation. Their basic hypothesis is that planning

oscillators at higher prosodic levels drive temporal coordination at the gestural level.

As for modeling experiments, they concentrate on the suprasegmental domain and focus

on the predicted constituent length effect. Saltzman et al. (2008) report simulations

showing that their model produces shorter syllable durations in a tri- than in a bis-

syllabic ISI, but identify the problem that identical syllable durations are predicted for

a given ISI length. They attempt to remedy this situation by introducing a “temporal

modulation gesture”, which they use to slow down the syllabic oscillator for an individ-

ual period. While not mathematically identical, this technique is equivalent to O’Dell

and Nieminen (1999)’s “stress function”, and similar criticism applies to it: it improves

the fit to empirical data, but seems to add no explanatory value to the model, being

motivated post-hoc, rather than on independent grounds.

The main source Saltzman et al. (2008) cite for the ISI triggering a constituent length

effect is the corpus study by Kim and Cole (2005). This prompts them to introduce



Chapter 4. Explanatory Accounts of Suprasegmental Speech Timing 77

a further modification to their model, as Kim and Cole (2005) report shortening as a

function of the number of syllables in the ISI only for stressed, but not for unstressed

vowels. Leaving aside the question whether constituent length effects in general are real

this is debatable: authors of other corpus studies (Bouzon and Hirst 2004, Campbell

1988) do report shortening also in unstressed vowels, and Kim (2006), who provides a

more complete discussion of Kim and Cole (2005)’s data, reports significant shortening

of unstressed vowel duration as a function of the number of phones in the ISI. These

observations strongly suggest that shortening in unstressed vowels may just have been

masked by noise from other durational processes in Kim and Cole (2005)’s analysis.

Saltzman et al. nevertheless introduce another modification to their model in order to

accommodate Kim and Cole (2005)’s result: they modulate coupling strength ratio as

a function of ISI oscillator phase, effectively switching coupling between the oscillators

off during the unstressed part of the ISI, so that the unstressed syllable cycles are

no longer affected by the number of syllabic cycles within the current period of the

ISI oscillator. This technique has an even stronger ad-hoc flavor than the “temporal

modulation gesture”; it quite obviously “hardcodes” the pattern observed by Kim and

Cole (2005) into the model, without any motivation that is independent of the empirical

finding itself. O’Dell and Nieminen (2008:183) are quite right in pointing out that what

Saltzman et al. (2008) achieve is merely “to fit the model to empirical data”.

A device similar to Saltzman et al. (2008)’s temporal modulation gesture has been

applied to the modeling of boundary-adjacent lengthening in earlier work in Articulatory

Phonology by Byrd and Saltzman (2003). They propose a “π-gesture” that is not

directly related to any articulatory movement, but slows down the time flow during

utterance production at prosodic boundaries. π-gestures are implemented using half-

cosine functions, similar to the activation intervals of constriction gestures (i.e., those

gestures that instantiate actual articulatory movements) in this approach. The π-gesture

thus reaches its maximum amplitude at the boundary location and tapers off in a smooth

fashion to both sides of the boundary. The magnitude of the temporal modulation is

proportional to the gesture’s amplitude at any point in time. The authors state that this

device, beyond the obvious lengthening it triggers, reproduces specific characteristics

of boundary-adjacent lengthening in speech: articulatory gestures to both sides of a

boundary are lengthened; gestures overlap less in the vicinity of prosodic boundaries than

elsewhere; boundary-adjacent lengthening may affect gestures which are not directly

adjacent to the boundary, but the lengthening is progressive and affects gestures that

are directly adjacent to the boundary more strongly than farther removed ones.

One may wonder here as well about the independent motivation of the modeling tech-

nique. What external evidence is there to support the assumption that boundary-

adjacent lengthening is equivalent to slowing-down of the overall time flow in utterance
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production? For example, the prediction that boundary-adjacent lengthening is progres-

sive follows quite obviously from the decision to model the π-gesture with a half-cosine

shape, and as far as we can judge, this decision is supported only by an argument from

parsimony, namely Byrd and Saltzman (2003)’s reasoning that the π-gesture should have

similar mathematical properties as articulatory gestures. Yet, as discussed in Chapter 2,

the interpretation of boundary-adjacent lengthening is not straightforward, hence a more

speculative approach may be acceptable here. In any case, one problem for the π-gesture

approach is Turk and Shattuck-Hufnagel (2007)’s finding that phrase-final lengthening

may affect multiple non-adjacent locations in polysyllabic words. As discussed by Turk

and Shattuck-Hufnagel (2007), this would be problematic at least for the assumption

of a single π-gesture at a prosodic break. The problem may be rectified by assuming

multiple π-gestures at the locations affected by final lengthening, which, again, would

be a rather ad-hoc construct.

Barbosa (2007) presents an oscillatory model of speech timing in Brazilian Portuguese.

This model differs in some respects from the ones proposed by O’Dell and Nieminen

(1999) and Saltzman et al. (2008). In particular, it seems to be geared more strongly

towards descriptive purposes such as implementation in speech synthesis applications;

Barbosa actually reports fitting the period of the syllabic oscillator to empirical data

and discusses re-synthesis experiments with durations generated by the model. Yet, the

model rests on quite strong assumptions about speech production, and Barbosa claims

that his model provides a cognitively plausible account of speech timing.

Barbosa’s model features a syllabic and a phrase stress oscillator. The basic organiza-

tional unit in this model thus seems to be some kind of prosodic phrase that is delimited

by phrasal rather than lexical prominences, in contrast to the models reviewed above.

Moreover, implementation details differ, but in any case, the same basic assumption

applies: asymmetrical coupling between the phrase stress and the syllabic oscillator

leads to a more or less pronounced constituent length effect at the phrasal level, and

Barbosa explicitly refers to the distinction between stress timing and syllable timing as

motivation for this feature of the model. We are not aware of dedicated studies of con-

stituent length effects in phrasal units in Brazilian Portuguese, but given the empirical

status of such effects in general, as discussed in Chapter 3, skepticism may be warranted

concerning this prediction of the model.

In addition to the alleged constituent length effect at the phrasal level, Barbosa claims

that the model also provides an account of final lengthening: it features a durational

decay term that shortens syllabic cycles as a function of previous cycle durations, and

this term not present between a phrasal stress location and the end of a phrase. Hence,
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cycles of the syllabic oscillator occurring after the phrasal stress position will be length-

ened relative to others. Barbosa states that the decay term is instantiated “in order

to simulate the extended period of decay before duration increase towards phrase stress

position” and claims that this mechanism “would explain final lengthening” of the syl-

lables after the phrasal stress position (2007:733). These explanations strongly suggest

that the decay term is an ad-hoc functionality, similar to Saltzman et al. (2008)’s “cou-

pling strength modulation”, whose purpose is to improve the fit to empirical data. This

is of course completely acceptable for a descriptive model, but as there is independent

motivation neither for the decay term itself, nor for the decision not to include post-

accentual syllable cycles in it, we would argue that it does not provide a very convincing

explanation of final lengthening. Even if such considerations are left aside, problems

remain: the account of final lengthening as “absence of a pre-accentual decay term”

would appear to predict that if the accent happened to occur early in the phrase (as for

example due to an early contrastive focus), final lengthening would apply to all following

syllables and thus effectively to most of the phrase. This is rather unrealistic.

Despite these reservations, there are a number of interesting aspects to Barbosa (2007)’s

proposal. For example, in contrast to the models reviewed above, it makes use not only

of frequency but also of amplitude parameters of the oscillators. While Barbosa reports

no such attempts, utilizing oscillator amplitude could open up possibilities for more

satisfactory modeling of prosodic prominence and for generating predictions with regard

to different prominence levels. One interesting modeling result, finally, is reported on

simulations showing that a linear increase in syllabic oscillator period leads to a sudden

increase in variability and skewness of output duration distributions at some threshold

value. Barbosa interprets this outcome with regard to experimental results on temporal

synchronization in humans. He refers to experimental findings on the synchronization of

finger tapping with a periodic external stimulus in humans, showing a similar dramatic

increase in timing variability at a particular inter-stimulus interval, which happens to

coincide closely with the value of the syllabic oscillator period at which the increase in

variability occurs in Barbosa’s model. Barbosa takes this finding to suggest that his

model reproduces an temporal alleged boundary between “analytical” and “holistic”

processing of time intervals in humans (2007:736). As a general comment, the author’s

attempt to devise a model that is both fit for usage in speech technology applications

and motivated by cognitively plausible principles is certainly to be applauded. The

available evidence just seems to suggest that interacting oscillators at different levels of

the prosodic hierarchy are not a very plausible model of speech timing, at least as far

as unconstrained speech production is concerned.

Rusaw (2013) presents an approach to the modeling of speech timing that combines

oscillators and neural networks. In this paradigm, artificial neurons that emit single
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oscillatory pulses of different periods are connected via excitatory and inhibitory con-

nections, as is common in neural network modeling. In Rusaw (2013)’s approach, the

individual neurons represent events at different levels of the prosodic hierarchy: phrasal

boundaries, accents and syllables. Syllabic durations are represented by the time in-

tervals between pulses emitted by the syllabic neuron. This neuron in isolation will

emit pulses at regular periods; lengthening, for example due to prosodic prominence is

modeled by an inhibitory connection from the accentual oscillator neuron, which delays

the firing of the syllable neuron. Rusaw’s motivation is to provide a link between the

rather abstract concept of prosodic oscillators and their actual implementation in terms

of neural structures in the human brain. She evaluates the model by comparing pre-

dicted durations to some English and French utterances. Based on visual comparison of

graphs, she argues that the model delivers accurate predictions of syllable-level timing

patterns. Yet, Rusaw reports that the parameters of the oscillator neurons were actually

hand-fitted to match the empirical data, so it is not clear from these simulations what

the neural oscillator paradigm really explains.

Rusaw also reports simulations of results on utterance-final lengthening by Turk and

Shattuck-Hufnagel (2007), who found final lengthening to affect unstressed syllables di-

rectly adjacent to the boundary as well as stressed syllables earlier in the word, but not

intervening unstressed syllables. Rusaw also replicates this finding in an empirical study

of her own. In her simulation of these data, Rusaw incorporates an additional assump-

tion: the phrasal neuron exerts excitatory influence on the accent neuron. This, in turn,

causes the accent neuron to exert a stronger inhibitory influence on the syllabic neuron,

so that syllabic pulses are delayed even more strongly in the presence of activation of

both the phrasal and the accentual neuron. Using this configuration, Rusaw’s model

successfully reproduces the pattern observed by Turk and Shattuck-Hufnagel (2007):

there is some lengthening is penultimate and antepenultimate stressed syllables, and

strong lengthening in unstressed syllables directly adjacent to the boundary, where the

cycle of the phrasal oscillator neuron reaches its peak. The really interesting result,

in our opinion, is that in the case of an antepenultimate stressed syllable, the model

predicts no final lengthening at all, although Rusaw’s diagrams suggest that it is also

under the influence of the phrasal oscillator peak.

As a general comment, Rusaw (2013)’s approach is quite interesting. However, it is diffi-

cult to assess the explanatory potential of the neural oscillator model, as little technical

detail is provided on its implementation, and most of the evaluations reported in Rusaw

(2013) focus on the model’s ability to approximate raw syllable durations, rather than on

its potential to provide principled explanations of durational patterns. Rusaw seems to

imply that not only relative syllable durations, but also locations of accents and phrase
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boundaries are emergent properties of her modeling paradigm, but due to her above-

mentioned technique of hand-fitting oscillator parameters, it is not clear to what extent

this statement is really justified. In any case, Rusaw’s modeling experiments on final

lengthening are encouraging, and it would be interesting to see more in-depth studies of

prosodic interactions in the model. On a final note, it appears that the neural oscillator

model does not necessarily predict compensatory timing relationships between prosodic

levels, as seems to be the case with other oscillatory approaches, at least as long as no

additional assumptions are imported.

The critical points raised earlier about coupled oscillators that do predict such relation-

ships as a general account of prosodic timing in speech are not meant to suggest that

such models are not useful for modeling speech production under special circumstances.

This, for example, seems to be true of speech produced in so-called speech cycling experi-

ments. In the speech cycling paradigm, subjects have to entrain repeated productions of

speech utterances with alternating periodic sequences of high and low metronome tones,

resented in different phasing relations. Evidence from this paradigm (Anbari et al. 2013,

Cummins and Port 1998) demonstrates the emergence of “rhythmical attractors”, i.e.,

speakers tend to place the prominences in their productions at certain phases that divide

the repetition cycle defined by the low tones into harmonically spaced intervals, even if

the phasing of the intervening high tones is different. Saltzman et al. (2008) show that

it is possible to account for this result using an ensemble of oscillators, where two pairs

of nested oscillators with bi-directional coupling represent the external stimulus and the

production of the subject, respectively, and the superordinate and the subordinate oscil-

lator from the former pair also exert unidirectional coupling on their counterparts from

the latter pair of oscillators. Moreover, Tilsen (2009) in an investigation of EMA data

from a speech cycling experiment observes a correlation between temporal variability at

the phrasal and gestural level, and shows that a collection of hierarchically organized

oscillators correctly predicts this outcome.

Cummins and Port (1998) state that effects observed in the speech cycling paradigm

are task-specific and may not generalize to unconstrained speech production. How-

ever, there may be more “natural” situations where speech production is subject to

comparable entrainment constraints, such as various forms of joint speech (Cummins

2009). Moreover, oscillatory approaches may provide a suitable paradigm for modeling

timing relations between the utterances of interlocutors in conversation. For example,

W lodarczak (2014) in a study of the timing of overlaps in conversation observes that

overlapping turns tend to be initiated at salient points in the interlocutor’s speech, such

as syllable boundaries, and suggests that this pattern may be captured by modeling with

coupled oscillators. Indeed, oscillatory models have been applied with some success to

tasks such as the prediction of the timing of feedback utterances in dialogue (Wagner
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et al. 2013). These results suggests that periodic oscillators may be a useful ingredient

of models of the temporal entrainment between interlocutors in conversational situa-

tions. Given the available evidence, it just appears that as a model of (within-speaker)

prosodic structure in unconstrained speech production, a full hierarchy of interacting

oscillators may be rather too strong an assumption. In one of the subsequent chapters

of this work, we will try to substantiate this preliminary evaluation of oscillatory models

by a detailed empirical investigation of their main predictions.

4.2.2 The Converter/Distributor Model

The Converter/Distributor (C/D) model, first introduced in Fujimura (1994), is a fully-

fledged computationally implemented theory of the phonetics-phonology interface. As

such, it covers considerably more than suprasegmental speech timing, but we will focus

our discussion on those aspects of the model that relate to suprasegmental speech tim-

ing. In any case, prosody occupies a quite central position in this approach: the C/D

model maintains that syllables are the basic organizational unit in speech. The syllabic

structure of an utterance is represented in this model by a pulse train. The amplitude

of individual pulses roughly corresponds to prosodic prominence. In this model, syllable

“base durations” are derived by constructing syllable triangles with the syllable pulses

as center lines, as shown in Figure 4.1. This is done by specifying a fixed value for the

apex angle, referred to as shadow angle in the C/D model (Fujimura 2011). The con-

verter module of the model derives these apex angles from metrical representations of

utterances. The syllable “base” duration (not necessarily equal to, but correlated with

acoustically measured syllable duration) is equal to the triangle base width. In addition

to the syllabic pulse train, the model features additional tiers, e.g. for consonantal and

vocalic gestures. The points at which the legs of a syllable triangle touch the base in-

stantiate pulses on the consonantal tier, representing onset and coda consonants. The

actual consonantal gestures are modeled by low-pass filter impulse response functions

to these pulses. Simultaneously, the syllable pulse excites a tongue body gesture for the

vocalic center of the syllable, likewise modeled by a damped impulse response function.

The derivation of actual gestures from an abstract syllable pulse sequence is referred to

as the distributor module of the model.

The core interest of the C/D model lies on prosodic effects on articulation. We will not

discuss predictions of the model concerning these effects, but rather focus on what it

has to say about suprasegmental timing in the narrow sense. To begin with, the shadow

angle technique provides an elegant account of the relationship between prosodic promi-

nence and syllable duration: since the shadow angle is assumed to be fixed, a syllable
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• “syllable-boundary pulse train--computed as a time 
function representing the skeletal rhythmic structure of 
the utterance.”  
 
 
 
 

                                                                                                              
 
From Fujimura& Erickson, 2004 

 
• Syllable magnitude correlates with sentence (phrasal) 

stress.  
• “won” receives primary sentential stress; “that” and 

“ful” receive the secondary sentential stress. 
 

Figure 4.1: Syllable triangles representing an utterance in the C/D model (from
Fujimura and Erickson (2004). The “%” and “$” symbols represent speech pauses at

prosodic boundaries of different strengths.

with a greater pulse magnitude will also have a greater base duration.5 In particular,

the trigonometric derivation of the base duration guarantees a linear relationship be-

tween duration and prosodic prominence. Studies of the acoustic correlates of perceived

prominence (Fant and Kruckenberg 1989, Portele 1998, Portele et al. 2000) have gener-

ally found linear relationships as well. This is in line with the C/D model prediction,

although one may argue that the syllabic pulse magnitude in the C/D model actually

reflects something like intended, rather than perceived prominence, and it is not clear

whether both concepts can be equated with each other.

Perhaps more interestingly, one may speculate about the treatment of speaking rate

effects on suprasegmental timing in the C/D model: changes in overall speaking rate are

incorporated in the C/D model by changing the shadow angle for a given utterance, so

that smaller or greater base durations are derived for a given magnitude. This technique

would appear to predict that duration ratios between stressed and unstressed syllables

remain unchanged under rate variation, which is at odds with most empirical findings

reviewed in Chapter 3. Reproducing the predominantly observed pattern of stronger

rate sensitivity of more prominent syllables would presumably require to change the

shadow angle on a syllable-by-syllable basis, depending on the pulse magnitude of each

individual syllable rather than uniformly for a whole utterance. Alternatively, one might

conceive altering syllable magnitudes themselves in order to achieve rate variation, which

would also have to be sensitive to the absolute magnitude of a given syllable in order to

simulate the interaction between prominence and rate. Either strategy, however, would

seem relatively ad-hoc.

The C/D model features an extra category of “half-triangles” for representing speech

pauses. As for lengthening of syllables before pauses, we are not aware of explicit

5Fujimura (2011) states that in later versions of the model, different shadow angles are assumed for
different “syllable types”, e.g. light vs. heavy syllables.
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proposals for implementation within the C/D paradigm. An obvious choice, again, may

be to manipulate the shadow angle for boundary-adjacent syllables in order to instantiate

boundary-adjacent lengthening. This would enable the model to simulate lengthening

of syllables with different degrees of prominence, in contrast to a conceivable alternative

technique of modeling boundary effects by manipulating syllable magnitude, which,

in effect, would render all boundary-adjacent syllables prominent. Incorporating final

lengthening by manipulating the shadow angle would predict final lengthening of similar

proportional magnitude in stressed and unstressed syllables, which is in accordance with

some of the results reviewed in Chapter 3.

(Fujimura 2011) explicitly states that the C/D model does not feature any components

which would evoke tendencies towards periodicity. Given the available evidence reviewed

in Chapter 3, this appears to be a reasonable modeling decision. As we saw, one well-

supported effect that appears to minimally require interaction between the syllabic and

higher prosodic levels is the inverse relationship between syllable duration and syllable

count in accented words that has been observed in many languages. Whatever the expla-

nation for this effect, it is not clear how it could be borne out by the C/D model without

explicitly manipulating shadow angles or, perhaps, syllable magnitudes according to the

syllable count in a subset of an utterance that is defined as an accented word. Maybe

this effect – and others, such as the reported greater accentual lengthening of stressed

compared to unstressed syllables – could arise automatically if an additional prosodic

level featuring extra “accent pulses” and, likewise, “word triangles” were incorporated.

As extensions of these kinds have not been implemented, one can of course only speculate

whether they would reproduce the observed effects in a non-trivial fashion.

As a general comment, we would like to express our appreciation of the C/D model

as a computationally explicit theory of phonetic implementation. The points we have

raised in the foregoing decision may not be entirely fair, because the focus of the C/D

model does not lie on the purely suprasegmental timing effects we are interested in. Our

highlighting of phenomena for which the C/D model fails to make correct predictions

is therefore not meant to be dismissive of this model, but, ultimately, to underline the

fact that an explanatory account of these phenomena is still a desideratum.

4.2.3 Other Approaches

In the remainder of this chapter, we will discuss some explanatory accounts (not neces-

sarily implemented models) we regard as interesting but less central for our argument,

because they focus on isolated phenomena and/or have not been implemented. These

accounts are mostly concerned with constituent length effects in speech. The exception
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to this is Lindblom (1968), who sketches an explanatory account of final lengthening.

His proposal builds on the intonation model by Öhman (1967), which incorporates an

explicit account of subglottal pressure in speech production by means of a “physiological

intensity contour”, which “is constant during the beginning of an utterance but then falls

towards the end” (Lindblom 1968:4). Lindblom additionally assumes that the amount

of energy expended per syllable is roughly constant except for variations induced by

prominence, and can be approximated by integrating the physiological energy contour

over a syllable’s duration. Final lengthening would then follow from declination of the

physiological intensity contour towards the end of an utterance – syllables would have

to be lengthened in order to maintain approximately constant energy.

This proposal is certainly elegant and provides a welcome independent explanation for

final lengthening phenomena in speech. The assumptions of (1) constant energy ex-

penditure per syllable and (2) declining “physiological intensity” towards the end of an

utterance may be debated – Oller (1972) argues against the latter assertion, based on the

observation that speech amplitude does not usually drop towards the end of utterances,

although it is not clear what data his statement is based on. Declination in subglottal

pressure over an utterance has been observed for example by Strik and Boves (1995) and

Trouvain et al. (1998), which would support Lindblom’s approach. On the other hand,

a final lengthening mechanism based on subglottal pressure declination would probably

predict gradual deceleration over the course of an utterance. This is at variance with

empirical findings on final lengthening, which is indeed progressive, but tightly local-

ized to linguistic entities, and, furthermore, may affect discontinuous locations in an

utterance (Turk and Shattuck-Hufnagel 2007).

Lindblom et al. (1981) propose an explanation of constituent length effects at the word

level in speech based on hypothetical constraints on short-term memory. They hypoth-

esize that speech planning involves a short-term memory buffer for word-level elements,

into which the phonetic plans for syllables have to be loaded. Since the buffer is of lim-

ited size (but expandable), phonetic plans have to be executed in shorter time as more of

them are loaded into the buffer; compressibility constraints, inspired by the descriptive

model by Klatt (1973) ensure that duration compensation is only partial. This way,

the asymptotic nonlinearity of the shortening effect found in the empirical data is borne

out. The model also provides an account of final lengthening phenomena: “units that

have been processed (preceding syllables) call for less space saving than units that are

on their way to be processed (following syllables)” (Lindblom et al. 1981:72).

Lindblom et al. (1981) do not present an actual implementation of their model – rather,

they fit descriptive formulas to empirical data and assign interpretations to these. The

model is obviously strongly influenced by metaphors from computing, as is evident
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from the usage of concepts such as storage space, memory, or executions. Lindblom

et al. (1981)’s proposal is quite ingenuous, but assuming that speech timing results from

things such as elastic memory buffers or recursive shortening operations at the planning

stage is of course a rather strong conjecture. If one accepts White (2002)’s hypothesis

that constituent length effects at the word level are simply an epiphenomenon of word

prominence, moreover, Lindblom et al. (1981)’s short-term memory account would be

rendered rather obsolete.

An interesting proposal for explaining the observed inverse relationship between word

length and syllable duration has been put forward by Nooteboom (1985). Nooteboom

rightly observes that “isochrony” principles explain nothing by themselves; once they

are invoked, the question remains why speakers should tend to keep the durations of cer-

tain units constant. Nooteboom’ proposal draws on the proposed relationship between

speech timing and information redundancy that we reviewed in Chapter 2. He assumes

that “(p)recise articulation costs time”, and that “(w)hen segmental information can be

confidently predicted from context, the speaker can allow himself to speak sloppy and

fast” (1985:244). These formulations are clearly reminiscent of efficiency-based accounts.

As for the influence of word length on segmental duration, Nooteboom maintains that

segments in longer words are more redundant and, hence, can be shortened: “in general,

we need all phonemes in their correct order to recognize monosyllabic words like CAN.

A polysyllabic word like ELEPHANT, however, is, for instance, uniquely determined by

the initial word fragment ELEPH...” (1985:245). This, according to Nooteboom, would

predict shortening, especially of the redundant part of the word. As Nooteboom himself

notes, this prediction is not borne out: segments are commonly lengthened towards word

endings. He invokes an additional principle to accommodate this observation: speakers

strive to “provide the listener as quickly as possible with the auditory cues necessary for

initial recognition” (Nooteboom 1985:246), whereas they can relax the efficient informa-

tion transmission requirement after a word has been recognized, which often happens

well in advance of its end.

Although Nooteboom (1985) acknowledges that his proposal may miss some generaliza-

tions, we still think that it is well-motivated. The model we are going to propose will

include some features compatible with Nooteboom’s ideas, although there will be no

direct consideration of phenomena such as the time course of word recognition, which

is important for Nooteboom’s approach. In any case, it would be interesting to see an

implementation of Nooteboom’s ideas, and we will supply some speculations as to a

model architecture that could accommodate similar mechanisms in the final chapter of

this work.



Chapter 4. Explanatory Accounts of Suprasegmental Speech Timing 87

Fujimura (1987) describes a model that represents speech utterances as arrangements of

linearly concatenated springs between two hard boundaries, with the individual springs

referring to segmental units. Fujimura also discusses an extension of this model that

features springs at different prosodic levels, which are nested within each other. While

he does not explicitly uses this term, this model is very similar to the oscillatory models

discussed above, and the mathematic bases of both paradigms are probably compatible.

Timing effects could be modeled in this framework by manipulating either the stiffness of

individual springs, or the external forces acting upon them. Fujimura (1987) discusses

evidence from temporal alignment between certain articulatory landmarks in spoken

utterances with identical segmental content but different accent placement. The analysis

reveals that there are “time domain(s) over which a uniform difference in utterance

speed is observed’ (1987:118), which he takes to support his modeling assumptions.

Since Fujimura’s model has not been implemented, it is, however, not clear whether this

prediction is actually borne out. While his proposal is certainly interesting, evaluation

has to remain speculative in the absence of a working implementation.

Messum (2008) proposes a unified explanation for some speech timing phenomena based

on developmental properties of speech breathing in humans. He maintains that, while

adults’ speech is characterized by the capability of “inflating the lungs and then largely

speaking on relaxation pressure” (Messum 2008:2409), so that larger stretches of speech

can be produced in one breath group, this is different in children: due to the greater

compliance of their lung and chest wall tissue, children have to adopt a more pulsatile

style of speech breathing, with each syllable corresponding to a respiratory pulse. Mes-

sum (2008) claims that this feature of speech breathing in children is the source of two

segmental timing effects, shortening of vowels before voiceless as opposed to voiced con-

sonants, and before consonant clusters as opposed to singleton consonants: the temporal

extension of a breath pulse has to be shared out between the vowel and a longer conso-

nant (in the case of the voiceless/voiced opposition), or, respectively, between the vowel

and more consonants (for the singleton/cluster oposition). Messum (2008) states that

these patterns remain as speech breathing becomes more adult-like. Importantly, he

claims that a similar explanation pertains to “foot-level shortening”, i.e., a constituent

length effect at the ISI level. Messum (2008) maintains that children in stress-accent

languages produce prominences by increased respiratory system drive. He further states

that the typically reduced unstressed syllables in these languages offer very little aerody-

namic resistance; hence, the ISI in these languages is produced in children’s speech as a

“single high-resistance unit” (2008:2412), so that, by extension, the same compensatory

timing relation observed at the syllabic level in the case of consonant clusters applies

also at the ISI level. Again, Messum (2008) claims that this effect is fossilized in the

speech of adults.
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Messum (2008)’s proposal is quite ingenuous, and we applaud his attempt to derive

physiological explanations for speech timing phenomena. One problem with his account

of the segmental timing phenomena is that at least the effect of postvocalic voicing on

vowel duration operates across syllable boundaries, as is shown by evidence from German

(Braunschweiler 1997). Yet this is a minor problem, and it could be circumvented

by positing the vowel-to-vowel interval as the domain of breath pulses. As for the

explanation of “foot-level shortening”, however, Messum (2008)’s proposal obviously

requires quite strong additional assumptions, namely the identification of the ISI as a

“single high-resistance unit”, which, as far as we can see, rests on conjecture. It appears

to predict that shortening is observed mostly in the unstressed part of the ISI, which is

at variance with some empirical findings (Kim and Cole 2005). Finally, the possibility

has been raised that foot-level shortening is, in fact, entirely spurious and would thus

not require any explanation at all. We will supply empirical evidence for this proposition

in a later chapter of this work.

Finally, there has been one recent theoretical proposal for a comprehensive optimization-

based model of speech timing including suprasegmental aspects. This proposal has been

put forward by Turk and Shattuck-Hufnagel (2014b) in the context of the debate on

extrinsic versus intrinsic timing in speech. This debate has been sparked by Fowler

(1980)’s review of previous models of coarticulation. Fowler (1980) states that the failure

of these models to account for observed facts about coarticulation is due to the fact that

they assume extrinsic timing, i.e., they presuppose that speech is planned as a sequence

of atemporal discrete segments, and that temporal structure is just superimposed on

this structure during execution. Fowler’s alternative proposal of intrinsic timing in

speech production has paved the way for the gestural account of Articulatory Phonology

(Browman and Goldstein 1992), which views physically instantiated articulatory gestures

– and, hence, objects with an inherent temporal dimension – as the basic building blocks

of speech. Turk and Shattuck-Hufnagel (2014b) set out to challenge this view and

propose a model of extrinsic speech timing, in which a central “timekeeper” plans the

phonetic execution of symbolic linguistic structure.

Turk and Shattuck-Hufnagel (2014b) envision the timekeeper in their model to be guided

by optimization principles, trading off timing and accuracy requirements in articulation

against movement costs. These costs are balanced against each other by the hypothe-

sized goal of speakers to achieve an even distribution of recognition likelihood across an

utterance, which we already encountered in the discussion of Aylett and Turk (2004) and

related works in Chapter 2. Thus, it may be assumed that movements costs would be pri-

oritized in highly predictable environments, whereas faithful realization of phonetic tar-

gets would be prioritized in less predictable environments. Turk and Shattuck-Hufnagel

(2014b) stipulate that coarticulation effects should be an automatic consequence of these
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trading relations in their model. Since Turk and Shattuck-Hufnagel’s proposal has not

been implemented, this statement remains somewhat speculative.

4.3 Discussion

Our review of existing explanatory models of suprasegmental speech timing leads us to

conclude that an explicitly formalized comprehensive explanatory account of supraseg-

mental speech timing is still lacking. The coupled-oscillators paradigm and Fujimura’s

C/D model come closest to meeting this requirement. The coupled-oscillators paradigm,

in our opinion, is founded on rather questionable assumptions, at least as far as un-

constrained speech production is concerned. The C/D model, although grounded in

a plausible and explicit account of prosodic structure, does not focus on the class of

suprasegmental timing effects and interactions that we reviewed in Chapter 3 of this

work. It appears that many of the prosodic interactions discussed in Chapter 3, such

as those between different levels of prominence, or between prominence and positional

effects, have not been addressed in any explanatory model. The model we present in the

subsequent chapter of this work and test in the following chapters represents an attempt

at filling this research gap, by focusing on exactly these interactions.

Several of the accounts reviewed in this chapter focus on constituent length effects in

speech. Our review of empirical results in Chapter 3 of this work suggests that such

effects may in fact not require any dedicated timing mechanism, but are explicable as a

mere corollary of word prominence, or, in other cases, statistical artifacts. The model

to be developed in this work will therefore not feature any component dedicated to

introducing constituent length effects (although such effects will fall out automatically

from word prominence, as has been argued by White (2002)). After introducing the

architecture of our model in Chapter 5, we will dedicate Chapter 6 of this work to an

empirical investigation of the predictions made by the models reviewed in this chapter.
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Chapter 5

Model Definition

5.1 Introduction

We will now introduce the architecture of our own optimization-based model of supraseg-

mental speech timing, informed by the review in the preceding chapters. In Chapter 2 we

have seen that efficiency-based approaches that trade off minimization of effort against

maximization of perceptual clarity provide a well-suited explanatory platform for many

phenomena in speech. In Chapter 3 we have provided a concise overview of speech timing

phenomena in the suprasegmental domain that an explanatory model should account

for. In Chapter 4, we have reviewed existing explanatory models of suprasegmental

speech timing and argued that they fall short of providing a satisfactory account of the

empirically observed phenomena in this domain. In the review of optimization-based

explanations of speech patterns, the approach adopted in Šimko (2009)’s Embodied Task

Dynamic (ETD) model in particular has emerged as a promising candidate for explain-

ing timing phenomena in speech. In this thesis, we will adapt the general principles

outlined in Šimko (2009)’s articulatory model to the modeling of timing phenomena at

the suprasegmental level. In what follows, we will introduce the individual components

of the model and supply external evidence to justify our modeling decisions. We will

also briefly introduce the optimization procedure as such.

One fundamental simplification will be made in adapting the optimization model from

Šimko (2009) to the modeling of suprasegmental speech timing: we will assume that

suprasegmental timing phenomena in speech can be satisfactorily modeled in terms of

acoustic durations of prosodic constituents. This allows us to exchange the differen-

tial calculus necessary to derive solutions for the mass-spring equations used in Šimko

(2009)’s articulatory model for simple arithmetic on real numbers. This is obviously

a massive abstraction from actual, physically instantiated speech, and we are certainly
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not intending to suggest that speakers plan utterances by computing real numbers that

stand for prosodic constituent durations.1 Yet we conjecture that direct modeling of

acoustic durations represents a reasonable first-pass strategy, combined with the advan-

tage that it simplifies the model by orders of magnitude. As we shall see later, this

modeling approach is sufficient for generating theoretically interesting predictions.

Optimization in the present model will thus be computed over vectors of real numbers

that represent syllable durations in hypothetical speech utterances. These syllable se-

quences do not necessarily relate to any real-life utterances (although they could, in

principle), but are generally rather abstract in nature. The reason for this is that we

are not interested in a close approximation of the durational characteristics of any real-

world dataset, but in deriving principled explanations for a narrow range of basic timing

effects. Given this, we deem it the most appropriate approach to study these effects in

isolation, and to ignore other sources of durational variation, such as syllable structure,

adopting a ceteris paribus assumption (such as “all else being equal, stressed syllables

are longer than unstressed syllables”) in any statement about the processes we are in-

vestigating. The choice of syllables as the basic unit in the model is motivated by purely

pragmatic considerations: syllables are an intuitive organizational unit in speech, and

they represent the smallest independent unit in the suprasegmental domain, according to

our definition introduced in Chapter 3. Moreover, the timing processes we are interested

in are commonly envisioned to apply at the syllabic level, even though empirical investi-

gations of these processes are frequently conducted on vowel durations. In any case, the

fact that the model operates on syllables is not meant to raise any strong claims about

these (rather than other) entities functioning as primary “processing units” or “units of

speech perception”.

To recapitulate, the general form of the model introduced by Šimko (2009) is as follows:

C = αEE + αPP + αDD, (5.1)

where C is the overall cost to be minimized, E and P represent the hypothesized drives

towards minimizing effort and maximizing perceptual clarity, respectively, D is related

to overall speaking rate and αE ,αP and αD are scalar weighting factors that control

the relative influence of the individual component cost functions. In our model, we

will utilize the general form of Equation 5.1, although the individual components will

naturally be re-defined. The three components of C are functions of syllable durations

S = [s1, . . . , sn] of individual syllable durations si in a series of n syllables that represents

1A more thorough discussion of how our model relates to “online” processes such as speech planning
will be provided below. To preempt this discussion, the short answer is that the model has essentially
nothing to say about such processes.
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a hypothetical utterance. A numerical optimization algorithm will be employed to find

the vector S of syllable durations such that overall cost C is minimized.

One important feature to be implemented in the model is the assumption that trade-offs

between minimizing effort and maximizing communicative success may apply both at

a global and at a local level. We have seen this spelled out in the account of prosodic

prominence as localized hyperarticulation, and also in the local modification of compo-

nent cost functions in Šimko et al. (2014b) and Beňuš and Šimko (2014). In our model,

we will systematize this assumption by adding local weighting factors to all three compo-

nent cost functions, which modify their relative influence for individual syllables. These

local weights will be introduced in the discussions of the individual component cost

functions in the remainder of this chapter.

5.2 Model Components

5.2.1 Effort Cost E

Component cost E represents the hypothesized tendency towards minimizing effort in

our model. It therefore requires an estimate of the physical effort necessary to produce

a syllable as a function of its duration, as our model is restricted to the temporal dimen-

sion of speech. Thus, it is clear that component E in particular will require quite strong

simplifications, as the model abstracts away from physically instantiated speech produc-

tion. Nevertheless, we will be able to make some principled considerations, leading to

an effort estimate that serves its purpose.

Following Howard and Messum (2011), we make the fundamental assumption that ef-

fort in speech comes from two sources, articulation and phonation: on the one hand,

metabolic energy is needed to move the articulators towards their targets; on the other

hand, the organism has to provide respiratory energy, so as to maintain the necessary

airflow. Muscular activity is also necessary to sustain vibration of the vocal cords during

voiced portions of the speech signal.

As for articulatory effort, we have seen that different measures, such as articulatory

velocity, displacement of articulators, or the force acting on them, have been proposed.

It is not possible to link any of these straightforwardly to durations of acoustic events,

such as syllables, because speakers can choose between different articulatory strategies

in order to vary duration. As we saw in the discussion of Lindblom (1963), shortening

in particular may be instantiated by increasing the velocity of articulatory movements,

or by undershoot of targets. If we once more imagine an articulator as a mass-spring
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system as in Equation 5.2, the former would be instantiated by increasing the system

stiffness K, whereas the latter would be an automatic consequence of a shorter acti-

vation interval, as shown in Figure 2.1 in Chapter 2. For this reason, we will make

one simplifying assumption: we will assume that the undershoot case, i.e., no increased

stiffness at shorter durations, is the default behavior of speakers. This is consistent with

economy principles, i.e., the idea that high movement velocities are avoided (Howard

and Messum 2011). We would argue that this is a reasonable default assumption, given

that many studies have reproduced Lindblom (1963) finding of a correlation between

spectral reduction (as a measure of target undershoot) and durational shortening (e.g.

Aylett and Turk 2004, 2006, Hirata and Tsukada 2009, Moon and Lindblom 1994, Nadeu

2014, Van Son and Van Santen 2005).

Mz̈ = −K(z − z0)−Bż (5.2)

It turns out that with this simplification in place, we can come up with a principled esti-

mate of articulatory effort as a function of syllable duration. This estimate was derived

from a simple computational mass-spring model that, similar to the model employed

by Kirchner (1998), simulates the movement of a single critically damped linear spring,

interpretable as a single, “generic” articulator, towards a vertical target.2 In this work,

we follow Kirchner (1998) and Šimko (2009) in employing the force integral, i.e., the sum

of forces acting on the model articulator over time, as an effort estimate. Higher effort

is thus linked to greater forces, which in our opinion, is intuitively compelling. Force is

defined as the product of mass and acceleration (the left-hand side of Equation 5.2), but

for the case of a single spring, mass is just a multiplicative constant and can therefore be

disregarded. Our estimate of articulatory effort as computed by the mass-spring model

is therefore simply proportional to the absolute value of the acceleration of the spring

integrated over time. The mass-spring model was repeatedly run, holding the values of

its free parameters – vertical starting value and target, and, in particular, stiffness –

constant, whereas the duration of the activation interval was incremented by a constant

amount, so as to obtain an articulatory effort estimate as a function of duration.

The left panel of Figure 5.1 shows trajectories of the spring over time for different activa-

tion interval durations. The right panel of Figure 5.1 plots the value of our articulatory

effort estimate, the force integral, in black as a function of the duration of the activation

interval, and, hence, the gesture. The red line shows that a negative exponential func-

tion provides a reasonable approximation to the data (R2 = 0.91), and as the left panel

of Figure 5.1 illustrates, this is also intuitively plausible: increasing a short duration

2The implementation of the mass-spring model was kindly provided by Juraj Šimko. The source code
(programmed in MATLAB) is included in Appendix B of this work.
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Figure 5.1: Panel (a): plots of displacement over time as computed by the mass-spring
model, for some values of activation interval duration d. Parameters: stiffness=3, verti-
cal target=1, vertical starting point=0.1. Fainter trajectories indicate longer activation
intervals. Panel (b): force integral (articulatory effort estimate) as a function of activa-
tion interval duration as computed by the mass-spring model (black) and fitted negative

exponential function (red).

is linked to increased displacement of the relevant articulator, as articulatory targets

have not yet been reached. Lengthening a short syllable is therefore achieved by extra

movement, and, hence, results in increased effort. At some duration, however, articula-

tors reach their targets – in the left panel of Figure 5.1, this can be seen for activation

interval duration d = 4. Lengthening the syllable beyond this duration is achieved by

stretching the steady states of segments within the syllable (mostly the vowel), which

does not require any articulatory movements, and is therefore free on the articulatory

effort dimension. This intuition is well captured by the initial steep rise and subsequent

plateau of our articulatory effort estimate.

It is obvious that this derivation of articulatory effort is a strong simplification. Besides

assuming constant stiffness, it also ignores the fact that syllables usually contain several

articulatory gestures, which may mutually influence each other, as is expressed by the

anatomical linking in ETD. Yet, as stated above, in all model simulations to be reported

in this work, we will assume a ceteris paribus condition, i.e., it will be assumed that

syllables involved in any comparison will differ only on the factor that is being varied. All

comparisons therefore have to be imagined as involving syllables that include the same

gestures and differ only on the suprasegmental variables of interest. Thus, we maintain
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that our articulatory effort measure represents a reasonable assumption for gauging the

net effort spent on the production of a given syllable with increasing duration.

As discussed above, articulation is only half the picture when it comes to effort in speech:

effort is also involved in maintaining respiratory energy and vocal fold vibration in speech

production, which we subsume under the cover term phonation. We are not aware of any

studies on phonatory effort as a function of interval durations in speech. Yet, measures

of sub-glottal air pressure during speech have been reported in some studies of speech

production, and one may assume that this physiological measure should be correlated

with the phonatory effort construct that we propose. Inspection of the measurements

presented in these studies (e.g. Ladefoged 1963, Löfqvist et al. 1982) suggests that the

effort necessary to sustain phonation during speaking may be hypothesized to be roughly

proportional to the duration of time intervals over which phonation is sustained. Thus,

we propose the default assumption that phonatory effort be conceived as a simple linear

function of syllable duration.

Figure 5.2 plots the hypothetical articulatory (solid gray) and phonatory (dashed gray)

effort components as a function of syllable duration, as well as their sum, i.e., overall

effort (solid black). It is apparent that the overall effort estimate is a concave increasing

function (i.e., an increasing function with decreasing first derivative). It has to be ack-

nowledged that the overall effort in Figure 5.2 only results if the phonatory component

is multiplied by an appropriate constant, but we contend that the assumption of overall

effort as a concave function of syllable duration is intuitively plausible: lengthening a

short syllable entails spending effort on both counts, as the displacement of the involved

articulators is increased and additional phonatory effort is spent. At some point, how-

ever, articulatory targets are reached, and lengthening the syllable beyond this duration

is “costly” only in terms of phonation, but not of articulation.

Despite the separate treatment up to this point, the actual implementation of effort in

our model does not explicitly feature separate articulatory and phonatory components.

Instead, we have chosen the square root of syllable duration as a rough overall measure

that combines both hypothetical sources of effort. While not mathematically equivalent

to the solid black trajectory in Figure 5.2, this function fulfills the requirement of con-

cavity, i.e., initial rapid grow, as both articulation and phonation contribute to effort in

short syllables, and flattening out with increasing duration, as lengthening syllables be-

yond the duration at which articulatory targets are fully reached is achieved by sustained

phonatory, but not increased articulatory effort. For a given sequence of i syllables with

durations si, overall effort is defined as a weighted sum of the square roots of individual
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Figure 5.2: Plot of the putative estimates of articulatory (solid gray line; negative
exponential function with negative base) and phonatory effort (dashed gray line; linear

function) as a function of syllable duration, as well as their sum (black line).

syllable durations:

E =
∑
i

ηi
√
si. (5.3)

The weights ηi are local trade-off parameters, which adjust the premium placed on pro-

duction effort for individual syllables, in contrast to the global weighting factor αE ,

whose scope is the entire sequence. This implements the assumption that the balance

between production and perception requirements may vary also on a local basis, and is

implemented for the other cost functions in an equivalent fashion. A possible interpre-

tation of this local parameter will be discussed later. Figure 5.3 shows a plot of cost

function E for a hypothetical syllable.

5.2.2 Perception Cost P

Perception cost3 P in our model implements the hypothesized impetus towards maxi-

mizing perceptual clarity, conceptualized as a measure of the difficulty of perceiving a

prosodic unit in speech. As our model operates on a syllable basis, this cost function by

default operates at the syllabic level. As we said above, however, we are not intending

to make any strong claims about syllables as the primary unit of speech perception, and

it is conceivable to use any prosodic constituent as the domain of a similar cost function.

In this work, we have implemented a perceptual cost function for one further prosodic

3We prefer this label over Šimko (2009)’s term parsing cost, so as to avoid allusions to high-level
linguistic processes (as in “syntactic parsing”), about which our model has nothing to say.
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Figure 5.3: Plot of cost function E (square root of syllable duration) for a hypothetical
syllable.

constituent type, namely the word. In what follows, we will motivate the mathemati-

cal concepts used and introduce the components of the perceptual cost function at the

syllabic and the word level.

In ETD, the perception-related cost function is implemented as a combination of a spatial

and a temporal measure of perceptual clarity. It is clear that in the present model,

only the latter dimension can be reasonably evaluated. To recapitulate, this temporal

realization estimate in ETD is proportional to duration, based on the assumption that

longer durations facilitate perception. Crucially, it is non-linear, increasing rapidly up

to some threshold, after which it remains virtually unaffected by further increases in

duration. The perceptual cost associated with duration, then, is the reciprocal of the

temporal realization estimate, which is achieved in Šimko (2009)’s model by subtracting

it from 1. Figure 5.4, shows the durational component of the perceptual cost in ETD

(assuming that the gestural precision estimate, by which it is multiplied, is equal to 1).

The basic assumption that long durations are beneficial for perception is certainly plau-

sible: the articulators are given more time to fully reach their targets, and steady states

of vowels can be sustained for longer time, making up for temporary distortions in the

acoustic channel or lack of attention on part of the listener. Indeed, empirical evidence

reviewed in Chapter 3 indicates that one of the most robust correlates of more listener-

centered speech is a decrease in overall speaking rate. Thus, it seems quite reasonable to

assume that speakers employ lengthening to secure communicative success. The more

interesting question is whether the non-linearity proposed by Šimko (2009) is a realistic

assumption. In what follows, we will provide evidence in support of making P non-linear.
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Figure 5.4: Plot of the temporal perception cost (1− dg(t)) in ETD for c = 2 (solid),
c = 1 (dashed) and c = 0.5 (dotted).

The hypothesized asymptotic behavior of the perception cost function, to begin with,

may be given the following theoretical rationale: the perception cost function can be

interpreted as the inverse of the probability of recognition of a speech constituent as a

function of its duration, i.e., the cost is higher the harder it is to recognize the con-

stituent. One may assume that this probability has an upper bound: at some duration,

the recognition rate reaches 100% (or some other upper limit), and nothing will be

gained by making the constituent (in our case, a syllable) even longer. This way of

reasoning provides a first intuitive motivation for using a function that approaches a

lower threshold in the way of Šimko (2009)’s temporal perception cost for P .

Further support is provided by evidence from the psychophysics of duration percep-

tion: one prediction that follows from using a convex decaying function of duration

as a measure of perceptual difficulty is that progressively longer syllable durations re-

quire progressively larger increases in duration in order to achieve the same reduction

in perceptual difficulty. This is consistent with common assumptions about just no-

ticeable differences (JND) in the duration of acoustic intervals (Lehiste 1970): JND in

the acoustic duration between two stimuli are assumed to be proportional to stimulus

duration itself, an instance of Weber’s law, which posits this relationship as a general

property of the perception of physical quantities. Research discussed in Lehiste (1970)

as well as subsequent studies reviewed by Wagner (2008) (e.g. Friberg and Sundberg

1995, McAuley 1995) suggests that this may be only approximately true for auditory

duration judgments, and Lehiste (1970) calls for caution in applying findings on JND

of auditory durations, most of which have been obtained using non-speech stimuli, to

speech perception. We nonetheless think that it represents a reasonable assumption for
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the perceptual cost function in our model. In particular, this line of argument supplies

a rationale for employing a smooth function – after all, the requirement of a rapid initial

decrease followed by a flat trajectory would also be satisfied by simply connecting two

straight lines, one with negative and one with zero slope. This, however, would imply

that the same increase in duration leads to the same decrease in perceptual cost for a

long than for a short syllable, which is at variance with Weber’s law.

Finally, there is also more direct empirical evidence that supports the use of a convex

decaying function of the kind proposed by Šimko (2009) as a measure of perceptual cost.

This evidence comes from studies that employ the gating paradigm. In this paradigm,

subjects are exposed to acoustic syllable fragments of varying duration and have to

indicate the identity of the syllable or of parts of it. Correct recognition scores from this

paradigm, provide a measure of perceptual difficulty as a function of syllable fragment

duration. Figure 5.5 shows results from two gating studies performed with English

speech data and listeners, Grimm (1966) (left; note the inverted x-axis) and Tekieli and

Cullinan (1979) (right) on the identification of phonemes and phonetic features from

acoustic syllable fragments of varying duration.

(a) (b)

Figure 5.5: Recognition scores from gating studies. Panel (a): Recognition scores of
English consonant phonemes (pooled over several consonants, for three vocalic contexts)
from temporally gated CV syllables as a function of syllable fragment duration (in ms;
note the inverted x-axis), reproduced from Grimm (1966). Panel (b): recognition scores
of consonantal features from temporally gated English CV syllables as a function of

syllable fragment duration, reproduced from Tekieli and Cullinan (1979).

The recognition curves in Figure 5.5 display a remarkable similarity to the temporal

perception cost used in Šimko (2009). The perception cost P , under this view, may

be imagined as turning these curves “upside down” (which is done in Šimko (2009) by

subtracting the temporal realization estimate shown in Figure 5.4 from 1), reducing

the cost with increasing recognition rate up to the duration ceiling where recognition
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approaches 100%. One important caveat, however, is that stimuli are not shortened

in a quite naturalistic way in the gating paradigm: shortening is achieved by simply

truncating the signal at a certain point relative to its onset or offset. A better method

for the present purpose would be to vary the duration of the steady state of a phone (if

applicable), while transitions at the on- and offset are left intact. Still, we would argue

that the data presented in Figure 5.5 provide a reasonable approximation of the rela-

tionship between speech segment duration and perceptual difficulty, and thus constitute

additional evidence to support the usage of a convex decaying function similar to the

one used in Šimko (2009) for the perception cost P in our model.

In the course of our work on the model, we have been using two different versions of

P . Initially, we have simply employed the reciprocal of syllable duration, 1/s, for repre-

senting the hypothetical perceptual cost. This function differs in one important respect

from the one shown in Figure 5.4: it converges towards infinity for very small durations,

so that syllables can never be entirely deleted in this version of the model. By contrast,

the function used by Šimko (2009) has a finite intercept and thus principally allows

for deletions. However, caution is warranted regarding this issue; articulatory studies

have raised the question whether there are ever really deletions at the gestural level,

advancing the alternative hypothesis that apparent deletions in the acoustic domain

are consequences of articulatory reorganization, as exemplified by the famous “perfec

memory” example from Browman and Goldstein (1990). In this work, we will therefore

continue to employ the 1/s model as a baseline that has nothing to say about deletion

phenomena. We have nevertheless also developed a second version of the model, using

a finite intercept function for P similar to Šimko (2009)’s temporal realization estimate,

which will be introduced in detail below. We will see that this version of the model does

make a very interesting prediction regarding apparent deletions in the acoustic domain,

but it exhibits problematic behavior with regard to other phenomena.

From now on, we will refer to the perceptual cost function that applies at the syllabic level

as PS , in order to differentiate it from the word-level perception cost to be introduced

below. PS for a given sequence of syllables is defined as

PS =
∑
i

ψi
si
. (5.4)

Analogously to E, PS is also modified by a local weighting factor, ψi, which modifies the

demands on perceptual clarity for individual syllables. The interpretation of this local

parameter is a central aspect of our modeling work: ψi constitutes the mechanism by

which syllabic prominence is accounted for in the model. In keeping with the concept of

prosodic prominence as localized hyperarticulation as discussed in Chapter 3, we assume
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that speakers prioritize clarity over effort minimization in prominent constituents, as

they are particularly critical for communicative success. Thus, prominence is modeled

by locally increasing ψi for syllables that are intended to be prominent. This obviously

imposes a tendency to lengthen prominent syllables relative to non-prominent ones,

in accordance with a large body of empirical findings (e.g. Delattre 1966, Fant and

Kruckenberg 1989, Fry 1958, Heuft et al. 2000, Prieto et al. 2012, Streefkerk 2002). As

parameter ψi applies to individual syllables, we use it to incorporate lexical stress, i.e.,

the greater prominence of syllables compared to other syllables within the same word.

Figure 5.6 plots PS for ψi = 0.5 (gray) and ψi = 1 (black), representing possible values

for an unstressed and a stressed syllable, respectively.
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Figure 5.6: PS = 0.5/s (“unstressed”, gray) and PS = 1/s (“stressed”, black).

As we said above, while PS operates at the syllabic level, perception of other prosodic

constituents may be modeled in a similar fashion. We have implemented this in this work

for one additional constituent type, the word. This choice is motivated mainly by the

reasoning that prominence relations apply not only between syllables, but also between

words. We hypothesize, based on our considerations in Chapter 3, that these prominence

relations express differences in the semantic or pragmatic “weight” between words in an

utterance, such that more important words are made more prominent. In particular, we

assume that some words in an utterance carry greater semantic or pragmatic “weight”

than others and hence receive an accent. Based on the findings reviewed in Chapter

3, it is hypothesized that a durational process, accentual lengthening, operates on the

duration of the accented word (Cambier-Langeveld and Turk 1999, White 2002). This is

accounted for by introducing an additional component of P called PW . PW is essentially

a copy of PS , the difference being that it is not a function of individual syllable durations,

but of the sum over all syllable durations in a word. Since the model is agnostic towards

the propositional content of simulated utterances, we simply define words as arbitrary

continuous non-overlapping sub-sequences of S.
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PW is thus defined as

PW = αWj

∑
j

Ψj

wj
, (5.5)

where wj stands for word duration, simply defined as the sum over the syllable durations

within the j-th word in an utterance.

Parameter Ψj , analogously to ψi, controls the relative prominence of words. The partic-

ular value of αWj modifies the overall strength of word prominence relative to the other

partial cost functions. In our simulations, we will preliminary restrict investigation to

the case of one accented word per utterance. This word may be referred to as bearing

the nuclear accent of the utterance (we will continue to use the term “accent” as a conve-

nient shorthand), corresponding to its focus exponent in linguistic terms (Bolinger 1958,

Ladd 2008). In the simulations involving accentual lengthening to be reported below, we

will therefore simply assume that αWj is equal to 1, and control the strength of accentual

lengthening via the Ψj parameter, which assumes a positive value for the accented word,

and 0 otherwise. There is no necessity to do do so, and it would certainly be realistic to

view word prominence as a gradual parameter (Widera et al. 1997); however, this may

not always have durational consequences throughout the word. Indeed, White (2014)

hypothesizes that no durational processes affect word duration as a whole in unaccented

contexts, and we follow this assumption in our preliminary modeling approach.

The overall perception cost P is the sum of the syllable- and the word-level component,

as defined in equation 5.6. There is no mathematical necessity to sum PS and PW

before entering C, and results would not be different if they entered the overall cost

computation as separate terms. Equation 5.6 is employed simply for aesthetic reasons –

so as to retain the general form of equation 5.1 – and to demonstrate that PS and PW

are instances of a general perception mechanism.

P = PS + PW . (5.6)

5.2.3 Duration Cost D

As in ETD, the third component D implements the assumption that speaking rate is to

some extent independent of the H&H continuum. D may thus be interpreted as relating

to the overall time used for conveying and decoding the sequence as a shared resource

between both parties. Since we have no more specific hypotheses about the type of

function that should be used for this purpose than Šimko (2009), we simply define D as

the weighted sum over all syllable durations in an utterance, with local trade-off weights
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δi analogous to the other component functions:

D =
∑
i

δisi (5.7)

Using a linear function for D predicts the null result that syllable durations are inde-

pendent of the number of syllables in an utterance, which is in agreement with some

empirical results, as reviewed in Chapter 3. By contrast, using non-linear functions

for D will make syllable durations dependent on utterance length. Experimentation

showed that using convex functions (i.e., functions with increasing first derivative), such

as exponentials or powers > 1, predicts shortening of syllables as a function of syllable

count in the utterance, whereas using concave functions (functions with decreasing first

derivative), such as roots or logarithms, predicts lengthening of syllables as a function

of syllable count in the utterance. Since there is no independent evidence for preferring

a linear function over these, we can of course not claim that the model’s behavior is

a result, in the sense of explaining the observed pattern. However, none of the results

presented in this thesis hinge on the linearity of D, and we therefore simply use the

linear function as a default assumption in the absence of more specific hypotheses.

5.3 Optimization

The model has been coded in the R language (R Core Team 2014). The source code is

included in the Appendix of this work. The model uses the implementation of the Nelder-

Mead algorithm (Nelder and Mead 1965) in the built-in function optim for determining

the vector of syllable durations S that minimizes cost function C. The Nelder-Mead

algorithm is a simplex method for function minimization, which, in a nutshell, can be

explained as follows: For an n-variable function to be minimized, the algorithm starts out

by arbitrarily selecting n + 1 points in the n-dimensional variable space (these points

thus form a simplex, the simplest possible volume of a given dimensionality). In the

present case, n is the length of the simulated utterance, and one point in the variable

space corresponds to a given set of n syllable durations for the utterance. The algorithm

then computes the function value (in our case the cost C) associated with each point.

In the next iteration step, the best of these points, i.e., the one that incurs the lowest

function value, is kept and the worst point, incurring the highest function value, is

exchanged for another point in the parameter space that is approached by expanding or

contracting the simplex, or by mirroring the old point across the centroid of the simplex.

The basic principle is that if the new point achieves an improvement over the old ones,

search is continued in the direction of the operation that was used to arrive at the new

point, whereas in other cases, other directions are tried out. The procedure stops once
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some well-defined convergence criterion is reached. In case of successful convergence, the

simplex has now contracted around the minimum of the cost function (Brunet 2010).

In contrast to the approach used by Flemming (1997, 2001a) and Katz (2010), this

method does not require the computation of derivatives. This may be advantageous,

because (as pointed out by Katz 2010) computing derivatives can become very complex

for certain types of functions. Apart from this, there is no principled reason for preferring

one method over the other. One potential problem for any optimization algorithm

mentioned by Nelder and Mead (1965) and Šimko and Cummins (2010), however, is

that the algorithm may sometimes converge to non-optimal solutions: this may be the

case when the algorithm encounters a local optimum in the cost landscape, which does

not represent the globally optimal solution. As we will be concerned with very simple

optimization problems, this issue will probably not be of relevance for the present work.

In any case, a simple method was adopted from Šimko and Cummins (2010) in order

to safeguard the optimization procedure against such cases: the optimization routine is

called iteratively, with small random perturbations of the initial parameters at each new

call. The rationale for this procedure is that the random perturbations should help to

re-start the search for the globally optimal solution when the optimization “gets stuck”

in a non-global optimum.

Figure 5.7 plots the evolution of overall cost of an utterance over the course of two

consecutive calls of the optimization routine, amounting to 1000 optimization runs. As

can be seen, the cost initially decreases rapidly, but reaches a minimum shortly after 400

optimization runs. The second call of the optimization function, which is marked by the

small perturbation in the cost trajectory at about 500 runs, does not result in further

reduction in overall cost. Thus one can be quite confident that the globally optimal

solution has been found. Plots of this kind are a generally useful diagnostic for checking

whether the optimization procedure has converged to a stable and meaningful result –

if the cost trajectory were to exhibit a negative slope throughout, this would be a sign

that either the problem is too complex and requires more optimization runs to converge,

or (more likely, given the generally simple problems we will be concerned with) there

is something wrong with the formulation of the problem. The random perturbations

method is not an absolute safeguard against falsely selecting a local optimum – it may

not work if the gradients around the local minimum are too steep – but as mentioned

above, the danger of selecting a local instead of a global minimum is probably not a

really vexing one in the present case anyway.

Figure 5.8 shows optimal syllable durations computed by the model for a simulated

utterance of eight syllables, with the first, the fourth and the penultimate syllable being

stressed and syllables four and five forming an accented word. The following parameters



Chapter 5. Model Definition 106

0 200 400 600 800 1000

19
2

19
4

19
6

19
8

20
0

20
2

20
4

Optimization runs

C
os

t (
ar

bi
tr

ar
y 

un
its

)

Figure 5.7: Plot of the function value of C for a simulated utterance over the course
of 1000 optimization runs.

were used: ψi = 1 for stressed and ψi = 0.5 for unstressed syllables; Ψj = 2 for the

accented “word”, consisting of the fourth and fifth syllable; Ψj = 0 elsewhere. αE was

set to 3 and all other parameters to 1. Importantly, the exact numerical values of the

predicted durations are not of interest, and they do not relate to any real-world units

such as milliseconds. As argued in the Introduction to this thesis, the class of models

that our approach belongs to is concerned with predicting qualitative patterns rather

than exact numerical results, and all theoretically interesting results reported in this

thesis will concern duration ratios. Hence, predicted durations are reported in terms of

arbitrary units.

Inspection of Figure 5.8 suggests that the model captures the basic facts about promi-

nence effects on speech timing in many languages: stressed syllables are longer than

unstressed syllables, and all syllables in the accented “word” are lengthened relative

to their unaccented stressed counterparts (Cambier-Langeveld and Turk 1999, White

2002). This outcome is of course a direct consequence of the explicit parameter settings,

and does not by itself constitute an interesting result beyond demonstrating that the

optimization procedure converges. In the following chapters of this work, we will show

that the model reproduces a range of durational effects which are not encoded by explicit

parameter settings, but emerge as optimal solutions from the interplay of the model’s

components.
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Figure 5.8: Syllable durations predicted by the model for a hypothetical utterance
with a bisyllabic accented word. Black: +stress +accent; light gray: -stress +accent;

dark gray: +stress -accent; white: -stress -accent.

5.4 Discussion

We have introduced the components of our optimization-based model of suprasegmental

speech timing, as well as the optimization method itself. The model is very simple,

but in our opinion, it fulfills the most important criterion for explanatory models: it is

built on well-defined, independently motivated principles. It may of course be debated

just how realistic our modeling assumptions are, but we hope to have made our argu-

ment reasonably strong, given the high degree of abstraction of our model. Figure 5.9

exemplifies the complete model architecture for a hypothetical utterance.

We have not discussed how position-related lengthening effects are incorporated in the

model. The main reason for this is that it is not entirely clear how they are to be inter-

preted – as we stated in Chapter 3 of this work, we favor the hypothesis that such effects

represent actively employed communicative signals over the idea that they are automatic

consequences of biomechanical vocal tract properties. This would suggest that positional

effects on suprasegmental speech timing effectively represent just another type of promi-

nence; yet, we have seen that both classes of effects behave rather differently with regard

to the interactions they are involved in. As we discussed in Chapter 3, the “biomechan-

ical” account cannot be ruled out with certainty based on available evidence, and both

accounts may also not be mutually exclusive. We will therefore address the inclusion

of position-related lengthening effects in the model in a more explorative fashion, by

means of manipulating the local effort parameter ηi. This may be seen as tantamount
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Figure 5.9: Model architecture. Cost functions D (utterance level), PW (word promi-
nence; only shown for accented word WAcc, as parameter Ψj is set to 0 elsewhere)
and E/PS (syllabic level; σ; apostrophe denotes stresses) as well as stress parameter
ψi (other parameters assumed to be constant) are plotted as a function of respective
constituent durations for a hypothetical utterance with a tetrasyllabic accented word.

to hypothesizing that position-related lengthening, like prominence, represents a case

of local boosting of perceptual requirements, in this case not instantiated by increasing

the relative impact of perceptual requirements, but by decreasing the relative impact of

the effort conservation requirements. This modeling decision would also link positional

effects to possible biomechanical causes, although the link is of course rather crude and

underspecified. Modeling results related to positional lengthening effect will therefore

necessarily have a more speculative character.

It was noted that our model would bear some resemblance to the approach by Flem-

ming (1997, 2001a) and Katz (2010) in the discussion of these works, in that both

paradigms are optimization-based and concerned with predicting durational phenomena

in the acoustic domain. The major conceptual difference between the two approaches

is that our model does not incorporate a concept of “duration targets” that speakers

attempt to faithfully reproduce. While we agree with Katz (2010) in asserting that

perceptual properties of the speech output to be produced are important in speech pro-

duction, we are skeptical of the proposition that speakers directly represent duration

targets in the acoustic domain as part of their production grammar, and would argue

that our production- and perception-related cost functions represent more basic kinds
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of processes, not requiring assumptions about high-level representational issues. Indeed,

we have seen that this approach (within the embodied optimization paradigm of ETD) is

capable of reproducing categorical phonological quantity contrasts, which might appear

to constitute a prime example of “duration targets” in speakers’ mental representations

(Šimko et al. 2014b).4

We already briefly touched upon the subject of how our model relates to online pro-

cesses such as speech planning, and we already answered this question briefly: in the

same way as its predecessor ETD, the present model is not to be understood as a real-

time production model of speech. While the individual component cost functions are

motivated by assumptions about properties of production and perception of concrete

speech utterances, we are not endorsing a view of optimization of timing over utter-

ances being computed on-line in speech production. If anything, optimization in our

model may be tentatively interpreted with a view to a developmental or evolutionary

perspective. On this view, the optimization procedure would be recast as a proxy for a

hypothetical process by which interaction among speakers within a linguistic community,

or between a child and a caregiver, through repeated exchange converges onto a set of

optimal forms that best satisfy the need for successful yet efficient communication. As

for the developmental view, we have reviewed one study in which this approach has been

fully spelled out using optimization modeling (Howard and Messum 2011). The work

by De Boer (2000) has shown how evolutionary development of communicative forms

within a community of speakers can be modeled. The optimization procedure in our

model, then, may be interpreted as a short-cut for either process. Thus, we would claim

that our optimization approach represents a biologically plausible attempt at modeling

suprasegmental timing phenomena in speech. In the subsequent chapters of this work,

we will examine predictions of the model and evaluate them against the empirically

attested patterns we have reviewed in Chapter 3.

4A possible way to unify both approaches would be to re-interpret “duration targets” as optimal
durations. On this view, a target would be understood not as an abstract duration stored in speakers’
mental representations, but rather as something like “a duration that allows comfortable articulation
while granting ideal perceptual recoverability of the intended sound”. Thus, the model would apply at
a higher level, taking the result of optimization for granted. Flemming (1997) seems to go somewhat in
this direction, as he discusses the possibility that the formant targets in his first model might themselves
be the result of optimization.



Chapter 6

Testing Predictions of Models of

Speech Timing

6.1 Introduction

In this chapter, we will investigate two predictions made by some of the models of speech

timing reviewed in Chapter 4. As discussed there, several of these models predict that

syllable durations shorten as a function of the number of syllables in different larger

constituents. The coupled-oscillator model of speech timing in particular, moreover,

makes a second strong prediction about speech timing, namely that the duration of the

inter-stress interval (ISI) depends on the number of component syllables in different

ways, depending on whether the language under investigation is (more or less) “syllable-

timed” or “stress-timed”. Our model predicts null results for both phenomena; for

example, the predicted durations shown in Figure 5.8 do not indicate that stressed or

unstressed syllables are lengthened in shorter inter-stress intervals. We will see later

that our model does predict a constituent length effect as a consequence of accentual

lengthening as proposed by White (2002), but it does not predict ubiquitous constituent

length effects in speech, as seem to be implied by some of the models reviewed in Chapter

4.

We have already argued in Chapter 3 that there may be explanations for both dura-

tional patterns that do not require the assumption of dedicated timing mechanisms,

but as will be explored in more detail below, some open questions remain. These will

be subsequently investigated. As for constituent length effects, we will report an em-

pirical investigation on a large speech corpus. The predictions of coupled oscillator

models regarding ISI duration will be investigated using simulation experiments on a

statistical “toy model” based on minimal assumptions about language-specific timing

110
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patterns and structural properties of different languages, not to be confused with our

optimization-based model of speech timing. We will investigate the alternative hypoth-

esis that cross-linguistic differences in the relationship between ISI duration and the

number of component syllables are essentially artifacts of language structure.

6.2 A study of Constituent Length Effects in English

6.2.1 Introduction

As we have seen in Chapters 3 and 4, constituent length effects in speech have been widely

discussed, and they are a natural prediction of several models of speech timing. The

two most thorough empirical studies of constituent length effects, at least in English,

yield somewhat converging evidence on the reality of these effects: White and Turk

(2010) find large and reliable constituent length effects in accented words, but only a

very subtle effect in unaccented environments, restricted to words with initial stress.

van Santen (1992)’s corpus analysis shows that vowel duration in accented words varies

inversely with the distance (in number of syllables) to the right word boundary, but not

with syllable count in the word or the ISI.

These results are compatible with two interpretations. One is that they are indicative of

genuine constituent length effect which does not operate at the word or ISI level, but on

the interval between the onset of a stressed syllable and the following word boundary.

This interval has been termed word rhyme White and Turk (2010) or Narrow Rhythm

Unit (NRU) Bouzon and Hirst (2004), Jassem (1952), and Jassem (1952) explicitly

proposed it as the domain of a temporal equalization process in English. According

to this theory, speakers of English attempt at regularizing NRU duration, which would

predict a constituent length effect in this unit. Syllables not contained in an NRU, i.e.,

unstressed syllables occurring before the main stress of the word they are part of and thus

within the so-called anacrusis, are produced as rapidly as possible according to Jassem

(1952)’s theory. On this account, models of speech timing that predict constituent length

effects could be “rescued” by positing the NRU as the domain of the effect.

An alternative interpretation, suggested by White and Turk (2010), is that the observed

pattern is the result of a progressive word-final lengthening effect: vowels are longest

when they are directly adjacent to a word boundary, and become shorter with added

intervening syllables. For stressed vowels, both hypotheses are indistinguishable – the

number of syllables between the stressed syllable onset and the right word edge is, by

definition, the same as the syllable count in the NRU. For unstressed vowels, however,

it is possible to pit the number of syllables in the NRU against the number of syllables
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to the right word boundary: the NRU compression hypothesis predicts the vowel in

the word-final syllable to be shorter in “Minister” (trisyllabic NRU) than in “Mister”

(bisyllabic NRU), whereas the progressive word-final lengthening hypothesis predicts no

such difference.

Results of a corpus analysis by Hirst (2009) appear to favor the word-final lengthening

hypothesis: the constituent length effect at the NRU observed in earlier studies on the

same data Bouzon and Hirst (2004), Hirst and Bouzon (2005) does no longer hold if

NRU-initial, -final and -medial phones are analyzed separately. However, this study did

not control for phrasal prominence, and, additionally, conflated consonants and vowels.

Since the final phone of an NRU will presumably often be a coda consonant, it is not

clear how to interpret the result of the study, given that White and Turk (2010) found

only nuclei, not coda consonants to shorten with syllable count in the NRU (or distance

to the right word boundary). We will report a reanalysis of the same data, in order

to assess possible influences of NRU length on vowel duration whilst controlling for

prominence and positional factors. We will also investigate possible effects of syllable

count in the word and in the ISI, in order to provide a replication of the studies by

White and Turk (2010) and van Santen (1992) on somewhat more naturalistic data.

6.2.2 Corpus Analysis

6.2.2.1 Material and Methods

Analyses were conducted on speech data from the Aix-MARSEC corpus (Auran et al.

2004). This corpus comprises approximately 51/2 hours of automatically segmented

and prosodically transcribed broadcast speech, produced by 17 male and 36 female

speakers of British English. Analyses were carried out on vowel durations, using the

existing segmentation of the data. A number of measures were taken in order to avoid

confounding of results. Vowels from utterance-initial and final words were excluded from

the analysis, so as to avoid potential effects of initial and final lengthening. Moreover,

we discarded data from a number of words in the corpus for which stress was marked

on more than one syllable, as it is not clear how to define units such as the ISI in such

cases. Analyses were carried out on z-normalized vowel durations, i.e., the duration

of each vowel token is represented by how many standard deviations it differs from

the mean duration of all tokens of the respective phoneme, and this mean value is the

subtracted, so as to center the duration distribution around zero. This normalization

method eliminates inherent vowel duration differences as a potential confound.

Finally, we controlled for two prosodic variables: first, a variable termed PROMINENCE

was defined using the existing prosodic transcription of the corpus, comprising three
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prominence levels, stressed accented (1), stressed unaccented (2) and unstressed (3).

These will be referred to as S +Acc, S -Acc and U, respectively. Second, we identified

word-final vowels and defined a control variable WITHIN-WORD-POSITION with the

levels final and non-final. Vowels from monosyllabic words were counted as word-final.

We chose not to control for any other variables, such as the phonological environment

of a vowel, syllable type, or between-speaker variation. In doing so, we assume that

potential confounding variables not accounted for should be randomly distributed with

respect to the experimental variables of interest, or that they should cancel each other

out to some extent. We thus incur some risk of factor confounding, but the alternative

would be to accept substantially reduced cell sizes, which by itself would make results

less robust. As we shall see, our control methods are rigorous enough to yield consistent

results, which are in agreement with findings from more controlled studies.

Vowel durations were analyzed using quantile regression, as implemented in the R pack-

age quantreg Koenker (2005). Quantile regression allows for computing median esti-

mates, which arguably yields a more accurate representation of vowel durations than

techniques that provide mean estimates, as vowel duration distributions typically ex-

hibit a considerable positive skew. We applied a stepwise analysis procedure: first, we

fitted a model with the factors prominence (S +Acc/S -Acc/U ) and within-word

position (final/non-final) to the data. This model will be referred to as basicmodel.

We then created a dummy variable, referred to as control, which comprised all com-

binations of factor levels of prominence and within-word position. In a second

analysis step, we constructed three separate regression models, one for each of the three

constituent types, word, ISI, and NRU. In each of these models, slopes for vowel dura-

tion by syllable count in the respective constituent type were nested within the levels

of control, using R’s “/” operator (Chambers and Hastie 1992). Thus, constituent

length effects were tested separately within the subsets of the corpus defined by the com-

binations of prominence and within-word position, so that confounding by these

factors was eliminated.

The three models used for testing the individual constituent types will be referred to

as wordmodel, isimodel, and nrumodel. Data from cells as defined in these models that

contained less than 100 observations were discarded. After all exclusions, approximately

40000 vowels remained to be analyzed in wordmodel and isimodel. For nrumodel, there

were additional exclusions, as detailed below.1

1in Windmann et al. (2015a), we applied Bonferroni correction in these analyses. Following sugges-
tions such as Rothman (1990) and Perneger (1998), we now think that this is unnecessary, and maintain
that theoretically informed interpretation of results is a sufficient guard against false positives. We
will report all effects with α = 0.05 here, but the interpretation of results will be the same as in the
Windmann et al. (2015a) paper.
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6.2.2.2 Results

We will begin by discussing the results of basicmodel. Planned comparisons showed

non-word-final S +Acc vowels to be significantly longer (t = 3.93; p < 0.0001) and S

-Acc vowels to be significantly shorter (t = −7.84; p < 0.0001) than U vowels in the

same position. In word-final position, S +Acc vowels are also longer than U vowels

(t = 17.84; p < 0.0001); the difference between word-final S -Acc and word-final U

vowels is also significant (t = 2.40; p < 0.05). U vowels are longer in word-final than

non-word-final position (t = 14.67; p < 0.0001), as are S +Acc (t = 19.20; p < 0.0001)

and S -Acc (t = 15.10; p < 0.0001) vowels. There is also evidence for an interaction: the

durational difference between S +Acc and U vowels is greater (t = 8.66; p < 0.0001) in

word-final than in non-word-final position. The durational difference between S -Acc and

U vowels is smaller in non-word-final than in word-final position (t = −2.58; p < 0.01).

Thus, there are reliable effects of prominence and within-word position on vowel duration

and an interaction between both. Results are graphed in Figure 6.1.
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Figure 6.1: Z-normalized vowel duration (medians and 95% confidence intervals) by
prominence and within-word position in the Aix-MARSEC corpus.

The surprising finding of greater U than S -Acc vowel durations is most likely an

artifact of the z-score normalization: as is well-known, the distribution of English

vowel phonemes in stressed and unstressed syllables is near-complementary; most vowel

phonemes in the corpus appear almost exclusively either in stressed or in unstressed syl-

lables (with the exception of short high vowels, for which stress indeed makes little differ-

ence). Since the z-score normalization sets the mean durations of all vowel phonemes to

zero, duration differences between stressed and unstressed vowels are largely eliminated.

The category of S -Acc vowels in particular comprises mainly those observations from

the lower tail of the stressed vowel duration distribution, so that S -Acc vowels appear
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to be even shorter than U vowels. Lexically stressed and unstressed vowel durations are

thus not directly comparable using our data and method.

Figure 6.2 graphs z-normalized vowel durations (medians and 95% confidence intervals)

by syllable count in the ISI (the interval between two consecutive stressed syllable on-

sets), for all data (left panel), and separately for word-final (middle panel) and non

word-final vowels (right panel). The different colors denote the three levels of promi-

nence. The individual trajectories in the middle and right panel correspond to the nested

slopes in isimodel. This way of presenting the data highlights the benefits of our nested

analysis: as long as the data are pooled across within-word positions, there seem to be

clear effects of syllable count in the ISI, especially in S +Acc vowels. Once within-word

position is controlled, a different picture emerges: for word-final vowels, there is some

evidence compatible with a constituent length effect at the ISI level in U and S-Acc

vowels, which is corroborated by isimodel yielding significant negative slopes for syllable

count in the ISI in word-final U (t = −5.04; p < 0.0001) and in word-final S -Acc vowels

(t = −3.15; p < 0.05; note that these effects may be underestimated by the slopes of our

model, which assume linear effects of duration by syllable count). None of the remaining

nested slopes are significant.
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Figure 6.2: Z-normalized vowel duration by prominence level, within-word position
and syllable count in the ISI in the Aix-MARSEC corpus.

Figure 6.3 graphs z-normalized vowel durations from the MARSEC corpus as a function

of the number of syllables in the word, in the same fashion as Figure 6.2 above. The

pattern of results is the same as in the ISI analysis: as long as within-word position is

not controlled, there seems to be a shortening effect of the number of syllables in the

word on vowel duration, particularly for S +Acc vowels. Once within-word position
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is controlled, the effect of word length on vowel durations turns out to be essentially

random. There is marginally significant shortening of vowel duration as a function of

word length in word-final S -Acc vowels (t = −1.81; p = 0.07) and weak effects in the

direction of lengthening in word-final S +Acc (t = 2.10; p < 0.05) and non-word-final S

-Acc vowels (t = 2.10; p < 0.05). The inconsistent overall pattern suggests that these

effects are most likely spurious. One may note, however, that there is a quite distinct

durational pattern in word-final U vowels. We will provide a possible interpretation of

this pattern below.
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Figure 6.3: Z-normalized vowel duration by prominence level, within-word position
and syllable count in the word in the Aix-MARSEC corpus.

Figure 6.4 graphs z-normalized vowel durations from the MARSEC corpus as a function

of the number of syllables in the NRU (the interval between the onset of a stressed

syllable and the following word boundary), in the same fashion as in Figures 6.2 and 6.3

above. For the NRU analysis of unstressed vowel duration, we excluded observations

from syllables in anacruses, i.e., unstressed syllables occurring before the stressed syllable

within a word (or within words that do not contain a stressed syllable at all), as these

are not part of the NRU according to Jassem (1952)’s model. Since syllable count in the

NRU is, by definition, one for word-final stressed vowels, these were also excluded from

nrumodel, but are shown in Figure 6.4. These exclusions lead to approximately 19000

observations being included in nrumodel.

Inspection of Figure 6.4 tentatively suggests a progressive word-final lengthening effect

in S +Acc vowels, in accordance with results by van Santen (1992) (recall that for

stressed vowels, syllable count in the NRU is isomorphic to the number of syllables

between the vowel and the right word boundary). The difference between S +Acc vowels
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Figure 6.4: Z-normalized vowel duration by prominence level, within-word position
and syllable count in the NRU in the Aix-MARSEC corpus.

from bi- and trisyllabic NRU, and, hence, between penultimate and antepenultimate S

+Acc vowels, however, is only marginally significant (t = −1.93; p = 0.054). Crucially,

there are no effects compatible with a constituent length effect at the NRU level in

unstressed vowels. The nested slope for word-final U vowels suggests a lengthening

effect (t = 10.56; p < 0.0001), but graphical presentation of results in the middle panel

of Figure 6.4 indicates a more complex pattern, similar to the result observed in the

word-level analysis.

Figure 6.5, finally, clarifies why constituent length effects are observed in uncontrolled

data: shown are the percentage of word-final vowels as a function of constituent length

in the MARSEC corpus: for example, 100% of all stressed vowels in monosyllabic ISI

come from word-final syllables, which is not surprising, given that a monosyllabic ISI is

defined as a primary stressed syllable followed by another primary stressed syllable, so

that there is necessarily a word boundary intervening. In bisyllabic ISI, this proportion

is only about 60% for stressed syllables, and it decreases further with increasing ISI

length. The resulting trajectories bear a striking resemblance to the durational results

obtained without controlling for within-word position, particularly for stressed vowels.

As for unstressed vowels, results are not obviously related to the proportion of word-

final observations, and we will argue below that there is another factor that needs to

be taken into account. One interesting observation with regard to unstressed vowels,

however, can be made in the left panel of Figure 6.5: while the proportion of word-final

observations does decrease as a function of ISI length for unstressed vowels, the effect

is much weaker than for stressed vowels. A possible explanation is that longer ISI are
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likely to involve polysyllabic words. In this case, some of the unstressed syllables in

a long ISI will be word-initial or medial, resulting in a weaker correlation between ISI

length and the probability to occur word-finally for unstressed syllables. This provides a

possible explanation for Kim and Cole (2005)’s negative finding on ISI-based shortening

in unstressed vowels.

S

S

S

S

S
S0

20
40

60
80

10
0

1 2 3 4 5 6

%
 W

or
d−

fin
al

 v
ow

el
s

Foot

Syllable count

S

S

S

S

S

S

U
U

U

U
U

S

S

S S0
20

40
60

80
10

0

1 2 3 4

Word

Syllable count

S

S

S S

U

U

U

U

S

S S S0
20

40
60

80
10

0

1 2 3 4

NRU

Syllable count

S

S S S

U

U

U

ISI

Figure 6.5: Percentage of word-final vowel observations as a function of the number
of syllables in the three constituents in the Aix-MARSEC corpus, separated by levels

of prominence (black: S +Acc; red: S -Acc; blue: U).

6.2.3 Discussion

To summarize, results of the corpus analysis do not support shortening effects at the

level of any of the constituents investigated. Such effects seem to be pervasive if within-

word position is not controlled. Once position within the word is accounted for, apparent

constituent length effects are no longer observed. This strongly suggests that constituent

length effects reported in earlier studies (Bouzon and Hirst 2004, Campbell 1988, Kim

and Cole 2005, Williams and Hiller 1994) are an artifact of word-final lengthening.

The data do provide evidence for two localized lengthening effects, accentual and word-

final lengthening, lending support to White (2002)’s domain-and-locus approach towards

speech timing. As argued above, the effect of lexical stress cannot be assessed in the

MARSEC corpus, due to the complementary distribution of vowel phonemes in stressed

and unstressed syllables. Word-final lengthening seems to be pervasive, and our data

also suggest an interaction of word-final lengthening and accent. One caveat, however,
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is that our data do not definitively establish the word as the trigger of this lengthening

effect – it may be the case that the lengthening of word-final vowels is really instantiated

by some intermediate prosodic phrase that has simply not been marked in the corpus

annotation. This may be a distinct possibility, given that our review in Chapter 3 has

yielded mixed results for word-final lengthening. Yet, the general conclusion remains

that apparent constituent length effects in our data are an artifact of such localized

lengthening phenomena.

The analysis revealed two durational patterns that are not accounted for by prominence

or final lengthening: first, word-final S -Acc vowels are longer in monosyllabic than in

bisyllabic ISI, and word-final U vowels are longer in bi- than in trisyllabic ISI. Similar

patterns have been observed in earlier experimental studies (e.g. Fowler 1977, Lehiste

1972). While these findings are in the direction of a constituent length effect, this may

not be the preferable explanation – no comparable tendency is observed in non-word-

final vowels, and in either case, the difference only resides in the comparison between

vowels from ISI with minimum versus larger syllable count. A unified explanation may

be suggested based on the fact that the difference in either case is whether the critical

syllable is followed by a stressed or an unstressed syllable across the word boundary: in

the case of a final stressed syllable, mono- and bisyllabic ISI correspond to S#S and

S#U sequences, respectively (’#’ denoting the word boundary). For an unstressed final

syllable, bi- and trisyllabic ISI correspond to SU#S vs. SU#US sequences. Thus, the

durational effect can be interpreted as “stress-adjacent lengthening”, following White

(2002)’ reanalysis of similar findings. White views this phenomenon as a rhythmic

effect that is employed in order to create durational contrast, reminiscent of the widely

discussed stress clash phenomenon.

Second, NRU length seems to have an alternating effect on unstressed vowel duration:

for word-final vowels, the pattern could be described as 2 = 4 < 3 (where the numbers

represent syllable count in the NRU), whereas there seems to be a 3 < 4 pattern.

This finding may be straightforwardly explained as a secondary stress effect: a word-

final unstressed syllable in a trisyllabic NRU is one unstressed syllable removed from

the preceding stress (SU [U ]#). The assumption of secondary stress assignment would

account for the greater duration of vowels in this position relative to word-final vowels in

bi- and tetrasyllabic NRU. For non-final unstressed vowels, the situation is reversed: in

the case of a trisyllabic NRU, this vowel comes from the syllable directly adjacent to the

stressed syllable (S[U ]U#), whereas in the tetrasyllabic case, the non-final unstressed

category includes observations from the unstressed syllable that is one syllable removed

from the initial stressed one (S[UU]U#), which is a potential site for the putative

secondary stress effect. This is consistent with the 3 < 4 pattern for unstressed vowels

in the right panel of Figure 6.4. The analyses by ISI and word largely mask this effect, but
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it is visible in the word-final unstressed data by syllable count in the word in the middle

panel of Figure 6.3. As an explanation of this effect, one may invoke the assumption that

eurhythmic principles play a role in speech production (Wagner 2002): according to this

assumption, languages prefer alternating strong-weak patterns and penalize sequences

of prosodically weak syllables. The explanation thus recurs to a similar mechanism than

the “stress-adjacent lengthening” account discussed above, although the effect is in the

opposite direction.

One final point in which our results disagree with those of White (2002) is that we

find no evidence for a constituent length effect at the word level in S +Acc vowels.

One may also note that we have not distinguished unstressed vowels from accented and

unaccented words. This had initially been done, but we found no durational differences,

and collapsed both categories. We certainly do not want to imply that the patterns

reported in White (2002) and other rigorous experimental studies are invalidated by

our rather coarse analysis. One potential reason for the apparent discrepancy may have

to do with the definition of accents in the MARSEC corpus: the documentation of

the corpus data in Bouzon (2004) suggests that accent labels in the MARSEC corpus

simply refer to any salient tonal movement. It may be speculated that effects such

as those discussed by White (2002), i.e., lengthening of all constituents of an accented

word and shortening of the individual syllables in longer words, may be restricted to

very prominent, possibly nuclear and contrastive accents. Thus, such effects may not

be visible in our data. Contrary to White (2002), we have also not found evidence for

progressive word-final lengthening in S -Acc vowels. Since the effect in White (2002)’s

data was very small, it may be the case that it is simply not detectable in our data due

to the higher amount of noise, or that it depends on speaking style characteristics.

Our results are problematic for some of the models of speech timing reviewed in Chapter

4, which predict that constituent length should be ubiquitously observable in speech.

The analysis reproduces findings for the word and ISI level from the studies by van

Santen (1992) and White (2002) and extends them by showing that the NRU is also not

likely to trigger an effect of this kind in English. Earlier findings that appear to support

constituent length effects, particularly at the ISI level, are due to failure to control for

word-final lengthening. Our conclusions are of course valid only for English and will

hopefully stimulate cross-linguistic comparisons in future work.

These results preliminarily suggest that it is unnecessary to invoke a dedicated mech-

anism to account for constituent length effects throughout speech utterances in an ex-

planatory model of speech timing. Figure 6.6 graphs results of a simulation of a subset

of data from the MARSEC corpus, conducted with our optimization-based model. The

model was run on input sequences that were based on 2000 actual utterances from the
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corpus in terms of number of syllables and locations of lexical stress and word bound-

aries. The same parameter settings were used as in the example simulation shown in

Figure 7.3.1, with two exceptions: αPW was set to 0 throughout, and ηi was set to 0.5

for word-final syllables, in order to simulate word-final lengthening. Unsurprisingly, the

simulation captures the apparent constituent length effect at the ISI level found in the

real data when within-word position is not controlled, due to the correlation between

ISI length and the proportion of word-final syllables. For this subset of the corpus data,

there is at best a very weak effect of ISI length on unstressed syllable duration, due to

the weaker correlation with the proportion of word-final syllables, as explained above.

This suggests an explanation for results reported by Kim and Cole (2005) and shows

that it is not necessary to invoke an oscillatory mechanism including additional ad-hoc

assumptions to account for this pattern of results. The inclusion of word-final length-

ening is sufficient. We are of course not claiming that our model offers an explanation

of this pattern of results – rather, the structure of the data itself accounts for the dura-

tional pattern. As we have argued, however, our results do not invalidate experimental

findings on polysyllabic shortening in words with nuclear or contrastive accent, and we

will continue to investigate this phenomenon within our modeling paradigm below.
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Figure 6.6: Simulation of MARSEC corpus data. Shown are simulated stressed (S)
and unstressed (U) syllable durations as a function of syllable count in the ISI. No

explicit ISI level, but only word-final lengthening is modeled (see text for details).

Results of the corpus analysis may be put in a broader theoretical context by recur-

ring to the discussion of periodic versus contrastive speech rhythm in White (2014).

Our results do not support the former concept, which relates to precisely the kind of

temporal periodicities implied by oscillatory models, but they do support the notion
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of contrastive rhythm, i.e., the assumption that speech is characterized by alternating

strong-weak patterns. This is particularly true for the stress-adjacent lengthening and

the secondary stress effect we observed. It would of course be desirable for our model

to provide a unified explanation for both phenomena, but we currently see no way of

incorporating a truly explanatory account of these phenomena within our rather simple

modeling paradigm. One might implement an additional component cost function that

instantiates a tendency towards alternation in syllable durations, but this would be lit-

tle more than a description of the observed facts and not really constitute independent

motivation. We hypothesize that a satisfactory explanatory account of the alternation

patterns we observed would require more in-depth modeling of word recognition (Cut-

ler and McQueen 2014 and references therein), probably including explicit assumptions

about concepts such as attention modulation in listeners. We will not attempt at provid-

ing such an integrated account in this work, and leave this enterprise for future research.

6.3 Investigating Regression Results on Inter-Stress Inter-

val Duration

6.3.1 Introduction

The previous section confirmed and extended findings from the literature, suggesting

that in English, constituent length effects observed throughout utterances, as predicted

for example by coupled oscillator models of speech timing, are spurious. In view of

this outcome, on may wonder whether there are similar alternative explanations for the

second key prediction of oscillatory models, language-specific differences in ISI duration

expressed as a function of the number of component syllables. To recapitulate, Eriks-

son (1991) found intercept values clustering around 200 ms for “stress-timed” and 100

ms for “syllable-timed” languages in this type of analysis, and O’Dell and Nieminen

(1999) showed that this difference is borne out by the coupled oscillator model in an

elegant fashion if asymmetrical coupling between a syllabic and an ISI oscillator is as-

sumed. In the discussion in Chapter 4, we brought up differences in stressed/unstressed

duration ratios as a possible alternative explanation. However, results by O’Dell and

Nieminen (2001), who found a substantial positive regression intercept despite mini-

mal stressed/unstressed duration ratio in an analysis of this type in Finnish, show that

there may be yet other factors at play in accounting for the cross-linguistic differences

observed by Eriksson (1991). In this section, we will test the hypothesis that these

differences, too, may be related to the distribution of stressed syllables relative to word

boundaries. This will be done using simulated data generated with a statistical “toy
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model” – not to be confused with the optimization-based model introduced in the pre-

vious chapter – that determines syllable durations based on minimal assumptions about

language-specific timing patterns and structural properties of different languages. This

model is of course highly simplistic, as it leaves many other potentially relevant factors

unaccounted for. Our investigation therefore should be viewed as a proof-of-concept

study whose aim is to highlight a potential alternative explanation for observed facts,

rather than to establish definitive conclusions. Our analysis will concentrate on English

and two other languages that will be shown to represent extreme cases regarding the

alignment of stressed syllables and word boundaries: Finnish and French2

6.3.2 Analysis

As we are not aware of regression analyses of ISI duration by syllable count in French

and Eriksson (1991)’s analyses of English are based on a rather small data set (actu-

ally on average values reported in Dauer 1983), we will first supply an analysis of this

kind on a large corpus of French and also report an analysis on the MARSEC corpus

for English. As for French, data from the C-PROM corpus (Avanzi et al. 2010) were

analyzed. This corpus was compiled for the study of prosodic prominence in French and

contains binary syllabic prominence labels from two expert annotators. It comprises

approximately one hour of mostly read speech from different genres produced by 16

male and 12 female speakers of French. The C-PROM corpus is thus comparable to

the MARSEC corpus, although considerably smaller. ISI boundaries were determined

using the existing prosodic transcriptions of the corpora. Following Fant et al. (1991a)

and Wenk and Wioland (1982), the ISI in French, in contrast to English was defined

as the interval between the offset of a stressed syllable and the offset of the following

one, as French prosodic structure is assumed to be organized into accentual phrases

with final prominence. Linear regression models were fitted to ISI duration by number

of component syllables. Only data from utterance-medial ISI were analyzed. Table 6.1

summarizes the corpus data and Table 6.2 summarizes the regression models, including

the values from O’Dell and Nieminen (2001)’s analysis of Finnish.

Table 6.1: Number of syllables by syllable count in the ISI in the Aix-MARSEC
corpus (English) and the C-PROM corpus (French).

Language 1-ISI 2-ISI 3-ISI 4-ISI 5-ISI 6-ISI 7-ISI

English 4321 6622 3987 1370 354 46 7

French 222 322 333 237 189 97 79

2We will conveniently refer to prominent syllables in French as “stressed”, even though this is tech-
nically incorrect, as prominence assignment is supposed to be post-lexical in French (Hyman 2006).
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Table 6.2: Regression models of ISI duration by number of component syllables in
English, French and Finnish. The column headed “r” denotes the “coupling strength

ratio”, intercept divided by slope.

Language Intercept (ms) Slope (ms) r R2

English 143 123 1.16 0.49

French 122 142 0.85 0.78

Finnish (O’Dell and Nieminen 2001) 104 145 0.71 0.73

The coefficients of the regression model fitted to the English data do not quite match the

values reported by Eriksson (1991), but they are in line with the prediction of the coupled

oscillator model, in that the “coupling strength ratio” r between intercept and slope does

lie in the “stress-timed” region > 1. It is also substantially higher than the equivalent

value computed for French, which would be classified as syllable-timed according to

this analysis. O’Dell and Nieminen (2001)’s Finnish data seem to pattern more or

less with our French analysis. The English and French data thus appear to support

the predictions of the coupled oscillator model, assuming a dominant ISI oscillator in

English and a dominant syllabic oscillator in French. For Finnish, the situation is less

clear-cut; Finnish has been described as mora-timed, and we are not aware of explicit

predictions made by oscillatory models for this putative class of languages. In any case,

the more interesting question regarding the Finnish data his how the substantial positive

regression intercept can be borne out regardless of minimal stressed-unstressed syllable

duration differences. In what follows, we will suggest differences in the alignment of

stressed syllables and word boundaries as a unified explanation for the pattern of results

shown in Table 6.2.

We have seen for English that, as syllable count in the ISI increases, the proportion

of word-final syllables decreases, particularly for stressed syllables, as shown in Figure

6.5 above. This pattern may differ cross-linguistically, based on the stress-assignment

rules of individual languages. French and Finnish represent two extreme cases in this

respect. In French, with its supposedly post-lexical assignment of prominence to the final

syllable in an accentual phrase, all “stressed” syllables are necessarily word-final. Thus,

the probability of encountering a word-final stressed syllable is always 1, regardless of

syllable count in the ISI. There may be exceptions to this pattern in the case of phrase-

initial accents (Astésano et al. 2007), but the occurrence of this phenomenon should be

randomly distributed with regard to ISI length. French is also a prototypical “syllable-

timed” language.

In Finnish, by contrast, stress is always word-initial (Suomi 2007). Thus, monosyllabic

ISI in Finnish occur only if a monosyllabic word is followed by any other word (which,

in theory, necessarily has initial stress), hence stressed syllables in monosyllabic ISI are
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always word-final. In longer ISI, i.e., sequences of a stressed and one or more unstressed

syllables, the stressed syllable cannot be word-final, as any unstressed syllables that

follows a stressed syllable in Finnish must also fall within the same word. This assump-

tion, too, is certainly overstated – cases of de-stressing, rhythmic beat insertion or weak

function words in running speech may result in occurrences of non-word-initial stressed

or initial unstressed syllables even in Finnish. Yet, one may assume that Finnish stress

assignment rules should lead to a markedly more extreme distribution of word-final

stressed syllables with respect to syllable count in the ISI than in English, where words

with non-initial or even final stress are not uncommon. Figure 6.7 visualizes the (hy-

pothetical) percentages of stressed syllables that are word-final as a function of syllable

count in the ISI for the three languages.
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Figure 6.7: Percentage of stressed syllables that are word-final as a function of syl-
lable count in the ISI in English (results from MARSEC corpus), French and Finnish

(hypothetical distributions; see text for details).

Do these differences in language structure offer an alternative explanation for language-

specific differences in “coupling strength ratio” reported by Eriksson (1991) and O’Dell

and Nieminen (2001)? In what follows, we will investigate artificial speech data simulated

using a minimal “toy model” in order to investigate this question. This toy model will

be extremely coarse and ignore many potentially relevant aspects of real speech data.

Hence, the goal of our approach will be to supply a proof-of-concept demonstration that,

all else being equal, differences in the distribution of word-final (stressed) syllables in a

language generate the differences in intercept-to-slope (r) ratios observed in regression

analyses of ISI duration by syllable count in various languages, granted that word-final

syllables are lengthened. The point of the simulation experiments is not to ultimately
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refute O’Dell and Nieminen (1999)’s model, but just to suggest a plausible alternative

explanation.

For these simulation experiments, we generated artificial syllable duration data by ran-

domly drawing numbers from log-normal distributions. The log-normal distribution has

been found to provide a good approximation of the typically positively skewed distribu-

tions of speech segment durations (Rosen 2005) and was therefore considered apt for our

purpose. Three categories of syllables were modeled: word-final stressed syllables were

drawn from a distribution with a mean µ = 265 ms and a standard deviation σ = 105

ms, non-word-final stressed syllables from a distribution with µ = 178 ms and σ = 75

ms, and unstressed syllables from a distribution with µ = 147 ms and σ = 40 ms. These

values were derived from the MARSEC corpus, and, crucially, were used for all three

languages. The assumption that stressed and unstressed syllables are of equal duration

in English, French and Finnish is of course quite unrealistic, but it was deliberately

adopted, as the purpose of the experiment was to isolate the effect of the distribution

of word-final lengthening on coupling strength ratios.

The simulated syllable durations were combined into ISI as shown in Table 6.3, in order

to match the proportions of word-final and non-final stressed syllables shown in Figure

6.7. For example, the “English” corpus comprised 200 tri-syllabic ISI, 70 of which

were created by adding a syllable duration from the word-final stressed distribution to

two unstressed durations, while the other 130 tri-syllabic ISI durations were created by

adding two unstressed durations to a stressed non-final duration. The simulations thus

also incorporate the assumption that ISI of all syllable counts are equally frequent in

the three languages, which, too, is not particularly realistic. Many parameters of the

simulations could be changed in order to achieve a better representation of the languages

under study, but our coarse methodology will suffice for an initial demonstration.

Table 6.3: Assignment of simulated stressed non-final and stressed final syllables by
ISI length in English, French and Finnish. The number of unstressed syllables for an

ISIS with syllable count n is 200× (n− 1).

Language Stress/Position 1-ISI 2-ISI 3-ISI 4-ISI 5-ISI

“English”
Stressed Final 200 110 70 30 10

Stressed Non-Final 0 90 130 170 190

“Finnish”
Stressed Final 200 0 0 0 0

Stressed Non-Final 0 200 200 200 200

“French”
Stressed Final 200 200 200 200 200

Stressed Non-Final 0 0 0 0 0

All languages Unstressed 0 200 400 600 800
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Linear regression models were fitted to ISI duration by syllable count on the simulated

data, and the “coupling strength ratio” r, i.e., the ratio between intercept and slope,

was computed. This procedure was repeated 500 times for the English and French

data. Figure 6.8 shows mean durations and regression coefficients computed over 500

simulations.
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Figure 6.8: Regression results on simulated English, French and Finnish data (means,
standard deviations and regression coefficients averaged over 500 simulation runs). See

text for details.

The simulation result confirms our hypothesis for the comparison between English and

the other two languages: all else being equal, the difference in distribution of word-final

stressed syllables alone predicts a markedly higher coupling strength ratio for English

than for the other languages. For the comparison with French, the explanation lies in

the statistical tendency of stressed syllables to be progressively shorter in longer ISI in

English (even though ISI length is not the relevant variable as far as timing processes

are concerned), which counteracts the increase in ISI duration caused by the addition of

unstressed syllables and decreases the regression slope. In Finnish, the abrupt difference

between mono- and bisyllabic ISI (100% vs. 0% word-final stressed syllables) makes for

a nonlinearity that results in a lower intercept estimate, and, hence, coupling strength

ratio compared to English. Interestingly, graphical presentation of Finnish ISI duration

means in O’Dell and Nieminen (2001) reveals a very similar nonlinearity. We re-plot the

figure from O’Dell and Nieminen (2001) in Figure 6.9 for comparison.

Presentation of O’Dell and Nieminen (2001)’s data in Figure 6.9 indeed suggests that

the skewed distribution of stressed syllable durations in Finnish may have something to
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equation includes a positive constant term (104 msec in this case). This is exactly
what the oscillator model predicts. As pointed out above, the relative strength
parameter of the model can be estimated from the regression line and in the
present case gives a value of r = 0.715, as shown in Figure 2. This is very close to
our value estimated earlier for Nieminen’s Finnish data (r = 0.81 [9]).

It is not surprising that the regression shown in Figure 2 yields a high
coefficient of determination, R2 = 0.729, and the total regression model is highly
significant, F(1,65) = 174.608, p < 0.00001. It is of considerable interest to
evaluate the significance of the constant term as well, because if syllable durations
are independent of the number of syllables in the stress group, we would expect
the constant term to be zero on average. For this purpose we applied a one-tailed t-
test using the standard error of the constant term estimated in the regression
analysis, giving t65 = 2.603, p = 0.0057. It would appear very unlikely that such a
high positive value would be obtained by chance. It might also be suspected that
the positive constant which is characteristic of such data could somehow be due to
the particular distribution of syllable durations. To test this possibility, we ran a
Monte Carlo experiment on the present data, retaining the structure of stress
groups, but rearranging the measured syllable durations in a random way, then
recalculating the regression. One thousand trials were run in this way to see how
uncommon it would be to obtain a constant term as high as for the real data. In two
cases out of 1000, the constant term was as high as in the real data, providing a
rough estimated significance of p = 0.002.

Another possible explanation for the positive constant term presents itself if we
take into consideration the possibility that duration itself may be a cue to stressed

Figure 2. Regression line with means and standard deviations for speaker
3M3B.
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Figure 6.9: ISI duration by number of syllables in Finnish (reproduced from O’Dell
and Nieminen 2001).

do with the finding of a substantial “coupling strength ratio” despite minimal stressed-

unstressed duration differences: note that while O’Dell and Nieminen (2001) report an

average stressed syllable duration of 183 ms, the mean duration of stressed syllables

from monosyllabic ISI – and, hence, the only word-final stressed syllables in Finnish

– is actually as high as 250 ms. Thus, one may hypothesize that there are only few

observations from monosyllabic ISI – too few to produce a large mean difference between

stressed and unstressed durations, but enough to bias the regression intercept upward.

We ran a second simulation study in order to substantiate this hypothesis. In this

simulation, we used Finnish-like durational parameters for all three languages, which

were chosen so as to match O’Dell and Nieminen (2001)’s durational data more closely:

µ(stressed word-final)=265 ms, µ(stressed non-word-final)=175 ms, µ(unstressed)=170

ms. Again, regression analyses were run 500 times.

Results of the second simulation experiment are shown in Figure 6.10. The left panel

graphs simulated regression intercepts for the three languages as a function of corre-

sponding mean stressed-unstressed differences. The outcome of the experiment supports

our hypothesis: the artificial data with the Finnish language structure yield substantial

positive regression intercepts (> 100 ms), while the mean difference between stressed

and unstressed syllable duration was only 33 ms on average in the 500 simulations.

Admittedly, the simulated stressed-unstressed difference is still markedly higher than
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O’Dell and Nieminen (2001)’s 13 ms, but this even more drastic result may be due to

other structural factors ignored in our simulation, such as the distribution of pitch ac-

cents, or of unstressed word-final syllables in Finnish. Whatever the explanation, the

tendency predicted by our simulation is correct. This becomes particularly clear in the

right panel of Figure 6.10, which graphs ratios between regression intercept and stressed

unstressed mean difference computed over the 500 simulations for the three languages:

in the Finnish simulations, the average regression intercept is more than three times as

large as the difference between mean stressed and unstressed syllable duration. This

indicates that the distribution of word-final stressed syllables in Finnish will make for

a substantial positive intercept in a regression of ISI duration on syllable count, even if

the average stressed-unstressed duration difference is small.
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Figure 6.10: Left panel: intercepts from regression analyses of ISI duration on the
number of component syllables as a function of differences between mean stressed and
unstressed syllable durations, computed on simulated English, French and Finnish data
(French and English data generated with respective language-specific distributions of
word-final syllables, but “Finnish” durational parameters). Right panel: ratios between

intercepts and stressed/unstressed differences by language. See text for details.

The ratio between intercept and stressed-unstressed difference is markedly lower in the

other languages – in particular, for French, where the proportion of word-final stressed

syllables is independent of ISI length, it is exactly one. Thus, the intercept of a regression

analysis of ISI duration on syllable count in French should be entirely predictable from

the stressed-unstressed duration difference. English, in this analysis, occupies a middle

position between French an Finnish, which is not surprising, given that its distributional

pattern of word-final stressed syllables is also halfway between the extremes French and

Finnish (cf. Figure 6.7). The simulation thus makes two predictions that we can verify

on our corpora – the intercept of the regression analysis of ISI duration on syllable count

should be markedly higher than the difference between mean stressed and unstressed

syllable duration in English, while both quantities should be about the same in French.
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This prediction is partially confirmed by our data: analysis of the MARSEC corpus

yields a regression intercept of 143 ms for English, while the difference between mean

stressed and unstressed syllable duration is only 82 ms. In the French C-PROM data, the

regression intercept is 122 ms and the difference between mean stressed and unstressed

syllable duration is 94 ms. While the ratio between both numbers is thus not equal to 1

in French, it is at least substantially lower than in English (French: 1.30, English: 1.74).

6.3.3 Discussion

These results show that differences in the relative frequency and distribution of stressed

syllables that are subject to word-final lengthening in different languages may contribute

to observed differences in the way ISI duration depends on the number of component

syllables. Such differences thus provide an alternative to coupled oscillators in accounting

for results by Eriksson (1991). Our very coarse simulations did obviously not provide

perfect matches to empirical results, and there may be many other structural factors not

implemented in our toy model that influence the relationship between ISI duration and

the number of component syllables. However, our analysis has created a ceteris paribus

condition, showing that all else being equal, the structural differences we modeled will

trigger tendencies in the observed direction.

The patterns uncovered in our analysis of course do not necessarily account for the lower

coupling strength ratios for languages such as Italian, Spanish and Greek compared to

English reported by Eriksson (1991). We are not aware of detailed information on the

distribution of stressed syllables with regard to word boundaries in these languages.

As for Italian, Krämer (2009) reports that only about 2% of all words in Italian have

final stress, which would suggest that the distribution of word-final stressed syllables in

Italian follows a Finnish-like pattern. This figure refers to word type counts, though,

and it is not clear how frequent word forms with final stress are in spoken Italian in

absolute terms. In Spanish, final stress does seem to be quite frequent (Eddington

2000). In any case, the lower coupling strength ratios reported for these languages

compared to English may stem largely from lower stressed/unstressed syllable duration

ratios in these languages, due to the absence of factors such vowel reduction in unstressed

syllables or quantity-sensitive stress assignment. Moreover, word-final lengthening of

stressed syllables may be weaker or absent in these languages – for example, recall that

d’Imperio and Rosenthall (1999) report that at least in open syllables, stressed vowels

are actually shorter word-finally than in other positions in Italian. As for the languages

considered in our study, word-final lengthening (or at least a lengthening effect in a

constituent below the intonational phrase level) is supported for English by our own

results and for Finnish by results reported in Suomi (2007). For French, the question of
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word-final lengthening in stressed syllables is moot, as there are no stressed syllables in

other positions.

Whatever the explanation, our simulation study has shown that structural factors may

play a key role in explaining Eriksson (1991)’s result. While oscillatory models account

for the data in a highly elegant way, we have shown that the result may be explained

by an arguably simpler alternative.

6.4 General Discussion

In this chapter, we have investigated two predictions of models of speech timing concern-

ing effects of the syllable count in the ISI on syllable and ISI duration. Our optimization-

based model of speech timing makes no specific predictions regarding both phenomena,

and our analyses suggest that it is justified to do so: the observed statistical tendency

of syllables to shorten as a function of the syllable count in larger prosodic units is an

artifact of the decreases probability of observing word-final and hence lengthened sylla-

bles in units with greater syllable count. This effect also provides a possible explanation

for results on ISI expressed as a function of the number of component syllables. We

have seen that our model will reproduce the statistical patterns simply by incorporating

word-final lengthening. As we said above, the explanation in this case does of course

not lie in the model architecture, but in distributional patterns of languages.

Our results are interesting with regard to current debates about speech timing mech-

anisms: they support the domain-and-locus approach to speech timing (White 2002,

2014), which argues that suprasegmental speech timing is confined to localized length-

ening effects at the heads and edges of prosodic domains, and does not include quasi-

periodic compensatory mechanisms, as implied by some of the models reviewed in Chap-

ter 4. This is particularly true in view of the contrastive rhythm effects we observed in

the analysis of the MARSEC corpus. Our model does currently not provide a unified

explanation of these effects. A model that is capable of integrating all these phenomena

would be a desirable achievement for further research. f



Chapter 7

Incompressibility

7.1 Introduction

We have encountered the hypothetical speech timing property of incompressibility sev-

eral times in this work. In this chapter, we will first report an empirical study that attests

this phenomenon as a property of suprasegmental constituent durations in speech, and

then present simulation experiments demonstrating that the phenomenon automatically

emerges from the architecture of our model. Incompressibility receives separate treat-

ment because we classify it as a more low-level property of speech timing related to, in

contrast to high-level linguistic effects on speech timing, which will be treated in the

subsequent chapter. In fact, our model will be shown to implement the hypothesis that

some of these effects are based on incompressibility.

As discussed above, the term incompressibility refers to the intuition that speech sounds

cannot be arbitrarily short, i.e., that there are lower limits to their durations, for artic-

ulatory and perceptual reasons. The concept was made popular by Klatt (1973), who

studied the combined effects of polysyllabic shortening and (absence of) postvocalic

voicing on vowel duration in presumably accented words. He found that both factors in

combination shorten a target vowel in an otherwise constant environment less strongly

in both absolute and proportional terms than would be predicted by simply adding the

effects of both factors in isolation: the difference in /E/ duration between bed and bet-

ting, for example, is smaller than would be predicted from adding the difference in /E/

duration between bet and bed to that between bed and bedding. Klatt conjectured that

this is due to incompressibility – shortening effects diminish as the hypothesized lower

duration threshold is approached – and captured this in the following descriptive model

of vowel duration:

Dj = k(Di −Dmin) +Dmin (7.1)

132
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The model starts from some inherent duration Di that is equal to a vowel’s duration

in an isolated, pitch-accented monosyllable, i.e., something like its longest conceivable

instance, and then proceeds by recursively applying shortening factors k < 1 for indi-

vidual timing processes, resulting in the output duration Dj . For a given factor, Dj is

used as input duration Di in the next iteration. Incompressibility is invoked by adding

the constant Dmin, and by applying k only to the term Di−Dmin, i.e., to the compress-

ible part of vowel duration. This accounts for the less than additive shortening effect

of several factors in combination: the multiplicative shortening factor is applied to a

progressively shorter base duration.

Klatt’s model can be used to predict vowel duration, given that the free parameters

are appropriately estimated from data. At the same time, it provides a simple anal-

ysis method for attesting incompressibility: Equation 7.1 has a straightforward linear

regression form, as is immediately apparent from Figure 7.1. Thus, incompressibility as

a property of a given timing factor can be investigated by regressing durations of vowels

characterized by different levels of that factor (such as voiced vs. voiceless postvocalic

consonant or monosyllabic vs. bisyllabic word) on each other and testing whether the

regression intercept is statistically different from zero. This methodology was applied in

an empirical study, which we will now report.

Di

D
j

0
D

m
in

●

●

α k=tan(α)

Di1

Di2

Figure 7.1: Graphical illustation of Klatt (1973)’s duration model. Input duration
Di (exemplified by two hypothetical concrete durations Di1 and Di2) is mapped onto
output duration Dj by multiplying the compressible part Di −Dmin by some factor k

and adding the incompressible constant Dmin.
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7.2 Corpus analyses

7.2.1 Data and Method

In this chapter, we will investigate incompressibility as a property of syllable durations

under speaking rate variation, using data from two speech corpora with somewhat com-

plementary characteristics. This will be done using the methodology introduced above,

that is, by regressing syllable durations from fast-rate productions on corresponding

syllable durations from slower rate productions, and taking the regression intercept as

an estimate of incompressibility. Incompressibility as a property of speaking rate effects

on segment duration has been established in combination with other effects, such as

vowel tensity and postvocalic voicing (Gopal and Syrdal 1987, Port 1981). Our anal-

ysis, though conducted on syllable durations, will thus not provide dramatically new

fundamental insights, and the regression method sketched above has also been applied

previously in similar ways (e.g. Cummins 1999, Gopal 1996). The point of the analysis is

simply to give a further demonstration of the effect and to corroborate previous results,

and, ultimately, to provide data that our syllable-centered model is able to simulate.

The first of the two analyses was conducted on data from two corpora, the BonnTempo

Corpus (BTC; Dellwo et al. 2004) and a single-speaker database compiled for corpus-

based speech synthesis, which will be described in more detail below. The BTC comprises

readings of a short paragraph of text obtained from different numbers of speakers of

German, English, French, and Italian in their respective native language. Dellwo et al.

(2004) report that categorical variation in overall speaking rate was induced in the

production of the corpus by first prompting speakers to read the text at a “normal”,

spontaneously adopted speaking rate, and then to repeat it four times, at two degrees

of acceleration and deceleration relative to the “normal” condition, respectively. This

yields five tempo conditions: very slow, slow, normal, fast and fastest possible. We

restricted our analysis to the latter three conditions, regressing syllable durations from

the fast rate conditions on the corresponding durations from the normal rate condition.

Table 7.1 summarizes the corpus data.

Separate regression models were fitted to stressed and unstressed syllable durations,

using the existing annotation and prosodic transcription of the corpus. Phrase-final

syllables were excluded from the analysis, in order to prevent a possible confounding

influence of final lengthening. As can be seen from Table 7.1, syllables were sometimes

elided, i.e., not realized at all in the fast conditions. These syllables were also excluded
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Table 7.1: Syllables and speakers per language and actual speaking rate by tempo
condition in the BonnTempo Corpus. Syllable counts are token frequencies pooled across
speakers. Numbers in brackets denote numbers of elided syllables in the fast/fastest

possible condition.

Language Speakers Stressed Unstressed Speaking rate (syls/s)

syllables syllables normal fast fastest

German 15 408 (0/1) 609 (0/0) 5.4 6.1 8.8

English 7 182 (0/0) 304 (4/14) 5.8 6.4 8.0

French 6 134 (0/0) 311 (0/1) 6.1 6.8 9.3

Italian 3 107 (1/1) 180 (4/18) 7.1 7.9 11.1

from statistical analysis,1 but they will be retained in the plots as cases of zero duration

in the fast conditions.

7.2.2 Results

Table 7.2 summarizes the regression models, showing estimates (in ms) and significance

levels for intercepts (Int) as well as the amount of variance (R2) explained by the models

(∗∗: p < .01; ∗∗∗: p < .001; all slopes are significant at p < 0.001). Figures 7.2 and 7.3

show plots of syllable durations at the fast rates as a function of durations at normal

rate in the four languages, with regression lines fitted to the data.

Table 7.2: Summary of regression models of stressed and unstressed syllable duration
from fast/fastest possible productions on corresponding durations from “normal” rate
productions in German, English, French, and Italian data from the BonnTempo Corpus.

Fast Fastest possible

Language Int R2 Int R2

Ge str. 39∗∗∗ 0.71 40∗∗∗ 0.47

Ge unstr. 17∗∗∗ 0.72 16∗∗∗ 0.57

En str. 21∗∗ 0.77 43∗∗∗ 0.55

En unstr. 16∗∗∗ 0.66 19∗∗∗ 0.49

Fr str. 32∗∗ 0.52 54∗∗∗ 0.31

Fr unstr. 18∗∗∗ 0.71 13∗∗ 0.54

It str. 26∗∗ 0.68 31∗∗∗ 0.60

It unstr. 30∗∗∗ 0.58 23∗∗∗ 0.42

The overall pattern of results of the analysis is clear-cut: significantly positive intercept

estimates are consistently observed throughout the corpus, regardless of language and

rate condition. The data thus provide substantial evidence for the hypothesis that

increasing overall speaking rate measured in terms of syllable duration is characterized by

1In Windmann et al. (2013), elided syllables were included in the analysis, which leads to slightly
different results in some cases, the intercept estimate in the fastest-possible unstressed Italian data
turning out non-significant. We now feel that it is more appropriate to exclude elided syllables, as they
constitute massive outliers. In any case, the general pattern of results is the same.
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incompressibility. Again, we argue that no correction for multiple analyses is necessary

given the highly consistent pattern of results. One may observe that there is a tendency

for the models fitted to stressed syllables to have higher intercepts than their unstressed

counterparts. This tentatively supports the assumption that unstressed segments – or,

in this case, syllables – are more compressible than stressed ones (Klatt 1979). Since

the well-established correlation between stress and duration made it impossible to assess

this claim statistically in combined models with stress as a predictor, this observation

has to remain impressionistic.
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Figure 7.2: Stressed (black) and unstressed (gray) syllable durations from fast pro-
ductions plotted as a function of corresponding syllable durations from “normal” rate
productions in the BonnTempo Corpus, with fitted regression lines, in German, English,

French and Italian.

The data from the BonnTempo Corpus provide evidence for incompressibility of sylla-

ble durations as a function of speaking rate variation across various languages, stress

conditions and for different levels of rate variation. However, the corpus is quite limited

in some other respects. One obvious limitation is its small size. The syllable counts
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Figure 7.3: Stressed (black) and unstressed (gray) syllable durations from fastest
possible productions plotted as a function of corresponding syllable durations from
“normal” rate productions in the BonnTempo Corpus, with fitted regression lines, in

German, English, French and Italian.

in Table 7.1 are token counts pooled across speakers. The syllable type count is be-

tween 70 and 100, depending on the language. Moreover, materials are not controlled

in any way, and there is also between-speaker variation. While these characteristics

constitute potential risk factors for positing spurious effects, we would argue that this is

unlikely in the present case, given the very consistent pattern of results observed across

different partitions of the corpus data. Nevertheless, we will supplement our argument

with the analysis of data from a second corpus, which to a certain extent addresses the

shortcomings of the BTC analysis.

This additional analysis was carried out on a speech database that we will refer to as the

Petra Corpus (PC). This corpus consists of 400 utterances produced by a single trained

female speaker of German at a slow (average rate of 4 syls/s) and a fast (average rate

of 8 syls/s) speaking rate for the purpose of integrating fast speech in a unit selection

speech synthesis system (Moers et al. 2010). This resource is thus obviously limited to
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one speaker and one language, and, moreover, to a rather special speaking style: the

speaker had to articulate as clearly as possible in the fast rate condition in order to

produce fast yet intelligible speech for speech synthesis integration. The fast PC data

could thus arguably be classified as a form of “fast hyperspeech”. However, compared

to the BTC, the PC has the benefits of eliminating between-speaker variation, and of

containing enough data to facilitate controlling for the segmental identity of syllables,

in addition to stress level and within-utterance position.

We determined the frequencies of the individual syllable types in the corpus, “syllable

type” here referring to any given set of non-utterance final syllables sharing the same

sequence of phonetic segments and stress level. For this analysis, we implemented an

outlier removal procedure, excluding syllables whose duration exceeded the mean du-

ration in either rate condition by more than 2.5 standard deviations, as outliers might

influence results considerably given the smaller cell sizes in this analysis. Only sylla-

ble types with at least 30 remaining tokens after these data selection procedures were

retained in the study. 19 syllable types from the corpus, mostly highly frequent func-

tion words and grammatical affixes, were found to match this criterion. The lmList()

function from the lme4 package (Pinheiro and Bates 2000) in R (R Core Team 2014)

was used for regressing fast-rate on corresponding slow-rate syllable durations separately

within individual syllable types in these data. The lmList() function allows for specify-

ing a grouping factor, and fits separate regression models within the levels of that factor.

lmList() estimates residuals based on pooling across the whole dataset and therefore has

greater statistical power than fitting separate regression models manually using R’s lm()

syntax. The general strategy of fitting separate models within syllable types was chosen

because comparisons among the different syllable types are obviously not meaningful.

Results are listed in Table 7.3 and presented graphically in Figure 7.4.

In contrast to the BTC, no elisions were observed in the Petra Corpus, which is of

course a consequence of the rather special speaking style. The statistical analysis of

the PC mirrors the results from the BTC analysis: significantly positive intercepts are

found for all syllable types, indicating incompressibility as a function of rate variation.

In these data, however, slopes failed to reach significance in a number of cases. Dif-

ferent explanations for this outcome could be conceived. One possibility is that the

speaker articulated these syllables so rapidly that all durations were indeed reduced to

the compressibility threshold. Alternatively, the failure to observe significant slopes in

some cases may simply be due to a lack of statistical power. If this were true, however,

one would expect that non-significant slopes are mostly observed for the least frequent

syllable types, which is generally not the case. Whatever the explanation, the important

result is that significant intercepts are observed throughout.



Chapter 7. Incompressibility 139

Table 7.3: Regression summary of fast rate on slow rate durations by syllable type in
the Petra Corpus (.: p < 0.1; *: p < 0.05; **: p < 0.01; ***: p < 0.0001).

Syllable Intercept (ms) Slope Number of tokens

/PaI/ 37∗ 0.32∗∗∗ 56

/PaIn/ 53∗ 0.32∗∗∗ 45

/b@/ 48∗∗∗ 0.25∗ 55

/d@/ 35∗∗∗ 0.37∗∗∗ 40

/d5/ 76∗∗∗ 0.07 n.s. 46

/das/ 93∗∗∗ 0.18∗ 54

/de:5/ 42∗∗ 0.28∗∗ 90

/de:n/ 73∗∗ 0.21∗ 34

/di:/ 60∗∗∗ 0.17∗∗ 119

/fE5/ 51∗ 0.30∗ 42

/g@/ 36∗∗ 0.37∗∗ 86

/PIn/ 76∗∗∗ 0.15∗ 79

/mIt/ 100∗∗∗ 0.06 n.s. 32

/n@/ 58∗∗∗ 0.22 . 44

/n@n/ 87∗∗ 0.09 n.s. 39

/K@/ 34∗ 0.34∗ 32

/t@/ 73∗ 0.09 n.s. 88

/t@n/ 90∗∗∗ 0.02 n.s. 60

/PUnt/ 126∗∗∗ 0.00 n.s. 81

7.2.3 Discussion

Our two corpus analyses support the assumption that the effect of changes in overall

speaking rate (of increases in overall speaking rate, to be specific) on syllable durations

exhibits incompressibility: the positive regression intercepts provide an empirical esti-

mate of Klatt’s Dmin, which may of course vary due to additional factors such as the

segmental makeup of the syllable or its stress level. Our results thus complement earlier

findings made at the segmental level. A possible objection against our analysis is that

incompressibility is in fact not a property of syllables, but of their component segments.

This may be true, but with a view to the architecture of our model, we would argue

that it is not a crucial point: as we said above, the choice of syllables as the level of

representation in our model is not meant to raise strong claims about syllables as units

of speech production or cognitive representation; they are rather viewed as a proxy for

the included segments or gestures, assuming that the efficiency principles the model is

based on should apply at lower linguistic levels in a similar fashion.

In the following section, we will report on simulation experiments that demonstrate the

replication of the basic incompressibility pattern in our model. In the arguably more

naturalistic BTC data, we have observed that in fast speech, entire syllables may be
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Figure 7.4: Fast∼normal regression analyses on syllable durations within individual
syllable types (transcriptions coded in SAMPA) in the Petra Corpus.

deleted in the acoustic domain. As we said above, we deliberately chose a model archi-

tecture that does not allow deleting syllables, as we do not feel comfortable engaging

in the discussion on the reality of deletions, which requires consideration articulatory

information. We will supply a somewhat more speculative account of the deletion phe-

nomena observed in the BTC later in this chapter, using a modified model that does

allow for deleting entire syllables.
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7.3 Modeling Durational Incompressibility

7.3.1 Basic Model

In order to demonstrate the replication of the effect in our model, we compiled a “cor-

pus” of 40 sequences of ten syllables each (five stressed and five unstressed), which was

used in two simulations, with different settings of the αD parameter simulating increas-

ing global speaking rate. There are several reasons why we did not attempt at matching

more closely the characteristics of any of the corpora used in the empirical study. First,

as stated in the Introduction to this work, the purpose of our model is not to approx-

imate any given set of real-world data as closely as possible, but to derive principled

explanations for empirically observed phenomena. The basic facts about incompress-

ibility have been observed in all of the datasets in the corpus study, so that a generic

“toy corpus” should suffice to demonstrate the general effect. Moreover, the individual

datasets from the corpus study, e.g. the language-specific sub-corpora of the BTC, are

not directly comparable to each other, and one cannot know whether observed differences

are a function of language-specific implementation of the timing processes involved, or

if they simply reflect structural properties of the particular datasets. We also have no

principled a priori hypotheses about possible language-specific parameter settings.

For the initial simulation experiment, we ran the model twice, with αD = 1 and 2,

respectively, to simulate a slower and a faster production of the corpus. Some dura-

tional variation was introduced by drawing the value of the ηi parameter from a normal

distribution with a mean of 1 and a standard deviation of 0.2 for each syllable. The

accentual lengthening parameter ΨW was fixed at 0 in these simulations, in order to

keep the model setup simple for our basic demonstration. The other parameter settings

were the same as those used for the simulation depicted in Figure and described there.

Results of the simulation are shown in Figure 7.5. The first thing to notice is that

the simulation does not provide a particularly close match of the empirical data; for

example, there is no overlap in stressed and unstressed duration distributions, and the

regression lines also do not cross, as seems to be the case with most of the empirical data

shown in Figures 7.2 and 7.3. Both outcomes are consequences of the particular noise

parameters used in the simulation, however, and are not central to the issue at hand.

What is crucial is that the regression analyses on the model output confirm that the

model successfully reproduces the basic pattern of results found in the empirical data:

regression intercepts are significantly greater than zero for both stressed (t = 17.31, p <

0.0001) and unstressed syllables (t = 13.43, p < 0.0001). The stressed intercept is

also greater than the unstressed one, in accordance with most of the empirical data

summarized in Table 7.2.
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Figure 7.5: Simulated syllables durations at fast (αD = 2) as a function of simulated
syllable durations at slow (αD = 1) rate. See text for details.

The replication of the incompressibility pattern is a consequence of the mathematical

properties of the perceptual cost function Ps, which is illustrated in panel (a) of Figure

7.6: shortening progressively shorter syllables by a constant amount of duration will

result in progressively higher cost. The connection to the positive regression intercepts

becomes apparent once we recall the original motivation of the concept of incompressibil-

ity as formulated by Klatt (1973), i.e., to account for the fact that some speech timing

factors in combination have a smaller influence on duration than would be predicted

from adding their durational effects when applied in isolation. Indeed, a different way

to describe the pattern in Figure 7.5 (or in the real data in Figures 7.2 and 7.3, for that

matter) is to say that longer syllables shorten proportionally more strongly in fast speech

than shorter syllables. This is shown in panel (b) of Figure 7.6: due to the positive con-

stant in the regression equation, the slow/fast duration ratio increases with duration

at the slow rate. By contrast, with a zero intercept, i.e., without incompressibility, the

slow/fast ratio stays constant, regardless of slow rate duration.

Incompressibility being a consequence of the perceptual component of our model, the

explanation of the effect suggested by it would be that extremely short durations are

perceptually too costly. The replication of the effect is a quite obvious consequence of

the model architecture, and a critical observer might ask whether the Ps function does

not pretty much “hardcode” the effect into the model, in the same way Saltzman et al.

(2008) encode the pattern observed in the data of Kim and Cole (2005). The crucial

difference, however, is that in our model, the design of the responsible component Ps is

based on independently motivated principles, as detailed in Chapter 5. Saltzman et al.
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Figure 7.6: Illustrations of the incompressibility effect in our model. Panel (a): the
same durational reduction d incurs a higher increase in perceptual cost for a short than
for a longer base duration. Panel (b): hypothetical slow-fast regressions, showing that
incompressibility (i.e., a positive intercept) implies increasing slow/fast ratio for in-
creasing slow duration, whereas non-incompressibility (zero intercept) implies constant

duration ratio between slow and fast condition.

(2008)’s coupling strength modulation lacks such independent motivation; the authors

do not even seem to be particularly concerned about this fact. In our opinion, a model

that purports to be explanatory should aim for higher goals than merely demonstrating

that various things can be implemented in it.

This being said, it is clear that our model only represents a first-pass approximation of

the empirical data. For one thing, the particular value of the regression intercept ob-

served in our above simulation does not represent a hard lower boundary, but depends

on the values of the model parameters. Experimentation with increasing values of the

speaking rate parameter αD showed that for extreme settings of this parameter, dura-

tions at the fast rate get arbitrarily close to zero, but the regression intercept still stays

significantly positive. Regression slopes, by contrast, quite quickly approach zero when

αD is increased, replicating the pattern found in the Petra Corpus and suggesting that

cases where non-significant slopes were observed in these data indeed mark cases where

the speaker reached some physical boundary in the fast condition, articulating every-

thing as quickly as possible. As for the behavior of the model at extreme αD settings,

we simply have to stipulate that such settings are meaningless, as speakers cannot talk

infinitely fast due to physical limitations of their vocal tracts, which are not explicitly

accounted for in our model.
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7.3.2 Modified Model

One further observation that our basic model has nothing to say about are the occasional

cases where syllables were entirely deleted in the acoustic domain in the BTC data. As

discussed above, deletions in speech are a controversial issue, and a truly satisfactory

treatment may require fine-grained articulatory analysis. Nevertheless, we have devel-

oped a modified version of our model that does allow for deleting syllables. With this

version of the model, we assume that no matter how apparent deletions in the acoustic

domain are implemented at the gestural level, they may be a consequence of higher-level

timing constraints. We will see that this version of the model achieves quite interesting

results, even though we will see that it makes an incorrect prediction regarding prosodic

prominence.

We re-plot the relevant data from the BonnTempo Corpus, zooming in on unstressed

syllable durations in the fastest-possible condition in English in Figure 7.7 below in

order to more clearly demonstrate the effect. It is apparent that deletion of entire

syllables in the acoustic domain is quite frequent, which would seem to argue against

the notion of incompressibility as a lower duration boundary. However, one may observe

that in a statistical sense, incompressibility is still valid: note that while deletions do

occur, durations in the fast condition do not smoothly approach zero; they seem to

literally “fall from the ceiling” at the regression intercept. Accepting for a moment the

premise that “true” deletion of syllables exists, we may propose the following hypothesis:

incompressibility is not a hard lower boundary; rather, speakers have two options: either

to produce a syllable with at least the minimum duration Dmin (empirically estimated

by the regression intercept), or to delete it. Syllables with positive durations < Dmin

would lie in the incompressible region and therefore cannot be produced.

It is clear that for the model to reproduce this pattern, a perceptual cost function with

a finite intercept is needed, so that zero durations are not punished by infinite cost. In

order to achieve this, we redefined PS as follows:

PS =
∑
i

e−ψisi . (7.2)

The choice of this function over Šimko (2009)’s one plotted in Figure 5.4 is arbitrary,

and experimentation revealed that both functions make qualitatively similar predictions.

Figure 7.8 plots the function for two values of the stress parameter ψi. With the percep-

tual cost redefined as in equation 7.2, we have to use smaller absolute values for ψi to

increase the function value of PS and thus the prominence of a syllable, as the exponent

in equation 7.2 is negative.
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Figure 7.7: Fastest possible∼normal regression on English unstressed BTC data.
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Figure 7.8: Modified perceptual cost function PS = e−4si (“unstressed”, gray) and
PS = e−2si (“stressed”, black).

The function in equation 7.2 has a finite intercept – it is equal to 1 – and will thus

presumably allow the model to delete syllables. Note, however, that the replication of

incompressibility as defined above is far from trivial: the challenging aspect of the data

is not the possibility of deletions as such, but rather the fact that Dmin represents a

kind of discrete boundary, with durations smoothly shortening up to this point, but

instantaneously jumping down to zero if even stronger impetus towards shortening is

applied. We may borrow a term from dynamical systems theory here and classify this

pattern as a bifurcation, a point where a small continuous change in some parameter



Chapter 7. Incompressibility 146

leads to a sudden qualitative change in system behavior (cf. Šimko et al. 2014b).

We repeated the simulation with the modified model, using somewhat different param-

eter settings. We set αE = 3 and αP = 5. ηi was drawn from normal distributions as

above. δi = 1 was used for all syllables. αD = 1 was used in the “slow” αD = 6 in the

fast simulation run. The accent parameter Ψj was set to zero. Results of the simulation

experiment are shown in Figure 7.9. No lexical stress distinction was introduced here,

setting ψi to 4 for all syllables.
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Figure 7.9: Simulated syllables durations from the modified model at fast (αD = 6)
as a function of simulated syllable durations at slow (αD = 1) rate. See text for details.

We may note that again, the numerical match between real and simulated data is not

particularly close. We could have tried to find parameters so as to achieve a closer fit

to the data, but this was not our intention. What is important is that the simulation

reproduces the key qualitative property of the natural data: the emergence of the incom-

pressibility bifurcation, as is evident from the existence of deletions despite the positive

regression intercept (p < 0.001, computed on non-deleted durations), and the absence

of durations that lie in the “incompressible region” between zero and the regression

intercept.

The model’s simplicity allows us to demonstrate how this behavior arises. For the

given settings, optimal solutions can in fact be found by simply graphing cost function

C for an individual syllable and visually identifying the minimum. This is possible
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because given that the word-level perception cost (accent parameter Ψj) is set to zero

and overall duration cost D is simply linear, the optimal solution for any given syllable

is determined completely locally, and does not depend on other parts of the simulated

utterance.2 Figure 7.10 plots the cost function C for a hypothetical syllable, with the

parameter settings used in the “fast” simulation reported above, but ψi fixed at 4 and ηi

(the local weight for component cost function E) increasing from 1 to 1.75 in increments

of 0.05. The individual trajectories correspond to different values of ηi. The circles in

the plot mark the minima of C for the individual ηi values, corresponding to optimal

durations. The dashed line marks the intercept of C. As expected, the optimal duration

initially smoothly decreases with increasing ηi (as more and more premium is placed

on speaker’s effort, leading to progressively “lazier” production). At some cutoff point,

however, the trough in the cost function C crosses its intercept, and optimal duration

instantaneously jumps down to zero. The crucial feature of the model that is responsible

for mimicking the empirically observed deletion pattern is the emergence of the little

“hump” close to the intercept of the cost function, due to which the cutoff point lies at

a positive duration value.
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Figure 7.10: Plot of modified cost function C for different values of ηi, with parameter
settings as given in Section 3.1. Black circles mark optimal durations for a given ηi

value, and the dashed line marks the intercept of C. See text for more details.

2We can safely assume that cost function C has no other minima outside the plotting range, since D
and E are monotonically rising, and the only falling component, P , eventually levels out.
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Thus, incompressibility emerges from the interaction of the different component cost

functions in our model, without any explicit ad-hoc mechanisms. It is the interplay of

the three components of C that is responsible for the replication of the effect. For very

short durations, the steep rise of the overall cost function C reflects the initial rapid rise

of E. As duration increases, however, the influence of E on overall cost dwindles, as its

slope eventually decreases, and the perceptual cost function PS begins to dominate the

evolution of the overall cost function C. This continues until the minimum is reached.

Beyond the minimum, overall cost starts to rise again, as PS approaches zero.

This shows how the interplay of the individual component cost functions triggers the

emergence of an incompressible duration region. The independent assumptions we used

to motivate the individual component cost functions suggest a straightforward inter-

pretation of the effect: very short durations would require that the speaker produce

extremely fast articulations (within certain physical limits) or massive undershoot of

articulatory targets, leading to degradation of the acoustic cues to the identity of the

intended propositional content. In either case, the gain on PS achieved by producing a

very short (as opposed to zero) duration is not great enough to offset the costs on the E

and D dimensions incurred by hypothetical durations in the incompressible region. As

producing such durations would entail spending effort while no perceptual benefit is gen-

erated, the better option in this case is to remain silent and not to produce the syllable

at all, so that at least effort can be saved while the fulfillment of perceptual requirements

(for this particular syllable) is impossible. The concave shape of E is obviously crucial

for the effect to be borne out. We regard this dependence as unproblematic, as the usage

of a concave function (the square root of syllable duration) for E is not arbitrary, but

based on independently motivated assumptions, as detailed in Chapter 5.

We investigated the model behavior under increasing αD values in the fast condition. It

turned out that with extreme settings of the rate parameter, solutions of the optimiza-

tion problem become essentially unstable – running the modified model several times

with identical parameter settings (αD = 11) produced completely different results, even

though the optimization procedure did seem to converge. The reason for this may be

issues with machine precision. With very high αD settings, the gradient of the cost

function around the minimum becomes extremely steep, so that even within a highly

contracted simplex, there may be multiple different solutions. The instability of pre-

dictions at extreme rates in our opinion does not constitute a strong argument against

this model. After all, human speakers can possibly produce only a limited range of

speaking rates. Of course, the value of αD = 11 is not a hard boundary in this respect,

but depends on the settings of the other parameters. It may be stated with regard to

our key result, the incompressibility bifurcation that it is borne out within the range of

meaningful parameter settings.
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We think that these are very interesting results, but unfortunately, the modified model

makes a clearly incorrect prediction with regard to prosodic prominence. This is shown

in Figure 7.11, plotting simulation results with increasing speaking rate and a categorical

stress distinction: ψi = 2 (stressed) and ψi = 4 (unstressed: the modified model does

predict higher stressed than unstressed intercepts at slow rates, but the trend is reversed

at faster rates, contrary to the real data, where the stressed-unstressed difference tends

to become more marked at the faster rate (cf. Table 7.2). This may not be overly prob-

lematic; the observation of greater intercepts for stressed than for unstressed syllables

in the BTC data is somewhat preliminary because factors such as segmental differences

are not controlled for the stressed-unstressed comparison. What is definitively unset-

tling, however, is that the model predicts stressed syllables to eventually become shorter

than unstressed syllables at very fast rates (as is evident from the stressed distribution

lying more closely to the y-axis than the unstressed distribution at very fast rates), and

stressed syllables are also first to be deleted.
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Figure 7.11: Simulated syllables durations at increasingly fast rates (αD shown in
plot panels) as a function of simulated syllable durations at slow (αD = 1) rate. Black:

stressed syllables; gray: unstressed syllables. See text for details.

The cause of this incorrect prediction is evident from Figure 7.12, which shows plots

of cost function C for a stressed and an unstressed syllable, with circles marking their

respective minima and, hence, optimal durations. Solid lines show the cost functions

at a slow rate (αD = 1), and dashed lines show the respective functions at a fast rate

(αD = 4). As can be seen, the minimum of C at the slow rate is not only further to the

right, but also considerably shallower for a stressed than for an unstressed syllable. This

means that if overall speaking rate is increased, the stressed minimum will cross the

deletion threshold earlier, as shown by the dashed trajectories: the optimal duration of

the stressed syllable (marked by a black X) has gone all the way down to zero, whereas

the unstressed optimal duration (gray cross) is still considerably greater.
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Figure 7.12: Plot of cost function C for a stressed (black; ψi = 2) and an unstressed
(gray; ψi = 4) syllable at αD = 1 (solid lines) and αD = 4 (dashed lines). Other
parameter settings are as in the simulations reported above. Circles mark optimal

durations at the slow rate, X’s mark optimal durations at the fast rate.

We experimented with introducing an additional assumption, using the same parameter

ψi, for locally weighting E and PS , so that lexical stress is modeled not only by boost-

ing the perceptual, but also by lowering the effort-related component. This may not

be a completely ad-hoc strategy; one may argue that it removes an excessive degree of

freedom from the model, since independent ηi and ψi parameters arguably allow for si-

multaneously trigger hyper- and hypoarticulation of the same syllable by assigning a high

weight to both parameters, which is paradoxical. However, even this additional assump-

tion was found to rectify the incorrect prediction regarding prominence and speaking

rate only under certain numerical parameter settings, and thus did not prove to be a

viable solution. We have to leave it to further research to find a model that both allows

for deletions and correctly predicts the influence of prosodic prominence on the observed

incompressibility. Results of modified model simulations reported here shall suffice as

an initial demonstration, highlighting the potential of the chosen approach.

7.4 Discussion

We have attested incompressibility of syllable durations as a function of speaking rate

variation in several languages, using a straightforward regression method. Simulation

experiments with the basic model as defined in Chapter 5 have demonstrated that the

basic pattern of results observed in the empirical data emerges automatically from the

formalization of H&H assumptions in our optimization-based model of speech timing. A
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modified version of the model was shown to provide an interesting account of observed

deletion phenomena, but this model proved unable to capture the influence of prosodic

prominence correctly. As for the basic model, the incompressibility pattern is a rather

obvious consequence of its architecture, but as we said above, the crucial point is that

the responsible modeling assumptions are motivated by independent evidence. In the

subsequent chapter of this work, we will see that more interesting results related to

high-level linguistic structure fall out from the same model architecture.

To our knowledge, we have presented the first computationally explicit model to offer an

explanatory account of durational incompressibility in speech. The initial mathemati-

cal model by Klatt (1973) was purely descriptive and did not feature any explanatory

mechanisms – if anything, it utilizes incompressibility itself as an explanatory device.

Similarly, the explanatory model by Katz (2010) does feature incompressibility, but it

is included as an explicit assumption, rather than an emergent result of the modeling

paradigm. We would therefore argue that our model supplies an important contribution

to the understanding of incompressibility as a property of speech timing.



Chapter 8

Modeling Effects of Prominence,

Position and External Conditions

on Suprasegmental Speech

Timing

8.1 Introduction

In this chapter, we will, finally, turn to the suprasegmental speech timing phenomena

reviewed in Chapter 3 and address them within our optimization-based model of speech

timing. We have treated incompressibility separately from these effects, because in our

opinion, it represents a more basic property of speech production. By contrast, the

effects we will address in this section mostly stem from high-level linguistic structure, in

particular prosodic prominence.

In the simulations reported in this chapter, we will continue to use the basic, “non-

deletion” model as introduced in Chapter 5. Yet, the modified model used in the second

section of the previous chapter makes the same predictions for most of the effects to

be reported here, and elsewhere (Windmann et al. 2015b), we report results of these

experiments with the modified model architecture. We stick with the basic model here

as a more conservative approach. Cases where the predictions (or explanations) of the

two models diverge will be discussed. The structure of this chapter will differ somewhat

from the order in which we introduced the difference classes of effects in Chapter 3: we

will discuss positional effects and their interactions last, because our treatment of these

152
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effects will be somewhat more speculative than the other timing phenomena treated in

this work.

Unless noted otherwise, all simulations reported in this section were run on the “ut-

terance” depicted in Figure 8.1 (re-plotted from Figure 7.3.1), i.e. a sequence of eight

syllables, with the first, the fourth and the penultimate syllable being stressed (ψi = 1),

all others unstressed (ψi = 0.5), and the fourth and fifth syllable forming an accented

“word” (Ψj = 2 for this word and 0 elsewhere; αPW = 1). Global trade-off parameters

were generally set to αE = 3, αP = 1 and αD = 1 (as in the “slow” simulation reported

in Chapter 7). The values of the local parameters ηi and δS were set to 1. Different

parameter settings will be indicated wherever used. Experimentation confirmed that

results to be reported are not affected by modifications of the input utterance, such as

adding or removing syllables, or changing the number or distribution of stresses. The

exception to this is the number of syllables in the accented “word”, as will be reported

in the experiment on constituent length effects below.
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Figure 8.1: Syllable durations predicted by the model for a hypothetical utterance
with a bisyllabic accented word. Black: +stress +accent; light gray: -stress +accent;

dark gray: +stress -accent; white: -stress -accent (re-plotted from Figure 7.3.1).

8.2 Prominence Effects

8.2.1 Interaction of Stress and Accent

As we have reported in Chapter 3, evidence from various language suggests that ac-

centual lengthening affects all syllables within a word, or at least within some domain



Chapter 8. Modeling Effects of Prominence, Position and External Conditions on
Suprasegmental Speech Timing 154

that extends beyond the accent-bearing syllable itself. It was shown that within this

domain, lengthening is typically not uniformly distributed: there seems to be a cross-

linguistic tendency for stressed vowel durations to increase by a greater proportion than

unstressed vowel durations under accentual lengthening. A potential caveat was that

the difference may be neutralized in word-final position. We will ignore this complica-

tion for the time being and concentrate on the basic durational pattern, i.e., stronger

lengthening of stressed than unstressed vowels.
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Figure 8.2: Absolute (left) and proportional (right) amount of accentual lengthening
in stressed and unstressed syllables in the simulated utterance (bisyllabic accented

word).

The model was run twice on the utterance depicted in Figure 8.1, i.e., an utterance with

a bisyllabic accented word, with the above parameter settings. Accentual lengthening in

the stressed syllable was defined as the absolute and percentage difference in duration

between the fourth (stressed accented) and the first (stressed unaccented) syllable in

the utterance in Figure 8.1; accentual lengthening in the unstressed syllable was de-

fined as the absolute and percentage difference in duration between the fifth (unstressed

accented) and the second (unstressed unaccented) syllable in the utterance in Figure

8.1 (as is apparent from Figure 8.1, the choice of the unaccented reference syllables is

arbitrary, as unaccented syllables sharing the same stress value always have the same

duration under the chosen parameter settings). Figure 8.2 shows that the model cor-

rectly predicts the qualitative pattern of results reported in the literature: the effect of

accentuation is greater in the stressed than in the unstressed syllable, in absolute as well

as proportional terms.

Experimentation with the model showed that the proportionally greater lengthening of

the stressed syllable crucially depends on the nonlinearity of E: if the square root here is
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exchanged for a linear function, proportional accentual lengthening is exactly the same

in stressed and unstressed syllables. The mathematical explanation is fairly obvious:

the concave nonlinearity of the square root function makes lengthening an already long

syllable cheaper than lengthening a shorter syllable by the same amount of duration.

It may seem at first glance that this tendency is counteracted by the mathematical

properties of PS , whose convex nonlinearity would appear to suggest that lengthening

short syllables will generate relatively more benefit than lengthening already longer

ones. It must be kept in mind, however, that as for PS , stressed and unstressed syllables

actually lie on different lines, due to the multiplicative stress parameter ψi.

A critical observer may point out that using the square root for E does in fact little more

than explicitly instructing the model to lengthen stressed syllables more than unstressed

ones in accented words. To this we would reply, again, that the concave shape of E is

not arbitrary; we motivated it based on our mass-spring model simulations in Chapter

3. The explanation suggested by our model is truly related to production-perception

trade-offs: accentuation, on this account, is interpreted as a perception-driven impetus

to lengthen a word, so as to make it more prominent. The distribution of this lengthening

among the component syllables of the word is realized in an efficient fashion, namely so

as to incur the lowest possibly increase in effort.1

With a view to the particular motivation of cost function E as sketched in Chapter 5, we

may develop this explanation a bit further. We motivated the concave non-linearity of

E based on the reasoning that at the lower end of the temporal scale, both articulation

and phonation contribute to the effort required to produce a syllable, whereas for longer

durations where articulatory targets have eventually been reached, further lengthening

only requires sustained phonation. Applying this reasoning to the stress-accent inter-

action, our model suggests the following tentative explanation: accentual lengthening

in stressed syllables happens in the region of the temporal scale where lengthening is

mainly achieved by stretching the steady state of the vowel, as stressed vowels are al-

ready relatively long and peripheral. Unstressed vowels are shorter, and also tend to

be less peripheral than stressed vowels, hence our model predicts that hyperarticulating

them under the influence of accent adds effort on both counts, articulation and phona-

tion. The most efficient solution, then, is to lengthen mainly the stressed syllable, which

can be had for relatively less articulatory effort.

Is this explanation plausible? It is certainly not true that accentual lengthening has

no correlates in the articulatory domain; for example, studies such as Fourakis et al.

1Based on results showing that accentual lengthening may “skip” syllables in multisyllabic words
(e.g. Dimitrova and Turk 2012), Turk (2014) argues that accentual lengthening does not affect the word
as a whole, but multiple sites within a word (which appear to form a continuous domain in short words).
However, nothing about our basic result would change if PW in the model was applied to a discontinuous
sequence of syllables.
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(1999) or De Jong (2004) show that stressed accented as compared to stressed unac-

cented vowels are characterized by more peripheral F1 values, indicating increased jaw

opening. However, these changes are relatively subtle compared to the large durational

effects of prosodic prominence. De Jong (2004)’s analysis of formant measurements on

English vowels of increasing prominence provides a case in point: The effect of accent

on F1 is subtle and inconsistent across consonantal contexts, whereas durational effects

are large and reliable. This pattern is also intuitively compelling: articulatory expan-

sion as a function of prosodic prominence faces relatively low upper bounds, dictated

by the anatomical limits of the vocal tract and the necessity to secure perception of

the desired vowel quality. By contrast, purely temporal hyperarticulation by means of

sustaining vowel production is theoretically possible for very long time spans, exceeding

the durations typically found in speech by several orders of magnitude. It remains to

be investigated why, on this account, the stress-accent interaction is not observed in

Spanish, as discussed in Chapter 3.

One last point to note is that the modified model presented in section 7.2 of this work,

while making the same prediction regarding the stress-accent interaction as the basic

model, suggests a different explanation: with the modified model, the interaction is

borne out regardless of the function used for E. The cause of the stronger effect of

accent on stressed compared to unstressed syllable durations in the modified model

lies entirely within the different slopes of PS , which, in the unstressed case, flattens

out earlier than in the stressed case. Thus, additional lengthening caused by accent

ceases to reduce perceptual cost earlier for unstressed than for stressed syllables. This

explanation, thus, is entirely perception-based: successful recognition is more crucial

for stressed than for unstressed syllables, hence lengthening them to a stronger extent

generates more perceptual benefit.

We do not attempt to decide between the explanations of the stress-accent interaction

suggested by the two versions of the model, as we know of no data that would be relevant

for this decision. As a final point, the two explanations are certainly not mutually

exclusive, hence we do not regard it as problematic that the two versions of the model

provide two different explanatory accounts of the stress-accent interaction.

8.2.2 Constituent Length Effect in Accented Words

We have reviewed constituent length effects, i.e., putative (inverse) relationships between

syllable or vowel duration and syllable count in larger prosodic domains in Chapter 3,

and contributed our own empirical investigation of such effects in Chapter 6 of this

work. Results from the literature review suggest that these effects only surface in very
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restricted contexts, namely in words carrying highly prominent nuclear or contrastive

pitch accents. Our own analysis actually failed to yield evidence for constituent length

effects even in accented contexts, but as we argued in Chapter 6, this may have to do

with the accent definition employed in this corpus, and does not invalidate results from

controlled experimental studies. This state of matters is consistent with White (2002)’s

interpretation that the effect is a mere epiphenomenon of accentual lengthening: on

this view, the variation according to the number of syllables in the word arises because

total accentual lengthening does not increase in words with higher syllable count and

therefore has to be shared out among the individual syllables. Thus, shortening of

syllables in polysyllabic accented words is interpreted as a direct consequence of word

prominence, and not as an indication of durational mechanisms that impose a tendency

to shorten or equalize durations of words or similar prosodic domains. As we shall

see, it is precisely this interpretation of the observed shortening effect that our model

embodies. In the description of our experiments, we will continue to use the term

“polysyllabic shortening”, in accordance with White (2002)’s specific usage of this term

for a constituent length effect at the word level.

The polysyllabic shortening effect was tested in the model by running simulations with

the parameter settings as indicated above while varying the number of syllables in the

accented word between 1 and 4 by introducing additional syllables. Figure 8.3 graphs

the durations of the stressed and the following unstressed syllable from the accented

word in the simulated utterance as a function of the number of syllables in the accented

word, illustrating the polysyllabic shortening effect. This prediction in particular is in

close agreement with empirical findings: first, the decrease in syllable duration as a

function of word length is not linear, but negatively accelerated, such that duration dif-

ferences between syllables from words of increasing syllable count become progressively

smaller. This pattern is ubiquitously reported in the literature on polysyllabic short-

ening. Second, the effect is relatively subtle in unstressed syllables, in accordance with

results from reiterant productions in Dutch (Nooteboom 1972) and Swedish (Lindblom

and Rapp 1975).

It is important to note that while PW is of course responsible for the polysyllabic short-

ening effect, it does not trivially hardcode the pattern by explicitly shortening syllable

durations according to syllable count in the word. A superficial observer might suspect

this, because similar functions have been utilized in this way in descriptive models of

speech timing (Lindblom and Rapp 1975, Nooteboom 1972). We would like to reiterate

at this point that PW in our model does, in fact, precisely the opposite: it is a cost

on shortening the accented word, hence providing an impetus to lengthen all syllables
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Figure 8.3: Polysyllabic shortening in stressed (black) and unstressed (gray) syllables
in the accented word as predicted by the model. See text for details.

within it. Moreover, note that PW , being a function of the sum of syllable durations

within its scope, is blind to the number of the syllables in the accented word.

Figure 8.4 shows that accentual lengthening of the word as a whole (measured as the

difference between the summed durations of all syllables in the accented “word” and

the summed durations of the same number of stressed and unstressed syllables from

outside the scope of the accentual lengthening) also decreases as a function of syllable

count. This prediction is also borne out by empirical data reported by White (2002).

Note that this is not a mere restatement of the polysyllabic shortening pattern at the

syllabic level, but, in fact, an independent result: shortening of syllables as a function of

syllable count in the word would also be possible with constant, and even with increasing

accentual lengthening of total word duration as a function of syllable count in the word,

as is easily verified by redoing the necessary calculations with appropriately constructed

hypothetical durations.2

In order to understand how the model reproduces the polysyllabic shortening effect, it is

helpful to consider total lengthening of the accented word first: accentual lengthening is

sensible only as long as it still yields a reduction in overall cost, that is, if the lengthening

happens within the duration region where PW still has a a sufficiently negative gradient

to outweigh the combined effect of E and D, which both assign extra costs to lengthening

(which has to be outweighed by PS and PW ). Word duration naturally increases with

2 Consider the case of a monosyllabic (S1), a bisyllabic (S2U2) and a trisyllabic word (S3U3U3) word,
where S1 = S2 = S3 = 100 ms and U2 = U3 = 50 ms if unaccented. Assume an accented condition
with S1 = 150 ms, S2 = 130 ms and S3 = 120 ms, U2 = 70 ms and U3 = 65 ms. There is polysyllabic
shortening in the accented condition, yet accentual lengthening of the word (i.e., the accented-unaccented
difference in S1,

∑
[S2U2], and

∑
[S3U3U3]) is always 50 ms, regardless of syllable count in the word.

With the same stressed values and U2 = 80 ms and U3 = 75 ms, we can even construct a case where
the accented-unaccented difference in total word duration increases with syllable count in the word
(monosyllable: 50 ms; bisyllable: 60 ms; trisyllable: 70 ms) despite polysyllabic shortening.
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Figure 8.4: Accented-unaccented difference in total word duration as a function of
the number of syllables in the word as predicted by the model. See text for details.

syllable count, hence the more syllables a word contains the closer it is to the point

where PS and PW flatten out and E and D start to dominate the cost landscape and

induce shortening. Consequently, total accentual lengthening will be reduced in words

that contain more syllables. As for individual syllable durations, in turn, distributing

the accentual lengthening among them ensures that the lengthening of each individual

syllable stays within the durational range in which lengthening reduces overall cost.

The explanation of the polysyllabic shortening effect offered by our model is thus very

much in keeping with White (2002)’s theoretical account of suprasegmental speech tim-

ing: polysyllabic shortening is a mere epiphenomenon of word prominence, representing

the optimal distribution of the extra time in an accented word. It also offers an expla-

nation as to why accentual lengthening does not increase in polysyllabic words, namely

the hypothesized property of the perceptual cost functions in the model to eventually

flatten out, as the possible gain in recognizability reaches a ceiling. This contrasts with

all previous explanatory accounts of constituent length effects (except for Nooteboom

(1985), which assume explicit compensatory timing relationships between syllables and

larger prosodic units. Of course, we do not claim that the absence of polysyllabic short-

ening outside the accented word is a result explained by the model, as we explicitly

set Ψj to 0 outside the accented word. If Ψj was set to a non-zero value throughout

a simulated utterance, polysyllabic shortening would be observed in unaccented words

as well. This would be at variance with findings by White and Turk (2010) (who do

observe an effect compatible with polysyllabic shortening in unaccented words, but only

if they have initial stress), but other studies, e.g. Turk and Shattuck-Hufnagel (2000)

do find statistically reliable polysyllabic shortening effects in unaccented words. The

crucial result that is borne out by the model, in any case, is that the effect emerges

as an epiphenomenon of word prominence, without any explicit prescription to reduce
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syllable durations as a function of syllable count in a word.

8.3 Effects of Overall Speaking Rate: Time Constraints

and Global Hyperarticulation

To investigate how durational characteristics interact with speaking rate due to two

sources, time constraints and variation along the Hypo-Hyperarticulation axis, we var-

ied the parameters αD (time constraints; from now on, we will simply refer to αD

manipulation as (speaking) rate manipulation, and to αP manipulation as H&H scale

manipulation. Results are shown in Figures 8.5 and 8.6. The upper panel in both figures

shows the influence of the respective parameter on absolute durations. Again, the simple

fact that duration decreases with increasing rate (increasing αD) and increase (higher

αP ) merely show that the model works as expected. By themselves, these patterns do

not convey any theoretically interesting results. The crucial question is whether the

model predicts the global parameters to affect syllables in different prosodic conditions

to different degrees, which is not explicitly encoded by any parameter setting. This will

be investigated by examining duration ratios between stressed and unstressed syllables

in accented and unaccented contexts, and, conversely, between accented and unaccented

syllables with and without lexical stress.
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Figure 8.5: Influence of overall speaking rate (parameter αD) on predicted syllable
durations. Upper panel: absolute durations; lower panel: duration ratios.
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Figure 8.5 shows results for variation of the rate parameter αD, documenting the ex-

pected decrease in durations as the rate parameter is increased. As is apparent from the

decaying “S+Acc/U+Acc” and “S-Acc/U-Acc” duration ratio trajectories in the lower

panel, stressed syllable durations are affected more strongly by this rate variation than

their unstressed counterparts. This is the case particularly in accented contexts, whereas

the effect is relatively subtle in unaccented contexts. The model also predicts accentual

lengthening in stressed syllables, indicated by the “S+Acc/S-Acc” ratio, to decrease in

faster speech. As we have seen in Chapter 3, the prediction of greater rate sensitivity

of stressed than unstressed durations is in conflict with results from Dutch reported by

Janse et al. (2003), but the majority of empirical studies – Fourakis (1991) for American

English, Fourakis et al. (1999) for Greek, den Os (1988) for Dutch, Pasdeloup et al.

(2006) for French, and Nadeu (2014) for Spanish and Catalan – support the prediction

of our model. As was argued, decreased prominence contrasts in faster speech also ap-

pear plausible given the observation that fast speech contains fewer audible prominences

than slower speech (e.g. Crystal and House 1990). The prediction of stronger shortening

in stressed than in unstressed syllables stems from the incompressibility property of our

model, as detailed in Chapter 7: shortening already short syllables is perceptually more

costly than shortening long syllables, an explanation also hinted at by Fourakis (1991).

The lower panel of Figure 8.5 indicates that, while stressed/unstressed ratios do decrease

in faster speech, they asymptotically converge to lower bounds > 1, so that the stronger

shortening of stressed than unstressed syllables will not go so far as to make them shorter

in absolute terms than their unstressed counterparts, at least not within reasonable

parameter settings. By contrast, if we were to plot results from the modified model here,

we would, again, see the prediction that stressed syllables eventually become shorter

than unstressed ones, as discussed in Chapter 7 . Moreover, both models diverge on the

prediction regarding accentual lengthening (the “S+Acc/S-Acc” comparison), which is

predicted to become stronger in faster speech by the modified model. The divergence,

again, stems from the slightly different implementation of the prominence parameter in

both versions of the model.

We discussed possible causes for the discrepancy between the results of the Janse et al.

(2003) study and those of other investigations of stress and speaking rate in Chapter 3.

On a final note, we may offer a speculative possibility to unify the conflicting outcomes,

allowing for the assumption that Janse et al. (2003)’s result reflects the true pattern for

Dutch and is not an artifact of any methodological shortcomings: in experimenting with

the model, we found that if the inverse of squared syllable duration, ψi/s
2, is used for PS ,

the model predicts the pattern reported by Janse et al. (2003), i.e., stronger proportional

shortening of unstressed than of stressed syllables at increasing rates, while the other

predictions of the model remain qualitatively unchanged. Obviously, this solution has
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to remain in the realm of speculations, as there is no principled reason to assume that

PS should be conceived differently in Dutch than in other languages.

In a further series of simulations, the global perception cost parameter αP was varied.

As explained above, variation of this parameter is interpreted as global variation on

the Hypo-/Hyperarticulation continuum, caused by external conditions that increase or

decrease the impetus towards maximizing communicative success. Results are shown

in Figure 8.6. The figure shows that, as expected, durations increase in more hyperar-

ticulated speech. The interesting result, again, is that syllables with different levels of

prominence are affected to different degrees: the model predicts that prominence con-

trasts actually decrease slightly in more hyperarticulated speech, at least in accented

contexts (“S+Acc/U+Acc”), whereas stressed/unstressed duration ratios in unaccented

contexts remain virtually stable (“S-Acc/U-Acc”). Accentual lengthening of stressed

and unstressed syllables is also predicted to decrease proportionally in hyperarticulated

speech, as indicated by the “S+Acc/S-Acc” and “U+Acc/U-Acc” trajectories. These

predictions seem intuitively implausible, as one may expect prosodic contrasts to in-

crease in hyperarticulated speech. Yet, we note that the most tightly controlled study of

stressed/unstressed duration ratios in hyperarticulated speech, Cutler and Butterfield

(1991), supports the prediction of our model, at least if it is assumed that the stressed

syllables in this study were also accented. Unfortunately, the modified model predicts

exactly the opposite pattern of results, i.e., enhanced prominence contrasts in more hy-

perarticulated speech, more in line with the studies by Fant et al. (1991b) Patel and

Schell (2008) and Cho et al. (2011). Given this state of matters, we are hesitant to make

strong claims about our model’s ability to account for durational interactions between

local and global hyperarticulation, and note that this phenomenon also requires further

empirical work.

8.4 Positional Effects

In the remainder of this chapter, we will present a rather preliminary exploration of po-

sitional effects in the basic model. As we discussed earlier, the nature of position-related

lengthening effects in speech is less straightforward than that of prosodic prominence,

and it is therefore not completely clear how it should be incorporated in the model. We

have seen in Chapter 3 that final lengthening effects at major prosodic boundaries in

particular have been interpreted as instances of hypothesized biomechanical properties

of motor systems, or, alternatively, as actively employed communicative signals. While

we favor the second explanation, there is, to our knowledge, currently no evidence that
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Figure 8.6: Influence of global variation on the H&H scale (parameter αP ) on pre-
dicted syllable durations. Upper panel: absolute durations; lower panel: duration

ratios.

would conclusively settle this issue. Our treatment of positional effects will therefore be

more of a tentative exploration of the model’s parameter space.

Here, we present some initial results achieved with modeling positional effects by means

of manipulating the local ηi parameter. There is no particularly good independent

motivation as to why positional effects should be modeled in exactly this way; as we

said in Chapter 5, what it conveys is that positional effects represent something of “a

different kind of prominence”, in that they are also characterized by a local dominance

of perceptual requirements, which, however, is modeled not directly by boosting the

perceptual cost function, but indirectly by weakening the relative importance of the

conflicting effort-related component cost. As we shall see, this technique allows us to

derive some interesting results.

We ran two simulations on the utterance described above, using the basic parameter

settings as described in the beginning of this chapter without accentual lengthening,

but simulating final lengthening by setting ηi to 0.1 in the final syllable of the utterance

(the parameter was set to 1 elsewhere). In one of the two simulations, the final syllable

was also made stressed by changing ψi for this syllable from 0.5 to 1. Figure 8.7 shows

absolute and proportional duration changes caused by the manipulation of ηi separately

for the stressed and the unstressed syllable (computed relative to any other non-accented
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stressed and unstressed syllables from the utterance). The model predicts a slightly

larger absolute amount of final lengthening in stressed than in unstressed syllables, but

the proportional effect of final lengthening is stronger in the unstressed syllable. This is

at variance with Campos-Astorkiza (2014)’s findings for Tuscan Italian, but roughly in

line with results from American English and Hebrew discussed in Chapter 3 (Berkovits

1994, Nakatani et al. 1981, van Santen 1992)), at least as far as the proportional result is

concerned. The explanation is fairly simple: as we explained earlier, it is more expensive

to lengthen a short syllable by the same amount of duration than a longer syllable due

to the concave nonlinearity of E. If the impact of E is locally lowered by manipulating

ηi, this behavior is observed to a lesser extent.
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Figure 8.7: Absolute (left) and proportional (right) amount of final lengthening in
stressed and unstressed syllables from an unaccented context in the simulated utterance.

This result also extends to phrasal prominence: we repeated the simulation with the

utterance-final stressed syllable twice, this time manipulating accentual lengthening

(Ψj = 2 in the accented and Ψj = 0 in the unaccented case) of this syllable, assuming

that it constitutes a monosyllabic word. Results are shown in Figure 8.8. The pattern of

results is similar to the stressed-unstressed comparison in the unaccented case: absolute

final lengthening is slightly larger in the accented than in the unaccented monosyllable,

whereas the proportional effect of final lengthening is larger in the unaccented case,

as the lengthening effect of final position is applied to a comparatively smaller base

duration.

In Chapter 3, we reviewed studies of accentual lengthening in minimal stress pairs and

words composed of reiteranct syllables (Cambier-Langeveld and Turk 1999, Sluijter and

Van Heuven 1996, Sluijter 1995), which suggest that the finding of proportionally greater
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Figure 8.8: Absolute (left) and proportional (right) amount of final lengthening in an
accented versus unaccented stressed monosyllable from the simulated utterance.

accentual lengthening in stressed compared to unstressed syllables may not hold in word-

final position. As we mentioned, Sluijter and Van Heuven (1996) explicitly speculate that

this may be indicative of a three-way interaction between stress, accent and word-final

lengthening. We tested this hypothesis by running two simulations with a bisyllabic

accented word (Ψj = 2) with either initial or final stress and ηi set to 0.5 for the

word-final syllable in either case, assuming that word-final lengthening is weaker than

final lengthening at larger constituent boundaries. Either simulation also included one

syllable from an unaccented context that was subject to final lengthening and had the

same stress level as the final syllable from the accented word. Proportional accentual

lengthening estimates by stress-level (stressed/unstressed) and position (final/non-final)

were obtained from comparisons of accented and unaccented syllables with the same

position and stress level within the simulated utterances. Results are shown in Figure

8.9. The simulation reproduces the empirically observed pattern of results: in word-

initial position (i.e., where ηi = 1), proportional accentual lengthening is stronger in

stressed than in unstressed syllables. In final position, (ηi = 0.5), proportional accentual

lengthening is roughly equal in stressed and unstressed syllables. The latter prediction

is of course a consequence of the particular numerical parameter setting of ηi = 0.5 for

word-final lengthening; with a more extreme parameter setting, accentual lengthening

in word-final position would actually become stronger in unstressed than in stressed

syllables. What is important, though, is that the model does replicate the general finding

that the overmultiplicative durational interaction between stress and accent does not

hold in word-final position. Thus, our modeling approach suggests that final lengthening
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may indeed be a possible cause for the reversal of the stress-accent interaction in word-

final syllables, as suggested by Sluijter and Van Heuven (1996). One caveat is that our

simulation predicts generally stronger accentual lengthening in word-final than in word-

initial position in both stressed and unstressed contexts, which is supported only for

unstressed syllables in the cited studies. The result for stressed syllables does, however,

converge with results of our own corpus analysis in Chapter 6, where we observed a

stronger lengthening effect of accent in word-final than in non word-final vowels.
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Figure 8.9: Proportional accentual lengthening in stressed and unstressed syllables
in word-initial (left) and word-final (right) position (word-final lengthening: ηi = 0.5).

A series of simulations were run on two utterances with a stressed and an unstressed

final syllable at increasing rates. Results are shown in Figure 8.10, in the same fashion

as in Figures 8.5 and 8.6 above. The Figure indicates that the final lengthening effect be-

comes proportionally weaker under increasing rate, which may be correct for unstressed

syllables (Beckman and Edwards 1990), but apparently not for stressed syllables (Smith

2002, Weismer and Ingrisano 1979). We did not investigate the investigate of the global

hyperarticulation parameter αP parameter on the strength of final lengthening, as we

are not aware of conclusive empirical results on this interaction.

Moreover, we currently cannot think of any non-trivial technique that would allow the

model to replicate the finding that utterance-final lengthening is progressive, starting at

the last stressed syllable in the utterance, or the observation that unstressed syllables

within this interval may be “skipped” by final lengthening (Turk and Shattuck-Hufnagel

2007). In any case, the approach towards incorporating final lengthening effects taken in

this work has been preliminary and is to be seen as an exploration of possibilities, rather

than a well-motivated attempt at truly explaining positional effects on suprasegmental
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Figure 8.10: Influence of overall speaking rate (parameter αD) on final lengthening
in simulated stressed and unstressed syllables. Upper panel: absolute durations; lower

panel: duration ratios.

speech timing. More research into the nature of these effects is clearly necessary before

convincing explanatory accounts can be formulated.

8.5 Discussion

Our simulation experiments have demonstrated how several effects – or, to be more pre-

cise, interactions – in the domain of suprasegmental speech timing emerge automatically

from the formalization of the independently motivated requirements to minimize effort

and maximize communicative success in our optimization-based model. These results

indicate that our model represents a promising explanatory platform for suprasegmental

speech timing phenomena. This is especially true for effects and interactions involving

prosodic prominence, for which the “localized hyperarticulation” account provides a well-

motivated hypothesis. We are less confident about the interaction of prominence and

speaking rate variation induced by global hyperarticulation. More empirical research on

this topic is necessary in order to get a clearer picture of the facts.

As for position-related lengthening effects, the proposed technique has proven capable

of reproducing some, but not all observed patterns. In general, our account of these
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phenomena is more tentative than that of prominence, given that the causes of position-

related lengthening in speech are not entirely clear. Hence, an equally well-motivated

explanatory mechanism has yet to be established. Of course it has to be kept in mind

that our model represents a relatively simple first pass at modeling suprasegmental

speech timing phenomena and can, in this case, only serve as a generator for initial

hypotheses.

We saw that the predictions and explanations suggested by the two version of our model,

the “deletion” and the “baseline” approach diverge in some cases. It would be a desirable

achievement for future research to find a way to unify both approaches that combines the

interesting properties of the “deletion” model with the results gained with the “baseline”

approach reported in this chapter.



Chapter 9

Conclusion

This work has investigated the hypothesis that speech timing patterns at the supraseg-

mental level result from trade-offs between the competing requirements of minimizing

effort and maximizing communicative success. This assumption has been formalized in a

computational model, using cost optimization to derive speech timing patterns that opti-

mally satisfy both requirements and the additional dimension of global rate constraints.

Results of simulation experiments show that the quite simple model we developed, al-

though not successful on all counts, provides a promising approach towards accounting

for suprasegmental speech timing patterns, at least in stress-accent languages. The

optimization paradigm as an overarching conceptual apparatus provides a cognitively

plausible modeling platform that allows for deriving principled explanations for attested

speech timing patterns. This is achieved on the basis of the component cost functions

of the model, whose overall shapes (though not their precise mathematical implemen-

tation details, to which no theoretical status is attached) are motivated by independent

assumptions about production- and perception-related factors. Our results thus add to

the body of evidence supporting the assumption that production-perception trade-offs

as conceived by H&H theory are an important determinant of human communication.

To our knowledge, our model is the first to address most of the empirical phenomena

discussed in this work. This is true for the simulations of speaking rate and global hyper-

articulation effects, as well as for the stress-accent interaction. As discussed in Chapter

2, Incompressibility has been incorporated in the optimization model of segmental tim-

ing effects by Katz (2010), but in the form of an explicit assumption, rather than as an

emergent result of the modeling paradigm. Finally, the account of constituent length ef-

fects offered by our model is the first to explicitly formalize the hypothesis that they are

a by-product of word prominence. This contrasts with most other explanatory accounts

of suprasegmental speech timing as discussed in Chapter 4 of this work, which posit

169



Chapter 9. Conclusion 170

special mechanisms to account for constituent length effects. We would argue that our

account of this phenomenon is more conservative, as it falls out from the independently

established concept of word prominence and does not require any specifically tailored

components to predict constituent length effects. Moreover, results of our own empirical

investigation in Chapter 6 suggest that in English, for which most results on such effects

are reported, they are actually not a common phenomenon in running speech and seem

to be restricted to highly prominent words.

An encouraging feature of our model is that the explanations of the observed effects

it suggests tend to converge with well-motivated research hypotheses. This is the case

in particular for the incompressibility-based explanation of differential speaking rate

effects in stressed and unstressed syllables, and the account of polysyllabic shortening

as redistribution of accentual lengthening. It is an important purpose of computational

modeling to demonstrate that theoretically conceived ideas actually work and generate

empirically observed patterns once implemented and tested. In our opinion, our model

fulfills this task in a promising manner for the domain of suprasegmental speech timing,

at least as far as effects and interactions involving prosodic prominence are concerned.

A common feature of most of the results that our model successfully reproduces is that

they all involve what has been referred to as overmultiplicativity (van Santen and Olive

1990): timing processes have proportionally greater effects on longer than on shorter

constituents. (van Santen and Olive 1990). To put it differently, overmultiplicative in-

teractions between several factors affecting constituent durations are characterized by

resulting in a larger percentage change than would be expected from adding the per-

centage changes of the individual factors in isolation. Interactions of this type indeed

seem to be quite frequent in speech timing, also at the segmental level: in addition

to the interactions addressed by our model, examples of overmultiplicative interactions

between effects on vowel duration have been reported (on English) for example for poly-

syllabic shortening and postvocalic voicing (Klatt 1973, Port 1981), speaking rate and

postvocalic voicing (Gopal and Syrdal 1987), rate and phonological vowel quantity (but

not quantity and postvocalic voicing; Port 1981) and prominence and postvocalic voic-

ing (Davis and Van Summers 1989, De Jong 2004). The overmultiplicative interaction

of polysyllabic shortening and postvocalic voicing, in fact, motivated the formulation

of Klatt (1973)’s descriptive model of speech timing; the incompressible Dmin constant

in his model ensures that timing effects combine in an overmultiplicative fashion. Our

modeling work suggests that the frequent finding of overmultiplicative interactions in

speech timing is based on both perception- and production related factors. On the

perceptual side, the hypothesized non-linearity of recognition probability as a function

of duration suggests that proportionally larger changes have to be applied to greater

base durations so as to create audible effects. This is complemented by our reasoning
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regarding the non-linearity of effort expressed as a function of duration, as discussed in

Chapter 3, which, as we saw, also favors overmultiplicative interactions. On the other

hand, we saw for the case of final lengthening phenomena that local variation in effort

requirements may account for the absence of overmultiplicativity in some interactions in

speech timing, although this explanation is of course speculative and may not generalize

to other situations not characterized by overmultiplicativity.

An obvious question for any computational model concerns the robustness of results

under different parameter settings.The parameter space of the model is obviously infinite

and there may well be settings at which some of the effects reported here will not be

borne out. This is, for example likely to be the case at extremely fast settings, where

many syllables are deleted and predictions become essentially meaningless, as we saw in

Chapter 7. In any case, we would argue that the existence of a region in the parameter

space in which various effects are reproduced is interesting enough as a result. After

all, only a limited range of settings is plausible, or, indeed, physically possible, in actual

human speech production – human speakers cannot talk infinitely fast, or sustain the

production of a sound forever. Our modified model presented in Chapter 7 represents a

simple attempt at introducing actual lower boundaries. It is obvious that a considerably

more complex model incorporating explicit physiological assumptions would be needed

to exclude predictions that lie outside the space of physically possible speech production.

The model we presented in this thesis is obviously highly abstract and simplified, es-

pecially in that it narrowly concentrates on timing in the acoustic domain and ignores

other aspects of speech prosody. In particular, a more realistic model would have to

account for the inherently multidimensional nature of prosodic prominence, affecting

other prosodic parameters besides duration (Fant and Kruckenberg 1989, Heuft et al.

2000, Streefkerk 2002). The simplicity of the model is intentional, since we believe it to

be a prerequisite for understanding basic processes, before more complex issues can be

addressed. Nevertheless, being able to present a more fully-fledged account in the future

would be a desirable achievement, and in the remainder of this Chapter, we shall sketch

some possible leads towards this goal.

In an attempt at providing a model that is somewhat less abstract and removed from

actual speech production than the present one, we experimented with an approach where

optimization was applied directly to the computational mass-spring model used to de-

rive the articulatory effort estimate described in Chapter 5. In this approach, the sin-

gle critically-damped mass-spring system is interpreted as embodying the quasi-cyclical

movement of the jaw in speech production. This model is based on the assumption that

jaw cycles can be used as a coarse representation of syllables, and that prosodic structure

affects these jaw movements (Erickson 1998, Lindblom 1967, Rhardisse and Abry 1995).
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The model can thus be viewed as an extension of the dynamical model presented by

Lindblom (1967), with the optimization component added to it: the dynamical parame-

ters of the model, such as stiffness or target attainment, are not hand-set, but themselves

the result of optimization. Compared to the present modeling paradigm, this approach

adds a “vertical” perspective, as not only effects in the durational domain, but also on

movement amplitudes can be studied. In our preliminary simulations, the terms of the

overall cost function were defined as in ETD, using the force integral to measure effort,

combining vertical target undershoot and the inverse of cycle duration into a measure

of perceptual cost, and introducing a temporal cost term proportional to the duration

of a whole sequence.

We were able to obtain some preliminary results using the jaw model. Supplying different

vertical targets for jaw cycles, we found that the model reproduced the correlation

between degree of opening and duration reported by Lindblom (1967). Increasing local

prominence by boosting the perception-related cost function for a single jaw cycle also

reproduced the observations of greater duration and movement amplitude, as well as

lower stiffness (Kelso et al. 1985). All these findings are not hugely surprising given

the explicit parameter settings, but they suggest that the model may be a promising

candidate for observing more interesting effects. Unfortunately, it turned out to be non-

trivial and to require additional assumptions to secure convergence of the model, and

it also makes some incorrect predictions – for example, Kelso et al. (1985) report faster

jaw movements for stressed compared to unstressed syllables despite the lower stiffness

of the former, and this was not borne out by the model. Thus, while the “re-embodied”

approach towards modeling speech timing does hold promise, more work is definitely

necessary before it can be used to establish any firm conclusions.

Another possibility for providing a more realistic and comprehensive model may be to re-

integrate our approach with the existing ETD platform. This could be done by directly

implanting the syllabic “tier” as used in our model into ETD, defining temporal cost

functions at the syllabic level for the summed activation intervals of gestures that belong

to a given syllable. This approach may hold promise for modeling timing phenomena at

the sub-syllabic level, such as the onset and coda shortening effects on vowel duration

documented by Katz (2010), or as vowel lengthening triggered by postvocalic voicing.

The latter phenomenon may be especially interesting in this regard: various explanation

for the “voicing effect” have been proposed (Fowler 1992, Kluender et al. 1988). Results

by Davis and Van Summers (1989) and De Jong (2004) suggest that in English, the effect

may be weak or even completely absent in non-prominent contexts; (White 2014:48) also

cites Klatt (1976)’s observation “that large coda voicing effects were only seen in phrase-

final position”. Thus, the explanation of the voicing effect may be analogous to the one

for the polysyllabic shortening effect in accented words proposed by our present model:
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(White 2014:ibid.) proposes that “ (b)ecause voiced consonants are less expandable than

voiceless consonants, the nucleus receives more final lengthening than when followed by

a greatly lengthened voiceless coda”. The same may apply to lengthening related to

prominence. It would be interesting to test whether this hypothesis is borne out by a

combination of ETD with our suprasegmental modeling paradigm. A truly satisfactory

account would of course require realistic voice source modeling, but one may start out

using a simplified approach, coding the difference between voiced and voiceless stops in

terms of ETD’s current parameter settings.1 A foreseeable difficulty, however is that

the optimization problem in ETD is already by orders of magnitude more complex than

in our very simple model. Combining both approaches is likely to result in even longer

computation times, and, if anything, may result in convergence issues.

A possible long-term goal for a more realistic model architecture is to simulate inter-

action between separate production and perception modules in an explicit production-

perception loop. In this approach, the production module, informally classifiable as a

“speaker” would have the task to get a message across with as little effort as possible

which the ”listener” would have to comprehend. Perceptual cost could be measured

directly in this approach by checking whether the listener, conceivable in a similar fash-

ion as Boersma (1998)’s perception module, has comprehended the message, possibly

through a noisy channel. A genetic algorithm could be used to find parameters of the

speaker’s production model such that effort is minimized and communicative success

is maximized. This approach would thus be akin to modeling language evolution, i.e.,

the hypothesized convergence of linguistic communities onto optimal speech production

through repeated interaction. An somewhat similar methodology has been employed

by De Boer (2000) in a computational study on the emergence of vowel systems. In

contrast to De Boer (2000)’s approach, the model envisioned here would probably have

to start from established linguistic categories in order to reduce complexity.

We conceive a fully-fledged model of this kind as featuring a complete articulatory

synthesis module on the production and, as stated above, an algorithm informed by

knowledge about auditory processing in humans on the perception side. This strategy

holds the possibility of providing a truly integrated account of speech, acknowledging

its inherent multidimensionality rather than narrowly focusing on a single domain, as

has been done here. Implementing such a model is obviously a vastly complex task, and

considerable work would have to be invested in its design. The results of the present

modeling work show that even with a much simpler optimization approach, interesting

insights into the nature of speech can be obtained.

1A coarse working solution may be to model voiced stops by locally increasing overall force via the
αE parameter, reflecting the muscular activity necessary to sustain voicing. Compare Boersma (1998)’s
account of the voicing effect.
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Ladd, D. R. (2008). Intonational phonology. Cambridge University Press.

Ladefoged, P. (1963). Some physiological parameters in speech. Language and Speech,

6(3):109–119.

Lehiste, I. (1970). Suprasegmentals. MIT Press, Cambridge, Massachusetts.

Lehiste, I. (1972). The timing of utterances and linguistic boundaries. The Journal of

the Acoustical Society of America, 51(6B):2018–2024.



Bibliography 184

Liberman, A. M. and Mattingly, I. G. (1985). The motor theory of speech perception

revised. Cognition, 21(1):1–36.

Lieberman, P. (1963). Some effects of semantic and grammatical context on the pro-

duction and perception of speech. Language and Speech, 6(3):172–187.

Liljencrants, J. and Lindblom, B. (1972). Numerical simulation of vowel quality systems:

The role of perceptual contrast. Language, 48:839–862.

Lindblom, B. (1963). Spectrographic study of vowel reduction. The Journal of the

Acoustical Society of America, 35(11):1773–1781.

Lindblom, B. (1967). Vowel duration and a model of lip mandible coordination. Speech

Transmission Laboratory Quarterly Progress and Status Report, 4:1–29.

Lindblom, B. (1968). Temporal organization of syllable production. Speech Transmission

Laboratory Quarterly Progress and Status Report, 9(2–3):1–5.

Lindblom, B. (1983). Economy of speech gestures. In MacNeilage, P., editor, The

Production of Speech, pages 217–246. Springer, New York/Heidelberg/Berlin.

Lindblom, B. (1986). Phonetic universals in vowel systems. In Ohala, J. and Jeger, J.,

editors, Experimental phonology, pages 13–44. Academic Press, Orlando.

Lindblom, B. (1990). Explaining phonetic variation: a sketch of the H&H theory. In

Hardcastle, W. and Marchal, A., editors, Speech production and speech modeling, pages

403–439. Kluwer, Dordrecht.

Lindblom, B. (1999). Emergent phonology. In Proceedings of the Annual Meeting of the

Berkeley Linguistics Society, volume 25.

Lindblom, B. and Engstrand, O. (1989). In what sense is speech quantal. Journal of

Phonetics, 17(1-2):107–121.

Lindblom, B., Lubker, J., and Gay, T. (1979). Formant frequencies of some fixed-

mandible vowels and a model of speech motor programming by predictive simulation.

Journal of Phonetics, 7(2):147–161.

Lindblom, B., Lyberg, B., and Holmgren, K. (1981). Durational patterns of Swedish

phonology: do they reflect short-term motor memory processes? Indiana University

Linguistics Club.

Lindblom, B. and Rapp, K. (1975). Some temporal regularities of spoken Swedish. In

Fant, G. and Tatham, M., editors, Auditory analysis and perception of speech, pages

387–396. Academic Press, London.



Bibliography 185
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Appendix A: Source Code of the

Optimization-Based Model of

Speech Timing

##Optimization-based model of speech timing, coded in R

##Andreas Windmann, 10/22/2015

##This model predicts syllable durations for hypothetical speech utterances,

##represented as a string of syllables. This works as follows: the vector s

##of syllable durations in the utterance is computed such that it

##minimizes the cost function C (called ’cost’ here), using the built-in

##optimization function optim(). C/cost consists of components that are

##themselves functions of s or parts thereof. These functions represent

##hypothesized production- and perception related influences on speech

##timing. The details are in Windmann, A. 2015. ’Optimization-Based Modeling

##of Suprasegmental Speech Timing’. PhD Thesis, Bielefeld University.

######################################################################

##Specification of the input utterance (if you want to change it, this

##has to be done directly in the code):

#number of syllables in the utterance to be simulated:

nsyl=8

#which syllables are stressed:

stresspos=c(1,4,7)

#which syllables form the accented word:

194
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accwd=seq(4,5)

##Model parameter settings (if you want to change them, this

##has to be done directly in the code):

#global weighting factor alpha_e for effort-related cost function E:

alpha_e=3

#local weighting factor eta (cost function E) for utterance-medial syllables

eta_i_nf=1

#local weighting factor eta (cost function E) for utterance-final syllables

eta_i_f=0.1

#global weighting factor alpha_p for perception-related cost function

#P_s (syllable level):

alpha_p=1

#value of stress parameter psi_i for unstressed syllables:

psi_i_s=1

#value of stress parameter psi_i for stressed syllables:

psi_i_u=0.5

#global weighting factor alpha_pw for perception-related cost function P_w

#(word level):

alpha_pw=1

#local weighting factor Psi_j for word accent:

Psi_j=2

#global weighting factor alpha_d for speaking rate related cost function D:

alpha_d=1

#global weighting factor delta for speaking rate related cost function D

#(currently not used):

delta=1

#############################################################################
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#initialize string of syllables:

s=rep(1,nsyl)

#construct stress vector:

psi_i=rep(psi_i_u,nsyl)

psi_i[stresspos]=psi_i_s

#construct eta vector (for final lengthening; only the last syllable is

#lengthened here):

eta_i=rep(eta_i_nf,nsyl)

eta_i[length(eta_i)]=eta_i_f

#construct delta vector:

delta_i=rep(delta,nsyl)

#store overall cost throughout optimization:

costs<<-c()

#cost computation:

fun=function(s) {

#E: sum of square roots of syllable durations

e=sum(eta_i*sqrt(abs(s)))

#P_s/P_w: sum of reciprocal of syllable durations/summed syllable

#durations within accented word

p=sum(psi_i/(abs(s)))

pw=max(Psi_j/sum(abs(s[accwd])))

#Alternative versions of P_s/P_w used in ’deletion’ model:

#(psi_i_s has to be < psi_i_u in this case)

#p=sum(exp(-psi_i*abs(s)))

#pw=exp(-Psi_j*sum(abs(s[accwd])))

#D: sum over all syllable durations

d=sum(delta*abs(s))

#compute costs (using the name ’cost’ here rather than ’c’ because
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#’c’ is the name of a data structure in R)

cost=alpha_e*e+alpha_p*p+alpha_pw*pw+alpha_d*d

costs<<-c(costs,cost)

fun=alpha_e*e+alpha_p*p+alpha_pw*pw+alpha_d*d

}

#call optimization:

solution1=optim(s,fun)

vals=solution1$par

#...a couple of times:

for (a in 1:200) {

sol=optim(vals,fun)

vals=sol$par

#introduce some random noise to prevent optimization

#from ’getting stuck’ in local minima:

vals=jitter(vals,0.005)

}

#optimal solution:

solution=optim(vals,fun)

#predicted durations:

solution$par=abs(solution$par)

par(mfrow=c(1,2))

barplot(solution$par)

#plot evolution of overall cost over optimization runs:

plot(costs,type=’l’)



Appendix B: Source Code of the

Mass-Spring Model

function [E,t_all,y_all,durs] = jaw1(st,Ks,Ts,targets,fig)

% Computational mass-spring model, written in matlab by Juraj Simko

% computes the trajectory of a single critically damped spring, using

% matlab’s ode45 solver

% articulatory effort is computed as the force integral, i.e., the sum of

% the forces acting upon the spring over time

% Since mass is just a constant, force is proportional to acceleration here.

%

% input parameters: vertical starting position (st), vertical target vector

% (targets), stiffness vector (Ks), activation interval vector (Ts),

% plotting yes (fig=1) or no (otherwise)

% output parameters: articulatory effort (e), positions vector (y_all),

% time vector (t_all), gesture durations (durs)

% specify options for differential equation solver:

options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6, ’Events’, @switch_off);

t_all = [];

y_all = [];

tp=1;

t_start=0;

y_0 = [st;0;0];

% compute gestures

198
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for gg = 1:length(Ks),

%opening gestures

tspan = t_start + [0 Ts(gg)];

ode = @(t,y)two_gest(t,y,Ks(gg),targets(gg));

% %call differential equation solver

[t,y] = ode45(ode,tspan,y_0,options);

t_all = [t_all;t];

y_all = [y_all;y];

ind_1 = length(t_all);

t_start = t(end);

y_0 = y_all(end,:) ;

%closing gestures - same stiffness and time interval as opening

tspan = t_start + [0 Ts(gg)];

ode = @(t,y)two_gest(t,y,Ks(gg),0);

[t,y] = ode45(ode,tspan,y_0,options);

t_all = [t_all;t];

y_all = [y_all;y];

ind_1 = length(t_all);

t_start = t(end);

y_0 = y_all(end,:);

tp=[tp length(t_all)];

end

durs=diff(t_all(tp));

% % plot gesture trajectory and velocity profile:

if fig==1,

figure

subplot(3,1,1)
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plot(t_all,y_all(:,1),’b’)

subplot(3,1,2)

plot(t_all,abs(y_all(:,2)),’b’)

subplot(3,1,3)

plot(t_all,abs(y_all(:,3)),’b’)

end

% Compute effort:

E = y_all(end) - y_all(1);

end

function [dydt] = two_gest(t,y,Ks,Ts)

% specification of differential equation

Bs = 2*sqrt(Ks);

%Bs: damping coefficients

%Ks: stiffness coefficients

% Bs = 0;

% Bs=0 -> simple harmonic oscillator

% Bs = 2*sqrt(Ks) -> critical damping

dydt = [0;0];

dydt(1) = y(2) ;

dydt(2) = -Ks*(y(1)-Ts) - Bs(:)*y(2);

dydt(3) = abs(Ks*(y(1)-Ts) + Bs(:)*y(2));

end

function [value,isterminal,direction] = switch_off(t,y,st)

value = y(1)-0.1;

isterminal = 1;
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direction = -1;

end
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