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Preface

Contribution

This text considers the prediction of consumer price indexes which allow to compare the
consumer price level across time and space. For specificity, the discussion is in terms of
German counties and the years 1993–2014, but all methods apply more generally.

Section 1 explains that prediction of these spatiotemporal price indexes—after a suit-
able reformulation—amounts to the prediction of a “long” vector x based on a “short”
vector of observations y. These observations equal weighted sums of the entries of x and
may only be observed with error. More specifically, the setup takes the form
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Therein, A symbolizes a given nonrandom matrix, and e denotes a vector of observation
errors which may be (partially) equal to zero. Section 3 and 4 develop some statistical
methodology to tackle this prediction task. Hence, this text naturally splits into two
parts: the first part (section 1) outlines an application, and the second part (sections 2, 3,
and section 4) presents some corresponding theory. The remainder of this section briefly
summarizes each of the four main sections and highlights the individual contributions.
In general, most sections may be read independently after acquainting oneself with the
basic notation presented in section 2.1 as well as the first parts of section 2.3 and 2.4.1.

Section 1 presents the available—from official statistics—price indexes for spatial and
temporal price level comparisons between German counties and states. The second part
of this section develops a formal framework which integrates the different index types and
defines an additional price index which allows spatiotemporal price comparison. Finally,
the section sketches a data-based procedure for the prediction of the latter index.

Section 2 gathers the prerequisites for the subsequent investigation of the suggested
prediction procedure. The presentation has it peculiarities, but the material is standard.

Section 3 initially focuses on an abstract regularized least-squares criterion defined
on the space of symmetric matrices. The restriction to symmetric matrices requires an
adapted duality analysis alongside an associated investigation of the set of minimizers.
The presented (proximal) gradient algorithm is standard except for the stopping rule,
which derives from the previous study of duality. The subsequent discussion introduces
a stripped-down factor model and uses the minimizer of a special case of the abstract
least-squares criterion for estimation. The latter allows the integration of spatial infor-
mation. Herein, the individual building blocks stem from literature; their integration
and application does not. This section finishes with a novel investigation of statistical
properties of the proposed estimator. The specific form of the results in this final part, in

ii



particular, those in section 3.5.2 and the final part of section 3.5.3, should be considered
preliminary. A fully satisfactory analysis remains a topic for future work.

The final section 4 develops the prediction framework alluded to in section 1 in-
depth. The investigation contains a population-level quality assurance and closes with
a discussion of suitable computational techniques. Once more, the integration of the
individual components into a coherent whole is novel; the ingredients are not.

Organization

Several major and minor sections structure the content of this text. Within major
sections, propositions, lemmas, and corollaries share their counter. The same applies
to figures and tables. Frequently, definitions are recalled upon use to aid skimming the
text. Moreover, an index at the end of the document lists most keywords. Markers in
the right margin point to the location of the indexed definitions.

References gather in a literature discussion at the close of the corresponding major
section. The listed sources often supply a more detailed presentation including additional
definitions and results omitted from this text. However, the bibliography by no means
constitutes a comprehensive list nor a compilation of the original sources.

This text adopts a tutorial style. In particular, it includes many of the required defi-
nitions and proves most of its assertions—the sole notable exception being the Hanson-
Wright inequality in appendix 3.a. However, this text is far from being a self contained
introduction to the individual topics, which are only developed to the extend needed in
the subsequent derivations. Many important results are accompanied by a discussion
indicating how and why the result works instead of a short formal proof. Mere technical-
ities come with a proof in traditional form (with the above mention exception). Included
proofs are relegated to an appendix of the corresponding major section.

In general, the presentation is meant to be sloppy enough such that the key ideas are
not hidden by formalities, formal enough to make sense, general enough to reveal what
really matters, and specific enough to not feel like abstract nonsense. The following
sketch visualizes this trade-off perceived by the author during the creation of this text.

sloppy

formalgeneral

specific

understandability

As an example, intuitive notions are left undefined, which is indicated by enclosing
quotation marks “. . . ”, whenever an exact meaning is not needed.
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Most notation is standard or otherwise explained. A notable exception are sets: these
are symbolized by labels surrounded by braces—as commonplace in probability theory—
if the meaning is uncontroversial. For example, {‖ • ‖ = 1} contains all elements of length
one; {f = a} gathers all preimages of a under the function f ; and so forth. In addition,
the symbol N denotes the set of positive integers {1, 2, 3, . . . }. Likewise integer-valued
indexes start at one unless indicated otherwise. Accordingly, the summation short-
hand

∑
t≤k abbreviates the more verbose

∑k
t=1. Sometimes integer-valued quantities

are not explicitly labeled as such; then their nature follows from the context.
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1. Price level prediction

1.1. Price indexes

1.1.1. Overview

German price statisticians use Laspeyeres-type price indexes to implement price com-
parison in time at state and national level as well as price comparison in space at the
city level. Price index calculations are complex, but are roughly summarized by

cpit/bt,C′k
=
∑
j

∑
i∈C′k

p̂ricet,i,j∑
i∈C′k

p̂ricebt,i,j
ŵgtbt,j , cpit/bt,C′ =

∑
k∈S

ŝwgtbt,kcpit/bt,C′k
, <1.1a>

and scpit,i/c = 100×
∑
j

p̂ricet,i,j

p̂ricet,c,j
ŵgtt,j . <1.1b>

Indexes calculated according to <1.1a> serve as inflation measures and are referred
to as consumer price indexes (cpi). The third index type <1.1b> implements price
comparison in space and is called a spatial consumer price index (scpi).

The real number p̂ricet,i,j in <1.1a> and <1.1b> refers to the price observed in
location i during year t of a good/service—a price representative—representing the j-th
goods/service category in a basket of goods considered for index calculation. The basket
of goods is meant to reflect average consumption choices. Here, rent is not part of this
selection. Prior to index calculation, prices are adjusted to take care of temporary
unavailability and special offers—these are features of the price representative and not
the category it is meant to represent. In some cases, more than one price representative
is observed, and then p̂ricet,i,j equals an average of the observed prices.

The 402 German counties subdividing the 16 German states—as of the December 31st,
2013—form the spatial entities of interest. Subsequently, these counties are represented
by the elements of C = {1, . . . , 402}; these numbers also serve to index other objects as-
sociated with these counties. Similarly, states are represented by the labels in S = {BB,
BE, . . . , TH}. The caption of table 1.1 lists all 16 state labels and the corresponding
full names. The subsets CBB, . . . , CTH partition C such that i ∈ Ck, i ∈ C, k ∈ S,
indicates that county i lies in state k; thus, Ck∩Ck′ = ∅ if k 6= k′ and ∪k∈SCk = C. The
relevant time points are given by the years 1993–2014, which also serve as time indexes.

The lefthand side of <1.1a> describes cpi calculation at the state level. Therein,
the average price 1

m′k

∑
i∈C′k

p̂ricet,i,j across a subset C ′k ⊂ Ck of counties of state k ∈ S
observed for good/service category j in year t is compared to the respective average price
in a basis year b, wherein m′k symbolizes the number of elements of C ′k. The cpi results
as a weighted average of the category specific ratios across all categories in the basket
of goods. The weight ŵgtbt,j ∈ (0, 1) attached to the j-th category is an estimate of
the average—at the national level—expenditure share of category j in the basis year bt.
Section 1.1.2 contains further details and also explains the association t 7→ bt.

A weighted average of the state cpis shown on the righthand side of <1.1a> addresses

1



price comparison in time at the national level. The share of the German population
living in state k during the basis year bt serves as the weight ŝwgtbt,k for the state
index cpit/bt,C′k

in the national consumer price indexes cpit/bt,C′ with C ′ = ∪k∈SC
′
k

calculated up to (but not including) the year 2000. Later cpis use the respective state’s
share of the German private consumption expenditures in the respective basis year bt.

Cross-sectional price comparison implemented via the scpi formula compares the
price of the j-th representative to the respective price observed in a reference location c.
Estimated average expenditure shares relate to the same year as the price ratios. The
basket of goods is identical to the one used for cpi calculations in the respective year; in
particular, rent is excluded here. Section 1.1.3 provides further information on the scpis.

1.1.2. Consumer price indexes

Surveys for cpi calculation are implemented on a monthly basis to inform about con-
sumer price inflation rates at the state and the national level. The corresponding index
calculation at state level proceeds as shown on the lefthand side of <1.1a> but with t
and bt replaced by the respective month and a fixed month of the basis year bt. The
subsequent discussion considers averages of these monthly indexes across the respective
year t. Hence, the numerator of the lefthand side of <1.1a> amounts to an unweighted
average of the prices observed for the j-th good/service category during the twelve
months of the year t; the denominator refers to the given basis month.

The state cpi compares prices collected in one state to prices collected in the same
state during a basis period. Therefore, the cpi becomes meaningful if the price repre-
sentatives are fixed in the basis year and remain unaltered subsequently. In practice,
the representatives are chosen by local staff and remain unaltered up to the next basis
year. This decentralized selection procedure ensures that price representatives reflect
local taste. Local price collection is organized by each state’s own statistical bureau and
is limited to a selection of counties C ′k ⊂ Ck, k ∈ S. The price collection within i ∈ C ′k
takes place in one or more of its cities. Subsequently, the inflation measured in the
selected cities is taken as representative for the respective county. Goods and services
having a common nation-wide price are observed by the national statistical bureau. The
latter supplies these data to the state bureaus and obtains the state indexes in return.

The data collection and processing methodology, in particular, the weighting scheme
and the selection of price representatives, is revised roughly every five years—about three
year after the new basis year—alongside a basis year change. The revision process may
involve changes in the selection of cities used for price observation, that is, the sets C ′k,
k ∈ S, may change with t, but this possibility is ignored here due to data availability.
Upon revision, the whole series of published indexes is adjusted to hide the resulting
structural break. The cpis for all years following and including the new basis year are re-
calculated using the new methodology and weights. Indexes published prior to the new
basis year are adjusted by a heuristic manipulation. After the revision only the adjusted
indexes are available. Thus, cpis for year t are calculated using the methodology, price
representatives, and weights corresponding to the basis year bt = max{l ≤ t | l is a basis
year}, but may later be adjusted to a different basis year. Here, all cpis refer to the basis

2
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Figure 1.2
The figure shows the observed growth rates of the cpis and cpiRs at state and national
level, wherein cpiR represents indexes of the type <1.1a> but based on a basket of goods
including rent. The cpi inflation rates result as cpit/b,C′k

/cpit−1/b,C′k
− 1 at state level and

cpit/b,C′/cpit−1/b,C′ − 1, b = 2010, at national level; the calculation for cpiR is in analogy.
Solid squares � symbolize cpi growth rates at state level; growth rates of cpiRs at state
level correspond to �. If either of the index values needed for calculation is missing, then the
respective symbol is absent. Inflation rates at the national level are visualized as a solid (cpi)
and dashed (cpiR) line, respectively. Vertical solid lines illustrate the spread of the growth
rates at state level in the respective year.

year 2010. In addition, the present analysis acts—for most purposes—as if bt = 2010 for
all t ≤ 2014, that is, the adjusted indexes receive no special treatment.

Table 1.1 summarizes the availability of cpis. Indexes based on a basket of goods
without rent are not available for the years 1993 and 1994. For those years, the available
indexes based on a basket of goods including rent—denoted by cpiR—may be used as
a surrogate. Data availability improves in 1995 with full availability for years follow-
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Figure 1.3
The figure shows the scpis corresponding to 50 counties and t = 1993 (Panel (A)) as well as
the spatial variation of the gross domestic product (GDP) per capita and the population den-
sity separately for sampling and non-sampling locations (Panel (B)). The scpis in panel (A)
are visualized by •; the size of these points reflects the respective of the four size categories.
Horizontal solid lines indicate the average scpi across the surveyed Western German counties
and the surveyed East German counties—both excluding Berlin. Panel (B) shows boxplots.

ing 2000 except for Schleswig-Holstein, Hamburg, and Bremen. Similarly, national cpis
including rent are available for all years and all years except 1993 and 1994 if rent is ex-
cluded. These indexes amount to a weighted sum of the state cpis corresponding to the
same year but convey additional information as the state cpis are never fully available.

Figure 1.2 shows the growth rates of cpis and cpiRs at state and national level.
It shows a considerable spatial variation of the growth rates in the individual years—
indicated by vertical solid lines—of one to two percentage points. However, the figure
also creates the impression of a joint movement in time of the state level growth rates.

1.1.3. Spatial consumer price indexes

Products of the same category observed for cpi calculation usually differ considerably
across sampling locations in product quality, package size, and so forth due to the
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Figure 1.4
The figure shows the scpis calculated from the surveys in 1993 and 2007. Equally sized •
indicate index values for locations included in the former survey. Vertical solid lines high-
light the spread of the indexes calculated from the latter survey across the respective state.
Horizontal solid lines visualize the average index value separately for East German states and
West German states—both excluding Berlin—as well as the two surveys.

decentralized choice of the price representatives. As mentioned in section 1.1.2, this is not
only acceptable but also desirable for cpi calculation. However, scpi calculation based
on <1.1b> and such data potentially leads to a comparison—across space—of prices of
rather different products. Meaningful scpi calculation therefore requires a survey of its
own, which ensures comparable choices of price representatives across sampling locations.

Such surveys resembles those implemented for cpi calculation to the extend that local
price collectors visit suppliers and observe prices of selected representatives. However,
they do so equipped with a more detailed descriptions of providers and goods/services
used for price representation. Such surveys are implemented infrequently and only for
a small number of locations—mostly for cost reasons. More specifically, the present
investigation uses only the latest data set of this type. This data set relates to t = 1993
and 50 Germany cities, which are subsequently identified with their surrounding counties.

The respective indexes are based on a subset of the basket of goods and slightly
adjusted good/service category weights ŵgtt,j of the cpis in 1993. The former German
capital Bonn—a county of its own—serves as the reference location c. Surveyed cities are
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split into four groups based on their population size: 20 000 to 100 000, 100 000 to 400 000,
400 000 to 1 000 000, and above one million. If the price for a good/service category
cannot be observed in a county—due to the lack of shopping facilities, then the average
price for that good/service category across locations of the same size group fills this gap.

Panel (A) of figure 1.3 shows the corresponding scpis. The indexes exhibit a notable
east/west divide, which comes as no real surprise as the two parts re-unified only a few
years earlier. Panel (B) of that figure presents the spatial variation of the gross domestic
product per capita and the population density separately for surveyed and non-surveyed
counties. The shown boxplots indicate that the survey locations are not representative
for all counties with respect to economic potency and settlement structure.

Finally, spatial price indexes from a non-official survey are available in addition to
the scpis provided by official statistics. The index calculation is according to <1.1b>

and based on a subset of the cpi basket of goods in 2007 as well as the cpi category
weights. Bonn serves as the reference location c. However, the survey was implemented
by a single person and during the years 2005–2009 with most of the data being from
2006–2008. Herein, these scpis are taken to refer to t = 2007.

Figure 1.4 compares the scpis obtained from the two surveys. Hence, the focus is on
the locations included in the survey of 1993, whose indexes are symbolized by •. The
presentation does not allow to distinguish between locations, however, shows a larger
spread of the index values for t = 2007—even within the limited set of counties surveyed
in 1993. Vertical solid lines represent the overall spread of these indexes. Herein, the
substantially larger spread for t = 2007 reflects the inclusion of rural areas not surveyed
in 1993. Index averages are included in the form of horizontal solid lines. These lines
show that Bonn’s scpi enjoyed an increase relative to the other West German as well
as East German counties. Moreover, these averages indicate a moderate price level
convergence of the East German states to the West German states.

1.2. Price index prediction

1.2.1. A framework for price index prediction

This section develops a framework which integrates price indexes of the form <1.1a>

alongside indexes of the form <1.1b>. In section 1.2.2, this setup guides the development
of a prediction strategy for price indexes implementing spatiotemporal price level com-
parison. The framework involves several numerical characteristics of the m = 402 Ger-
man counties mentioned in section 1.1.1 during the years t ∈ {1993, . . . , 2014}. Random
variables—defined on a common measurable space (Ω,F)—represent the values of these
characteristics for all counties i ≤ 402 and years t. The elements ω of Ω embody a priori
imaginable “states of the world”. The numbers shown in section 1.1 correspond to one
of these “states”, that is, equal the images of an element ω ∈ Ω under the corresponding
random variables. Herein, characteristics expressing “spatial properties”, the member-
ship in C ′, as well as the state weights ŝwgtbt,k in <1.1a> and the data availability are
taken to be constant across ω ∈ Ω. Economic preknowledge is represented by a set P

of probability measures on (Ω,F)—a statistical model, which contains the probability
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measure P on (Ω,F) describing the “data generation”, that is, the choice of ω ∈ Ω un-
derlying the observations. Elements of P satisfy the requirements outlined below and,
in addition, ensure square-integrability of all mentioned random variables.

The price level of county i during year t provides the corner stone of the subsequent
developments. This price level—a positive quantity—incorporates the vague idea of the
“cost of living” in county i during year t. The associated random variables form the
bridge that connects the various types of price indexes and also provide the ingredients
for a spatiotemporal price index. This purely formal role requires no further conceptual
considerations—such as a discussion of the meaning of “cost of living”.

The rationale behind the spatial consumer price index in <1.1b> is to compare the
price level—in form of the price of a basket of goods—in county i during year t with
that of a reference location c during the same year. The two equivalent equalities

scpit,i/c

100
=

price level at (t, i)

price level at (t, c)
and log

[
scpit,i/c

100

]
= xt,i − xt,c <1.2>

formalize this thinking, wherein xt,i symbolizes the (natural) logarithm of the price level
in county i during year t. The variables xt,i, (t, i) ∈ {1993, . . . , 2014}×{1, . . . , 402} = Ix,
also give rise to the spatiotemporal index scpi◦(t,i)/(d,c) = 100× ext,i−xd,c . Indexes of this

type compare (the price level of) county i during year t with a fixed reference time/space
point (d, c). Therein, the symbol e represents Euler’s number. Choosing c equal to Bonn
and d = 1993 allows a direct comparison with the available scpis for that year.

The lefthand side of <1.2> expresses a transformation of the scpis available in t =
1993 and t = 2007 as linear combinations of xt,i, (t, i) ∈ Ix. A similar representation as
in <1.2> of the growth rates of the state cpis in <1.1a> is possible if these growth rates
are taken as measures of the average growth rate of price levels ext,i across the respective
state. These quantities usually differ from the growth rates of the average price level∑

i∈C′k
ext,i/m′k. The interpretation as an average growth rate implies[

cpit/b,C′k
cpit−1/b,C′k

− 1

]
=

1

m′k

∑
i∈C′k

[
price level at (t, i)

price level at (t− 1, i)
− 1

]
︸ ︷︷ ︸

≈xt,i−xt−1,i

<1.3a>

≈ 1

m′k

∑
i∈C′k

xt,i −
1

m′k

∑
i∈C′k

xt−1,i <1.3b>

for states k ∈ S = {BB, . . . , TH} and with C ′k, m
′
k, and b being the set of surveyed

counties, the number of its elements, and the common base year b = 2010, respectively.
Herein, k! = 1 × 2 × · · · × k and the second step relies on a/b − 1 = elog(a/b) − 1 =∑

k≥1

(
logk(a/b)/k!

)
≈ log a − log b with a, b > 0 such that |a/b − 1| is “small”. The

previous display relates to the underlying random variables. Figure 1.2 shows that the
available inflation rates—at state level as on the lefthand side of <1.3a>—are sufficiently
small. However, the possibility of cancellation when summing positive and negative
inflation rates for counties contained in the same state prevents a direct conclusion
for the county level inflation rates. Moreover, these numbers correspond to a single
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|ŝ
w
g
t
b
t
,k
−
ŝ
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Figure 1.5

The figure shows the absolute values of the changes of state weights |ŝwgtbt,k − ŝwgtbt−1,k
|

(Panel (A)) and the deviation of ratios cpit/b,C′k
/cpit/b,C′ of the state cpis and the national

cpi from one (Panel (B)). Both quantities are represented by “•”. If one of the ingredi-
ents needed for the calculation is not available, then the respective symbol is absent.

image under the random variables. Thus, the available evidence supports the claim of
approximate equality only to the extend that it does not contradict that equality.

Finally, the growth rates of the cpi at the national level approximately equal

cpit/b,C′

cpit−1/b,C′
− 1 =

∑
k∈S ŝwgtbt,kcpit/b,C′k

cpit−1/b,C′
− 1 <1.4a>

≈
∑
k∈S

ŝwgtbt−1,k

cpit−1/b,C′k

cpit−1/b,C′

[
cpit/b,C′k
cpit−1/b,C′k

− 1

]
<1.4b>

≈
∑
k∈S

ŝwgtbt,k

[
cpit/b,C′k
cpit−1/b,C′k

− 1

]
≈
∑
k∈S

∑
i∈C′k

ŝwgtbt,k

m′k

[
xt,i − xt−1,i

]
, <1.4c>
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wherein bt = max{l ≤ t | l is a basis year} provides the original basis year of the national
indexes cpit/b,C′ and determines the state weights ŝwgtbt,k, k ∈ S, used on the righthand
side of <1.1a>. The first approximative equality—indicated by ≈—in <1.4b> relies
on ŝwgtbt,k ≈ ŝwgtbt−1,k

, which holds with equality unless t amounts to one of the original
basis years 1995, 2000, 2005, and 2010. Panel (A) of figure 1.5 shows the absolute values
of the differences of these two weights for all states k ∈ S and years t ≥ 1994. The
shown numbers justify the latter approximative equality as these quantities are taken
as constant across ω ∈ Ω. The conclusion in <1.4c> reuses the latter and cpit/b,C′k

≈
cpit/b,C′ , k ∈ S. Therein, equality holds—by definition—if t equals the common basis

year 2010. Panel (B) of figure 1.5 shows the translated ratios cpit/b,C′k

/
cpit/b,C′ − 1 for

all k ∈ S—subject to the data availability shown in table 1.1—and years t ≥ 1995.
These quantities increase in absolute value at |t − b| increases, but are still small even
for the case t = 1995; thus, these observations do not contradict <1.4c>.

Subsequently, the available scpis—in the form shown on the righthand side of<1.2>—
and cpi inflation rates—at state level as well as national level and calculated as shown
on the lefthand side of <1.3a> and <1.4a>, respectively—are denoted by yt,i, i ≤ kt.
Therein, yt,1, . . . , yt,k′′t , k′′t ∈ N∪ {0}, represent the observed inflation rates; yt,k′′t +1, . . . ,
yt,k′′t +k′t

, k′t ∈ N∪{0}, symbolize the observed and transformed scpis. Thus, kt = k′t+k′′t
equals the number of observations in t. The cases k′′t = 0 and k′t = 0 are possible and
indicate the absence of observed inflation rates—as in t = 1993—and the absence of
observed scpis—as in t = 1994, respectively. However, the case kt = 0 does not occur
if cpiR inflation rates replace the non-available cpi inflation rates for t ≤ 1994.

In total, the observed scpis and cpi inflation rates exhibit the representation

yt =



yt,1
...

yt,k′′t
yt,k′′t +1

...
yt,k′′t +k′t


=

[
−I Bt

Jt

]
︸ ︷︷ ︸

At

(
Btxt−1

xt

)
︸ ︷︷ ︸

zt

+St



v̄t,1
...

v̄t,k′′t
v̄t,k′′t +1

...
v̄t,k′′t +k′t


with xt =

xt,1
...

xt,m

 . <1.5>

Herein, I denotes the k′′t × k′′t identity matrix, and the j-th row b
(t)
j = (b

(t)
j,1, . . . , b

(t)
j,m)

of Bt ∈ Rk′′t ×m corresponds either to the observed inflation rate of a state k ∈ S or
the observed national inflation rate. In the former case, its i-th entry b

(t)
j,i equals 1/m′k

if i ∈ C ′k and zero otherwise. In the latter case, the entries are in accordance with <1.4c>.
In particular, C ′k ∩ C ′k′ = ∅ whenever k 6= k′ implies that the rows of Bt corresponding
to state inflation rates are pairwise orthogonal. Table 1.1 shows that the complete set of
state inflation rates is never observed. The latter together with ŝwgtbt,k > 0 ensures that

the rows of Bt are linearly independent for all t. Furthermore, the matrix Jt ∈ Rk′t×m

is of the form J
(1)
t − J

(2)
t , wherein the rows of J

(1)
t amount to distinct standard basis

elements ei of Rm—defined in example (a) in section 2.1.1—with i 6= c—the reference

location (Bonn), and all entries of J
(2)
t are zero except for those in the c-th column

which equal −1. In particular, the rows of Jt are linearly independent. In case k′t = 0,
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the second block row of the aggregation matrix At disappears; if k′′t = 0, then At =
Jt. In particular, the quantities x1992,j do not occur in <1.5>. Finally, the second
summand Stv̄t, v̄t = (v̄t,1, . . . , v̄t,kt), on the righthand side of <1.5> embodies errors
associated with the observation process. Therein, the random variables v̄t,i, (t, i) ∈ Iobs =
∪2014
t=1993

(
{t}×{1, . . . , kt}

)
, exhibit zero mean, unit variance, (pairwise) zero covariances,

and zero covariances with xt,j, (t, j) ∈ Ix. The matrices St ∈ Rkt×kt , 1993 ≤ t ≤ 2014,
determine the contemporaneous (co)variances of the observation errors in year t given
by the entries of Stv̄t. Hence, nonzero rows of St should be present for t ∈ {1994, 1995}
to capture the deviations between the unobserved cpis and their surrogates cpiR as well
as in t = 2007 to represent doubts concerning the survey implementation.

In summary, the equation <1.5> expresses transformations of the two types of price in-
dexes <1.1a> and <1.1b> in form of linear combinations of the underlying quantities xt,j,
(t, j) ∈ Ix. These quantities also provide the basic building blocks of the spatiotemporal
price indexes scpi◦(t,i)/(d,c), (t, i) ∈ Ix, with reference time/space point (d, c) ∈ Ix. More-

over, the equation <1.5> parallels the specification <4.21b>; example (d) in section 2.1.1
and example (e) in section 2.4.1 bridge the differences in the notation.

1.2.2. A strategy for price index prediction

This section sketches a strategy for the prediction of the underlying quantities xt,j,
(t, j) ∈ Ix, and thus of the spatiotemporal indexes scpi◦(t,i)/(d,c), (t, i) ∈ Ix, as defined in

section 1.2.1 for a given reference time/space point (d, c) ∈ Ix. To this end, the present
section implicitly develops a representation of xt,j, (t, j) ∈ Ix, of the form <4.21a>. This
representation can be transformed into a corresponding representation of the entries zt,j
of zt—defined in <1.5>—as shown in <4.22>. Then, computations of the form <4.24>,
<4.26>, and <4.27> lead to predictions ẑt,j of zt,j, that is, best guesses for the un-
observed zt,j(ω). Herein, ω ∈ Ω denotes the argument corresponding to the available
observations yt,i(ω). Finally, predictions of xt,j follow from xt,j = zt,k′′t +j, j ≤ m.

Section 4.3.1 explains that the equality yt,i(ω) = āTt,iẑt holds whenever āt,i ∈ Rk′′t +m de-
notes a row of At such that the corresponding row of St equals the zero vector. Therein,
the form of ẑt ∈ Rk′′t +m parallels that of zt—as defined in <1.5>—but with the ran-
dom variables zt,j, j ≤ k′′t + m, replaced by the predictions ẑt,j ∈ R. In particular, the
observed scpis satisfy log(scpit,i/c/100) = x̂t,i − x̂t,c. Consequently, the plug-in predic-

tions ŝcpi
◦
(t,i)/(d,c) = 100× ex̂t,i−x̂d,c interpolate the scpis observed in t = 1993 if c equals

Bonn, d = 1993, and these scpis are (treated as) observed without error. An analogous
results applies to cpi inflation rates, but only if state and national inflation rates implied

by the predictions ŝcpi
◦
(t,i)/(d,c), (t, i) ∈ Ix, of the spatiotemporal indexes are calculated

according to the respective of the approximate equalities <1.3b> and <1.4c>.
Additional numerical characteristics ui,t,j, i ≤ s, of county i in year t enter the con-

struction of the representation of xt,j, (t, j) ∈ Ix, of the form <4.21a>. Examples of such
variables included the gross domestic product per capita and the population density
mentioned in panel (B) of figure 1.3. Section 4.3.1 contains a comprehensive account of
the construction process. Therein, the characteristics are denoted by zi,t,j instead of ui,t,j.
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Here, the different symbol is justified to prevent confusion with zt,j. The remainder of
this section indicates how section 4.3.1 applies to the present prediction task and also
comments on the estimation steps needed to obtain a complete prediction algorithm.

The additional variables are split into two groups: variables with first index i < s′ and
variables with first index i ≥ s′, wherein 1 ≤ s′ ≤ s, and the case s′ = 1 indicates the
absence of the first group. These variables are taken to satisfy the linear independence
requirements specified in section 4.3.1. If s = 2 with u1,t,j and u2,t,j denoting the popula-
tion density and gross domestic product per capita, then economic intuition suggests that
the linear independence requirement—no linear combination of αt,j +u2,t,jβ2, (t, j) ∈ Ix,
is constant across ω ∈ Ω—is satisfied whenever β2 6= 0. However, the presence of tem-
porally or spatially lagged characteristics requires additional attention. This is further
explained below <1.6>. If such lags are included, then lemma 4.4 may prove useful.

The price level variables xt,j and the additional characteristics ui,t,j are connected via

xt,j = αt,j +
∑
i≤s

ui,t,jβi + vt,j , (t, j) ∈ Ix , <1.6>

wherein each of the final summands vt,j, (t, j) ∈ Ix, exhibits zero mean and zero co-
variance with every ui,t,j, i ≤ s, (t, j) ∈ Ix. Hence, this representation implies that
the inequality E(xt,j − αt,j −

∑
i≤s ui,t,jβi)

2 ≤ E(xt,j − a −
∑

i,t,j ui,t,jbi,t,j)
2 holds for

all real numbers a, bi,t,j, i ≤ s, (t, j) ∈ Ix, and with E denoting the P-expectation.
Sections 2.1.3, 2.2, and 2.3 in connection with example (e) of section 2.1 justify these
inequalities and reveal that the restriction hiding in <1.6> amounts to the invariance of
the projection coefficients β1, . . . , βs across (t, j) ∈ Ix. In fact, characteristics of other
counties j′ 6= j and years t′ 6= t—such as the above mentioned spatial or temporal lags,
can be added in the form ui,t,j = ui′,t,j′ and ui,t,j = ui′,t′,j, respectively, with i′ 6= i. In this
case, the mapping (i, t, j) 7→ ui,t,j is not injective, and restrictions on βb = (βs′ , . . . , βs)
beyond βb 6= 0 may be needed to ensure the required linear independence. The invari-
ance of β1, . . . , βs across time and space allows for the estimation of these coefficients,
that is, the partial identification of the “data generating” P ∈ P. More specifically,
combining the specification <1.6> with the observation equation <1.5> yields a system
of equations which may be used for (generalized) least-squares estimation of β1, . . . ,
βs. If the elements of P grant sufficient stochastic homogeneity and/or independence to
the random vectors (xt,j, u1,t,j, . . . , us,t,j)—such that some law of large numbers becomes
relevant, then least-squares estimation identifies the projection coefficients β1, . . . , βs.
That is, these coefficients—elements of R—are the limits in probability—or equivalently
in distribution—of their estimators in a suitable asymptotic setting. The same applies
to the (estimation of the) coefficients αt,j if some specific structure of the correspondence
(t, j) 7→ αt,j with “sufficiently low complexity” is added to the specification <1.6>.

If estimation uncertainty, that is, the use of estimates α̂t,j and β̂1, . . . , β̂s in place of
the unknown coefficients αt,j, (t, j) ∈ Ix, and β1, . . . , βs is ignored—at least as far as
algorithmic design is concerned, then the machinery of section 4.3.1 becomes applica-
ble. This approach requires the estimation of the expectations of the auxiliary quanti-
ties ˆ̄xt,j = αt,j +

∑s
i=s′ ui,t,jβi, (t, j) ∈ Ix, as well as the estimation of their covariance
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matrix. If the deviations of ˆ̄xt,j, (t, j) ∈ Ix, from their expectations fit the framework in
section 3.4, then the covariance estimation may proceed via the approach of section 3.5.1
with an implementation as in <3.7>. Section 3.5.3—in particular, proposition 3.13—
reveals that the latter estimation strategy is in principle robust against departures from
the autoregressive dynamics. The estimate Θ̂ and an estimate ρ̂ of the variance pa-
rameter ρ lead to—as explained in section 4.3.1 in connection with <3.12>—an ap-
proximate representation of the form <4.21a> of the deviations x̄t,j − Eˆ̄xt,j, (t, j) ∈ Ix,
wherein x̄t,j = xt,j−

∑
i<s′ ui,t,jβi. The final prediction of xt,j is then obtained by adding

the estimate of the expectation term Eˆ̄xt,j as well as
∑

i<s′ ui,t,j(ω)β̂i to the predictions
of the deviations x̄t,j −Eˆ̄xt,j. Section 4.3.2 assesses the accuracy of this approach. How-
ever, departures from the autoregressive dynamics, the—possibly inappropriate—use of
a simple innovation covariance matrix ρ2I with I symbolizing the m×m identity matrix,
and the overall sampling uncertainty are not reflected by its key inequality <4.14>.

Comments and references

Section 1.1 The Statistisches Bundesamt (national statistical bureau) provides the
national cpi figures for all years as well as state cpis starting with 1995 on their home-
page alongside a product description (Statistisches Bundesamt, 2012). State cpis for
the years 1993 and 1994 are available in the statistical yearbooks of the Statistische Lan-
desämter (statistical bureaus of the states) but with respect to the basis year 1991. The
available indexes amount to the quantities in <1.1a> multiplied by 100, but this scaling
is irrelevant here. Elbel (1995), Elbel (1999), Egner (2003), Elbel and Egner (2008),
and Egner (2013) discuss the changes in methodology and weights of the index revisions
corresponding to relevant basis years 1991, 1995, 2000, 2005, and 2010, respectively.

Ströhl (1994) describes the price survey and the associated scpi calculation for t =
1993. This studies provides separate scpis for East Berlin and West Berlin. Herein, a
weighted average of both indexes provides Berlin’s scpi. The weights wWest Berlin and
wEast Berlin derive from solving an overdetermined system of linear equations

cpiWest Berlin,twWest Berlin+cpiEast Berlin,twEast Berlin = cpiBerlin,t , t ∈ {1991, ..., 1997} ,

by least-squares. Therein, cpiWest Berlin,t, cpiEast Berlin,t, and cpiBerlin,t denote the cpi for
West Berlin, East Berlin, and the entire city for year t and basis year 1991. These num-
bers are provided in Statistisches Landesamt Berlin (1997, sec. XVIII, p. 524–526) and
Statistisches Landesamt Berlin (1998, sec. XVIII, p. 520–522); the resulting residuals are
below the accuracy of the published cpis. Kawka (2010) documents the non-official price
survey during 2005–2009. This study concerns different spatial entities (Kreisregionen).
These entities either coincide with a county or equal the merger of two counties; in the
latter case, the published scpi is used for both counties.

Section 1.2 Roos (2006) considers the prediction of price indexes in the German set-
ting and based on a subset of the data presented in section 1.1. However, his predictions
mainly derive from a linear model (as in <1.6>) for the scpis available in t = 1993
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and with least-squares estimates replacing the (unknown) coefficients. Kosfeld et al.
(2008) and Blien et al. (2009) extend and refine this approach. Hill (2016, sec. 2) mod-
els available price indexes via an underlying quantity in a similar way as in <1.2>. Rao
et al. (2010) present a comparable—to the approach outlined in section 1.2—prediction
strategy but based on more “parametric assumptions” than are need in section 1.2.

Blien, U., H. Gartner, H. Stüber, and K. Wolf (2009). Regional price levels and the agglomeration wage
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2. Euclidean space basics

2.1. Fundamentals

2.1.1. Finite dimension and linearity

Let y1, . . . , yk be k real-valued functions defined on a common set Ω. Further functions
arise by pointwise addition and multiplication with real numbers as in

(∑
i≤k ciyi

)
(ω) =∑

i≤k ciyi(ω) for ω ∈ Ω. Such a weighted sum is called a linear combination
linear
combination

of y1, . . . ,
yk. The set of all linear combinations of y1, . . . , yk forms a real linear/vector space V ,
which is referred to as the span

span
span{y1, . . . , yk} of the functions y1, . . . , yk.

The sequence y1, . . . , yk is called a spanning sequence
spanning
sequence

of V . It provides a basis basisof this
space if its elements y1, . . . , yk are linearly independent

linearly
independent

, that is,
∑

i≤k ciyi = 0 implies
c1 = c2 = · · · = ck = 0. The coefficients c1, . . . , ck of a linear combination

∑
i≤k ciyi are

called its coordinates coordinateswith respect to y1, . . . , yk. Elements of V exhibit multiple such
coordinate sequences unless the sequence y1, . . . , yk forms a basis of V .

If V is nontrivial
nontrivial

, that is, V 6= {0}, then all spanning sequences contain a basis as a
subsequence. Usually several choices lead to a basis, but all of these subsequences share
the number of their elements, which is called the dimension dimensiondimV (≥ 1) of V . If V = {0},
then one strategically sets dim{0} = 0. In either case, the dimension dimV of V does
not exceed the integer k, and V is therefore termed finite dimensional finite

dimensional. Conversely, a
sequence of linearly independent elements x1, . . . , xq of some finite dimensional linear
space W may be extended to a basis of W , which then implies the inequality dimW ≥ q.

Below the concept of a finite dimensional linear space W is met in the guise of

(a) elements of c ∈ Rk, which are real-valued functions on {1, . . . , k}. The set Rk

equals span{e1, . . . , ek}, wherein ei(j) = 0 unless i = j and then ei(i) = 1. The
standard basis

standard basis
e1, . . . , ek of Rk is a basis of this space.

(b) Elements of the set of real m × k matrices Rm×k are real-valued functions on
Ω = {1, . . . ,m}×{1, . . . , k}. The matrices Bi,j ∈ Rm×k, (i, j) ∈ Ω, Bi,j(p, q) = 0 if
(p, q) 6= (i, j), Bi,j(i, j) = 1, form the standard basis standard basisof this mk dimensional space.

The term vector
vector

is reserved for c ∈ Rk; singular vectors—see section 2.5—provide an
exception to this rule. The image c(i) of i under c is usually denoted by ci and called
the i-th entry of c. The latter suggests suggest writing c = (c1, . . . , ck). The entry ci
also equals the i-th coordinate of c with respect to the standard basis defined in (a).

Likewise if A ∈ Rm×k, then its i, j-th entry is given by A(i, j) = ai,j, that is, the
coordinate of A with respect to the i, j-the standard basis element Bi,j shown in (b).
The entries ai,j are displayed in the common array/block form when considered jointly. In
that case, zero entries—if identified as such by the context—are replaced by white space.

If needed, in particular for the purpose of matrix-vector multiplication, c ∈ Rk is
identified with its corresponding element in Rk×1. Accordingly, the matrix representation
of a linear map f : Rk → Rm is with respect to the standard bases of Rk and Rm. That
is, the entries a1,j, . . . , am,j of the matrix representation A ∈ Rm×k of f are given by
the coordinates of the image f(ej) of ej ∈ Rk with respect to the standard basis of Rm.
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A nonempty subset U of W is termed a subspace subspace(of W ) if it includes all linear
combinations of its elements. Then U—considered in isolation—forms a linear space and
the above terminology applies in analogy. In addition, W is referred to as a superspace

superspace

of U . An important subspace of the quadratic
quadratic

matrices Rm×m consists of

(c) the symmetric symmetricmatrices Sm, that is, matrices A ∈ Rm×m which satisfy ai,j = aj,i.

The matrices B̄i,i = Bi,i, i ≤ m, together with the matrices B̄i,j = (Bi,j+Bj,i)/
√

2,
i < j ≤ m, provide the standard basis

standard basis
of this m(m+ 1)/2 dimensional space.

Every element A ∈ Rm×k induces a linear map Rk 3 c 7→ Ac =
∑

i≤k ciai ∈ Rm,
which—at least with respect to the complexity of the notation—facilitates the study of
the linear relations between its k column columns ai = Aei, i ≤ k. Replacing these functions ai :
{1, . . . ,m} → R (see (a)) by real-valued functions y1, . . . , yk on a set Ω lifts this amenity
to a higher level of generality. This construction generates a linear map Y from Rk to a
superspace W of span{y1, . . . , yk}. In fact, all linear maps X : Rk → W are of the form
c 7→

∑
i≤k cixi with column

column
s xi = Xei ∈ W and admit the structure of a linear space:

(d) the real vector space W×k with pointwise defined linear operations, that is, (aY +
bY ′)c = a(Y c) + b(Y ′c) for a, b ∈ R, c ∈ Rk, and Y, Y ′ ∈ W×k.

This linear space conforms to the above general framework if Y ∈ W×k is identified
with (ω, i) 7→ (Y ei)(ω) as in (b). The second perspective rightly suggests that Wi,j,
wherein Wi,jek equals the i-th element of a basis of the m′ dimensional space W
for j = k and zero otherwise, form a basis of this m′k dimensional space.

In general, elements ofW×k are symbolized by uppercase letters; corresponding lowercase
letters represent the corresponding columns; and the block notation Y = [y1 · · · yk] hon-
ors the equality Rm×k = (Rm)×k. Moreover, writing Y = [Y1 Y2] with Y1 = [y1 · · · yj],
Y2 = [yj+1 · · · yk], and j < k mimics the usual notation for partitioned matrices. Finally,
the identification W×1 = W resembles the above mentioned case Rk×1 = Rk.

Two subspaces directly derive from Y ∈ W×k, namely, its image imageimg Y ⊂ W , which
is also referred to as its column space column space, and its kernel

kernel
kerY ⊂ Rk. The kernel or null

space
null space

gathers all c ∈ Rk with Y c = 0. The column space/image consists of all linear
combinations of its columns y1, . . . , yk. The dimension of its image is known as the
rank

rank
rkY of Y . The latter satisfies rkY + dim kerY = k. If kerY 6= {0}, then this

equality results from the ability to extend a basis of kerY to a basis of Rk. Otherwise,
it holds by definition as kerY = {0} is tantamount to linear independence of y1, . . . , yk.

Another relevant example of a finite dimensional linear space comes in the form of

(e) the span of a finite sequence of P-square integrable random variable random variables on a proba-
bility space (Ω,F,P), that is, real-valued and F/R1-measurable functions y on Ω
with

∫
y2(ω)P(dω) < ∞. Herein, R1 denotes the Borel σ-field corresponding to

the | • |-topology—the smallest σ-field containing all open intervals.

The dimension of this space is bounded from above by the sequence length. More-
over, all elements of this linear space, that is, all linear combinations of the span-
ning sequence elements, are P-square integrable.
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The examples (b)–(e) as well as all other finite dimensional real linear spaces V mimic
example (a) to the extend that elements of V share their linear relations with their
coordinate vectors with respect to a basis. More formally, a basis y1, . . . , yk leads to a
bijective linear map Y = [y1 · · · yk] from Rk to V whose inverse map Y −1 is linear.

2.1.2. Norm topology

A norm ‖ • ‖ endows every element x of a finite dimensional linear space W with a
length ‖x‖. A pair consisting of a finite dimensional linear space and a norm forms a finite
dimensional normed space. Relevant examples—numbered as in section 2.1.1—include

(a) the real k-tuples Rk together with the Euclidean norm Euclidean norm‖c‖ = (
∑

i≤k c
2
i )

1/2,

(b) the real m× k-matrices with the Frobenius norm
Frobenius norm

‖A‖ = (
∑

i≤m,j≤k a
2
i,j)

1/2, and

(e) the span of a finite set of P-square integrable random variables on a probability

space (Ω,F,P) joined by the L2-norm L2-norm‖x‖ =
(∫

x(ω)2P(dω)
)1/2

.

In this example, the existence of F ∈ F with PF = 0 potentially reduces ‖ • ‖ to a
seminorm. Appendix 2.a deals with this nuisance.

Further important instances of finite dimensional normed spaces are best discussed in
connection with singular values; their treatment is deferred to section 2.5.2.

A norm induces a metric d(x, y) = ‖x − y‖, which endows every finite dimensional
normed space W with a metric space structure. The resulting metric space (W,d) ex-
hibits a few notable features. More specifically, the finite dimension guarantees that
linear maps are continuous and subspaces are closed. Furthermore, the Heine-Borel the-
orem asserts that closed and bounded subsets of such spaces are (sequentially) compact.
The unit sphere unit sphere{‖ • ‖ = 1} provides the most relevant example.

These properties are inherited from Rk. In fact, if y1, . . . , yk are a basis of W , then
Y = [y1 · · · yk] forms a bijective and continuous (linear) map with continuous (and
linear) inverse Y −1. The two maps Y and Y −1 transfer topological properties from W
to the coordinates with respect to y1, . . . , yk in Rk and vice versa.

Compactness of {‖ • ‖ = 1} ensures that {`(y) | ‖y‖ = 1} is (sequentially) compact
whenever ` : {‖ • ‖ = 1} → R is continuous with respect to the metric d. As a con-
sequence, {`(y) | ‖y‖ = 1} contains its supremum and infimum. Any other norm ‖ • ‖′
on W provides an example of a continuous (with respect to d) function. Hence, there
exists a lower compatibility constant lower

compatibility
constant

c = c(W, ‖ • ‖, ‖ • ‖′) > 0 and an upper compatibility
constant upper

compatibility
constant

C = C(W, ‖ • ‖, ‖ • ‖′) > 0 such that c‖ • ‖ ≤ ‖ • ‖′ ≤ C‖ • ‖. These numbers
usually depend on the dimension of the linear space W . Nonetheless, ‖ • ‖ and ‖ • ‖′ and
thereby their induced metrics are (strongly) equivalent. Thus, any two norms on W
induce the same topology, which is called the norm topology norm topology. Most notably, all metric
notions such as convergence and continuity coincide across norms on W .

Compactness is key to many qualitative results; quantitative statements require a
quantitative analog. If ε > 0, then an ε-net

ε-net
of a compact subset S of W is a finite

subset {x1, . . . , xq} of S such that S ⊂ ∪i≤q{‖xi − • ‖ ≤ ε}. Compactness of S implies
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total boundedness, which ensures the existence of ε-nets. The well-ordering principle
guarantees the existence of a minimal number of elements of S needed to form an ε-
net for a given ε > 0. This number is referred to as the ε-covering number

ε-covering
numberN =

N(S, ‖ • ‖, ε) of S. In case of the unit sphere of Rk, the translation invariance and scaling
property of the Lebesgue measure lead to the upper bound on N({‖ • ‖ = 1}, ‖ • ‖, ε) in
the following lemma, which is proved on page 39 of appendix 2.b.

Lemma 2.1. For any ε ∈ (0, 1), the ε-covering number N({‖ • ‖ = 1}, ‖ • ‖, ε) of the
unit sphere {‖ • ‖ = 1} of Rk with ‖ • ‖ as in (a) satisfies

N({‖ • ‖ = 1}, ‖ • ‖, ε) ≤
(

1 +
2

ε

)k
.

Covering numbers and ε-nets serve to bound the supremum and infimum of an infinite
set by the maximum and minimum over a finite ε-net. In particular, if ` : S → R exhibits
a finite (‖ • ‖-)Lipschitz constant

Lipschitz
constant

L = supx 6=y|`(x) − `(y)|/‖x − y‖ and {x1, . . . , xN}
denotes a (⊂-)minimal ε-net of S, then it follows that

inf
x∈S

`(x) ≥ min
i≤N

`(xi)− Lε and sup
x∈S

`(x) ≤ max
i≤N

`(xi) + Lε . <2.1>

2.1.3. Geometry

The similarity in appearance of the Euclidean, the Frobenius, and the L2-norm is no
coincidence. In fact, in all these cases the respective domain Ω of the functions exhibits
a natural measure space interpretation with finite measure µ such that elements y1, . . . ,
yk of the resulting function space are µ-square-integrable:

(a) the set {1, . . . ,m} coupled with its power set and the counting measure leads to
the integral

∫
x(i)µ(di) =

∑
i≤m xi underlying the Euclidean norm.

(b) The identical construction extended to fit Rm×k produces
∫
A(i, j)µ

(
d(i, j)

)
=∑

i≤m,j≤k ai,j and thus the Frobenius norm. Such integration is also feasible if

(c) the symmetric m×m matrices Sm—a subset of Rm×m—are considered in isolation.

The measure space structure moreover suggests an inner product 〈 • , • 〉 defined by
〈x, y〉 =

∫
x(ω)y(ω)µ(dω) for any two elements x, y. This inner product induces the

corresponding of the just mentioned norms via ‖x‖ =
√
〈x, x〉. In this text, the sym-

bol ‖ • ‖ is used exclusively for norms following this recipe. Herein, the finiteness of the
measure µ is dispensable but convenient. Appendix 2.a states its relevant implications.

More generally, if W equals the span of a finite sequence of real-valued µ-square-
integrable functions on a (finite) measure space (Ω,F, µ), then interpreting

(d) elements Y of W×k as functions (ω, i) 7→ (Y ei)(ω) = yi(ω) allows their integration
using the product ν of µ with the counting measure on {1, . . . , k}. By Fubini’s the-
orem, the resulting integral is

∫
yi(ω)ν

(
d(ω, i)

)
=
∑

i≤k
∫
yi(ω)µ(dω) and induces

the inner product 〈Y, Y ′〉 =
∑

i≤k
∫
yi(ω)y′i(ω)µ(dω) =

∑
i≤k〈yi, y′i〉.
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Figure 2.1
The figure visualizes the relation between the geometric notions of angles and length to inner
products and norms. Panel (A) links the Euclidean norm ‖x‖ to the length a of x. Panel (B)
connects the cosine cos θ of the (small) angle θ between x and y to their inner product.

If W = Rm, then the inner product in (d) recovers the inner product underlying the
Frobenius norm in (b). In particular, (d) points to the alternative expression 〈A,B〉 =
tr(ATB) for A,B ∈ Rm×k. Therein, a superscript T marks the transpose transposeAT of A—given
by AT(i, j) = aj,i In addition, tr denotes the trace trace—the sum of the diagonal entries

diagonal entries

(ATB)i,i, whose cyclic property
cyclic property

tr(ATB) = tr(BAT) is often used without further notice.
In general, finite dimensional real linear spaces furnished with an inner product are

called Euclidean space Euclidean spaces. Such spaces are finite dimensional normed spaces furnished with
a notion of (small) angle between any two of their elements. The two concepts—length
and (small) angle—give rise to a simple geometry, which parallels that of the plane R2.

Figure 2.1 considers two nonzero elements x and y of the plane R2 with inner prod-
uct as in (a). This space provides the archetypal Euclidean space, wherein length
and angles occur in the usual sense. In Panel (A), Pythagoras’s theorem shows that
‖x‖ =

√
x2

1 + x2
2 = a coincides with the traditional understanding of length. Panel (B)

illustrates the relations ‖y − x‖2 = a2 + c2, ‖y‖2 = a2 + b2, ‖x‖ = b + c, and thereby
b = 〈x, y〉/‖x‖. Figure 2.2 ties b to the cosine of the (small) angle θ between x and y.
Its panel (A) illustrates the cosine of the (small) angle θ′ between a point z of length r
and the first standard basis element e1. Therein, dropping a perpendicular from z to
the first coordinate axis yields a right triangle such that the length of its leg adjacent
to θ′ equals r cos θ′. A comparison with panel (B) of figure 2.1 shows that the cosine
of θ equals cos θ = b/

√
a2 + b2 = b/‖y‖, and therefore one has cos θ‖x‖‖y‖ = 〈x, y〉.

Figure 2.2 also contains a geometric characterization of the sine and tangent of θ′. In
particular, the relation cos2 θ + sin2 θ = a2/‖y‖2 + b2/‖y‖2 = 1 is notable.

If x, y are nonzero, then the relation cos θ‖x‖‖y‖ = 〈x, y〉 determines the value of the
angle θ. Panel (A) of figure 2.2 shows that a (small) angle θ′ is an element of [0, π]. As z
moves along the upper half of the r-sphere in counterclockwise direction, cos θ′ decreases
steadily from 1 to −1. More specifically, cos is continuous and monotone decreasing–thus
bijective–on [0, π]. The neighboring panel (B) shows the relevant part of its graph. The
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Figure 2.2
The figure shows the geometric significance of the functions cos, sin, tan and their graphs
on the intervals [0, π], [0, π], and [0, π/2), respectively. Panel (A) expresses the cosine of the
angle θ′ between a point z of length r and the first standard basis element e1 in terms of the
first coordinate of z with respect to the standard basis. The sine sin θ and tangent tan θ exhibit
similar representations. Panel (B) contains parts of the graphs of the resulting continuous
functions cos, sin, and tan on the above mentioned intervals.

latter indicates that the equalities 〈x, y〉 = ‖x‖‖y‖ and 〈x, y〉 = −‖x‖‖y‖ occur if and
only if x and y reside on the same line through the origin. Moreover, an angle of π/2 is
tantamount to 〈x, y〉 = 0. Then x and y are said to be orthogonal

orthogonal
, and this term is also

applied if y = 0. Thereby 0 becomes the sole element being orthogonal to all x ∈ R2.
The relation of 〈 • , • 〉 with the geometric concepts of length and angles in R2 allows

to transport these notions to more general spaces W . Bijective linear maps Q with
〈Qc,Qc′〉 = 〈c, c′〉 for any two points c, c′—so-called unitary map unitary maps—provide the bridge.

Section 2.2.2 constructs a unitary map Q from Rh to an abstract h dimensional
Euclidean space V . Consequently, two elements x, y of an at least two dimensional
Euclidean space W may be identified with their preimages under a unitary map Q
from R2 to a two dimensional superspace V of their span span{x, y}. Then, the equality
〈x, y〉 = 〈Q−1x,Q−1y〉 suggest thinking of ‖x‖ =

√
〈x, x〉 = ‖Q−1x‖ and the num-

ber θ, which is defined for nonzero elements x, y by cos θ‖x‖‖y‖ = 〈x, y〉, as the length
of x and the (small) angle between x and y, respectively. This identification forces two
dimensional subspaces of W to resemble the geometry of R2.

2.2. Unitary maps

2.2.1. Orthonormal bases

The interpretation of 〈 • , • 〉 and ‖ • ‖ in section 2.1 characterizes unitary maps as linear
bijections preserving length and angles. The polarization identity polarization

identity〈x, y〉 =
(
‖x + y‖2 −

‖x− y‖2
)/

4 shows that the preservation of length implies preservation of angles.
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The sequence of preimages Q−1y1, . . . , Q−1yk of Euclidean space elements y1, . . . ,
yk under a unitary map Q forms a representation

representation
of y1, . . . , yk. Economy of notation

excuses using this term for the composition Q−1Y in connection with the linear map Y =
[y1 · · · yk]. The identity map on any Euclidean space is unitary; the same applies to the
inverse of any unitary map and the composition of any two suitable unitary maps.

Let V be a h(≥ 1) dimensional Euclidean space and Q be unitary from Rh to V . Then
Q lies in V ×h and its columns—the images qi = Qei of the standard basis elements e1,
. . . , eh of Rh under Q—exhibit unit length and are pairwise orthogonal. Conversely, if
q′1, . . . , q′h are pairwise orthogonal and of unit length, then 〈

∑
i≤h ciq

′
i,
∑

i≤h c
′
iq
′
i〉 = 〈c, c′〉

ensures linear independence of q′1, . . . , q′h and identifies Q′ = [q′1 · · · q′h] as a unitary map
from Rh to V ′ = span{q′1, . . . , q′h}. In particular, this sequence forms a basis of V ′, and
q′i = Q′ei may be thought of as (perpendicular) coordinate axes in V ′.

Such bases—consisting of unit length and pairwise orthogonal elements—are called
orthonormal basis orthonormal

basis. The standard bases in (a), (b), and (c) are of this kind. Therein, the
standard basis of Sm ⊂ Rm×m may be grown into another orthonormal basis of Rm×m

by adding the m(m− 1)/2 elements B̄i,j = (Bi,j − Bj,i)/
√

2, j < i. The latter span the
space of skew-symmetric skew-symmetricmatrices, that is, quadratic matrices A with AT = −A.

Section 2.2.2 presents a recipe—called Gram-Schmidt orthogonalization Gram-Schmidt
orthogonaliza-
tion

—for the ex-
traction of an orthonormal basis of a h dimensional space from a spanning sequence y1,
. . . , yk. Lemma 2.2 summarizes this finding. Its statement relies on the concept of a row
echelon matrix

row echelon
matrix

R ∈ Rh×k. Such matrices satisfy Ii = {j ≤ k | ri,j 6= 0} 6= ∅, i ≤ h, and
inf Ii < inf Ii+1, i < h. Thus, h ≤ k, and the rows of R—interpreted as elements of Rk—
are linearly independent. If y1, . . . , yk form a basis, that is, h = k, then R is an upper
triangular matrix

upper
triangular
matrix

—its entries satisfy r′i,j = 0 if i > j—with nonnegative diagonal entries.

Lemma 2.2. Let y1, . . . , yk be a nontrivial
nontrivial

sequence of Euclidean space elements, that
is, with yj 6= 0 for at least one j ≤ k, spanning a h(≥ 1) dimensional space V . There
exists an orthonormal basis q1, . . . , qh of V and a row echelon matrix R such that

r1,1 r1,2 . . . r1,h . . . r1,k

r2,2 . . . r2,h . . . r2,k

. . .
...

. . .
...

rh,h . . . rh,k




[q1 · · · qh]=[y1 · · · yk]

R

QY

with resp.
to q1

with resp.
to q2

with resp.
to qh

coordinates of y1

coordinates of y2

coordinates of yh

coordinates of yk

. <2.2>

2.2.2. Gram-Schmidt orthogonalization

The discussion initially stresses geometric intuition and considers linearly independent
x, y ∈ R2 and x, y, z ∈ R3 for clarity. The general case is tackled afterwards.
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ỹ/a
unit circle

x

y

z

θ1

ŷỹ
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Figure 2.3
The figure illustrates the sequential construction of an orthonormal basis. Panel (A) considers
a basis x and y of R2. The transformation has two steps: first x is scaled to form an
orthonormal basis of span{x}; then ỹ is determined as the part of y orthogonal to span{x};
a final scaling to obtain ỹ/a completes the orthogonalization. Panel (B) to (D) repeat this
construction in a recursive manner to transform a basis x, y and z of R3 into an orthonormal
basis q1 = x/‖x‖, q2 = ỹ/‖ỹ‖, and q3 = ˜̃z/‖˜̃z‖ of that space.

Panel (B) of figure 2.1 suggests how to construct q1 and q2 from an arbitrary basis x, y
of R2. In fact, the second basis element y equals the sum of a multiple of x with
length b > 0 and an element ỹ of length a > 0, which is orthogonal to x. Thus, x
and ỹ provide suitable elements q1 and q2 up to scaling. Panel (A) of figure 2.3 extends
panel (B) in figure 2.1 to illustrate this approach. Therein, x is scaled to q1 = x/‖x‖; the
alternative choice −x/‖x‖ is not displayed. Subsequently, panel (A) decomposes y into
two mutually orthogonal parts ŷ ∈ span{x} = span{q1} and an element ỹ of (span{x})⊥.
The first part equals r1,2q1, wherein r1,2 ∈ R is given by ‖r1,2q1‖ = r1,2 = b = 〈q1, y〉 as
in section 2.1. Consequently, the second part results as ỹ = y − q1〈q1, y〉 with length a,
which reveals the two possible choices q2 = +ỹ/a and q2 = −ỹ/a for extending q1 to an
orthonormal basis of span{x, y}. Panel (A) presents the case q2 = ỹ/a = ỹ/‖ỹ‖.

Every element of R2 has a unique representation as the sum of an element of span{q1}
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and one from span{q2}. In this sense, span{q2} complement
complement

s span{q1} = span{x} in
R2. An analogous consideration identifies span{y} as another complement of span{x}.
However, each element of span{q2} is orthogonal to every element of span{q1}, and it
is the only complement with this property. Speaking of span{q2} as the orthogonal
complement orthogonal

complement(span{x})⊥ of span{x} in R2 is therefore legitimate. This subspace relation

exhibits symmetry to the extend that
(
(span{x})⊥

)⊥
= span{q2}⊥ = span{x}.

Pythagoras’s theorem guarantees the inequality ‖y− ŷ‖ ≤ ‖y−x‖ in panel (B) of fig-
ure 2.1. The latter remains valid if x is replaced by any element of span{x}; it is strict un-
less one chooses ŷ as a replacement, which uniquely characterizes ŷ. In addition, the use
of Pythagoras’s theorem implies that ŷ ∈ span{x} together with ỹ = y− ŷ ∈ (span{x})⊥
offers an equivalent characterization. The latter endows ŷ with its name orthogonal pro-
jection orthogonal

projectionof y onto span{x}. The symmetry of the second characterization ensures that
the residual

residual
ỹ equals the orthogonal projection of y onto (span{x})⊥ = span{q2}.

Panel (B) to (D) of figure 2.3 extend the procedure of panel (A), including the concept
of orthogonal complement and projection, to R3. This extension comprises three major
steps each turning a further element of a basis x, y, z into one of q1, q2, q3. The first two
major steps—shown in panel (B)—replicate the R2 version of the construction process:
the first major step provides q1 by scaling x; the second major step consists of an
orthogonalization step to obtain ỹ = y − q1〈q1, y〉 and thereby q2 = ỹ/‖ỹ‖.

Panel (C) brings in z only after an orthonormal basis q1, q2 of span{x, y} has been
found. Two orthogonalization steps follow. The first relieves z from its dependence
with x yielding z̃ = z − q1〈q1, z〉. The two points ỹ and z̃ form a basis of (span{x})⊥ =
{〈x, • 〉 = 0}. The intermediate residual z̃ equals the sum of ˆ̃z = q2〈q2, z〉 ∈ (span{x})⊥∩
span{ỹ} and ˜̃z = z̃ − ˆ̃z ∈ (span{x})⊥ ∩ (span{ỹ})⊥. The second summand ˜̃z =
z̃ − q2〈q2, z̃〉 6= 0 spans (span{x, y})⊥. Scaling the latter to unit length completes the
construction of q3. The individual steps of this orthogonalization are confined to two
dimensional subspaces. Figure 2.3 highlights these subspaces by dashed lines.

The generalization <2.3> to k linearly independent elements y1, . . . , yk of a Euclidean
space W yields an orthonormal basis q1, . . . , qk of their span. In addition, one obtains for
each j ≤ k a coordinate vector rj = (r1,j, . . . , rj,j, 0, . . . 0)—shown in <2.2>—of yj with
respect to that basis. The construction requires k major steps, which are indexed by j
and consist of j−1 orthogonalization steps—indexed by i—alongside a final scaling step.

1 ỹ
(0)
j = yj , j ≤ k

2 for j = 1, . . . , k

3 for i = 1, . . . , j − 1

4 ri,j = 〈qi, ỹ(i−1)
j 〉

5 ỹ
(i)
j = ỹ

(i−1)
j − ri,jqi

6 rj,j = ±‖ỹ(j−1)
j ‖

7 qj = ỹ
(j−1)
j /rj,j

<2.3>

The sign in line 6 of <2.3> may be chosen at will. The choice affects the outcome as
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ỹ
(j−1)
j equals a linear combination of y1, . . . , yj with at least one nonzero coordinate and

is therefore nonzero. Consequently, ‖ỹ(j−1)
j ‖ 6= 0 and the final division is uncontroversial.

The unit length elements q1, . . . , qk generated by line 7 are linear combinations of y1,
. . . , yk. Furthermore, the construction ensures that for 1 ≤ j < j′ ≤ k one has

〈qj, ỹ(j)
j′ 〉 =

〈
qj, ỹ

(j−1)
j′ − qj〈qj, ỹ(j−1)

j′ 〉
〉

= 〈qj, ỹ(j−1)
j′ 〉 − 〈qj, ỹ(j−1)

j′ 〉 = 0 . <2.4>

In terms of the above vocabulary, the equalities <2.4> identify ỹ
(j)
j+1, . . . , ỹ

(j)
k , j < k, as

elements of the orthogonal complement of span{q1, . . . , qj} = span{y1, . . . , yj}. In fact,
these residuals equal the orthogonal projections of yj+1, . . . , yk onto (span{y1, . . . , yj})⊥
and form a basis of this orthogonal complement in span{y1, . . . , yk}. Subsequently con-

structed basis elements qj+1, . . . , qk are linear combinations of ỹ
(j)
j+1, . . . , ỹ

(j)
k , thus, also

lie in the orthogonal complement (span{q1, . . . , qj})⊥ of span{q1, . . . , qj}.
Lemma 2.2 allows linear dependence between y1, . . . , yk. In that case, a zero resid-

ual ỹ
(j−1)
j occurs in at least one major step. The latter indicates that the j-th element yj

does not add to span{y1, . . . , yk} in the given order and should be omitted in the basis
construction. Setting qj = 0 and thereby rj,k = 0, k > j, effectively skips yj and avoids
the use of a further indexing variable. Replacing the seventh line of <2.3> by

7 if rj,j = 0

8 qj = 0

9 else

10 qj = ỹ
(j−1)
j /rj,j

implements this approach. In this form, the procedure generates a preliminary sequence
q̄1, . . . , q̄k of mutually orthogonal elements of W and a corresponding k×k upper trian-
gular matrix R̄. The h nonzero q̄j are of unit length and form a basis of span{y1, . . . , yk}.
The zero q̄j correspond to zero rows in the coordinate matrix R̄. Dropping these zero
elements q̄i and the corresponding rows in R̄ yields a representation as in <2.2>.

2.3. Projectors

An orthonormal basis q1, . . . , qh of a h dimensional subspace V of a Euclidean space W
yields the closed form expression

∑
i≤h qi〈qi, x〉 for the orthogonal projection

orthogonal
projection

x̂ of x ∈ W
onto V . As an example, the standard basis B̄i,j, i ≤ j, of Sm—see (c) of section 2.1.1—

identifies the orthogonal projection Â of A ∈ Rm×m onto Sm as
∑

i≤j≤m B̄i,j〈B̄i,j, A〉 =

(A + AT)/2. Alternatively, the orthogonal projection is uniquely defined as the best
approximation of x in V in the sense that x̂ ∈ V and ‖x− x̂‖ ≤ ‖x− x′‖ for all x′ ∈ V .
In particular, the projection x̂ equals x if and only if x is itself an element of V .

The approximation error x̃ = x − x̂ is called the residual residualof that projection. It lies
in the orthogonal complement

orthogonal
complement

V ⊥ = ∩y∈V {〈y, • 〉 = 0} of V in W . The skew-symmetric
residual (A − AT)/2 from orthogonally projecting A ∈ Rm×m onto Sm exemplifies this
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Figure 2.4
The figure illustrates the projection onto a subspace V of R3 along its orthogonal comple-
ment V ⊥ as well as another complement U of V in R3. Panel (A) shows the two resulting
projections x̂V and x̂V/U for some x 6∈ V . Panel (B) introduces another element y such that

x+ y ∈ V . The latter is projected onto V along V ⊥ as well as onto V along U .

inclusion. Symmetry and bilinearity of 〈 • , • 〉 ensure that V ⊥ is a subspace with V =
(V ⊥)⊥. Moreover, the second equality in ‖x−x′‖2 = ‖x̂+ x̃−x′‖2 = ‖x− x̃‖2 +‖x̃−x′‖2,
which holds whenever x′ ∈ V ⊥, shows that x̃ provides the orthogonal projection of x
onto V ⊥. The equality

∑
i>j B̄i,j〈B̄i,j, A〉 = (A − AT)/2 verifies this equivalence. The

above definitions and observations generalize the geometric discussion of section 2.2.2.
The linear map •̂ =

∑
i≤h qi〈qi, • 〉 is called the orthogonal projector orthogonal

projectoronto V . The
alternative notation •̂ V highlights the target space V if its clarification is needed; the
operator-type expression PV provides yet another alternative. The meaning of •̃ V is in
analogy, which generates the identity •̃ V = •̂ V ⊥ . The equality ‖x‖2 = ‖x̂‖2+‖x̃‖2 proves
that orthogonal projectors are contraction contractions, that is, ‖x̂V ‖ ≤ ‖x‖ for all x ∈ W . The
idempotence

idempotence
of orthogonal projectors, that is, PV PV = PV , follows from imgPV = V .

The subspace V ⊥ is complementary to V in the sense that every x ∈ W exhibits a
unique decomposition x = x̂V + x̂V ⊥ with x̂V ∈ V and x̂V ⊥ = x̃V ∈ V ⊥. In analogy,
another subspace U of W is complementary complementaryto V (in W ) if every x ∈ W features a
unique representation x = x̂V/U + x̂U/V with x̂V/U ∈ V and x̂U/V ∈ U . This relation
between two subspaces holds if and only if their sum

sum
U +V = {u+ v |u ∈ U, v ∈ V }—a

subspace ofW—coincides withW and their intersection U∩V—another subspace ofW—
equals {0}. Then, the subspace U is called a complement complementof V (in W ). Furthermore,
this relation between V and U implies that the orthogonal complement U⊥ complements
V ⊥, and that dimW = dimV + dimU . In particular, all complements of V possess the
same dimension, which is also referred to as the codimension

codimension
codimV of V (in W ).
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Every pair U , V of complementary subspaces comes with two associated projections:
the oblique projection oblique

projectionx̂V/U ∈ V of x ∈ W onto V along U and the oblique projec-
tion x̂U/V ∈ U onto U along V . The latter are defined through the unique decomposition
x = x̂V/U + x̂U/V of x associated with the two complementary subspaces; panel (A) of
figure 2.4 justifies the geometric naming. The associated residuals reflect the symmetry
of this definition via x̃V/U = x− x̂V/U = x̂U/V and x̃U/V = x− x̂U/V = x̂V/U , respectively.

The corresponding oblique projector
oblique
projector

s •̂ V/U = PV/U and •̂ U/V = PU/V —either of which
is denoted by •̂ / if V and U as well as their role is clear from the context—are linear
and idempotent. Moreover, one has the equalities V = imgPV/U = kerPU/V and U =
imgPU/V = kerPV/U , respectively, wherein the image imageimgF and kernel

kernel
kerF of a linear

map F on W are given by the subspaces {Fx |x ∈ W} and {F = 0}, respectively.
Finally, every linear and idempotent map W → W equals an oblique projector. In
particular, an orthogonal projector P is an oblique projector with imgP = (kerP )⊥.

Figure 2.4 exemplifies the actions of the orthogonal projector •̂ V onto a two dimen-
sional subspace V of R3 as well as the projector •̂ V/U onto the same space but along a
complement U 6= V ⊥ in R3. Its panel (A) shows the respective projections x̂V and x̂V/U
of some x 6∈ V . In particular, while x̂V and x̂V/U are both elements of V , the orthogo-
nal projection provides the closer substitute to x in terms of ‖ • ‖. This property rests
on Pythagoras’s theorem, that is, the relation ‖x‖ =

√
〈x, x〉 is essential. Panel (B)

concerns the linearity and (a consequence of) the idempotency of projectors. More
specifically, two points x and y such that x + y ∈ V are projected onto V along V ⊥ as
well as onto V along U . The sum of either pair of projections along the same complement
equals the respective projection of the sum, which equals x+ y as x+ y ∈ V .

For notational convenience, the composition PVX = [x̂1 · · · x̂q] will subsequently be

symbolized by X̂V = X̂, wherein the latter is used only if the linear space V is clear from
the context. Similarly, the two terms X̂V/U and X̂/ replace the composition PV/UX.

2.4. Gramians

2.4.1. Inner product matrices

The k × q matrix 〈〈Y,X〉〉 with i, j-th entry 〈yi, xj〉 summarizes the geometric relations
between two column sequences y1, . . . , yk and x1, . . . , xq in a Euclidean space W . If
k = q, then the inner product 〈 • , • 〉 on W×k equals the trace tr 〈〈 • , • 〉〉; in particular,
〈〈 • , • 〉〉 = 〈 • , • 〉 for k = q = 1. If W = Rm, then the equality 〈〈A, • 〉〉 = AT mimics
〈a, • 〉 = aT. More generally, the similar appearance of 〈 • , • 〉 and 〈〈 • , • 〉〉 acknowledges
the overlap of the respective feature sets of 〈 • , • 〉 and 〈〈 • , • 〉〉: firstly, every instance
of 〈〈 • , • 〉〉—defined on W×k ×W×q—is bilinear; secondly, it exhibits symmetry to the
extend that 〈〈X, Y 〉〉 = 〈〈Y,X〉〉T; thirdly, the Gramian Gramian〈〈Y, Y 〉〉 of Y = [y1 · · · yk]—or ‘of
y1, . . . , yk’—is positive semidefinite

positive
semidefinite

, that is 〈a, 〈〈Y, Y 〉〉a〉 ≥ 0 for all a ∈ Rk.
The final property follows from 〈a, 〈〈Y, Y 〉〉a〉 = ‖Y a‖2, which also implies ker 〈〈Y, Y 〉〉 =

kerY . Thus, positive definite positive definiteness of 〈〈Y, Y 〉〉—〈a, 〈〈Y, Y 〉〉a〉 > 0 for all a 6= 0—is tanta-
mount to kerY = {0}. Furthermore, ker 〈〈Y, • 〉〉 = (img Y )⊥, and 〈〈Y, Y 〉〉 ∈ Sk guarantees
〈〈〈Y, Y 〉〉a, b〉 = 〈a, 〈〈Y, Y 〉〉b〉, a, b ∈ Rk, which leads to img 〈〈Y, • 〉〉 = img 〈〈Y, Y 〉〉 = (kerY )⊥.
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Example (e) in section 2.1 has its own customary nomenclature and notation regarding
inner product matrices and more specifically Gramians. In this example,

(e) the functions y1, . . . , yk and x1, . . . , xq are P-square integrable random variables de-
fined on a probability space (Ω,F,P). The random vector

random vector
s y = (y1, . . . , yk) and x =

(x1, . . . , xq), that is, F/Rj-measurable functions Ω 3 ω 7→
(
z1(ω), . . . , zj(ω)

)
∈ Rj

with Rj symbolizing the Borel σ-field of the norm topology on Rj, allow the al-
ternative representation c 7→ yTc and c 7→ xTc of the linear maps Y = [y1 · · · yk]
and X = [x1 · · · xq], respectively. Moreover, the inner product 〈 • , • 〉 defined
on W = img [1 Y X]—after adjusting the representation as in appendix 2.a if
needed—has the form of the P-expectation expectation〈x, y〉 = Exy =

∫
x(ω)y(ω)P(ω) of the

pointwise product xy of x, y ∈ W . Herein, 1 denotes the constant function ω 7→ 1.

Consequently, the inner product matrix 〈〈Y,X〉〉 and the Gramian 〈〈Y, Y 〉〉 equal EyxT
and EyyT, respectively. Therein, the expectations of the random matrices

random
matrices

yxT

and yyT, that is, F/Rd1×d2-measurable maps Ω → Rd1×d2 with d1, d2 ∈ N as well
as Rd1×d2 symbolizing the Borel σ-field of the respective norm topology, are defined
entry-wise, that is, Eyixj = 〈yi, xj〉 provides the i, j-th entry of EyxT.

The projection of z ∈ W onto the subspace span{1} of W equals the expectation
or mean mean〈1, z〉1 = Ez of z. The latter equality implicitly identifies a function of
the type ω 7→ c with c ∈ R; this convention is applied throughout the text. The
corresponding residual z − Ez embodies the part of z that varies across different
arguments ω; its squared length E(z−Ez)2 = var(z) is therefore called the variance

variance

of z. The Gramian of the residuals y1 − Ey1, . . . , yk − Eyk provides the variance
matrix variance matrixvar(y) of the sequence y1, . . . , yk or (equivalently) the random vector y.

Gramians succinctly summarize the superiority of the composition X̂V of the linear
map X = [x1 · · · xq] with the orthogonal projector onto a subspace V of W over the

composition X̂V/U of X with the oblique projector onto V along a complement U 6= V ⊥.

More specifically, the residual maps X̃V = X̃ = X−X̂ and X̃V/U = X̃/ = X−X̂/ satisfy

〈a, 〈〈X̃/, X̃/〉〉a〉 = ‖X̃a+ X̂a− X̂/a‖2 = 〈a, 〈〈X̃, X̃〉〉a〉+ ‖(PV − PV/U)Xa‖2 <2.5>

for all a ∈ Rq. This equality directly follows from the linearity of projectors and the
connection ‖x‖ =

√
〈x, x〉. A general comment on the role of the latter is in order.

Complementary subspaces and oblique projectors are purely linear concepts in the
sense that these notions are meaningful in the absence of a norm or an inner product.
The inner product 〈 • , • 〉 or—by polarization—its induced norm determines the mean-
ing of orthogonality. It thereby singles out a specific complement V ⊥ of a subspace V
of W and a single projector PV = PV/V ⊥ onto V as the orthogonal complement of V
and orthogonal projector onto V , respectively. This projector enjoys the ‖ • ‖-optimality
in <2.5>. A different inner product 〈 • , • 〉∗ on W gives rise to another Euclidean space
usually with a different complement V ⊥∗ and projector PV/V ⊥∗ being the orthogonal ones.
However, within the space (W, 〈 • , • 〉) the projector PV/V ⊥∗ is (in general) merely oblique.
This consideration of alternative inner products 〈 • , • 〉∗ provides an important source
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of oblique projectors in this text and facilitates the associated computations as itera-
tive schemes as in section 2.2.2 become applicable. Section 4.2.2 continues this line of
argument. Sections 4.1.1 and 4.2.1 further investigate the final summand in <2.5>.

An inner product 〈 • , • 〉 on W endows every sequence y1, . . . , yk with a Gramian
〈〈Y, Y 〉〉, that is, a positive semidefinite element of Sk with kernel kerY . Lemma 2.3
provides a converse statement and an important source of further inner products 〈 • , • 〉∗
on span{y1, . . . , yk}. A proof of this assertion starts on page 40 in appendix 2.b.

Lemma 2.3. If G ∈ Sk is positive semidefinite and kerG = kerY , then there exists an
inner product 〈 • , • 〉∗ on span{y1, . . . , yk} with 〈yi, yj〉∗ = gi,j.

The required kernel equality in lemma 2.3 is tantamount to img 〈〈Y, • 〉〉 = (kerY )⊥ =
(kerG)⊥ = imgG. In particular, every row

row
Y (ω) =

(
y1(ω), . . . , yk(ω)

)
∈ Rk of Y

exhibits a representation of the form 〈〈Y,Q〉〉c, wherein Q ∈ img Y ×h is 〈 • , • 〉-unitary
with columns q1, . . . , qh and c =

(
q1(ω), . . . , qh(ω)

)
. Therefore, the kernel condition in

lemma 2.3 requires the column space imgG of G to contain all rows of Y .
Lemma 2.2 yields a Cholesky decomposition Cholesky

decompositionof the Gramian 〈〈Y, Y 〉〉, that is,

〈y1, y1〉 . . . 〈y1, yk〉
...

. . .
...

〈yk, y1〉 . . . 〈yk, yk〉




Gramian 〈〈Y, Y 〉〉

=

r1,1

...
. . .

r1,h . . . rh,h

...
. . .

...
r1,k . . . rh,k




r1,1 . . . r1,h . . . r1,k

. . .
...

. . .
...

rh,h . . . rh,k




Cholesky factor R

.

Here, matrices R as in lemma 2.2 are referred to as Cholesky factor
Cholesky factor

s. Section 2.4.2 recov-
ers such factors directly from 〈〈Y, Y 〉〉 via an implicit Gram-Schmidt orthogonalization.

As a corollary to lemma 2.3, there exists a Euclidean space V with inner prod-
uct 〈 • , • 〉∗ and a spanning sequence y1, . . . , yk ∈ V such that 〈yi, yj〉 = gi,j corresponding
to any positive semidefinite matrix G ∈ Sk. In fact, the columns g1, . . . , gk of G span
a subspace of Rk, and the kernel equality required by lemma 2.3 holds trivially. Con-
sequently, the factorization process in section 2.4.2 finishes successfully whenever it is
applied to a (nonzero) symmetric and positive semidefinite matrix.

2.4.2. Cholesky factorization

This sections considers a nontrivial sequence y1, . . . , yk with Y = [y1 · · · yk] and
Gramian 〈〈Y, Y 〉〉. In this case, the Cholesky factorization comprises k major steps and a
final reduction. The j-th of these steps parallels the j-th major step of a Gram-Schmidt
orthogonalization. It transforms the j-th row of the Gramian 〈〈Y, Y 〉〉 to the j-th row of
a preliminary upper triangular matrix R̄ using the first j − 1 rows of the latter matrix.
To this end, it employs a sequence of triangularization steps—paralleling the orthogo-
nalization steps in the Gram-Schmidt orthogonalization—and a scaling step. If needed,
the reduction extracts a row echelon matrix R from R̄; otherwise R = R̄.
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The first major step of a Gram-Schmidt orthogonalization considers y1 alone, thus,
includes no initial orthogonalization steps. In case y1 6= 0, it scales y1 to obtain q̄1 =
y1/r̄1,1, wherein r̄1,1 = ±‖y1‖; if y1 = 0, it concludes with q̄1 = 0, r̄1,1 = 0. Based
on q̄1, the calculation of the coordinates r̄1,` = 〈q̄1, y`〉, 2 ≤ ` ≤ k, is straightforward
and is deferred to the second to k-th major step, respectively. In comparison, the first
major step of the factorization considers merely the first row of the Gramian 〈〈Y, Y 〉〉.
No triangularization is required as upper triangularity places no constraints on the first
row of R̄. The case 〈y1, y1〉 = 0 implies 〈y1, yj〉 = 0 for 2 ≤ j ≤ k and—as the first row
of 〈〈Y, Y 〉〉 already equals that of R̄—requires no action. Conversely, if 〈y1, y1〉 > 0, then
the equality r̄2

1,1 = 〈y1, y1〉 implies r̄1,1 = ±‖y1‖. Thus, the first major step concludes
with scaling the second to k-th entry of the first row of 〈〈Y, Y 〉〉 by 1/r̄1,1 to obtain the
elements r̄1,` = 〈y1, y`〉/r̄1,1 = 〈q̄1, y`〉, ` ≥ 2, of the first row of the preliminary matrix R̄.

The j(> 1)-th major step of a Gram-Schmidt orthogonalization completes the or-
thogonalization of y1, . . . , yj starting from q̄1, . . . , q̄j−1, yj. On the way it obtains the

coordinates r̄1,j, . . . , r̄j−1,j and finally finishes by scaling ỹ
(j−1)
j if necessary. In compar-

ison, the j-th major step of the factorization calculates the j-th row of R̄ based on its
top j − 1 rows and the j-th row 〈〈yj, Y 〉〉 of 〈〈Y, Y 〉〉. It starts with j − 1 triangulariza-
tion steps—paralleling the above orthogonalization steps—to eliminate the initial j − 1
entries of 〈〈yj, Y 〉〉 and finally scales the reduced row; a visual outline is given in <2.6>.

r̄1,1 r̄1,2 . . . r̄1,j−1 r̄1,j . . . r̄1,k

r̄2,2 . . . r̄2,j−1 r̄2,j . . . r̄2,k

. . .
...

...
. . .

...
r̄j−1,j−1 r̄j−1,j . . . r̄j−1,k

〈yj, y1〉 〈yj, y2〉 . . . 〈yj, yj−1〉 〈yj, yj〉 . . . 〈yj, yk〉

1
st
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j-
1

to
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s
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f
R̄

jth row
of 〈〈Y, Y 〉〉

<2.6>

More specifically, the first triangularization step subtracts r̄1,j times the first row of R̄
from the final row in <2.6>. Thus, the `-th transformed entry equals

〈yj, y`〉 − r̄1,j r̄1,` = 〈yj, y`〉 − r̄1,j〈q̄1, y`〉
= 〈yj − q̄1r̄1,j, y`〉 = 〈ỹ(1)

j , y`〉 = 〈ỹ(1)
j , ỹ

(1)
` + q̄1r̄1,`〉 = 〈ỹ(1)

j , ỹ
(1)
` 〉 , <2.7>

wherein the notation is borrowed from <2.3>: ỹ
(1)
s symbolizes the residual from orthog-

onally projecting ys, s ≤ k, onto span{y1}. In particular, the equality ỹ
(1)
1 = 0 ensures

that the first element of the final row in <2.6> disappears. The following triangular-
ization steps are in analogy and implement the orthogonalization against y2, . . . , yj−1.
Hence, these steps turn the final row of <2.6> into(

0 0 . . . 0 〈ỹ(j−1)
j , ỹ

(j−1)
j 〉 〈ỹ(j−1)

j , ỹ
(j−1)
j+1 〉 . . . 〈ỹ(j−1)

j , ỹ
(j−1)
k 〉

)
. <2.8>
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If yj ∈ span{y1, . . . , yj−1}, thus ỹ
(j−1)
j = 0, then the row in <2.8> equals zero, that

is, the j-th row of a preliminary upper triangular matrix R̄ produced during a Gram-
Schmidt orthogonalization. Consequently, the procedure may advance to the next major
step. An alternative given in <2.9> multiplies this zero row by zero to endow every major
step with a scaling operation. The case ỹ

(j−1)
j 6= 0 allows one of the two possible choices

r̄j,j = ±‖ỹ(j−1)
j ‖. Subsequently, scaling <2.8> by 1/r̄j,j to obtain r̄j,` = 〈q̄j, ỹ(j−1)

` 〉 =

〈ỹ(j−1)
j , ỹ

(j−1)
` 〉/r̄j,j is meaningful and concludes the construction of the j-th row of R̄.

An complete description is given in display <2.9>. Therein, major steps are indexed
by j, triangularization steps by i, and elements of the current row—the final row in <2.6>

at the start of the j-th major step—by `. This indexing parallels the above discussion.
If the equality k = h = rkY holds, that is, kerY = ker 〈〈Y, Y 〉〉 = {0}, then R̄ is
upper triangular with nonzero diagonal elements, thus, of row echelon form. Otherwise,
dropping the zero rows of R̄ yields a Cholesky factor R as in lemma 2.2.

1 r̄
(0)
i,j = 〈yi, yj〉 , i, j ≤ k

2 for j = 1, . . . , k

3 for i = 1, . . . , j − 1

4 for ` = 1, . . . , k

5 r̄
(i)
j,` = r̄

(i−1)
j,` − r̄i,j r̄i,`

6 if r̄
(j−1)
j,j 6= 0

7 sj = ±
(
r̄

(j−1)
j,j

)−1/2

8 else

9 sj = 0

10 for ` = 1, . . . , k

11 r̄j,` = r̄
(j−1)
j,` sj

<2.9>

The factorization <2.9> applies the same operations to the rows of 〈〈Y, Y 〉〉 to obtain R
as a Gram-Schmidt orthogonalization with corresponding sign choices executes on the
columns of Y = [y1 · · · yk] to obtain Q. The first part of <2.7> and the scaling applied
to <2.8> exemplify this observation. Viewing the factorization as a sequence of pre-
multiplications with suitable matrix factors yields a concise statement. For example,

L3 =

 1
1

−r̄1,3s3 −r̄2,3s3 s3

 =

1
1

s3

1
1
−r̄2,3 1

 1
1

−r̄1,3 1


implements the third major step of <2.9> for k = 3. The first and second major
step exhibit analogous factors L1 and L2, respectively, leading to L3L2L1〈〈Y, Y 〉〉 = R̄.
The general case 〈〈Y, Y 〉〉 ∈ Rk×k uses k lower triangular factors L1, . . . , Lk such that
LkLk−1 · · ·L1〈〈Y, Y 〉〉 = R̄. The reduction step amounts to a factor Lk+1 ∈ Rh×k with
rows ei1 , . . . , eih , wherein e` denotes the `-th standard basis element of Rk and i1 < i2 <
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· · · < ih represent the indexes corresponding to nonzero rows in R̄. Using this notation

[y1 · · · yk]LT
1L

T
2 · · ·LT

j = [q̄1 q̄2 . . . q̄j yj+1 . . . yk] , j ≤ k , and

[q̄1 · · · q̄k]LT
k+1 = [q1 · · · qh]

is a restatement of the above Gram-Schmidt orthogonalization.

2.5. Singular values

2.5.1. Singular value decomposition

If Y ∈ W×k has rank h > 0, then compactness of (kerY )⊥ ∩ {‖ • ‖ = 1} 6= ∅ and
continuity of ‖Y • ‖ guarantee the existence of a unit length h-th right singular vec-
tor right singular

vectorvh ∈ (kerY )⊥ such that σh = infv∈(kerY )⊥∩{‖ • ‖=1}‖Y v‖ = ‖Y vh‖ > 0. Scaling the
image Y vk to unit length generates the corresponding left singular vector left singular

vectoruh = σ−1
h Y vh

of Y . Then, the kernel of Y ′ = Y − σhuh〈vh, • 〉 equals the sum kerY + span{vh} =
{v + v′ | v ∈ kerY, v′ ∈ span{vh}} of kerY and span{vh}—a k − rkY + 1 dimensional
subspace of Rk. As a consequence, the rank rkY ′ of Y ′ equals rkY − 1.

If rkY = h > 1, then the reduced map Y ′ features (kerY ′)⊥ 6= {0}. The latter
allows to construct a further left singular vector uh−1 of the form σ−1

h−1Y
′vh−1, wherein

σh−1 = infv∈(kerY ′)⊥∩{‖ • ‖=1}‖Y ′v‖ = ‖Y ′vh−1‖ ≥ σh > 0. If several choices for vh—
except the trivial −vh—exist, then vh−1 and thereby uh−1 = Y ′vh−1 = Y vh−1 depend
on the choice of vh. In any case, orthogonality of vh and vh−1 is guaranteed by the
construction. Moreover, minimality of σh requires uh ∈ (img Y ′)⊥. In fact, the residual
from orthogonally projecting σhuh = Y vh onto span{Y ′v} for any v ∈ (kerY ′)⊥ equals

Y c = Y
[
v vh

](−〈Y ′v, Y vh〉/‖Y ′v‖2

1

)
and—by Pythagoras’s theorem—has length not exceeding σh. In addition, the length
of the coordinate vector c in the preceding display exceeds one unless 〈Y ′v, Y vh〉 =
σh〈Y ′v, uh〉 = 0. Hence, the converse contradicts minimality of σh.

This argument exemplifies the geometric principle underlying the present construction:
the linear combinations c1x + c2y of two linearly independent elements x and y with
‖(c1, c2)‖ = 1 form an ellipse. Furthermore, if x(= Y v) and y(= Y vh) are not orthogonal,
then neither of the two equals the shortest principal semi-axis of that ellipse. Thus, there
exists a unit length c ∈ R2 with ‖c1x + c2y‖ < min

{
‖x‖, ‖y‖

}
. Figure 2.5 illustrates

this observation and the above construction. That is, if ‖x‖ exceeds ‖y‖, then scaling
the residual ỹ from orthogonally projecting y onto span{x} yields a point on the ellipse,
whose length provides a close substitute to the length σ2 of the shorter semi-axis.

If h > 2, then the process continues in analogy. The h-th step yields a zero reduced
map of the form Y −

∑
i≤h σiui〈vi, • 〉 and thereby a representation Y =

∑
i≤h σiui〈vi, • 〉,

wherein u1, . . . , uh and v1, . . . , vh form orthonormal bases of img Y and (kerY )⊥,
respectively. The associated scaling constants σ1 ≥ σ2 ≥ · · · ≥ σh ≥ 0 are called
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x

y

span{x}

(span{x})⊥ ỹ

σ1u1

σ2u2

{
∑
i≤2〈ui, • 〉2/σ2

i=1}

Figure 2.5
The figure illustrates that the set of images {[x y] c | ‖c‖ = 1} of unit length c ∈ R2 under [x y]
forms an ellipse {

∑
i≤2〈ui, • 〉2/σ2

i = 1} with principal semi-axes σ1u1 and σ2u2. Moreover,
the residual ỹ from orthogonally projecting y onto span{x} lies outside of that ellipse.

singular value singular values . Accordingly, the representation Y =
∑

i≤h σiui〈vi, • 〉 is referred to as

a singular value decomposition
singular value
decomposition

of Y . The latter generalizes figure 2.5: the set of images
{Y c | ‖c‖ = 1} of unit length vectors c ∈ Rk forms an ellipse {

∑
i≤k〈ui, • 〉2/σ2

i = 1}.

2.5.2. Unitarily invariant norms

Singular vectors of an element Y ∈ W×k may not be unique. In contrast, the singular
values of Y are uniquely determined via σj = infX∈W×k,rkX<j sup‖u‖=1‖(Y −X)u‖, j ≤
h = rkY . Firstly, the latter expression cannot exceed σj as X =

∑
i<j σiui〈vi, • 〉 ∈ W×k

has rank j − 1 and sup‖u‖=1‖(Y − X)u‖ = σj. Secondly, if X ∈ W×k has rank less
than j, then Xv1, . . . , Xvj, wherein v1, . . . , vj provide (an initial stretch of a sequence
of) right singular vectors of Y—as constructed in section 2.5.1, are j elements of the
j−1 dimensional space imgX and therefore exhibit linear dependence. Thus, there exists
a unit length element v ∈ span{v1, . . . , vj} ∩ kerX and consequently ‖(Y −X)v‖ ≥ σj.

The notation σ1(Y ), . . . , σh(Y ) highlights the uniqueness implied by the approxima-
tion error characterization. In addition, the latter suggest setting σh+1(Y ) = · · · =
σk(Y ) = 0 and implies the invariance of singular values to composition—from left or
right—with suitable unitary maps. The most important elements of the singular value
sequence σ1, . . . , σk are the maximal and least nonzero singular value and thereby
deserve their own special symbols σ1 = σmax and σh = σmin,6=0, respectively.

Several norms on W×k (and thus Rm×k) measure the length of an element Y ∈ W×k

in terms of its singular values. Such norms are invariant to composition with unitary
maps and are therefore called unitarily invariant unitarily

invariant. The relevant examples include

(d1) the Frobenius norm
Frobenius norm

of Y ∈ W×k defined by ‖Y ‖ = 〈Y, Y 〉1/2—see (d) in section
2.1.3—equals the square-root of

∑
i≤k σ

2
i (Y );

(d2) the operator norm operator norm‖Y ‖op = sup‖c‖=1‖Y c‖ coincides with σmax(Y ); and,

(d3) lastly, the sum
∑

i≤k σi(Y ) supplies the nuclear norm nuclear norm‖Y ‖nuc of Y .
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The triangle inequality for the nuclear norm ‖ • ‖nuc follows from its characterization
as the dual norm

dual norm
of ‖ • ‖op. In general, the dual norm of an arbitrary norm ‖ • ‖′ on a Eu-

clidean space is given by sup‖x‖′=1〈x, • 〉. Section 2.1.3 shows that ‖x‖ = 〈x, x〉1/2 equals

its own dual, which implies the Cauchy-Schwarz inequality Cauchy-
Schwarz
inequality

|〈x, y〉| ≤ ‖x‖‖y‖. More

generally, one has |〈x, y〉| ≤
(
sup‖z‖′=1〈z, y〉

)
‖x‖′. This inequality suggests a symmetric

relation. In fact, the norm ‖ • ‖′ equals the dual norm of sup‖x‖′=1〈x, • 〉.
The nuclear norm ‖ • ‖nuc in (d3) satisfies 〈Y,X〉 =

∑
i≤h σi〈ui, Xvi〉 ≤

∑
i≤h σi when-

ever ‖X‖op = 1 and Y =
∑

i≤h σiui〈vi, • 〉 represents a singular value decomposition
of Y . Equality holds for X =

∑
i≤h ui〈vi, • 〉. Thus, ‖ • ‖nuc and ‖ • ‖op are duals. The

resulting inequality |〈Y,X〉| ≤ ‖Y ‖op‖X‖nuc can be refined using the representation

W×k 3 Y =
∑
i≤rkY

σiui〈vi, • 〉 =
∑
i≤rkY

(σi − σi+1)
∑
j≤i

uj〈vj, • 〉 =
∑
i≤rkY

ciYi ,

wherein σrkY+1 = 0, ci = σi − σi+1 ≥ 0, and all singular values of Yi =
∑

j≤i uj〈vj, • 〉
are unity. If

∑
i≤rkX c̄iXi is in analogy with respect to X ∈ W×k, then

〈X, Y 〉 ≤
∑
i≤rkY

∑
j≤rkX

cic̄j|〈Yi, Xj〉| ≤
∑
i≤rkY

∑
j≤rkX

cic̄j min{i, j}

=
∑
i≤rkY

∑
j≤rkX

cic̄j trBiBj =
∑
i≤k

σi(Y )σi(X) , <2.10>

wherein Bi =
∑

j≤iBj,j with Bj,j being the j, j-th element of the standard basis of Rk×k,
and the second step follows from ‖ • ‖op/‖ • ‖nuc-duality. The comparison between the
leftmost and rightmost term in <2.10> is known as the von Neumann trace inequality

von Neumann
trace inequality

.
Finally, the representations in (d1), (d2), and (d3) imply the inequalities

‖Y ‖2
op ≤ ‖Y ‖2 ≤

∑
i,j≤rkY

σiσj = ‖Y ‖2
nuc = 〈

( σ1

...
σh

)
,

(
1
...
1

)
〉2 ≤ rkY ‖Y ‖2 ≤ (rkY )2‖Y ‖2

op

for Y ∈ W×k. The rank-related factors in the preceding display are for a given Y ∈ W×k.
The respective upper subspace compatibility constants—as defined in section 2.1.2—are
given by (min{dimW,k})1/2 and its square—the maximum possible rank of Y ∈ W×k.

2.5.3. Singular space pairs

Left and right singular vectors are—at most—unique up to a sign choice. In particular,
σjuj〈vj, • 〉 remains unchanged if both uj and vj are multiplied by −1. At the other
extreme, a unitary map from Rk to a Euclidean space W has all its singular values equal
to unity, and every orthonormal basis of Rk may serve as its right singular vectors.

This section considers Y ∈ W×k with rkY = h > 0 to address the general case. If the
least nonzero singular value σh of Y is attained at two unit length elements vh and v′h 6∈
span{vh}, then the residual ṽ′h from orthogonally projecting v′h onto span{vh}—a linear
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combination of vh, v
′
h—is a nonzero element of (kerY ′)⊥, wherein Y ′ = Y − σhuh〈vh, • 〉

and uh symbolizes the left singular vector corresponding to vh. Hence, this residual
provides a valid choice for vh−1 in form of ṽ′h/‖ṽ′h‖. Consequently, 〈Y ṽ′h, Y vh〉 = 0
implies σ2

h = ‖Y v′h‖2 = ‖Y ṽ′h‖2 + ‖Y v̂′h‖2 = ‖Y ṽ′h‖2 + σ2
h〈vh, v′h〉2, wherein v̂′h = vh −

ṽh = vh〈vh, v′h〉. Hence, one has ‖Y ṽ′h‖2 = σ2
h(1 − 〈v′h, vh〉2) = σ2

h‖ṽ′h‖2 and thereby
σh = σh−1. Elements c1vh + c2vh−1 of span{vh, vh−1}, wherein vh−1 = ṽ′h/‖ṽ′h‖, satisfy
‖Y (c1vh + c2vh−1)‖2 = σ2

h(c
2
1 + c2

2), thus, are elements of {‖Y • ‖ = σh‖ • ‖}.
Either span{vh, vh−1} equals the latter set or that set contains an element v′h−1 6∈

span{vh, vh−1}. In the latter case, the residual ṽ′h−1 from orthogonally projecting v′h−1

onto the span of vh and vh−1 is nonzero and leads to a candidate ṽ′h−1/‖ṽ′h−1‖ for vh−2.
Then it follows that 〈Y ṽ′h−1, Y v〉 = 0 for all v ∈ span{vh, vh−1} and thereby σh−2 = σh.
Hence, span{vh, vh−1, vh−2} ⊂ {‖Y • ‖ = σh‖ • ‖}. If the latter sets differ, then a further
iteration is possible. The recursion stops after mh ≤ h steps. It identifies {‖Y • ‖ =
σh‖ • ‖} as a subspace and generates a corresponding orthonormal basis vh−mh+1, . . . , vh.

This recursive argument is applicable to the reduced map Y −σh
∑mh−1

j=0 uh−j〈vh−j, • 〉,
wherein uj again represents the left singular vector corresponding to vj, and so forth.
Eventually, these arguments construct subspaces Vj = {‖Y • ‖ = σ̄j‖ • ‖}, j ≤ s, corre-
sponding to the distinct (nonzero) singular value distinct

(nonzero)
singular value

s σ̄1 > · · · > σ̄s(= σh) > 0 of Y .
The characterization Vj = {‖Y • ‖ = σ̄j‖ • ‖} guarantees that these subspaces are

uniquely determined by Y . Elements v ∈ Vi, v
′ ∈ Vj, i 6= j, are orthogonal, and the

sum sum
∑

j≤s Vj = {
∑

j≤s vj | vj ∈ Vj, j ≤ s} of these subspaces equals (kerY )⊥. The

dimension dimVj supplies the multiplicity
multiplicity

mj of σ̄j, and therefore one has h = rkY =∑
j≤smj. Moreover, the images Uj of Y restricted to Vj satisfy Ui ⊂ U⊥j , i 6= j, and

their sum equals img Y . The pairs (Vj, Uj) are called the singular subspace singular
subspacepairs for Y .

The valid selections of right and left singular values of Y consist of arbitrarily chosen
orthonormal bases for Vj, j ≤ s, and the corresponding scaled images, respectively.

2.5.4. Singular vectors of symmetric matrices

The symmetry of A ∈ Sm is reflected by its singular vectors.

Lemma 2.4. If A ∈ Sm is of rank h > 0, then there exists a choice of right singular
vectors v1, . . . , vh with corresponding left singular vectors u1, . . . , uh such that ui = ±vi.

A proof of lemma 2.4 starts on page 40 in appendix 2.b. This result guarantees
that the approximation error characterization, the duality relations, and inequalities in
section 2.5.2 are equally valid—and follow by the same arguments—if the symmetric
matrices are considered in isolation. In particular, any two symmetric matrices A,B ∈
Sm satisfy 〈A,B〉 ≤

∑
i≤m σi(A)σi(B) ≤ ‖A‖op‖B‖nuc, wherein equality is possible.

A representation A =
∑

i≤h±σivi〈vi, • 〉 as in lemma 2.4 is called a spectral decompo-

sition
spectral
decomposition

of A. This expression reveals that the singular subspaces Vj are sums of the two
subspaces V +

j = ker(σ̄j id−A) and V −j = ker(σ̄j id +A) with V +
j ⊂ (V −j )⊥.

Thus, A is of the form
∑

i≤s σ̄i(PV +
j
− PV −j ), wherein σ̄1, . . . , σ̄s, PV , and id rep-

resent the distinct nonzero singular values of A, the orthogonal projector onto a sub-
space V ⊂ Rm, and the identity map on Rm, respectively. Such (projector-based)
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representations are unique and show that the linear space of symmetric matrices Sm
provides the (⊂-)smallest subspace of Rm×m containing all orthogonal projectors onto
subspaces of Rm. By definition, at most one of the two subspaces V +

j and V −j , j ≤ s,
may equal {0}. In particular, if A is positive semidefinite, then V −j = {0} for all j ≤ s

and trA =
∑

i≤rkA σi tr(uiu
T
i ) = ‖A‖nuc as tr(uiu

T
i ) =

∑
j≤m u

2
j,i = ‖ui‖2 = 1.

The above terminology allows a complete characterization of Y ∈ W×k such that
〈Y,X〉 = ‖X‖op‖Y ‖nuc for a given X ∈ W×k. A proof starts on page 40 in appendix 2.b.

Lemma 2.5. Let X be a nonzero linear map from Rk to a Euclidean space W and
X =

∑
i≤rkX σiui〈vi, • 〉 be any singular value decomposition of X, then the equality

〈Y,X〉 = ‖X‖op holds for a unit ‖ • ‖nuc-length Y ∈ W×k if and only if there exists a
positive semidefinite S ∈ Sm1 with trS = 1 and

Y = [u1 · · · um1 ]S〈〈 [v1 · · · vm1 ] , • 〉〉 ,

wherein m1 denotes the multiplicity of the largest (distinct) singular value σ̄1 of X.

If A ∈ Sm and the columns u+
1 , . . . , u

+
m′1

of U+
1 and u−1 , . . . , u

−
m′′1

of U−1 form orthonor-

mal bases of V ±1 = ker(A∓ σ̄1(A) id), respectively, then m′1 +m′′1 = m1, the multiplicity
of σ̄1(A), and (u+

i , u
+
i ) as well as (u−j ,−u−j ) provide suitable singular vector pairs. Corol-

lary 2.6—proved on page 41 in appendix 2.b—states the resulting representation.

Corollary 2.6. For every symmetric B ∈ {‖ • ‖nuc = 1} with 〈A,B〉 = ‖A‖op, there
exist positive semidefinite S+ ∈ Sm′1, S− ∈ Sm′′1 such that

B = U+
1 S

+〈〈U+
1 , • 〉〉 − U−1 S−〈〈U−1 , • 〉〉

and trS+ + trS− = 1. Moreover, there exists a selection of bases such that S+ and S−

are diagonal matrices diagonal
matrices, that is, all non-diagonal entries of these matrices are zero.

Comments and references

Section 2.1 Halmos (1974) covers most of the topics of section 2.1 in-depth. Note that
the usage of the term coordinates in this text is nonstandard. A more detailed treatment
of matrix norms may be found in Golub and Van Loan (2013, sec. 2.3). Vershynin (2012,
sec. 5.2.2) defines ε-nets and covering numbers. Lemma 2.1 equals his lemma 5.2. At first
sight, the covering of the ε

2
-balls by {‖ • ‖ ≤ 1 + ε/2} in the proof given in appendix 2.b

may seem overly generous. However, more refined replacements for this set do not lead
to more informative upper bounds on the covering number N({‖ • ‖ = 1}, ‖ • ‖, ε).

The presentation of Euclidean geometry in Strang (2005, chapter 3) exhibits a similar
style as section 2.1.3. Specifically, his figures 3.1a, 3.6, and 3.7 closely resemble figure 2.1
[Panel (A)], 2.3 [Panel (A)], and figure 2.1 [Panel (B)], respectively. Kailath et al. (2000,
appendix 4.A) supply the examples of section 2.1.1 except for the symmetric matrices.
Borwein and Lewis (2010, sec. 1.2) fill this gap. The matrix-like notation for linear maps
Rk → V is borrowed from Morf and Kailath (1975, section IV).
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Section 2.2 The motivation of the concept of a unitary map is taken from Halmos
(1974, §73). The term representation is borrowed from Parzen (1961, def. 4A).

If y1, . . . , yk ∈ Rm, then Y = QR in lemma 2.2 is known as QR decomposition (Golub
and Van Loan, 2013, sec. 5.2). Björck (1996, sec. 2.4.2) treats several variants of Gram-
Schmidt orthogonalization. The formulation in <2.3> replicates his algorithm 2.4.4 and
is therein termed column oriented modified Gram-Schmidt process. The present treat-
ment of the case with linear dependence is nonstandard; the usual treatment (Björck,
1996, rem. 2.4.5) involves a rearrangement of the input sequence—called pivoting.

Section 2.3 Halmos (1974, §73, §41) provides a similar treatment of orthogonal and
oblique projectors. Furthermore, his sections §18, §19 and §20 prove the assertions
about complements. Figure 2 of Wedin (1983, p. 266) illustrates the corresponding
decomposition into two projections in similar fashion as in panel (A) of figure 2.4. The
notation for orthogonal and oblique projectors is close to Galántai (2008, sec. 2).

Section 2.4 The linear map 〈〈Y, • 〉〉 (on W ) amounts to the adjoint of Y (Halmos, 1974,
§44). Gramians are defined in Kailath et al. (2000, appendix 4.A, (4.A.2)). Doz et al.
(2011, sec. 3) employ Gramian substitutes to derive (associated) oblique projections.

The corollary of lemma 2.3 on the existence of a Euclidean space supporting 〈 • , • 〉∗
is often proved by showing—by induction—that a Cholesky factorization with posi-
tive semidefinite input A finishes successfully (Trefethen and Bau, 1997, par. before
thm. 23.1). The geometric approach taken here is an elementary version of property (4)
of Aronszajn (1950, part I, sec. 2). The proof of the chosen inner product being well
defined parallels Schölkopf and Smola (2002, sec 2.2, pp. 32–33).

Golub and Van Loan (2013, sec. 4.2) treat Cholesky factorization for linearly in-
dependent y1, . . . , yk, however, use the term Cholesky factor for the lower triangu-
larRT. Their equivalent to<2.9> in Golub and Van Loan (2013, algorithm 4.2.1)—called
gaxpy Cholesky—differs accordingly. Therein, linear independence leads to a (unique)
Cholesky factor with positive diagonal entries; this is the common usage of this term.

Kailath et al. (2000, prob. 12.3) mention the version of R̄—the triangular matrix gen-
erated by <2.9>—with nonnegative diagonal entries but under a different name. They
also discuss the Gram-Schmidt/Cholesky correspondence in their section 4.4. Eubank
(2006, sec. 1.2.3) stresses the identical output of two very similar algorithms.

The representation of a Cholesky factorization as pre-multiplications with lower trian-
gular matrices is from Trefethen and Bau (1997, lecture 23, pp.173–174, algorithm 23.1).

Section 2.5 Anderson (1958, sec. 11.2, thm. 11.2.1) constructs (left) singular vectors
under the alternative label principal components but in opposite order. His construc-
tion treats singular values and vectors via eigen-theory; this approach is a widespread
alternative to the topics of this sections (Stewart and Sun, 1990, I.3, I.4).

Trefethen and Bau (1997, lecture 4) motivate the notion of a (reduced) singular value
decomposition by geometric arguments; in particular, figure 2.5 resembles their fig-
ure 4.1. Golub and Van Loan (2013, proof of thm. 2.4.1, thm. 2.4.8) justify the orthog-
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onality of uh−1 and uh in essentially the same way but in reverse direction. They refer
to the approximation error characterization of singular values as the Eckhart-Young
theorem and provide the corresponding argument.

Recht et al. (2010, sec. 2, prop. 2.1) represent the norms (d1), (d2), and (d3) using
singular values. Their section 2 also defines the concept of a dual norm and derives the
nuclear norm/operator norm duality. The nuclear norm ‖ • ‖nuc is also known as the trace
norm or Schatten-1-norm. The Ky-Fan-h-norm equals the sum of the h largest singular
values; thus, both ‖ • ‖op and ‖ • ‖nuc are of this type. Alternative names for ‖ • ‖ in (d1)
include Schatten-2-norm and Hilbert-Schmidt norm. Unitarily invariant norms are the
topic of Stewart and Sun (1990, II.3). The proof of von Neumann trace inequality is due
to Grigorieff (1991). Stewart (1973, def. 6.1) contains a comparable, but less restrictive
notion of singular space pairs. Halmos (1974, §79, thm. 1) presents the projector-based
spectral decomposition. Lemma 2.5 amounts to theorem 4.3 of Ziȩtak (1988).

Appendixes Pollard (2002, ch. 2) contains the relevant results on L2-spaces. Therein,
part (iii) of Pollard (2002, ch. 2, sec. 6, lem. 26) caters the techniques used to quantify
the influence of the choice of basis element representatives.

The present approach yields a reproducing kernel Hilbert space (Schölkopf and Smola,
2002, def. 2.9). Aronszajn (1950, sec. 3) shows that for a given choice of representatives
q1, . . . , qk the associated reproducing kernel is of the form K(ω, ω′) =

∑
i≤k qi(ω)qi(ω

′).
Its reproducing property yields the evaluation functional fω(y) = 〈

∑
i≤k qi(ω)qi, y〉,

which is implicitly used in section 2.4.1.
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Appendix

2.a. Square integrable functions

The basic entities of the present section are µ-square integrable functions defined on a common
measure space (Ω,F, µ) with finite measure µ. The geometry of the linear space spanned by
such functions derives from an inner product, whose definition relies on µ-square integrability of
the respective functions not finiteness of µ. In fact, if functions x and y are µ-square integrable,
then

∫
|x(ω)y(ω)|P(dω) ≤

∫
1
2

(
x2(ω) + y2(ω)

)
P(dω) as 0 ≤

(
x(ω) ± y(ω)

)2
= 2

[(
x2(ω) +

y2(ω)
)
/2 ± x(ω)y(ω)

]
for every ω ∈ Ω, which ensures that 〈 • , • 〉 is well defined as a real-

valued map. However, finiteness of µ guarantees that the set L2 = L2(Ω,F, µ) of µ-square
integrable functions on (Ω,F) includes the F/R1-measurable functions—R1 being the Borel σ-
field of the | • |-topology—with finite range. In fact, if µ is finite, then the indicators of elements
of F and thus linear combinations of the latter are µ-square integrable. In particular, if y is
F/R1-measurable, then its composition with the sign function sign function—given by sign(x) = −1, 0, 1 for,
respectively, negative, zero, or positive x ∈ R—is µ-square integrable. Thus, if µ is finite, then∫
|y(ω)|µ(dω) = 〈y, sign(y)〉 shows that µ-square integrability of y implies its µ-integrability.
If F contains sets of µ-measure zero, then their indicators witness the existence of nonzero

elements f of L2 with ‖y‖ =
(∫
y2(ω)µ(dω)

)1/2
= 0. Here, these are called representatives of

zero, and their existence degrades ‖ • ‖ to a seminorm. The conventional way out is to take y = x
if y−x is a representative of zero by partitioning L2 into equivalence classes [[y]] = {‖ • −y‖ =
0}. As the set [[0]] of representatives of zero forms a subspace under pointwise linear operations,
the set of equivalence classes

{
[[y]]

∣∣ y ∈ L2
}

forms a linear space L2—a so-called quotient
space—with the linear operations a[[y]] = [[ay]] and [[y]] + [[x]] = [[y+ x]]. Adapting 〈 • , • 〉 to
operate on L2 via 〈[[y]], [[x]]〉 = 〈y, x〉 yields a well defined inner product on that space. Thus,
any finite dimensional subspace of L2 provides a Euclidean space. The accustomed notation
double uses y instead of the pair y and [[y]], but supplements relations such = and ≤ with
“almost everywhere” qualifiers to warn against an unwarranted pointwise interpretation.
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An alternative strategy—used herein—amounts to choosing a subspace of L2 containing a
single point from each element—an equivalence class—of the L2-subspace under consideration.
In the present setting this approach dispenses with the tiresome “almost everywhere” qual-
ification and more importantly comes with the advantage that pointwise evaluation remains
well defined. This construction builds on an initial choice of an F/R1-measurable element qi
from each equivalence class [[qi]] of an orthonormal basis [[q1]], . . . , [[qm]] of the relevant
L2-subspace. Then, a suitable element of [[y]] follows from combining q1, . . . , qm with the
coordinates 〈[[y]], [[q1]]〉, . . . , 〈[[y]], [[qm]]〉 of [[y]] with respect to [[q1]], . . . , [[qm]]. In fact, the
resulting L2-subspace W = span{q1, . . . , qm} has pointwise zero as its sole representative of
zero. More generally, y, x ∈ [[y]]∩W implies y−x ∈ [[0]]∩W , thus, the pointwise equality y = x.
Hence, 〈 • , • 〉 and therefore ‖ • ‖ are an inner product and a norm on W , respectively.

The choice of the basis representatives does not affect the geometry—induced by 〈 • , • 〉—
of the resulting L2-(sub)space W . Moreover, an alternative choice of a F/R1-measurable
q′i ∈ [[qi]] differs from qi solely on the µ-measure zero set Ni = {qi 6= q′i} ∈ F. Therefore,
all elements of the two linear spaces span{q1, . . . , qk} and span{q′1, . . . , q′k} differ from their
respective counterparts at most on the µ-measure zero set ∪i≤kNi. In particular, the image
measure

image measure
µ ◦ y−1, that is, R1 3 B 7→ (µ ◦ y−1)B = µ{y ∈ B}, of a given linear combination y =∑

i≤k ciqi does not depend on the choice of basis element representatives. In fact,

µ
{∑

i≤k
ciqi ∈ B

}
= µ

({∑
i≤k

ciqi ∈ B
}
∩∩i≤k{qi = q′i}

)
= µ

{∑
i≤k

ciq
′
i ∈ B

}
.

An analogous argument also applies to the image measure of ω 7→
(
y1(ω), . . . , y`(ω)

)
—defined

on the Borel σ-field of the norm topology on Rk, wherein yi =
∑

j≤k cj,iqj with cj,i ∈ R, ` ∈ N.

2.b. Proofs

Proof of lemma 2.1. A finite subset {x1, . . . , xq} of {‖ • ‖ = 1} is ε-separated if d(xi, xj) =
‖xi − xj‖ > ε for all i, j ≤ q with i 6= j. The construction of a ⊂-maximal element of the

set S of ε-separated subsets of {‖ • ‖ = 1} succeeds by starting at an arbitrary unit length x1

and recursively adding unit length xn with d(xn, xj) > ε, j < n. Compactness of {‖ • ‖ = 1}
guarantees that the construction terminates after q(∈ N) steps. If z 6∈ ∪i≤q{d(xi, • ) ≤ ε}
for some unit length z, then {z, x1, . . . , xq} is ε-separated, which contradicts ⊂-maximality
of {x1, . . . , xq}. Hence, {x1, . . . , xq} provides an ε-net. The ε/2-balls {d(xi, • ) ≤ ε/2}, i ≤ q,
are pairwise disjoint, and their union amounts to a subset of {‖ • ‖ ≤ 1+ε/2}. Hence, additivity,
translation invariance, and the scaling property of the Lebesgue measure ν on Rk imply

q
(ε

2

)k
ν{‖ • ‖ ≤ 1} ≤

(
1 +

ε

2

)k
ν{‖ • ‖ ≤ 1} .

Furthermore, ν{‖ • ‖ ≤ 1} > 0 together with the definition of a covering number implies
(1 + 2/ε)k ≥ q ≥ N({‖ • ‖ = 1}, ‖ • ‖, ε).

Proof of lemma 2.3. For any two element Y a and Y b of span{y1, . . . , yk} define 〈Y a, Y b〉∗ =
〈a,Gb〉. This expression inherits symmetry from G. Hence, the map 〈 • , • 〉∗ : V × V → R is
well defined as Y a = Y a′ implies a− a′ ∈ kerY = kerG. Bilinearity of 〈 • , • 〉∗ follows from its
definition. Finally, positive semi-definiteness of G ensures 〈Y a, Y a〉∗ ≥ 0. Therein, equality
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holds if and only if a ∈ kerG = kerY , that is, Y a = 0.

Proof of lemma 2.4. If (Vj , Uj) symbolizes the j-th singular subspace pair for A, then u ∈ Uj
and symmetry of A imply the (in)equalities ‖Au‖ = sup‖v‖=1〈Au, v〉 = sup‖v‖=1〈u, PUjAv〉 =
sup‖v‖=1〈u,APVjv〉 ≤ σ̄j‖u‖. Herein, PL denotes the orthogonal projector onto a subspace L.
Such maps are contractions; hence, ‖APVjv‖ = σ̄j‖PVjv‖ ≤ σ̄j . The first equality expresses the

self-duality of ‖ • ‖. The third equality is due to imgAPV ⊥j
⊂ U⊥j . The subsequent inequality

is an application of the Cauchy-Schwarz inequality. Consideration of j = s—the number of
distinct nonzero singular values of A—implies Vs = Us as Uj ⊂

∑
i≤s Ui = imgA = (kerA)⊥ =∑

i≤s Vi. In particular, if s > 1, then Us−1 is a subspace of V ⊥s . Consequently, ‖Au‖ ≥
σ̄s−1‖u‖ for u ∈ Us−1 and so forth. The equalities Uj = Vj and polarization imply that
restricting A/σ̄j to Vj provides a unitary map Vj → Vj . If id denotes the identity map on Vj ,
j ≤ s, then 〈u, (id−A2/σ̄2

j )v〉 = 0 for all u, v ∈ Vj implies img(id−A2/σ̄2
j ) = {0}. Thus,

one factor in (id−A/σ̄j)(id +A/σ̄j) = (id−A2/σ̄2
j ) must have a nontrivial kernel, that is,

Av′ ∈ {σ̄jv′,−σ̄jv′} for some unit length v′ ∈ Vj . If Vj ∩ (span{v′})⊥ is nontrivial, then the
same argument applies. The recursion continues until all directions in Vj are exhausted.

Proof of lemma 2.5. Let X =
∑

i≤rkX σiui〈vi, • 〉 and Y =
∑

i≤rkY σ
′
iu
′
i〈v′i, • 〉 be singular

value decompositions of X and Y , respectively. If needed, then σrkX+p = 0 = σ′rkY+p for
all p ≥ 1. The meaning of urkX+p, vrkX+p, u

′
rkY+p, and v′rkY+p, p ≥ 1, is immaterial. The

distinct singular values of X are represented by σ̄1, . . . , σ̄s, wherein s provides the number
of distinct singular values of X and σ̄s+p = 0 if p ≥ 1. In addition, m1 symbolizes the
multiplicity of σ̄1. The equality ‖X‖op = σ̄1

∑
i≤rkY σ

′
i = 〈Y,X〉 ≤ σ̄1

∑
i≤m1

σ′i + σ̄2
∑

i>m1
σ′i

reveals rkY ≤ m1. Furthermore, the Cauchy-Schwarz inequality yields

σ̄1

∑
i≤m1

σ′i = 〈X,Y 〉 =
∑
i≤m1

σ′i

[
σ̄1

∑
j≤m1

〈u′i, uj〉〈vj , v′i〉
]

+
∑
i≤m1

σ′i

[ ∑
m1<j≤rkX

σj〈u′i, uj〉〈vj , v′i〉
]

≤ σ̄1

∑
i≤m1

σ′i
∑
j≤m1

|〈u′i, uj〉||〈vj , v′i〉|+ σ̄2

∑
i≤m1

σ′i
∑

m1<j≤rkX

|〈u′i, uj〉||〈vj , v′i〉|

≤ σ̄1

∑
i≤m1

σ′i‖ai‖‖bi‖+ σ̄2

∑
i≤m1

σ′i
√

1− ‖ai‖2
√

1− ‖bi‖2 ≤ σ1

∑
i≤m1

σ′i + 0 , <2.11>

wherein ai = (a1,i, . . . , am1,i) = (〈u′i, u1〉, . . . , 〈u′i, um1〉) as well as bi = (b1,i, . . . , bm1,i) =
(〈v′i, v1〉, . . . , 〈v′i, vm1〉). The second inequality is due to the invariance of ‖ • ‖ to changes of
the signs of the entries of its argument,

1 = ‖u′i‖2 ≥ ‖PimgXu
′
i‖2 =

∥∥ ∑
j≤rkX

uj〈uj , u′i〉
∥∥2

=
∑
j≤m1

a2
j,i +

∑
m1<j≤rkX

〈u′i, uj〉2 ,

and 1− ‖bi‖2 =
∑

m1<j≤rkX〈v′i, vj〉2. Moreover, the Cauchy-Schwarz inequality yields

√
‖ai‖2‖bi‖2 +

√
(1− ‖ai‖2)(1− ‖bi‖2)) =

〈( √
‖ai‖2√

1− ‖ai‖2

)
,

( √
‖bi‖2√

1− ‖bi‖2

)〉
≤ 1

and thereby σ̄1‖ai‖‖bi‖ + σ̄2

√
1− ‖ai‖2

√
1− ‖bi‖2 ≤ σ̄1, which in turn generates the final

inequality in <2.11>. The resulting equalities in <2.11> require ‖ai‖ = 1 = ‖bi‖ and ai = bi.
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In fact, the first, second, and third inequality in <2.11> necessarily hold for each of the two
main summands individually. Consequently, u′i =

∑
j≤m1

aj,iuj = U1ai, v
′
i =

∑
j≤m1

aj,ivj =
V1ai, and Y =

∑
i≤m1

σ′iu
′
i〈v′i, • 〉 = U1B〈〈V1, • 〉〉, wherein U1 = [u1 · · · um1 ], V1 = [v1 · · · vm1 ],

and B =
∑

i≤m1
σ′iaia

T
i . The matrix B is positive semi-definite and satisfies ‖B‖nuc = trB =∑

i≤m1
σ′i tr aia

T
i = ‖Y ‖nuc = 1 as tr aia

T
i = 〈ai, ai〉 = ‖ai‖2 = 1.

Conversely, if Y = U1B〈〈V1, • 〉〉, then〈
U1B〈〈V1, • 〉〉 , σ̄1U1〈〈V1, • 〉〉+

∑
m1<j≤rkX

σjuj〈vj , • 〉
〉

= σ̄1 tr
[
〈〈U1, U1〉〉B〈〈V1, V1〉〉

]
= σ̄1 trB

guarantees 〈Y,X〉 = ‖X‖op‖Y ‖nuc = σ̄1.

Proof of corollary 2.6. Let U1 consists of columns (in the given order) u+
1 , . . . , u+

m′1
, u−1 , . . . ,

u−
m′′1

and likewise with V1 and u+
1 , . . . , u+

m′1
, −u−1 , . . . , −u−

m′′1
. Then, lemma 2.5 ensures the

existence of a positive semidefinite S ∈ Sm1 such that B = U1S〈〈V1, • 〉〉 and trS = 1. Symmetry
of B implies the equality of

〈u+
i , Bu

−
j 〉 = 〈ei,−Sem′1+j〉 = −si,m′1+j and

〈Bu+
i , u

−
j 〉 = 〈Sei, em′1+j〉 = sm′1+j,i ,

wherein ei symbolizes the i-th standard basis element of Rm1 . Symmetry of S therefore guar-
antees that si,m′1+j = sm′1+j,i = 0 for all i ≤ m′1, j ≤ m′′1. The existence of a spectral
decomposition validates the final claim.
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3. Regularized least-squares estimation

3.1. Basic convex analysis

3.1.1. Geometry of convex sets

A subset C of a Euclidean space W is convex
convex

if it contains the line segment joining
any two of its elements, that is, x, y ∈ C, c ∈ [0, 1] implies cx + (1 − c)y ∈ C. The
latter ensures

∑
i≤k cixi ∈ C whenever x1, . . . , xk ∈ C and ci ∈ [0, 1] with

∑
i≤k ci = 1.

Such linear combinations are called convex combination
convex
combinations. The convex combinations of

elements of an arbitrary subset C ′ ⊂ W form a convex set—called the convex hull convex hullconvC ′

of C ′. Convex combinations are linear combinations and therefore compatible with linear
maps L on W in the sense that conv{Lx |x ∈ D} = {Ly | y ∈ convD} for any D ⊂ W .

Examples of convex sets include hyperplane hyperplanes {〈a, • 〉 = b}, wherein a 6= 0 and b ∈ R,
as well as the associated halfspace

halfspace
{〈a, • 〉 ≤ b}. Embedding a/‖a‖ into an orthonormal

basis of W identifies elements of the latter set as those extending into direction a by ex-
actly b/‖a‖ and no more than b/‖a‖, respectively. Panel (A) of figure 3.1 illustrates this
interpretation: it shows a point a ∈ R2 and a corresponding halfspace with threshold b.
Herein, b is negative, and elements of the illustrated halfspace—those with coordinate
with respect to a/‖a‖ no larger than b/‖a‖—point in direction −a. Intersections of half-
spaces are convex; more generally, convexity is preserved under arbitrary intersections.

Continuity of 〈a, • 〉 ensures that hyperplanes and halfspaces are closed. The same
applies to the convex hull of a finite set C ′ = {x1, . . . , xk}. In fact, if a sequence(∑

i≤k ci,nxi
)

in convC ′ converges as n → ∞, then sequential compactness of [0, 1]k

guarantees the existence of a subsequence
(∑

i≤k ci,n`xi
)

with converging coefficients.
The (common) limit of both sequences lies in convC ′ by virtue of continuity of c 7→∑

i≤k ci. Herein, the coefficients ci,n need not be uniquely determined by the sequence
elements; then, different choices lead to different subsequences but the same conclusion.
The open ball {‖x− • ‖ < 1} shows that convex sets need not be closed.

If a convex set C is closed, then x 6∈ C exhibits a unique closest substitute x′ in C. Its
existence is a topological feature. More specifically, the compact set Cn = {‖x − • ‖ ≤
n} ∩ C is nonempty for some n∗ ∈ N, and the continuous function ‖x − • ‖ attains its
minimum ‖x−x′‖ ≤ n∗ on Cn∗ at some x′ 6= x. Hence, if x′′ ∈ C, then either ‖x−x′′‖ >
n∗ ≥ ‖x − x′‖ or x′′ ∈ Cn∗ . Convexity of C characterizes this closest substitute x′ by
the inequalities 〈x− x′, x′′ − x′〉 ≤ 0, x′′ ∈ C. In fact, if the converse equality holds for
some x′′ ∈ C, then (1− c)x′ + cx′′ = x′ + c(x′′ − x′) ∈ C for all c ∈ [0, 1], and the latter
element is a closer substitute to x for small c > 0. If x′, x′′ ∈ C both satisfy this criterion,
then the inequality 0 ≥ 〈x− x′, x′′ − x′〉 = −〈x− x′′, x′ − x′′〉+ ‖x′′ − x′‖2 ≥ ‖x′′ − x′‖2

implies x′ = x′′. Thus, the intersection ∩x′′∈C{〈x − • , x′′ − • 〉 ≤ 0} contains single
element—the closest substitute, and therefore the criterion is sufficient.

This criterion, namely C ⊂ {〈x− x′, • − x′〉 ≤ 0}, shows that the angle between the
approximation error x−x′ and the difference x′′−x′ is no less that π/2 whenever x′′ ∈ C.
Panel (B) of figure 2.2 illustrates this relation for an element x ∈ R2. This angular
inequality generalizes the orthogonality condition required of closest substitutes in case
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Figure 3.1
The figure illustrates the notions of (supporting) hyperplanes and normal cones. Panel (A)
shows the hyperplane {〈a, • 〉 = b} and the halfspace {〈a, • 〉 ≤ b} corresponding to a
nonzero point a ∈ R2 and b < 0. Panel (B) considers x ∈ R2 outside the closed and convex
set C. The point x exhibits a closest substitute x′ in C. The difference d = x − x′ lies in
the normal cone of C at x′, that is, 〈d, x′′ − x′〉 ≤ 0 for all x′′ ∈ C. Equivalently, the angle θ
between d and x′′ − x′ exceeds π/2, and the hyperplane {〈d, • 〉 = 〈d, x′〉} supports C at x′.

of subspaces. In fact, subspaces are convex, and orthogonal projections provide the
respective closest substitutes. The normal cone normal conencone(C, x′) = ∩x′′∈C{〈 • , x′′ − x′〉 ≤ 0}
of C at x′ comprises all elements of W , which satisfy the same angular inequalities as
the approximation error. In particular, 0 ∈ ncone(C, x′) for all x′ ∈ C. Moreover, if
d ∈ ncone(C, x′) and t ≥ 0, then td ∈ ncone(C, x′). A subset K ⊂ W with this property,
that is, t ≥ 0, x ∈ K imply tx ∈ K, is called a cone

cone
, and ncone(C, x′) is of this type.

If d is any nonzero element of ncone(C, x′), then x′ lies in the hyperplane {〈d, • 〉 =
〈d, x′〉}, whose associated halfspace {〈d, • 〉 ≤ 〈d, x′〉} contains C. Such hyperplanes
{〈a, • 〉 = b}, a 6= 0, that is, with {〈a, • 〉 = b} ∩ C 6= ∅ and {〈a, • 〉 ≤ b} ⊃ C, provide
supporting hyperplane

supporting
hyperplanes of C at x ∈ {〈a, • 〉 = b}∩C and generally satisfy a ∈ ncone(C, x).

If C is a convex superset of some nonempty open set, then ncone(C, x) 6= {0} when-
ever x ∈ C is a boundary point boundary pointof C, that is, lies in all closed supersets of C but
outside its interior

interior
intC—the union of all its open subsets. Convexity guarantees

that boundary points x are limit points of intC: if y ∈ intC and c ∈ (0, 1] with
{‖y− • ‖ < δ} ⊂ intC for some δ > 0, then (1− c)x+ cy+e = (1− c)x+ c(y+e/c) ∈ C,
whenever ‖e‖ < cδ, thus, (1− c)x+ cy ∈ intC. The same argument shows that intC is
itself convex and therefore contains the convex hull of any finite sequence x1, . . . , xk of
its elements—a closed set. A boundary point x ∈ C exhibits a closest substitute x′ 6= x
in conv{x1, . . . , xk}. In particular, ∩i≤k{〈 • , xi − x〉 ≤ 0} ∩ {‖ • ‖ = 1} is nonempty: the
scaled error d = (x−x′)/‖x−x′‖ satisfies 〈d, xi−x〉 = 〈d, xi−x′〉−‖x′−x‖ < 0. Hence,
the closed subsets {〈 • , x′′− x〉 ≤ 0}∩ {‖ • ‖ = 1}, indexed by elements x′′ of the interior
of C, of the compact set {‖ • ‖ = 1} exhibit the finite intersection property. Thus, there
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{`uuT | ‖u‖ = 1}

{−`uuT | ‖u‖ = 1}

x

d

(scaled and translated)
identity matrix

x′

d′

Figure 3.2
The figure shows the closed nuclear ball {‖ • ‖nuc ≤ `}, ` > 0, in S2. Points are represented by
their coordinates with respect to the orthonormal basis B̄1,1, B̄1,2, B̄2,2 (example (c) in sec-
tion 2.1.1). The boundaries of the two ellipses consist of matrices of the form `uuT and −`uuT
with ‖u‖ = 1, respectively. A set containing only one of these matrices forms an (exposed)
face of {‖ • ‖nuc ≤ `}. The normal cones of the ball at its boundary points x and x′ are given by
all multiples of d (the scaled identity matrix) and d′ with nonnegative coefficient, respectively.

exists a unit length d with intC ⊂ {〈d, • − x〉 ≤ 0}. The latter superset is a halfspace,
hence closed, and consequently contains all elements of C. As a consequence, d lies in
ncone(C, x), and the associated hyperplane {〈d, • 〉 ≤ 〈d, x〉} supports C at x.

Conversely, if x ∈ intC, then {‖ • − x‖ < δ} ⊂ C for some δ > 0. Thus, x + td′

is an element of C whenever d′ ∈ W is of unit length and |t| < δ. Consequently,
if d ∈ ncone(C, x), then suitable scaling ensures ‖d‖ ≤ 1. Furthermore, 0 ≥ 〈d, x +
(δ/2)d− x〉 = δ‖d‖2/2 ≥ 0, and therefore d = 0. It follows that ncone(C, x) = {0}.

If C is an arbitrary convex subset of W , then the subset {d ∈ ncone(C, • )} of C is
convex: two of its elements x, y satisfy 〈d, x − y〉 = 0; thus, 〈d, x′ − cx − (1 − c)y〉 =
〈d, x′ − y〉 ≤ 0 for any c ∈ [0, 1], x′ ∈ C. Moreover, if c ∈ (0, 1), x, y ∈ C, and cx+ (1−
c)y ∈ {d ∈ ncone(C, • )}, then 〈d, x− cx− (1− c)y〉 ≤ 0 and 〈d, y − cx− (1− c)y〉 ≤ 0
imply 〈d, y−x〉 = 0. In addition, if x′ ∈ C, then 〈d, x′−x〉 = 〈d, x′−x+(1−c)(x−y)〉 ≤ 0
and likewise for y, which reveals x, y ∈ F . More generally, a convex subset F of C
provides a face faceof C if x, y ∈ C, c ∈ (0, 1), and cx+ (1− c)y ∈ F imply x, y ∈ F . Both ∅
and C are faces of C. The other faces of C are termed proper

proper
. If intC 6= ∅ and {d ∈

ncone(C, • )} is nonempty with nonzero d, then the latter set amounts to a proper face
of C containing only boundary points. Such a face, that is, the intersection of C with
one of its supporting hyperplanes, is called an exposed face exposed faceof C with exposing element

exposing ele-
ment

d.
Figure 3.2 illustrates these concepts with C equal to the nuclear norm ball {‖ • ‖nuc ≤

`}, ` > 0, in S2. The spectral decomposition of symmetric matrices implies that this
ball equals the convex hull of {±`u〈u, • 〉 | ‖u‖ = 1}. All elements x on the inside of and
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Figure 3.3
The figure illustrates the interior and the boundary points of a convex set as well as the
epigraph and subgradients of a convex function. Panel (A) shows (parts of) the epigraph
of a convex function f defined on a convex subset C ⊂ R. A point x ∈ intC leads to an
interior point

(
x, f(x) + δ

)
, δ > 0, of epi f . This conclusion does not hold for boundary

points x′. Panel (B) considers the same function f and illustrates that elements d of the
subdifferential ∂f(x′′) of f at x′′ are in one-to-one correspondence with elements (d,−1) of
the normal cone of epi f at

(
x′′, f(x′′)

)
. The latter induce halfspaces which contain epi f .

on the upper ellipse contain the 2× 2 identity matrix identity matrixI = [e1 e2] = ( 1
1 ) in their normal

cones, thus, form an exposed face. Figure 3.2 suggests that all proper and closed faces
of {‖ • ‖nuc ≤ `} are exposed. This is correct even for m > 2, however, is not needed here.

3.1.2. Convex functions

A real-valued function f defined on a convex subset C of a Euclidean space W is called
convex convexif its epigraph

epigraph
epi f = {(x, t) |x ∈ C, f(x) ≤ t} is a convex subset of W × R.

Herein, the latter (product) space is endowed with coordinate-wise linear operations and
the inner product 〈(x, t), (x′, t′)〉 = 〈x, x′〉+ tt′. Convexity of C ensures that f is convex
if and only if cf(x) + (1− c)f(y) ≥ f

(
cx+ (1− c)y

)
for all x, y ∈ C, c ∈ [0, 1]. Panel (A)

of figure 3.3 illustrates this case. Panel (B) of figure 3.4 shows a nonconvex function g.
Suitable combinations of convex functions inherit convexity from their ingredients. If

the pointwise supremum f(x) = supf∈F f(x) over a set F of convex functions defined on a
common set C is finite on a (necessarily) convex subset C ′ ⊂ C, then the epigraph of C ′ 3
x 7→ f(x) equals the intersection ∩f∈F epi f , thus, is convex. The second characterization
of convexity ensures that linear combinations

∑
i≤n cifi of convex functions f1, . . . , fn ∈

F are convex provided that the coefficients c1, . . . , cn are nonnegative.

Lemma 3.1. If f is a real-valued and convex function on a convex subset C of a Eu-
clidean space W and x lies in the interior intC, then

(
x, f(x)+δ

)
∈ int epi f for all δ > 0.
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Panel (A) of figure 3.3 visualizes this assertion, that is, the subset {f < f(x) + δ− ε′}
of C contains an open superset of {x}, and the open ball {‖

(
x, f(x) + δ

)
− • ‖ < ε′} is

therefore contained in the interior of epi f if its radius ε′ > 0 is sufficiently small. The
argument on page 79 in appendix 3.b considers the general case.

In summary,
(
x, f(x)

)
is a boundary point of int epi f 6= ∅ if x ∈ intC. Hence, there

exists a hyperplane {〈a, • 〉 ≤ b}, a 6= 0, supporting epi f at
(
x, f(x)

)
. Writing a =

(a1, a2) ∈ W × R leads to the inequalities a2t ≤ b − 〈a1, x
′〉, (x′, t) ∈ epi f . If x′ ∈ C

is fixed, then the righthand side is real number while t ≥ f(x′) can be arbitrary large,
thus, a2 ≤ 0. Moreover, a2 = 0 implies 〈a1, x

′〉 ≤ b for all x′ ∈ C, wherein equality holds
if x′ = x. This scenario cannot occur since a2 = 0 necessitates a1 6= 0 and x + δa1 ∈ C
for small δ > 0. Consequently, f(x′) ≥ b/a2 − 〈a1/a2, x

′〉 = f(x) + 〈−a1/a2, x
′ − x〉

for all x′ ∈ C. The implied inequality between the leftmost and rightmost term—
uniformly across x′ ∈ C—identifies −a1/a2 ∈ W as a subgradient subgradientof f at x. That
is, d ∈ W is a subgradient of f at x if and only if (d,−1) lies in the normal cone
of epi f at

(
x, f(x)

)
. Panel (B) of figure 3.3 illustrates this one-to-one correspondence.

Therein, d ∈ R provides a subgradient of the convex function f at x′′, that is, f ≥
f(x′′)+d( •−x′′); (d,−1) lies in the normal cone of epi f at

(
x′′, f(x′′)

)
; and therefore the

halfspace {〈(d,−1), • 〉 ≤ 〈(d,−1),
(
x′′, f(x′′)

)
〉} contains epi f . Panel (A) and panel (B)

of figure 3.1 consider the concept of a halfspace and a normal cone, respectively.
In particular, the set ∂f(x) of subgradients of f at x—called the subdifferential

subdifferential
of f

at x—is nonempty for all x ∈ intC. The existence of a subgradient d ∈ ∂f(x) guarantees
the inequality inf‖y−x‖≤cε f(y) ≥ f(x) − cε‖d‖. The latter and lemma 3.1 imply that
a convex function f on the convex set C is continuous at all x ∈ intC. Panel (A)
of figure 3.3 illustrates that this conclusion does not (necessarily) hold for boundary
points x′ of C. In fact, f may jump upwards at x′, which rules out ∂f(x′) 6= ∅.

The notion of a subgradient generalizes the concept of a gradient. More specifically,
the function f is called differentiable differentiableat x ∈ intC if there exists a (necessarily unique)
element ∇f(x) ∈ W—called the gradient

gradient
of f at x—such that ∆(h) = (f(x + h) −

f(x) − 〈∇f(x), h〉)/‖h‖, wherein h ∈ {h′ ∈ W |h′ 6= 0, x + h′ ∈ C}, converges to zero
as ‖h‖ → 0. If, in addition, f is convex and d ∈ ∂f(x), then hn =

(
d −∇f(x)

)
/n 6= 0

implies the inequalities 0 < ‖d−∇f(x)‖ = 〈d−∇f(x), hn〉/‖hn‖ ≤ ∆(hn), n ∈ N. The
latter contradict the definition of ∇f(x); thus, the equality ∂f(x) = {∇f(x)} holds.

A scaled norm λ‖ • ‖′, λ > 0, defined on W is convex due to homogeneity and the
triangle inequality. Thus, ∂λ‖x‖′ 6= ∅ for all x ∈ W . Lemma 3.2 contains a geometric
characterization of these subdifferentials; it relies on the dual norm sup‖y‖′=1〈y, • 〉 of ‖ • ‖′
introduced in section 2.5.2 and is proved on page 79 in appendix 3.b.

Lemma 3.2. The subdifferential of a scaled norm λ‖ • ‖′, λ > 0, on W is given by

∂λ‖0‖′ = {‖ • ‖′d ≤ λ} and

∂λ‖x‖′ = ncone
(
{‖ • ‖′ ≤ ‖x‖′}, x

)
∩ {‖ • ‖′d = λ}

= {〈 • , x〉 = ‖ • ‖′d‖x‖′} ∩ {‖ • ‖′d = λ} , x 6= 0 ,

wherein ‖ • ‖′d = sup‖y‖′=1〈y, • 〉 symbolizes the dual norm of ‖ • ‖′.
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The figure visualizes the first equality in lemma 3.2 for λ = 1 and ‖ • ‖′ = ‖ • ‖nuc as well
as the subgradients and conjugate function of a nonconvex function. Panel (A) shows the
(partial) graph of ‖ • ‖nuc restricted to the linear space span{B̄1,1, B̄2,2} of diagonal matrices—
a subspace of S2—alongside the set {‖ • ‖op = 1}∩span{B̄1,1, B̄2,2}. Herein, diagonal matrices
are represented by their coordinate vectors with respect to B̄1,1, B̄2,2. By lemma 3.2, D ∈
{‖ • ‖op ≤ 1} provide the subgradients of (the restricted) ‖ • ‖nuc at 0. Panel (B) considers the
epigraph of a nonconvex function g: convex combinations of

(
x′, g(x′)

)
and

(
x, g(x)

)
with

coefficients c, 1 − c 6∈ {0, 1} lie outside epi g. Moreover, the conjugate g? satisfies −g?(d) ≤
g(x)− 〈d, x〉, wherein equality holds at x′ with d ∈ ∂g(x′).

Panel (A) of figure 3.4 illustrates the first equality in lemma 3.2 for λ = 1 and the
restriction of ‖ • ‖′ = ‖ • ‖nuc to the linear space span{B̄1,1, B̄2,2} ⊂ S2 of diagonal 2 × 2
matrices. Herein, the relevant dual norm equals ‖ • ‖′d = ‖ • ‖op (restricted to the diagonal
2 × 2 matrices). Every diagonal matrix D with ‖D‖op ≤ 1 provides a subgradient (of
the restriction) of ‖ • ‖nuc at 0. Then, the pair (D,−1) ∈ span{B̄1,1, B̄2,2} × R lies in
the normal cone of the epigraph (of the restriction) of ‖ • ‖nuc at 0, and the resulting
inequalities 〈D,D′〉 ≤ ‖D′‖nuc, D′ ∈ span{B̄1,1, B̄2,2}, reflect the ‖ • ‖op/‖ • ‖nuc-duality.

Lemma 3.2 shows that G ∈ Sm lies in the subdifferential of λ‖ • ‖nuc at some nonzero
Θ ∈ {‖ • ‖nuc = `} ⊂ Sm, ` > 0, if and only if ‖G‖op = λ and Θ lies in the exposed
face {G ∈ ncone(Bnuc, • )} of the nuclear norm ball Bnuc = {‖ • ‖nuc ≤ `}. Either of
these cases is equivalent to ‖Θ‖nuc = ` > 0 and G being an element of the exposed face
{Θ ∈ ncone(Bop, • )} of Bop = {‖ • ‖op ≤ λ}. Finally, if ‖Θ‖nuc = ` > 0, then lemma 3.2
leads to an expression for Θ/` in terms of a spectral decomposition of G via corollary 2.6.

If f is bounded below, then {0 ∈ ∂f( • )} gathers the minimizer minimizers x′ ∈ argminx∈C f(x)
of f , that is, elements of C with f(x′) = infx∈C f(x). More generally, if d ∈ ∂f(y)
with y ∈ C, then the nonempty set {d ∈ ∂f( • )} consist of the orthogonal projections
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onto W—a subspace of W ×R—of the elements of {
(
x, f(x)

)
| d ∈ ∂f(x)} = {(d,−1) ∈

ncone(epi f, • )}. Thus, linearity of projectors ensures convexity of {d ∈ ∂f( • )}, and f
equals the affine function affine functionf(y) + 〈d, • − y〉 on this set. Panel (B) of figure 3.4 reveals
that this argument does no apply to nonconvex functions. Furthermore, if ∂f(x) 6= ∅
and ∂f(x)∩ ∂f(y) = ∅ for all x, y ∈ C with x 6= y, then f is strictly convex

strictly convex
, that is, the

strict inequality f
(
cx+(1−c)y

)
< cf(x)+(1−c)f(y) holds whenever x 6= y and c ∈ (0, 1).

Strict convexity guarantees that f exhibits at most one minimizer. However, the set of
ε-almost minimizer ε-almost

minimizers {f < infx∈C f(x)+ε}, ε > 0, may be arbitrary large. A quantitative
analog of strict convexity bounds this set. A differentiable function f defined on an
open and convex set C ⊂ W exhibits strong convexity strong convexitywith curvature constant

curvature
constant

κ > 0
if f(y) ≥ f(x) + 〈∇f(x), y − x〉 + κ

2
‖y − x‖2 holds for all x, y ∈ C. Then {f <

infx∈C f(x) + ε} ⊂
{
‖x′− • ‖ <

√
2ε/κ

}
, wherein x′ denotes the unique minimizer of f .

3.1.3. Conjugates and convex envelopes

The inequality g ≥ g(x)+〈d, •−x〉 identifies d ∈ W as a subgradient subgradientat x of a real-valued
function g on a subset D of a Euclidean space W . The subdifferential

subdifferential
∂g(x) of g at x ∈ D

gathers the subgradients of g at x. If d ∈ ∂g(x), then the halfspace {〈(d,−1), • 〉 ≤
b}, b = 〈(d,−1),

(
x, g(x)

)
〉 = 〈d, x〉 − g(x), contains the epigraph epigraphepi g = {(x, t) |x ∈

D, g(x) ≤ t} of g—see panel (B) of figure 3.4, that is, 〈d, x〉 − g(x) = supx′∈D
(
〈d, x′〉 −

g(x′)
)

= g?(d). The quantity g?(d) is finite on a convex superset D? of ∪x∈D∂g(x). If D?

is nonempty, then D? 3 d 7→ g?(d) is referred to as the conjugate conjugate(function) of g.
By definition of the conjugate, the Fenchel-Young inequality

Fenchel-Young
inequality

g(x)+g?(d) ≥ 〈x, d〉 holds
for all x ∈ D and d ∈ D?. The inequality becomes an equality if and only if d ∈ ∂g(x)
since g?(d) = 〈d, x〉−g(x) implies 〈d, x′〉−g(x′) ≤ 〈d, x〉−g(x) for all x′ ∈ D. This result
implies that −g?(d) + 〈d, • 〉 ≤ g if d ∈ D?. Conversely, if b+ 〈d, • 〉 ≤ g for some b ∈ R,
then 〈d, • 〉 − g ≤ −b, thus g?(d) is finite, and b ≤ −g?(d). Thus, D? = {d ∈ W | there
exists b ∈ R such that b + 〈d, • 〉 ≤ g}, and if d ∈ D?, then −g?(d) provides the largest
intercept b ∈ R such that b + 〈d, • 〉 is an affine minorant of g. Panel (B) of figure 3.4
exemplifies this interpretation for d ∈ ∂g(x′): the difference g − 〈d, • 〉 ≥ 0 becomes
minimal at x′; hence, the inequality b+ 〈d, • 〉 ≤ g holds if and only if b ≤ −g?(d).

The conjugate g? of g is defined as the (pointwise) supremum of the affine functions
D? 3 d 7→ ax(d) = 〈d, x〉 − g(x), x ∈ D. Hence, epi g? equals ∩x∈D epi ax, wherein
epi ax = {(d, t) | d ∈ D?, t ≥ ax(d) = 〈d, x〉−g(x)} = {〈 • , (x,−1)〉 ≤ g(x)}∩D?×R. The
intersection equals ∩x∈D{〈 • , (x,−1)〉 ≤ g(x)} as the right hand side of t ≥ 〈d, x〉 − g(x)
is unbounded unless d ∈ D?. Consequently, the epigraph epi g? is closed and convex.

The Fenchel-Young inequality implies g(x) ≥ supd∈D?
(
〈x, d〉 − g?(d)

)
= g??(x). Thus,

the rightmost term is finite for elements x of a convex superset D?? of D. The biconjugate
biconjugate(function) g?? of g given by D?? 3 x 7→ g??(x) amounts to the conjugate of g?, hence,

is a convex function with closed epigraph epi g?? ⊃ epi g. Moreover, its definition g?? =
supd∈D?

(
−g?(d) + 〈d, • 〉

)
characterizes g?? as the (pointwise) supremum over all affine

minorants of g. Panel (B) of figure 3.4 indicates this construction. If f ≤ g is a convex
function on (a convex superset of) D??, then x ∈ intD?? implies g??(x) ≥ f(x), which
identifies g?? as the largest convex minorant—called convex envelope convex envelope—of g on intD??.
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Finally, if d ∈ ∂g(x) ⊂ D? for x ∈ D, then g?(d
′) ≥ 〈d′, x〉−g(x) = 〈d′, x〉−〈d, x〉+g?(d)

for all d′ ∈ D?, that is, x ∈ ∂g?(d). Moreover, g(x) + g?(d) = 〈x, d〉 ≤ g?(d) + g??(x)
proves g??(x) = g(x). Conversely, the equality g(x) = g??(x) together with x ∈ ∂g?(d)
ensures g(x) + g?(x) = g?(x) + g??(x) = 〈x, d〉, thus, d ∈ ∂g(x).

3.2. Regularized least-squares

3.2.1. Primal formulation

The least-squares problem considered here amounts to the minimization of the criterion

lλ(Θ) =
1

2µ̄
‖Y −XΘ‖2 + λ‖Θ‖nuc , <3.1>

wherein Y,X ∈ W×m are given linear maps from Rm into a Euclidean space W ; Θ
ranges over the m×m symmetric matrices in Sm; µ̄ > 0 adjusts the scaling of the first
summand; and λ > 0 controls the relative importance of the two summands of lλ.

Usually W is spanned by finitely many real-valued and µ-square integrable functions
defined on a finite measure space (Ω,F, µ). Then µ̄ = µΩ is a natural choice, but
not required by the results of this section, which hold irrespective of the particular
value µ̄ > 0. As an example, if W equals Rn, that is, Y,X ∈ Rn×m, then the total mass
equals µ̄ = n. Section 2.1.3 presents further instances of this construct.

Both summands of lλ, namely, g = λ‖ • ‖nuc : Sm → R and the composition f ◦ X,
wherein f = ‖Y − • ‖2/(2µ̄) is convex and X : Sm → W×m is linear, are convex. There-
fore, the criterion function Sm 3 Θ 7→ lλ(Θ) is, too. In particular, lλ : Sm → R is
continuous, and therefore its sublevel sets

sublevel sets
{lλ ≤ t}, t > 0, are closed. The second sum-

mand g = λ‖ • ‖nuc of lλ implies that these sublevel sets are also bounded and therefore

compact. Continuity and compactness guarantee the existence of a minimizer Θ̂ ∈ Sm.
The summands of lλ mirror the twofold goal behind the minimization of <3.1>. The

first term ensures that a minimizer Θ̂ of lλ yields a close substitute—in terms of ‖ • ‖—
to Y in form of XΘ̂. In addition, lemma 3.3 suggests that the second term promotes
a low rank of minimizers Θ̂ ∈ Sm. Hence, minimizers Θ̂ of the criterion lλ trade off
“fidelity to the data” X, Y against their own complexity—expressed as the dimension
of their image. A proof of lemma 3.3 follows on page 80 in appendix 3.b.

Lemma 3.3. The restriction g′ of g = λ‖ • ‖nuc to the ‖ • ‖op-ball H = {‖ • ‖op ≤ 1} ⊂ Sm,
wherein ‖ • ‖op : Sm → R, equals the convex envelope of H 3 B 7→ h′(B) = λ rkB.

The restriction on the ‖ • ‖op-length in lemma 3.3 is essential: if λ rkB ≥ a+〈S,B〉 for
all B ∈ Sm, then λm ≥ λ rk(tS) ≥ a+ t‖S‖2 for all t > 0. Consequently, the conjugate
of λ rk (on Sm) is merely defined at zero, and its biconjugate equals zero everywhere.

Lemma 3.3 is related to the equality conv{±uuT | ‖u‖ = 1} = {‖ • ‖nuc ≤ 1}. In fact,
if convex functions f, f ′ satisfy f(B) ≤ f ′(B) ≤ rk(B) for all B ∈ {‖ • ‖op ≤ 1}, then
{±uuT | ‖u‖ = 1} ⊂ {rk ≤ 1} ∩ {‖ • ‖op ≤ 1} ⊂ {f ′ ≤ 1} ⊂ {f ≤ 1}. The latter two
subsets are convex and thus contain H ′ = conv{±uuT | ‖u‖ = 1}. Hence, lemma 3.3
implies H ′ ⊂ {‖ • ‖nuc ≤ 1} ⊂ {f ≤ 1} for every convex f with f ≤ rk on {‖ • ‖op ≤ 1}.
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3.2.2. Dual formulation

The minimization of the criterion function lλ in <3.1> over Sm can be cast in alternative
form. This so-called dual problem amounts to the maximization of the dual criterion
shown in <3.3>. Its form derives from analyzing the sensitivity of the optimal value
infΘ∈Sm lλ(Θ) to perturbations. Lemma 3.4 contains the essential ingredients of this
approach. A proof of this result starts on page 80 in appendix 3.b.

Lemma 3.4. The function W×m 3 Z 7→ v(Z) ∈ R, wherein

v(Z) = inf
Θ∈Sm

[
1

2µ̄
‖Y − (XΘ + Z)‖2 + λ‖Θ‖nuc

]
= inf

Θ∈Sm

[
f(XΘ + Z) + g(Θ)

]
is convex. Its conjugate is defined for all D ∈ W×m with ‖〈〈X,D〉〉+ 〈〈D,X〉〉‖op ≤ 2λ by

v?(D) = f?(D) + g?

(
−〈〈X,D〉〉+ 〈〈D,X〉〉

2

)
, wherein

f? : W×m → R , D 7→ µ̄

2

[
‖D + Y/µ̄‖2 − ‖Y/µ̄‖2

]
, g? : {‖ • ‖op ≤ λ} → R ,M 7→ 0 .

Lemma 3.4 considers the scaled nuclear norm g = λ‖ • ‖nuc as a real-valued function
on Sm—instead of H = {‖ • ‖op ≤ λ−1} ⊂ Sm, which explains the difference of g? and
the intermediate result, in particular, <A3.1> on page 80, used to prove lemma 3.3.

The Fenchel-Young inequality together with lemma 3.4 implies

lλ(Θ) ≥ v(0) ≥ sup
‖〈〈X,M〉〉+〈〈M,X〉〉‖op≤2λ

−f?(M) ≥ −f?(D) <3.2>

for every symmetric Θ and D ∈ {‖〈〈X, • 〉〉+ 〈〈 • , X〉〉‖op ≤ 2λ}. Equality holds if and only
if D is a subgradient of v at 0—the neutral element of the additive group (W×m,+).
Convexity of v on the open set W×m guarantees the existence of such a subgradient D̂.
Consequently, the minimal value infΘ∈Sm lλ(Θ) = v(0) equals the supremum of

−f?(D) =
µ̄

2

[
‖Y/µ̄‖2 − ‖D + Y/µ̄‖2

]
,

∥∥∥∥〈〈X,D〉〉+ 〈〈D,X〉〉
2

∥∥∥∥
op

≤ λ , <3.3>

which is attained at every element D̂ of ∂v(0) 6= ∅. This maximization exercise provides
the dual problem dual problemto the minimization of the (primal) criterion lλ in <3.1>.

Figure 3.5 (re-)interprets lλ as−(−f◦X)+g. The upper part of its panel (A) visualizes
this difference for the case W = R, m = 1 with X = 1 and in terms of the (partial) graphs
of f and g. Its lower part contains the corresponding part of the graph of lλ. The primal
objective function lλ is not smaller than the sum of the intercepts −f?(D) and −g?(−D)
for every choice of (Θ, D), wherein D and −D correspond to affine minorants of f and g,
respectively. The upper part also sheds light on the form of g?: in fact, there exists an
affine minorant of g = λ| • | with slope −D if and only if |D| ≤ λ; in that case, the
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Figure 3.5
The figure illustrates (the relation between) the primal and dual formulation of the least-
squares problem <3.1> for the case W = R, m = 1, and X = 1. The upper part of panel (A)
rephrases lλ as the difference −(−f) + g; the lower part shows parts of its graph. The primal
objective value lλ(Θ) exceeds the sum of the intercepts −f?(D) and −g?(−D) for any Θ and
D such that D and −D correspond to affine minorants of f and g, respectively. Panel (B)
reproduces the setting of panel (A) and shows that primal and dual objectives coincide for a
minimizing/maximizing pair (Θ̂, D̂), which satisfies D̂ ∈ ∂f(Θ̂) and −D̂ ∈ ∂g(Θ̂).

maximal intercept equals zero. Panel (B) of figure 3.5 concerns the identical setting. It

illustrates that the equality v(0) = lλ(Θ̂) = −v?(D̂) is possible.

If (Θ̂, D̂) ∈ Sm × {‖〈〈X, • 〉〉+ 〈〈 • , X〉〉‖op ≤ 2λ} is a minimizing/maximizing pair, then

0 =
[
f(XΘ̂) + g(Θ̂)

]
+
[
f?(D̂) + g?(Ĝ)

]
=
[
f(XΘ̂) + f?(D̂)− 〈XΘ̂, D̂〉

]
+
[
g(Θ̂) + g?(Ĝ)− 〈XΘ̂,−D̂〉

]
,

wherein Ĝ = −(〈〈X, D̂〉〉 + 〈〈D̂,X〉〉)/2. The Fenchel-Young inequality together with

〈XΘ̂,−D̂〉 = 〈Θ̂, Ĝ〉 implies that the latter two summands are generally nonnegative.
Consequently, both summands equal zero, and the two pairs of optimality conditions

D̂ ∈ ∂f(XΘ̂) =
{
XΘ̂−Y

µ̄

}
,

Ĝ = − 〈〈X,D̂〉〉+〈〈D̂,X〉〉
2

∈ ∂g(Θ̂)
and

XΘ̂ ∈ ∂f?(D̂) = {µ̄D̂ + Y } ,
Θ̂ ∈ ∂g?

(
Ĝ
)

= ncone({‖ • ‖op ≤ λ}, Ĝ)
<3.4>

hold. The second twin in <3.4> follows from f and g being convex functions on the open
sets W×m and Sm, respectively. More specifically, these properties guarantee f = f??
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and g = g??, wherein f?? and g?? equal the biconjugate functions of f and g, respectively.
Panel (B) of figure 3.5 reflects the first pair of necessary conditions: if W = R and X
equals the identity, then an optimal D̂ provides a subgradient of f at the corresponding
minimizer Θ̂ and at the same time −D̂ lies in the subdifferential ∂g(Θ̂).

The conditions in <3.4> are also sufficient in the sense that if (Θ̂, D̂) ∈ Sm×W×m sat-
isfies either set of conditions, then this pair is minimizing/maximizing. More specifically,
either of its lower parts implies ‖Ĝ‖op ≤ λ, wherein Ĝ = −(〈〈X, D̂〉〉+ 〈〈D̂,X〉〉)/2. In fact,

if the lower part on the lefthand side of<3.4> holds, then λ‖Θ‖nuc ≥ λ‖Θ̂‖nuc+〈Ĝ,Θ−Θ̂〉
for all Θ ∈ Sm. Corollary 2.6 guarantees the existence of Θ′ ∈ {‖ • ‖nuc = 1} with

〈Θ′, Ĝ〉 = ‖Ĝ‖op and thus λ‖Θ̂‖nuc + λ ≥ λ‖Θ̂ + Θ′‖nuc ≥ λ‖Θ̂‖nuc + 〈Ĝ,Θ′〉. In case of
the righthand conditions, this inequality holds since subgradients exists only at points
where g? is defined. Furthermore, either pair in <3.4> implies the first equality in the
display above <3.4>. Hence, the (in)equalities 0 = lλ(Θ̂) + v?(D̂) ≥ v(0) + v?(D̂) ≥ 0

ensure via <3.2> that Θ̂ and D̂ are optimal in <3.1> and <3.3>, respectively.

3.2.3. The least-squares solution set

Section 3.2.1 proofs the existence of a minimizer of the objective function lλ in <3.1>,
that is, an element Θ̂ ∈ Sm with lλ(Θ̂) ≤ lλ(Θ) for all Θ ∈ Sm. This section characterizes
the set of minimizers of lλ, which is denoted by argminΘ∈Sm lλ(Θ) as in section 3.1.2.

The conjugate f? : W×m → R in lemma 3.4 is convex by construction. Its form
implies differentiability with ∂f?(D) = {µ̄D + Y } and thereby strict convexity. The
restriction of f? to the set {‖〈〈X, • 〉〉 + 〈〈 • , X〉〉‖op ≤ 2λ} inherits this property, and
therefore exhibits at most one minimizer. Consequently, the second component of any
minimizing/maximizing pair (Θ̂, D̂) is uniquely determined. The upper parts of <3.4>

ensure that XΘ̂ = µ̄D̂ + Y is, too. In particular, any two minimizers Θ̂, Θ̂′ of <3.1>

provide boundary points of the nuclear norm ball {‖ • ‖nuc ≤ ˆ̀} with radius

ˆ̀= ‖Θ̂‖nuc = ‖Θ̂′‖nuc =
1

λ

[
inf

Θ∈Sm
lλ(Θ)− 1

2µ̄
‖Y −XΘ̂‖2

]
=

1

λ

[
inf

Θ∈Sm
lλ(Θ)− 1

2µ̄
‖Y −XΘ̂′‖2

]
.

If ˆ̀= 0, then the unique minimizer Θ̂ amounts to the m×m zero matrix. Otherwise,
the lefthand side of <3.4> together with lemma 3.2 implies that Ĝ = −(〈〈X, D̂〉〉 +

〈〈D̂,X〉〉)/2 exhibits ‖ • ‖op-length λ and that 〈Ĝ, Θ̂〉 = λˆ̀ for every minimizer Θ̂ of lλ.

The latter together with the requirement XΘ̂ = µ̄D̂ + Y leads to the assertion of
lemma 3.5. Its proof starts on page 81 in appendix 3.b.

Lemma 3.5. The least-squares criterion lλ exhibits a unique minimizer Θ̂ if ker(Ĝ ∓
λ id) ∩ kerX = {0}, wherein id symbolizes the identity map on Rm.

The condition of lemma 3.5 is generally satisfied. In fact, if u ∈ ker(Ĝ−λ id)∩ kerX,
then λu = Ĝu = −〈〈X, D̂〉〉u/2 ∈ img 〈〈X, • 〉〉 = (kerX)⊥, thus, u = 0. The case u ∈
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Figure 3.6
The figure shows a selection of rank one boundary points of {‖ • ‖nuc ≤ `} ⊂ S2, ` > 0, and the
differences of elements of the same exposed face of {‖ • ‖nuc ≤ `}. The two ellipses in panel (A)
consist of the rank one boundary points. The panel also contains the spans of a selection
of these matrices (represented by dots). Panel (B) shows two pairs (Θ̂, Θ̂′) and (Θ̂′′, Θ̂′′′)—
each lying in an exposed face—alongside their component differences. In addition, the panel
indicates the solution set of a linear equation. Both panels show coordinates with respect
to B̄1,1, B̄1,2, B̄2,2; see (c) (section 2.1.1). Panel (A) omits the coordinate axes for visual clarity.

ker(Ĝ+λ id)∩kerX is in analogy. Proposition 3.6 summarizes the preceding discussion.
A proof of this assertion starts on page 81 of appendix 3.b.

Proposition 3.6. The least-squares criterion lλ in <3.1> exhibits a unique minimizer Θ̂.
The latter equals zero if and only if ‖〈〈X, Y 〉〉+ 〈〈Y,X〉〉‖op ≤ 2µ̄λ.

From a geometric perspective, the lefthand side of <3.4> shows that argminΘ∈Sm lλ(Θ)

equals the intersection of the exposed face {Ĝ ∈ ncone(Bnuc, • )} of the nuclear norm
ball Bnuc = {‖ • ‖nuc ≤ ˆ̀} and the set of solutions {X • = µ̄D̂ + Y }.

If m = 2, then panel (A) of figure 3.6 indicates that the difference between two

distinct elements Θ̂ and Θ̂′ of the same exposed face has rank two. In fact, all rank
one matrices of ‖ • ‖-length ` > 0, that is, matrices of the form ±`uuT, ‖u‖ = 1, lie in
the upper and lower ellipse shown in that panel. This panel also shows the spans of a
selection—represented by dots—of these matrices. The neighboring panel (B) verifies

this observation for two pairs Θ̂ 6= Θ̂′ and Θ̂′′ 6= Θ̂′′′. Each of these pairs lies in an
exposed face of the ball {‖ • ‖nuc ≤ `}: the gray line connecting the two ellipses and the
area circumscribed by the upper ellipse. This observations is, however, incompatible
with ∆ = Θ̂− Θ̂′ ∈ kerX unless X equals zero. After all, the equality rk ∆ = 2 ensures
that its columns form a basis of R2. Panel (B) illustrates this point by showing part
of {X • = µ̄D̂ + Y } with X = (0, 1) and µ̄D̂ + Y = (0, 1).
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3.3. A gradient descent algorithm

An ε-almost minimizer, ε > 0, of lλ in <3.1> can be calculated via an iterative search
procedure. Each iteration of the latter consists of two steps focusing on the first sum-
mand f ◦X = ‖Y −X • ‖2/(2µ̄) of lλ and its second summand g = λ‖ • ‖nuc, respectively.

In the k(≥ 1)-th step, the former turns the search point Θ̂(k−1) generated by the previous

step into an intermediate Θ̃(k) ∈ Sm with (f ◦ X)(Θ̃(k)) ≤ (f ◦ X)(Θ̂(k−1)). The latter

step adjusts Θ̃(k) to the presence of the second summand g and thereby generates a new
search point Θ̂(k) such that lλ(Θ̂

(k)) ≤ lλ(Θ̂
(k−1)). Proposition 3.7 asserts that the result-

ing recipe <3.7> generates ε-almost minimizers of lλ for any given ε > 0. If ‖X‖op = 0,

then the minimizer Θ̂ is given by the m × m zero matrix. Consequently, no iterative
search is needed. The subsequent discussion assumes ‖X‖op > 0.

The update Θ̃(k) = Θ̂(k−1) + ∆ by ∆ ∈ Sm in the first step derives from

(f ◦X)(Θ̂(k−1) + ∆) = ‖Y −X(Θ̂(k−1) + ∆)‖2/(2µ̄)

= (f ◦X)(Θ̂(k−1)) + 〈−G̃(k),∆〉+ ‖X∆‖2/(2µ̄) , <3.5>

wherein G̃(k) = −(〈〈X, D̃(k)〉〉+〈〈D̃(k), X〉〉)/2 and D̃(k) = (XΘ̂(k−1)−Y )/µ̄ resemble <3.4>.

The equality ‖X∆‖2 ≤ ‖X‖2
op‖∆‖2 identifies −G̃(k) as the gradient ∇(f ◦ X)(Θ̂(k−1))

of f ◦ X at Θ̂(k−1). Convexity of f ◦ X ensures ∂(f ◦ X)(Θ̂(k−1)) = {−G̃(k)}. The

resulting inequality (f ◦ X)(Θ̂(k−1) + ∆) ≥ (f ◦ X)(Θ̂(k−1)) − 〈G̃(k),∆〉 reveals that an
update of the form αG̃(k), α > 0, allows for the possibility of a decrease of f ◦ X. In
fact, a suitable choice of α > 0 ensures that an update of the form Θ̃(k) = Θ̂(k−1) +
∆ = Θ̂(k−1) + αG̃(k) accords with the above objective. More specifically, <3.5> implies
(f ◦X)(Θ̂(k−1) + αG̃(k)) ≤ (f ◦X)(Θ̂(k−1)) + α

[
α‖X‖2

op/(2µ̄)− 1
]
‖G̃(k)‖2, and therefore

(f ◦X)(Θ̃(k)) ≤ (f ◦X)(Θ̂(k−1)) whenever 0 < α ≤ 2µ̄/‖X‖2
op.

The second step considers the special case l
(k)
λ of the criterion lλ in <3.1> with W =

Rm, X being the canonical embedding of Sm into Rm×m, Y = Θ̃(k) ∈ Sm ⊂ Rm×m,
and µ̄ = α. That is, l

(k)
λ (Θ) = ‖Θ̃(k) − Θ‖2/(2α) + λ‖Θ‖nuc. The unique Θ̂(k) ∈ Sm

minimizing l
(k)
λ exhibits a traceable form. In fact, the corresponding dual solution D̂(k) =

(Θ̂(k)−Θ̃(k))/α is symmetric and therefore Ĝ(k) = −D̂(k). By proposition 3.6 and <3.4>,

one of the following two cases applies. If ‖Θ̃(k)‖op ≤ αλ, then Θ̂(k) = 0. Otherwise, the

unique minimizer is characterized by ‖Θ̃(k) − Θ̂(k)‖op = αλ, that is, Ĝ(k) is a boundary

point of {‖ • ‖op ≤ λ}, and 〈Θ̂(k), Θ̃(k) − Θ̂(k)〉 = αλ‖Θ̂(k)‖nuc, that is, Θ̂(k) lies in the

normal cone of {‖ • ‖op ≤ λ} at Ĝ(k). If
∑

i≤rk Θ̃(k) siσivi〈vi, • 〉, si ∈ {±1}, denotes a

spectral decomposition of Θ̃(k), then Θ̄ =
∑

i≤rk Θ̃(k) si max{σi − αλ, 0}vi〈vi, • 〉 satisfies

‖Θ̃(k) − Θ̄‖op =
∥∥∥∑

i≤rk Θ̃(k)
si
[
σi −max{σi − αλ, 0}

]
vi〈vi, • 〉

∥∥∥
op

= αλ and

〈Θ̄, Θ̃(k) − Θ̄〉 =
∑

i,j≤rk Θ̃(k)
sisj max{σj − αλ, 0}

[
σi −max{σi − αλ, 0}

]
〈vi, vj〉2

= αλ
∑

i≤rk Θ̃(k)
max{σi − αλ, 0} = αλ‖Θ̄‖nuc
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and therefore Θ̂(k) = Θ̄. The latter equality is also true if ‖Θ̃(k)‖op ≤ αλ.
The (optimality) properties of both steps ensure that any Θ ∈ Sm satisfies

lλ(Θ) ≥
[
(f ◦X)(Θ̂(k−1)) + 〈−G̃(k),Θ− Θ̂(k−1)〉

]
+
[
g(Θ̂(k)) + 〈Ĝ(k),Θ− Θ̂(k)〉

]
= lλ(Θ̂

(k))− ‖X(Θ̂(k) − Θ̂(k−1))‖2

2µ̄
+ 〈−G̃(k),Θ− Θ̂(k)〉+ 〈Ĝ(k),Θ− Θ̂(k)〉

≥ lλ(Θ̂
(k))−

‖X‖2
op

2µ̄
‖Θ̂(k) − Θ̂(k−1)‖2 +

1

α
〈Θ̂(k−1) − Θ̂(k),Θ− Θ̂(k)〉 <3.6>

wherein the first equality amounts to an application of <3.5> with ∆ = Θ̂(k) − Θ̂(k−1).
The second inequality utilizes Θ̃(k) = Θ̂(k−1) + αG̃(k) and Ĝ(k) = (Θ̃(k) − Θ̂(k))/α, which
is due to the choice of the scaling parameter in second part. Using <3.6> together with
the choice Θ = Θ̂(k−1) implies lλ(Θ̂

(k)) ≤ lλ(Θ̂
(k−1)) whenever 0 < α ≤ 2µ̄/‖X‖2

op.
The recipe <3.7> considers the choice α = µ̄/‖X‖2

op and starts at the zero matrix. The

k-th iteration calculates the primal criterion pk−1 = lλ(Θ̂
(k−1)) at its starting point Θ̂(k−1)

as well as a corresponding dual value dk−1. If D̃(k) lies in {‖〈〈X, • 〉〉+ 〈〈 • , X〉〉)‖op ≤ 2λ},
then dk−1 equals the dual objective −f? in <3.3> at D̃(k). Otherwise, −f? is evaluated at
the surrogate λD̃(k)/‖G̃(k)‖op. This choice implies 0 ≤ lλ(Θ̂

(k−1))− lλ(Θ̂) ≤ pk−1 − dk−1,

wherein Θ̂ denotes the unique minimizer of lλ. If pk−1 − dk−1 < ε holds, then no
improvement beyond ε is possible, and the search terminates. Otherwise, the next
search point Θ̂(k) derives from a spectral decomposition

∑
i≤rk Θ̃(k) siσivi〈vi, • 〉 of Θ̃(k).

1 Θ̂(0) = 0 , α = µ̄/‖X‖2
op , η0 = 0

2 for k ≥ 1

3 D̃(k) = (XΘ̂(k−1) − Y )/µ̄

4 G̃(k) = −(〈〈X, D̃(k)〉〉+ 〈〈D̃(k), X〉〉)/2
5 pk−1 = µ̄‖D̃(k)‖2/2 + ληk−1

6 if ‖G̃(k)‖op > λ

7 dk−1 = −f?(λD̃(k)/‖G̃(k)‖op)
8 else

9 dk−1 = −f?(D̃(k))

10 if pk−1 − dk−1 < ε

11 break

12 Θ̃(k) = Θ̂(k−1) + αG̃(k) =
∑

i≤rk Θ̃(k) siσivi〈vi, • 〉
13 Θ̂(k) =

∑
i≤rk Θ̃(k) si max{σi − αλ, 0}vi〈vi, • 〉

14 ηk =
∑

i≤rk Θ̃(k) max{σi − αλ, 0}

<3.7>

In case ‖〈〈X, Y 〉〉 + 〈〈Y,X〉〉‖op ≤ 2µ̄λ, that is, Θ̂ = 0, then <3.7> terminates during the
first iteration. In general, proposition 3.7 guarantees that the criterion in line 10 of <3.7>
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is met after finitely many iterations. Its proof starts on page 81 in appendix 3.b.

Proposition 3.7. Let (Θ̂(k))k∈N denote a sequence generated by <3.7>. Then

lλ(Θ̂
(k))− lλ(Θ̂) ≤

‖X‖2
op‖Θ̂‖2

2µ̄k
.

Hence, Θ̂(k) → Θ̂ as k →∞ and pk − dk < ε is eventually met for any ε > 0.

Quantitative statements on the speed of convergence of Θ̂(k) to Θ̂ require some infor-
mation on the curvature of lλ such as strong convexity of its first summand.

3.4. A poor man’s factor model

3.4.1. Temporal dependence

This section considers the span W of a finite sequence of P-square integrable random
variables vt,j defined on a probability space (Ω,F,P) and with the index (t, j) ranging
over a subset Iv of N×N. The inner product 〈 • , • 〉 is given by the P-expectation Exy =∫
x(ω)y(ω)P(dω) = 〈x, y〉 of the product xy—as in example (e) of sections 2.1 and 2.4.1—

and equips this linear space with a Euclidean geometry such that vt,j, (t, j) ∈ Iv, form
an orthonormal basis of W . Additional random variables xt,j with (t, j) ranging over a
subset Ix of N×N result as linear combinations of the basis elements vt,j, (t, j) ∈ Iv. This
setup allows a formal representation as at the end of appendix 2.a. For now, the vector
α ∈ Rk, k ∈ N, gathers all coordinates of xt,j, (t, j) ∈ Ix, with respect to vt,j, (t, j) ∈ Iv.
Section 3.5 focuses on the task of estimating a transformation Θ∗ ∈ Sm of α using a
single realization—the data—xt,j(ω), (t, j) ∈ Ix, and knowledge of the overall structure
including that α lies in a subset M ⊂ Rk. In this framework, a successful (relative to M)
estimation strategy approximately recovers the respective transformation Θ∗(α

′) from
data generated using α′ ∈M irrespective of the particular value of α′ ∈M.

The space W is spanned by random variables vt,j. Herein, the first index t ranges
from 1− l to n for j ≤ h and from one to n for h+ 1 ≤ j ≤ m for some m,n ∈ N, l ≥ 0,
and 0 ≤ h ≤ m. These random variables are independent and with zero mean Evt,j = 0
as well as Ev2

t,j = 1, thus, form an orthonormal basis of W . The data used in the
following sections equal one realization of the columns of Xt = [xt,1 · · · xt,m] given by

Xt = FtU
T
1 + ρVt,2U

T
2

Ft = [ft,1 · · · ft,h] = Vt,1A0 +
∑

i≤l
Vt−i,1Ai

, 1 ≤ t ≤ n . <3.8>

Herein, Vt,1 = [vt,1 · · · vt,h], 1 − l ≤ t ≤ n, and Vt,2 = [vt,h+1 · · · vt,m], 1 ≤ t ≤ n.
In addition, A0, . . . , Al ∈ Rh×h are diagonal matrices, ρ > 0, and the columns of U =
[U1 U2] = [u1 . . . uh uh+1 . . . um] form an orthonormal basis of Rm. If h > 0, then all
diagonal entries of A0 as well as at least one diagonal entry of Al are nonzero. The former
requirement guarantees that xt,j are linearly independent; the latter gives meaning to l.
Finally, if h = 0, then all quantities related to the first summand of Xt and, in particular,
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x1,1 . . . x1,m

x2,1 . . . x2,m

...
. . .

...

xn,1 . . . xn,m

f1,1 . . . f1,h

f2,1 . . . f2,h

...
. . .

...

fn,1 . . . fn,h

v1−l,h . . .

v2−l,h . . .

...
. . .

v1,h . . .

v2,h . . .

...
. . .

vn,h . . .

. . . v1,h+1

. . . v2,h+1

. . .
...

. . . vn,h+1

Observables Factors

Factor basis elements

Non-factor
basis elements ti

m
e

space

Figure 3.7
The figure illustrates the construction of xt,1, . . . , xt,m in <3.8> as linear combinations of the
basis elements vt,h+1, . . . , vt,m and the factors ft,1, . . . , ft,h. Herein, the case h = 0 (no factors)
is allowed, but the figure concerns the case 1 < h < m. The factors equal linear combinations
of a “rolling window” of the basis elements vt,j , j ≤ h, with identical second index j. Dashed
lines surround the columns of Xt and Ft, respectively.

the second equation of the specification <3.8> disappear. Then, xt,1, . . . , xt,m are even
mutually orthogonal. Below, this extreme case usually receives—but also requires—no
explicit mention in order to simplify the exposition. The same applies to the case h = m
which eliminates all quantities related to second summand of Xt such as U2 and ρ.

The random variables xt,j, (t, j) ∈ Ix, represent a (numerical) characteristic—referred
to as x—of m spatial entities at n points in time. In particular, the first index t in-
dicates the respective time point; the second index j points to the location in space.
This interpretation suggests calling the subspaces imgXt−1 and img [Xt−1 · · · X1] the
recent past and the past of x at t > 1, respectively. Elements of the innovation
space span{vt,1, . . . , vt,m} at t lie in the orthogonal complement of the past of x at t. Their
part in span{vt,h+1, . . . , vt,m} exerts only momentary influence. In contrast, vt,1, . . . , vt,h
enter in the construction of the factor

factor
s ft,1, . . . , ft,h at t and thereby impact the columns

of Xt+1, . . . , Xn. These factors ft,1 = Xtu1, . . . , ft,h = Xtuh lie in imgXt by virtue of
the (pairwise) orthogonality of the columns of U = [U1 U2] = [u1 . . . uh uh+1 . . . um].

Each factor sequence f1,j, . . . , fn,j, j ≤ h, embodies one of a small number—h is
thought to be “much smaller” than m—of underlying determinants of x. The ele-
ments f1,j, . . . , fn,j of the j-th factor sequence equal linear combinations of overlapping
subsets of the basis elements v1−l,j, . . . , vn,j. Thus, the factor variables ft,j are generally
independent across j ≤ h but dependent across the time index t ≤ n unless l = 0. Fig-
ure 3.7 contains a visual summary of the construction in <3.8> for the case 1 < h < m,
and, in particular, highlights the overlap of the subsets of basis elements v1−l,h, . . . , vn,h
needed to construct the members of the h-th factor sequence f1,h, . . . , fn,h.

The coefficient matrices U1 and U2 govern the dependence among the columns of Xt
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and are discussed in more detail in section 3.4.2. The equality A0 = ρI generates a
notable special case. Herein, I = [e1 · · · eh] denotes the h×h identity matrix, and (thus)
e1, . . . , eh symbolizes the standard basis of Rh. Then, the specification <3.8> becomes

Xt =

[∑
i≤l

Vt−i,1Ai

]
UT

1 + ρ [Vt,1 Vt,2]

(
UT

1

UT
2

)
, 1 ≤ t ≤ n , <3.9>

wherein the first term disappears if l = 0. Moreover, the columns of the final term,
which equals a scaled composition of unitary maps, amount to m pairwise orthogonal
elements of the innovation space (at t) of length ρ. These columns represent idiosyncratic
innovations to the individual xt,j. In particular, U1 controls the entire spatial—across j—
Euclidean space dependence between the observables xt,1, . . . , xt,m.

Many properties of the setting in <3.8> are reflected by the implied (unordered)
spectral decompositions of the symmetric inner product matrices 〈〈Xt, Xt−s〉〉 given by

〈〈Xt, Xt−s〉〉 =


U
(∑l

i=0 A
2
i

ρ2I

)
UT , s = 0 ,

U1(
∑l−s

i=0AiAi+s)U
T
1 , 0 < s ≤ min{l, t− 1} ,

m×m zero matrix , s > min{l, t− 1} .

<3.10>

Firstly, time invariance of the coefficients in <3.8> ensures the absence of t on the right-
hand side of <3.10>. Secondly, the inner product matrices 〈〈Xt, Xt−s〉〉 are symmetric
due to the specific separation of time and space dependence. Thirdly, if s > 0, then
rk 〈〈Xt, Xt−s〉〉 does not exceed the number of factors h, which provide the sole link across t.

These properties become evident when projecting the elements xt,1, . . . , xt,m, 1 < t ≤
n, onto the recent past imgXt−1 of x. In fact, the coordinate matrix Θ∗ with respect
to Xt−1 of the composition PimgXt−1Xt = Xt−1Θ∗ coincides for all t ≥ 2. It is uniquely
determined by the condition 〈〈Xt−1, Xt−1〉〉Θ∗ = 〈〈Xt−1, Xt〉〉, thus, equals

Θ∗ = U1Γ∗U
T
1 = U1

[(∑l

i=0
A2
i

)−1∑l−1

i=0
AiAi+1

]
UT

1 , <3.11>

wherein the superscript −1 marks the inverse of (the bijective linear map)
∑l

i=0 A
2
i . The

(bracketed) diagonal matrix Γ∗ ∈ Rh×h provides the coordinates in PimgFt−1Ft = Ft−1Γ∗.
If either h = 0 or h > 0 together with l = 0, then the Θ∗ equals the m×m zero matrix.

If h ≥ 1 and l ≥ 1, then these considerations lead to the alternative representation

Xt = Xt−1Θ∗ +
[
Ht +Rt

]
= Xt−1Θ∗ + Ēt , <3.12>

Ht =

(∑
i≤l
Vt−i,1(Ai − Ai−1Γ∗)− Vt−l−1,1AlΓ∗

)
UT

1 , 2 ≤ t ≤ n ,

Rt = [Vt,1 Vt,2]

(
A0

ρI

)(
UT

1

UT
2

)
.

The inner product matrix 〈〈Xt−s, Rt〉〉 has all its entries equal to zero if s ≥ 1. If l > 0,
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then the same applies to 〈〈Xt−s, Ht〉〉 for s = 1 but generally fails for t ≥ 3 and 2 ≤
s ≤ min{l + 1, t − 1} as elements of imgHt are not contained in the innovation space
at t. However, if A0 = ρI, Ai = ρDi, 1 ≤ i ≤ l, for some diagonal matrix D ∈ Rh×h

with diagonal entries |di,i| < 1, then elements of img Ēt approach the subspace imgRt

of the innovation space as l → ∞. More specifically, one may consider a sequence of
Euclidean spaces of the above type—indexed by k ∈ N—such that l = lk increases in
parallel with the sequence index k. No further definition is required as m is shared across
these spaces, and Ai = ρDi is valid for all i ∈ N. Then all of these spaces come with a
measure of distance supx∈img Ēt∩{‖ • ‖=1}‖P(imgRt)⊥x‖, and the sequence of these distances
approaches zero. Moreover, this case features the equality A0 = ρI, thus, is a special
case of <3.9> and therefore exhibits 〈〈Rt, Rt〉〉 = ρ2I. In the above “asymptotic” sense,
the symmetric matrix Θ∗ controls the transition from the recent past to the present and
is therefore called the transition matrix

transition
matrix. If l = 0, then Xt = Rt. Thus, the transition

matrix Θ∗ is zero, and these considerations are meaningless.

3.4.2. Spatial dependence

Figure 3.7 proposes two views on the observables: firstly, as m time series
time series

x1,j, . . . , xn,j
(dotted lines), that is, sequences of random variables indexed by time, and, secondly,
as n random fields random fieldsxt,1, . . . , xt,m (dashed lines)—sequences of random variables indexed
by space. From a constructional point of view, the presentation in <3.8> stresses the
first of these interpretations: the observable time series result as linear combinations
of the factor time series f1,j, . . . , fn,j, j ≤ h, and the non-factor time series v1,j, . . . ,
vn,j, h + 1 ≤ j ≤ m. The random vectors xt = (xt,1, . . . , xt,m), t ≤ n, facilitate
a presentation stressing the second interpretation. More specifically, expressing the
relations <3.8> in terms of these random vectors and the similarly defined random
vectors ft = (ft,1, . . . , ft,h), v

(1)
t = (vt,1, . . . , vt,h), and v

(2)
t = (vt,h+1, . . . , vt,m) leads to

xt = U1ft + ρU2v
(2)
t

ft = A0v
(1)
t +

∑
i≤l
Aiv

(1)
t−i

, t ≤ n , <3.13>

wherein the second summand of the second equation is present only if l > 0. In par-
ticular, the formulation in <3.13> emphasizes that realizations xt(ω) ∈ Rm, given by(
xt,1(ω), . . . , xt,m(ω)

)
, of the random vectors xt consist of two mutually orthogonal parts.

The first part U1ft(ω) =
∑

j≤h ft,j(ω)uj reflects the influence of the factors. The second

part ρU2v
(2)
t (ω) =

∑m
j=h+1 ρvt,j(ω)uj captures deviations associated with the specific

time point t. In particular, the columns u1, . . . , uh of U1 may be understood as h
“spatial patterns” whose strengths at time t is determined by ft,1, . . . , ft,h, respectively.

These patterns u1, . . . , uh amount to functions—as explained in example (a) of sec-
tion 2.1.1—on the space index set {1, . . . ,m}. Herein, some form of smoothness of
the “spatial patterns” uj is expected. Squared difference quotients of the form

(
uj(i

′)−
uj(i)

)2/
dist(i′, i)2 =wi′,i(ui′,j−ui,j)2, i′ 6= i, measure their roughness, wherein dist(i′, i) =

dist(i, i′) and wi′,i ≥ 0 denote a symmetric notion of distance between locations i′ and i
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and the square of its reciprocal, respectively. The subsequent discussion refers to dist
only through wi,i′ = wi′,i, i 6= i′. In fact, the role of dist is to facilitate the interpretation,
and using wi,i′ = 0 to represent “infinite distance” introduces no technical complications.

If one sets wi,i = 0 for all i ≤ m, then the integral of the difference quotients corre-
sponding to a fixed j ≤ h with respect to the product (counting) measure on {1, . . . ,m}×
{1, . . . ,m} may be expressed in the form

∑
i′,i≤mwi′,i(ui′,j − ui,j)2 = 2〈uj,Λuj〉, wherein

the matrix Λ is defined in the following display. This equality implies that

Λ =


∑

i′≤mwi′,1
. . . ∑

i′≤mwi′,m

−


0 w1,2 . . . w1,m

w1,2 0 . . . w2,m
...

...
. . .

...
w1,m w2,m . . . 0

 <3.14>

is positive semidefinite and is subsequently assumed to be nonzero, that is, at least
one pair i, j ≤ m exhibits finite distance. The form of Λ implies (1, . . . , 1) ∈ ker Λ,
which fits the role of u 7→ 〈u,Λu〉 as a measure of roughness and reveals rk Λ < m. More
precisely, one has rk Λ = inf

{
m−k

∣∣ there exists a partition C1, . . . , Ck of {1, . . . ,m} with
i ∈ Cs 63 i′ ⇒ wi,i′ = 0

}
. In fact, the infimum m− k∗ is attain due to the well-ordering

principle. If C1, . . . , Ck∗ form a corresponding partition, aj =
∑

i∈Cj ei, j ≤ k∗, and R

provides a Cholesky factor of Λ, then ‖Raj‖2 = 〈aj,Λaj〉 = 1
2

∑
i,i′≤mwi,i′(ai,j−ai′,j)2 = 0

as i ∈ Cs, i
′ ∈ Ct with either s = t and therefore ai,j = ai′,j or s 6= t and therefore

wi,i′ = 0. Conversely, if a ∈ Rm exhibits entries ai 6= ai′ with wi,i′ 6= 0, then 〈a,Λa〉 > 0.
Due to its symmetry, Λ exhibits a spectral decomposition Λ =

∑
i≤rk Λ σi(Λ)oi〈oi, • 〉,

wherein o1, . . . , ork Λ represents an orthonormal sequence of singular vectors of the
form given in lemma 2.4. In this notation, the suggested measure of roughness of uj
equals ‖Λ1/2uj‖2, wherein Λ1/2 =

∑
i≤rk Λ σ

1/2(Λ)oi〈oi, • 〉 does not depend on the par-
ticular choice of singular vectors. The same applies to the alternative roughness matrix
Λq/2 =

∑
i≤rk Λ σ

q/2(Λ)oi〈oi, • 〉, wherein q > 0 allows adjustment of the weights σ
q/2
i (Λ)

for a given distance. More specifically, q < 1 downplays differences in the singu-
lar values; q > 1 amplifies these differences. In addition, symmetry and img Λ =
span{o1, . . . , ork Λ} = img Λq/2 ensure that ker Λ = ker Λq/2 and rk Λq/2 < m, for all q > 1.
The sum ‖Λq/2U1‖2 =

∑
j≤h‖Λq/2uj‖2 measures the total roughness of the (spatial) pat-

terns uj. The alternative quantity ‖Λq/2Θ∗‖2 amounts to a weighted sum—with weights
equal to the squared diagonal entries of Γ∗—of the individual roughness terms ‖Λq/2uj‖2.

Any valid choice for the above sequence o1, . . . , ork Λ of singular vectors for Λ can be
extended to an orthonormal basis o1, . . . , om of Rm. If rk Λ < m− 1 or if dim ker

(
Λ±

σ̄j(Λ) id
)
> 1 for some j, wherein σ̄j(Λ) and id denote the j-th distinct singular value of Λ

and the identity map on Rm, respectively, then—according to section 2.5.4—the choice
of singular vectors and ork Λ+1, . . . , om involves some ambiguity beyond sign choices.
However, these arbitrary choices are practically immaterial to the subsequent discussion
as they do not affect the key quantities derived from the chosen basis. Two observations
are essential in this regard. Firstly, one has span{o1, . . . , ork Λ} = (ker Λ)⊥ = img Λ.
Secondly, positive semidefiniteness of Λ implies ker

(
Λ + σ̄j(Λ) id

)
= {0} for all distinct
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singular vectors. Hence, L⊥k = span{o1, . . . , ok−1}, 1 < k ≤ rk Λ + 1, is unequivocal
whenever either k = rk Λ + 1 or 1 < k ≤ rk Λ together with σk−1(Λ) > σk(Λ).

Every orthonormal basis o1, . . . , om of Rm induces—comparable to ei and B̄i,j in
examples (a) and (c) of section 2.1.1—an orthonormal basis Ōi,j, i ≤ j ≤ m, of Sm,
which is given by Ōi,i = oio

T
i and Ōi,j = (oio

T
j + ojo

T
i )/
√

2 for i < j. In terms of the
latter, a “small”—relative to the other parameters such as A0, . . . , Al, and ρ—value
of ‖Λ1/2Θ∗‖2 corresponds to the transition matrix Θ∗ being close to k-model space

k-model space

Vk = span{Ōi,j | j ≥ i ≥ k} = {A ∈ Sm | imgA ⊂ Lk} , Lk = span{ok, . . . , om} ,

for some “large” k ∈ N. The latter is herein restricted to k ≤ rk Λ + 1 ≤ m with
σk−1(Λ) > σk(Λ) if 1 < k ≤ rk Λ to ensure an unambiguous definition. In general, the
proximity of Θ∗ to Vk may be expressed in terms of the residual length ‖PV ⊥k Θ∗‖2 =

‖Θ∗ −
∑

j≥i≥k〈Θ∗, Ōi,j〉Ōi,j‖, which should be “small” relative to ‖Θ∗‖.

3.5. Transition matrix estimation

3.5.1. Estimation strategy

This section considers a single realization xt,j(ω), t ≤ n, j ≤ m, henceforth called
the data, of corresponding random variables xt,j. These random variables are linear
combinations as in <3.8> of an orthonormal basis vt,j, (t, j) ∈ Iv, consisting of P-square
integrable random variables defined on a probability space (Ω,F,P). Hence, the strategy
of appendix 2.a may be used to build at a formal model. Furthermore, the assertions of
this and the next section concern only the linear relations of elements of span{vt,j | (t, j) ∈
Iv} and are therefore valid for all choices of the basis element representatives. The inner
product has the form 〈x, y〉 = Exy =

∫
x(ω)y(ω)P(dω); however, this Euclidean space

structure has no explicit role in the upcoming investigation. Therein, the coordinates
A0, . . . , Al, ρ, and U1, U2 as well as h, l ≥ 0 are considered unknown, but satisfy the
restriction that all diagonal entries of A0 as well as at least one diagonal entry of Al are
nonzero. The case h = 0 is possible, and then the factor related quantities disappear.

The ultimate goal is to estimate the transition matrix Θ∗ in <3.11> using the above
data. The estimate Θ̂ used here takes the form of the unique minimizer of

Sm 3 Θ 7→ 1

2(n− 1)
‖Y −XΘ‖2 + λ‖Θ‖nuc + ξ‖Λq/2Θ‖2

=
1

2(n− 1)

∥∥∥∥(Y)− ( X√
2(n− 1)ξΛq/2

)
Θ

∥∥∥∥2

+ λ‖Θ‖nuc ,
<3.15>

wherein λ, ξ > 0 control the relative importance of the second and third summand,

Y =

x2,1(ω) . . . x2,m(ω)
...

. . .
...

xn,1(ω) . . . xn,m(ω)

 , X =

 x1,1(ω) . . . x1,m(ω)
...

. . .
...

xn−1,1(ω) . . . xn−1,m(ω)

 ,
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• 1,1 . . . • 1,k−1 • 1,k . . . • 1,m

. . .
...

...
. . .

...
• k−1,k−1 • k−1,k . . . • k−1,m

• k,k . . . • k,m

. . .
...

•m,m

space dimension

Vk `(`+ 1)/2

V ⊥k (m+ `+ 1)(m− `)/2

V̄k (m+ k)`/2

V̄ ⊥k (k − 1)k/2

`=m+1−k

V̄ ⊥k V ⊥k

Vk

V̄k

Figure 3.8
The figure shows an abstract set of coordinates • i,j with respect to the orthonormal basis Ōi,j
of Sm—defined in section 3.4.2—arranged in an upper triangular scheme and for 1 < k < m.
Solid gray lines and a gray background highlight coordinates associated with the k-model
space Vk as well as those associated with the orthogonal complement V̄ ⊥k of the extended model
space V̄k. Coordinates associated with V̄k and V ⊥k are encircled by dashed and dotted lines,
respectively. The table on the righthand side lists the dimensions of the four subspaces of Sm.

and Λq/2 is as explained below <3.14>, thus 1 ≤ rk Λ < m, for some given symmetric
notion dist of distance on {1, . . . ,m} and q > 0. The final term in <3.15> identifies the
present criterion as a special case of <3.1> in section 3.2.1. Thus, section 3.2.3 deals
with the above uniqueness assertion. Section 3.3 shows that this strategy is practicable.

The connection of the objective function <3.15> with the modeling of the previous
section is threefold. Firstly, the considerations surrounding <3.12> suggests that XΘ∗
should—at least in special cases and then for all ω in a P-large set—be a close substitute
to Y . In fact, the t-th row of X carries a realization of the columns of Xt, while the t-th
row of Y consists of the corresponding realization of the columns of Xt+1. Secondly, the
number of factors h being “small” relative to m implies that the transition matrix Θ∗
exhibits “low” rank. The second component λ‖ • ‖nuc encourages this property for the

estimate Θ̂. Lastly, section 3.4.2 shows that ‖Λq/2 • ‖2 provides a measure of smoothness
of singular vectors of a (symmetric) matrix—viewed as functions on ({1, . . . ,m}, dist),
which herein have the interpretation of basic “spatial patterns”. At a higher level, the ob-
jective function <3.15> amounts to the sum of a data-based term—the first summand—
and a structure-based term consisting of the second and third summand.

Section 3.5.2 derives conditions on X, Y ∈ Rn−1×m as well as λ, ξ > 0, which ensure
that ‖Θ∗− Θ̂‖ is “small”. The discussion is in terms of a specific data set, that is, point-
wise with respect to ω. Section 3.5.3 shows that these conditions hold for all ω ∈ S ∈ F,
wherein the probability PS is controlled by the number of time points n amongst others.

Section 3.4.2 observes that the structural assumptions—“low” rank and “smooth”
singular vectors—on Θ∗ roughly correspond to Θ∗ being close to the k-model space

Vk =
{
A ∈ Sm | imgA ⊂ Lk

}
= span{Ōi,j | j ≥ i ≥ k} , Lk = span{ok, . . . , om} ,
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Decomposable case

−B̄1,1/2 −B̄1,1

B̄2,2/2

B̄2,2 {‖ • ‖nuc≤1}{
‖ • ‖nuc≤

1
2

}

Non-decomposable case

B̄1,2/23/2 B̄1,2/
√

2

B̄2,2/2

B̄2,2
{‖ • ‖nuc≤1}{

‖ • ‖nuc≤
1
2

}

Figure 3.9
The figure visualizes the decomposability ‖Θ∗+ ∆‖nuc = ‖Θ∗‖nuc + ‖∆‖nuc for elements Θ∗ ∈
Vk and ∆ ∈ V̄ ⊥k with m = 2 as well as the possibility of non-decomposability in case ∆ ∈ V ⊥k .
Dashed and dotted lines indicate the ‖ • ‖nuc-unit- and ‖ • ‖nuc-1

2 -ball, respectively. Here,
o1 = e1, o2 = e2, and k = 2, thus, Vk = span{B̄2,2} and V̄ ⊥k = span{B̄1,1}, wherein ei and B̄i,j
denote standard basis elements of R2 and S2, respectively, as defined in section 2.1.1. The
righthand part shows a part of the relevant two dimensional cross-sections of the lefthand side.

for “large” k, wherein the orthonormal basis o1, . . . , om amounts to an extension of a
singular vector sequence o1, . . . , ork Λ for Λ, and Ōi,j equals oio

T
i if i = j or (oio

T
j +

ojo
T
i )/
√

2 if not, respectively. To avoid ambiguity, the k-model space is defined only for
k ≤ rk Λ + 1 ≤ m, wherein the second inequality follows from the definition of Λ which
implies rk Λ < m, and with σk−1(Λ) > σk(Λ) if 1 < k ≤ rk Λ. The same applies to the
extended k-model space extended

k-model spaceV̄k = span
{
Ōi,j | j ≥ max{i, k}

}
. Figure 3.8 arranges an abstract

coordinate sequence • i,j, i ≤ j, with respect to the orthonormal basis Ōi,j, i ≤ j, in a
triangular scheme and highlights the coordinates associated with the two types of model
spaces Vk and V̄k as well as their orthogonal complements for the case 1 < k < m; the
neighboring table lists the dimensions of the four subspaces Vk, V

⊥
k , V̄k, and V̄ ⊥k .

The extended k-model space further clarifies how <3.15> encourages Θ̂ to assume
the structure expected in the (unknown) transition matrix Θ∗. More specifically, the
minimization of this criterion function may be rephrased as the minimization of

l̄λ,ξ(∆) =
1

2(n− 1)
‖Ē −X∆‖2 + λ‖Θ∗ + ∆‖nuc + ξ‖Λq/2(Θ∗ + ∆)‖2 <3.16>

over ∆ ∈ Sm, which represents the deviation ∆ = Θ−Θ∗ of Θ from Θ∗, and consequently
Ē = Y − XΘ∗. This approach is practically infeasible as Θ∗ and thereby Ē are not
available. However, it is helpful in the present—purely theoretical—discussion.
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The orthogonal complement V̄ ⊥k = span{Ōi,j | i ≤ j < k} of the extended k-model
space gathers the directions which suffer the strongest opposition from the structure-
based part in <3.16> if Θ∗ ∈ Vk . Then, for every ∆ ∈ V̄ ⊥k the inequality

λ‖Θ∗+∆‖nuc+ξ‖Λq/2(Θ∗+∆)‖2 ≤
[
λ‖Θ∗‖nuc+ξ‖Λq/2Θ∗‖2

]
+
[
λ‖∆‖nuc+ξ‖Λq/2∆‖2

]
becomes an equality. Figure 3.9 visualizes this property for the first summand λ‖Θ∗ +
∆‖nuc and the case m = 2, Θ∗ ∈ span{B̄2,2}, B̄2,2 = ( 1 ). It also highlights the con-
nection with the facial structure of {‖ • ‖nuc ≤ 1} discussed in section 3.1.1. In addition,
this figure exemplifies the possibility of strict inequality for ∆ ∈ V ⊥k . Consequently, the
consideration of V̄k ⊃ Vk and thereby V̄ ⊥k ⊂ V ⊥k is essential in this regard.

The relation between the orthonormal basis elements oj and Ōi,j translates into a
relation between the orthogonal projector PLk with Lk = span{ok, . . . , om} and PVk as
well as PV̄k , respectively. More specifically, if A ∈ Sm, then

A = (PLk+PL⊥k )A(PLk+PL⊥k ) =

PVkA︷ ︸︸ ︷
PLkAPLk +PLkAPL⊥k + PL⊥k APLk︸ ︷︷ ︸

PV̄k
A

+PL⊥k APL⊥k . <3.17>

Therein, terms of the type PLkAPLk embody compositions of linear maps Rm → Rm.
In contrast, terms of the type PVkA denote a projection in Sm. Herein, the projec-
tion PV̄kA—considered as an element of Rm×m—equals the sum PLkA+PL⊥k APLk of two
matrices of with rank no exceeding dimLk = m+ 1− k = `, thus, rkPV̄kA ≤ 2`.

3.5.2. Recovery conditions

This section derives an upper bound on the norm of the estimation error ‖Θ̂ − Θ∗‖
in terms of a given realization xt,j(ω), t ≤ n, j ≤ m, of corresponding random vari-

ables xt,j—the observables. Herein, the estimate Θ̂ equals the unique minimum of the
criterion function <3.15> for given ξ, λ > 0, which are specified in the course of the
analysis. Section 3.5.3 generalizes these bounds to hold for all ω in some S ∈ F.

Section 3.5.1 justifies the presence of the second term λ‖ • ‖nuc as well as the third term
ξ‖Λq/2 • ‖2 in <3.15> by the vague idea of rk Θ∗(≤ h) and ξ‖Λq/2Θ∗‖2 being “small”.
These conditions roughly translate to a low number h of factors and the singular vec-
tors u1, . . . , uh of Θ∗ being “smooth” functions on ({1, . . . ,m}, dist), respectively. In
this regard, the present section assumes the following two conditions. Firstly, the di-
agonal entries of the (diagonal) matrix

∑l−1
j=0 AiAi+1 are nonzero (if h 6= 0). Thus,

one has l ≥ 1, and the rank of Θ∗ = U1Γ∗U
T
1 equals the number h of underlying

factors. Moreover, this condition ensures that u1, . . . , uh are singular vectors of Θ∗
of the form considered in lemma 2.4, that is, ui ∈ ker

(
Θ∗ ± σ̄j(Θ∗) id

)
, i ≤ h, with

σ̄j(Θ∗) > 0 being a distinct singular value of Θ∗. The possible ambiguity due to two or
more diagonal entries of Γ∗ being identical has no practical consequences for the present
investigation as only Θ∗ and Θ̂ − Θ∗ are of concern. Secondly, the columns u1, . . . ,
uh of U1 and Θ∗ are perfectly aligned perfectly alignedwith Λ, that is, either h = rk Θ∗ = 0 or there
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exists k ≤ rk Λ + 1(≤ m as rk Λ < 0) with σk−1(Λ) > σk(Λ) if 1 < k ≤ rk Λ such that
img Θ∗ = span{u1, . . . , uh} = span{ok, . . . , om} = Lk. In the latter case, this require-
ment implies the inclusion Θ∗ ∈ Vk = span{Ōi,j | k ≤ i ≤ j}. Thus, the availability
of the roughness matrix Λ amounts to a considerable understanding on u1, . . . , uh. In
addition, if Θ∗ 6= 0, then the equalities h = rk Θ∗ = m − k + 1 = ` ≥ 1 hold, wherein
the second equality provides the link to the notation used in section 3.5.1.

In terms of the alternative objective function l̄λ,ξ in <3.16>, the definition of Θ̂ ensures

that l̄λ,ξ(∆̂) ≤ l̄λ,ξ(0), wherein ∆̂ = Θ̂−Θ∗ equals the estimation error and 0 symbolizes
the m×m zero matrix. Rephrasing this inequality leads to the main result of this section
(proposition 3.9). Lemma 3.8 summarizes the first part of its proof. The details of this
derivation may be found on page 82 in appendix 3.b.

Lemma 3.8. If Θ∗ is perfectly aligned with Λ, rk Θ∗ = h, and λ ≥ ‖G‖op with G =

(XTĒ+ĒTX)/
(
2(n−1)

)
, Ē = Y −XΘ∗, then the minimizer ∆̂ of l̄λ,ξ in <3.16> satisfies

∥∥ X∆̂√
n− 1

∥∥2
+ ξ

σqk−1(Λ)

2
‖PV ⊥k ∆̂‖2 ≤ 5

√
hλ‖∆̂‖+ 4ξ‖Λq/2Θ∗‖2 , <3.18>

wherein h = m+ 1− k and either k ≤ m with Vk = span{Ōi,j | k ≤ i ≤ j} or k = m+ 1
with Vk = {0}. In the latter case, one has σk−1(Λ) = σm(Λ) = 0 as rk Λ < m− 1.

The lower bound for λ in lemma 3.8 is a valid choice in the sense that it does not depend
on the outcome Θ̂ of the optimization process; however, it cannot provide guidance in
practical situations when Θ∗ and thereby Ē = Y −XΘ∗ is unknown.

The requirement rk Θ∗ = h implies that a zero transition matrix Θ∗ occurs if and only
if h = 0. In this extreme case, the righthand side of <3.18> equals zero. Proposition 3.6
explains this observation. In particular, comparing the final term in <3.15> with <3.1>

reveals that the (unique) minimizer Θ̂ of the former equals the m × m zero matrix if
and only if ‖(XTY + Y TX)/

(
2(n − 1)

)
‖op ≤ λ. Moreover, the equality h = 0 implies

Ē = Y −XΘ∗ = Y . Therefore, the requirement λ ≥ ‖G‖op ensures that in this special

case the minimizer Θ̂ and thereby ∆̂ equals the m×m zero matrix, which verifies <3.18>.
Finally, the inequality <3.18> is valid if k = 1, that is, h = m+1−k = m due to perfect
alignment. Then, Vk = Sm, V ⊥k = {0}, and the second summand on the lefthand side
of <3.18> is absent. In particular, there is no need to ponder the meaning of a zeroth
singular value. However, the below analysis is geared towards “large” k.

The second part of the analysis leading to proposition 3.9 takes the model structure
presented in section 3.4.1 into account. This requires the definition of the matrices F ∈
R(n−1)×h and V2 ∈ R(n−1)×(m−h) in analogy to X and Y , that is,

F =

 f1,1(ω) . . . f1,h(ω)
...

. . .
...

fn−1,1(ω) . . . fn−1,h(ω)

 and V2 =

 v1,h+1(ω) . . . v1,m(ω)
...

. . .
...

vn−1,h+1(ω) . . . vn−1,m(ω)

 .
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These definitions imply—by virtue of <3.8>—the two equalities

X = FUT
1 + ρV2U

T
2 and ‖X∆̂‖2 = ‖FUT

1 ∆̂ + ρV2U
T
2 ∆̂‖2 . <3.19>

If k = 1, then h = m and the quantities ρ, V2, and U2 are absent. The same applies
to the factor related quantities F and U1 if h = 0. In this case, the remark following
lemma 3.8 reveals that the equality ‖∆̂‖ = ‖Θ̂ − Θ∗‖ = 0 holds whenever λ ≥ ‖G‖op;
thus, no further investigation is needed. In case h > 0, proposition 3.9 requires that
the least singular value σh

(
FTF/(n − 1)

)
of the symmetric and positive semidefinite

h × h matrix FTF/(n − 1) exceeds a positive number κ > 0, which plays the role of a
curvature constant as defined in section 3.1.2. This requirement amounts to rkFTF = h
or equivalently linear independence of the columns of F , which in turn necessitates n−
1 ≥ h. A proof of proposition 3.9 follows on page 83 in appendix 3.b.

Proposition 3.9. If Θ∗ is perfectly aligned with Λ in the above sense, rk Θ∗ = h, and
if h > 0, then σh

(
FTF/(n− 1)

)
≥ κ > 0 for some κ > 0, as well as

λ ≥ λ̂ = ‖G‖op , G =
XTĒ + ĒTX

2(n− 1)
, Ē = Y −XΘ∗ ,

ξ ≥ ξ̂ =


1

σqk−1(Λ)

[
σh

(
FTF

n− 1

)
+ 4ρ2

‖V T
2 F/(n− 1)‖2

op

σh
(
FTF/(n− 1)

)] , h > 0, k > 1 ,

0 , otherwise ,

then the minimizer ∆̂ = Θ̂−Θ∗ of l̄λ,ξ in <3.16> satisfies

‖∆̂‖ ≤ max

{
20
λ

κ

√
h, 4

√
ξ

κ
‖Λq/2Θ∗‖

}
with κ = 1 if h = 0 . <3.20>

The lower bounds for λ and ξ are valid as both can—in principle—be calculated prior
to the minimization process. In particular, if h > 0 and k > 1, then the requirements k ≤
rk Λ + 1 and rk Λ ≥ 1 guarantee the inequality σk−1(Λ) ≥ σmin,6=0(Λ) > 0.

The (literal) numbers appearing in lemma 3.8 and proposition 3.9 are arbitrary to
the degree that they reflect one of a range of possible choices used in the proofs. These
proofs justify the form of λ̂ and ξ̂; however, a supplementary comment is in order.
Section 3.4.1 defines the transition matrix Θ∗ as the unique minimizer of the t-invariant
objective Sm 3 Θ 7→ ‖Xt+1 − XtΘ‖2/2 = E‖xt+1 − Θxt‖2/2. The latter expectation
amounts to an integral over R2m with respect to the t-invariant distribution

distribution
µ(xt,xt+1)

of the random vector (xt, xt+1) = (xt,1, . . . , xt,m, xt+1,1, . . . , xt+1,m), that is, the image
measure P ◦ (xt, xt+1)−1 on (R2m,R2m) with R2m symbolizing the Borel σ-field of the
norm topology on R2m. The data-based term in <3.15> has the form of a similar
integral but with respect to the empirical distribution empirical

distributionµ̂(xt,xt+1) given by µ̂(xt,xt+1)B =
1

n−1

∑
t≤n−1 1B

(
xt(ω), xt+1(ω)

)
, wherein 1B symbolizes the indicator function of B ∈
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R2m. These two integrals differ to the extend that

E‖xt+1 −Θxt‖2 = E‖xt+1 −Θ∗xt‖2 + E‖(Θ−Θ∗)xt‖2 , whereas∑
t≤n−1

‖xt+1(ω)−Θxt(ω)‖2

n− 1
=
‖Y −XΘ∗‖2

n− 1
+
‖X(Θ−Θ∗)‖2

n− 1
+

2〈XTĒ,Θ−Θ∗〉
n− 1

contains an additional term. Therein, XTĒ/(n− 1) can be replaced by its projection G
onto Sm due to symmetry of Θ and Θ∗. Hence, this (final) term is upper bounded by
2‖G‖op‖Θ − Θ∗‖nuc, which shows that the given λ̂ allows the ‖ • ‖nuc-part of <3.15> to

counter the additional term. A similar remark applies to the second summand of ξ̂. Its
first summand serves a different purpose. Proposition 3.9 is geared towards the case h <
n − 1 < m—although this is not explicitly stated, wherein the differences n − 1 − h
and m − n + 1 are thought to be “substantial”. In case n − 1 > m − h, a modified
argument dispenses with the first summand of ξ̂ and leads to a comparable upper bound.

3.5.3. Probabilistic guarantees

This section derives an expression for the probability that the upper bound <3.20> on
the estimation error length ‖Θ̂ − Θ∗‖ holds when estimating the transition matrix Θ∗
in <3.11> via the unique minimizer Θ̂ of the objective function in <3.15>. More
specifically, the main result (proposition 3.13) provides positive numbers λ̄, ξ̄, and κ̄—
depending on the matrices A0, . . . , Al, and ρ as well as m and the number of observa-
tions n—such that there exists a subset S of Ω contained in the σ-field F with

S ⊂
{
ω ∈ Ω

∣∣∣∣σh(F (ω)TF (ω)

n− 1

)
≥ κ̄

}
∩
{
ω ∈ Ω

∣∣ λ̄ ≥ λ̂(ω)
}
∩
{
ω ∈ Ω

∣∣ξ̄ ≥ ξ̂(ω)
}
,

whose probability depends on the just mentioned model quantities. Hence, the minimiz-
ers Θ̂ (of <3.15> with λ ≥ λ̄, ξ ≥ ξ̄) and ∆̂ (of l̄λ,ξ, λ ≥ λ̄, ξ ≥ ξ̄) satisfy the inequality

‖Θ̂−Θ∗‖ = ‖∆̂‖ ≤ max

{
20
√
h
λ

κ̄
, 4

√
ξ

κ̄
‖Λq/2Θ∗‖

}
<3.21>

for all ω ∈ S, which is abbreviated as <3.21> being true with probability at least
with probability
at least

PS.
The question whether the set of ω satisfying <3.21> or the above superset of S are
measurable, that is, elements of F, is not addressed and has merely aesthetic value. The
formal framework conforms with the construct in appendix 2.a. In particular, the above
sets depend on the choice of basis element representatives; however, their probabilities
are invariant to this choice due to the invariance of the underlying distributions. Fi-
nally, the present analysis focuses on 1 ≤ h < m and considers a fixed choice of model
quantities satisfying the restrictions of section 3.4. The conclusions apply generally but
depend on these quantities. The case h ∈ {0,m} receives only minimal attention.

In light of proposition 3.9, the present investigation amounts to a study of singu-
lar values—defined pointwise with respect to ω—of random matrices. Generally, if A
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symbolizes a d1 × d2 random matrix, then A(ω) denotes the image of ω ∈ Ω under A,
that is, the element of Rd1×d2 with i, j-th entry ai,j(ω). Sections 3.5.1 and 3.5.2 omit
the argument to simplify the notation, which is justified as these sections never refer
to ω 7→ A(ω). This section considers both A and A(ω), which requires a more careful
notation. In particular, the symbol A refers to a random matrix unless A = A(ω) is
explicitly indicated. This comment also applies to random vectors and random variables.

The (transposed) rows of the random matrices considered here are given by

v
(1)
t =

vt,1...
vt,h

 , v
(2)
t =

vt,h+1
...

vt,m

 , ft =

ft,1...
ft,h

 , xt =

xt,1
...

xt,m

 , ēt = xt −Θ∗xt−1

Therein, the random variables vt,j with (t, j) ranging over a subset Iv ⊂ N×N are inde-
pendent with zero mean and Ev2

t,j = 1. Section 3.4 presents the complete specification.
Proposition 3.13 necessitates—on top of the specification in section 3.4—that the distri-
bution distributionof each random variable vt,j, that is, the image measure P ◦ v−1

t,j , is subgaussian
subgaussian

.
The latter requirement amounts to the existence of some st,j > 0 such that the inequal-
ity P{|vt,j| > t} ≤ exp(1 − t2/s2

t,j) holds for all t > 0. Appendix 3.a contains a brief
treatment of such distributions. Two facts are essential: firstly, a “large” subgaussian
norm ‖vt,j‖ψ2 = inf

{
s > 0

∣∣E exp
(
(vt,j/s)

2
)
≤ 2

}
corresponds to a “slow” decay of the

probabilities P{|vt,j| > w} for 0 < w →∞; and, secondly, ‖vt,j‖ψ2 ≥ 1 as Ev2
t,j = 1.

An analysis of the singular values of the symmetric and positive semidefinite ma-
trix FTF/(n − 1) leads to an appropriate value κ̄ > 0 and showcases all steps involved
in following investigations. The first step of the argument is pointwise with respect
to ω, that is, F = F (ω) as in section 3.5.2. Sections 2.5.2 and 2.5.4 express the ex-

treme singular values σ̂1 = σ̂1(ω) = σ1

(
FTF
n−1

)
and σ̂h = σ̂h(ω) = σh

(
FTF
n−1

)
in the form

σ̂1 = sup‖c‖=1〈F
TF

n−1
c, c〉 and σ̂h = inf‖c‖=1〈F

TF
n−1

c, c〉. Therein, the map c 7→ 〈FTF
n−1

c, c〉 is

Lipschitz continuous on the unit sphere {‖ • ‖ = 1} of Rh. More specifically,∣∣∣∣〈 FTF

n− 1
c, c
〉
−
〈 FTF

n− 1
c′, c′

〉∣∣∣∣ ≤ ∣∣∣∣〈 FTF

n− 1
c′, c− c′

〉∣∣∣∣+

∣∣∣∣〈 FTF

n− 1
c, c− c′

〉∣∣∣∣ ≤ 2σ̂1‖c− c′‖

provides the upper bound 2σ̂1 on its (‖ • ‖-)Lipschitz constant. Thus, <2.1> implies

min
i≤q

〈 FTF

n− 1
ci, ci

〉
− 2σ̂1ε ≤ σ̂h ≤ σ̂1 ≤ max

i≤q

〈 FTF

n− 1
ci, ci

〉
+ 2σ̂1ε , <3.22>

wherein c1, . . . , cq provides an ε-net (section 2.1.2) of {‖ • ‖ = 1} with ε ∈ (0, 1).
Subsequently, the symbol F refers to the random matrix ω 7→ F (ω), whose (trans-

posed) rows are given by the random vectors f1, . . . , fn−1. Consequently, the sum-
mands of 〈FTFc, c〉 =

∑
t≤n−1〈ft, c〉2 with c ∈ {‖ • ‖ = 1} equal 〈ft, c〉2 = 〈Btv, c〉2 =

vTBT
t cc

TBtv, wherein Bt ∈ Rh×m(n+l), t ≤ n− 1, has the form[
0 . . . 0︸ ︷︷ ︸

n− t zero matrices in Rh×m

Ā0 . . . Āl 0 . . . 0︸ ︷︷ ︸
t− 1 zero matrices in Rh×m

]
, Āj =

[
Aj 0

]
∈ Rh×m ,
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and the random vector v consists of v
(1)
n , v

(2)
n , v

(1)
n−1, . . . , v

(1)
1−l, v

(2)
1−l—in that order from

top to bottom—with v
(2)
j equal to the zero vector in Rm−h for 1 − l ≤ j ≤ 0. Hence,

the entries of v are independent and exhibit subgaussian distributions. In total, this
representation implies the equality 〈FTFc, c〉 = vTAcv with Ac =

∑
t≤n−1B

T
t cc

TBt.
The expectation of the summands 〈ft, c〉2 =

∑
i≤h
∑

j≤h cicjft,ift,j is given by 〈Vfc, c〉
for all t ≤ n − 1, wherein Vf =

∑l
i=0A

2
i equals the t-invariant Gramian 〈〈Ft, Ft〉〉 of

the linear map Ft = [ft,1 · · · ft,h]. Moreover, the examples (d1) and (d2) in sec-
tion 2.5.2 together with rkAc ≤ n−1 imply the (in)equalities ‖Ac‖2 =

∑
j≤rkAc

σ2
j (Ac) ≤

(n − 1)‖Ac‖2
op, wherein the inequality for the rank follows from the inclusion imgAc ⊂

span{BT
t c | t ≤ n− 1}. As a consequence, every unit length c ∈ Rh satisfies

(n− 1)2〈Vfc, c〉2

4C4‖Ac‖2
≥ (n− 1)2〈Vfc, c〉2

4C4(n− 1)‖Ac‖2
op

= (n− 1)

(
〈Vfc, c〉

2C2‖Ac‖op

)2

.

Thus, the Hanson-Wright inequality (lemma 3.14 in appendix 3.a) yields

P
{
|〈FTF
n−1

c, c〉 − 〈Vfc, c〉| > 1
2
〈Vfc, c〉

}
= P

{
|vTAcv − EvTAcv| > n−1

2
〈Vfc, c〉

}
≤ 2 exp

(
−C̄(n− 1) min{ζc, ζ2

c }
)
, wherein ζc =

〈Vfc, c〉
2C2‖Ac‖op

and C ≥ 1, C̄ > 0 equal an upper bound on the subgaussian norms ‖vt,j‖ψ2 , (t, j) ∈ Iv,
and the (unspecified) constant in the Hanson-Wright inequality, respectively.

This inequality holds for every unit length c ∈ Rh. In particular, it applies to all
elements c1, . . . , cq of a ⊂-minimal ε′-net of {‖ • ‖ = 1}, wherein ε′ = σh(Vf )/

(
20σ1(Vf )

)
.

The choice of ε′ is tailored to the below derivations and ensures ε′ < 1/2, that is,
1− 2ε′ > 0. Next, an application of the union bound union boundP∪i≤q Ai ≤

∑
i≤q PAi, which holds

for arbitrary F-measurable sets A1, . . . , Aq, leads to the inequality

P∩i≤q

{
1
2
〈Vfci, ci〉 ≤

〈 FTF

n− 1
ci, ci

〉
≤ 3

2
〈Vfci, ci〉

}
≥ 1−2

∑
i≤q

exp
(
−C̄(n−1)ηi

)
, <3.23>

wherein ηi = min{ζci , ζ2
ci
} with ζci > 0 whenever h > 0 due to the above requirements.

Lemma 2.1 and ⊂-minimality of the chosen ε′-net imply that q equals the covering
number N({‖ • ‖ = 1}, ‖ • ‖, ε′) ≤ (1 + 2/ε′)h ≤ exp

(
h log[41σ1(Vf )/σh(Vf )]

)
.

If ω lies in the intersection on the lefthand side of <3.23>, then the inequality ε′ < 1/2
together with the final inequality in <3.22> imply that

σ̂1(ω) ≤ 1

1− 2ε′
max
i≤q

〈F (ω)TF (ω)ci, ci〉
n− 1

≤ 5

3
σ1(Vf ) ,

Next, the first inequality of <3.22> ensures that all ω in the above intersection satisfy

σ̂h(ω) ≥ 1

2
σh(Vf )−

10

3
σ1(Vf )ε

′ =
1

3
σh(Vf ) .
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Similar arguments verify that elements ω of this intersection also satisfy

σ̂h(ω) ≤ min
i≤q

〈F (ω)TF (ω)ci, ci〉
n− 1

≤ 3

2
min
i≤q
〈Vfci, ci〉 ≤

3

2

[
σh(Vf ) + 2σ1(Vf )ε

′
]
≤ 2σh(Vf ) .

These inequalities hold simultaneously with probability at least 1− δ, δ ∈ (0, 1), if

n− 1 ≥ 1

C̄ mini≤q min{ζ2
ci
, ζci}

(
log

[
41
σ1(Vf )

σh(Vf )

]
h+ log

2

δ

)
. <3.24>

Lemma 3.10 provides a lower bound on the denominator of the second factor on the right-
hand side. Therein, the diagonal matrices A0, . . . , Al exhibit a uniform decay rate

uniform decay
rate

α > 0

if
∑l

i=k‖Aic‖ ≤
(∑l

i=0‖Aic‖
)

exp
(
1−αk

)
for all c ∈ Rl+1 and 0 ≤ k ≤ l. Every sequence

A0, . . . , Al exhibits a uniform decay rate of 1/l. However, larger uniform decay rates are
possible. In particular, if A0 = ρI, Ai = ρDi, ρ > 0, wherein I and D symbolize the h×h
identity matrix and a diagonal matrix with nonzero diagonal entries di,i ∈ (−1, 1), re-

spectively, then one has
∑l

i=k‖Aic‖ ≤ d̄k
∑l

i=0‖Aic‖ ≤
(∑l

i=0‖Aic‖
)

exp
(
1−k log(1/d̄)

)
,

wherein d̄ represents the maximal absolute diagonal entry maxi≤h|di,i| < 1 of D.

Lemma 3.10. If the sequence A0, . . . , Al exhibits a uniform decay rate α, then using
the above notation one has mini≤q min{ζci , ζ2

ci
} ≥ ζ̄2 with ζ̄ = α/

(
3C2(3 + α)

)
.

Lemma 3.10 reveals that the number of observations n has to exceed a constant
times the number of factors h for the above inequalities to hold with “high” probability.
Therein, the constant grows with the subgaussian norms ‖vt,j‖ψ2 and decreases as the
uniform decay rate α increases. A proof starts on page 84 in appendix 3.b.

A comparable analysis—starting on page 85 in appendix 3.b—leads to lemma 3.11.
The final paragraph of section 3.5.2 mentions that the present analysis targets the case
m ≥ n − 1 ≥ h. The above discussion reveals the importance of the second inequality
n − 1 ≥ h. Lemma 3.11 requires the first inequality m ≥ n − 1. The case m < n − 1
necessitates a modified argument and leads to a different result.

Lemma 3.11. If 0 < h < m, the sequence A0, . . . , Al exhibits a uniform decay rate α,
the distribution of vt,j is subgaussian with ‖vt,j‖ψ2 ≤ C for some C > 0 and all (t, j) ∈ Iv,
and m ≥ n− 1, then using the above notation one has∥∥∥∥ V T

2 F

n− 1

∥∥∥∥
op

≤ ¯̄̄
CC2

(
1 + α

α

)1/2

σ
1/2
1 (Vf )

m

n− 1

with probability at least 1 − 1/2m−1, wherein
¯̄̄
C > 1 denotes a constant which does not

depend on the model quantities and Vf =
∑l

i=0 A
2
i ,

Lemma 3.12 focuses on the operator norm ‖G‖op of G. The analysis leading to its
assertion possesses the same structure as the two previous investigations but is compli-
cated by the structure of the rows (ēt,1, . . . , ēt,m) of Ē shown in <3.12>. To simplify
its statement, the sequence of diagonal matrices A0, . . . , Al is said to exhibit a uniform
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autoregressive approximation factor uniform
autoregressive
approximation
factor

β ≥ 0 if ‖(Ai−Γ∗Ai−1)c‖ ≤ βmax{‖Aic‖, ‖Ai−1c‖}
for all 1 ≤ i ≤ l and unit length c ∈ Rh, wherein Γ∗ =

(∑l
i=0A

2
i

)−1∑l−1
i=0AiAi+1. The

Cauchy-Schwarz inequality implies that all diagonal entries of Γ∗ lie in [−1, 1]. Conse-
quently, every sequence A0, . . . , Al has a uniform autoregressive approximation factor
of 2. At the other extreme, the above special case, namely, A0 = ρI, Ai = ρDi, i ≤ l,
ρ > 0, I being the h × h identity matrix, and D symbolizing a diagonal matrix with
nonzero diagonal entries di,i ∈ (−1, 1), has an approximation factor of d̄ 2l+1/

(∑l
i=0 d̄

2i
)
,

wherein d̄ = maxi≤h|di,i| < 1. A proof of lemma 3.12 starts on 86 in appendix 3.b.

Lemma 3.12. If h > 0, the sequence A0, . . . , Al exhibits a uniform decay rate α > 0
and a uniform autoregressive approximation factor β ≥ 0, the distributions of vt,j is
subgaussian with ‖vt,j‖ψ2 ≤ C for some C > 0 and all (t, j) ∈ Iv, then for m ≥ n − 1
and using the above notation one has

‖G‖op =

∥∥∥∥XTĒ + ĒTX

2(n− 1)

∥∥∥∥
op

≤ ¯̄̄
CC2(1 + β)

(
1 + α

α
σ1(Vf ) + ρ2

)
m

n− 1

with probability at least 1 − 1/2m−2, wherein
¯̄̄
C > 1 represents a constant which is

unrelated to the model quantities, Vf =
∑l

i=0A
2
i , and ρ = 0 if h = m.

If h = 0, then the same result applies with (1 + α)σ1(Vf )/α = β = 0.

Finally, combining lemma 3.10, 3.11, and 3.12 with proposition 3.9 yields proposi-
tion 3.13, whose details are proved on page 88 in appendix 3.b.

Proposition 3.13. Let Θ∗ be perfectly aligned with Λ in the above sense, rk Θ∗ = h, and
the distribution of vt,j be subgaussian with ‖vt,j‖ψ2 ≤ C for some C > 1 and all (t, j) ∈ Iv.
If h ≥ 1, then let the sequence A0, . . . , Al exhibit a uniform decay rate α > 0 and a
uniform autoregressive approximation factor β ≥ 0. Under these conditions, there exist
C1, C2 > 1, C3, C4, C5 > 0 not depending on the model quantities such that

m ≥ n− 1 ≥ C1C
4

(
1 + α

α

)2(
log

[
C2
σ1(Vf )

σh(Vf )

]
h+ log

2

δ

)
, δ ∈ (0, 1) ,

together with the lower bounds

ξ ≥ ξ̄ =
C3

σqk−1(Λ)

(
σh(Vf ) + ρ2C4 1 + α

α

σ1(Vf )

σh(Vf )

[
m

n− 1

]2)
, and

λ ≥ λ̄ = C4C
2(1 + β)

(
1 + α

α
σ1(Vf ) + ρ2

)
m

n− 1

guarantees that the unique minimizer Θ̂ of <3.15> satisfies the inequality

‖Θ̂−Θ∗‖ ≤ C5 max

{
λ

κ̄

√
h,

√
ξ

κ̄
‖Λq/2Θ∗‖

}
<3.25>
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with probability at least 1− δ − 1/2m−3. Herein, κ̄ =
σh(Vf )

3
if h > 0 and one otherwise.

In the latter case, all factor related quantities above vanish and β = 0.

The requirement on h, n,m in proposition 3.13 implies the inequalities m ≥ C ′h +
C ′′ log(2/δ) > h with C ′, C ′′ > 1, which precludes the equality h = m. If one disregards
the other extreme case h = 0, then the lowest possible upper bound in proposition 3.13
follows when using λ = λ̄ and ξ = ξ̄. This upper bound can be simplified to

C5 max

{
λ

κ̄

√
h,

√
ξ

κ̄
‖Λq/2Θ∗‖

}
≤ C5

(
λ

κ̄

√
h+

√
ξ

κ̄
‖Λq/2Θ∗‖

)
≤ C ′5C

2

(
1 + β +

[
σk(Λ)

σk−1(Λ)

]q/2)(
1 + α

α
+

ρ2

σ1(Vf )

)
σ1(Vf )

σh(Vf )

√
mh

n− 1

√
m

n− 1
<3.26>

with C ′5 > 0 representing a constant which does not depend on the model quantities.

Therein, the term
(
σk(Λ)/σk−1(Λ)

)q/2
is a consequence of perfect alignment of the tran-

sition matrix Θ∗ with Λ, that is, img Θ∗ = Lk, and the definition of Λq/2 in section 3.4.2.
The requirement σk(Λ) > σk−1(Λ) implies that this term vanishes as q →∞.

Several interpretable quantities occur in <3.26>. The upper bound C on the subgaus-
sian norms ‖vt,j‖ψ2 , (t, j) ∈ Iv, controls how P{|vt,j| > w} shrinks to zero as 0 < w →∞.
The decay rate α quantifies the temporal dependence of the factors. In addition, the
ratio ρ2/σ1(Vf ) compares the “size” of the non-factor part and factor part of xt; simi-
larly, σ1(Vf )/σh(Vf ) measures the “size differences” between factors. The approximation
factor β expresses how well the transition in <3.12> fits the true dynamics of the factors,

while
(
σk(Λ)/σk−1(Λ)

)q/2
represents the “misspecification” of Λ. The ratio mh/(n− 1)

roughly equals the “number of parameters” in Θ∗ per observation. In fact, section 2.5.4
expresses Θ∗ as the sum Θ+ − Θ−, of two symmetric and positive semidefinite matri-
ces Θ+,Θ−, which are uniquely determined by Θ∗ and satisfy img Θ+ ⊂ (img Θ−)⊥

and rk Θ+ + rk Θ− = h. Careful reading of section 2.4.2 reveals that each of the two
summands uniquely corresponds to a rk Θ±×m row echelon matrix R± with r±i,inf Ii

> 0
for all i ≤ rk Θ±, wherein Ii = {j ≤ m | ri,j 6= 0} as in section 2.2.1. Furthermore, if the
number of factors h is “small” relative to m, then the representation as a pair of row
echelon matrices with mutually orthogonal rows contains approximately mh entries.

Finally, two closing comments are in order. As previously mentioned, the use of the
uniform decay rate α and the uniform autoregressive factor β entails no additional re-
strictions. These notions summarize two aspects of the sequence A0, . . . , Al and thereby
simplify but also weaken the resulting statements. In fact, their definition is tailored to
the special case A0 = ρI, Ai = ρDi, i ≤ l, ρ > 0, wherein I represents the h×h identity
matrix, and D denotes a diagonal matrix with nonzero diagonal entries in (−1, 1). The
resulting upper bounds are overly generous for “very different” cases.

The lower bounds ξ̄ and λ̄ in proposition 3.13 provide no guidance in practical
situations as their definition involves several unobserved quantities including σk−1(Λ)
since k = m+ 1− h is unknown. Hence, proposition 3.13 merely states that minimizing
an objective function of the form <3.15> is a “meaningful” approach in the sense that
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there exist λ, ξ > 0 which imply that an inequality of the form ‖Θ̂ − Θ∗‖ ≤ C∗
√
h

with C∗ > 1 holds with “high” probability once the number of observations exceeds a
multiple of the number of factors. However, this guarantee is practically useless as the
alternative estimator Θ̃ = 0 satisfies ‖Θ̃−Θ∗‖ = ‖Θ∗‖ ≤

√
h with probability one.

Comments and references

Section 3.1 Rockafellar (1970, part I–IV) presents all topics of this section in full de-
tail. He shows that a nonempty interior is merely a sufficient condition for the existence
of supporting hyperplanes at boundary points; a refined existence criterion relies on the
concept of a relative interior (Rockafellar, 1970, sec. 6, thm. 11.6). Boyd and Vanden-
berghe (2004, sec. 2.1–2.3, 2.5) discuss basic properties of convex sets. Their presentation
contains numerous examples and illustrations. In particular, their figure 2.8 partially
resembles panel (B) of figure 3.1. Figure B.5 of Bertsekas (1999, app. B) covers other
aspects of that figure. Figure 3.2 can be found in Chandrasekaran et al. (2012, fig. 1,
panel (b)). The basis choice B̄1,1, B̄1,2, B̄2,2 is commonplace in literature; the alternative
( 1

1 ) /
√

2, ( 1
1 ) /

√
2, ( 1

−1 ) /
√

2 leads to a more symmetric appearance of {‖ • ‖nuc ≤ `},
` > 0. Chandrasekaran et al. (2012, sec. 2.2) identify {‖ • ‖nuc ≤ `} as the convex hull
of the rank one matrices. The assertion of all proper and closed faces of the latter
set being exposed can be obtained by adapting the proof of So (1990, thm. 3), which
applies to Rm×m, to Sm. Ziȩtak (1993, sec. 4, p. 140) indicates this possibility but is
concerned with Rm×m. His equation (2.2) (section 2) contains the nucleus of lemma 3.2.
Drusvyatskiy et al. (2015, sec. 2.3, def. 2.8) treat sets of the form {d ∈ ∂f( • )} under
the name exposed face of f and relate theses faces to the exposed faces of epi f in their
theorem 2.9. Nesterov (2004, def. 2.1.2) caters the definition of strong convexity for
differentiable functions. His theorem 2.1.9 contains an alternative definition of this con-
cept, which does not presuppose differentiability. Hiriart-Urruty and Lemaréchal (1996,
ch. X) discuss conjugates (Legendre(-Fenchel) transforms) in-depth.

Section 3.2 Negahban and Wainwright (2011a, sec. 2.2) consider the criterion lλ in
slightly different form. Fazel (2002, sec. 5.1.4) links ‖ • ‖nuc and the rank via conjugation;
her analysis may also be found in Fazel et al. (2001). Yuan et al. (2007, sec. 2) motivate
the use of ‖ • ‖nuc via a general framework for dimension reduction. Using g = λ‖ • ‖nuc (as
in lλ) in place of λ rk leads to a convex criterion function and thus facilitates the compu-

tation of the minimizer Θ̂. Herein, the superscript •̂ does not indicate a projection—as
in section 2.3; the same comment applies to the use of •̃ in this section. If Θ ranges
over all of Rn×p with Y ∈ W×p, then there exists a simple solution to the minimization
of ‖Y −X • ‖2/(2n) + λ rk (Bunea et al., 2011, sec. 2). Thus, computational gains alone
do not justify the use of ‖ • ‖nuc as a replacement for rk in this case.

The derivation of the dual problem <3.3> and the associated optimality conditions
is an application of Borwein and Lewis (2010, sec. 3.3, thm. 3.3.5, exercise 9, sec. 4.2,
exercise 17). Bach et al. (2011, prop. 2.2 and below, eq. 2.9–2.11)† present a compa-

†I learned about this work only after the review process.
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rable duality analysis based on the same tools but tailored to a minimization problem
over Rp. In particular, their equations (2.7) and (2.8) are akin to <3.2>. Mishra et al.
(2013, prop. 2.3)† adapt these considerations to a minimization problem over Rm×p.
An analogous perturbation of the second summand g together with Hiriart-Urruty and
Lemaréchal (1996, thm. 2.1.1) provides an alternative route to the same dual problem.
Pong et al. (2010) consider the minimization of (a multiple of) lλ but over Θ ∈ Rm×p

(and with Y ∈ Rn×p). This problem generally allows the reduction to the case of X
with linearly independent columns. Then, the uniqueness assertion corresponding to
proposition 3.6 is immediate. The equivalent of the final condition in that proposition is
their equation (19). These authors also derive a dual problem based on the mentioned
reduction, which is akin to the above mentioned alternative perturbation approach. As a
consequence, the equivalent of <3.3> matches their expression (8) after some rephrasing.
Figure 3.5 resembles Bertsekas (1999, fig. 5.4.3). It focuses on a positive slope D; nega-
tive slopes lead to a negative value of the dual objective <3.3>. Boyd and Vandenberghe
(2004, sec. 3.3, ex. 3.26, 3.27) provide the arguments used to derive g? and f?.

Section 3.3 Bertsekas (2014, sec. 6.10.1) discusses the improvement (f ◦X)(Θ̂(k−1)) ≥
(f ◦ X)(Θ̃(k)) in the first summand of the criterion <3.1> via a gradient step. Ji and
Ye (2009, sec. 3) provide most of the algorithm <3.7> and the arguments in section 3.3.
Pong et al. (2010, sec. 4, eq. (22)) suggest termination based on the duality gap pk− dk,
however, in the form (pk − dk)/(1 + dk) < ε to allow for a problem independent choice
of ε > 0. Bach et al. (2011, sec. 2.1.2.3)† present an analogous stopping rule to that used
in the recipe <3.7> (line 6–11) for a minimization problem over Rp. Toh and Yun (2010,
sec. 3.5) suggest an alternative (subgradient-based) stopping rule. The algorithm <3.7>

is not an optimal gradient-based scheme. It ensures lλ(Θ̂
(k))−lλ(Θ̂) ≤ C/k, wherein C >

0 is a problem-specific constant (proposition 3.7). The accelerated algorithm of Ji and Ye
(2009, sec. 4) replaces the latter bound with C/k2. Herein, the role of <3.7> is to show
that iterative schemes with low complexity of each iteration suffice to approximately
recover Θ̂. The first summand of the criterion function lλ exhibits strong convexity if
and only if kerX = {0} and then exhibits a curvature constant equal to a multiple of
the square of the m-th singular value σm(X) > 0 of X.

Section 3.4 Bickel and Doksum (2015, sec 1.1) describe the usual model for mathe-
matical statistics. The setup sketched in first paragraph of section 3.4 resembles these
ideas. The present setting is semiparametric in the sense that only a few properties of the
joint distribution of vt,j, that is, the image measure of (vt,j) under P, enter the analysis.

Factor models have received much attention in literature; Stock and Watson (2011)
provide an introductory overview. The poor man’s factor model <3.8>, a stripped-
down variant of (the simplest variation of) the original concept, combines a factor in-
terpretation with the availability of an approximating vector autoregressive model Xt =
Xt−1Θ∗+Gt as discussed below <3.12> with symmetric transition matrix Θ∗. Lütkepohl
(2007, sec. 2.1) covers the latter model class with transition matrix Θ∗ ∈ Rm×m. Basu
(2014, sec. V) considers vector autoregressive approximations to (more) general factor
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models. The asymptotic setup alluded to in the approximation is akin to the usual trian-
gular array setting of stochastic limit theory (Pollard, 2002, sec. 7.2). Koltchinskii and
Rangel (2013, sec. 1) provide the notion of smoothness of u1, . . . , uh, the overall mea-
sure ‖Λ1/2Θ∗‖2, and the approximation PVkΘ∗ in terms of Ōi,j discussed in section 3.4.2.
The pair

(
{1, . . . ,m}, (i, j) 7→ wi,j

)
forms a weighted graph with Laplacian (matrix) Λ.

Bapat (2014, lem. 4.2 (ii)) provides the rank of Λ but for unweighted graphs.

Section 3.5 Koltchinskii and Rangel (2013, eq. (4.1)) consider the objective func-
tion <3.15> but in a somewhat different setting. The proofs of their theorems 4 and 6
provide most of the techniques used in the proof of lemma 3.8. However, their analysis of
the consequences of including a smoothness term is more refined than assuming perfect
alignment. Incorporating these refinements should be the first step towards a practically
useful upper bound. Negahban et al. (2012, sec. 2,3) advocate the two step approach
of first deriving a data-based bound (section 3.5.2) followed by a probabilistic analysis
(section 3.5.3). Their section 2.2 provides an in-depth discussion of the decomposability
visualized in figure 3.9 as well as associated subspace pairs. However, their strategy for
deriving data-based bounds requires the structure-based term of the objective function
to satisfy the triangle inequality, hence, cannot be applied to <3.15>. The particular
subspace pairs (Vk, V̄

⊥
k ), k ≤ m, are from Koltchinskii and Rangel (2013, sec. 1).

Negahban and Wainwright (2011a) analyze ‖ • ‖nuc-penalized estimation for a first-
order vector autoregressive model using the just mentioned two step approach. The
strategy of the proof of proposition 3.13 is borrowed from the proofs of their lemma 4
and 5 (Negahban and Wainwright, 2011b, appendix G). As a consequence of including
merely a ‖ • ‖nuc-based part—no smoothness term, their result requires the number of
observations n to be larger than m. Moreover, they assume Gaussian distributions.
These two limitations also apply to the more general results of Basu (2014, prop. V.1,
V.2) for the vector autoregressive setting. In this text, the generalization to subgaussian
distributions becomes possible by restricting considerations to l-dependence (Shumway
and Stoffer, 2006, appendix A.2). Basu and Michailidis (2015, sec. 2.3) suggest the use
of the Hanson-Wright inequality, but focus on spectral techniques in high dimensional
problems, that is, with m “large” compared to n. Vershynin (2012, lem. 5.4) states the

upper bound on the Lipschitz constant of c 7→ 〈FTF
n−1

c, c〉 in section 3.5.3.
The present analysis considers the transition matrix Θ∗ to be a low rank element

of span{Ōi,j | j ≥ i ≥ k} with k smaller but close to rk Λ + 1. A different formulation
considers Θ∗ =

∑
i≤j≤m βhi,j Ōi,j with only few nonzero βh, that is, β ∈ Rm(m+1)/2 being

sparse. Again, rk Λ < m − 1 results in some ambiguity, which needs to be resolved. In
this framework, the induced basis Ōi,j is often called a dictionary (Koltchinskii, 2011,
sec. 1.6, 8.1). In comparison, mere ‖ • ‖nuc-penalization assumes sparsity but with respect
to an unknown dictionary (Negahban and Wainwright, 2011a, sec. 2.1).

Finally, turning the insights of this section into a practically useful procedure requires
finding data-based terms λ̃ and ξ̃ such that λ̃ ≥ λ̄ and ξ̃ ≥ ξ̄ hold simultaneously with
“high probability”, wherein λ̄ and ξ̄ are defined in proposition 3.13. Then minimiz-
ing <3.15> with λ = λ̃ and ξ = ξ̃ is feasible and satisfies <3.25> with λ = λ̃ and ξ = ξ̃
and—by virtue of a union bound argument—with “high probability”. However, the
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resulting data-based bound still contains unknown quantities.

Appendixes Vershynin (2012, sec. 5.2.3) motivates the subgaussian property via the
well-known Gaussian distribution(s). His lemma 5.5 shows the equivalence of several
alternative characterizations of this property; however, his definitions ψ2 = exp( • 2 − 1)
and ‖x‖ψ2 = supn≥1(E|x|n)1/n/

√
n are slightly different. Pollard (2002, sec. 4.4, ex. 26)

explains the argument based on Tonelli’s theorem in detail.
The subgaussian random variables together with ‖ • ‖ψ2 form a so-called Orlicz space.

Such spaces result when replacing ψ2 by the composition ψ ◦ | • | of the absolute value | • |
and a monotone increasing, convex function ψ : [0,∞) → [0,∞) such that ψ(0) = 0
and ψ(x) → ∞ when x → ∞ (Pollard, 2002, exercise 22). Vaart and Wellner (2000,
sec. 2.2) list several examples of such spaces including the Lp-spaces and the subgaussian
random variables. Their definition of ψ2 coincides with the one used here.

Literature abounds with probability inequalities for subgaussian random variables;
Vershynin (2012, sec. 5.2.3) contains an introductory treatment. Rudelson and Ver-
shynin (2013, sec. 1) supply the Hanson-Wright inequality alongside an accessible proof.
These authors use the above mentioned alternative definition of ‖ • ‖ψ2 , which is subse-
quently denoted by ‖ • ‖∗ψ2

. The distinction between ‖ • ‖ψ2 and ‖ • ‖∗ψ2
is immaterial to

lemma 3.14. More specifically, there exist (compatibility) constants 0 < d < D such
that the inequalities d‖ • ‖ψ2 ≤ ‖ • ‖∗ψ2

≤ D‖ • ‖ψ2 hold for all subgaussian random vari-
ables. Therefore, the Hanson-Wright inequality is valid with either definition of the
subgaussian norm, but the two cases require different constants C̄ > 0.
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Appendix

3.a. Subgaussian random variables

This section considers properties of the distribution µx = P◦x−1, given by R1 3 A 7→ P{x ∈ A},
of a zero mean random variable x defined on a probability space (Ω,F,P). The measure µx is
called Gaussian

Gaussian
if either µxA = 1 if and only if 0 ∈ A or it is absolutely continuous with respect

to the Lebesgue measure ν on (R,R1) and with density
density

, that is, Radon-Nikodym derivative,

dµx
dν

(y) =
1√

2πσ2
exp

(
−1

2

( y
σ

)2
)

for some σ > 0 .

In the latter case, the implied symmetry µx(−∞,−t) = µx(t,∞) for all t > 0 leads to

P{|x| > t} =
2√

2πσ2

∫
(t,∞)

exp

(
−(y − t+ t)2

2σ2

)
ν(dy)

≤ 2√
2πσ2

∫
(t,∞)

exp

(
−(y − t)2

2σ2
− t2

2σ2

)
ν(dy) ≤ exp

(
1− t2

2σ2

)
.

The comparison between the leftmost and rightmost term is also valid in the former case with
arbitrary σ > 0. More generally, µx is called subgaussian subgaussianif there exists a positive number s
such that the inequality µx

(
(−∞, t)∪ (t,∞)

)
= P{|x| > t} ≤ exp(1− t2/s2) holds for all t > 0.

Alternatively, these inequalities hold if and only if there exists s̄ > 0 with Eψ2(x/s̄) ≤ 1,
wherein ψ2(z) = exp(z2)− 1. In fact, if µx is subgaussian, then Tonelli’s theorem implies

Eψ2

(x
s̄

)
=

∫
ν
[
0, ψ2(ys̄ )

)
µx(dy) =

∫
[0,∞)

∫
1{

(y′,t′)
∣∣ψ2

(y′
s̄

)
>t′
}(y, t) µx(dy) ν(dt)

=

∫
[0,∞)

P{ψ2(x/s̄) > t}ν(dt) =

∫
[0,∞)

P
{
|x| > s̄ log1/2(1 + t)

}
ν(dt) ≤ e

∫ ∞
0

e−
s̄2

s2
log(1+t)dt ,

wherein e = exp(1) < 3 represents Euler’s number and
∫ b
a . . . dt indicates Riemann integration.

The final term is bounded above by e
∫∞

1 t−(s̄/s)2
dt ≤ e/3 < 1 whenever s̄ ≥ 2s. Conversely,

if Eψ2(x/s̄) ≤ 1 for some positive s̄, then one has the (in)equalities

P
{
|x| > t

}
= P

{
ψ2

(
x
s̄

)
> ψ2

(
t
s̄

)}
≤ 1

ψ2(t/s̄)
Eψ2

(
t
s̄

)
1{

ψ2

( •
s̄

)
>ψ2

(
t
s̄

)}(x) ≤ 1

ψ2(t/s̄)
.

Therein, the comparison between the leftmost and rightmost term is uninformative unless
t ≥ s̄ log1/2 2. If the latter inequality holds, then

P{|x| > t} =

[
1

exp
(
t2

2s̄2

)
− 1

][
1

exp
(
t2

2s̄2

)
+ 1

]
≤

exp
(
−t2/(2s̄2)

)
√

2− 1
≤ exp

(
1− t2

(
√

2s̄)2

)
,

wherein the final term exceeds one unless t ≥ s̄
√

2 > s̄ log1/2 2 and therefore holds in general.
If the numbers s, s̄ > 0 satisfy the respective of the above requirements, then the same

applies to all elements of (s,∞) and (s̄,∞), respectively. An unambiguous surrogate for s̄
comes in form of ‖x‖ψ2 = inf

{
s > 0

∣∣Eψ2(x/s) ≤ 1
}

. The latter—defined for the random
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variables on (Ω,F,P) with subgaussian distribution—satisfies ‖ax‖ψ2 = |a|‖x‖ψ2 as well as
‖x+x′‖ψ2 ≤ ‖x‖ψ +‖x′‖ψ2 . The latter follows from convexity of ψ2—implied by the convexity
of x 7→ x2 together with convexity of the monotone increasing function exp—and

Eψ2

(
x+ x′

s+ s′

)
= Eψ2

(
s

s+ s′
x

s
+

s′

s′ + s

x′

s′

)
.

In particular, the random variables with subgaussian distribution form a vector space (with ad-
dition and multiplication with numbers as defined in section 2.1.1). Furthermore, the inequality
Eψ2(x/s̄) ≥ E(x/s̄)2 implies that ‖x‖ψ2 = 0 or equivalently Eψ2(x/s̄′) ≤ 1 for all s̄′ > 0 is
possible only if Ex2 = 0. Hence, the subgaussian norm

subgaussian
norm

‖ • ‖ψ2 provides a norm on finite
dimensional subspaces after adjusting the representation as in appendix 2.a if needed.

Moreover, the above arguments show that there exists a number D > 0 such that P{|x| >
t} ≤ exp

(
1 − (t/[D‖x‖ψ2 ])2

)
for every random variable x with subgaussian distribution and

‖x‖ψ2 > 0. Consequently, the subgaussian norm controls the decay of P{|x| > t} as t → ∞.
The inequality Eψ2(x) ≥ Ex2 + Ex4/2 > Ex2 implies that ‖x‖ψ2 ≥ 1 whenever Ex2 = 1.

Lemma 3.14 contains the Hanson-Wright inequality Hanson-Wright
inequality, which plays an important role in veri-

fying the assertions of section 3.5.3.

Lemma 3.14. If x1, . . . , xk, k ∈ N, are independent random variables such that each xi
has zero mean as well as a subgaussian distribution with ‖xi‖ψ2 ≤ C for some common upper
bound C > 0, then there exists C̄ > 0 such that the random vector x = (x1, . . . , xk) satisfies

P
{
|xTAx− ExTAx| > w

}
≤ 2 exp

(
−C̄ min

{
w2

C4‖A‖2
,

w

C2‖A‖op

})
for every A ∈ Rk×k and w > 0. Here, C̄ > 0 does not depend on the distribution of (x1, . . . , xk).

3.b. Proofs

Proof of lemma 3.1. Firstly, convexity of intC guarantees the second inclusion in {‖x− • ‖ ≤
ε} ⊂ conv{x ± ε

√
kyi | i ≤ k} ⊂ intC, wherein ε ∈ (0, 1) is small enough to ensure {‖ • −

x‖ ≤ ε
√
k} ⊂ intC; y1, . . . , yk symbolizes an orthonormal basis of W ; and k = dimW . The

first inclusion exploits the form of the second set: if the difference z − x =
∑

i≤k ciyi has

squared length
∑

i≤k c
2
i ≤ ε2, then z =

∑
i≤k(|ci|/s)(x + sign(ci)syi). Herein, s =

∑
i≤k|ci| =

〈(|c1|, . . . , |ck|), (1, . . . , 1)〉 ≤ ε
√
k by the Cauchy-Schwarz inequality, and x ± syi ∈ conv{x ±

ε
√
kyi}. Secondly, convexity of f implies boundedness of f on conv{x± ε

√
kyi | i ≤ k} as well

as sup‖y−x‖≤cε f(y) ≤ (1− c)f(x) + c sup‖y−x‖≤ε f(y) for all c ∈ [0, 1]. Hence, if ε ∈ (0, 1) is as

above and ε′ = εmin{1, δ}/4K with K > 1 exceeding sup‖y−x‖≤ε f(y), then {‖
(
x, f(x) + δ

)
−

• ‖ < ε′} ⊂ epi f , and
(
x, f(x) + δ

)
is therefore contained in an open subset of epi f .

Proof of lemma 3.2. If d ∈ ∂λ‖0‖′, then λ‖x′‖′ ≥ λ‖0‖′ + 〈d, x′ − 0〉 = 〈d, x′〉; thus, ‖d‖′d ≤ λ.
Conversely, if ‖d‖′d ≤ λ, then λ‖0‖′ + 〈d, x′ − 0〉 = 〈d, x′〉 ≤ λ‖x′‖′. Subsequently, ‖x‖ > 0
is assumed. If d ∈ ∂λ‖x‖′ and x′ ∈ {‖ • ‖′ ≤ ‖x‖′}, then x is a boundary point of the closed
and convex set {‖ • ‖′ ≤ ‖x‖′} with nonempty interior {‖ • ‖′ < ‖x‖′} and 0 ≥ λ‖x′‖′−λ‖x‖′ ≥
〈d, x′−x〉. Furthermore, one has λ = λ‖y‖′ ≥ λ‖x+ y‖′−λ‖x‖′ ≥ 〈d, y〉 for all y ∈ {‖ • ‖′ = 1}
and 0 = λ‖0‖′ ≥ λ‖x‖′ − 〈d, x〉. Thus, ‖d‖′d = λ. If d ∈ ncone

(
{‖ • ‖′ ≤ ‖x‖′}, x

)
, then
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〈d, x〉 ≥ 〈d, x′〉 for all x′ ∈ {‖ • ‖′ = ‖x‖′} and therefore 〈d, x〉 = ‖d‖′d‖x‖′. If, in addition to
this equality, one has ‖d‖′d = λ, then the inequality λ‖x‖′+ 〈d, x′− x〉 = 〈d, x′〉 ≤ λ‖x′‖′ holds
for all x′ ∈W , that is, d ∈ ∂λ‖x‖′.

Proof of lemma 3.3. If S ∈ {‖ • ‖op ≤ 1} ⊂ Sm and B ∈ Sm, then

〈S,B〉−λ rkS ≤
∑
i≤rkS

(
σi(S)σi(B)−λ

)
≤
∑
i≤rkS

σi(S)
(
σi(B)−λ

)
≤
∑
i≤rkB

max{σi(B)−λ, 0}

by the von Neumann trace inequality, wherein σi( • ) symbolizes the i-th singular value of its
argument with the understanding that σrk •+p( • ) = 0 for all p ∈ N. Equality is attained in
case S = S′ =

∑
i∈{σ • (B)>λ} ui〈vi, • 〉, wherein ui, vi denote an i-th singular vector pair of B

with ui = ±vi. An analogous argument shows that

〈S,B〉 − λ‖S‖nuc ≤
∑
i≤rkS

σi(S)
(
σi(B)− λ

)
≤
∑
i≤rkB

max{σi(B)− λ, 0} <A3.1>

with equality for S = S′. The convexity of g′ guarantees ∂g′(S) 6= ∅ and therefore g′(S) =
g′??(S) for all S ∈ intH = {‖ • ‖op < 1}. If S is a boundary point of H, then

g′??(S) = 2

[
1

2
g′??(S) +

1

2
g′??(0)

]
≥ 2g′??(0/2 + S/2)) = λ‖S‖nuc ≥ g′??(S) ,

wherein 0 denotes the m×m zero matrix. In summary, one has h′?? = g′?? = g′.

Proof of lemma 3.4. The quantity v(Z) is attained at some Θ ∈ Sm for all Z ∈ W×m as the
bracketed term shares its form with the least-squares criterion lλ in <3.1>. In particular, the
function v : W×m → R is well-defined. If (Z, t), (Z ′, t′) ∈ epi v, and v(Z) ≤ t, v(Z ′) ≤ t′ are
attained at Θ,Θ′ ∈ Sm, respectively, then for c ∈ [0, 1] one has

v
(
cZ + (1− c)Z ′

)
≤ f

(
X(cΘ + (1− c)Θ′) + cZ + (1− c)Z ′

)
+ g
(
cΘ + (1− c)Θ′

)
≤ c
[
f(XΘ + Z) + g(Θ)

]
+ (1− c)

[
f(XΘ′ + Z ′) + g(Θ′)

]
≤ ct+ (1− c)t′ .

To derive the conjugate g?, let D ∈ Sm be nonzero and with spectral decomposition D =∑
i≤rkD siσivi〈vi, • 〉, si ∈ {±1}. Then the ‖ • ‖nuc/‖ • ‖op-duality implies 〈D,Θ〉 − λ‖Θ‖nuc ≤

‖Θ‖nuc(‖D‖op − λ). Equality is achieved by setting Θ = s1ηv1〈v1, • 〉, which leads to the
equality 〈D,Θ〉 − λ‖Θ‖nuc = η(‖D‖op − λ) for every η > 0. The optimal choice is given by
η = 0 if ‖D‖op ≤ λ and leads to g?(D) = 0; otherwise, no finite value of η is optimal, and
therefore the quantity is unbounded. The conjugate f? follows from

〈M,Z〉 − 1

2µ̄
‖Y − Z‖2 = − µ̄

2
‖Y/µ̄‖2 +

[
〈Y/µ̄+M,Z〉 − 1

2µ̄
‖Z‖2

]
≤ − µ̄

2
‖Y/µ̄‖2 +

[
‖Y/µ̄+M‖‖Z‖ − 1

2µ̄
‖Z‖2

]
≤ µ̄

2

[
‖Y/µ̄+M‖2 − ‖Y/µ̄‖2

]
,
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wherein the final inequality results from maximization with respect to ‖Z‖. Equality is attained
by choosing Z = Y + µ̄M . Finally, the conjugate of v derives from

〈M,Z〉 − v(Z) = sup
Θ∈Sm

([
〈M,Z +XΘ〉 − f(Z +XΘ)

]
+
[
〈−M,XΘ〉 − g(Θ)

])
≤ f?(M) + sup

Θ∈Sm

[
〈−M,XΘ〉 − g(Θ)

]
≤ f?(M) + g?

(
−〈〈X,M〉〉+ 〈〈M,X〉〉

2

)
, <A3.2>

wherein the first inequality follows by maximization over Z ∈ W×m. Moreover, 〈−M,XΘ〉 =
− tr 〈〈M,XΘ〉〉 = − tr(〈〈X,M〉〉TΘ) = −〈〈〈X,M〉〉,Θ〉 = 〈−(〈〈X,M〉〉 + 〈〈M,X〉〉)/2,Θ〉 due to Θ ∈
Sm and (〈〈X,M〉〉 + 〈〈M,X〉〉)/2 being the orthogonal projection of 〈〈X,M〉〉 ∈ Rm×m onto Sm.
The implied inclusion −(〈〈X,M〉〉+ 〈〈M,X〉〉)/2 ∈ Sm leads to the second inequality. Finally, the
rightmost term in <A3.2> is the least upper bound of {〈M,Z〉 − v(Z) |Z ∈W×m}.

Proof of lemma 3.5. If the common ‖ • ‖nuc-length ˆ̀of all minimizers equals zero, then unique-
ness is uncontroversial. Otherwise, ‖Θ̂‖nuc = ˆ̀> 0. In this case, the lower part of the left-
hand side of <3.4> together with lemma 3.2 implies that a minimizer Θ̂ satisfies 〈Θ̂, Ĝ〉 =
‖Ĝ‖op‖Θ̂‖nuc and, in addition, ‖G‖op = λ. Then, corollary 2.6 guarantees the existence

of two symmetric and positive semidefinite matrices S+, S− with trS+ + trS− = ˆ̀ and
Θ̂ = U+

1 S
+〈〈U+

1 , • 〉〉 − U
−
1 S
−〈〈U−1 , • 〉〉, wherein the columns of U+

1 and U−1 provide orthonor-
mal bases of ker(Ĝ ∓ λ id), respectively, which are independent of the choice of the mini-
mizer Θ̂. Moreover, every minimizer Θ̂ satisfies the equality XΘ̂ = µ̄D̂+Y . The latter implies
XU+

1 S
+ = (µ̄D̂ + Y )U+

1 and XU−1 S
− = −(µ̄D̂ + Y )U−1 as all entries of 〈〈U−1 , U

+
1 〉〉 equal zero.

If ker(Ĝ∓ λ id) ∩ kerX = {0}, then kerXU±1 = {0} and S± are uniquely determined.

Proof of proposition 3.6. Minimizers Θ̂ of <3.1> and maximizers D̂ of <3.3> generally exist.
If the common ‖ • ‖nuc-length ˆ̀ of all minimizers equals zero, then the lefthand side of <3.4>
implies D̂ = −Y/µ̄ and ‖

(
〈〈X,Y 〉〉 + 〈〈Y,X〉〉

)
/(2µ̄)‖op = ‖Ĝ‖op ≤ λ. Conversely, if ‖(〈〈X,Y 〉〉 +

〈〈Y,X〉〉)/2µ̄‖op ≤ λ, then (Θ̂, D̂) = (0,−Y/µ̄) satisfies the lefthand side of <3.4>. Hence, the

latter choice is an optimal pair and therefore ˆ̀ = 0. If ˆ̀> 0, then the uniqueness assertion
follows from lemma 3.5 and the subsequent discussion.

Proof of proposition 3.7. Using <3.6> with Θ = Θ̂ and α = µ̄/‖X‖2op yields

lλ(Θ̂)− lλ(Θ̂(j)) ≥ 1

α
‖Θ̂(j) − Θ̂‖2 − 1

2α

[
‖Θ̂(j) − Θ̂(j−1)‖2 − 2〈Θ̂(j−1) − Θ̂, Θ̂− Θ̂(j)〉

]
=

1

2α

[
‖Θ̂(j) − Θ̂‖2 − ‖Θ̂(j−1) − Θ̂‖2

]
.

Furthermore, the inequality lλ(Θ̂(i)) ≤ lλ(Θ̂(i−1)) for all i ≥ 1 leads to

lλ(Θ̂(k))− lλ(Θ̂) ≤ 1

k

∑
j≤k

lλ(Θ̂(j))− lλ(Θ̂) ≤ 1

2αk

[
‖Θ̂(0) − Θ̂‖2 − ‖Θ̂(k) − Θ̂‖2

]
.

Consequently, pk = lλ(Θ̂(k)) ↓ lλ(Θ̂). If δ > 0 and n ∈ N is sufficiently large, then {lλ ≤ n} ∩
{‖Θ̂− • ‖ ≥ δ} is nonempty and compact. The continuous function lλ attains its minimum lδλ on
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this compact set. Thus, lλ(Θ̂(k))− lλ(Θ̂) < lδλ− lλ(Θ̂) implies lλ(Θ̂(k)) ≤ n, ‖Θ̂(k)−Θ̂‖ < δ, and

therefore Θ̂(k) → Θ̂. Thus, D̃(k) → D̂ = (XΘ̂− Y )/µ̄ and G̃(k) → Ĝ = −(〈〈X, D̂〉〉+ 〈〈D̂,X〉〉)/2.
If ‖Ĝ‖op > 0, then λD̃(k)/‖G̃(k)‖op → D̂. If ‖Ĝ‖op = 0, then 0 ∈ ∂λ‖Θ̂‖nuc, that is, Θ̂ = 0.

Consequently, continuity of −f? implies dk ↑ −f?(D̂) = lλ(Θ̂).

Proof of lemma 3.8. Rearranging terms in the inequality l̄λ,ξ(∆̂) ≤ l̄λ,ξ(0), that is,

‖Ē −X∆̂‖2

2(n− 1)
+ λ‖Θ∗ + ∆̂‖nuc + ξ‖Λq/2(Θ∗ + ∆̂)‖2 ≤ ‖Ē‖2

2(n− 1)
+ λ‖Θ∗‖nuc + ξ‖Λq/2Θ∗‖2 ,

leads to an upper bound on ‖X∆̂‖2/
(
2(n− 1)

)
+ ξ‖Λq/2∆̂‖2 in the form of

〈Ē,X∆̂〉
n− 1

+ 2
(√

2ξ‖Λq/2Θ∗‖
)(√ξ

2
‖Λq/2∆̂‖

)
+ λ

(
‖Θ∗‖nuc − ‖Θ∗ + ∆̂‖nuc

)
.

The elementary inequality 2ab ≤ a2 + b2 for a, b ∈ R, the (in)equalities 〈Ē,X∆̂〉/(n − 1) =
〈XTĒ, ∆̂〉/(n− 1) = 〈G, ∆̂〉 ≤ ‖G‖op‖∆̂‖nuc implied by the symmetry of ∆̂ and ‖ • ‖op/‖ • ‖nuc-
duality, and ‖Θ∗ + ∆̂‖nuc − ‖Θ∗‖nuc ≥ 〈M∗, ∆̂〉 for any subgradient M∗ ∈ ∂‖Θ∗‖nuc lead to

1

2

∥∥ X∆̂√
n− 1

∥∥2
+
ξ

2
‖Λq/2∆̂‖2 ≤ ‖G‖op

(
‖PV̄k∆̂‖nuc +‖PV̄ ⊥k ∆̂‖nuc

)
+λ〈−M∗, ∆̂〉+2ξ‖Λq/2Θ∗‖2 .

A more specific result follows by setting M∗ = sign Θ∗ + PV̄ ⊥k
sign(PV̄ ⊥k

∆̂), wherein signS =∑
i≤rkS sivi〈vi, • 〉 is (uniquely) defined for every symmetric matrix S via a spectral decom-

position
∑

i≤rkS siσi(S)vi〈vi, • 〉. In particular, 〈signS, S〉 =
∑

i,j≤rkS sisjσi(S)〈vi, vj〉2 =∑
i≤rkS σi(S) = ‖S‖nuc. Herein, the inclusion M∗ ∈ ∂‖Θ∗‖nuc follows from lemma 3.2. In

fact, the perfect alignment of Θ∗ with respect to Λ implies 〈M∗,Θ∗〉 = ‖Θ∗‖nuc as well as
‖M∗x‖2 ≤ ‖sign Θ∗x‖2 + ‖PL⊥k x‖

2 ≤ 1 for all unit length x ∈ Rm. If h > 0, then the latter

inequality holds with equality for x = u1; thus, ‖M∗‖op = 1 and 〈M∗,Θ∗〉 = ‖M∗‖op‖Θ∗‖nuc.
If h = 0, then ‖M∗‖op ≤ 1. Using λ ≥ ‖G‖op and 〈PV̄ ⊥k sign(PV̄ ⊥k

∆̂), ∆̂〉 = ‖PV̄ ⊥k ∆̂‖nuc leads to

∥∥ X∆̂√
n− 1

∥∥2
+ ξ‖Λq/2∆̂‖2 ≤ 2λ‖PV̄k∆̂‖nuc + 2λ〈− sign Θ∗, ∆̂〉+ 4ξ‖Λq/2Θ∗‖2 . <A3.3>

Next, 〈− sign Θ∗, ∆̂〉 = 〈− sign Θ∗, PLk∆̂〉 ≤ ‖sign Θ∗‖op‖PLk∆̂‖nuc ≤
√
h‖∆̂‖, which relies

on the final display of section 2.5.2, dimLk = h by perfect alignment, and ‖PLk‖op = 1.

The inequality rkPV̄k∆̂ ≤ 2h justified at the end of section 3.5.1 implies 2λ‖PV̄k∆̂‖nuc ≤
2λ
√

2h‖PV̄k∆̂‖ ≤ 3λ
√
h‖∆̂‖. Consequently, the righthand side in <A3.3> may be replaced

by 5λ
√
h‖∆̂‖ + 4ξ‖Λq/2Θ∗‖2. Finally, an orthonormal basis o1, . . . , om of Rm obtained as

an extension of a sequence of singular vectors o1, . . . , ork Λ of Λ induces an orthonormal
basis Oi,j = oio

T
j , i, j ≤ m, of Rm×m—comparable to ei and Bi,j in examples (a) and (b) of

section 2.1.1. This orthonormal basis reveals the inequality

‖Λq/2∆̂‖2 =
∥∥ ∑
i,j≤m

〈Oi,j , ∆̂〉Λq/2Oi,j
∥∥2

=
∑
i,j≤m

〈Oi,j , ∆̂〉2σqi (Λ) ≥ σqk−1(Λ)
∑

i<k,i≤j≤m
〈Oi,j , ∆̂〉2 .
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In addition, symmetry of ∆̂ implies 〈Oi,j , ∆̂〉 = 〈Oj,i, ∆̂〉. Consequently,

∑
i<k,i≤j≤m

〈Oi,j , ∆̂〉2 ≥
1

2

(∑
i<k
〈Oi,i, ∆̂〉2 +

∑
i<k,
i<j≤m

〈Oi,j , ∆̂〉2 +
∑

j<k,
i<j≤m

〈Oi,j , ∆̂〉2
)

=
1

2

∥∥∑
i<k
〈Ōi,i, ∆̂〉Ōi,i +

∑
i<k,
i<j≤m

〈Oi,j , ∆̂〉
(
Oi,j +Oj,i

)∥∥2
=

1

2

∥∥∑
i<k,
i≤j≤m

〈Ōi,j , ∆̂〉Ōi,j
∥∥2
,

wherein the final term equals 1
2‖PV ⊥k ∆̂‖2. Replacing ξ‖Λq/2∆̂‖2 on the lefthand side of <A3.3>

accordingly verifies <3.18>.

Proof of proposition 3.9. If h = 0, then the requirement λ ≥ ‖G‖op ensures that ‖∆̂‖ = 0;
thus, the inequality <3.20> holds. If h > 0 and k = 1, then X = FUT

1 and lemma 3.8 implies

〈 FTF

n− 1
UT

1 ∆̂, UT
1 ∆̂
〉

=

∥∥∥∥∥ X∆̂√
n− 1

∥∥∥∥∥
2

≤ 5
√
hλ‖∆̂‖ .

Using a spectral decomposition
∑

i≤h σi
(
FTF/(n − 1)

)
ai〈ai, • 〉 = FTF/(n − 1), wherein a1,

. . . , ah forms an orthonormal basis of Rh with h = m, yields the inequalities

〈 FTF

n− 1
UT

1 ∆̂, UT
1 ∆̂
〉

=
∑
i≤h

σi

(
FTF

n− 1

)
‖aiaTi UT

1 ∆̂‖2 ≥ σh
(
FTF

n− 1

)
‖UT

1 ∆̂‖2 ≥ κ‖∆̂‖2 ,

wherein 〈aiaTi UT
1 ∆̂, UT

1 ∆̂〉 = ‖aTi UT
1 ∆̂‖2 = ‖aiaTi UT

1 ∆̂‖2 as ‖ai‖ = 1, and the inequalities rely

on the orthogonality of aia
T
i U

T
1 ∆̂ and aja

T
j U

T
1 ∆̂ for i 6= j as well as ‖UT

1 ∆̂‖ = ‖U1U
T
1 ∆̂‖ = ‖∆̂‖.

Combining these two inequalities leads to the conclusion <3.20>.
If h > 0 and k > 1, then using the representation in <3.19> leads to

‖X∆̂‖2 = ‖FUT
1 ∆̂ + ρV2U

T
2 ∆̂‖2 = ‖FUT

1 ∆̂‖2 + ρ2‖V2U
T
2 ∆̂‖2 + 2ρ〈V T

2 FU
T
1 ∆̂, UT

2 ∆̂〉

≥ ‖FUT
1 ∆̂‖2 + ρ2‖V2U

T
2 ∆̂‖2 − 2

(
√

2ρ
‖V T

2 F‖op‖UT
2 ∆̂‖

σ
1/2
h (FTF )

)[
σ

1/2
h (FTF )

‖UT
1 ∆̂‖√

2

]

≥ σh(FTF )

2
‖UT

1 ∆̂‖2 − 2ρ2
‖V T

2 F‖2op
σh(FTF )

‖UT
2 ∆̂‖2 , <A3.4>

wherein the second and third line rely on σh(FTF ) ≥ κ > 0. In addition, the second line uses

〈V T
2 FU

T
1 ∆̂, UT

2 ∆̂〉 ≤
√
‖V T

2 FU
T
1 ∆̂‖2‖UT

2 ∆̂‖ =

√∑
i≤rkV T

2 F
σ2
i (V

T
2 F )‖difTi UT

1 ∆̂‖2‖UT
2 ∆̂‖ ,

wherein the final term is upper bounded by σ1(V T
2 F )‖UT

1 ∆̂‖‖UT
2 ∆̂‖, and furthermore V T

2 F =∑
i≤rkV T

2 F
σi(V

T
2 F )di〈fi, • 〉 represents a singular value decomposition of V T

2 F ∈ R(m−h)×h.

The inequality <A3.4> follows by dropping ρ2‖V2U
T
2 ∆̂‖2, applying the elementary inequal-

ity a2 + b2 ≥ 2ab for a, b ∈ R to the final term of the previous line, and ‖FUT
1 ∆̂‖2 ≥
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σh(FTF )‖UT
1 ∆̂‖2, whose derivation is similar to the preceding display. The inequality

‖X∆̂‖2 ≥ σh(FTF )

2
‖∆̂‖2 −

(
σh(FTF )

2
+ 2ρ2

‖V T
2 F‖2op

σh(FTF )

)
‖PV ⊥k ∆̂‖2

results from ‖∆̂‖2 = ‖U1U
T
1 ∆̂ +U2U

T
2 ∆̂‖2 = ‖UT

1 ∆̂‖2 + ‖UT
2 ∆̂‖2 and ‖UT

2 ∆̂‖2 = ‖U2U
T
2 ∆̂‖2 =

‖PL⊥k ∆̂‖2 = ‖PL⊥k ∆̂PL⊥k
‖2+‖PL⊥k ∆̂PLk‖2 ≤ ‖PV ⊥k ∆̂‖2, which uses the representation in<3.17>

and the perfect alignment of Θ∗ with Λ, that is, Lk = imgU1 = (imgU2)⊥. Plugging these
results into <3.18> yields the inequality

σh

(
FTF

n− 1

)
‖∆̂‖2 +

[
ξσqk−1(Λ)−

(
σh

(
FTF

n− 1

)
+ 4ρ2

‖V T
2 F/(n− 1)‖2op

σh
(
FTF/(n− 1)

))] ‖PV ⊥k ∆̂‖2

≤ 10
√
hλ‖∆̂‖+ 8ξ‖Λq/2Θ∗‖2 .

Next, the lower bound on ξ, σh
(
FTF/(n − 1)

)
≥ κ, and a + b ≤ 2 max{a, b} for a, b ∈ R

imply the inequality κ‖∆̂‖2 ≤ max
{

20
√
hλ‖∆̂‖, 16ξ‖Λq/2Θ∗‖2

}
. Consequently, at least one of

‖∆̂‖ ≤ 20
√
hλκ and ‖∆̂‖ ≤ 4

√
ξ
κ‖Λ

q/2Θ∗‖ holds.

Proof of lemma 3.10. Partitioning a unit length a ∈ Rm(n+l) in n+ l vectors ai ∈ Rm leads to
〈a,Aca〉 =

∑
t≤n−1〈a,BT

t cc
TBta〉 =

∑
t≤n−1

〈
c,
∑n−t+1+l

i=n−t+1 Āi−(n−t+1)ai
〉2

for an arbitrary unit

length c ∈ Rh. This representation yields

〈a,Aca〉 =

l∑
i=0

l∑
j=0

〈
ĀT
i c,

( ∑
t≤n−1

an−t+1+ia
T
n−t+1+j

)
ĀT
j c
〉
≤
( l∑
i=0

‖Aic‖
)2

,

wherein the final inequality follows from the Cauchy-Schwarz inequality together with

‖
∑

t≤n−1
an−t+1+ia

T
n−t+1+j‖2op ≤ ‖

∑
t≤n−1

an−t+1+ia
T
n−t+1+j‖2

=
∑

t≤n−1

∑
s≤n−1

〈an−t+1+i, an−s+1+i〉〈an−t+1+j , an−s+1+j〉

≤
[∑

t≤n−1
‖an−t+1+i‖‖an−t+1+j‖

]2

=

〈( ‖an+i‖
...

‖a2+i‖

)
,

( ‖an+j‖
...

‖a2+j‖

)〉2

≤
(∑

i≤n+l
‖ai‖2

)2

,

wherein the final term does not exceed one, and ‖ĀT
i c‖ = ‖Aic‖—as Ai is a diagonal matrix

and therefore symmetric—for 0 ≤ i ≤ l. In summary, the symmetric and positive semidefinite
matrix Ac satisfies ‖Ac‖op ≤

(∑l
i=0‖Aic‖

)2
. Thus, 〈Vfc, c〉 =

∑l
i=0‖Aic‖2 implies

ζc =
1

2C2

∑l
i=0‖Aic‖2(∑l
i=0‖Aic‖

)2 ≥ 1

2C2

∑k′

i=0‖Aic‖2(
6
5

∑k′

i=0‖Aic‖
)2 ≥ 1

3C2(k′ + 1)
, <A3.5>

wherein k′ equals the largest nonnegative integer not exceeding min{l, (1 + log 6)/α}, which is
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therefore less than k′ + 1. Thus, if k′ < l, then k′ + 1 > (1 + log 6)/α and

l∑
i=0

‖Aic‖ =
k′∑
i=0

‖Aic‖+
l∑

i=k′+1

‖Aic‖ ≤
k′∑
i=0

‖Aic‖+ exp
(
1− α(k′ + 1)

) l∑
i=0

‖Aic‖

≤
k′∑
i=0

‖Aic‖+ exp
(
− log 6

) l∑
i=0

‖Aic‖ =

k′∑
i=0

‖Aic‖+
1

6

l∑
i=0

‖Aic‖ .

Consequently,
∑l

i=0‖Aic‖ ≤
6
5

∑k′

i=0‖Aic‖ ≤
6
5

√
k′ + 1

(∑k′

i=0‖Aic‖2
)1/2

, wherein the final in-
equality follows as in the final display of section 2.5.2. The latter inequalities also hold
for the case k′ = l and explain the first and second inequality in <A3.5>. The inequality
(3 + α)/α ≥ (1 + log 6 + α)/α ≥ k′ + 1 holds in general. Finally, C ≥ 1 implies that the
resulting ζ̄ = α/

(
3C2(3 + α)

)
lies in [0, 1].

Proof of lemma 3.11. Let c1, . . . , cq and d1, . . . , dp be ⊂-minimal 1
4 -nets of the unit sphere

{‖ • ‖ = 1} of Rh and Rm−h, respectively. Then H̄ = {(ci, dj) ∈ Rm | i ≤ q, j ≤ p} contains no
more than 9h9m−h = 9m elements. In addition, if (c, d) ∈ H = {(c′, d′) ∈ Rh+(m−h) | ‖c′‖ =
‖d′‖ = 1}, then there exist i ≤ q, j ≤ p such that ‖(c, d)−(ci, dj)‖ = (‖c−ci‖2 +‖d−dj‖2)1/2 ≤
1/
√

8. Consequently, H̄ provides an 1
2
√

2
-net of H. In addition, the map H 3 (c, d) 7→

〈V
T
2 F
n−1 c, d〉, wherein F = F (ω), V2 = V2(ω) represent images of some ω, satisfies∣∣∣∣〈 V T

2 F

n− 1
c, d
〉
−
〈 V T

2 F

n− 1
c′, d′

〉∣∣∣∣ ≤ ∥∥∥∥ V T
2 F

n− 1

∥∥∥∥
op

[
‖c−c′‖+‖d−d′‖

]
≤
√

2

∥∥∥∥ V T
2 F

n− 1

∥∥∥∥
op

∥∥∥∥(cd
)
−
(
c′

d′

)∥∥∥∥ ,
which utilizes ‖V T

2 F/(n−1)‖op = ‖FTV2/(n−1)‖op as well as a+b = 〈( ab ) , ( 1
1 )〉 ≤

√
2
√
a2 + b2

for a, b ∈ R. Consequently, the second inequality in <2.1> implies the inequality

‖ V
T

2 F

n− 1
‖op = sup

(c,d)∈H

〈 V T
2 F

n− 1
c, d
〉
≤ max

i≤q,j≤p

〈 V T
2 F

n− 1
ci, dj

〉
+
√

2‖ V
T

2 F

n− 1
‖op

1

2
√

2
,

which in turn implies ‖V T
2 F/(n−1)‖op ≤ 2 maxi,j〈

V T
2 F
n−1 ci, dj〉. Subsequently, F represents ω 7→

F (ω) and likewise for V2. For given (c, d) ∈ H, it holds that 〈V T
2 Fc, d〉 =

∑
i≤n−1〈d, v

(2)
t 〉〈c, ft〉,

wherein the factors of the summands are independent. In particular, E〈V T
2 Fc, d〉 = 0. Using

v
(2)
t = B̄tv =

[
0 . . . 0︸ ︷︷ ︸

n− t zero matrices
in Rm−h×m

0︸︷︷︸
zero matrix
in Rm−h×h

I︸︷︷︸
identity matrix
in Rm−h×m−h

0 . . . 0︸ ︷︷ ︸
t+ l − 1 zero matrices

in Rm−h×m

]
v <A3.6>

and the notation of the main text leads to 〈V T
2 Fc, d〉 =

∑
t≤n−1〈B̄tv, d〉〈c,Btv〉 = 〈v,Ac,dv〉,

wherein
∑

t≤n−1 B̄
T
t dc

TBt. The squared Frobenius norm of the latter matrix equals

‖Ac,d‖2 = tr

( ∑
t≤n−1

∑
s≤n−1

BT
t cd

TB̄tB̄
T
s dc

TBt

)
=
∑
t≤n−1

〈c,BtBT
t c〉 = (n− 1)〈Vfc, c〉 ,

wherein the second equality uses dTB̄tB̄
T
s d = 0 if s 6= t and one otherwise. If a, a′ ∈ Rm(n+l)
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are of unit length and each consisting of n+ l vectors ai, a
′
i ∈ Rm, respectively, then

〈
a′,

∑
t≤n−1

B̄T
t dc

TBta
〉

=
∑
t≤n−1

〈d,
[
0 I

]
a′n−t+1〉〈c,

l∑
i=0

Āiai+n−t+1〉

=
l∑

i=0

dT
[
0 I

]( ∑
t≤n−1

a′n−t+1a
T
i+n−t+1

)
ĀT
i c ≤

l∑
i=0

‖ĀT
i c‖ =

l∑
i=0

‖Aic‖ ,

wherein the inequality results from using the Cauchy-Schwarz inequality as exemplified in
the proof of lemma 3.10, and ‖ĀT

i c‖ = ‖Aic‖ holds by definition. In particular, one has∑l
i=0‖Aic‖ ≥ ‖Ac,d‖op. Using the Hanson-Wright inequality with wci = ¯̄CC2

∑l
k=0‖Akci‖m,

wherein the constant ¯̄C is given by max{C̄−1 log 18, 1} ≥ 1, together with similar arguments as
in the proof of lemma 3.10 and m ≥ n−1 reveals that for given i ≤ q and j ≤ p the probability

P
{∣∣∣∣〈dj , V T

2 F

n− 1
ci
〉∣∣∣∣ > ¯̄CC2 m

n− 1

l∑
k=0

‖Akci‖
}

= P
{
|〈v,Aci,djv〉| > ¯̄CC2m

l∑
k=0

‖Akci‖
}

is less or equal to 2 exp
(
−(log 9 + log 2)m

)
. As a consequence, the inequality

∑l
k=0‖Akci‖ ≤

6
5

(
3+α
α

)1/2〈ci, Vfci〉1/2 ≤ 6
√

3
5

(
1+α
α

)1/2
σ

1/2
1 (Vf ), which uses

∑l
k=0‖Akci‖2 = 〈ci, Vfci〉 and is

derived in the proof of lemma 3.10, together with an application of the union bound shows that

‖V2(ω)TF (ω)

n− 1
‖op ≤ 2 max

i≤q,j≤p

〈V2(ω)TF (ω)

n− 1
ci, dj

〉
≤ ¯̄̄
CC2

(
1 + α

α

)1/2

σ
1/2
1 (Vf )

m

n− 1
,

wherein
¯̄̄
C = 12

√
3

5
¯̄C, holds for all ω in an element of the σ-field F, whose probability is bounded

below by 1− 2 exp
(
m log 9− (log 9 + log 2)m

)
= 1− 1/2m−1.

Proof of lemma 3.12. The proof considers 0 < h < m; the case h ∈ {0,m} follows by similar
arguments. Let c1, . . . , cq be a ⊂-minimal 1

4 -net of the unit sphere {‖ • ‖ = 1} in Rm. Then H̄ =
{(ci,±ci) | i ≤ q} contains no more than 2× 9m elements. Moreover, if (c, d) ∈ H = {(c′, d′) ∈
Rm+m | c′ = ±d′, ‖c′‖ = ‖d′‖ = 1}, then there exists i ≤ q and a sign choice s ∈ {−1, 1} such
that ‖(c, d)−(ci, sci)‖ ≤ 1/

√
8. Consequently, H̄ provides an 1

2
√

2
-net of H. An upper bound on

the ‖ • ‖-Lipschitz constant for the map (c, d) 7→ 〈Gc, d〉, wherein G = (XTĒ+ĒTX)/
(
2(n−1)

)
and X = X(ω) ∈ Rn−1×m as well as Ē = Ē(ω) ∈ Rn−1×m represent images of some ω, follows
from |〈Gc, d〉− 〈Gc′, d′〉| ≤ ‖G‖op

(
‖c− c′‖+ ‖d− d′‖

)
≤
√

2‖G‖op‖(c, d)− (c′, d′)‖, which relies

on
〈

( ab ) , ( 1
1 )
〉
≤
√

2
√
a2 + b2 for a, b ∈ R. Consequently, lemma 2.4 and the second inequality

in <2.1> imply ‖G‖op = sup(c,d)∈H〈Gc, d〉 ≤ 2 maxi≤q,s∈{−1,1}〈Gci, sci〉.
Below, X and Ē symbolize the random matrices ω 7→ X(ω) and ω 7→ Ē(ω), respectively.

The (transposed) rows of the former equal xt = U1ft + ρU2v
(2)
t = (U1Bt + ρU2B̄t)v, t ≤ n− 1,

wherein v,Bt and B̄t are defined in the main text and <A3.6>, respectively. The (transposed)

rows of the latter are given by ēt+1 = U1A0v
(1)
t+1 + ρU2v

(2)
t+1 +

∑
i≤l U1(Ai − Γ∗Ai−1)v

(1)
t+1−i −

U1Γ∗Alv
(1)
t−l, wherein the representation follows from <3.12>, and Γ∗ is defined in <3.11>.
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The latter amounts to ēt+1 = (U1
¯̄Bt+1 + ρU2B̄t+1)v, wherein B̄t+1 is defined in <A3.6> and

Rh×m(n+l) 3 ¯̄Bt+1 =

[
0 . . . 0︸ ︷︷ ︸
n− t− 1 zero

matrices in Rh×m

¯̄A0 . . . ¯̄Al+1 0 . . . 0︸ ︷︷ ︸
t− 1 zero

matrices in Rh×m

]
, t ≤ n− 1 ,

with ¯̄A0 =
[
A0 0

]
∈ Rh×h+(m−h), ¯̄Ai =

[
Ai − Γ∗Ai−1 0

]
, i ≤ l, and ¯̄Al+1 =

[
−Γ∗Al 0

]
.

For given (c, d) ∈ H, one has E〈Gc, d〉 = 0 as E〈XTĒc, d〉 =
∑

t≤n−1 d
T
(
ExtēTt+1

)
c with

ExtēTt+1 = 〈〈Xt, Ēt+1〉〉 = 0, Xt = [xt,1 · · · xt,m], Ēt+1 = [ēt+1,1 · · · ēt+1,m] by the definition
above <3.11> and likewise for E〈XTĒd, c〉. The above representation leads to

〈Gc, d〉 =
〈XTĒ + ĒTX

2(n− 1)
c, d
〉

=
1

2(n− 1)

∑
t≤n−1

[
〈ēt+1, c〉〈d, xt〉+ 〈ēt+1, d〉〈c, xt〉

]
=

1

n− 1
vT
[

1

2

∑
t≤n−1

( ¯̄BT
t+1U

T
1 + ρB̄T

t+1U
T
2

)
cdT
(
U1Bt + ρU2B̄t

)
︸ ︷︷ ︸

Ac,d

+
Ad,c

2

]
v = vT

[
Ac,d +Ad,c

2(n− 1)

]
v .

The equality c = ±d implies Ac,d = Ad,c = ±Ac,c and thereby ‖Ac,d +Ad,c‖op = ‖±2Ac,c‖op =
2‖Ac,c‖op. If a, a′ ∈ Rm(n+l) consist of n+ l vectors ai, a

′
i ∈ Rm, respectively, then

〈a′, Ac,ca〉 =

T1︷ ︸︸ ︷〈
a′,
∑

t≤n−1

¯̄BT
t+1U

T
1 cc

TU1Bta
〉

+ρ

T2︷ ︸︸ ︷〈
a′,
∑

t≤n−1
B̄T
t+1U

T
2 cc

TU1Bta
〉

+ ρ
〈
a′,
∑

t≤n−1

¯̄BT
t+1U

T
1 cc

TU2B̄ta
〉

︸ ︷︷ ︸
T3

+ρ2
〈
a′,
∑

t≤n−1
B̄T
t+1U

T
2 cc

TU2B̄ta
〉

︸ ︷︷ ︸
T4

.

In case ‖a‖ = ‖a′‖ = 1, arguments similar to those used in the proof of lemma 3.10 yield

T1 ≤

(
l+1∑
i=0

‖ ¯̄AT
i c1‖

)(
l∑

i=0

‖Aic1‖

)
, T2 ≤ ‖c2‖

(
l∑

i=0

‖Aic1‖

)
, T3 ≤

(
l+1∑
i=0

‖ ¯̄AT
i c1‖

)
‖c2‖ ,

and T4 ≤ ‖c2‖2, wherein ci = UT
i c for i ∈ {1, 2}. The approximation factor β leads to

∑l+1

i=0
‖ ¯̄AT

i c1‖ = ‖A0c1‖+
∑l

i=1
‖(Ai − Γ∗Ai−1)c1‖+ ‖Γ∗Alc1‖

≤ ‖A0c1‖+
∑l

i=1
β‖Aic1‖+

∑l−1

i=0
β‖Aic1‖+ ‖Alc1‖ ≤ max{1 + β, 2β}︸ ︷︷ ︸

Mβ

∑l

i=0
‖Aic1‖ ,

wherein the first inequality uses max{a, b} ≤ a+b, a, b ∈ R and the fact that Ai, Γ∗ are diagonal
matrices with ‖Γ∗‖op ≤ 1. Setting Sc =

∑l
i=0‖Aic1‖/‖c1‖ if c1 6= 0 and Sc = 0 if c1 = 0 yields

‖Ac,c‖op ≤Mβ

[
S2
c ‖c1‖2+2(Sc‖c1‖)(ρ‖c2‖)+ρ2‖c2‖2

]
= Mβ(Sc‖c1‖+ρ‖c2‖)2 = Mβ(S2

c+ρ2) .

Therein, the inequality uses Mβ = max{1 + β, 2β} ≥ 1, in particular, (Mβ + 1) ≤ 2Mβ, and
the final equality is by virtue of the Cauchy-Schwarz inequality together with ‖c1‖2 + ‖c2‖2 =
‖U1U

T
1 c‖2 + ‖U2U

T
2 c‖2 = ‖c‖2 = 1. The Hanson-Wright inequality together with the inequali-
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ties ‖(Aci,±ci + A±ci,ci)/2‖2 = ‖Aci,ci‖2 ≤ (n − 1)‖Aci,ci‖2op = (n − 1)‖(Aci,±ci + A±ci,ci)/2‖2op
and m ≥ n−1 as well as the equalities wci = ¯̄CC2Mβ(S2

ci +ρ
2)m, ¯̄C = max{C̄−1 log 18, 1} ≥ 1,

and C̄ being the unspecified constant in the Hanson-Wright inequality implies that

P
{
|〈Gci,±ci〉| > ¯̄CC2Mβ(S2

ci +ρ
2)

m

n− 1

}
= P

{∣∣∣∣vTAci,±ci +A±ci,ci
2

v

∣∣∣∣ > ¯̄CC2Mβ(S2
ci +ρ2)m

}
is bounded above by 2 exp

(
−(log 9 + log 2)m

)
. The final step uses the inequality

∑l
i=0‖Aic‖ ≤

6
5

[
3+α
α

]1/2〈c, Vfc〉1/2 ≤ 6
√

3
5

[
1+α
α

]1/2
σ

1/2
1 (Vf ), which relies on

∑l
i=0‖Aic‖2 = 〈c, Vfc〉, applies to

all c ∈ {‖ • ‖ = 1} as well as c = 0, and is derived in the proof of lemma 3.10. Using the union
bound on the events indexed by (ci,±ci) ∈ H̄ reveals that

‖G(ω)‖op =

∥∥∥∥X(ω)TĒ(ω) + Ē(ω)TX(ω)

2(n− 1)

∥∥∥∥
op

≤ ¯̄̄
CC2(1 + β)

(
1 + α

α
σ1(Vf ) + ρ2

)
m

n− 1
,

which relies on max{1 + β, 2β} ≤ 2(1 + β) and
¯̄̄
C = 263

52
¯̄C ≤ 18 ¯̄C, holds for all ω in an element

of F with probability larger or equal to 1− 1/2m−2.

Proof of proposition 3.13. If h = 0, then lemma 3.12 together with C4 =
¯̄̄
C—the latter being

the constant in lemma 3.12—guarantees that λ ≥ ‖G‖op and thereby ‖Θ̂ − Θ∗‖ = 0 with
probability at least 1−1/2m−2 ≥ 1−δ−1/2m−3. If h ≥ 1, then the requirements of lemma 3.10
are met. Thus, choosing the constant C1 = max{1, 81/C̄} and C2 = 41, wherein C̄ denotes the
(unspecified) constant in the Hanson-Wright inequality, implies that <3.24> holds and hence
m ≥ C ′h+ C ′′ log(2/δ) ≥ h+ log(2/δ) with C ′, C ′′ > 1, in particular, h < m. Therefore,

κ̄ =
1

3
σh(Vf ) ≤ σh

(
F (ω)TF (ω)

n− 1

)
≤ 2σh(Vf )

applies to all elements ω of some S1 ∈ F with probability greater or equal to 1−δ. Furthermore,
the above inequalities together with lemma 3.11 implies that

ξ̂ = ξ̂(ω) ≤ C3

σqk−1(Λ)

(
σh(Vf ) + ρ2C4 1 + α

α

σ1(Vf )

σh(Vf )

[
m

n− 1

]2)
= ξ̄ ≤ ξ

holds for all w ∈ S1∩S2 for some S2 ∈ F with PS2 ≥ 1−1/2m−1, wherein C3 = max{2, 12
¯̄̄
C2}, ¯̄̄

C
symbolizes the constant of lemma 3.11, and ξ̂ is defined in proposition 3.9. Finally, lemma 3.12
guarantees that the inequality

λ̂ = λ̂(ω) ≤ C4C
2(1 + β)

(
1 + α

α
σ1(Vf ) + ρ2

)
m

n− 1
= λ̄ ≤ λ

holds for all ω ∈ S3 with S3 ∈ F and PS3 ≥ 1 − 1/2m−2, wherein C4 =
¯̄̄
C denotes the

constant of lemma 3.12—as in case h = 0, and λ̂ is defined in proposition 3.9. Consequently,
the latter proposition ensures that the inequality <3.25> holds for all ω ∈ S1 ∩ S2 ∩ S3 and
with C5 = 20 = max{20, 4}. An application of the union bound shows that the previous
intersection has probability greater or equal to 1− δ − 3/2m−1 ≥ 1− δ − 1/2m−3.
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4. Prediction techniques

4.1. Oblique approximation

4.1.1. Distance between projectors

This section bounds the final summand in <2.5>, that is, the (squared) length of the
difference (PV −PV/U)x between the orthogonal projection PV x and the oblique projec-
tion PV/Ux. Herein, x symbolizes an element of a Euclidean space W , and V, U ⊂ W
denote complementary subspaces of W ; the particular form x =

∑
i≤q aixi considered

in <2.5> bears no significance for the subsequent discussion. Bounding this distance
has practical relevance as the first summand ‖x−PV x‖2 of the rightmost term in <2.5>

equals the minimal—and therefore unavoidable—(squared) approximation error when
substituting x by an element of the set V based solely on the Euclidean space structure.

Orthogonal projections amount to oblique projections along the orthogonal comple-
ment V ⊥ = ∩x∈V {〈x, • 〉 = 0} of V (in W ). Hence, the equality U = V ⊥, in particular
U = {0} = V ⊥, renders the endeavor of bounding the images of PV/U −PV meaningless.
More precisely, the kernel of PV/U−PV takes the form V +(V ⊥∩U). Thus, its orthogonal
complement V ⊥ ∩ (V ⊥ ∩ U)⊥ is nontrivial if and only if V ⊥ 6= U . In that case, the lin-
earity of projectors allows restricting considerations to elements x of that complement.
Then, proposition 4.1 provides alternative expressions for the multipliers (of ‖x‖) in[

inf
v′
‖(PV/U − PV )v′‖

]
‖x‖ ≤ ‖(PV/U − PV )x‖ ≤

[
sup
v′
‖(PV/U − PV )v′‖

]
‖x‖ , <4.1>

wherein the infimum and supremum extend over all unit length elements of the orthog-
onal complement V ⊥ ∩ (U ∩ V ⊥)⊥ = V ⊥ ∩ (U⊥ + V ) of the kernel of PV/U − PV .

More specifically, these two multipliers equal the tangent of the least nonzero principal
angle

principal angle
θmin, 6=0 = θmin, 6=0(V ⊥, U) and that of the largest principal angle θmax = θmax(V ⊥, U)

between the two equal dimensional subspaces V ⊥ and U . As shown below, the specifi-
cation of the angles θmin, 6=0 ∈ [0, π/2] and θmax ∈ [0, π/2] in form of

cos θmin, 6=0(V ⊥, U) = sup
v′∈V ⊥∩(V ⊥∩U)⊥∩{‖ • ‖=1}

sup
u∈U∩{‖ • ‖=1}

〈u, v′〉 and <4.2a>

cos θmax(V ⊥, U) = inf
v′∈V ⊥∩{‖ • ‖=1}

sup
u∈U∩{‖ • ‖=1}

〈u, v′〉 <4.2b>

is unequivocal due to the strict monotonicity of the cosine function on [0, π/2].
More generally, the definition <4.2b> extends to an arbitrary ` = codimV dimen-

sional subspace U of W , which needs not be complementary to V . Using this more
general understanding, lemma 4.2 shows that θmax(V ⊥, U) = 0 is equivalent to the
equality U = V ⊥, that is, V ⊥ ∩ (V ⊥ ∩ U)⊥ = {0}. In particular, an analogous gener-
alized understanding of definition <4.2a> is possible whenever U 6= V ⊥. Moreover, the
inequality θmax(U, V ⊥) < π/2 in connection with dimU = codimV is tantamount to the
subspace U being complementary to V . Consequently, the expressions in proposition 4.1
are meaningful—in light of the definition of tan—and are proved in section 4.1.2.
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Figure 4.1
The figure illustrates the two bounds in <4.4>. To this end, it considers the projections
of x ∈ R3 onto a one dimensional space V = span{v2} along its orthogonal complement V ⊥ =
span{v′1, v′2} as well as onto V along another complement U = span{u1, u2}. Herein θmin,6=0 =
θmax = θ2, x ∈ V +

(
V ⊥∩ (V ⊥∩U)⊥

)
, and thus the inequalities in <4.4> hold with equality.

Proposition 4.1. Let U 6= V ⊥ be a ` ≥ 1 dimensional complement of a subspace V of
a Euclidean space W , then the subspace V ′′ = V ⊥ ∩ (V ⊥ ∩ U)⊥ is nontrivial and

inf
v′′∈V ′′∩{‖ • ‖=1}

‖(PV/U − PV )v′′‖ = tan θmin,6=0 and <4.3a>

sup
v′′∈V ′′∩{‖ • ‖=1}

‖(PV/U − PV )v′′‖ = tan θmax . <4.3b>

Panel (B) of figure 2.2 shows how the multipliers in <4.3a> and <4.3b> depend on the
corresponding principal angles θmin, 6=0 and θmax. Combining this result with <4.1> yields

tan θmin, 6=0‖PV ′′x‖ ≤ ‖(PV/U − PV )x‖ ≤ tan θmax‖PV ′′x‖ ≤ tan θmax‖x̃V ‖ , <4.4>

for all x ∈ W and subspaces V ⊥ 6= U , wherein V ′′ = V ⊥ ∩ (V ⊥ ∩ U)⊥, and the prin-
ciple angles refer to the pair of complements (V ⊥, U) of V . Figure 4.1 illustrates the
possibility of—even simultaneous—nontrivial attainment of the bounds in <4.4>. This
figure considers a one dimensional subspace V = span{v2} of R3 together with a comple-
ment U = span{u1, u2}. The latter shares the direction u1 = v′1 with the orthogonal com-
plement V ⊥. Consequently, V ⊥ ∩ (V ⊥ ∩ U)⊥ = span{v′1, v′2} ∩ (span{v′1})⊥ = span{v′2},
and furthermore the least nonzero and the largest principal angle between V and U both
equal θ2. The upper righthand corner magnifies x ∈ V + V ′′ alongside its two projec-
tions x̂ = PV x and x̂/ = PV/Ux to visualize <4.3a> and <4.3b>. Panel (B) of figure 4.2
reconsiders this setting, and its notation is adapted to the discussion in section 4.1.2.
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Finally, a comment on the role of W in <4.4> is in order. An individual projection of
a given x ∈ W onto V bears no reference to directions outside span{x}+V . Hence, only
(at most) one dimensional complements are relevant. In this minimal setting, the first
upper bound in <4.4> coincides with the lower one. However, the inequalities <4.4>

also apply to W with higher dimension. In that case, these bounds hold uniformly over
all x ∈ W , but at the price of less favorable multipliers. In any case, the influence of the
dimension of W exhibits an overall limit in that (PV/U − PV )x differs from zero if and
only if x extends into V ⊥ ∩ (V ⊥ ∩ U)⊥. More specifically, the dimension of V ⊥ ∩ U is
immaterial, and its codimension does not exceed 2 dimV . Therein, the latter dimension
bound follows from (V ⊥ ∩ U)⊥ = V + U⊥ together with dimU⊥ = dimV .

4.1.2. Angles between subspaces

This section considers two complementary subspaces V and U of a Euclidean space W
and investigates the concept of principal angles between the equal dimensional sub-
spaces V ⊥ and U . If these two subspaces differ, then the least nonzero principal angle
θmin, 6=0(V ⊥, U) is defined by <4.2a>. In any case, the largest of these angles θmax(V ⊥, U)
is determined by <4.2b>. At first sight, the order of subspaces in these definitions
matters. Lemma 4.2 negates this impression. Until then, θmin,6=0 and θmax symbolize
θmin, 6=0(V ⊥, U) and θmax(V ⊥, U) as defined in <4.2a> and <4.2b>, respectively.

The final term φU(v′) = supu∈U∩{‖ • ‖=1}〈u, v′〉 of either of these two definitions is key
to understanding their construction. Compactness of {‖ • ‖ = 1} and continuity of 〈 • , v′〉
ensure that this supremum is attained. Consequently, φU(v′) equals the cosine of the
smallest (small) angle between a unit length element u ∈ U and the given unit length v′.
It is conventionally interpreted as the angle anglebetween v′ and the subspace U .

If v′ 6∈ U⊥, then the unit length element u∗ = v̂′U/‖v̂′U‖ exists, and 〈u, v′〉 = 〈u, v̂′U〉
ensures that the supremum φU(v′) = ‖v̂′U‖ is solely attained at u∗. If v′ ∈ U⊥, then
φU(v′) = 0 = ‖v̂′U‖, which is clearly attained for all u ∈ U ∩{‖ • ‖ = 1}. The subspace U
of R3 and v′ ∈ R3 shown in panel (A) of figure 4.2 exemplify these arguments for the
case that v′ 6∈ U and v′ 6∈ U⊥. Then, φU(v′) lies in the interval (0, 1). If (and only
if) v′ ∈ U⊥, then φU(v′) = 0; if (and only if) v′ ∈ U , then φU(v′) = 1. Thus, there
generally exists a unique angle θmax ∈ [0, π/2] satisfying <4.2b>. Moreover, if V ⊥ 6= U ,
then V ⊥ ∩ (U ∩ V ⊥)⊥ 6= {0} and the angle θmin, 6=0 ∈ (0, π/2] in <4.2a> is well defined.

Furthermore, continuity of ‖PU • ‖ guarantees that infv′∈V ⊥∩{‖ • ‖=1} φU(v′) is attained,
and therefore V ⊥ ∩ U⊥ 6= {0} is tantamount to θmax(V ⊥, U) = π/2. In particular,
if U and V are complementary, then so are U⊥ and V ⊥, that is, U⊥ ∩ V ⊥ = {0} or
equivalently θmax(V ⊥, U) < π/2. Lemma 4.2 asserts the converse and justifies calling
θmax an angle between V ⊥ and U , which after all suggest some sort of symmetry.

Lemma 4.2. If U and V are two ` dimensional subspaces of a Euclidean space W , then

(a) θmax = θmax(U, V
⊥) = θmax(V, U

⊥),

(b) U and V are complementary if and only if θmax < π/2, and

(c) U and V ⊥ are equal if and only if θmax = 0.
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Furthermore, if θmax > 0, then the notion of θmin,6=0 is meaningful and satisfies

θmin, 6=0 = θmin,6=0(U, V ⊥) = θmin, 6=0(V, U⊥) .

To address the claim in lemma 4.2, let V be a subspace of a Euclidean space W
with positive codimension ` = codimV and U be another ` dimensional subspace of W .
Initially, the inequality U 6= V ⊥ is dispensable as only θmax is of concern.

Compactness of U ∩{‖ • ‖ = 1}×V ⊥ ∩{‖ • ‖ = 1} 6= ∅ and continuity of 〈 • , • 〉—both
with respect to the product (of the norm) topology on W ×W—guarantee the equalities

sup
v′∈V ⊥∩{‖ • ‖=1}

φU(v′) = sup
(v′,u)∈V ⊥∩{‖ • ‖=1}×U∩{‖ • ‖=1}

〈v′, u〉 = sup
u∈U∩{‖ • ‖=1}

φV ⊥(u) , <4.5>

and thereby supply a symmetric definition of a least principal angle θ1. The same
argument ensures the existence of a unit length v′1 ∈ V ⊥ and a unit length u1 ∈ U
such that cos θ1 = 〈v′1, u1〉. Any valid choice of v′1, u1 satisfies φU(v′1) = 〈u1, v

′
1〉 =

φV ⊥(u1). Hence, the above discussion reveals PV ⊥u1 ∈ span{v′1} and PUv
′
1 ∈ span{u1}

and consequently PV ⊥u1 = 〈u1, v
′
1〉v′1 = cos θ1 v

′
1 and PUv

′
1 = cos θ1 u1.

If dimU = ` ≥ 2, then a further principal angle θ2 may be defined based on a
specific choice of v′1 and u1. More specifically, using U ∩ (span{u1})⊥ in place of U
and V ⊥ ∩ (span{v′1})⊥ instead of V ⊥ in <4.5> yields a second smallest principal angle
θ2 ≥ θ1. As before, any two points v′2, u2 with cos θ2 = 〈v′2, u2〉 satisfy

PV ⊥∩(span{v′1})⊥u2 = (cos θ2)v′2 and PU∩(span{u1})⊥v
′
2 = (cos θ2)u2 .

Moreover, 〈v′2 − (cos θ2)u2, u1〉 = 〈v′2, u1〉 = cos θ1〈v′2, v′1〉 = 0 ensures that (cos θ2)u2 =
PUv

′
2. As a consequence, one has span{u1, v

′
1} ⊂ (span{u2, v

′
2})⊥ and (cos θ2)v′2 = PV ⊥u2.

If ` ≥ 3, then the definition of θ3 based on previously chosen v′1, v
′
2 and u1, u2 proceeds

by analogous steps and so forth. Orthonormality of u1, u2, . . . as well as v′1, v
′
2, . . .

ensures that the iteration terminates after ` steps. Its output comprises ` principal
angles θ1 ≤ θ2 ≤ · · · ≤ θ` ≤ π/2 as well as (orthonormal) bases v′1, . . . , v′` of V ⊥ and u1,
. . . , u` of U . These quantities satisfy span{ui, v′i} ⊂ (span{uj, v′j})⊥, PUv

′
j = (cos θj)uj,

and PV ⊥uj = (cos θj)v
′
j for i < j ≤ `. Thus, the orthogonal projections of u ∈ U

and v′ ∈ V ⊥ onto V ⊥ and U , respectively, may be represented as∑
i≤`
〈ui, u〉(cos θi)v

′
i =

∑
i≤`
〈v′i, u〉v′i = ûV ⊥ and

∑
i≤`
〈v′i, v′〉(cos θi)ui = v̂′U . <4.6>

The second of these equalities shows that the set of orthogonal projections {v̂′U | v′ ∈
V ⊥, ‖v′‖ = 1} is given by the ellipsoid

{∑
i≤`〈 • , ui〉2/ cos2 θi = 1

}
∩ U with principal

semi-axes lengths cos θ1 ≥ cos θ2 ≥ · · · ≥ cos θ`. Panel (B) of figure 4.2 illustrates the
elliptical shape of {v̂′U | v′ ∈ V ⊥, ‖v′‖ = 1} for a complement U of V ⊂ R3 and ` = 2.

The representation in <4.6> implies that every element v′ ∈ V ⊥ satisfies

φU(v′) = sup
u∈U∩{‖ • ‖=1}

〈PV ⊥u, v′〉 = sup
u∈U∩{‖ • ‖=1}

∑
i≤`

cos θi〈ui, u〉〈vi, v′〉 ≥ cos θ`〈v`, v′〉 .
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Figure 4.2
The figure illustrates the concept of the angle between a unit length element v′ and a sub-
space U (panel (A)) and the notion of principal angles between two equal dimensional sub-
spaces U and V ⊥ (panel (B)). Panel (B) also shows {v̂′U | v′ ∈ V ⊥, ‖v′‖ = 1} (solid black line).

Hence, the largest principal angle θmax = θmax(V ⊥, U)—as defined in <4.2b>—coincides
with θ`, which verifies θmax = θmax(U, V ⊥). This equality together with the remark
above lemma 4.2 implies that θmax < π/2 is equivalent to U ∩ (V ⊥)⊥ = U ∩ V = {0},
which completes the verification of (b) of lemma 4.2. In fact, if θmax < π/2, then
dimU = codimV implies that combining a basis of U and one of V yields a basis of W .
The equality θmax(V ⊥, U) = θmax(U, V ⊥) also handles the assertion (c). More specifically,
the two interpretations of θmax = 0 are equivalent to V ⊥ ⊂ U and V ⊥ ⊃ U , respectively.

If θmax = 0, then V ⊥ = U and consequently θmax(V, U⊥) = 0. Otherwise θmax > 0,
and there exists a least j ≤ ` such that θj 6= 0. Then, <4.6> reveals that θj = θmin,6=0

and therefore θmin, 6=0 = θmin, 6=0(U, V ⊥). In fact, if j > 1, then v′1, . . . , v
′
j−1 or equivalently

u1, . . . , uj−1 form an orthonormal basis of U ∩ V ⊥. The same applies to v′j, . . . , v`
′ with

respect to V ⊥ ∩ (V ⊥ ∩ U)⊥ and uj, . . . , u` with respect to U ∩ (V ⊥ ∩ U)⊥. Panel (B) of
figure 4.2 exemplifies these relations with j = 2, thus, U ∩ V ⊥ = span{v′1} = span{u1}.

Panel (B) of figure 4.2 also indicates that the residuals PV ui = ui−PV ⊥ui and PU⊥v
′
i =

v′i − PUv′i for i ∈ {j, . . . , `} exhibit length sin θi > 0. Thus,

vi =
PV ui
sin θi

∈ span{ui, v′i} ⊂ (U⊥ ∩ V )⊥ and u′i =
PU⊥v

′
i

sin θi
∈ span{ui, v′i}

are well-defined unit length elements of V ∩(U⊥∩V )⊥ and U⊥∩(U⊥∩V )⊥, respectively.
These elements serve to verify θmax = θmax(V, U⊥) and θmin,6=0 = θmin, 6=0(V, U⊥) in case
V ⊥ 6= U or equivalently V 6= U⊥. The case U⊥ = V is covered by (c). More specifically,

〈−u′i, vi〉 =
1

sin2 θi
〈PU⊥v′i, PV ⊥ui − ui〉 =

1

sin2 θi
〈v′i − cos θi ui, cos θi v

′
i〉 = cos θi
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imply vi + cos θiu
′
i ∈ (span{u′i})⊥, that is, PU⊥vi = cos θi(−u′i), and therefore φU⊥(vi) =

cos θi for all j ≤ i ≤ `. Choosing i = `, j implies cos θmax(V, U⊥) ≤ cos θmax and
cos θmin, 6=0(V, U⊥) ≥ cos θmin, 6=0, respectively, as vj ∈ V ∩ (U⊥ ∩ V )⊥ ⊂ V . Reversing the
roles of the respective orthogonal complements concludes the proof of lemma 4.2.

Proposition 4.1 presupposes θmax 6= 0, then PV/U − PV = PV ⊥ − PU/V equals∑
i≤`

v′i〈v′i, • 〉 −
∑
i≤`

1

cos θi
ui〈v′i, • 〉 =

∑
j≤i≤`

cos θiv
′
i − ui

cos θi
〈v′i, • 〉 =

∑
j≤i≤`

tan θi(−vi)〈v′i, • 〉 ,

wherein PU/V =
∑

i≤`(cos θi)
−1ui〈v′i, • 〉 may be verified from the definition of the projec-

tor. The equalities <4.3a> and <4.3b> follow from the final representation of PV/U−PV .

4.2. Subordinate directions

4.2.1. Down-weighting directions

An orthonormal basis of a Euclidean space W represents an exhaustive set of perpendic-
ular directions. The coordinates of x ∈ W with respect to this basis quantify its extent
into the individual directions. Prioritizing some directions when projecting x onto the
span V of a nontrivial sequence y1, . . . , yk in W implements an oblique projection.

More specifically, let U be a subspace of W and denote by Ŷ and Ỹ the composition
of Y = [y1 · · · yk] with the orthogonal projector onto U and U⊥, respectively. Propo-
sition 4.3 asserts that the notion of a projector onto V = img Y along V ⊥∗ = (img Y∗)

⊥

with Y∗ = Ŷ + Ỹ Pker Ŷ , thus Ỹ∗ = PU⊥Y∗ = Ỹ Pker Ŷ , is well defined. The latter assigns
a subordinate role to the directions in U⊥. In fact, PV/V ⊥∗ may be thought of as an
“intermediate” between PV and PV∗ . The decomposition PV∗ = Pimg Ŷ + Pimg Ỹ∗

, which

relies on img Ŷ ⊂ (img Ỹ∗)
⊥ as well as ker Ŷ ⊃ (ker Ỹ∗)

⊥, points to the prime focus of PV∗
on img Ŷ ⊂ U ; the modification of Ỹ highlights the subordinate role of the part of Y
in U⊥. In contrast, PV = Pimg Y does not generally decompose in an analogous way.

Proposition 4.3. Let U be a subspace of a Euclidean space W , Y ∈ W×k with image
V 6= {0} and Ŷ = ŶU , Ỹ = ỸU . In addition, consider Y∗ = Ŷ + Ỹ Pker Ŷ with image V∗.

Then, one has kerY = kerY∗ and thereby dimV = dimV∗ as well as V ∩ V∗ =
img Ŷ× + img Ỹ∗, wherein Ỹ∗ = PU⊥Y∗ = Ỹ Pker Ŷ and Ŷ× = Ŷ P{Ỹ ∈img Ỹ∗}. Consequently,

the equality V = V∗ is tantamount to img Ỹ∗ = img Ỹ , and if neither of these equalities
holds, then K = (kerP(img Ŷ×)⊥Ŷ )⊥ = (kerP(img Ỹ∗)⊥

Ỹ )⊥ is nontrivial,

tan θmin, 6=0(V ⊥∗ , V
⊥) = inf

c∈K

‖P(img Ỹ∗)⊥
Ỹ c‖

‖P(img Ŷ×)⊥Ŷ c‖
, and

tan θmax(V
⊥
∗ , V

⊥) = sup
c∈K

‖P(img Ỹ∗)⊥
Ỹ c‖

‖P(img Ŷ×)⊥Ŷ c‖
≤

‖P(img Ỹ∗)⊥
Ỹ ‖op

σmin,6=0(P(img Ŷ×)⊥Ŷ )
<∞ .

In particular, V ⊥∗ generally provides a complement of V .
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q1

q2

q3

y1

y2

x

x̂V
x̂/

V ⊥∗V ⊥

span{y1,y2}

S=span{y1,y2}∩{〈q1, • 〉=〈q1,x〉}

y2

x

x̂V
x̂/

{〈q1, • 〉=〈q1,x〉}

S=span{y1,y2}∩
{〈q1, • 〉=〈q1,x〉}

span{y1,y2}

(A) (B)

Figure 4.3
The figure compares the orthogonal projection x̂V of x onto V = span{y1, y2} with the oblique
projection x̂/ of x onto V along V ⊥∗ . Panel (A) shows the entire setting: an orthonormal basis
q1, q2, q3 of R3, the spanning set y1, y2, as well as x and its two projections. Panel (B) amplifies
the surrounding of x to highlight the (limited) ‖ • ‖-optimality associated with x̂V and x̂/.

A proof of proposition 4.3 starts on page 121 in appendix 4.a. The remainder of this
section identifies PV/V ⊥∗ as an “intermediate” between the projectors PV and PV∗ .

More specifically, the definition of PV/V ⊥∗ x = Y b∗ implies that its coordinate vectors b∗
with respect to Y are characterized by PV ⊥∗ /V x = x− Y b∗ ∈ V ⊥∗ = (img Y∗)

⊥, that is,

〈〈Y∗, x− Y b∗〉〉 = 〈〈Ŷ + Ỹ∗, x− Ŷ b∗ − Ỹ b∗〉〉 = 〈〈Ŷ , x− Ŷ b∗〉〉+ 〈〈Ỹ∗, x− Ỹ b∗〉〉 .

Therein, 〈〈Ŷ , x − Ŷ b∗〉〉 ∈ (ker Ŷ )⊥ and 〈〈Ỹ∗, x − Ỹ b∗〉〉 = Pker Ŷ 〈〈Ỹ , x − Ỹ b∗〉〉 ∈ ker Ŷ

imply that both of these terms equal zero. In particular, one has Ŷ b∗ = Pimg Ŷ x. More
specifically, every choice of b∗ may be thought of as the result of the following two step
procedure. Firstly, choose the part of b∗ in (ker Ŷ )⊥ to minimize ‖Ŷ b∗ − x‖. Secondly,
use the part in ker Ŷ to minimize ‖Ỹ b∗− x‖ = ‖Ỹ∗b∗− (x− Ỹ P(ker Ŷ )⊥b∗)‖. In summary,

inf
c∈H
‖Ỹ c− x‖ , H =

{
c′ ∈ Rk

∣∣ ‖Ŷ c′ − x‖ = inf
c′′∈Rk

‖Ŷ c′′ − x‖
}
. <4.7>

Hence, if Y b′∗ equals the orthogonal projection PV∗x, then the difference b∗ − b′∗ lies
in ker Ŷ , but is usually nonzero as Pker Ŷ b

′
∗ minimizes the criterion ‖Ỹ∗b′∗ − x‖.

Figure 4.3 illustrates the workings of PV/V ⊥∗ in R3 for k = 2, U = span{q1}, and x̂U ∈
img Ŷ . The latter inclusion implies Ŷ b∗ = Pimg Ŷ x = x̂U = q1〈q1, x〉. Panel (A) shows the
entire setting including the orthonormal basis q1, q2, q3, the orthogonal projection x̂V ,
and the oblique projection x̂/ = PV/V ⊥∗ x. The latter shares its extent into the sole
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direction q1 of U with Pimg Ŷ x = x̂U = q1〈q1, x〉 as required by <4.7>. Panel (B) zooms
in on the two projections to illustrate the ‖ • ‖-inferiority of the oblique projection PV/V ⊥∗
relative to PV as well as the ‖ • ‖-optimality of the former under the constraint in <4.7>.

Finally, the case img Y ∩ U⊥ = {0} is noteworthy. Then Ŷ c = 0 implies Ỹ c = Y c ∈
U⊥ ∩ img Y = {0}, which effectively removes the second stage in <4.7>.

4.2.2. Inner products and linear space structure

This section considers an additional inner product 〈 • , • 〉∗ on a linear space W ′, thus,
handles the geometry of (W ′, 〈 • , • 〉∗) alongside that of (W ′, 〈 • , • 〉). As mentioned in
section 2.4.1, the orthogonal complement V ⊥∗ of a subspace V in (W ′, 〈 • , • 〉∗) usually
differs from the orthogonal complement V ⊥ of V in (W ′, 〈 • , • 〉). Consequently, one has
PV/V ⊥∗ 6= PV/V ⊥ , and PV/V ⊥∗ is therefore ‖ • ‖-suboptimal. Proposition 4.1 bounds its
lack of ‖ • ‖-optimality in terms of 〈 • , • 〉-angle θmax(V ⊥, V ⊥∗).

Figure 4.4 illustrates this setting in W ′ = R2. Therein, V = span{e1} equals the first
coordinate axis, and the alternative inner product of a, b ∈ R2 has the form

〈a, b〉∗ = aT
(

1 ρψ
ψρ ψ2

)
b , 0 < ρ < 1 < ψ . <4.8>

In particular, elements a = (a1, a2) of the 〈 • , • 〉∗-orthogonal complement V ⊥∗ of V
satisfy a1 = −ψρa2. Thus, V ⊥∗ differs from the 〈 • , • 〉-orthogonal complement V ⊥. The
largest—in fact, the sole—principal 〈 • , • 〉-angle θmax between V ⊥∗ and V ⊥ = span{e2}
satisfies cos θmax = (1 + ψ2ρ2)−1/2, sin θmax = ψρ/(1 + ψ2ρ2)1/2, and tan θmax = ψρ. The
configuration of ρ, ψ in figure 4.4 is such that ψρ < 1, thus, θmax < π/4. This principal
angle bounds the ‖ • ‖-loss as shown in <4.4> when using PV/V ⊥∗ in place of PV /V ⊥ .

The inner product <4.8> is defined by specification of a 〈 • , • 〉∗-Gramian of the span-
ning set e1, e2 of R2. Lemma 2.3 grants full generality to this approach. That is, inner
products 〈 • , • 〉∗ on a linear space W ′ spanned by the columns of Z = [z1 · · · zm] are in
one-to-one correspondence with the possible 〈 • , • 〉∗-Gramians G of Z given by the sym-
metric and positive semidefinite m×m matrices with kernel kerZ. Hence, such a matrix
identifies an oblique projector PV/V ⊥∗ onto a subspace V of W ′ as the 〈 • , • 〉∗-orthogonal
one. This representation has practical implications regarding the computation of pro-
jections PV/V ⊥∗x, x ∈ W ′. In particular, computational schemes designed for orthogonal
projections—such as the Gram-Schmidt orthogonalization—become applicable.

Below, the space W ′ often forms a subspace of a larger Euclidean space (W, 〈 • , • 〉).
An alternative (to 〈 • , • 〉) inner product 〈 • , • 〉∗ on W ′ defines an orthogonal projec-
tor PV/V ⊥∗ projecting elements x ∈ W ′ onto a subspace V ⊂ W ′. If this projector coin-
cides with the restriction to W ′ of a projector P/ defined on W and projecting onto V ,
then the above mentioned computational gains also extend to P/x for x ∈ W ′. The
oblique projector PV/V ⊥∗ of section 4.2.1 provides an example, wherein W ′ = img [Y x],

V = img Y with y1, . . . , yk, x ∈ W and Y = [y1 · · · yk]. In this case, Ŷ and Ỹ denote the
composition of Y with the orthogonal projectors PU and PU⊥ , respectively, wherein U
denotes a subspace of W . If b ∈ (ker Ŷ )⊥ represents a coordinate vector with respect to Ŷ
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V = span{e1}

V ⊥

V ⊥∗

sin θmax

θmax

unit circle

x

x̂V/V ⊥∗
x̂V

cos θmax

tan θmax

e1

e2

Figure 4.4
The figure compares the orthogonal projections x̂V and x̂V/V ⊥∗ of an element x ∈ R2 onto V =
span{e1} derived under the standard inner product 〈 • , • 〉 and <4.8>, respectively. The
distance (in terms of 〈 • , • 〉) between the two projections is governed by the largest principal
〈 • , • 〉-angle θmax between the two orthogonal complements V ⊥ and V ⊥∗ .

of Pimg Ŷ x = Ŷ b, x∗ = x− Ỹ b, and Y∗ = Ŷ + Ỹ Pker Ŷ , then the linear map [Y∗ x∗] shares
its kernel with [Y x]. Thus, taking the Gramian of the former linear map as the 〈 • , • 〉∗-
Gramian of [Y x] introduces a further inner product 〈 • , • 〉∗ on W ′. In this setting, the
projection PV/V ⊥∗x uniquely determines the 〈 • , • 〉∗-orthogonal projector defined on W ′.
Coordinate vectors b∗ of this projection with respect to Y are characterized by

0 = 〈〈Y, x− Y b∗〉〉∗ = 〈〈Y∗, x∗ − Y∗b∗〉〉 = 〈〈Ŷ , x− Ŷ b∗〉〉+ 〈〈Ỹ∗, x− Ỹ (b+ Pker Ŷ b∗)〉〉 .

Therein, the first of the rightmost summands lies in (ker Ŷ )⊥. The second summand is an
element of ker Ŷ . Hence, both terms equal zero. The first of the implied equalities, that
is, 〈〈Ŷ , x−Ŷ b∗〉〉 = 0, guarantees Ŷ b∗ = Pimg Ŷ x and thereby P(ker Ŷ )⊥b∗ = b. Consequently,

the second implied equality becomes 〈〈Ỹ∗, (x − Ỹ P(ker Ŷ )⊥b∗) − Ỹ∗b∗〉〉 = 0. The latter
coincides with the optimality condition for the second stage in <4.7>. In total, the two
implied equalities guarantee PV/V ⊥∗x = Y b∗ = PV/V ⊥∗ x. That is, the restriction of the
projector PV/V ⊥∗ to the subspace W ′ of W equals the 〈 • , • 〉∗-orthogonal projector PV/V ⊥∗ .

An extension of the special case img Y ∩ U⊥ = {0}—mentioned at the end of sec-
tion 4.2.1—allows a simpler construct. If img [Y x] ∩ U⊥ = {0}, then the equality
ker [Y x] = ker

[
Ŷ x̂

]
, wherein Ŷ = ŶU and x̂ = x̂U , follows in analogy with the con-

sideration in section 4.2.1. Consequently, the Gramian of
[
Ŷ x̂

]
induces an inner prod-

uct 〈 • , • 〉◦ on W ′ = img [Y x]. The orthogonality conditions characterizing coordinate
vectors b◦ ∈ Rk with respect to Y of the 〈 • , • 〉◦-orthogonal projections x̂V/V ⊥◦ amount to

0 = 〈〈Y, x− Y b◦〉〉◦ = 〈〈Ŷ , x̂− Ŷ b◦〉〉 = 〈〈Y∗, (x− Ỹ b)− Y∗b◦〉〉 = 〈〈Y, x− Y b◦〉〉∗

due to the equality Y∗ = Ŷ , which follows from img Y ∩ U⊥ ⊂ img
[
Y x

]
∩ U⊥ = {0}.
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Euclidean space (W, 〈 • , • 〉),
x, y1, . . . , yk ∈W , Y = [y1 · · · yk],

subspaces U,W ′ = imgZ ⊂W , Z = [Y x]

Derived elements Z ′ such as
[Y∗ x∗] = Z∗, [Yδ xδ] = Zδ

Alternative Gramian 〈〈Z ′, Z ′〉〉
such as 〈〈Z∗, Z∗〉〉, 〈〈Zδ, Zδ〉〉 for Z

Other sourcesAdditional inner product 〈 • , • 〉′
such as 〈 • , • 〉∗, 〈 • , • 〉δ on W ′

Oblique projector such as PV/V ⊥∗ , PV/V ⊥δ
onto V = img Y def. on the subspace W ′

Figure 4.5
The figure visualizes the derivation of oblique projectors (defined on the subspace W ′ =
img [Y x] of W ) considered in the (present) section 4.2.2.

Thus, PV/V ⊥◦x = Y b◦ = Y b∗ = PV/V ⊥∗x coincides with the oblique projection PV/V ⊥∗ x.
Another example of an alternative inner product comes in the form of the inner prod-

ucts 〈 • , • 〉δ induced by the Gramians of [Yδ xδ] with Yδ = Ŷ /δ + Ỹ , xδ = x̂/δ + x̃,
and δ ∈ (0, 1]. The 〈 • , • 〉δ-orthogonal projectors PV/V ⊥δ increasingly focus on the

parts Ŷ and x̂ in U as δ ↓ 0. In fact, PV/V ⊥∗ results as a limit case of (PV/V ⊥δ )δ∈(0,1] as
δ → 0. More precisely, the argument on page 122 in appendix 4.a shows that

lim
δ→0

sup
z′∈W ′∩{‖ • ‖=1}

‖(PV/V ⊥∗ − PV/V ⊥δ )z′‖ = 0 . <4.9>

Two observations are key to the verification of <4.9>. Firstly, the two projectors PV/V ⊥∗
and PV/V ⊥δ—defined on W ′ = img [Y x] and a given δ ∈ (0, 1]—differ solely on the (at
most) one dimensional complements of V . Therefore, the statement essentially reduces
to the convergence of a sequence

(
(PV/V ⊥∗−PV/V ⊥δn )z

)
n∈N in W ′ with δn → 0 as n→∞.

Secondly, norm equivalence—discussed in section 2.1.2—allows to verify the convergence
using the norm ‖ • ‖∗ induced by 〈 • , • 〉∗, that is, perform the analysis inside (W ′, 〈 • , • 〉∗).

Using the Gramian of [Y ′δ x
′
δ] with Y ′δ = Ŷ + δỸ , x′δ = x̂ + δx̃, and δ ∈ (0, 1] leads to

the same projector PV/V ⊥δ on W ′. Hence, the use of PV/V ⊥∗ may be motivated by either

increasing amplification of the directions in U or gradual neglect of the directions in U⊥.
Figure 4.5 summarizes the construction of oblique projectors on a subspace W ′ of a

Euclidean space W as discussed in this section. Therein, elements y1, . . . , yk, x of W with
Z = [y1 . . . yk x] are modified in such a way that the kernel of the map Z ′ = [y′1 . . . y

′
k x
′]

built from the modifications y′1, . . . , y
′
k, x

′ equals kerZ. By lemma 2.3, the latter pro-
vide an alternative Gramian 〈〈Z ′, Z ′〉〉 for Z, which in turn induces an alternative inner
product 〈 • , • 〉′ on the subspace W ′ = imgZ. Other sources of Gramian substitutes are
conceivable. Finally, the induced inner product 〈 • , • 〉′ comes with a new understanding
of orthogonality and an orthogonal projector onto V = span{y1, . . . , yk} defined on W ′.
The latter enjoys ‖ • ‖′-optimality, but is usually suboptimal with respect to ‖ • ‖. Finally,
the linearity of projectors implies that the case of multiple x1, . . . , xq can be handled
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by consideration of the linear maps [Y xj], j ≤ q, one after the other. Alternatively, a
minor extension of the arguments in this section leads to the appropriate generalization.

4.2.3. (Sub-)Optimality analysis on superspaces

This section reconsiders the case of an oblique projector PV/V ⊥∗ as defined in section 4.2.1.
More specifically, V and U symbolize subspaces of a Euclidean space W . The former is
spanned by a nontrivial sequence y1, . . . , yk with Y = [y1 · · · yk]. The composition Ŷ
and Ỹ of Y with the orthogonal projectors PU and PU⊥ , respectively, allow the con-
struction of Y∗ = Ŷ + Ỹ∗ with Ỹ∗ = Ỹ Pker Ŷ . Proposition 4.3 ensures that the oblique
projector PV/V ⊥∗ onto V and along the orthogonal complement V ⊥∗ of V∗ = img Y∗ is well
defined and quantifies its ‖ • ‖-performance relative to the orthogonal projector PV .

Section 4.2.2 identifies the restriction of PV/V ⊥∗ to W ′ = [Y x], x ∈ W , with the orthog-
onal projector onto V defined on W ′ with respect to an alternative inner product 〈 • , • 〉∗.
If only projections PV/V ⊥∗ z, z ∈ W ′, are of concern, then this identification facilitates the
computations. Moreover, the inequalities <4.4> apply with the principal 〈 • , • 〉-angles
between the complements V ⊥ and V ⊥∗ in W ′. The bounds resulting from <4.4> together
with the principal 〈 • , • 〉-angles between the complements V ⊥∗ and V ⊥ in W remain valid,
but may offer only a rough characterization of the ‖ • ‖-performance of PV/V ⊥∗ on W ′.

The following example justifies this claim. It considers a Euclidean space W spanned
by y′1, . . . , y

′
k, x

′, y′′1 , . . . , y
′′
k , and x′′, wherein img Y ′, Y ′ = [y′1 · · · y′k], and img Y ′′, Y ′′ =

[y′′1 · · · y′′k ], are nontrivial. The geometry of W is such that
[
Y ′ x′

]
and

[
Y ′′ x′′

]
share their Gramian G and U = img

[
Y ′ x′

]
= (img

[
Y ′′ x′′

]
)⊥. Herein, the goal is to

project x = x′+x′′ onto the image V of Y = Y ′+Y ′′. These elements satisfy x̂U = x̂ = x′,
ŶU = Ŷ = Y ′, and the Gramian of [Y x] equals 2G. Hence, the equality ker Ŷ =
kerY = ker Ỹ holds and implies img Ỹ∗ = {0} as well as img Ŷ× = {0}. In addition,
V∗ = img Y∗ = img Y ′ 6= V , and the key ratio in proposition 4.3 equals ‖Y ′′c‖/‖Y ′c‖ = 1
for all c ∈ (kerY )⊥, that is, θmin, 6=0(V ⊥∗ , V

⊥) = π/4 = θmax(V ⊥∗ , V
⊥).

Moreover, if z ∈ img [Y x] ∩ U⊥, then z = [Y x] c for some c ∈ Rk+1 and 0 =
〈〈 [Y ′ x′] , z〉〉 = Gc, which implies z = 0. Thus, the present setting amounts to an
instance of the special case img [Y x] ∩ U⊥ = {0} considered in section 4.2.2. As a
consequence, the equality PV/V ⊥∗ z = PV/V ⊥∗z holds for all z ∈ W ′, wherein 〈 • , • 〉∗
denotes the inner product induced by G. The two inner products 〈 • , • 〉 and 〈 • , • 〉∗
on W ′ satisfy 〈 • , • 〉 = 2 〈 • , • 〉∗; in particular, the equality PV/V ⊥z = PV/V ⊥∗z holds for
all z ∈ W ′. In summary, the space img [Y x] containing all elements of interest amounts
to a subspace of ker(PV/V ⊥∗ −PV ). However, the elements of V ⊥∩(V ⊥∩V ⊥∗ )⊥ = img(Y ′−
Y ′′) are needed to apply proposition 4.3, which requires U to be a subspace of W .

4.3. A prediction framework

4.3.1. The prediction task

This section considers the prediction of a numerical characteristic x of m locations
at n points in time. These quantities are represented by random variables xt,j, wherein
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the index (t, j) ranges over Ix = {1, . . . , n} × {1, . . . ,m}, m,n ∈ N. Herein, predic-
tion

prediction
refers to the pointwise (with respect to ω) evaluation of random variables of the

type rt,j +PV/V ⊥∗ (xt,j − rt,j), wherein rt,j, (t, j) ∈ Ix, represent an additional characteris-
tic r of the m locations, and V, V ⊥∗ denote complementary subspaces. In this section, all
coordinates are considered known; their estimation—as in section 3.5—is not addressed.
These predictions inherit two properties from the underlying projector PV/V ⊥∗ . Firstly,
linearity guarantees that a prediction of

∑
(t,j)∈Ix ct,jxt,j, C ∈ Rn×m, in form of this

linear combination of the predictions of xt,j exhibits the same structure as its ingredi-
ents but with rt,j replaced by

∑
(t,j)∈Ix ct,jrt,j. Secondly, idempotence ensures that such

predictions of linear combinations equal their known value if observed without error.
The overall setting amounts to the span W of P-square integrable random variables

zi,t,j , (i, t, j) ∈ Iz = {1, . . . , s} × Ix , vt,j , (t, j) ∈ Ix , v̄t,i , (t, i) ∈ Iobs ,

and the constant function ω 7→ 1 defined on a probability space (Ω,F,P). Therein,
the index set Iobs ⊂ N × N is finite and nonempty, and s ∈ N. The sequences vt,j,
(t, j) ∈ Ix, and v̄t,i, (t, i) ∈ Iobs, form bases of their spans Uv = span{vt,j | (t, j) ∈ Ix}
and Uv̄ = span{v̄t,i | (t, i) ∈ Iobs}, respectively. The intersection of the span Uz of zi,t,j,
(i, t, j) ∈ Iz, with span{1} equals {0}; the symbol U1,z = span{1}+Uz denotes the joint
span of these variables. The random variables zi,t,j, (i, t, j) ∈ Iz, are such that the kernel
ker [1 Zt,j], wherein Zt,j = [z1,t,j · · · zs,t,j], amounts to {0} for all (t, j) ∈ Ix. The same
applies to the intersections of pairs of subspaces U ′ 6= U ′′ with U ′, U ′′ ∈ {U1,z, Uv, Uv̄}.

The definition 〈x, y〉 =
∫
x(ω)y(ω)P(dω) = Exy for every pair x, y ∈ W endows this

linear space with a Euclidean space structure. Herein, the inner product is such that
the sequence v̄t,i, (t, i) ∈ Iobs, provides an orthonormal basis of its span Uv̄. In addition,
the three subspaces U1,z, Uv, and Uv̄ satisfy U⊥1,z = Uv + Uv̄, U

⊥
v = U1,z + Uv̄, and U⊥v̄ =

U1,z + Uv. In particular, this specification implies the equalities 〈1, vt,j〉 = Evt,j = 0 as
well as Ev̄t,i = 0 and Ev̄2

t,i = 1 for all (t, j) ∈ Ix and (t, i) ∈ Iobs, respectively. Finally, the
formal model is chosen relative to 〈 • , • 〉 as explained towards the end of appendix 2.a.

The random variables zi,t,j represent s additional numerical characteristic of the m
locations at n points in time. A given 1 ≤ s′ ≤ s splits these variables into two disjoint
subsets zi,t,j, i < s′, and zi,t,j, i ≥ s′, wherein (t, j) ranges over Ix. The case s′ = 1 is
possible. Then, the first set is empty and all summands consisting only of elements of
that set vanish. These two groups play two different roles in the following development.

The random variables xt,j representing the numerical characteristic x are given by

xt,j = αt,j + [Za,t,j Zb,t,j]

(
βa
βb

)
+ vt,j = αt,j + Zt,jβ + vt,j , (t, j) ∈ Ix , <4.10>

Za,t,j = [z1,t,j · · · zs′−1,t,j] , Zb,t,j = [zs′,t,j · · · zs,t,j] ,

for some β ∈ Rs and αt,j ∈ R. The equalities ker [1 Zt,j] = {0}, (t, j) ∈ Ix, imply that
the coordinates αt,j, β are uniquely characterized by <4.10>. The subsequent discussion
mostly focuses on the modification x̄t,j = xt,j − rt,j, (t, j) ∈ Ix, with rt,j = Za,t,jβa.

Linear independence of vt,j, (t, j) ∈ Ix, and U1,z ∩ Uv = {0} imply ker
[
1 X̄

]
= {0},
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wherein X̄ =
[
X̄n . . . X̄1

]
with X̄t = [x̄t,1 · · · x̄t,m]. The following argument requires

that this kernel equality continues to hold if the columns of X̄ are replaced by their
orthogonal projections PU x̄t,j = ˆ̄xt,j, (t, j) ∈ Ix, onto U = U1,z + Uv̄ = U⊥v . These

projections equal ˆ̄xt,j = αt,j +Zb,t,jβb. Thus, the equality ker
[
1 ˆ̄X

]
= {0}, wherein ˆ̄X =[ ˆ̄Xn . . . ˆ̄X1

]
with ˆ̄Xt =

[
ˆ̄xt,1 · · · ˆ̄xt,m

]
, requires some additional restrictions. Lemma 4.4

contains an appropriate condition. A proof starts on page 123 in appendix 4.a.

Lemma 4.4. The equality ker
[
1 ˆ̄X

]
= {0} holds if and only if

βb 6∈ Bb = ∪C∈Rn×m
‖C‖=1

ker

(∑
(t,j)∈Ix

ct,jZb,t,j

)
⊂ Rs−s′+1 .

The kernels corresponding to indexes C = Bt,j equal kerZb,t,j = {0} for all (t, j) ∈ Ix,
wherein Bt,j represents the t, j-th standard basis element of Rn×m as in example (b) in
section 2.1.1. However, the analogous equality in case of a general unit length matrix C ∈
Rn×m necessitates some additional linear independence conditions. For example, if the
sequence zi,t,j, s

′ ≤ i, (t, j) ∈ Ix exhibits linear independence, then Bb = {0} and the
requirement reduces to βb 6= 0. The latter scenario places a strong requirement on
the random variables zi,t,j, s

′ ≤ i, (t, j) ∈ Ix, and therefore requires only the minimal
condition βb 6= 0 on βb. The remainder of this section assumes that βb 6∈ Bb holds.

The givens of the initially mentioned prediction task include the images zi,t,j(ω) under
the random variables zi,t,j, i < s′, (t, j) ∈ Ix, as well as the images yt,i(ω) of ω ∈ Ω under

yt,i = Xat,i + ρt,iv̄t,i , (t, i) ∈ Iobs . <4.11>

The adjustment of the formal representation to 〈 • , • 〉 as explained in appendix 2.a
ensures that the just mentioned images reflect the geometry of the space (W, 〈 • , • 〉).
Subsequently, these images and the corresponding random variables are referred to as
observations (or data) and observables, respectively. The random variables in <4.11>

amount to linear combinations of xt,j, (t, j) ∈ Ix, and v̄t,i, (t, i) ∈ Iobs, with coordi-
nates 0 6= at,i ∈ Rnm and ρt,i ≥ 0. The index set Iobs has the form ∪t≤n

(
{t}×{1, . . . , kt}

)
with kt ∈ N∪{0} being the number of observations at t. If kt = 0, then {t}×{1, . . . , kt}
equals the empty set; however, Iobs 6= ∅ is assumed below. The final summand in <4.11>

embodies an observation error with variance ρ2
t,i. The individual observation errors ρt,iv̄t,i

are pairwise orthogonal. Consequently, superfluous observables of the type <4.11> in
form of linear combinations of other observables of the same type are possible only if all
corresponding error variances ρ2

t,i equal zero. The case at,i = at,j for some i < j ≤ kt
together with max{ρt,i, ρt,j} > 0 represents the availability of different observations of
the same element Xat,i. Subsequently, the focus is on the modified observables ȳt,i =
X̄at,i + ρt,iv̄t,i, (t, i) ∈ Iobs, which amount to linear combinations of the observables yt,i,
(t, i) ∈ Iobs, and zi,t,j, i < s′, (t, j) ∈ Ix; thus, their images of ω are available, too.

The modified observables ȳt,i, (t, i) ∈ Iobs, together with the constant function 1 span
the image V of the projector underlying the predictions. Initially, this projector is
only defined on the superspace W ′ = img

[
1 Ȳ X̄

]
of V , wherein Ȳ =

[
Ȳn . . . Ȳ1

]
with
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Ȳt = [ȳt,1 · · · ȳt,kt ], 1 ≤ t ≤ n. If kt = 0 for some t ≤ n, then the respective Ȳt is not
defined and missing from Ȳ . The inequality Iobs 6= ∅ ensures that at least one Ȳt is

present. The linear maps ˆ̄Y and V̄ are defined in analogy with respect to ˆ̄yt,i = PUyt,i =
ˆ̄Xat,i+ρt,iv̄t,i with U = U1,z+Uv̄ and v̄t,i, (t, i) ∈ Iobs. The equalities ker

[
1 X̄ V̄

]
= {0} =

ker
[
1 ˆ̄X V̄

]
, which are due to the assumption of the condition βb 6∈ Bb in lemma 4.4 and

the equality U1,z ∩ Uv̄ = {0}, imply that the kernels of the two linear maps

[
1 Ȳ X̄

]
=
[
1 X̄ V̄

]1
AT I
ST

 and
[
1 ˆ̄Y ˆ̄X

]
=
[
1 ˆ̄X V̄

]1
AT I
ST

 <4.12>

coincide with the kernel of their identical second factor. Therein, I symbolizes the nm×
nm identity matrix, whose columns amount to the standard basis e1, . . . , enm of Rnm.
The number of columns k =

∑
t≤n kt > 0 of Y equals the overall number of observations

of the type yt,i. Moreover, the rows of A ∈ Rk×mn and the diagonal entries of the diagonal
matrix S ∈ Rk×k amount to at,i and ρt,i, respectively, arranged in appropriate order.

Lemma 2.3 ensures that the Gramian Ĝ of
[
1 ˆ̄Y ˆ̄X

]
induces an additional inner prod-

uct 〈 • , • 〉∗ on W ′ by identification of Ĝ with the 〈 • , • 〉∗-Gramian of
[
1 Ȳ X̄

]
. The

second equality in <4.12> shows that knowledge of the aggregation matrix A, the obser-

vation error matrix S, and the Gramian of
[
1 ˆ̄X

]
suffices to construct the Gramian Ĝ

and thereby 〈 • , • 〉∗. The latter leads to an additional orthogonal complement V ⊥∗ of V
in W ′, which in turn defines the projector PV/V ⊥∗ (on W ′) underlying the predictions.

These predictions are of the form rt,j(ω) +
(
PV/V ⊥∗ x̄t,j

)
(ω), (t, j) ∈ Ix, wherein x̄t,j =

xt,j− rt,j and rt,j = Za,t,jβa. This construct enjoys the initially mentioned properties. In
fact, a prediction of a linear combination

∑
(t,j)∈Ix ct,jxt,j—obtained as the same linear

combination of the individual predictions—amounts to the image of ω under[∑
t,j
ct,jZa,t,j

]
βa + PV/V ⊥∗

(∑
t,j
ct,jxt,j −

[∑
t,j
ct,jZa,t,j

]
βa

)
and thus equals yt,i if ct,j coincide with the entries of a row at,i of A in <4.12> and ρt,i = 0.

Calculation of the predictions requires evaluation (at ω) of the 〈 • , • 〉∗-orthogonal
projection PV/V ⊥∗ x̄t,j of x̄t,j onto V = img

[
1 Ȳ
]

for all (t, j) ∈ Ix. The techniques of
section 2.2 and 2.4 are crucial to this endeavor. More specifically, lemma 2.2 guarantees
the existence of a 〈 • , • 〉∗-representation of the columns of

[
1 Ȳ X̄

]
in form of the

columns of a coordinate matrix R as in figure 4.6. Therein, the presence of 1 in the
unitary map Q—in form of the function ω 7→ 1—and R—as a number, respectively,
follows from the equality ‖1‖∗ = 1, wherein ‖ • ‖∗ denotes the norm induced by 〈 • , • 〉∗
on W ′. As a consequence, the vectors ry,1 ∈ Rk and rx,1 ∈ Rnm in the first row of R
consists of entries 〈1, ȳt,i〉∗ = 〈1, ˆ̄yt,i〉 = Eˆ̄yt,i and 〈1, x̄t,j〉∗ = 〈1, ˆ̄xt,j〉 = Eˆ̄xt,j, respectively.
The latter equals 〈1, ˆ̄xt,j〉 = 〈1, αt,j + Zb,t,jβb〉 = αt,j +

∑s
i=s′ βiEzi,t,j, wherein βb =

(βs′ , . . . , βs). In particular, the entries of rx,1 usually differ from αt,j as defined in <4.10>.
Furthermore, the columns q∗1, . . . , q

∗
k′ of Qy form an 〈 • , • 〉∗-orthonormal basis of the
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1 R . . . R R R . . . R

R . . . R R R . . . R

. . .
...

...
. . .

...

R R R . . . R

R . . . R

. . .
...

R





rTy,1 rTx,1

Ry Rx,y

Rx

coords. of
ȳt,i, (t, i) ∈ Iobs,
with resp. to 1

coords. of
x̄t,j , (t, j) ∈ Ix,
with resp. to 1

coords. of
ȳt,i, (t, i) ∈ Iobs,

with resp.
to q∗1 , . . . , q∗k′

coords. of
x̄t,j , (t, j) ∈ Ix,
with resp. to
q∗1 , . . . , q∗k′

coords. of
x̄t,j , (t, j) ∈ Ix,
with resp. to
q∗k′+1, . . . , q∗k′+h

1 Qy Qx

][ =
[q
∗ 1
··
·
q∗ k
′]

=
[ q∗ k′ +

1
··
·
q∗ k
′ +
h

]
〈 • , • 〉∗-unitary map

Q from R1+k′+h

to W ′

[
1 Ȳ X̄

]
= ,

coordinate matrix R

Figure 4.6
The figure visualizes the structure of a representation of

[
1 Ȳ X̄

]
as considered in

lemma 2.2 and with respect to 〈 • , • 〉∗. Herein, the rank of P(span{1})⊥∗/ span{1}Ȳ = Ȳ − rTy,1
and PV ⊥∗/V X̄ = X̄ − rTx,1 −QyRx,y with V = img

[
1 Ȳ
]

is denoted by k′ and h, respectively.

image of P(span{1})⊥∗/ span{1}Ȳ = Ȳ − rTy,1, and QyRx,y contains the 〈 • , • 〉∗-orthogonal
projections of the columns of P(span{1})⊥∗/ span{1}X̄ = X̄− rTx,1 onto that space. The basis
elements q∗1, . . . , q

∗
k′ can be evaluated (at ω) based on Ȳ − rTy,1 = QyRy, which implies—

due to the choice of the formal model—the pointwise (with respect to ω) equality

RT
y

q
∗
1(ω)

...
q∗k′(ω)

 =

 ȳn,1(ω)
...

ȳ1,k1(ω)

− ry,1 . <4.13>

Herein, the number of observations k1 and kn of the first and n-th time point are assumed
to be nonzero to simplify the presentation. The row echelon matrix Ry ∈ Rk′×k, k′ =
rk(Ȳ−rTy,1) ≤ k, provides a Cholesky factor of the 〈 • , • 〉∗-Gramian of Ȳ−rTy,1; its rows are
linearly independent—as elements of Rk. Consequently, the equality <4.13> uniquely
determines the row qy = Qy(ω) =

(
q∗1(ω), . . . , q∗k′(ω)

)
of Qy. Finally, the columns of

PV/V ⊥∗ X̄ = rTx,1 +QyRx,y equal the 〈 • , • 〉∗-orthogonal projections PV/V ⊥∗ x̄t,j, (t, j) ∈ Ix.
Thus, the entries of rx,1 +RT

x,yqy supply the required images
(
PV/V ⊥∗ x̄t,j

)
(ω).

By virtue of section 2.4.2, these computations require only the data and the 〈 • , • 〉∗-
Gramian of

[
1 Ȳ X̄

]
, which may be recovered via <4.12> from A, S, the 〈 • , • 〉-

Gramian of P(span{1})⊥
ˆ̄X, and rx,1 whose entries equal 〈1, ˆ̄xt,j〉 = Eˆ̄xt,j, (t, j) ∈ Ix.

Section 4.4.3 shows how to exploit a particular structure of A and the 〈 • , • 〉∗-Gramian
of P(span{1})⊥∗/ span{1}x̄t,j, (t, j) ∈ Ix when evaluating the 〈 • , • 〉∗-orthogonal projections
of P(span{1})⊥∗/ span{1}x̄t,j, (t, j) ∈ Ix, onto span{P(span{1})⊥∗/ span{1}ȳt,i | (t, i) ∈ Iobs}.
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4.3.2. (Sub-)optimality of predictions

An alternative characterization of PV/V ⊥∗ facilitates its comparison in terms of ‖ • ‖ with
the 〈 • , • 〉-orthogonal projector PV/V ⊥ . More specifically, the current framework fits the

scenario considered in section 4.2.1. In particular, the composition of Y ′ =
[
1 Ȳ
]

with

the orthogonal projector PU onto the subspace U = U1,z + Uv̄ of W equals Ŷ ′ =
[
1 ˆ̄Y
]
.

As observed below <4.12>, the linear map Ŷ ′ shares its kernel with Y ′. Consequently,
Y ′∗ = Ŷ ′ + PU⊥Y

′Pker Ŷ ′ = Ŷ ′, and proposition 4.3 ensures that there exists an oblique
projector PV/V ⊥∗ (on W ) onto V = img Y ′ and along the orthogonal complement of V∗ =

img Y ′∗ = img Ŷ ′. The restriction of the latter to W ′ coincides with PV/V ⊥∗ as defined in

section 4.3.1. In fact, the linear map
[
Ŷ ′ ˆ̄X

]
amounts to the composition PU

[
Y ′ X̄

]
and

shares its kernel with
[
Y ′ X̄

]
. Consequently, if z′ ∈ img

[
Y ′ X̄

]
∩U⊥, then z′ =

[
Y ′ X̄

]
c

for some c ∈ R1+k+nm, and its projection onto U equals 0 = PUz
′ =

[
Ŷ ′ ˆ̄X

]
c. Thus,

c ∈ ker
[
Ŷ ′ ˆ̄X

]
= ker

[
Y ′ X̄

]
, and therefore z′ = 0. The resulting equality img

[
Y ′ X̄

]
∩

U⊥ = {0} identifies the present setting as an instance of the corresponding special
case considered in section 4.2.2. Hence, the restriction of the oblique projector PV/V ⊥∗
to W ′ = img

[
1 Ȳ X̄

]
equals the 〈 • , • 〉∗-orthogonal projector PV/V ⊥∗ .

In particular, proposition 4.3 becomes applicable to PV/V ⊥∗ and is relevant as∥∥xt,j − [rt,j + PV/V ⊥∗ (xt,j − rt,j)
]∥∥2

= ‖x̄t,j − PV/V ⊥∗ x̄t,j‖2

= ‖PV ⊥x̄t,j‖2 + ‖(PV − PV/V ⊥∗ )x̄t,j‖2 ≤
[
1 + tan2 θmax(V ⊥, V ⊥∗)

]
‖PV ⊥x̄t,j‖2 ,

<4.14>

wherein the final inequality is due to <4.4>. Corollary 4.5 allows the quantification of
the multiplier 1+tan2 θmax(V ⊥, V ⊥∗ ) in <4.14>. A proof of this results starts on page 124
in appendix 4.a. Its statement uses the notion of a variance matrix var(z) of a random
vector z = (z1, . . . , zj), j ∈ N, which is defined in example (e) in section 2.4.1.

Corollary 4.5. In the above setting, in particular, with Iobs 6= ∅ and βb 6∈ Bb, one
has imgAT 6= {0}. Moreover, the kernel of the variance matrix var(ˆ̄x) of the random

vector ˆ̄x, which contains the columns of the linear map ˆ̄X (in the same order), equals {0}.
Finally, the two subspaces V and V∗ differ and the inequalities

sup
c∈imgA,c 6=0

〈ATc, var(˜̄x)ATc〉
〈ATc,

(
var(ˆ̄x) + S2

)
ATc〉

≤ tan2 θmax(V
⊥, V ⊥∗ ) ≤ sup

a∈imgAT, a6=0

〈a, var(˜̄x)a〉
〈a, var(ˆ̄x)a〉

,

inf
c∈imgA,c 6=0

〈ATc, var(˜̄x)ATc〉
〈ATc,

(
var(ˆ̄x) + S2

)
ATc〉

≤ tan2 θmin, 6=0(V ⊥, V ⊥∗ ) ≤ inf
a∈imgAT, a 6=0

〈a, var(˜̄x)a〉
〈a, var(ˆ̄x)a〉

hold, wherein ˜̄x is defined in analogy with ˆ̄x but with respect to ˜̄X = PU⊥X̄.
If kerAT ⊂ kerS, in particular, if kerAT = {0}, then the lower bounds for the squared

tangents tan2 θmax(V
⊥, V ⊥∗ ) and tan2 θmin,6=0(V ⊥, V ⊥∗ ) hold with equality.

A few comments on corollary 4.5 are in order. Firstly, the interest lies in the predic-
tions, that is, the values of the translated—by rt,j—projections of x̄t,j, (t, j) ∈ Ix, at a
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single ω ∈ Ω. However, the bounds resulting from corollary 4.5 refer to the norm ‖ • ‖,
which merely provides an average (across ω) distance measure. Secondly, the findings of
section 4.2.3 apply as solely projections in W ′ are of concern, that is, the bounds may
be rather “conservative”. Finally, if kerAT = {0}, then an increase of the error vari-
ances ρ2

t,i, (t, i) ∈ Iobs, that is, the diagonal elements of S, decreases the first factor in the
final term in <4.14>, but also increases the ‖ • ‖-length of the residuals resulting from
orthogonal projection onto V , that is, the second factor of the final term in <4.14>.

4.4. Prediction algorithms

4.4.1. Recursive computations via basis changes

This section considers nontrivial sequences of real-valued functions xt,j, (t, j) ∈ Ix =
{1, . . . , n}×{1, . . . ,m} with m,n ∈ N, and vt,i, (t, i) ∈ Iobs, defined on a common set Ω,
wherein the second index set Iobs ⊂ N×N is nonempty and finite. An inner product 〈 • , • 〉
equips their joint span W with a Euclidean space structure. This structure is such that
the functions vt,i, (t, i) ∈ Iobs, form an orthonormal basis of their span Uv. In addition,
the subspace Uv equals the orthogonal complement of Ux = span{xt,j | (t, j) ∈ Ix} in W .
Further relevant elements of the linear space W come in the form of

[yt,1 · · · yt,kt ]︸ ︷︷ ︸
Yt∈W×kt

= X [at,1 · · · at,kt ]︸ ︷︷ ︸
AT
t ∈Rnm×kt

+ [vt,1 · · · vt,kt ]︸ ︷︷ ︸
Vt∈W×kt

ST
t , t ≤ n , <4.15>

wherein X = [X1 · · · Xn], Xt = [xt,1 · · · xt,m], St ∈ Rkt×kt , and kt ∈ N ∪ {0}. If kt = 0,
then the quantities Yt, At, Vt, and St disappear. The index set Iobs equals the union of
the sets {t} × {1, . . . , kt} with t ≤ n. If kt = 0, then the t-th of the latter sets amounts
to the empty set ∅; however, the following discussion presupposes Iobs 6= ∅.

Lemma 2.2 allows the representation of the linear map X in form QXRX , wherein QX

denotes an unitary map from RrkX to Ux, and RX ∈ RrkX×mn exhibits row echelon form.
This expression for X together with the specification in <4.15> implies

RXA
T
1 . . . RXA

T
n RX

ST
1

. . .

ST
n





coord. vec.
with resp.
to QX

coord. vec.
with resp.
to V1

coord. vec.
with resp.
to Vn

co
or

ds
.

of
Y 1

co
or

ds
.

of
Y n

co
or

ds
.

of
X

coordinate matrix B

QX V1 . . . Vn

[ ]
V

Y1 . . . Yn X

[ ]Y

=

, <4.16>

wherein k1, kn ≥ 1 is assumed for the sake of presentation. The linear map [QX V ]
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from RrkX+k with k =
∑

t≤n kt > 0 to W is unitary. Hence, the columns of the matrix B
form a representation—in the sense of section 2.2.1—of the columns of [Y X].

In this setting, the goal is to evaluate the orthogonal projections PV xt,j of xt,j, (t, j) ∈
Ix, onto V = span{yt,i | (t, i) ∈ Iobs} at some ω ∈ Ω. The available information comprises
the images yt,i(ω), (t, i) ∈ Iobs, as well as the Gramian 〈〈X,X〉〉 of X, the aggregation
matrices At, and St, t ≤ n. Thus, the images yt,i(ω) are referred to as observations;
the corresponding functions yt,i provide the observables. The recovery of B from these
inputs requires transforming 〈〈X,X〉〉 into RX via the Cholesky factorization <2.9>.

The first step of the calculation of the required images
(
PV xt,j

)
(ω), (t, j) ∈ Ix, modifies

the representation in <4.16>. More specifically, lemma 2.2 also applies to the coordinate
matrix B. Composing the resulting unitary map QB from RrkB to imgB with [Qx V ]
yields a unitary map QY,X = [QX V ]QB from Rrk[Y X] to the image img [Y X] such that

R1,1 R1,2 . . . R1,x

R2,2 . . . R2,x

. . .
...

Rn+1,x





coord. vectors
with resp. to Q1

coord. vectors
with resp. to Q2

coord. vectors
with resp. to Qn+1

co
or

ds
.

of
Y 1

co
or

ds
.

of
Y 2

co
or

ds
.

of
X

coordinate matrix RB

[Q1 Q2 · · · Qn+1]

[Y1 Y2 · · · X] =

unitary map QY,X

. <4.17>

This display presupposes k1, k2 ≥ 1 with img Y2 6⊂ img Y1 and imgX 6⊂ img Y to con-
cretize the appearance. The transition from <4.16> to <4.17> amounts to a change of
the basis on the right hand side of <4.16> alongside a corresponding adjustment of the
coordinates. Section 4.4.2 advances this point of view and discusses an alternative (to
the Gram-Schmidt orthogonalization) implementation of this transition.

If the coordinate matrix RB is available alongside the observations yt,i(ω), (t, i) ∈ Iobs,
then a recursive evaluation of the first k′ = rkY columns of QY,X at ω is possible. In
fact, section 2.4.1 shows that the rows Y1(ω′) =

(
y1,1(ω′), . . . , y1,k1(ω′)

)
, ω′ ∈ Ω, lie

in img 〈〈Y1, Y1〉〉 = img 〈〈R1,1, R1,1〉〉 = imgRT
1,1 In particular, the equality Y1 = Q1R1,1

ensures that the row Q1(ω) =
(
q1(ω), . . . , qk′1(ω)

)
of Q1 satisfies the relation

RT
1,1

 q1(ω)
...

qk′1(ω)

 =

 y1,1(ω)
...

y1,k1(ω)

 , <4.18>

wherein k′1 = rkY1 and k1, k
′
1 > 0 is assumed. Moreover, this equality uniquely de-

termines Q1(ω) as the rows of the row echelon matrix R1,1, that is, the columns of its
transpose RT

1,1, are linearly independent—as elements of Rk1 . Section 4.4.2 discusses a

recursive procedure for the calculation of the vector Q1(ω) ∈ Rk′1 in case k1 = k′1.
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If k2 ≥ 1 and img Y2 6⊂ img Y1, then the columns qk′1+1, . . . , qk′1+k′2
of Q2 in <4.17>

provide an orthonormal basis of the k′2-dimensional subspace imgP(img Y1)⊥Y2 of W .
The evaluation of these columns uses the already available vector Q1(ω) alongside the
equality Y2 = Q1R1,2 +Q2R2,2, which is implied by the representation in <4.17>. More
specifically, the resulting pointwise (with respect to ω) relation

RT
2,2

 qk′1+1(ω)
...

qk′1+k′2
(ω)

 =

 y2,1(ω)
...

y2,k2(ω)

−RT
1,2

 q1(ω)
...

qk′1(ω)

 ,

wherein k′1 > 0 is assumed, uniquely determines Q2(ω) due to the row echelon form
of R2,2. The evaluation of further basis elements proceeds in analogy. Finally, combining
the images qi(ω), i ≤ k′ = rkY , with the coordinates of xt,j, (t, j) ∈ Ix, with respect to
columns q1, . . . , qk′ of [Q1 · · · Qn] in <4.17> yields the required images

(
PV xt,j

)
(ω) of ω

under the orthogonal projections of xt,j, (t, j) ∈ Ix, onto the subspace V .
Section 4.4.3 shows how a more refined recursive strategy allows to exploit a special

and complementary structure of 〈〈X,X〉〉 and the aggregation matrix A.

4.4.2. Basis changes by reflection

The section considers a finite sequence z1, . . . , z`, ` ∈ N, of linearly independent elements
of a Euclidean space W with inner product 〈 • , • 〉. The sequence v1, . . . , v` forms
an orthonormal basis of W ′ = span{zj | j ≤ `}, and the i, j-th entry of B ∈ R`×`

equals bi,j = 〈vi, zj〉. Consequently, one has the equality

b1,1 . . . b1,`

...
. . .

...

b`,1 . . . b`,`




coords.
of z1

coords.
of z`

with resp.
to v1

with resp.
to v`

[v1 · · · v`][z1 · · · z`] =

〈v1, z1〉

〈v`, z1〉
unitary map V

. <4.19>

Therein, the columns of B provide a representation of z1, . . . , z` in the sense of sec-
tion 2.2.1. In this setting, the goal is to obtain a representation as in lemma 2.2, that is,

r1,1 . . . r1,`

. . .
...
r`,`


[q1 · · · q`][z1 · · · z`] =

triangular coordinate
matrix R with

nonzero diagonal elements

unitary map from R`
to W ′ = span{z1, . . . , z`} .
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Reflections about hyperplanes in R` of the form {〈u, • 〉 = 0} with nonzero u, that is,
orthogonal complements of subspaces span{u}, are key to an alternative computational
strategy, which yields the same output as the Gram-Schmidt orthogonalization <2.3>

when applied to z1, . . . , z` with suitable sign choices. Such reflections amount to unitary
maps from R` to R`. Thus, their columns form orthonormal bases of R`, which implies
that the Gramian 〈〈O,O〉〉 = OTO of such a reflection O equals the `×` identity matrix I.

Lemma 4.6 asserts that the alternative strategy leads to the same output as <2.3>.
More specifically, a sequence of reflections O1, . . . , O` recovers the upper triangular co-
ordinate matrix R produced by a Gram-Schmidt orthogonalization via R = O` · · ·O1B.

Lemma 4.6. If a sequence z1, . . . , z` of linearly independent elements of a Euclidean
space W exhibits a representation as in <4.19>, wherein v1, . . . , v` amounts to an or-
thonormal basis of W ′ = span{zi | i ≤ `}, then there exist reflections O1, . . . , O` such that

V B = V OT
1O

T
2 · · ·OT

`︸ ︷︷ ︸
Q=[q1 ··· q`]

O` · · ·O1B︸ ︷︷ ︸
R

= QR ,

wherein Q, R denote a unitary map and an upper triangular matrix, respectively, which
equal the output of <2.3> when applied to z1, . . . , z` with suitable sign choices.

If the coordinate matrix R with respect to q1, . . . , q` of z1, . . . , z` is available in
addition to the images z1(ω), . . . , z`(ω), then q1(ω), . . . , q`(ω) may be obtained based on

r1,1

r1,2 r2,2
...

...
. . .

r1,` r2,` . . . r`,`



q1(ω)
q2(ω)

...
q`(ω)

 =


z1(ω)
z2(ω)

...
z`(ω)

 ,

wherein ` > 2 is assumed for the sake of presentation. More specifically, rj,j 6= 0, j ≤ `,
implies the equalities q1(ω) = z1(ω)/r1,1, q2(ω) =

(
z2(ω)− r1,2q1(ω)

)
/r2,2, and so forth.

The computational recipe <4.20> exploits these relations to calculate q′i = qi(ω).

1 z
(0)
j = zj(ω) , j ≤ `

2 for i = 1, . . . `

3 q′i = z
(i−1)
i /ri,i

4 for j = i+ 1, . . . , `

5 z
(i)
j = z

(i−1)
j − ri,jq′i

<4.20>

The remainder of this section justifies the assertion of lemma 4.6
Panel (A) of figure 4.7 illustrates the reflection reflectionof a nonzero element x ∈ R3 about a

hyperplane H = {〈u, • 〉 = 0} into its mirror image x′. This transformation amounts to
first projecting x onto H to obtain the orthogonal projection x̂ = PHx and thereby the
corresponding residual x̃ = x−PHx = PH⊥x. Next, this residual is subtracted from x̂ to
reach x′ on the opposite side of—but with equal distance infy∈H‖x− y‖ = ‖x̃‖ to—the
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x

x′

x̂

u
x̃

−x̃

H
=
{〈
u
,
•
〉=

0} ∥∥b1 + ‖b1‖e1
∥∥

b̂1

b1

−‖b1‖e1 ‖b1‖e1

b 1
+
‖b

1
‖e

1

(span{b1 + ‖b1‖e1})⊥ = H

unit circle

(A) (B)

Figure 4.7
The figure illustrates the geometry of a reflection and shows that the image of a given b1 ∈ R2

under a suitable reflection lies on the first coordinate axis. Panel (A) illustrates the reflection
of a nonzero element x ∈ R3 about a hyperplane H = (span{u})⊥. Panel (B) shows the
transformation of a nonzero b1 ∈ R2 into a multiple−‖b1‖e1 of the first standard basis element.
The transition from b1 to −‖b1‖e1 proceeds by reflection about H = (span{b1 + ‖b1‖e1})⊥.

subspace H. Linearity of projectors and Pythagoras’s theorem ensure that the map
given by x 7→ x′ = x̂− x̃, called Householder transform

Householder
transform

, is linear and length preserving.
Moreover, the equalities PH(x̂− x̃) = x̂ and PH⊥(x̂− x̃) = −x̃ show that the reflection
of x′ = x̂−x̃ about H equals (x′)′ = x̂−(−x̃) = x. Consequently, Householder transforms
are also bijective and therefore provide unitary maps from R` to R`.

The utility of reflections comes from their ability to transform a point x into any
target x′ of the same length by adequate choice of H. In fact, a reflection modifies x
merely with respect to its component x̃ in H⊥. Thus, as shown in panel (A) of figure 4.7
the difference x − x′ lies in the one dimensional subspace H⊥. Unit dimension ensures
that if x 6= x′, then scaling the difference x− x′ leads to an orthonormal basis of H⊥ in
form of u = (x− x′)/‖x− x′‖. The residual x− u〈u, x〉 from orthogonally projecting x
onto H⊥ equals the orthogonal projection of x onto H. Thus, a reflection transforming x
into x′ is given by id−2u〈u, • 〉, wherein id symbolizes the identity map on R`. If x = x′,
then id maps x to x′ and setting u to zero generalizes the previous construct.

The situation of lemma 4.6 is given by Z = V B, wherein the kernel of Z = [z1 · · · z`]
equals {0}, V = [v1 · · · v`] is unitary, and bi,j = 〈vi, zj〉. Linear independence of z1, . . . ,
z`, ` ≥ 1, implies that z1 and thus its length ‖z1‖ is nonzero. The two elements±‖b1‖e1—
e1 being the first standard basis element of R` as in example (a) of section 2.1—share
their length with b1 = (b1,1, . . . , b`,1) and hence z1. Therefore, a suitable Householder
transform O1 yields O1b1 = ±‖b1‖e1. Panel (B) of figure 4.7 illustrates the construction
of O1 for the choice of −‖b1‖e1 and a nonzero element b1 of R2. Therein, the element
needed for constructing O1—previously denoted by u—follows by scaling b1 + ‖b1‖e1.

109



The composition V O1 of two unitary maps is itself of that kind, and consequently its
images of the standard basis elements e1, . . . , em form another orthonormal basis of W ′ =
span{z1, . . . , z`}. Moreover, the Householder transform O1 represents the multiplication
with the symmetric matrix I − 2uuT, wherein u denotes an orthonormal basis of the
respective H⊥. The resulting equality OT

1 = O1 proves—once more—that O1O1 = I
with I being the identity matrix. This equality underlies the first basis change given by

b
(1)
1,1





r1,1 r1,2 . . . r1,`

b
(1)
2,2 . . . b

(1)
2,`

...
. . .

...

b
(1)
`,2 . . . b

(1)
`,`

co
or

ds
.

of
z 1

co
or

ds
.

of
z 2

la
z`co

or
ds

.
of
z̀

with respect to q1

with respect

to v
(1)
2 , . . . , v

(1)
`

[
q1 v

(1)
2 . . . v

(1)
`

]Z = V B = V O1 O1B
.

This display assumes ` > 1. In any case, one has z1 = r1,1q1, that is, q1 = ±z1/‖z1‖
and r1,1 = ±‖z1‖. If ` ≥ 2, then the orthogonal projection of zj, j ≥ 2, onto span{z1}
equals r1,jq1. Hence, the quantities q1 and r1,j, j ≤ `, coincide with those generated by

the Gram-Schmidt orthogonalization <2.3>. Moreover, the sequence v
(1)
2 , . . . , v

(1)
` forms

an orthonormal basis of (span{z1})⊥ (in W ′). Consequently, b
(1)
j = (b

(1)
2,j , . . . , b

(1)
`,j ) equals

the coordinate vector with respect to this basis of the residual z
(1)
j = zj − r1,jq1 for

all j ≥ 2. Linear independence guarantees that these residuals and b
(1)
j are nonzero.

If ` ≥ 2, then a suitable Householder transform O′2 reflects the coordinate vector b
(1)
2

with respect to v
(1)
2 , . . . , v

(1)
` into one of the two vectors±‖b(1)

2 ‖e1. The relevant properties
of O′2 carry over to O2 =

(
1
O′2

)
, which drives the next basis change. If ` > 2, then





r1,1 r1,2 r1,3 . . . r1,`

r2,2 r2,3 . . . r2,`

b
(2)
3,3 . . . b

(2)
3,`

...
. . .

...

b
(2)
`,3 . . . b

(2)
`,`

co
or

ds
.

of
z 1

co
or

ds
.

of
z 2

co
or

ds
.

of
z 3

la
z`co

or
ds

.
of
z̀

with respect
to q1 and q2

with respect

to v
(2)
3 , . . . , v

(2)
`

[
q1 q2 v

(2)
3 . . . v

(2)
`

]Z = (V O1O2)(O2O1B) =
,

wherein the presentation presupposes ` > 3. Proceeding in this fashion verifies the
assertion of lemma 4.6 for an arbitrary sequence length ` ∈ N.
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4.4.3. Recursive processing

This section designs a recursive procedure to evaluate orthogonal projections. The set-
ting amounts to an extended special case of the scenario in section 4.4.1. More specifi-
cally, two sequences of real-valued functions wt,j, Ix = {1, . . . , n}×{1, . . . ,m}, m,n ∈ N,
and vt,i, (t, i) ∈ Iobs 6= ∅, on a common set Ω form an orthonormal basis of a Euclidean
space (W, 〈 • , • 〉). In particular, the second index set Iobs is a finite and nonempty sub-
set of N× N. The discussion mostly focuses on the additional elements xt,j, (t, j) ∈ Ix,
and yt,i, (t, i) ∈ Iobs, of W . In fact, the task is to evaluate at ω the orthogonal projec-
tions PV xt,j of xt,j onto V = span{yt,i | (t, i) ∈ Iobs} based on coordinate information
and the observations yt,i(ω), (t, i) ∈ Iobs. The functions xt,j and yt,i are given by

X1

Xt

= [x1,1 · · · x1,m] = W1L
T
1 ,

= [xt,1 · · · xt,m] = Xt−1ΘT + ρWt , 2 ≤ t ≤ n , and
<4.21a>

Yt = [yt,1 · · · yt,kt ] =

Zt︷ ︸︸ ︷[
Xt−1B

T
t Xt

] AT
t︷ ︸︸ ︷[

−I
BT
t JT

t

]
+Vt S

T
t , t ≤ n . <4.21b>

The first part <4.21a> defines the quantities xt,j. Therein, the linear maps Wt, t ≤ n,
amount to [wt,1 · · · wt,m], the kernel of them×mmatrix LT

1 equals {0}, and ρ > 0. These
restrictions guarantee linear independence of xt,j, (t, j) ∈ Ix. Moreover, Θ ∈ Rm×m.

The second part <4.21b> specifies the observables yt,i. Here, the first summand equals

ZtA
T
t =

[
Xt−1B

T
t Xt

] [−I
BT
t JT

t

]
= [Xt−1 Xt]

[
−BT

t

BT
t JT

t

]
with JT

t ∈ Rm×k′t , BT
t ∈ Rm×k′′t , k′t + k′′t = kt > 0 being the number of observations

at t, and k′t, k
′′
t ∈ N ∪ {0}. If either of k′t and k′′t equals zero, then the other coincides

with kt, and AT
t consists of only one of the shown block columns. More specifically, the

equality k′′t = 0 implies Zt = Xt and AT
t = JT

t . This case holds for t = 1, and hence there
is no need to ponder the meaning ofX0. If k′t > 0, then the columns of JT

t form a sequence
of linearly independent elements of Rm. Finally, the second summand of Yt equals the
composition VtSt of the linear map Vt = [vt,1 · · · vt,kt ] with the matrix ST

t ∈ Rkt×kt .
The subsequent discussion assumes linear independence of the observables yt,i, (t, i) ∈

Iobs = ∪t≤n
(
{t}×{1, . . . , kt}

)
. The latter amounts to linear independence of the columns

of the matrix shown in figure 4.8 as xt,j, vt,i, (t, j) ∈ Ix, (t, i) ∈ Iobs, are linearly indepen-
dent. The equalities kerST

t = {0}, t ≤ n, or alternatively k′′t = 0, t ≤ n, guarantee this
condition. Otherwise, if k′′t > 0 and kerST

t 6= {0} for some t ≤ n, then the requirement of
linearly independent observables restricts consecutive matrices Jt, Jt−1 and kerBT

t , t ≥ 2.
Changing the focus from xt,j, (t, j) ∈ Ix, to the functions zt,j, t ≤ n, j ≤ k′′t +m, lowers

the complexity of the notation when designing a computational strategy to evaluate the
mentioned predictions. In fact, the equalities xt,j = zt,j, j ≥ k′′t + 1, imply that the
computation of the rows

(
PVZt

)
(ω) of PVZt, t ≤ n, settles the original prediction task.
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−BT
2

BT
2 JT

2 −BT
3

BT
3 JT

3

. . .

−BT
n

BT
n JT

n

ST
1

ST
2

ST
3

. . .

ST
n
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

JT
1

coords.
of Y1

coords.
of Y2

coords.
of Y3

coords.
of Yn

with resp. to X1

with resp. to X2

with resp. to X3

with resp. to Xn−1

with resp. to Xn

with resp. to V1

with resp. to V2

with resp. to V3

with resp. to Vn

Figure 4.8
The figure shows the matrix of coordinates of the columns of [Y1 · · · Yn] with respect to the
columns of [X1 . . . Xn V1 . . . Vn] as specified in<4.21a> and<4.21b> and for the case n > 3.
If the equality k′′t = 0 holds—as in case t = 1—or k′t = 0 for some t ≤ n, then k′t = kt > 0
or k′′t = kt > 0 and the block column containing BT

t and JT
t , respectively, disappears.

In addition, the specification in <4.21a> may be replaced by the equalities

Z1 = W1L
T
1 , Zt = Zt−1

TT
t︷ ︸︸ ︷(

BT
t ΘT

)
+Wt

KT︷ ︸︸ ︷
[ ρI] , 2 ≤ t ≤ n , <4.22>

wherein I denotes the m × m identity matrix, and n ≥ 2 is assumed. If the number
k′′t−1 of columns of BT

t−1 equals zero—as in case t = 2, then the first block row of TT
t

disappears. The same applies to the first block column of TT
t and KT if k′′t = 0. If the

equalities k′′t−1 = 0 and k′′t = 0 hold simultaneously, then Zt = Xt, Tt = Θ, and K = ρI.
The following presentation considers the case n > 4. In this setting, the strategy of sec-

tion 4.4.1 is applicable. However, adapting the computations to the specification <4.22>

and <4.21b> allows to exploit this particular structure. The rearranged equivalent

[Y1 Z1 Y2 Z2 . . . Yn Zn] = [W1 V1 W2 V2 . . . Wn Vn]B <4.23>

to <4.16>, wherein the matrix B is as shown in figure 4.9, facilitates this endeavor.
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The computational strategy which is developed here proceeds in two stages. The first
stage—referred to as filtering filtering—exchanges the orthonormal basis consisting of columns
of Wt and Vt, t ≤ n, by another orthonormal basis which contains an orthonormal basis
of V = span{yt,i | (t, i) ∈ Iobs} as a subsequence. Successive evaluation at ω of the or-
thogonal projections of the columns of Z1 onto V (1) = img Y1, the orthogonal projections
of the columns of Z2 onto V (2) = img [Y1 Y2], and so forth allows a considerable reduction
of the computations needed to evaluate the elements of this subsequence. The second
step—called smoothing

smoothing
—calculates the required images

(
PV xt,j

)
(ω), (t, j) ∈ Ix, based on

the output of the first step. Herein, successive calculation of the entries of
(
PVZn−1

)
(ω),

the entries of
(
PVZn−2

)
(ω), and so forth further allows to avoid redundant calculations.

The first step of the filtering stage replaces the columns of W1 and V1. More specif-
ically, a suitable sequence of k1 Householder transforms—chosen with respect to the
columns of Y1, but applied to the relevant rows of all columns of B—yields

R1,Y1 R1,Z1 R1,Z1T
T
2 A

T
2 R1,Z1T

T
2 . . .[

LT
2,∗
] [

LT
2,∗T

T
2

KT

]
AT

2

[
LT

2,∗T
T
2

KT

]
. . .

ST
2

. . .



LT
2

[Y1 Z1 Y2 Z2 · · ·]
= [Q1 V

′
1 W2 V2 · · ·]

co
o
rd

s.
o
f

p
ro

j.
on

to
V

(1
)

=
im

g
Y
1

co
or

d
s.

o
f

p
ro

j.
on

to
[V

(1
)
]⊥

LT
2A

T
2 LT

2 LT
2T

T
3 A

T
3 LT

2T
T
3 . . .

ST
2

KTAT
3 KT . . .

ST
3

. . .

P (V
(1

) )
⊥
Y2

P (V
(1

) )
⊥
Z2

P (V
(1

) )
⊥
Y3

P (V
(1

) )
⊥
Z3

· · ·
W ′2 =

[
V ′1 W2

]
V2
W3

V3
...

modified by
Householder

transforms

.

Therein, the use of solely k1 Householder transforms does not ensure a particular struc-
ture of LT

2,∗, which is therefore treated as a general m ×m matrix. In contrast, linear
independence of y1,1, . . . , y1,k1 implies that R1,Y1 is a k1 × k1 upper triangular matrix
with nonzero diagonal elements. This structure facilitates the evaluation of the columns
of Q1, which form an orthonormal basis of V (1), via the equality Y1 = Q1R1,Y1 . In par-
ticular, the recursive strategy in <4.20> is applicable to the calculation of the entries
q1,1(ω), . . . , q1,k1(ω) of Q1(ω). Once the row Q1(ω) ∈ Rk1 is available, the images of ω
under the columns of PV (1)Z1, PV (1)Z2, and P(V (1))⊥Y2 may be obtained via

PV (1)Z1 = Q1R1,Z1 , PV (1)Z2 =
(
PV (1)Z1

)
TT

2 , and P(V (1))⊥Y2 = Y2 −
(
PV (1)Z2

)
AT

2 .
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to Vn

Figure 4.9
The figure illustrates the structure of the coordinate matrix B in <4.23> under the assump-
tion that n > 3. The shown structure derives from the specification in <4.22> and <4.21b>.

Moreover, the coordinates of the orthogonal projections of the columns of Zt and Yt,
t ≥ 2, onto (V (1))⊥—shown in the lower part of the previous display—exhibit the same
overall structure as those of Zt and Yt, t ≥ 1. Consequently, the previous steps can
be repeated with (the coordinate matrices of) Zt, Yt, t ≥ 1, replaced by (those of)
the projections P(V (1))⊥Zt, P(V (1))⊥Yt, t ≥ 2, as well as Wt, Vt, t ≥ 1, replaced by

W ′
2 =

[
V ′1 W2

]
∈ W×2m, V2, Wt, Vt, t ≥ 3. A suitable sequence of k2 Householder

transforms applied to the parts of the coordinate vectors corresponding to W ′
2, V2 yields

. . .
...

...
...

...

R2,Y2 R2,Z2 R2,Z2T
T
3 A

T
3 R2,Z2T

T
3 . . .[
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]
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]
. . .
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Herein, linear independence of y1,1, . . . , y1,k1 , y2,1, . . . , y2,k2 ensures that R2,Y2 ∈ Rk2×k2

is upper triangular with nonzero diagonal elements. Hence, the equality P(V (1))⊥Y2 =

Q2R2,Y2 allows the computation of the row Q2(ω) ∈ Rk2 via <4.20>. The columns of the
corresponding linear map Q2 form an orthonormal basis of the subspace imgP(V (1))⊥Y2,

which equals the orthogonal complement of V (1) in V (2). The images under the relevant
projections onto V (2) and (V (2))⊥, respectively, follow from

PV (2)Z2 = PV (1)Z2 +Q2R2,Z2 ,

PV (2)Z3 =
(
PV (1)Z2

)
TT

3 +
(
Q2R2,Z2

)
TT

3 =
(
PV (2)Z2

)
TT

3 , and

P(V (2))⊥Y3 = Y3 −
(
PV (2)Z3

)
AT

3 .

Finally, the linear map W ′
3 =

[
V ′2 W3

]
exhibits 3m columns and thus LT

3 ∈ R3m×(k′′3 +m).
The next steps of the filtering stage proceed in analogy. Display <4.24> contains

a complete description. The notation used therein is in accordance with the previous
discussion. In addition, the symbols yt, ỹt+1 | t, ẑt | j, t ∈ {t − 1, t}, and qt refer to the
vectors Yt(ω),

(
P(V (t))⊥Yt+1

)
(ω),

(
PV (j)Zt

)
(ω), and Qt(ω), respectively. Then,

1 ỹ1 | 0 = y1

2 ẑ1 | 0 = 0

3 for t = 1, . . . , n

4 Dt =

[
LT
t A

T
t LT

t

ST
t

]
Householder
transforms−−−−−−−→ D′t =

[
Rt,Yt Rt,Zt

LT
t+1,∗

]
5 solve RT

t,Yt
qt = ỹt | t−1

6 ẑt | t = ẑt | t−1 +RT
t,Zt
qt

7 if t < n

8 LT
t+1 =

[
LT
t+1,∗T

T
t+1

KT

]
9 ẑt+1 | t = Tt+1ẑt | t

10 ỹt+1 | t = yt+1 − At+1ẑt+1 | t

, <4.24>

wherein the number of rows of the remainder LT
t+1,∗ equals tm. In fact, the representation

of Zt′+1 after processing line 8 of <4.24> with t = t′ < n has the form

Q1 Q2 . . . Qt′
[
V ′t′ Wt′+1

]
· · ·

[ ]orthon. basis of the (
∑
t≤t′ kt)-dim.

lin. space img [Y1 · · · Yt′ ]

orthon. basis of the (
∑
t≤t′ kt + t′m+m)-dim.

lin. space img [W1 V1 · · · Wt′ Vt′ Wt′+1]

W ′t′+1

· · · R1,Z1
TT
2 · · ·TT

t′+1 · · ·

· · · R2,Z2
TT
3 · · ·TT

t′+1 · · ·

...

· · · Rt′,Zt′T
T
t′+1 · · ·

LT
t′+1




coords.
of Zt′+1 ,
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wherein Lt′+1 =
[
Tt′+1Lt′+1,∗ K

]
, and the presentation considers the case t′ > 2 .

However, the rank of Zt′+1 and therefore the rank of its coordinate block column in
the previous display equals at most k′′t′+1 +m. If (t′ + 1)m > rkP(V (t′))⊥Zt′+1 = rkLT

t′+1,
then an intermediate auxiliary basis change allows a reduction of the number of rows
of LT

t′+1. This additional transformation is also needed to develop the smoothing stage.
The output generated during the filtering stage is comparable to that of the Gram-

Schmidt orthogonalization <2.3>. Each iteration—indexed by t—of <4.24> considers a
sequence yt,1, . . . , yt,kt instead of a single yt as in <2.3>, but also involves a orthogonal-
ization part (line 4 and 10) and a scaling step (line 5). However, the complexity of the
orthogonalization part—measured as the number of orthogonalization steps kt—does not
increase systematically with t in <4.24>—or equivalently j in <2.3>. This reduction in
computational effort provides the gain from exploding the present structure.

The recursion <4.24> does not yield the coordinates with respect to Qt+1, . . . , Qn of
the columns of PVXt, t < n. These coordinates are however needed in the smoothing
stage. A reconsideration of the first step of the filtering stage yields a suitable extension
of <4.24> in form of the above mentioned auxiliary basis change. More specifically, the
first step of filtering yields the modified representation

[Y1 Z1 Y2 Z2 · · ·] =

[Q1 V
′

1 W2 V2 · · ·]


R1,Y1 R1,Z1 R1,Z1T

T
2 A

T
2 R1,Z1T

T
2 R1,Z1T

T
2 T

T
3 A

T
3 . . .[

LT
2,∗
]

LT
2A

T
2 LT

2 LT
2T

T
3 A

T
3 . . .

ST
2

...
. . .

 .

Therein, the 2m×(k′′2 +m) matrix LT
2 exhibits an extended singular value decomposition

ū1 · · · ūrkLT
2

ūrkLT
2 +1 · · · ū2m

[ ]
left singular

vectors of LT
2

extension to
orthon. basis of R2m

Ū2

σ1(LT
2 )

. . .

σrkLT
2
(LT

2 )





nonzero
singular
values of LT

2

D̄2

V̄ T
2

right singular
vectors of LT

2

LT
2 =

[
LT

2,∗T
T
2

KT

]
=

,

wherein rkLT
2 < 2m is assumed for the sake of presentation, but rkLT

2 = 2m is possible.
In the latter case, the lower block of zeros in the singular value matrix as well as the
extension ūrkLT

2 +1, . . . , ū2m disappears. In any case, one has (in)equalities m ≤ rkLT
2 =

rkP(V (1))⊥Z2 ≤ rkZ2 ≤ k′′2 +m, wherein the first inequality is due to the presence of KT.
This extended singular value decomposition leads to the equalities

W ′
2Ū2 = [V ′1 W2] Ū2 =

[
W ′′

2 W
′′
2,∗
]

and ŪT
2

[
LT

2,∗
]

=

[
R2,Z1

LT
2,∗∗

]
. <4.25>
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Therein, the leftmost term of the first equality amounts to the composition of two
unitary maps, thus, is itself unitary. The righthand side of the previous display shows
the coordinates of P(V (1))⊥Z1 with respect to the columns of

[
W ′′

2 W ′′
2,∗
]

as Ū1Ū
T
1 =∑

i≤2m ūi〈ūi, • 〉 ∈ Rm×m represents the orthogonal projector PR2m , hence, equals the
identity matrix I. The partition of this coordinate matrix corresponds to that of the
matrix Ū2, that is, R2,Z1 is the rkLT

2 × (k′′2 + m) matrix containing the inner products
of the original coordinate vectors with ū1, . . . , ūrkLT

2
. This notation leads to

[Y1 Z1 Y2 Z2 · · ·] =[
Q1 W

′′
2 V2 · · · W ′′

2,∗
]

R1,Y1 R1,Z1 R1,Z1T

T
2 A

T
2 R1,Z1T

T
2 R1,Z1T

T
2 T

T
3 A

T
3 . . .[

L̄T
2

]
BT

2

[
L̄T

2A
T
2

ST
2

] [
L̄T

2

] [
L̄T

2

]
TT

3 A
T
3 . . .

...
. . .

LT
2,∗∗

 ,

wherein L̄T
2 = D̄2V̄

T
2 =

[
ū1 · · · ūrkLT

2

]T
LT

2 , BT
2 = V̄2D̄

−1
2 R2,Z1 , and therefore L̄T

2B
T
2 =

R2,Z1 . Herein, the case of LT
2,∗ being an m× (k′′2 + m) zero matrix is possible and indi-

cates imgZ1 ⊂ img Y1. Then, all entries of the matrices R2,Z1 , LT
2,∗∗, and BT

2 equal zero.
The coordinate matrix in the previous display—ignoring its final block row—exhibits

the same structure as before the auxiliary basis change but with LT
2 replaced by L̄T

2 .
Consequently, the second filtering step may proceed as above to obtain an orthonormal
basis of imgP(V (1))⊥Y2 by transformation of the columns of the linear map

[
W ′′

2 V2

]
.

Inserting an auxiliary basis change of the form <4.25> and some rearrangements of
the basis elements at the end of every filtering step yields the matrices BT

2 , B
T
3 , . . . , B

T
n ,

which are needed in the smoothing stage. Exchanging line 8 of <4.24> with

8 L′t+1 =

[
LT
t+1,∗T

T
t+1

KT

]
=
[
ū1 · · · ūrk(L′t+1)T

]
D̄t+1V̄

T
t+1

9 BT
t+1 = V̄t+1D̄

−1
t+1

[
ū1 · · · ūrk(L′t+1)T

]T [LT
t+1,∗

]
10 LT

t+1 = D̄t+1V
T
t+1

<4.26>

provides a suitably extended filtering procedure, wherein the notation is adapted to
that of <4.24>. A matrix LT

t+1,∗ obtained using the extension <4.26> contains at
most k′′t + m rows; thus, there is no systematic increase of the row count. Moreover,
the orthonormal basis q′1,1, . . . , q

′
1,k1

, . . . , q′n,kn of V evaluated when using the above ex-
tension coincides with the orthonormal basis q1,1, . . . , qn,kn considered by the unmodified
recursions <4.24> up to sign changes. In fact, both bases lead to a representation—in
the sense of section 2.2.1—of the columns of Y = [Y1 . . . Yn] in form of an k × k upper
triangular matrix with nonzero diagonal elements. As a consequence, the same equality
assertion applies to the corresponding coordinates of the projections onto V (t), t ≤ n.

The extended filtering stage concludes with a representations of the columns of the
linear map [Y1 Z1 Y2 Z2 · · · Yn Zn] as shown in figure 4.10. Consequently, the smoothing
stage may proceed as shown in <4.27>. The latter uses the same notation as <4.24>
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and assumes that the output of the extended filtering stage, in particular, B2, . . . , Bn,
q1, . . . , qn, and ẑ1|1, . . . , ẑn−1|n−1, is available. The vector ẑn |n generated during the final
filtering step equals the row

(
PVZn

)
(ω) of PVZn, thus, requires no further treatment.

1 rn−1 |n = BnR
T
n,Zn

qn

2 for t = n− 1, . . . , 1

3 ẑt |n = ẑt | t + rt | t+1

4 if t > 1

5 rt−1 | t = Bt(rt | t+1 +RT
t,Zt
qt)

<4.27>

Comments and references

Section 4.1 Stewart and Sun (1990, sec. I.5, exercise 3) provide the definition of θmax

in <4.2b>; the notation is borrowed from Böttcher and Spitkovsky (2010, ex. 3.5). The
cosines of the angles θ1, . . . , θ` are sometimes called canonical correlations (Anderson,
1958, sec. 12.2, def. 12.2.1). The content of lemma 4.2 can be found in Böttcher and
Spitkovsky (2010) and Galántai (2008). Wedin (1983, sec. 1) serves as a role model
for the discussion in section 4.1.1 and 4.1.2; his figure 4 closely resembles panel (A)
of figure 4.2. The latter investigation implies PV ⊥PUv

′
i = (cos2 θi)v

′
i and PUPV ⊥ui =

(cos2 θi)ui (Galántai, 2008, cor. 3), that is, v′i and ui provide eigenvectors of PV ⊥PU
and PUPV ⊥ , respectively, associated with the eigenvalue cos2 θi. In particular, U and V ⊥

uniquely determine all of their principal angles—not just θmax and θmin,6=0. Wedin (1983,
app. 1, (A5)) generalizes the upper bound resulting from <4.1> and <4.3b>. Alterna-
tively, Zhu and Knyazev (2013, thm. 4.1, rem. 4.1, tbl. 2 (1,2-entry)) show that if V
and U are equal dimensional, then the i-th singular value of PV PU/V = PV −PV/U equals
tan θi, which implies <4.1>. Their figure 1 illustrates this phenomenon.

Section 4.2 Björck (1996, sec. 5.1.1) considers the sequential least-squares problem
in <4.7> as a generalization of the classical constrained least-squares problem. Com-
parable convergence assertions to those at the end of section 4.2.2 are given by Lawson
and Hanson (1974, ch. 22), Stewart (1997), Ansley and Kohn (1985), and Koopman
(1997) amongst others. The related considerations in De Jong (1991) and Eubank (2006,
sec. 6.2.2) (implicitly) utilize the 〈 • , • 〉∗-related construct.

The discussion of the case img
[
Y x

]
∩U⊥ = {0} can be extended to img Y ∩U⊥ = {0}

by formal manipulation. If the latter holds, then ker [Y x] ⊂ ker
[
Ŷ x̂

]
is possible.

Nonetheless, the bilinear map 〈 • , • 〉◦ may be defined—in analogy—on W ′×W ′, however,
does not generally provide an inner product. Then, the orthogonality considerations of
the main text still apply. In particular, the 〈 • , • 〉◦-orthogonal projector equals PV/V ⊥∗ x,
but a zero 〈 • , • 〉◦-residual length is possible even if x is not an element of V = img Y .

Section 4.3 Cressie (1991, sec. 3.4) refers to similar predictions—but based on an
orthogonal projector instead of an oblique projector—as universal kriging predictions;
this term is the usual one in spatial statistics (Sherman, 2011, sec. 2.4). Cressie (1991,
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sec. 3.4.5) also mentions the geometric perspective taken here. Best linear unbiased
prediction (BLUP) is another catchword for predictions based on an orthogonal pro-
jector (Robinson, 1991). Doran (1992) verifies that—in the setting considered in sec-
tion 4.4.3—predictions based on orthogonal projections interpolate observed values.

The computation of the (matrix of) coordinates with respect to the columns of
P(span{1})⊥∗ Ȳ of the 〈 • , • 〉∗-orthogonal projections of the columns of P(span{1})⊥∗ X̄ onto
imgP(span{1})⊥∗ Ȳ provides an alternative to the approach of this text, which ultimately

calculates weighted sums of q∗1(ω), . . . , q∗k′(ω) instead of
(
P(span{1})⊥∗ ȳt,i

)
(ω), (t, i) ∈ Iobs.

The ratio 〈a, var(˜̄x)a〉/〈a, var(ˆ̄x)a〉 in the upper bound in corollary 4.5 equals

〈a, var(˜̄x)a〉
〈a, var(x̄)a〉 − 〈a, var(˜̄x)a〉

=
〈a, var(˜̄x)a〉/〈a, var(x̄)a〉

1− 〈a, var(˜̄x)a〉/〈a, var(x̄)a〉
=

r(a)

1− r(a)
.

Hence, the first upper bound equals supa∈imgAT

(
r(a)/[1 − r(a)]

)
= supa r(a)/

(
1 −

supa r(a)
)

as r 7→ r/(1 − r) is monotone increasing on [0, 1). The latter equals (1 −
R2

min)/R2
min, wherein R2

min = infa∈imgAT

(
1 − r(a)

)
has the interpretation of a minimal

(population) coefficient of determination across the random variables x̄Ta, a ∈ imgAT.

Section 4.4 The discussion of section 4.4.1 resembles Morf and Kailath (1975, sec. IV);
their equation (40) contains the equation <4.18>. Golub and Van Loan (2013, sec. 5.1.2,
5.2.2) derive the representation of Householder transforms given in section 4.4.2 as well
as the associated triangularization algorithm. The latter considers all of z1, . . . , z` from
the start whereas the Gram-Schmidt process <2.3> introduces them one after the other.
Reorganizing <2.3> to obey the former strategy amounts to orthogonalization of z̃

(j−1)
j+1 ,

. . . , z̃
(j−1)
` against qj immediately following its calculation. Björck (1996, algorithm 2.4.3)

calls this modification row oriented modified Gram-Schmidt process. Panel (A) and (B)
of figure 4.7 are akin to Trefethen and Bau (1997, fig. 10.1, 10.2), respectively.

Section 4.4.2 requires linear independence of z1, . . . , z`. A generalization as in sec-
tion 2.2.2 is immediate but not needed here. In fact, an implementation using finite
precision arithmetic requires more refined methods of handling linear dependence as
identification of zero elements is nontrivial if rounding errors are present. Golub and
Van Loan (2013, sec. 5.4.2) considers a popular (rearranging) technique—called pivoting.

Eubank (2006, ch. 2–5) develops the (Kalman) filtering and (Kalman) smoothing
recursions by geometric arguments. Paige (1985) provides a similar presentation. In the
usual terminology, lines 10 and 4–6 of <4.24> amount to the measurement update; lines 8
and 9 form the time update. The former constructs the matrix Dt and then modifies it by
pre-multiplication with special matrices. Kailath et al. (2000, ch. 12) discuss such array
algorithms in-depth including their geometry. Zhang and Li (1996) suggest using singular
value decompositions for filtering and smoothing. Extending the algorithm consisting
of <4.24>, <4.26>, and <4.27> to yield Gramians of the corresponding residuals leads
to so-called square-root algorithms (Morf and Kailath, 1975).
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Appendix

4.a. Proofs

Proof of proposition 4.3. The inclusions img Ŷ ⊂ (img Ỹ )⊥ ⊂ (img Ỹ∗)
⊥ guarantee the final

equality in kerY = ker Ŷ ∩ ker Ỹ = ker Ŷ ∩ ker Ỹ∗ = kerY∗ and thereby dimV = dimV∗.
If x ∈ V ∩V∗, then x = Y c = Y∗c

′ for some c, c′ ∈ Rk with c−c′ ∈ ker Ŷ , c−Pker Ŷ c
′ ∈ ker Ỹ ,

and thereby Ỹ c′′ ∈ img Ỹ∗, wherein c′′ = P(ker Ŷ )⊥c. In particular, x = Y c = Ŷ c′′+(Ỹ c′′+Ỹ∗c) ∈
V ′ = img Ŷ×+img Ỹ∗. Conversely, V ′ ⊂ V∗, and if x = Ŷ c+ Ỹ c′ for some c ∈ {Ỹ ∈ img Ỹ∗} and
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c′ ∈ ker Ŷ , then there exists c′′ ∈ ker Ŷ with Ỹ c = Ỹ∗c
′′ and therefore x = Y c + Ỹ (c′ − c′′) =

Y (c + c′ − c′′). Hence, img Ỹ∗ = img Ỹ implies V ∩ V∗ ⊃ V, V∗. Conversely, V = V∗ ensures
that img Ŷ ⊂ V , which leads to img Ỹ ⊂ V = V∗, and consequently img Ỹ = img Ỹ∗.

If c is an element of kerP(img Ŷ×)⊥ Ŷ , then Ŷ c′ ∈ img Ŷ×, wherein c′ denotes the orthogonal

projection of c onto (ker Ŷ )⊥. As a consequence, there exists c′′ ∈ {Ỹ ∈ img Ỹ∗} with c′− c′′ ∈
ker Ŷ . Furthermore, one may assume c′ = c′′ as Ỹ P(ker Ŷ )⊥c

′′ = Ỹ c′′ − Ỹ∗c′′ ∈ img Ỹ∗. Thus,

Ỹ c = Ỹ Pker Ŷ c + Ỹ P(ker Ŷ )⊥c = Ỹ∗c + Ỹ c′ ∈ img Ỹ∗, that is, P(img Y∗)⊥ Ỹ c = 0. Conversely, if

the latter holds, then c ∈ {Ỹ ∈ img Ỹ∗}, thus, Ŷ c ∈ img Ŷ×.
In particular, if V 6= V∗, then K is nontrivial and θmin,6=0(V ⊥, V ⊥∗ ) = θmin,6=0(V, V∗) as well as

θmax(V ⊥, V ⊥∗ ) = θmax(V, V∗). Then, elements v of V ∩ (V ∩V∗)⊥ have the form P(img Ŷ×)⊥ Ŷ c+

P(img Ỹ∗)⊥
Ỹ c with c ∈ K. In fact, (img Ŷ×)⊥ 3 P(img Ŷ×)⊥ Ŷ c = Ŷ c − Pimg Ŷ×

Ŷ c ∈ (img Ỹ∗)
⊥

and likewise for P(img Ỹ∗)⊥
Ỹ c. Moreover, P(img Ŷ×)⊥ Ŷ c + P(img Ỹ∗)⊥

Ỹ c = Y c − (Pimg Ŷ×
Ŷ c +

Pimg Ỹ∗
Ỹ c) ∈ img Y + (V ∩ V∗) ⊂ img Y . Conversely, if Y c ∈ (img Ŷ× + img Ỹ∗)

⊥, then

Ŷ c ∈ (img Ŷ×)⊥ and Ỹ c = (img Ỹ∗)
⊥. Hence, if v is a nonzero element of V ∩ (V ∩ V∗)⊥, then

φ2
V∗

(
v

‖v‖

)
=
‖(Pimg Ŷ + Pimg Ỹ∗

)(P(img Ŷ×)⊥ Ŷ c+ P(img Ỹ∗)⊥
Ỹ c)‖2

‖P(img Ŷ×)⊥ Ŷ c‖2 + ‖P(img Ỹ∗)⊥
Ỹ c‖2

=
1

1 +
‖P

(img Ỹ∗)⊥
Ỹ c‖2

‖P
(img Ŷ×)⊥ Ŷ c‖2

.

The latter implies the representation of tan θmin, 6=0 and tan θmax as φV∗(v
′) ∈ [0, 1) for all

unit length v′,
√
• is a monotone function on [0, 1), cos2 θ = 1/(1 + tan2 θ), and tan θ ≥ 0

for θ ∈ [0, π/2). In particular, θmax < π/2 ensures that V and V ⊥∗ are complementary.

Proof of the final equality in <4.9>. If x ∈ V , then W ′ = img [Y x] = img Y = V , and
both projectors equal the identity map irrespective of the value of δ ∈ (0, 1]. In the spe-
cial case img Y ⊂ U⊥, one has Y∗ = Y = Yδ, and both projectors coincide for all δ ∈ (0, 1].
Consequently, this special case requires no further consideration. If x 6∈ V , img Y 6⊂ U⊥, and
δ ∈ (0, 1], then norm equivalence (on W ′) ensures the existence of c, C > 0 with c‖z‖∗ ≤ ‖z‖ ≤
C‖z‖∗ for all z ∈W ′. Therefore, every unit ‖ • ‖-length element z′ ∈W ′ satisfies the inequality

‖(PV/V ⊥∗ − PV/V ⊥δ )z′‖ ≤ C supz∈W ′
z 6=0
‖(PV/V ⊥∗ − PV/V ⊥δ ) z

‖z‖‖∗

≤ C
c sup z∈W ′

‖z‖∗=1
‖(PV/V ⊥∗ − PV/V ⊥δ )z‖∗

≤ C
c sup z∈W ′

‖z‖∗=1

∥∥∥∥∑i≤dimW ′
〈wi, z〉(PV/V ⊥∗ − PV/V ⊥δ )wi

∥∥∥∥
∗

≤ C
c

[
sup z∈W ′
‖z‖∗=1

|〈z, w1〉|
]

︸ ︷︷ ︸
dual norm of ‖ • ‖∗ at w1

‖(PV/V ⊥∗ − PV/V ⊥δ )w1‖∗ ,

wherein w1, . . . , wdimW ′ denotes an 〈 • , • 〉∗-orthonormal basis ofW ′ such that V ⊥∗ = span{w1}
and thereby w2, . . . , wdimW ′ form an orthonormal basis of V . By definition of W ′, the basis
element w1 exhibits a representation w1 = c1x + Y c2 with c1 6= 0 and c2 ∈ Rk. Therefore, it
suffices to consider 1

|c1|‖(PV/V ⊥∗ − PV/V ⊥δ )w1‖∗ = ‖(PV/V ⊥∗ − PV/V ⊥δ )x‖∗. To this end, let
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Ỹ× = Ỹ P(ker Ŷ )⊥ , PV/V ⊥∗x = Y b∗, and PV/V ⊥δx = Y bδ, wherein the specific choice of b∗, bδ ∈
Rk—in case kerY 6= {0}—is immaterial. Then, the inequality ‖(PV/V ⊥∗ − PV/V ⊥δ )x‖∗ =

‖Y∗(b∗ − bδ)‖ ≤ ‖Ŷ (b∗ − bδ)‖ + ‖Ỹ∗(b∗ − bδ)‖ reveals that separate consideration of the latter
two summands suffices. The two vectors b∗ and bδ are minimizers of

b′ 7→ Q∗(b
′) =

1

δ2
‖x̂− Ŷ b′‖2 + ‖x̃− Ỹ×b− Ỹ∗b′‖2 and <A4.1>

b′ 7→ Qδ(b
′) = ‖x− Y b′‖2δ =

1

δ2
‖x̂− Ŷ b′‖2 + ‖x̃− Ỹ×b′ − Ỹ∗b′‖2 ,

respectively, wherein b ∈ (ker Ŷ )⊥ minimizes b′ 7→ ‖x̂− Ŷ b′‖2, that is, Pimg Ŷ x̂ = Pimg Ŷ x = Ŷ b.

The criterion <A4.1> differs from b′ 7→ ‖x − Y b′‖2∗; however, the alternative scaling of the
first summand does not affect the set of minimizers as (ker Ŷ )⊥ ⊂ ker Ỹ∗. In fact, one has
〈〈Ŷ , x̂ − Ŷ b∗〉〉 = 0, that is, b∗ − b ∈ ker Ŷ , and thereby ‖x̂ − Ŷ b∗‖ ≤ ‖x̂ − Ŷ bδ‖ as well as
Q∗(b∗) = Qδ(b∗) ≥ Qδ(bδ). As a consequence, ‖x̃ − Ỹ×b∗ − Ỹ∗b∗‖ ≥ ‖x̃ − Ỹ×bδ − Ỹ∗bδ‖.
Moreover, the above characterization of b∗ leads to 〈〈Ỹ∗, (x̃ − Ỹ×b∗) − Ỹ∗b∗〉〉 = 0. In addition,
the inequality δ2Qδ(bδ) ≤ δ2Qδ(b∗) guarantees the inequalities

0 ≤ ‖Ŷ (b∗−bδ)‖2 = ‖x̂− Ŷ bδ‖2−‖x̂− Ŷ b∗‖2 ≤ δ2
(
‖x̃− Ỹ b∗‖2−‖x̃− Ỹ bδ‖2

)
≤ δ2‖x̃− Ỹ b∗‖2 .

The latter inequality handles the first of the two above mentioned summands and leads to

‖x̃− Ỹ×b∗ − Ỹ∗b∗‖ ≥ ‖x̃− Ỹ×bδ − Ỹ∗bδ‖ ≥ ‖x̃− Ỹ×b∗ − Ỹ∗bδ‖ − ‖Ỹ ‖op‖P(ker Ŷ )⊥(b∗ − bδ)‖

≥ ‖x̃− Ỹ×b∗ − Ỹ∗bδ‖ −
‖Ỹ ‖op

σmin,6=0(Ŷ )
‖Ŷ (b∗ − bδ)‖ ≥ ‖x̃− Ỹ×b∗ − Ỹ∗bδ‖ − δC ,

wherein C = ‖Ỹ ‖op‖x̃ − Ỹ b∗‖
/
σmin, 6=0(Ŷ ) does not depend on δ ∈ (0, 1]. The same applies

to the interval I =
[
0, ‖x̃ − Ỹ×b∗ − Ỹ∗b∗‖ + C

]
, which—by virtue of the previous display—

contains ‖x̃− Ỹ×b∗− Ỹ∗bδ‖ for all δ ∈ (0, 1]. The map • 2 is monotone increasing and Lipschitz
continuous on the interval I with Lipschitz constant L ≤ 2

(
‖x̃− Ỹ×b∗ − Ỹ∗b∗‖+ C

)
. Thus,

‖Ỹ∗(b∗ − bδ)‖2 + ‖x̃− Ỹ×b∗ − Ỹ∗b∗‖2 = ‖x̃− Ỹ×b∗ − Ỹ∗bδ‖2

≤
(
‖x̃− Ỹ×b∗ − Ỹ∗b∗‖+ Cδ

)2 ≤ ‖x̃− Ỹ×b∗ − Ỹ∗b∗‖2 + LCδ ,

wherein the first equality is due to the orthogonality condition 〈〈Ỹ∗, (x̃− Ỹ×b∗)− Ỹ∗b∗〉〉 = 0. In
summary, one has ‖Ỹ (b∗ − bδ)‖ ≤

√
δ
√
LC.

Proof of lemma 4.4. The equality ker
[
1 ˆ̄X

]
= {0} is tantamount to kerP(span{1})⊥

ˆ̄X = {0}. If
the condition βb 6∈ Bb holds, and the matrix C ∈ Rn×m is such that the linear combination∑

(t,j)∈Ix ct,jP(span{1})⊥ ˆ̄xt,j equals zero, then

0 =
∑

(t,j)∈Ix

ct,jP(span{1})⊥
(
αt,j + Z2,t,jβb

)
= P(span{1})⊥

[ ∑
(t,j)∈Ix

ct,jZb,t,j

]
βb .

The requirement span{1}∩Uz = {0} implies that the equality between the leftmost and right-
most term in the previous display is equivalent to

[∑
(t,j)∈Ix ct,jZb,t,j

]
βb = 0. If C 6= 0, then the

123



latter equality continues to hold after division by ‖C‖ > 0. That is, βb ∈ ker
[∑

(t,j)∈Ix c
′
t,jZb,t,j

]
for some unit length C ′ = 1

‖C‖C ∈ Rn×m, which contradicts the condition βb 6∈ Bb. Conversely,

βb ∈ Bb implies the existence of a unit length C ∈ Rn×m such that −
(∑

(t,j)∈Ix αt,jct,j
)
1 +∑

(t,j)∈Ix ct,j
ˆ̄xt,j = 0, which reveals the linear dependence of 1, ˆ̄xt,j , (t, j) ∈ Ix.

Proof of corollary 4.5. The inequality k > 0 and at,i 6= 0 implies imgAT 6= {0}. The equal-

ity {0} = ker var(ˆ̄x) = 〈〈P(span{1})⊥
ˆ̄X,P(span{1})⊥

ˆ̄X〉〉 follows from ker
[
1 ˆ̄X

]
= ker

[
1 X̄

]
= {0},

wherein the first equality is due to βb 6∈ Bb. The remainder of this proof uses the notation of
proposition 4.3. The projection is onto V = img Y ′ with

[
1 Ȳ
]

= Y ′. The inclusion 1 ∈ U =

U1,z + Uv̄ implies that Ŷ ′ = PU
[
1 Ȳ
]

=
[
1 ˆ̄Y

]
. The equality ker

[
Y ′ X̄

]
= ker

[
Ŷ ′ ˆ̄X

]
leads

to ker Ŷ ′ = kerY ′ = ker Ŷ ′ ∩ ker Ỹ ′ with Ỹ ′ =
[
0 ˜̄Y

]
and ˜̄Y = PU⊥ Ȳ . Thereby, {(c1, c2) ∈

R1+k | c1 ∈ R, c2 ∈ ker ˜̄Y } = ker Ỹ ′ ⊃ ker Ŷ ′. Consequently, the image of Ỹ ′∗ = Ỹ ′Pker Ŷ ′

equals {0}. Furthermore, {Ỹ ′ ∈ img Ỹ ′∗} = ker Ỹ ′, that is, Ŷ ′× = Ŷ ′P{Ỹ ′∈img Ỹ ′∗}
= Ŷ ′Pker Ỹ ′ .

The equality U⊥ = (U1,z + Uv̄)
⊥ = Uv leads to ˜̄X = PU⊥X̄ = [V ′n . . . V ′1 ], V ′t = [vt,1 · · · vt,m],

1 ≤ t ≤ n, and Ỹ ′ = PU⊥Y
′ =

[
0 ˜̄XAT

]
. In particular, linear independence of vt,j ,

(t, j) ∈ Ix, ensures that kerP(img Ỹ ′∗)
⊥ Ỹ ′ = ker Ỹ ′ = R × kerAT = ({0} × imgA)⊥, that

is, K = {0} × imgA, and img Ỹ ′ 6= {0} = img Ỹ ′∗ , which implies V 6= V∗. The equality

Ŷ ′× = Ŷ ′Pker Ỹ ′ =
[
1 ( ˆ̄XAT + V̄ ST)PkerAT

]
=
[
1 V̄ STPkerAT

]
implies span{1} ⊂ img Ŷ ′× ⊂

img
[
1 V̄
]

= span{1}+ Uv̄. Hence,

‖P(span{1})⊥
ˆ̄XATc‖ = ‖P(span{1})⊥∩U⊥v̄

ˆ̄XATc‖ = ‖P(span{1})⊥∩U⊥v̄ Ŷ
′ ( 0
c )‖

≤ ‖P(img Ŷ ′×)⊥ Ŷ
′ ( 0
c )‖ ≤ ‖P(span{1})⊥ Ŷ

′ ( 0
c )‖ = ‖P(span{1})⊥

ˆ̄XATc+ V̄ STc‖

holds for every c ∈ Rk as P(span{1})⊥
ˆ̄XATc = ˆ̄XATc − Pspan{1}

ˆ̄XATc − PUv̄ ˆ̄XATc = ˆ̄XATc −
Pspan{1}+Uv̄

ˆ̄XATc = P(span{1})⊥∩U⊥v̄
ˆ̄XATc as well as P(span{1})⊥∩U⊥v̄ Ŷ

′ ( 0
c ) = ˆ̄XATc + V̄ STc −

Pspan{1}+Uv̄
ˆ̄XATc − Pspan{1}+Uv̄ V̄ S

Tc = P(span{1})⊥∩U⊥v̄
ˆ̄XATc. The equality ker var(ˆ̄x) = {0}

implies that the kernel kerP(span{1})⊥
ˆ̄XAT coincides with kerAT = (imgA)⊥. Moreover, the

inclusion ˜̄xt,j ∈ (span{1})⊥ ⊃ U⊥ holds. Consequently, c ∈ imgA satisfies the inequalities

(〈
ATc, var(˜̄x)ATc

〉〈
ATc, var(ˆ̄x)ATc

〉)1/2

=
‖P(span{1})⊥

˜̄XATc‖

‖P(span{1})⊥
ˆ̄XATc‖

≥
‖P(img Ỹ ′∗)

⊥ Ỹ ′ ( 0
c )‖

‖P(img Ŷ ′×)⊥ Ŷ
′ ( 0
c )‖

≥
‖P(span{1})⊥

˜̄XATc‖

‖P(span{1})⊥
ˆ̄XATc+ V̄ STc‖

=

( 〈
ATc, var(˜̄x)ATc

〉〈
ATc,

[
var(ˆ̄x) + S2

]
ATc

〉)1/2

<A4.2>

If kerAT ⊂ kerS = kerST, then img V̄ STPkerAT = {0} and therefore img Ŷ ′× = span{1}.
Consequently, the final inequality in <A4.2> becomes an equality.
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dim. subspaces (θmax), 89
least nonzero principal, between two

eq.-dim. subspaces (θmin, 6=0), 89
principal, between two eq.-dim. sub-

spaces, 89
autoregressive approximation factor

uniform, 71
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standard basis of Sm (B̄i,j), 16
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boundary point, 43

Cauchy-Schwarz inequality, see inequal-
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Cholesky decomposition, 28
Cholesky factor

of a Gramian, 28
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column space (img), 16
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function, see convex function
hull (conv), 42
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density, see density
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Gramian, see Gramian
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image, see image
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positive semidefinite, 26
quadratic, 16
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representation, 15
row echelon, see triangular matrix
singular subspace, see subspace
singular value, see singular value
singular value decomp., see singular
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singular vector, see singular vector
skew-symmetric, see skew-symm.
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model space
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nontrivial
linear space, 15
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dual, 33
Euclidean (‖ • ‖), 17
Frobenius (‖ • ‖), 17
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lower subspace) comp. constant, see

compatibility constant
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operator, on W×k (‖ • ‖op), 32
subgaussian (‖ • ‖ψ2), 79
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projection, see projection
projector, see projector
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orthogonal, 20

complement, see complement
projection, see projection
projector, see projector

orthogonal complement, see complement
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polarization identity, 20
prediction, 100
principal angle, see angle
probability

with, at least, 67
projection, 23, 24

oblique
composition with a linear map X

(X̂V/U , X̂/), 26
oblique ( •̂ /), 26
orthogonal ( •̂ ), 23, 24
prediction, see prediction

projector
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orthogonal

composition with a linear map X
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orthogonal ( •̂ , P ), 25
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relation between oblique and orthog-
onal projectors, 26

random
field, 59
matrix, 27

expectation, see expectation
variable, 16

expectation, see expectation
variance, see variance

vector, 27
variance matrix, see variance

rank (rk), 16
reflection, 108
representation

of a finite sequence, 21
residual, 23, 24

of oblique projection ( •̃ /), 26
of orthogonal projection ( •̃ ), 23, 24

right singular vector, see singular vector

sign function (sign), 38
singular subspace, 34
singular value (σi( • )), 32

decomposition, 32
distinct, nonzero (σ̄i( • )), 34
least nonzero (σmin, 6=0( • )), 32
maximal (σmax), 32
multiplicity, 34

singular vector
left, 31
right, 31

skew-symmetric (AT = −A), 21
smoothing, 113
span (span{. . . }), 15
spanning sequence, 15
spectral decomposition

of a symmetric matrix, 34
strictly convex, see convex function
strongly convex, see convex function
subdifferential

of a convex function (∂f( • )), 46
of a function (∂g( • )), 48

subgaussian, 68, 78

norm, see norm
subgradient

of a convex function, 46
of a function, 48

sublevel sets, 49
subspace, 16

codimension, see codimension
complement, see complement
complementary, see complementary
sum of a sequence of subspaces, 34
sum of two subspaces, 25

superspace, 16
supporting hyperplane, see convex

time series, 59
trace

cyclic property, 19
transition matrix, 59
transpose (T), 19
triangular matrix

row echelon, 21
upper, 21

uniform autoregressive approximation
factor, see autoregressive
approximation factor

uniform decay rate, 70
union bound, 69
unit sphere, 17
unitarily invariant, see norm
unitary map, 20

variance
matrix (var( • )), 27
of a random variable (var( • )), 27

vector, 15
i-th entry of, 15
as matrix, 15
representation, 15
standard basis, see basis

von Neumann trace inequality, see in-
equality

with probability at least, 67

132


	Preface
	Price level prediction
	Price indexes
	Price index prediction
	Comments and references

	Euclidean space basics
	Fundamentals
	Unitary maps
	Projectors
	Gramians
	Singular values
	Comments and references
	Appendix

	Regularized least-squares estimation
	Basic convex analysis
	Regularized least-squares
	A gradient descent algorithm
	A poor man's factor model
	Transition matrix estimation
	Comments and references
	Appendix

	Prediction techniques
	Oblique approximation
	Subordinate directions
	A prediction framework
	Prediction algorithms
	Comments and references
	Appendix

	Global bibliography
	Index

