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Abstract

The lepton asymmetry L of the early Universe is generated through the out-of-equilibrium in-
teractions of sterile neutrinos, which is described by linear kinetic equations. These equations
are determined by dissipative coefficients (or rates). The focus of this work is the computa-
tion of next-to-leading order corrections to these rates. In order to avoid inconsistencies of
Boltzmann equations we use Landau’s theory of quasi-stationary fluctuations, which allows
to compute the rates from Kubo-type relations. The rates are then determined by real-time
correlation functions and susceptibilities of conserved charges and can be calculated at leading
order in the sterile neutrino interactions and to any order in the SM interactions.

Firstly we compute the susceptibilities of conserved charges at order g2 in the Standard
Model couplings, which completes the order g2 calculation of the AL = 1 washout rate and
provides a relation between the baryon number B and baryon number minus lepton number
B — L at order g°.

Then we calculate the AL = 2 washout rate in an effective theory for temperatures much
smaller than the lightest sterile neutrino mass. In contrast to earlier calculations, we take full
quantum statistics and so-called spectator processes into account. Furthermore, we consider
next-to-leading order contributions from the thermal Higgs mass which are of order g in the
Standard Model couplings.

Following that, we study the C'P violating lepton asymmetry rate and derive a master
formula which relates this rate to a three-point spectral function of Standard Model fields.
We use this formula to compute the order g corrections to the CP asymmetry at zero
temperature.

Finally we show in a rather general framework that particle equilibration rates are simply
related to particle production rates. This implies that the coefficient in the kinetic equations,
which is identified as the sterile neutrino equilibration rate, is already known at order g2
through the well-known sterile neutrino production rate.
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Chapter 1

Introduction

1.1 Baryogenesis

Despite the experimental and theoretical success of the Standard Model (SM) of particle
physics and its confirmation by the experimental discovery of the Higgs boson at the LHC
[5], the Universe is still full of mysteries. It is known from the cosmic microwave background
(CMB) that only about 4.6% [6] of the energy density of the Universe is made of ordinary
baryonic matter, the substance which we and every object in our daily life are made of. But
even this small fraction of baryonic matter is not fully understood. In particular the fact that
the Universe contains more baryons than anti-baryons cannot be explained within the SM.
This baryon asymmetry is oftentimes quantified as the ratio of the baryon numbelﬁl density
np to the photon number density n., the so-called baryon to photon ratio,
np

0 = 2, (1.1.1)
Ty

and can be measured from CMB data. The newest data from the WMAP experiment yields
the baryon to photon ratio [0]

nSMB = (6.19 4 0.14) x 10710, (1.1.2)

The work of many theoretical physicists is motivated by the task to explain the observed
value of np. If we assume that no baryon asymmetry was present at the beginning of the Uni-
verse, it must have been generated by a mechanism. Such a generation is called baryogenesis
and, as stated by Sakharov in 1967 [7], requires at least three conditions:

1. The baryon number B must not be conserved.

2a. Charge conjugation (C') must not be a symmetry of the system. Otherwise a process
which produces baryons, and its charge conjugate process which produces anti-baryons
would occur with the same rate.

!The baryon number B is defined as the difference of the number of baryons and the number of anti-baryons.
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2b. Charge-parity (C'P) transformations must not be a symmetry of the system. Otherwise
a process that produces left/right-handed baryons, and its conjugate process which
produces right/left-handed anti-baryons would occur with the same rate.

3. The system must be out of equilibrium. Otherwise for every baryon generating process
there would be an inverse process which reduces the number of baryons with the same
rate.

The first condition is satisfied in the SM due to the chiral anomaly in the electroweak sec-
tor. Let Q € {L;, B/3}, where L; is the lepton number with flavor i. Then the corresponding

currents jg satisfy the relationd [8), @, 10, [11]

———ehvr? (g%W/jl/WgU - Q%Fuqucr) ) (1'1'3)

T
a“‘]Q 6472

where F),,, and W}, are the field strength tensors of the U(1) and SU(2) gauge fields respec-
tively. The corresponding gauge couplings are g; and go. Integrating over the space-time
volume and assuming the spatial part of the currents to vanish at spatial infinity, (LI3)
implies that the total charge

Q= /d3xj% (1.1.4)

changes as
1 ! 3. (2 2
AQ = Q(t) — Q(tg) = M?EWPU/t dt’/d z (gGWe, W — gt FuFpo) . (1.1.5)
0

The solutions of the field equations, for which A(Q is not zero, are related to the topology
of the degenerate SM vacuum. As illustrated in figure [T} there exists a (discrete) set of
infinitely many gauge field configurations for which the system is in the ground state [12].
These configurations are separated by an energy barrier with the maximal energy [12, [13]

4
Egn= —f <3> ~ 6(10) TeV, (1.1.6)
g2 g2

where v is the Higgs vacuum expectation value, A\ is the Higgs self-coupling and f is a
function that varies from 2.40 to 3.56 when A/gs is varied from 0 to oo. The solutions for
which |[AQ| = 1 are those for which the gauge fields evolve from one vacuum configuration
to the next.

There are two possibilities for such a transition. At zero temperature instanton solutions
[14] allow for the system to tunnel through the barrier, but these processes occur with an

exponentially suppressed rate [15], [16] [17]

IWinst ~ 6_2Sin5t7 (117)

2Note that the SU(3) gauge fields do not contribute to the divergence of the total baryon number current
because left and right-handed quarks are equally coupled to the SU(3) gauge fields. Only the difference of left
and right-handed baryons is violated due to the chiral anomaly in QCD.
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Figure 1.1: The vacuum structure of the electroweak theory. Each minimum corresponds to
a vacuum configuration of the gauge fields. If the system changes from one minimum to the
next, the charge changes by AQ = 1.

where Sy = 872/ g% ~ 186. Therefore, this kind of transition is very inefficient and can be
neglected as source of B violation. At high temperatures or energies the system can change
between the vacua by evolving through field configurations which go over the top of energy
barrier [I3], 18, [19]. A field configuration on the top of the energy well is called sphaleron
[13] and consequently, the transitions over the top of the energy well are called sphaleron
transitions. While in the broken phase in the SM (7" < 160 GeV), the sphaleron ratd] is
Boltzmann suppressed by the height of the energy barrier [20],

Fsph ~ eXp(_Esph(T)/T)7 (118)

the sphaleron transitions can be more frequent at high temperatures in the symmetric phase,
where the rate has the form [23] [24]

22 2\ °
mp,2 917 (93 4
J 1 == T 1.1.9

sph (Cl n g%T +C2> m2D72 (47’1’) ( )

The coefficients ¢; = 10.8 £ 0.7 [25] and ¢ = 18 £ 3 [22] are numerical constants and
mp2 = 11¢3/6 is the thermal Debye mass of the SU(2) gauge fields.

In [26] it has been pointed out that the electroweak sphaleron transitions are in equilibrium
for temperatures T' < 45/4 Ty, where Typp is the temperature where the sphaleron rate

3 A very detailed calculation of this rate can be found in [2I] and recent lattice simulations can be found in
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(CIX9) becomes equal to the Hubble rate H, given as [27]

T2
H ~ 1.661/g"—. (1.1.10)

myp]

Here mp = 1.22 x 10" GeV is the Planck mass and ¢* is the number of effectively
massless degrees of freedom, which for temperature 7" 2 300 GeV is equal to the Standard
Model degrees of freedom ggy = 106.75 [27]. At high temperatures, g* can in principle be
larger than gy because heavier particles which are not part of the SM can be relativistic. We
ignore this fact in order to give a rough estimate of the temperature, where the sphalerons
are in equilibrium and find 7' < 10'2 GeV in accordance with [26].

We see that the first Sakharov condition of baryon violation is satisfied in the SM due
to the electroweak sphaleron transitions. They violate the baryon number and the lepton
numbers by

|AB| = ny, |AL;| =1, (1.1.11)

whereas the differences of the charges
X;=L;— B/ng (1.1.12)

remain conserved in the SM.

The second Sakharov condition is satisfied in the SM as well. Charge conjugation C' is
intrinsically violated in the SM because only left-handed leptons couple to the SU(2) gauge
bosons. Here and throughout the whole thesis we define the charge conjugation of a spinor

P as
V¢ = CyYCT = 16y, (1.1.13)

where % is a unitary and antisymmetric matrix with the property [2§]
CVuE = —, - (1.1.14)
It is easy to see that left/right-handed currents jg IR= Py P /RY with

1
2

1

Py, 5

(I=9),  Pr=5(1+7) (1.1.15)

are not invariant under charge conjugation. They transform as
(1) = =i (1.1.16)
CP violation happens in the SM through Yukawa interactions
Loy = —(hu)ijGpur; — (ha)ijGipdr,; + He (1.1.17)

of right-handed up and down quarks ur and dr and the left-handed quark doublet ¢ =
(up,dr) " with the Higgs field . The field ¢ = iogp* is the SU(2) conjugate Higgs field and
h,, and hg are complex coupling matrices. In the broken phase, where the Higgs field obtains

1To be precise: Fsph/T4|T:TSph = H/T|T:Tsph



a vacuum expectation value (@) = (0,v) ", these couplings define mass matrices m, = vh,,
and mg = vhy for up and down quarks respectively. In a basis where these matrices are
diagonal, the left-handed quark fields are linear combinations, given by d’L’Z- = (Ug)ijdr,; and
u’LZ = (Uy)ijur,j, where dy, ; and ur, j are the original fields and U,, and Uy are transformation
matrices. Then the weak quark current

/

. 1 _ 1 _
= EUL,i’VudL,i = EUL,i(UJ)ik(Ud)kﬂudlLJ (1.1.18)

contains in the mass eigenbasis the Cabibbo-Kobayashi-Maskawa (CKM) matrix V = UlU,
[29]. For ny = 3 flavors the CKM matrix depends on three real parameters and one C'P
violating phase which cannot be absorbed by redefinition of the quark fields. The values of
these parameters have quite extensively measured and a summary can be found in [30].

The third Sakharov condition about non-equilibrium is satisfied in the early Universe
during the electroweak phase transition. However, in [20] is has been shown that the observed
baryon to photon ratio (LI2) could only be generated within the SM during the electroweak
phase transition, if it was a strongly first order one. The character of the phase transition
depends on the magnitude of the Higgs mass. A first order phase transition is only possible for
Higgs masses my < 80 GeV [3I]. At the currently observed Higgs mass mpy ~ 125 GeV, the
transition from the symmetric to the broken phase is rather a smooth crossover. Therefore,
physics beyond the SM is needed for an explanation the observed baryon asymmetry of the
Universe.

1.2 Leptogenesis

A very simple mechanism which can generate the baryon asymmetry in the Universe beyond
the SM, has been suggested in 1986 by Fukugita and Yanagida and is called leptogenesis [32].
The idea behind this mechanism is that a baryon asymmetry can be produced through the
generation of a lepton asymmetry L. If the sphaleron processes are in equilibrium during or
after leptogenesis, they tend to reduce B+ L by partially converting the lepton asymmetry to
a baryon asymmetry. After leptogenesis when the B— L violating processes become inefficient,
B — L is a conserved charge and can be related to the baryon number through the relation

(B) = (B — L), (1.2.1)

where (...) is the equilibrium average.

The coefficient  was first determined in [33] at leading order in the SM couplings, in the
symmetric phase and is given as
28
=
Later it has also been computed in the broken phase at leading order [34] and in the symmetric
phase to order g2 in the SM couplings [1]. The order g2 calculation of [I] is part of this thesis
in chapter @l

K (1.2.2)



Figure 1.2: The tree-level and one-loop graphs which contribute to the sterile neutrino decay
rate I'(N — fp). Thick lines are sterile neutrinos, dashed lines represent Higgs and solid
lines with arrow are leptons.

Originally Yanagida and Fukugita suggested to extend the SM by right-handed neutrinos
Vg, which are singlets under the SM gauge groups. The most general gauge invariant and
renormalizable Lagrangian for this theory allows a Majorana mass term

,,%M = —M[JIZ{JV}C%’J +H.C, (1.2.3)
and a Yukawa interaction
Lt = — (W) 1iVR @' + Hee (1.2.4)

with the left-handed lepton doublet ¢; = (v, e L,i)T and the neutrino coupling matrix (h, ) ;.
Here ¢ denotes the SM lepton flavors and I, J denotes the right-handed neutrino flavor.
In this work we find it convenient to express the Lagrangian in terms of Majorana fields

N =vp + V. (1.2.5)
Then, in a basis where the Majorana mass matrix is diagonal, M7y = 677 M7, the complete
Lagrangian of the system can be written as

1— —
L = L+ GNi(id — MON; — |(h) N1t + H.c] . (1.2.6)

In the simplest picture a lepton asymmetry can be generated through the decay of the
Majorana neutrinos. If the coupling h, in (IL24]) is C'P violating, the rate I'(N — f¢p) for
the decay into particles differs from the rate I'(N — £p!) for the decay into anti-particles. A
measure of this difference is the so-called C'P asymmetry £7; which is defined as

= D(N1 = i) —T(N; — i)
"= DNy = o) + T(N; — gt

(1.2.7)

At leading order in h, both rates are equal and therefore the C'P asymmetry vanishes.
For example the zero temperature decay rates read [35]

(hyhd) 1 M?

[(N; — £p) = D'(N; — lpt) = Ty

(1.2.8)

°In leptogenesis the the number of right-handed flavors has to be at least two for the coupling h, to be
CP violating. But apart from that let us keep it arbitrary.
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and their sum yields the total decay rate

(huh;r/)IIM?
StEy

In order to generate non-vanishing C'P asymmetries, one has to compute the difference of the
rates to order hl, which takes into account loop effects. At leading order the C'P violation
comes from an interference of the tree level graph with the one-loop graphs in figure[[.21 The
first completeﬁ calculation of the C'P asymmetries in leptogenesis at zero temperature has

been done in [36] and yields the resulfl]

Ty, = (1.2.9)

E1i :%W ;Im [(hu)n(hl)u (huhj,)U] g(xyr)
+8%7(m;l)n ; t ()b (huhd) ] = (1.2.10)

where z ;7 = ]\43/]\412 and

g($):\/§[ﬁ+l—(l+:n)ln<l+x>]. (1.2.11)

x

In this work we are interested in the hierarchical limit, where the lightest Majorana neutrino
with mass Mj is much lighter than the other ones. In this case one may expand the C'P
asymmetries to the first order in M; /M and one finds [36]

el =— %W 3 %Im )ik )is (h,,hi)u] . (1.2.12)

J#1

So far we have only considered the zero temperature decay of Majorana neutrinos. For a
realistic description of a L generation in the Universe one has to consider the interactions of
the Majorana neutrinos with the hot SM plasma in an expanding background. In leptogenesis
the non-equilibrium system is characterized by a large separation of time-scales. There are
slow quantities, which are changed by the Yukawa interaction ([24]) but conserved in the
SM and fast quantities which are dominated by so-called spectator processes [37]. These
processes are so fast (compared to the expansion of the Universe) that the quantities which
are changed by them can be considered as being in equilibrium. We will discuss this separation
of time-scales in more detail in chapter

In leptogenesis such non-equilibrium systems are often times described by kinetic equa-
tions which determine the time evolution of the slow quantities. It depends on the temper-
ature which quantities are considered as slow. Certainly during leptogenesis the Majorana
neutrino phase-space densities f I]E and the charges X; = L; — B/ns are slow. But for exam-
ple, at temperatures above 10" GeV, the electroweak sphalerons are out of equilibrium so

11

Barlier calculations like in [35] did not take into account the self-energy graph.
"Note that the Yukawa couplings in [36] are defined as A\ir = (hv)r1i
8We will from now on consider a finite volume V' = L* with periodic boundary conditions. Then we have
discrete momenta k; = 27wn;/L, which we consider as indices. In the end of our calculations we take the
d3k

. . . 1
infinite volume limit, where > >, — S/ CPSER



that B is separately conserved. In this case the lepton numbers L; are slow charges as well.
Of course the lepton numbers L; are not independent of the charges X;, but we can choose a
linearly independent set of charges out of the set of all linear combinations of X;’s and L;’s.
At higher temperatures the Hubble rate becomes larger, so that further processes are out of
equilibrium and more charges are conserved. Thus the set of slow charges becomes larger,
the higher the temperature was. In the following we denote the elements of a set of linearly
independent slow charges by Q.

We assume that the system is close to equilibrium during leptogenesis, so that the values
of these charges are so small that their time evolution can be well described by linearized
kinetic equation

Dyifric = — (Vsr6f) pee 0F % — (V61 Q) e Qas (1.2.13)
DiQo = — (7Q6f) anc 0f1x — (7QQ) o Qo (1.2.14)

Here we have defined
0fre = fre — fre (1.2.15)

as the deviation of the sterile neutrino phase-space density from its equilibrium value and
D, as the total time derivative which takes into account the effects of the expansion of the
Universe.

For leptogenesis it is very common to derive kinetic equations such as (LZI3]) and (L2.14)
with Boltzmann equations. These equations describe the evolution of phase-space densities,
such as fry, through collision integrals Cyy[f] as

Difr = ELIkCIk[f]a (1.2.16)

where C7k[f] depends on all processes which change the quantities of the non-equilibrium
system. For a detailed definition of C[f] see for example chapter 5 of [27]. The collision
integrals can be linearized in fr and @), and determine in this way the rates . A rather
detailed derivation of the leading order rates v in ([213)) and ([2I4), using Boltzmann
equation and assuming kinetic equilibrium for the sterile neutrinos, can be found in [35] [3§].

In this work we will often consider the non-relativistic limit, where the lightest sterile
neutrino mass Mj is much larger than the temperature 7. In this limit, the rates can be
expanded in powers of T/M; and e~/ In this expansion, the leading contribution of the
rates vsrsr and g sy is the zero temperature limit. In this limit, it has been found in [39] that
the rates are determined through the decay rates (LZJ) and the C'P asymmetries (L2I0)
by

(Ys755) et [ o = O 01T (K)s (0@ op) el o = el vy (). (1.2.17)

Although the definition of the rates through Boltzmann equations is widely used in lepto-
genesis, this might lead to inconsistencies and difficulties even at leading order. For example
the collision integrals depend on vacuum S-matrix elements. This might be inconsistent with
the interactions in a thermal plasma. Some complications also arise in the derivation of the
linear equation (I.2.I4]), using Boltzmann equations. The C'P violating coefficient v¢ 57 does

90ver repeated indices has to be summed
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not only get contributions from AL = 1 violating sterile neutrino decay, but also from the real
intermediate state of s-channel AL = 2 violating scattering processes with sterile neutrino
exchange [35], [40] .

In this work we avoid these problems and extend the approach of Bodeker and Laine [41]
which is based on Landau’s theory of quasi-stationary fluctuations [42]. The large separa-
tion of time scales during leptogenesis guarantees that for small values of J f;x and @, the
non-equilibrium system is completely described by the linear kinetic equations (L2I3]) and
(C214). In contrast to Boltzmann equations, the rates v can then computed from Kubo-type
relations [43]. They relate the rates to real-time correlation functions and susceptibilities,
which can be computed in thermal quantum field theory. Their calculation can be done at
leading order in the Yukawa interaction (24 and to any order in the SM model couplings
and thermal effects are naturally incorporated.

In this work we study radiative corrections to the rates in (L2I3) and (L2T14]). At first,
in chapter @l we compute susceptibilities of the conserved charges @, at order g2 in the SM
couplings. This computation completes the order g? of the order h2 washout rate voq [41]
and yields a relation between B and B — L at order g°.

In chapter 5l we compute the washout rate ygq in an effective theory for My > T', where
the leading order is of order hZ, determined by AL = 2 processes. In earlier calculations [44]
only classical statistics has been used for the thermal distribution functions of lepton and
Higgs. Since the order h} of this rate is an important ingredient for the determination of
upper bounds on active neutrino masses [45], we compute this rate taking into account full
quantum statistical effects, and study next-to-leading order corrections from thermal Higgs
mass. These corrections are of order g in the SM couplings.

Up to this point the C'P violating rate ygsy has only been completely known at leading
order in the non-relativistic regime (see (L2I7) ). Furthermore, corrections from scatterings
including gauge bosons have been computed in [46] and corrections including top quark
scatterings have been computed in [47]. However, a complete consistent expansion in powers
of SM couping has not been done yet. In chapter [ we do the first step in this direction,
computing the next-to-leading order zero-temperature corrections to the C'P violating rate
7@ sf in the hierarchical limit. These corrections are of order g% in the SM couplings. Recently,
also the first thermal corrections to the order g2 in powers of T//M; have been computed in
[48] in the hirachical limit.

Finally, in chapter [8l we show that the rate 7575 can be related to the sterile neutrino
production rate by a simple relation which has first been suggested by Weldon [49]. The
sterile neutrino production rate is known at leading order and next-to-leading order in several
temperature regimes [50} 51, [52] 53] 54 55, 56, 57, [58]. Therefore, no explicit next-to-leading
order calculation for 755y needs to be done.

The rate 757 is oftentimes neglect in leptogenesis computations. We will do this here as
well. The reason is that the rate 57 ¢ is CP violating like vg 57, and thus of order ht. In
the kinetic equation (LZI3)) it is furthermore multiplied by the small asymmetry @, which is
assumed to be much smaller than § f. Therefore, the term containing this rate is the smallest

one in the equations (L2I3) and (L2.14).
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Chapter 2

Two-point functions at finite
temperature

In chapter 8] we want to relate the coefficients v to two-point functions and susceptibilities in
finite temperature field theory. Let us therefore review some basic definitions and relations
for such correlation functions.

2.1 Basic relations between two-point functions

Every real-time two-point correlator of elementary or composite operators A and B can be
constructed from the Wightman correlators [59]

A p(w) = /dtei“t(A(t)B(o», Afp(w) = /dteiwtcr(B(o)A(t», (2.1.1)

where the average is defined as (...) = Tr|[...exp(—(SH)] /Z with the inverse temperature
B =1/T and Z = Tr [exp(—SH)]. Here 0 = 1 if A and B are bosonic operators and o = —1
if A and B are fermionic operators. The Wightman correlators can be used to define the
so-called spectral function ad] [59]

panl) = AZp(w) ~ A5 4(w) = [ e (AW, BO)), (2.1.2)

with the (anti-)commutator
[A, B] = AB — o BA. (2.1.3)
The cyclicity of the trace implies that both Wightman functions are related through the

simple equation [59]
A% (W) = 0P A p(w). (2.1.4)

!Note that our definition of the spectral function differs from the one defined in [59] by a factor two.

13



Using this cyclicity property and the definition (2.I.2]), one can also express each Wightman
function in terms of the spectral functions as

AZpw) = (1+0fo(Bx)) pasw),  Afpw)=0fs(Ex)pas(w), (2.1.5)

where f, is the Bose-Einstein distribution for ¢ = 1 and the Fermi-Dirac distribution for
o=—1.

In this work we are in particular interested in the imaginary time correlator which reads
in frequency space

s
Aup(ivon) = /0 drei“n™ (A(=iT)B(0)), (2.1.6)

with Matsubara frequencies w,, = mnT’, where n is even (odd) integer if A and B are bosonic
(fermionic). This correlator can be written in the spectral representation [59]

dw pap(w)

2.1.7
2T W — Wy, ( )

Awg(ivon) = /

and can be analytically continued to the complex plane with frequencies w off the real axis.
In particular it is useful to define the retarded and advanced two-point functions as [59]

Afp(w) = Aap(w+i0%),  AYF(w) = Aap(w+i07), (2.1.8)
with real w. Using the spectral representation ([2.1.7) in combination with the identity

1
x — 0t

1

=P.V.— +iné(x), (2.1.9)
x

where P.V. denotes the principal value, one easily finds the inverse relation [59]

pan(w) = % (A%h(w) - MY (W) = %DiscAAB(w), (2.1.10)

between the spectral function pap and the analytically continued two-point correlator Aap.
Let A and B now be bosonic operators. An important quantity which appears in the
computation of the coefficients ~ is the so-called symmetric correlator

Cap(t) = 5{A(t), B(0)}). (2.1.11)

| =

In Fourier space we have Cap(w) = 3 (A% 5(w) + ASp(w)) and using the cyclicity property

[2I4) one finds [59]
Canlw) = (% + fB(w)> pan(w). (2.1.12)

14



2.2 Symmetries of two-point correlators

Let us in the following assume the operators A and B to be Hermitian, bosonic and either
even or odd under C' PT transformation, that is

CPTA(t)(CPT)™! = e A(—t) (2.2.1)

with e4 = 41. This is for instance the case if A and B represent charjgs or phase-space
densities. Then, invariance under CPT transformation [60, [61] [62] implie

paB(w) =caeppap(w)™. (2.2.2)

Thus, if A and B have the same sign under C' PT transformation, the spectral function is real
and otherwise imaginary. On the other hand, hermiticity of A and B implies that

paB(w)" = —pap(-w). (2.2.3)

Therefore, a real spectral functions is odd and an imaginary spectral functions is even in w.
If the spectral function is real, the inverse relation (ZI.8]) can be simplified to

pap(w) = 2ImASYE (w). (2.2.4)

In this work equal time two-point correlators play an important role as well. For hermitian
operators A and B they are called susceptibilities and are denoted as

xaB = (AB). (2.2.5)
Like for the spectral function the C'PT theorem implies

XAB = €EAEBXAB- (2.2.6)

In combination with hermiticity of A and B we find

XAB = EAEBXBA- (2.2.7)

If the quantities A and B are conserved, that is they commute with H, the susceptibilities
have the symmetry
XAB = XBA (2.2.8)

and therefore
XAB = EAEBXAB- (2.2.9)

Consequently, susceptibilities of conserved quantities vanish, if the quantities have different
signs under C'PT transformation.

2A similar argument is given in [63] under the assumption of T invariance.
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Chapter 3

Theory of quasi-stationary
Huctuations

The aim of this chapter is to derive relations between the dissipative coefficient and correla-
tion functions in thermal quantum field theory. For this purpose we review the concepts of
Landau’s theory of quasi-stationary fluctuations, closely following [41] and [42].

3.1 Linear kinetic equations

A thermodynamic system in equilibrium is completely determined by the temperature 1" and
the values of all its conserved quantities like charges or number densities. We denote these
quantities by y; and define them in such a way that their equilibrium values (y;) vanish. In
thermal equilibrium the quantities y; fluctuate around their equilibrium values with average
fluctuations

Ayi =1/ (y?). (3.1.1)

Let us now assume that a subset of the quantities y; has been prepared to have values
yi > Ay;. As long as there are no processes which would drive the system further out
of equilibrium, the quantities strive to reach their equilibrium values again. Some of these
quantities might reach their equilibrium value very fast with a relaxation time tg,g, whereas
other quantities might have a relaxation time tqow > trat- Let us call these quantities slow
and denote them by x;. For example, in an expanding universe gy is of order 1/H with the
Hubble rate H. If one considers the system on a time scale ¢t with tpg < t < tg0w, then the
fast quantities have already reached their equilibrium values, whereas the slow quantities are
still equilibrating.

Although the whole system is not in equilibrium, the subsystem of fast quantities can
be considered as being in equilibrium for given values of the slow quantities. According to
Landau the system is then in a state of incomplete equilibrium, which is entirely determined
by the values of the slow quantities and the temperature (which determines the values of
the fast quantities). The non-equilibrium system can then be described by effective classical
equations of motion [42]
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where I' depends only on z; and the temperature T. For very small values of x; one can
linearize the equations

i’i = —’yxixjxj, (313)

with dissipative coefficients (or rates) vs,q,. For x; € {Qq,0fnc} we get the linear kinematic
equations (LZI3) and (CZIAN.
The solution for z; with the initial condition z;(0) = x; reads [41]

zi(t) = x; (e (3.1.4)

Ty

If the size of the slow quantities becomes similar to the size of the average fluctuation,
one additionally has to consider stochastic forces Fj, which causes the fluctuations of z;. In
this case the equations for the z; read [42]

T; = ~Yaiz; Tj + F;. (315)

Up to this point everything has been entirely classical. Every information about quantum
physics is hidden in the coefficients v and in the next section we will show how to compute
these coeflicients from correlation functions in thermal quantum field theory.

3.2 Determination of the coefficients

At first we use the solution (B4 to find a linear relation between the coefficients v and the
classical correlation function [42]

Cria; (1) = (2i(t)25(0)). (3.2.1)

Then we match the classical correlation function to its quantum mechanical equivalent for
times t in the interval tpg < t < tgow- In order to allow for a quantum physical description
one has to define reasonable operators for the quantities z;. Then the quantum mechanical
generalization of the correlation function ([B:2.]) which does not depend on the order of the
operators x; is the symmetric correlator (ZI.IT]),

Care, (1) = 5 {Lai(8), 25(0)}). (322)

Let us start with the classical correlators ([BZ1]). Landau found a relation for the rates
~, which does not depend on the stochastic forces F; even if these forces cannot be neglected
in the kinetic equations. The idea is to assume that the stochastic forces are not correlated
at different times. This is a good approximation since the stochastic forces only control the
fluctuations and are thus only correlated at times of the order tp.. Since the quantities
xi(t = 0) are only correlated with stochastic forces F(t < 0) we have (Fj(t)x;(0)) = 0 for

Note that in (CZI3) and (CZI4) we have, for the sake of notational simplicity, considered the rates as
matrices in flavor and momentum space defined as (7Qs¢)a,1x = YQq sf,, and so on.

2Although the initial condition lies outside the time interval [tsast, tsiow] the solution is still correct for times
within this interval.
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t > 0. Thus, taking the time derivative of (821 and using eq. (BLI), the correlation
function obeys for ¢t > 0 the homogeneous equation [42]

%xixj (t) = _’Yxi:ckchkxj (t)a (3.2.3)
with the solution [41]

Cria; () = Xapa; (€77) t>0, (3.2.4)

zirE’

where Xz, 2 , are the susceptibilities of the quantities x;.
A linear relation between v and the correlator can be found if one expands the one-sided
Fourier transform [41]

o0

G, (W) = / 0G s, (D) = — (it — )7 Xy, (3.2.5)

— 00

for frequencies w in the range wyy > w > |y|, where || is the absolute value of the largest
eigenvalue of the matrix v;,,; and wyy ~ 1/tgs. This yields [41]

1 —4
In order to compute the one-sided Fourier transform of the quantum mechanical correlator

we write the f-function as >
(o] dw e—zw

(t) =i — 3.2.7

®) Z/OOwa+i0+ ( )

and use the relation (2.I1.12)) between C' and p. Then we find (see also [41])

dw’ i 1
+ — B / /
Cxixj ) = / 27 w—w' 40t [2 +/p(w )} P (W)- (3.2.8)

We only need the 1/w? pole of this correlator as we can see from (3.2.6)). For large frequencies
w’ the integrand in ([B2Z3F) is of order w® and does therefore not contribute. But for small
frequencies w’ < T we can expand (1/2 + fg(w)) = T/w + O'(w) and with (ZI.7) and (ZI1.8)
we fin

Zi Tikyj

Cr. (w)= —%Amt (W) + O0w™). (3.2.9)

Using equation ([B:2:6]) and matching the classical correlator with the quantum version (329,
we find the Kubo-type relation

Yow; =T lim  wImAFY (@)X ;- (3.2.10)
[l <w<wyy

The coefficients v in (LZI3) and (L214) can now be computed with the formula (B.2Z10),
using proper operators for the quantities x;. In order to simplify the problem we proceed as

#We used the partial fraction decomposition rlw)w, = (ﬁ - %) 1
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[41] and compute the correlation function of the time derivatives of x;. Using integration by
parts, this can easily related to the original correlator by

2
Agiz; (W) = w Aga; (W), (3.2.11)

so that the formula (3.2I0) can be rewritten as

: ImAFL (@),
Vo, =1 lim  ————F—— (X" ),z (3.2.12)
! h<w<wyy w ’

Since we consider quantities z; which are conserved in the SM, their time derivatives
are only determined by the interaction %, defined in (24, and only depend on fields
which are changed by Zi,:. These are the left-handed SM leptons ¢;, the SU(2) conjugate
Higgs ¢ and the Majorana neutrinos N;. On the contrary, the quantities x; themselves can
depend on much more fields, which would only complicate the calculation of the correlator.
Furthermore, we are interested in the leading order of the correlator in the Yukawa interaction
(CZ4). Since the time derivatives of x; are already of order h,, the perturbative expansion
can be abbreviated.

Keep in mind that A;Cltxj (w) in (B2ZI2) can be written in terms of the spectral function
pi;i; (w) through the spectral representation (2.1.7). If the spectral function is real, the Kubo
formula can be further simplified using (2.2.4]) which yields [41]

Py (w) (

-1
2 < a 3.2.13
2 |yl<w<wyy w X )l‘k:cj ( )

’Y:ci:cj -

We want to compute the rates vQqQ, 7gss and vsfsf in the kinetic equations (L2I3) and
(C2I14) only at leading order in the sterile neutrino Yukawa interaction and to higher orders
in the SM interactions. The retarded correlators in those equations already contains the full
leading h, dependence and therefore the susceptibilities can be computed in a system, where
the sterile neutrinos are free and the quantities x; € {Q,df} are conserved. Then the CPT
properties from section (22)) also impl

XQsf = XsfQ = 0. (3.2.14)

The susceptibilities of the sterile neutrino phase-space densities xsssy are completely deter-
mined by the free theory, but the computation of the susceptibilities xgq is non-trivial. We
have done this computation in [I] which is part of the next chapter.

4Here and in the following we consider the susceptibilities as matrices in flavor and momentum space, such
that for example (XQsf)alk = XQu6f1i
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Chapter 4

Susceptibilities of conserved charges

In this chapter we take a closer look at the susceptibilities XQQEl of conserved charges in the
SM which are for example needed to complete the order g2 calculation of the washout rate in
[41] and for the relation between B and B — L which we present in section [£77] This chapter
closely follows the author’s publication [I].

4.1 Computation of the susceptibilities

This section is a modified version of chapter 3 of the author’s publication [I].

The conserved charges in the SM can be divided into two categories, the almost conserved
charges which are only conserved in the SM and the strictly conserved charges which are also
conserved by the Yukawa interaction (I.2.4]). Following [41], we denote the strictly conserved
charges by @Yz and the almost conserved charges by Q,. The SM plasma is then described
by the partition function [64]

Z(T7 M) = exp(—Q(T, M)/T) = Trexp [(NAQA - HSM)/T] ) (411)

where €) is the grand canonical thermodynamic potential, 71" is the temperature and 4 are
the chemical potentials of the charges Q4 with A € {a,a}.

The washout rate vg¢ in the kinetic equation (ILZI4]) is determined by the susceptibilities
of the almost conserved charges ), in an ensemble, where the equilibrium value of the strictly
conserved quantities is zero. This constrains the chemical potentials of the latter ones by the

equations
(T, p)
i) = —————==0. 4.1.2
Qu) =~ (112)
The susceptibilities of the almost conserved charges (), in the constrained system can then

be computed as [4]]
BQ/aua=0>

"Mind that we consider the susceptibilities as a matrix with (xQ@)ab = XQaQy

2
(x@Q)ab = =T 0 (Q(T,u) (4.1.3)

8”118/%

pu=0
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Explicit examples for these susceptibilities at different temperatures can be found in [41], 45].
The thermodynamic potential 2 defined through (A1) can most conveniently be calcu-
lated with the imaginary time path-integral [34]

exp(—Q/T) = /@@SM exp </01/T dr |:MAQA(—iT) + /d?’foM]) ; (4.1.4)

where ®gq\ represents all SM fields. For the computation of €2 we pay special attention to
the hypercharge chemical potential py. It can be identified with the constant mode of the
temporal component of the gauge fields [34) [65],

1ty = g1Bo. (4.1.5)

Note that in the imaginary time formalism gauge invariance requires that the temporal com-
ponents of the gauge fields are imaginary which implies that the gauge charge chemical
potential is imaginary.

We proceed as in [34] and compute €2 in two steps by introducing an effective ther-
modynamic potential Q(T, 1, pry) which can be obtained from the path integral EI4) by
integrating over all fields except the constant mode By. Once Q has been computed, € is
determined by the remaining integral over B

exp(—Q/T) = / dBy exp (—ﬁ/T). (4.1.6)

The integral over the constant mode ensures that €2 is independent of py, so that the total
hypercharge Qy vanishes (Gauf’ law). Since for the susceptibilities we only need the ¢'(u?)
part of €, the integral over By can be computed in the saddle point approximation where sy
is determined through the condition [I]

o0 09
M 4.1.7
and yields B
QT,p) = Q(TM’MY)‘@_O + const x T. (4.1.8)
OBO_

We could have considered the chemical potentials of other gauge charges like the third
component of the electroweak isospin as well. But in this work we consider only the symmetric
phase where the Higgs vacuum expectation value is zero. In this case only the hypercharge
chemical potential satisfies the saddle point condition ([@I7) with a non-vanishing value.

In order to compute Q in perturbation theory it is convenient to introduce chemical
potentials for each particle species a € {p,¢;,€;,q;,u;,d;} like in [34]. These are linearly
related to the chemical potentials of the conserved charges (); and the hypercharge QQy by
the relation

palpy s 15) = Yaiy + Y piTha; (4.1.9)
(2
where T; ., is the generator of the symmetry transformation corresponding to the charge @;
acting on the particle species a and y, is the hypercharge of the species a which we normalize
such that y, = 1/2. For example, the generator matrices of B — L are proportional to the
unit matrix, with TB—L,q = TB—L,u = TB—L,d = 1/3 and TB—L,Z = TB—L,e = —1.
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4.2 Dimensional reduction

This section is a modified version of chapter 3 of the author’s publication [I].

For a complete perturbative expansion of Q it is important to take special care of the
effects of different momentum scales. At high temperature this can be conveniently done
with the method of dimensional reduction [66], 67, 68, [69]. The contributions of the hard
scale p ~ T, the soft scale p ~ ¢T and the ultrasoft scale p ~ ¢?T are then separately
computed within effective theories which can be obtained by integrating out one momentum
scale after another. For this purpose consider the Fourier expansion of the fields

B(z) = I (PPN G (i b)), (4.2.1)

p

with imaginary time t = —i7, sum—integralﬂ Ip =T Zpo f % and Matsubara frequencies
po = imnT with even (odd) integer n for bosons (fermions). In the bosonic case the expan-
sion has a zero-mode n = 0 and the fields get contributions from soft and ultrasoft spatial
momenta. Fermions do not have such a zero mode and thus all fermionic contributions are
hard.

Starting from the path integral (£.I1.4)) one first integrates over all hard field modes which
results in a potential Qy,,q and an effective Lagrangian Z.¢ for spatial momenta |p| < T
such that

eXp <_§/T) = €Xp <_§hard/T> /@q)ultrasoft@q)soft eXp <_ / d3$%oft> . (422)

Since in the first integration step all fields modes with n # 0 have been eliminated, the
Lagrangian %, does only contain effective three-dimensional fields.

In the second step one integrates over the remaining zero-modes with soft spatial momenta
|p| ~ ¢gT" which leads to the potential Qg and an effective ultrasoft Lagrangian % rasofs for
spatial momenta |p| < ¢g7'. In the final step one integrates over the ultrasoft modes which
leads to the potential ﬁu]trasoft. The complete effective grand canonical potential can then be
written as a sum of the three parts

ﬁ = §Vzhard + §stoft + ﬁultrasoft- (423)

In practical calculations one works as follows [69]. Starting from the full four-dimensional
Lagrangian one computes all diagrams which contribute to Q to the desired order in g within
naive perturbation theory. But for the sum-integrals which appear in these diagrams one
neglects the zero-modes. The result is then Qy..q.

In order to get the effective three-dimensional Lagrangian % one has to write down
all possible terms with three-dimensional fields which give contributions to momentum scales
p < T. Of course there are no terms with fermionic fields in the effective Lagrangian because

?We assume the volume V to be so large that the sum over the spatial momenta can with a very good
approximation be identified with an integral.

23



they are always hard. All terms in Z,.¢ have to respect the symmetries of the original four-
dimensional Lagrangian. Let us illustrate this by means of a simple example. The Lagrangian
of the massless four-dimensional Yukawa theory with a real scalar field ¢ reads

£ = 0,606 + Didht — g0, (4.2.4)

At finite temperature this Lagrangian is invariant under rotations and under ¢ — —¢. The
most general three-dimensional Lagrangian with the same symmetries, with hard modes
integrated out, reads

1 1
Lot = §5k¢3k¢ - §m2¢2 = Mot — Aag® + (4.2.5)

with three dimensional fields ¢. The parameters m and )\; in the effective Lagrangian are
defined through the original four-dimensional theory and therefore depend only on g and
T. They can be determined by matching correlation functions in the original theory at
high temperatures T >> p with the corresponding correlation functions in the effective three-
dimensional theory. In principle one has to write down infinitely many terms with different
parameters \;. But since higher order vertices are of higher order in the original coupling con-
stants, only those vertices have to be considered in the effective Lagrangian which contribute
to the desired order in the perturbative expansion of Qgop;.

In the same way one can proceed with the ultrasoft Lagrangian. One writes down all terms
with fields which yields contributions to momenta p < ¢7'. Analogously the parameters of
Latrasoft are then determined by the parameter of Z,. and can be computed by matching
correlation function of the soft theory with the corresponding correlation functions in the
ultrasoft theory.

Note that in the following we separate the constant mode By from the gauge fields because
it is associated with the hypercharge chemical potential, which is a free parameter of Q. Then
the constant mode is not part of the three-dimensional gauge fields in the effective theory
neither. But it will then appear in the effective parameters of the dimensionally reduced
theory.

4.3 Hard contributions

This section is a modified version of chapter 4 of the author’s publication .

We are interested in contribution to 2 to order p2 in the particle chemical potentials
@IA) up to order g?> ~ g? ~ A ~ m3/T? ~ |h;|* in the SM couplings, where g3 is the
strong SU(3) gauge coupling, mg is the zero temperature Higgs mass and h; stands for
the Yukawa couplings he, hy, and hgq of the charged SM leptons and quarks. Since the
fermionic contributions of Q have already been computed in [4I], we only need to calculate
the contributions of the Higgs chemical potential. The Higgs contributions to {2 which contain
Yukawa couplings are hardé and have also been computed in [4I]. Therefore, we need only

3This is easy to see since the integrals for diagrams with fermions can be written as products of one-loop
integrals.
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the terms

Loy = —p' Dy Do —mipto — A(plp)?
1 1 1
—_ZF FM WO W

4= 4w 26,

b
282
from the SM Lagrangian, where &; and &, are the gauge parameter of the U(1) and SU(2)

gauge fields respectively. The terms which depend on the Higgs chemical potential i, = y,py
are

(0,B")? (8, A% + .., (4.3.1)

8L = pu, [s@* (0-¢) — (&s@T) cp] + u2eT o + 29110, Bop o + 20210 Agp. (4.3.2)

For convenience we include the quadratic part of (£.3.2) into the Higgs propagator. The
sum-integrals which appear in the diagrams do then depend on p, through the Higgs prop-
agator and can be expanded to order ,u?o. After this expansion we encounter the bosonic

one-loop sum-integral class
b

b __ (—ipo)
K, = j_, == (4.3.3)

p

with the solution for d = 3 — 2¢ spatial dimensions [70]

y 20T (2 \"T(a—3 +e)
T2 I'(a)

¢(2a —b— 3+ 2). (4.3.4)

a (27TT)2a_b

As explained in the previous section, we need to neglect the zero modes in order to obtain
the hard contributions. Since the zero modes of these sum-integrals are scaleless integrals,
they vanish in dimensional regularization anyway. In the special case

K = im(—p?), (4.3.5)

we follow [70] and exploit the fact that K ~ (72)(@/2+1/2) and therefore
d+1

1?02 K = — K (4.3.6)
On the other hand, by acting with the derivative on the sum-integral explicitly one finds
1?02 K = %K + K3 (4.3.7)
Therefore, we have
K = %K%. (4.3.8)

All diagrams which contribute to Qpaq up to order g can be reduced to the following
po-dependent one-loop sum-integrals

Jo(pyp) = iln(—ﬁz), Ji(py) = i _%2, (4.3.9)
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where p is defined such that py = po + py, and p = p, and the p,-independent two-loop

sum-integral
1
Jy = I —————— =0. 4.3.10
p*¢*(p +q)* ( )

p.q

We expand Jy and J; to order ,ufp and express the result in terms of the sum-integral class
(#33) and plug in the solution (@3] which yields the finite results

2t T2

Jo(ie) = K + (K3 — KY)pi + O(pg) = === — mp=p + Oluy), (4.3.11)
T2 p?

Ti(e) = KT + (Ky = AK3)g + O(pg) = 15 — o5 + Olug)- (4.3.12)

The two-loop sum-integral (3.10) is only needed for p, = 0 because it appears only in
the diagram (3I8) which contains the 3-vertices in ([L3.2) and therefore a factor u?. The
fact that Jp is zero has been found to order O(e) in [71], [72], and to all orders in [70].

We compute the diagrams which contribute to —Qya:q/V up to order g2. After performing
the SU(2) gauge group traces, we find the leading order and order g? Higgs contributions

Tt T
§ == 2aulg) =2 (T 2+ 0 ) (43.13)
P . x B . B ) ) T2 ,U?O O A 1314
¢ = hlm) =2y - gm0 ). (31
1 T .“‘ , T2 T2 M?D .
25, T = <12 ) O e

Here we have explicitly written the symmetry factor 1/2 in front of the two-loop integral. In
the same way we find for the interactions of the Higgs with gauge bosons the contributions

17 d+1
24 i:::} =——5 (97 +393) J1 (1) J1(0)

d+1 2 2 T2 T2 :u?p 4
= (91 +363) 5 | 5~ gz TOWL) | (4.3.16)

1 - 1 9 9 i (2]? + q)2
— wvvvvvv = — + 3 - -7
T AR L et e

p,q

= 163 +363) [471 (1)1 (0) — TR() + O(ut)

1 T2 T2 MQ
= (97 +363) 35 (35 -2 5+ O(uy) | - (4.3.17)
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5 b = =i (g1 + 393) 12 + Olug) = O(ig), (4.3.18)
where we used the gauge boson propagators in Feynman gauge. But we have checked that
the result is gauge parameter independent. The cross in the diagram (£3.18) represents the
3-vertices in (£3.2).

Now we combine the hard purely bosonic contributions above with the ones containing
fermions from [41] and obtain

12 [~ ~
- Q-0 :0}
VT2|: (Iu )hard
_ 3 (g7 395 443 >
_6[1_W<%+T+T trlsg)
3 (491 | 493 2
+3_1 8772< 9 + 3 tr(u;)
[ 3 (g7 | 443 2
+3 _1 - W<§ + T tr(,ud)
+2_1—i ﬁ+% tr(p?)
A He
3 2

T 1 2 2 2
+4|:1+i<_)\+m_|_@>:| Ma
78

472\ 2 8 T2
3|t ity — =t (b2 + b it 2
+ 3| patr(huhy)ug — gt huhupg + huhu,
o :
1 3
+ [mtr(hehi)ui — st (b +heh1u§)] +0(u) . (4.3.19)

Here tr(...) denotes the trace in flavor space.

4.4 The dimensionally reduced theory

This section is a modified version of chapter 5 of the author’s publication [I].

Now we consider the effective soft theory. As explained in section B2, one has to write
down all terms with three-dimensional soft fields which respect the symmetries of the original
theory. For the SM this has been done in [69] at zero p and the terms of their result which
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contribute to the order g? are ]

1
_D%oft,p¢:0 = ZE]E] + - WZ]WZ] + = f (aB) + f(a Aa)
2
+ cpTD2<p + m%ngcp + A3 <<P <,O>
1 1 1 1
- 5(82‘30)2 - 5771%),133 - §(DZ-A0)2 - §m%,2ﬁ (Ag)

— he'pB§ — hapl ¢Tr (A7) . (4.4.1)
In addition to ([@3.2)) we get the following 1, dependent terms

T

— 0 Lot = — ' 0 — p19! Bow — paep! Agep. (4.4.2)

For the couplings in (£4.1]) we only need the leading order matching [69]
. 1
93 =giT (i=1,2,3), A=A, hy=giy’T, hy= ZggT. (4.4.3)

Furthermore, by matching three-point vertices of (£3.2)) with (£4.2), we find the new pa-
rameters in 6%,

P1 = 21pYpg1, P2 = 2/ipG2- (4.4.4)

We need the thermal masses of the Higgs and the gauge bosons only at order ¢g2. Then the
thermal Higgs mass is [67, [69)]

3 1 1
and the Debye masses for Ay, By are m,
Ng 5
mh, = (=42 g1, (4.4.6)
6 9
2 Ny n
2 5 £\ 272
= -+ =+ = T 4.4.
mp o <3+6+3>92 ) (4.4.7)

where Ny = 1 is the number of Higgs doublets and ny = 3 is the number of families. For
convenience, we define a p,-dependent Higgs mass as

m3 iy = =m3 — /L(p (4.4.8)

The loop integrals which contribute to Qsoft are, like in section 3] 11, - dependent through
the Higgs propagator. In our calculation we encounter the standard one-loop integrald’ [67]

mdT(1— ) 3
Io(m) = /kln(kP +m?) = %% =100, (4.4.9)
_d -

4The term goTAoBocp term does not contribute at O(gz).
5We use the notation fk f (27r)3
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In the case m = mg ,, we expand in powers of ,u?o,

mi Mz 3
Io(m?’vlhp) = _6_73 + Z—ﬂ' + O(M?p)? (4411)
2
my M
Li(ma,,) = —— 2+ O(ud). (4.4.12)

The only two-loop integral we need is [67), [71]

1
I Mg, Mp, M :/
| '™ s G+ m2) (8 02) [0 + ) + )
1 1 fi 1
- ot | + | + O(e). 4.4.13
167 [45 i <ma+mb+mc> - 2] +0le) ( )

where i is the MS scale parameter. In the special case mg = m3p,, My =m € {0,mp1,mp2}
and m¢ = mg,,, it is useful to expand in ,ufp,

1 1 m 1
[(mi’»,uwmym?),mp) :W |:4—€ +1In <m> + §:| (4.4.14)
st

+O(pg)-

1 |1 T 1 2
S N B A S WS S S
1672 | 4e 2ms +m 2 m3(2ms +m)

4.5 Soft contributions for soft Higgs mass

This section is a modified version of chapter 6 of the author’s publication [I].

Let us take a closer look at the thermal Higgs mass (£43]). The zero temperature Higgs
mass parameter mZ is negative with / —m3 ~ 125 GeV and can cancel the ¢*>T contributions
at temperatures close to the electroweak scale (7' ~ 160 GeV). Then the thermal Higgs mass is
ultrasoft. This case will be discussed in section In this section we consider temperatures
high enough so that m?3 is of order (¢7')? and positive.

In the following we compute the diagrams which contribute to ﬁsoft up to order ¢2.
Performing traces in SU(2) gauge group space, we find the leading order and order g? Higgs
contributions

""""" md  pdms
P = 2T, =T 2 -2 = 1 4.5.1
0(m3,0) (67T 47 +0e) | (45.1)
17T 2 3MT?
sL b i=- 6AT? [I1(m3,p,)]” = e (m3 — u2) + O(uy). (4.5.2)

Note that the p?-term has the same parametric form as the one in 3.I5). The sum of
({52) and (£3I50) yields the O(\) correction, that has been computed in [41] by a Higgs
mass resummation. For the interaction between Higgs and the gauge fields we present the
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calculation again only in Feynman gauge. But we have also checked that the result is gauge
parameter independent. This yields

1 :.'.”.----......“ T2 9 9 (2k1 + k2)2
5 e =—- (g1 + 3¢ /
Rt =T AR) | @, R0+ k) i, ]

T2 2
= — (g2 +393) { [L1(ma,,)]* +4m3 , L(mau,,0.ma, ) |

22 _
peT” oy 11 f
gonZ 01 302) |-+ 5 +2In oms )| T (4.5.3)

1 '
S =~ M?pTQ 71 (M3, mp1, M3u,) + 3951 (M3,41s MD,2: M3 11,

22 _

IR A
- SR T § P S
3272 {gl [2&? tihen 2ms +mp,

1 f
3g2 | — +1+21 _ 4.5.4
1992 |:2€ titeh <2m3 —I—mD72>]}+ ’ ( )

B -, 1 3
5% O = —§Q%T211 (m3 )1 (mp 1) — 59%T2[1(m3,#w)11 (mp,2)

-
_ T 1
3272 2ms

(Q%mD,l + 3g§mD,2) + (4.5.5)

where we omitted terms of orders other than ,u?p. The solid line in the above diagrams
represent the soft temporal components Ay and By. Adding up all contributions we obtain
the finite result

12 [~ . o~
VT2 [Q(,u) B Q(O)] soft
3ms 9\ 3

- 2 3 2 2 4

=2 {20 4 g RO 3G 00, (s)
with

=P 1 4yl (727713 > . (4.5.7)
ms 2ms +mp;

After integrating out the soft fields, we are left with an effective theory for the ultrasoft ones.
For soft ms the ultrasoft theory contains only the spatial gauge fields and at order g? and ui
the effective Lagrangian is independent of ji, so that this sector does not contribute to the
susceptibilities. This implies ﬁultrasoft = 0.
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4.6 Ultrasoft Higgs mass

This section is a modified version of chapter 7 of the author’s publication [I].

The perturbative expansion within the effective theory in section works well, as long
as the Higgs mass is not much smaller than ¢g7'. From our result ({.5.0) we can estimate how
soft m3 can be for the perturbative expansion in section to be valid. The diagram ([£5.5])
contains a self-energy contribution to the Higgs field from soft gauge fields. If m3 ~ ¢*72,
this contributions is of the same size as mg itself. The two-loop contribution (A5.5]) becomes
therefore as large as the one-loop contribution (@51 and the perturbative expansion breaks
down. In this case the Higgs field has to be included in an effective theory for momenta
p < gT'. For such small Higgs masses ms does not contribute to {2g.. Therefore, we have to
set mg = 0 in all diagrams in section Then all diagrams but (5.4 vanish in dimensional
regularization and g is divergent and reads

12 1~ ~ 32 1 fi
———|Q(p) — Q0 =— 2@ —+1+21
VT2 [ (1) ( )Loft 82 {91 [2& e <mD71>}
1 Iz
393 | — 4+ 1421 . 4.6.1
o [25 T n(?ﬂmﬂ} (46.1)

We obtain the contributions for momenta p < g7 from the effective ultrasoft Lagrangian

1 L D204+ 72 oo+ e (ofo)
—<Zultrasoft — ZE]—FZJ + ZWZ]WZ] - D @ + m3,ﬂw(‘0 @ + )‘3 (()0 (:0> ’ (462)

with the parameters [69]

1
mg,w = m§7u¢ I (Bhamp 2 + yohimp1), (4.6.3)
Az = s (4.6.4)

The effective Higgs mass squared m3 does now contain a negative contribution of the order
g3T?, corresponding to the self-energy correction from the soft temporal gauge fields in ([{5.5).
The perturbative expansion in this theory works well as long as the dimensionless expansion
parameter g2T'/fz < 1, which is true as long as 3 is much larger than ¢?>7'. Let us consider
the case 0 < M3 ~ ¢3T. Then the expansion parameter is g'/? and we are still in the
symmetric phase. The diagrams which contribute to ﬁultrasoft are (A51), (£52) and (@53

with mg replaced by 3. Then we obtain

12 1~ ~ 63 9\
— 210 - O =2y s
VT2 [ ('u) (0)] ultrasoft M¢{ T + 271'2
2 2 =
g1 +3g |1 1 K
== | — 4+ —42In{ — . 4.6.
+3 52 [25+2+ n oS (4.6.5)

Combining the soft contributions ([A.6.1)) with the ultra soft contributions (£.6.6]), the diver-
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gences cancel and we find the finite result

oy [~ 90)]

soft+ultrasoft

3m 9\ 3 ~ ~
_ 9,2 3 2 2
2u [_ T P P 90t 39202)] ’ (166)
with
~ 2ms
Ci=-1—4ln . (4.6.7)
mp

Since we consider m3 ~ ¢3T, the leading order is & (93/ 2) and the next-to-leading order is
0(g?). Furthermore, we have terms in this expression which are parametrically In(mp; /fg) ~
In(1/g).

Now let us consider the case that 73 ~ ¢>T. In this case the one-loop contribution is of
order g2 such as the two-loop contributions and perturbation theory again breaks down. The
reason is that the only mass scale in the ultrasoft theory is then the magnetic screening scale
¢*>T and the dimensionless expansion parameter is of order one. Thus an infinite number of
diagrams contribute to the order g2, which is the so-called Linde problem [73].

However, one can derive an expression for (LG.6]) which can also be evaluated with non-
perturbative methods. Writing the ultrasoft Lagrangian as

zultrasoft = (gultrasoft)u¢=0 + ,U?OSDJr(-Pa (468)

one can easily expand the path integral

exp(_ﬁultrasoft/T) = /@q>ultrasoft exXp {/ dgxfultrasoft} (469)

to second order in p, which yields

[Q(u) - ﬁ(o)] — VT2 <<,0Tc,0> +O(ul). (4.6.10)

ultrasoft
The expectation value of pfy can be extracted from effective potential and can be perturba-
tively expanded as long as 3 > ¢>T. The two two-loop expansion is [53, 67, [69)]

msT T2 1 [i 1
(T P)otoop = — o + s {6)\ + (g7 + 392 [— +1n <L> + Z] } . (46.11)

27 1672 4e 23
which again leads to our result (£.6.0).

When the Higgs mass becomes as small as the magnetic screening scale, ms3 ~ ¢>7T, the
expression ([A6.I0) is still valid, but its perturbative expansion in terms of loop diagrams
breaks down. From the perturbative expansion (£6.11]) we have seen that the ultrasoft one-
loop and two-loop contributions are of order g2 (plus order ¢g?In(g)) if M3 ~ ¢*T. With a
simple argument one can show that the complete contribution from ultrasoft fields is of this
order when T3 ~ g?T. Since the three-dimensional fields have mass dimension 1/2, and since
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the only mass scale in the ultrasoft theory is ¢>T', we have (pfp) ~ ¢?T plus possible order
g*In(g) contributions.

A reliable calculation of (') near the electroweak crossover can be done with lattice
simulations of the three-dimensional theory (4.6.2]). Such simulations have been done in
[f4]for a SU(2)+Higgs theory for several Higgs masses and in [22] for mpy = (125 — 126)
GeV. A study which also takes into account the U(1) gauge fields can be found in [75]. Near
the electroweak crossover ((!¢) turned out to be a rather smooth function of the temperature.

We do not consider the case where 3 becomes negative. In this case the system would
be in the broken phase, where the Higgs field develops an expectation value. Furthermore, in
the presence of chemical potentials of the broken charges, the SU(2) gauge fields would have
a non-vanishing expectation value as well which can be identified with the chemical potential
of the third component of the electroweak isospin. This case has been studied at leading
order in [34].

4.7 Relation between B and B — L

This section is a modified version of chapter 8 of the author’s publication [J.

In this section we use our results for €2 to compute the relation between the baryon number
B and B — L at order g2 in the symmetric phase. For the computation of (B) it is convenient
to introduce a chemical potential up in the partition function as

exp(—$Y/T) = Trexp [(11aQa + B — Hsyi)/T] (4.7.1)

The artificial chemical potential up is assumed to be independent of the chemical potentials
1; of the conserved charges. Then, the expectation value of B can be computed as

o
8NB uB:O.

(B) = (4.7.2)

The introduction pp is only valid as long as the partition function is expanded to the linear
order in pp. At this order the cyclicity of the trace ensures that the ordering of the operators
B and H does not matter.

The results @3.19), {@5.6) and [@5.6) for ' depend on the particle chemical potentials
which have to be related to the chemical potential of the conserved charges X; = B/ng — L;

through the relation (4.1.9). Then, the chemical potentials of the particles are related to px,
and pp by

_ My | Bx B
Mqi_ 6 3 9
_2NY_|_,UX+,UB
Hus =73 3
g = MY pX T lB
! 3 3 ’
_ K
Hi, = 2 HX;,

Mei = —Hy — ,uXiu
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fp = “7’” (4.7.3)

where pux = nif it px,. Using these relations, we express Q' in terms of wy, px; and pp and

use the saddle point condition [@IT) to eliminate py and to obtain €. Then, using ([AL7.2]),
yields (B) as a linear function of px. Furthermore, we obtain a linear relation between X;

and px, from
o0

X = ——"
3 aMXZ’

(4.7.4)

which can be used to express the px dependence of (B) in terms of (B — L), such that
(B) = k(B — L). (4.7.5)
For mg of order ¢7" we obtain

4(2ns + Ng)  mg3 24n¢ Ny
22ns + 13N, 7T (22ns + 13N,)2
g2 236n? — (12C, — 212)n¢Ns + T5N?

1672 (22ns + 13N;)?
g5 9(12n? — 4(Cy — 1)ngNs + 3N2)
1672 (22n¢ + 13N;)2

g2 96(8n? + 11neNs + 3N2)
1672 (22n¢ + 13N,)?

h? 6(6n? — 41ngN, — 18N2)
1672 (22n¢ + 13N;)?

B A 384n¢ N,
1672 (22n¢ + 13Ng)?
mg 12n¢ N

T T (220 + 13N,)2 (4.7.6)

with the same definitions as in (EZ7) and E5.7). When m3 ~ ¢3T?, the result for k can be
obtained from (78] by replacing ms3 by m3 and C; by C; defined in (£6.3) and ([@6.7).

In figure 1] it can be seen that the next-to-leading order (NLO) correction to x which
comes from the one-loop Higgs correction is smaller than 1%. At next-to-next-to-leading
order (NNLO) the strong coupling g3 enters the perturbative expansion. Therefore, the
NNLO corrections are much larger than the NLO Higgs correction, but still smaller than
5%. However, as one can see in figure 1] the pure electroweak NNLO corrections are much
smaller than the NLO correction which indicates that perturbation theory works well.

Let us now consider temperatures close to the electroweak crossover. As long as g3 is not
much smaller than ¢®/2T, we can still identify the one-loop Higgs corrections with the NLO
and the two-loop corrections with the NNLO. In figure [£.2] have plotted the NLO, the NNLO
with the Higgs mass mg treated as soft and and the NNLO with ultrasoft Higgs mass 7ms.
For such small temperatures the thermal Higgs mass mg3 becomes very small and therefore
the NLO contribution tends to zero close to the electroweak crossover. If the Higgs mass
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Figure 4.1: The radiative corrections of x compared to the leading order for my = 126 GeV,
ng = 3 and Ny = 1. The NLO corrections are smaller than 1% and the electroweak NNLO
correction are even smaller. At NNLO the QCD corrections dominate the result, but they
are still smaller than 5%. This plot has been been published in [I]

ms is treated as soft, the NNLO diverges like ~ 1/mg at low temperatures. This divergence
disappears if the Higgs is treated in the ultrasoft theory with a mass parameter m3. However,
there is still a logarithmic divergence at T > 165 GeV where T3 < ¢°/2T. At this point the
perturbative expansion breaks down and lattice simulations for the expression (L.G.I0) have
to be considered.

We have also compared the size of the contributions from the Higgs chemical potential
with the size of the contributions from fermionic chemical potentials. Figure indicates
that the NNLO contributions from the Higgs chemical potential is nearly as large as the
electroweak NNLO contributions from fermionic chemical potentials.
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Figure 4.2: The radiative corrections of k at low temperatures with my = 126 GeV, ny = 3
and Ny = 1. If the Higgs mass is treated as soft, the result diverges for T' < 160 GeV, and
if the the Higgs mass is treated as ultrasoft, it diverges even at T ~ 165 GeV. This is the
region where perturbation theory breaks down. This plot has been been published in [I]
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Figure 4.3: The contribution of the Higgs chemical potential is similar large as the contri-
butions from fermionic chemical potentials. At T" > 175 GeV the Higgs correction almost
cancels the fermionic NNLO corrections, so that the electroweak NNLO is almost as large as
the NLO.
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Chapter 5

Lepton washout rate at low
temperatures

The susceptibilities which we considered in the previous chapter are in particular important
for the computation of the washout rate ygq. This rate has been computed at order h? in
[4I]. In this chapter we consider the washout rate at low temperatures 7' < M;. In this
limit the rate is of order A and is dominated by AL = 2 sterile neutrino mediated scattering
processes. This rate is an important ingredient for finding upper bounds on sterile neutrino
masses, as pointed out in [45]. The calculations and results of this chapter are planned to be
published in [2].

5.1 Neutrino masses and the washout rate

The discovery of solar [76] and atmospheric [77] neutrino oscillations proves that at least
two of the three known (active) neutrinos are massive. These masses cannot be explained in
the SM, but the Yukawa interaction (L.2.4]) which couples left-handed neutrinos with right-
handed neutrinos can be a source for neutrino masses. In the broken phase the Higgs field ¢
obtains a vacuum expectation value (¢) = (v,0)" so that the interaction (IZ4) leads to a
Dirac mass term

Pirac = —(mD)]iWJVLJ + H.c, (5.1.1)

with the Dirac mass matrix (mp)r; = v(hy)r;. In combination with the Majorana mass term
(23] for the right-handed neutrinos one can write the complete neutrino mass term as [78]

1, — V¢
gmass = _5 (VL7VR) M <I/fg> + H.C, (512)
with the mass matrix
o 0 mp
M = <mg M> . (5.1.3)

The mass matrix is symmetric and can therefore be diagonalized. In general, for an
arbitrary number of flavors, it is rather difficult to do this diagonalization. However, if we
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assume the Majorana masses to be much larger than the Dirac masses, one can approximate
the block-diagonalized version of .# as [78, [T9)

m, 0
Dy = < 0 M) ; (5.1.4)
with the 3 x 3 block of light neutrino masses
my, ~ —mp M tmp. (5.1.5)

This formula has an intuitive interpretation which is known as the seesaw mechanism. The
light neutrino masses are light because they are inverse proportional to the heavy Majorana
masses.

The light neutrino masses play an important role in leptogenesis because they are directly
related to the Yukawa coupling h, which is responsible for the B — L violating interactions.
In particular, at temperatures much lower than the lightest sterile neutrino mass the mass
matrix m, becomes important for the washout rate ygq. At temperatures 7' ~ Mj, where
M, is the lightest sterile neutrino mass, the washout rate ygqg is dominated by AL =1
processes which are of order h2. In [41] an expression for this rate has been derived using the
formula (BZI3) for x; = Q,. This expression is valid to order h2 and to all orders in the SM
couplings. However, at low temperatures (7' < Mj) the AL = 1 processes are exponentially
suppressed and the AL = 2 processes

L+ @+ @, (5.1.6)
(+0e @ +¢, (5.1.7)
(+ ¢t & 0+, (5.1.8)

dominate g [44]. These processes are mediated by virtual sterile neutrinos and are of order
4
h,.
At very low temperatures T' < M it has been shown in [44] in the single-flavor approx-
imation (see also section (B.1])), neglecting thermal effects and spectator processes, that the

the leading contribution to the washout rate is

YoQ = —m?, (5.1.9)
where m? = tr(mlm,,) is the sum of all squared light neutrino masses, and ¢ is a numerical
constant. Since in this limit v is proportional to m?, this rate is an important ingredient for
finding upper bounds on the parameter m. In [44] the value of ¢ has been obtained neglecting
quantum-statistical effects in the collision integrals of Boltzmann equations. We expect these
effects on the constant ¢ to be important because the sterile neutrino mediated processes
are, unlike the AL = 1 processes, not Boltzmann suppressed. Therefore, in this work we
compute Yo in the low-temperature regime, including full quantum-statistical effects. Fur-
thermore, our approach naturally allows to include the effects of spectator processes through
the susceptibilities which we considered in the previous chapter. In this case ¢ depends on
the temperature.
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For the calculation of the rate oo we proceed as [4I] for the AL = 1 washout rate,
using the Kubo-type formula [B.2.13]). We work within an effective low-temperature theory
which approximates the sterile neutrino exchange as point-like interactions, described by a
dimension-5 operator (see (2.2.6])).

Another analysis of the AL = 2 washout rate including quantum statistical effects and
thermal masses has been done in [80]. However no explicit analytical expression in the low-
temperature regime is given there.

A full leading order calculation of the AL = 2 washout rate within a low-temperature
effective theory might also be interesting for a recently proposed minimal leptogenesis scenario
[8T] where a dimension-5 operator is used which is very similar to (5.2.6]).

5.2 Kubo relations for the washout rate in an effective theory

In the following we consider the scattering processes (5.16)-(5.1.8) which are mediated by
sterile neutrino exchange. We assume these processes to occur at temperatures which are
much smaller than the lightest sterile neutrino mass M;. Then there are no sterile neutrinos
present in the hot plasma. Furthermore, virtual sterile neutrinos typically have momenta
much smaller than their mass. The interactions (G.1.6)-(0.1.8]) can then be described by an
effective dimension-5 operator, which can be obtained from ([24]) by integrating out the
sterile neutrinos in the path integral. This has for example been done in [82]. Let us shortly
explain how it works. For the Majorana fields we write N = N % ~!. The full action of the
theory can then be written as

S = /d4l‘<%N;—D1N[ — j[N[ +$SM>, (5.2.1)

where D; = € 1(id — M;) and .¥ = J + J¢ with J = @h, L. Integrating over the neutrinos
in the path integral, we obtain the effective action

1 _
s == [ dte [ @47 @G - ) 5i), (5.22)
with ,
e [ ke EEM
Grlw=y) = / (2m)t* k2 — M2 40+ (5:2.3)

If k2 < MIZ, we can approximate

1
Gr(z —y) ~ —0W (z — y)— (5.2.4)
My
and then the effective interaction leads to the Lagrangian
et L / B9 (5.2.5)
int 2MI ’ ce
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which in terms of the Standard Model fields reads
1 T
eft _ _ © 3 =tp. -1 (xtp. (hTY.
zefl T /d :L«{ (SD el) € ((,0 zj) (hy) 1 (hy) Vit + Hc} (5.2.6)

Here we have used ¢/ = 0 due to the left-handed nature of the leptons. The dimension-5
operator in (5.2.6]) has also been found by [83] as a source of AL = 2 violating processes.
Let us now use the approach from section to compute the washout rate within this
effective theory. First of all we use the fact that the equal time correlations of the charges
Q. with the phase-space density frx vanish (see B2.14]). Then, for the real-time correlator
we need only the correlations of quantities with the same sign under C'PT' transformation,
namely the charges Q,. Then the washout rate can be computed with the Kubo-type relation

(B213) which explicitly reads [41]

A

=1
— = e, 2.
2V y<w<wyy w ( ) b (5 7

(7QQ)ab

where we have defined the volume independent susceptibilities, according to [41], as

1
2, = — b 5.2.8
b TV(XQQ) b (5.2.8)

Since we consider temperatures much lower than the lightest sterile neutrino mass, the

time derivative of the almost conserved charges is determined by the effective interaction
(5Z6) and can be computed in the Heisenberg picture as

where HE = — £ Due to the fact that (5.2.6) changes only the number of left-handed

nt int *
leptons, it is sufficient for the computation of the time derivatives to consider the depen-
dence of ), on these fields only. Let Tf be the generator of the symmetry transformation

corresponding to the charge ), acting on the left-handed lepton fields. Then we can write
Qo = /dga: <€i’yO(Tf),~j€j + contributions from other ﬁelds), (5.2.10)
and a straightforward calculation, using (52Z9) and (5.26]) yields the time derivatives
O = MLI /d?’x{jal%f + JIT%TJGI}, (5.2.11)

where Jur = (h,)1i(T%)i;¢7¢;. Since the Q, are of order h? the spectral function in (527 is
already of the order h} which we are interested in. Therefore, only SM interactions have to
be taken into account for the calculation of the spectral function and the susceptibilities.

For perturbative calculations of the spectral function in (B.2.7) it is most convenient to
compute first the imaginary time correlator

Bguq,(1wn) = / " dreter (Qu(=im)@u(0)) (5.2.12)

0

and then to analytically continue the result to complex frequencies w via iw, — w and to use
the inverse relation (ZI.I0) to obtain the spectral function.
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5.3 Leading order

First we calculate the imaginary time correlator (B.2.12]) at leading order, using the operator
(G2.11). Applying Wick’s theorem, contracting all gauge and flavor indices and performing
Dirac traces yields

. d(r)(d(r) +1)
LO. _ _yd)d) +1) o O
A0, lisn) = —VERT T2 (huTah,,>U (h,,Tb hl,>U

n (hl,h,t)u (hl,{T(f,Tf}hDU}Ao(iwn), (5.3.1)

where d(r) = 2 is the dimension of the representation of the gauge group SU(2) and

. 2k - ko
Ag(iwy) = i 5.3.2
0( ) k’%k‘%k‘%(k’l + ko + k3 —|—q)2 ( )
{k1},{ka},ks

is a three-loop sum-integral corresponding to the diagram in figure 5.1l Here {k;} denotes
fermionic Matsubara frequencies and ¢ = (iwy,0). The analytical continuation of (5.3.2))

Figure 5.1: Diagrammatic representation of the sum-integral entering the leading order of
Ap, 0, (iwn). Dotted lines are bosons and solid lines are fermions.

can only be done after performing the Matsubara sums. Then we obtain an expression
consisting of three-dimensional integrals containing ratios of the form A/(w? + A2), where
A = E;, — Eoyt can be identified with the difference of the energies of incoming and outgoing
particles in 0 <+ 4, 1 <» 3 and 2 <> 2 processes. Only the 2 <+ 2 processes (L.L0)-(.18) are
kinematically allowed and contribute to the rate. These terms are

Ag(iwn) = —4 / dIt, / dIT, / dlls / dIT,(2m)360) (k; + ko — k3 — ky) (E1 Es — ki ko)

X{ FEi+FEy— FE35— E4
w2 + (Ey + Bz — B3 — Ey)?

X <fF,1fF,2(1 + fB3+ fB4) — fB3fBA(1 — fR1 — fF,2)>

Ei+E3 —Ey — FEy
w2 + (Er + B3 — Ey — Ey)?

X <fF,1fB,3(1 + fB2 — fr4) — frafBa(l — fr1+ fB,3)>

+ similar terms which do not contribute to the rate p, (5.3.3)
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where dIl; = d°k;/(2E;), E; = |k;| and fri = fr(E;) and fp; = fe(E;) are the Fermi-
Dirac and Bose-Einstein distributions, respectively. We calculate the discontinuity of (5.3.3]),
making use of

Disc =im (0(w — A) = d(w + A)) (5.3.4)

W —wW

w2 4+ A2
and expand the result to order w. Then, using (5.27]) we obtain

12 _
(7Q@)ab “TM M, (113%° + 209" (271,

X (2 (hVTth)U (hﬁfhi)u + (h,,hl)u (hV{Tf,Tf}hL>IJ) . (5.3.5)
Here we have defined the integral class

71020571 = / Ay AT dIT3dLy (27)4 6™ (ky 4 kg — kg — ky)

X (ki ki) fol fos (1 + 03f50) (1 + 04 f5]) ; (5.3.6)

k9=FE;

where o; is 1 for bosons and —1 fermions, fi=fg and f_1=fr. We calculate the integrals
11399 and {919 in appendix [A] using full quantum statistics and their results are

3% =1.14 x 107471, (5.3.7)
L0 =5.91 x 107°76.

Our result (B.3.5) gives the leading order washout rate for the charges @, in the symmetric
phase for temperatures 7" < M;.

5.4 Beyond leading order

As we have seen in chapter [, the NLO susceptibilities are of order g due to soft thermal Higgs
mass ([L4H). Therefore, the next-to-leading order corrections to the washout rate should be
of order g as well. Keep in mind that the susceptibilities of almost conserved charges are
defined trough the relation (£.1.3)), that is, in an ensemble where the strictly conserved charges
vanish. It depends on the temperature which charges are conserved . A table for the order
g susceptibilities in the single flavor approximation for different temperature regimes can be
found in [45].

If one naively expands the spectral functions in (5.Z7) to order g one finds infrared
divergent diagrams which correspond to thermal Higgs mass corrections to the Higgs propa-
gator. These divergences can be cured by thermal Higgs mass resummation. The idea works
as follows. We write the Lagrangian as

L =% —miolo+miplp, (5.4.1)

with mg defined in (£45), and treat the first mass term as a part of the Higgs propagator
and the second one as a two-vertex in which we expand in perturbation theory. The infrared
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divergences are then cured due to the massive Higgs propagator. On the other hand, the
contributions of order g? diagrams which correspond to thermal Higgs mass corrections are
canceled by diagrams with the two-vertex insertion.

The parametric dependence of the leading order diagram on the Higgs mass reflects the
nature of the infrared divergence and thus yields a contribution which is parametrically
larger than order ¢g. In appendix [A] we investigate the leading contribution of the Higgs
mass, computing the leading order diagram in figure [5.J] with massive Higgs propagator and
expand the result for small values of m3/T. Then we find that the integrals (5.3.0) have the
logarithmic mass dependence

2 2
[2%(mg) = <1.14 + 0.333% m%) + ﬁ(92)> x 10747° (5.4.2)
2 2
11910y = <5.91 + 2.54% m%) + ﬁ(g2)> x 107575, (5.4.3)

Unlike for the susceptibilities, the Higgs mass resummation does not lead to an order g
correction of the spectral function, but rather to an order g2 In(g) correction. Therefore, the
leading Higgs mass effect is due to the susceptibilities. We have not computed the effects of
thermal lepton and gauge boson masses on the spectral function. A complete calculation of
these effects would be a substantial amount of work, but we expect them, like the thermal
Higgs mass corrections to the spectral function, to be of order g?In(g?) or g2.

5.5 Size of the quantum statistical effects and order g Higgs
mass contribution

In the following we define the left-handed lepton which couples to the lightest sterile neutrino
N as {y, and we define the lepton asymmetry in this flavor direction as Ly,. We assume
that during the generation of the lepton asymmetry only N7 is present in the plasma so that
only an asymmetry in ¢y, is generated through the sterile neutrino Yukawa interaction. This
is a valid approximation in the hierarchical limit M; < Mjx. If the charged lepton Yukawa
interactions are in equilibrium, the asymmetry in the left-handed lepton /y, is partially
converted into an asymmetry in the right-handed sector. Since the charged lepton Yukawa
interactions are also flavor violating, the asymmetry Ly, is also partially converted into an
asymmetry in other flavors. In the following we use the single-flavor approximation, assuming
that the flavor violation can be neglected. Then asymmetries in directions other than Ly,
are zero and we can choose the charge (), such that it contains the lepton number summed
over all flavors. This corresponds to setting 7 = 1 in (5.3.5) and leads to the rate

T5m?2

viz

Y00 = 1.12 x 1077 (5.5.1)

Let us investigate how strongly the quantum-statistical effects and spectator processes affect
the washout rate by comparing our result (L.5.]) to the one from [44], which translates in
our notation to

o T3m?

v

YQQ =2.68 x 10~

classical

(5.5.2)
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There the rate has been computed with classical statistics and spectator processes have been
neglected. If we also neglect spectator processes, this corresponds to 72272 = 3 [45]. Then
our result is 24.8% larger than (5.5.2) due to quantum-statistical effects.

In [45] our result for the AL = 2 washout rate has been used for finding upper bounds
on the sum of the squared neutrino masses m?. There it turned out that full quantum
statistics yields a 5% tighter mass bound than classical statistics which yields the upper
bound m™®* < 0.2 eV.

In the same reference it has been shown that the AL = 2 washout rate becomes relevant
for sterile neutrino masses My > 10 GeV. For such sterile neutrino masses let us consider two
examples for the susceptibilities which have been computed in [45] with the formula (ZI1.3).
At temperatures T' 2> 10'3 GeV the strong sphalerons become active and the susceptibilities

read [45]
90 49 ms
== — (1+ —— ). 5.5.3
23 ( + 230 7TT> ( )
In this case the washout rate is 30.4% larger compared to case where the spectator processes
have been neglected.
For lower temperatures between 102 GeV < T < 10" GeV the 7-Yukawa interaction
becomes active. In this case one has to distinguish the two cases whether Ly, is equal to the
7 flavor asymmetry L, or not. Then the susceptibilities are [45]

57 27
ez _ )16 U+ srt),  Lni# Ly (5.5.4)
3(14‘%%)7 LN1:L7'

In the first case the washout rate is 18.8% larger compared to the case there the spectator
processes have been neglected. In the second case (Ly, = L;) the washout rate differs from
the case where spectator processes are neglected only due to the Higgs mass correction.

For temperatures between 102 GeV < T < 10 GeV we have 0.13 < 72 < 0.18. Then
we find, if Ly, # L., that the order g (or NLO) correction to the AL = 2 washout rate from
the thermal Higgs mass are smaller than 2% in this temperature regime. If Ly, # L;, they
are smaller than 3% which has also been pointed out in [45].
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Chapter 6

Three-point functions at finite
temperature

Before we continue with the computation of the C'P violating lepton asymmetry rate ygsy,
we have to introduce some mathematical tools. In chapter (7) we show that this rate can
be related to three-point spectral functions at finite temperature. Therefore, the aim of this
chapter is to derive relations for three-point functions analogous to the relation (Z1.7), (212
and (ZI.I10) which hold for two-point functions. Furthermore, we investigate the properties
of three-point functions if the system is symmetric under CP and T' transformations. The
calculations and results of this chapter are planned to be published in [3].

6.1 The three-point spectral representation

Three-point functions at finite temperature and their spectral representation have been stud-
ied in several references in the real-time formalism. For example, in 1990 Kobes and Evans
showed in [84] [85] that a spectral representation exists for three-point functions at finite
temperature. But their notion of a spectral representation differs from ours. In particular,
they do not give an integral representation analogous to (ZI.T).

Spectral representations similar to (2.7 have been derived in [86], [87] for retarded and
advanced real-time three-point correlators, but not for the imaginary time correlator. Fur-
thermore, they use different representations for each real-time correlator, but we only want
a single spectral representation for the imaginary time correlator.

An integral representation which relates the imaginary time correlator to real-time correla-
tors has been derived in [8§]. However, this integral representation differs somewhat from the
simple structure of (ZI.7) which we are interested in. For example, their integral representa-
tion still depends on thermal distributions and does not give a simple relation to three-point
spectral functions which are defined through (anti-)commutators similar to (ZI1.2). In this
section we closely follow [88] and show that a simple spectral representation can be obtained
which is very similar to (ZI.7). In [88] it has also been shown that the imaginary time corre-
lator can be related to advanced and retarded correlators via analytical continuation similar
to (ZI.8). Using this fact, we can furthermore show that inverse relations similar to (2.1.10)
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exist.

We consider three operators A, B, and C, which can be fermionic or bosonic, elementary
or composite. They define six three-point correlation functions, one for each permutation of
ABC, of which one is given as

Dapc(ta,tp) = (A(tA)B(tB)C(O)>. (6.1.1)

Here we have already used translational invariance in time which allows to set {c = 0. The
correlator is well defined for complex times with

0>Imtg >Imty > -0 (6.1.2)

and in this region its Fourier representation

dwy [ dwp _;
Capc(ta,ts) :/g 2—7;36 ’(“AtA+wBtB)7ABC(wA,wB) (6.1.3)

exists. Due to the cyclicity of the trace the Fourier transform satisfies the relation

vape(wa,wp) = e /T yoap(wa, wp), (6.1.4)
with wo = —wa —wp.

For the asymmetry rate in the next chapter we need the time ordered imaginary time
three-point correlator in frequency space, which we define as

3 3
I‘ABc(iwn,iwn/)E/o dT/O dr" exp(iw, T + iwy ') (T {A(—it)B(—it")C(0)}), (6.1.5)

with Matsubara frequencies w, = nnT, with even (odd) integers n for bosonic (fermionic)
operators. Writing the time ordering in (G15]) explicitly, we have

B B
T apc(iwy, iwy) :/0 dT/O dr’ exp(iwnT + Wy ') [9(7’ — 1) (A(—it)B(—it")C(0))
+ (—1)desAdesBy 7')<B(—Z'T/)A(—z'7')0(0)>] : (6.1.6)

where deg stands for the degree defined as

it A .
dega — U it A bosonic (6.1.7)
1 if A fermionic.

Like in [88], we plug in the Fourier representation (6.1.3) of the correlators on the right-hand
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side and perform the 7 and 7’ integral. This yields

deg A+degB —Blwtw’) _ 1) 'VABC(Wa w/)
T
A (ieon, o) / / (twp, + 1wl — w — w") (iwy, — W)
( )dogAdogB (( 1)deg A—l—dogB —Bw+w’) _ 1) ’YBAC’(W/HU)
(twn, + W), —w — W) (iw), — w')
(1—(—1)%84e ) v 4o (w,w)
(iw!, — W) (iwy, — w)
(~1yteEdesB (1 — (1)ReBe ) g0, w)

(tw!, — W) (iwp, — w)

_|_

n (6.1.8)

In contrast to [88], we now use the cyclicity property (6.1.4]) to eliminate all exponential
functions and do the partial fraction decomposition

1 1 1 1
= . 6.1.9
(twy, — w)(iwy — ') dwy, + iw!, — w — W' <z’wn—w +z’w,’1—w’> ( )

Furthermore, we assume that ABC' is a bosonic operator, so that degC = deg(AB). Then
we obtain the spectral representation

 ac (it o) /dw dw' 1
WWn,, W' ) = o
ABC\Wn, n 2m ) 271 iwp +iwy —w — W
/
[M | (Lpyderadens W] . (6.1.10)
Wy — W1 Wy — W'

which contains the spectral functions

papc(w,w') = / dt / dt’ exp(iwt + iw't') <[A(t), [B(t’),(;(())m, (6.1.11)
with the graded commutator
[A,B] = AB — (—1)deeAdesBp 4, (6.1.12)

According to [88], we can obtain all retarded correlators via analytical continuation of
([EIH). In the notation of [8§] the six different retarded functions are

Ri(wa,wp) =T apc(wa + 2ie,wp — ic), (6.1.13)

Ro(wa,wp) =T apc(wa —ie,wp + 2ie), (6.1.14)

Rs(wa,wp) =Tapc(wa — ie,wp — i), (6.1.15)

Ri(wa,wB) = Ri(wa,wp) (i=1,...,3) (6.1.16)
€E——¢&

Writing these retarded and advanced correlators in terms of the spectral representation
(EI10) and using (ZI.9), we find two combinations where all principal values drop out and
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only delta functions remain in the spectral representation. This allows to write the spectral
functions explicitly in terms of advanced and retarded correlators as

papc =Rz + Ry — R3 — R3, (6.1.17)
ppac =(Ri + Ry — Ry — Ry)(—1)dceddeeB, (6.1.18)

These are the inverse relations analogous to (2I.I0). If the spectral functions are real, it can
easily be seen from the spectral representation (GII0) that these relations can be further
simplified to

papc = 2Re(Ry — R3) (6.1.19)
ppac = 2Re(Ry — Ry)(—1)ieeAdeel, (6.1.20)

In the next section we give conditions for the spectral functions to be real.

6.2 Implications of C'P and T invariance

Like for the two-point spectral functions in section 2.2] we can find conditions for the three-
point spectral functions to be real valued. Here we assume that the system is C'P and
consequently, T invariant. Let us for a moment suppress a possible dependence of the op-
erators A, B and C on spatial vectors. Then we assume that the operators in the spectral
function (G.LIT]) transform under 7" and C'P transformations such that

T [A(tA)v [B(tB)v C(O)H T_l =E&r [A(_tA)v [B(_tB)v C(O)H (621)
CP[A(ta), [B(tp), C(0)]] (CP)™" = ecp [A(ta), [B(ts), C(0)]]", (6.2.2)

where e and ecp are £1. Then it is easy to see that the spectral functions obey the relations

papc(wa,wp) = erpipe(wa,wn), (6.2.3)
papc(wa,wp) = ecppapc(—wa, —wp),

where for the first relation we have used the anti-unitarity of 7. Both relations can be
combined to

papc(wa,wp) = erecppapc(—wa, —wp). (6.2.5)
In the next chapter we are explicitly confronted with the case
(o4 @ szl
Alw) = Ji (=), Bly)=(€1;)%y),  C0)=T%T (0), (6.2.6)

with the fields J; = ¢'¢;. Here o is a spinor index which is summed over in the product
AB. Let us investigate the CP and T properties of these operators. Like in [89], we choose
a representation where ¢ = iy and

PJ(t,x)P™! = nyoJ(t, —x), TJ(t,x)T' = yiy3J(—t,%), (6.2.7)
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where 7 is a complex number with || = 1. Then we find

(CP)A(z0,%)B(y0,y)(CP)™" = (B(yo, —y)A(wo, —x))", (6.2.8)
(CP)C(0)(CP)~t = —-CT(0), (6.2.9)

and
TA(zo,x)B(yo, y)T ! = A(—x0,x)B(—y0,y), (6.2.10)
TC0)T! = C(0). (6.2.11)

For the spectral functions we can use rotational invariance. This implies that the spectral
functions only depend on scalar combinations k; - k; of the spatial momenta and the frequen-
cies. This implies the symmetry

paBc(wi, ki,w2, ko) = papc(wi, —ki,wa, —ka). (6.2.12)

Now, using the C'P properties (.28 and (€2.9) in combination with rotational invariance,
we find

paBc(wi, ki,w2, ka) = papc(—wi, —ki, —w2, —ka)™. (6.2.13)
The properties under 7" transformation (6.2.10) and (E2.11]) imply

papc(wi, ki,wa, ko) = papc(wi, ki,wa, ka)*, (6.2.14)

that is, ep = 1 and ecp = 1. The spectral representation (6.1.10) implies that these symme-
tries hold for the corresponding Euclidean correlator (Z.ZI4]) as well,

T*(ky, ko) = T(ky, ko) T(—ky, —ky) = D(ky, ko). (6.2.15)
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Chapter 7

Lepton asymmetry rate

In this chapter we compute the C'P violating coefficient (vqsf)ark which describes the rate
of the generation of the asymmetries (), due the deviation of the sterile neutrino phase-
space densities fr from equilibrium. We first derive a master formula for the rate in the
hierarchical limit. This formula relates the rate to a three-point spectral function of SM fields.
Then as an application, we compute the leading order and the next-to-leading order rate at
zero temperature. The calculations and results of this chapter are planned to be published

in [3].
7.1 Kubo relations for the asymmetry rate

The C'P violating rate can, according to [B.212) be computed from the relation

T —1
(VQapdane = ZImAE (@) (Xopsp)wne (7 <w <wov), (7.1.1)

where we have used that the equal-time correlators ([LI13]) of X, with Jf;x vanish due to
CPT invariance (see also section 2.2)).

The charges @), are described by the same operators (5.210) as for the washout rate, but
we compute their time derivatives now in the full theory (L24]) which yields

Ou(t) = i / P [Ko(a) — K]()] (7.1.2)

where K, = N;Jj, with
J1a = (ho)1i(Ta)i @'4:. (7.1.3)

In order to define operators for the sterile neutrino phase-space densities, we consider the
sterile neutrino fields in the interaction picture. We define the Hamiltonian as

H = Hy + Hijnt, (714)

where Hj contains the full SM and the free sterile neutrinos and H;,y = —.%n represents
the Yukawa interaction (L.2Z.4]). Then in the interaction picture, the sterile neutrinos can be
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written as solutions of the free field equations in terms of annihilation and creation operators
c}ks and cyks a

[N1(z (7.1.5)

ikx ikx T
t = E [ UJks CTks T € Vrks C
1n ,72Elkv s s s Crks kO—>E1k7

where Ep = (k? + Mlz)l/ 2 and V is the volume. We normalized the annihilation and
creation operators such that

{Clks N c}’k’s’} = 6]1’5kk’5ss" (716)

We define the phase-space densities (or occupation number) in the interaction picture as the
spin averages operator

fIk int = chksclks (717)

Since the occupation number is conserved in the free theory it commutes with Hy. Therefore,
we have fnc(t) = e[ fnine ™t in the Heisenberg picture.
Now we use the orthogonality of the spinors
uf,ksuffks/ = U}ks'l)]ksl =2F 0550117, (7.1.8)

U}ksuf’—k’s' = u}kslvf’—k’s’ =0, (7.1.9)
to write the creation and annihilation operators in terms of N as

1 ; 1
= —— b, _N/(0,K), -
s = BBV ks 10, k), e, NeTG

where N(t, k) = [ d®ze ™ *N(t,x) denotes the spatial Fourier transform of N. Then, with
the completeness relations

ol N1(0,—k), (7.1.10)

Zu.rksﬁfks =k + M, (7.1.11)
S

Zvlksﬁlks =k — M, (7.1.12)

we can easily write the phase-space density in the Heisenberg picture as

1
frct) = / dPrd®z’ e CING (¢, x)7° (F + Mp) A° Ny (t,x') (7.1.13)
2V E ko=Erx
Using the Heisenberg equations of motion, the time derivative reads
. i ot B
Fit) = qp{ | Fn®) = Bi0)] + (k= =)}, (7.1.14)

"Keep in mind that we consider a finite volume V' with periodic boundary conditions, where the momenta
k are discrete.
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with

Rik(t) = /dsxdsa:’eik(x_x/)]vf(t,x)’yo (K+ M;p)Jr(t,x) (7.1.15)
ko=FErx

and
Jr = o(hy)ril;. (7.1.16)

The retarded correlator in (L)) is of order A and therefore, the susceptibilities x5y
are determined by the free theory. In the free theory we have

(chaCies) = 811040650 fr(Ene), (7.1.17)

which implies for the susceptibilities, using Wick’s theorem,

(Xs£.57) 1,7 = 01701 XI5 (7.1.18)

with
X = fr(End) [1 = fr(End] = =T fp(Erx). (7.1.19)
Let us without loss of generality choose I = 1. Then (11 simplifies to

1 T ‘o
(’YQéf)alk = E ;Im AQZfik (w) (’Y < w K< wyy). (7.1.20)

7.2 Relation to three-point functions in the hierarchical limit

In this section we show that the retarded correlator in (ZZL20) can at order hl be related to
a single three-point function of SM fields, if the hierarchical limit M; < M/ is considered.
We start from the imaginary time correlator

Bguplion) = | dreo (Qu(-infu0)). (7.2.1)

and insert the results for the time derivatives (C.I12) and (ZI.I4) which yields

Ag, . (iwn) = 4V21k / (d%)EeinKa(x) —Kg(a;)] [le(()) _ RL{(O)D, (7.2.2)

where (d*z)g = drd®x. The cyclicity of the trace allows to write
<Ka(—z’7-, x)R{k(0)> - <R}k(0)Ka(w T, x)> , (7.2.3)

and using the fact that in imaginary time K (—i7,x)" = KT(i7, x), we find
<Ka(—z'7-, X)R}k(0)> - <Kg(—w +ir, x)le(0)> . (7.2.4)
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The same relations hold for K, <> K. Applying these relations to (7.2.2)) and using period-
icity in imaginary time, we find

AQaflk (an) -
1
2V

Re / (d4a:)Eei“”T< [Ka(a;) — K (@)| Ru(0) + (k — —k)> . (7.25)
kO—= By

We want to compute the rate which describes the generation of asymmetries @, due to

the C'P violating Yukawa interaction (L24]). This interaction does not violate C'P at order

h2, as we have seen in section Therefore, we have to expand the Euclidean correlator

(CZF) to order hi. After the perturbative expansion the sterile neutrinos can be considered

as free particles and we can use Wick’s theorem for them. Then (2. contains, for instance,

correlation functions like (N7 (x)N;(0)) and (N7(x)N;(0)). Using the fact that N is Majorana,

—T
that is, N7(z) = —€¢N; (z), we write these correlation functions in momentum space as the
sterile neutrino propagator

Si(p) = / (d4x)E P (N7 (2)N7(0)). (7.2.6)

We also assume the sterile neutrinos to be hierarchical, that is My < My for I # 1 and
that the temperature is not much larger than M;. Then we have T' < M., and as for the
effective theory in section we can approximate the propagator for I # 1 as

1
Sr(p) ~ — for I # 1. (7.2.7)
My

If we also use that the operators J,; and J; are left-handed, then terms containing the

product .J J vanish. Finally, we end up with the contributionsﬁ

/ (d4az)E (Ko(x)Ryy) €“n7 = V/ (d4x)E (d4x')E T Z e wn—wp)Tikx Z MLI

{wnr} I

1, o
56 <T {Jlfz(x)%sl(iwnu k)Y (K + Ml)Jl(O)JI%JIT(a;’)}> (7.2.8)
ko=FE1x
and
| | )
[ @ (Kl ra) e = [ (), (1), 7 3 el 3L
{wn/} I

—_— — =T )
(T LT R (2)J] (&) S (i, K + M) O) ) lhompe (7:29)
Let us write the sterile neutrino propagator as

Si(k) = (K+ My)Aq (k) (7.2.10)

*Keep in mind that {w,} denotes fermionic Matsubara frequencies.
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with Ay = (—k% + M?)~!. The left-handed nature of the Standard Model fermions can be
used to simplify the Dirac structure in (Z2.8) and (Z29). For example, we have

PLS1 (iwn, k) y° (F -+ My) P, = M (i, + k%) Ay (iwy, k) Pr. (7.2.11)

Furthermore, we cancel the numerator with the denominator

1

. 0 . o
(iwn + k) Af (iwp, k) = 5w,

(k° = Epn) (7.2.12)

and we pull out the Yukawa coupling by writing J; and Jj, defined in (ZI.16) and (ZI3)) in
terms of

T, = 3t;. (7.2.13)

The Euclidean correlator (Z.2.5) can then be written in terms of the three-point function

Fijlm(kla k‘g) = / (d4331)E (d4332)E ei(k1x1+k2x2) <T {Jl—r(xl)(gTJ](x2)jl%jnT(0)}> (7.2.14)

as

. 1 M, 1
AQaflk (an) —m ZI: MRG{T{%;} m (7215)

(|30 i 0T T~ v )

_(Tahl/)?l(hl/)?m(hlj)li(hl/)ljrijlm(k —4q, _k):| - [k — _k]> }7 (7216)

where we have renamed w,,s to kg and ¢ = (iwy, 0). Keeping in mind that J is fermionic and
that the matrix € is antisymmetric, we have

T{F @€' )} =T {5 @EI@) ] (7.2.17)
T{T@) T )} = T{TweT @)}, (7.2.18)

and consequently, the three-point correlator (.2.14]) has the symmetries
Lijim (K1, k2) = Ljim (K2, k1), (7.2.19)

Cijim(k1, k2) = Lijmi(k1, ka2). (7.2.20)

7.3 CP, T and SU(n¢)-flavor symmetry

In this work we only study the effects of C'P violation due to the sterile neutrino Yukawa
interactions. Therefore, we neglect the C'P violation of the Standard Model in the following.
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In this case we can use the symmetries for the three-point function from section First of
all, we use that I' is real. Then we can simplify the Euclidean correlator to

AQaflk wn) = 2E1k Z Z KO _ Fo Elk
{x°}
1 * *
{ = S0 Ty (ko i s = 0.8+

+ Im[(hV)li(hV)lj(Tahu)?l(hu)?m] Pijlm(_k —q,k)—(k— —k‘)} (7.3.1)

Then we use the fact that I'(ky, k2) = I'(—k1, —k2). This allows to write the correlator as

AQaflk wn) 2E1k Z Z kO _ F.o Elk

I>1 {kO0}

{ a %Im[(hV)li(hVTa)lj(hV)?l(hV)?m] I‘ijlm(_k —¢,k+q)
-+ Im [ (Ao )16 (P )15 (Tahi) 1y (o) T ) Tt (=K = 4, k‘)} — (W = —wy).  (7.3.2)

The three-point correlator (214 is in general a complicated tensor in flavors space which
depends on the leptonic SM Yukawa interactions. We can tremendously simplify the problem
if we neglect the Yukawa interactions of SM leptons. This is a good approximation since
these interactions are very weak during leptogenesis. Then the remaining interactions are
invariant under leptonic SU (n¢) flavor transformations. In combination with the symmetry
([C220) this implies that the correlation function has the flavor structure

1
Lijim = 5(5i15jm + 0im6;)T, (7.3.3)
where
I' = 6501 L ijim/ms- (7.3.4)
Using this, we obtain
- (i _ M, + i )
Ay, ju (i) = (; i [ (menl) (h,,Tah,,)HD M), (7.3.5)

where we defined the function

ir T —T(-k—qk+q +2I'(-k—q,k)

0 _
4Fy ot k

My (iwy,) = — (wn, = —wy) . (7.3.6)

Note that (7.3.6]) only depends on Standard Model parameters. Therefore, from here on we
drop the subscript 1 on FE.
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7.4 Analytic continuation and w-expansion

Before we analytically continue the retarded correlator (Z.3.5) to complex frequencies, we
have to perform the Matsubara sum over the heavy neutrino frequency in (3.6). We do
this by using the three-point spectral representation (G.I.10). The symmetries (Z.219) and
([C220) imply that the two spectral functions papc and ppac in (6II0) are related through

pBac(w2, ko, wi, ki) = —papc(wa, ko, wi, ki), (7.4.1)

so that the spectral representation consists of a single spectral function which we denote as
p = papc- Using this and the fact that the spectral function is even in (kq, ko), we can write
the spectral representation (G.III) of the three-point correlator (7.3.4)) as as

dwl dw2 1
r _ [ Qrder
(k1, ko) / 2m 21 K9 + kY — wi — wo

ki, w2, k —wy, —ky, —wi, -k
" [p(un,o 1,w2, ko) +P( w2, 027 w1, 1)]_ (7.4.2)
kl — W1 kg — W2
We insert (.42) in (Z3.0) and obtain
dw1 dCUQ
M (iwn) 4Ek/ / TY o & W _ B Ek
{ko}
1 1 2 1
_k k)| —
X{p(W17 e )[ w1 + wo kO 4+ w1 + iwy, w1+w2+iwnk’0+w1+w}
1 1 2 1
—wa, —k, —wy, —k -
+p(—w2, =k, —wr, )[wl_,_mko—wg—i-iwn w1+w2+iwnk0—w2}}
(o = —wn). (7.4.3)

The apparent singularity in the terms with 1/(wq4ws) cancels because the numerator vanishes
for wqy = —wy. We can therefore replace 1/(wj 4+ws9) by its principal value. Then we substitute
w1 ¢ we in the third line and rewrite the terms such that

dw1 dWQ
e%k an - 2Ek/ —p w1, — -k ("')27 TZ ko Ek
{ko}
1 1
-PV

<k0+w1+zwn k‘o—i—wl) <w1+w2+iwn " w1+ wo

) — (wp, = —wy). (7.4.4)
Using this expression we perform the Matsubara sum which gives
dw dw
idion) = 5= [ G2 [ G201, k) [fr(-n) ~ fe(Bi)

—an 1 1
—-P.V. — (Wn —Wn ). 4.
8 (Ek + w1 + iwn)(Ek + wl) <w1 + wag + twy, N w1 + W2> (w - W ) (7 5)

Now we can analytically continue iw, — w + ¢0+ with real w. Then we can use

1
x — 10t

1
=P.V.— + ind(x), (7.4.6)
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and expand (T40) to the leading order in w. Then the principal values cancel inside the
bracket and only the J-function remains. This gives

M +1i07) = gEk/ o @pwl, K, w2, k) [fr(—wi) — fr(Ex))]

(—im)6 (w1 + wa) — (W — —w) + O(w?). (7.4.7)

X
(Bx 4+ w1 + ZO*)(Ek +wi)

For the rate we need the imaginary part of this expression. Since p is real, as we have shown
in section [6.2] we get a second J-function, so that the w; and wo integrals are trivial. This
yields

Im.# (w +i0") = —Ep( Fx, —k, By, k) fh(Ey) + O(w). (7.4.8)

Using the formula (Z.I20) for the asymmetry rate in combination with (Z.3.3]), (T.4.8) and

with x1x = =T ff(Ex), we obtain the master formula
p(_Ek7_k7 Ek7k) M,y 1 T
alk = —1 hyh h,T,h), : 4.
Qs )an 4FEy ; My - [( ”>11 ( )11} (7.4.9)

for the lepton asymmetry rate. This formula is valid to order h? and only in the hierarchical
limit, where the lightest sterile neutrino mass is much smaller than the heavier sterile neutrino.
It can be expanded to all orders in the SM couplings, except in the Yukawa interactions of
SM leptons. The formula does also not take into account effects of SM C'P-violation.

7.5 Leading order at zero temperature

As a first application of the master formula (Z.49) we compute the zero-temperature contri-
bution to the asymmetry rate at leading order in the symmetric phase. We start from the
Euclidean three-point correlator (Z.2.I4]), which at leading order corresponds to the diagram

O (ky, ko) = W (7.5.1)

where solid thick lines are heavy neutrinos carrying the ingoing momenta k; an ko respectively.
The solid lines with arrows are SM leptons and the dotted lines are Higgs. The dashed line
represents the outgoing momentum kq + ko which will be set zero in the corresponding spectral
function. Using Wick’s theorem, contracting all gauge indices, using the properties of the ¢
matrix (LI.I4) and computing the Dirac trace, we fin

dd dd X
Ot k) =4 )ale) +) [ e e 5

3We use d%p = dpod?'p and po = ipo
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where d(r) = 2 is the dimension of the representation of the gauge group SU(2). This
two-loop integral can be interpreted as a product of two one-loop tensor integrals of the form

dd p
If(k) = / (2;)’ 7 (pp_ e (7.5.3)

Now, substituting p — —p + k, we find

It (k) = =1} (k) + k" I (k), (7.5.4)
where ;
d%p 1
I (k) = . .D.
(k) / (2m)? p?(p — k)? (7:5.5)
Therefore, we can write
m
(k) = %Jl(k;) (7.5.6)
which simplifies the three-point functions to
PO (ky, k) = —6ky - ko1 (k1)1 (—k). (7.5.7)

Now we use the inverse relation (B.3.2)) in combination with (B.3.7)). Then we set k1 = —k
and ko = k with k? = M? and obtain for the leading order spectral function in (ZZ.9)

PO (=k, k) = (2146]\7:[)1 (7.5.8)
The master formula (.4.9) then yields
(’Yg)zsf)alk 1(?7]7\4;]51{ Z MI [(h”Tahi) 17 (h”hl) 11] ’ (7.5.9)
This result can be written as
(v at = €5 (8 ps )1k (7.5.10)
where Mt
(V57 7)1k 15;7&{) (7.5.11)
is the leading order neutrino decay rate (c.f (L2.9)) and
gg(c)b) _ _% Z %Im [(hVTZ:ilei (h"hl>11] (7.5.12)
1 vhw)1n

is the CP asymmetry which agrees with (LZI2) for (7,)ij = 04ida;. We have therefore
reproduced the well-known leading order relation from section (L2)).
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7.6 Next-to-leading order at zero temperature

Now we compute the next-to-leading order SM corrections to the asymmetry rate at zero
temperature. For the next-to-leading order three-point correlator we consider only contribu-
tions from the Higgs self-interaction A, the top Yukawa coupling h; and the U(1) x SU(2)
gauge couplings g1 and go. The only Higgs contribution at zero-temperature at order g2 is

(7.6.1)

The top quark contribution comes from the diagrams

Ty(k1, ko) EW + W (7.6.2)

Here the fermionic lines in the closed lepton loop represent the top-quarks.
The diagrams contributing to g1 and go decompose into two gauge invariant sets, the
factorisable diagrams

I‘g,fauz(kl ; k2) =

(7.6.3)

(7.6.4)

Here the wiggled lines are the gauge bosons. The complete next leading order correlator is
then given by

U@ (ky, k) = Ty nac(k1, k) + T ac(k, k2) + Da(ky, ko) + Ty (ka, ko). (7.6.5)

We compute the spectral functions of the three-point functions I'y nfac, I'g fac, I'x and I'
in appendix [Bl At first we study the Dirac traces in [B.1l and show that all terms containing
~5 drop out. After performing the Dirac traces the three-point functions can be expressed
in terms of scalar Feynman integrals. We reduce these integrals to a minimal set of master
integrals in [B.2l Then, in [B.3] - [B.5 we compute the master spectral functions of the master
integrals. Combining all results we find the spectral functions
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Py nfac(—k, k) = % <3 + % +8In(2) +91n M212> (7.6.6)
Py fac(—k, k) = —% (3 + % +91In A‘_‘;> (7.6.7)
px(=Fk, k) = % (é + 12—3 +31n A’}—Z) (7.6.8)
(=, k) = % (g + 2 91n]\“4—212> . (7.6.9)

For the renormalization it turns out to be convenient to describe the exchange of virtual
heavy neutrinos Ny with I # 1 by an effective theory with an dimension-5 operator. Following
section we find

L =~ Mu(h)di + () 767+ He, (7.6.10)
where (gy)ij = 3121 (hw)ri(hw) /M. We renormalize the fields by

p=prZY? =tz (7.6.11)
and the couplings by

(hv)1i = (hur)1:Zn (9v)ij = (Gur)ij Zg. (7.6.12)

In appendix [B.6] we summarize the calculation of Zj, and Z, and find

1 3 N,
Zn=1+—(—-2(5 2 —|hy|? 6.1
h= 1 s (gt + 36 + S ) (76.13)
1 3 2 2 3 2 2 2
Zg=1+ (im)e <_Z(gl +303) + (91 +92) + 22+ Nelu|” |, (7.6.14)

where in Z, we have explicitly distinguished the coupling structures (g2 +93) and (g% +393).
The reason is that the first one cancels the divergences of the non-factorisable and the second
one in combination with Z; the factorisable gauge field corrections. Note that our result for
Zp, is consistent with the one in [53]. Using the master formula (7.49) in combination with
the spectral functions (Z.6.0)-(7.6.9) and expressing the result in terms of the renormalized
couplings (B.6.3]), we find the finite expression

(2) _ (0 9% + 395 i
(nyéf)alk - (7Q5f)a1k{1 + W <29 +61n M2

2 2 -2

91 + 95 <1 M >
+ ——8In(2) —3ln—
(871)2 2 M12

_ (Igg; <84+241 ]\_4—22> (82) <20+81 ]\_4—212> } (7.6.15)
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where (yg) 25 f)aik is the leading order rate (L5.9). Note that the factorisable corrections are
exactly twice the order ¢ corrections to the zero-temperature sterile neutrino productions
rate in [53]. We choose the renormalization scale i = T and define z = M;/T. The size of
the corrections is given in table [l and they are found to be very small. Even in the very

non-relativistic limit z = 10, where the contributions of the logarithms become relevant, the
corrections are smaller than 3%.

M, /GeV | z ’Yalk/ ’Yalk
107 0.9998
109 5 1.0181
10° 10 | 1.0277
1013 1 1.0096
1013 5 1.0176
1013 10 | 1.0219

—_

Table 7.1: Size of the corrections to the asymmetry rate for different values of M7 and z.

Using the zero-temperature limit of the NLO neutrino decay rate of [53], we find for the
NLO CP asymmetry

2 2 /9 —9
5@ 58{1—1—7914_392 < 9+31 a >

Gmz \2 "2
2 2 P
g1 +g5 (1 f
S 8In(2) -3l
e (2 i)
\ht!2< M2> A < 2)
42+ 12m 2 20+ 8l 2} L. (7.6.16)
 (87)2 MZ) T (8n)? M2
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Chapter 8

Sterile neutrino equilibration rate

In this chapter we study the coefficient 7545 in the kinetic equation (L2.I3) which describes
the evolution of the sterile neutrino phase-space densities fri. This chapter is based on the
author’s publication [4].

8.1 Relation between production and equilibration rates

For the derivation of the linear kinetic equations (L2.I3)) and (L2I4]) we assumed that the
phase-space densities frx and the charges ), are close to their equilibrium values. One
would therefore naturally think that the equations are wrong if frx < f7,} and consequently,
§fre &= —fp, which can be of order one. In order to get the correct kinetic equation for
small f7i, one would not expand the kinetic equations [B.1.2)) in ;i but in fr. The leading
contribution to this equation does then read

(Or — Hkok) fre =T + ...y (8.1.1)

14 2

where contains terms of order fr and @,. The coefficient I'P*° is the sterile neutrino
production rate and has been widely studied in several temperature regimes at leading order

and next-to-leading order in the SM couplings [50] 511, 52 53|, 54, (551 56, 57, 58]. Let us for a

moment assume that the linear equation (L213) is true for small values of fry as well. Then,
for frx = 0 and @, = 0 (L2I3]) implies that

TS = —(spsr) e [ - (8.1.2)
We will see that at leading order in h,
(Vspsf)kre = O 01Ty, (8.1.3)
which defines the sterile neutrino equilibration rate I'}l. This implies the simple relation
e = —The e (8.1.4)

between the sterile neutrino production rate and the equilibration rate. The great achieve-
ment of this relation is that one can simply use everything which is known about the so well
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studied production rate also for the equilibration rate F?‘f{. In 1983 Weldon [49] showed with
Boltzmann equations that this relation is indeed correct at leading order in perturbation
theory. However, if one wants to take radiative corrections like in [39] into account, (8I.4)
has to be proved beyond leading order. Shortly before we did the proof in [4], it has been
proved implicitly in [90]. In this reference, a kinetic equation for fr has been derived, which
is valid at h2, for any value of frc and to all orders in the SM couplings. In the absence of
chemical potentials of SM charges the equation agrees with the linear equation (LZI3) at
order hZ.

Here we prove the relation (8I1.4)in a rather general framework and consider the pro-
duction and equilibration rate of a particle with any spin or helicity, bosonic or fermionic,
charged or uncharged, which is described by a field ®. We assume the particle to be weakly
and linearly coupled to a plasma such that its interactions can be considered as slow. Then
the non-equilibrium system is completely determined by all slow quantities such as the phase-
space density fi of the particle ®. Here X labels possible spins or helicities. If the phase-space
density is close to its equilibrium value, its time evolution is described by the linear equation

(0 — HkO) fix = —(Vsf51 )i N0 fion =+ ooy (8.1.5)

where “...” denotes all other slow quantities in the system. The coefficient 755 can then be
computed according to B2.I3) as

“

T pi i (w)
(Voo Jexwn = o _lim M(

—1
X! N 1.

We assume that the system is described by the Hamiltonian
H=Hy+U, (8.1.7)

where Hy is the Hamiltonian which describes the plasma and the free fields ® and U describes
the weak interaction of the fields ® with the plasma. In the following, we distinguish two
cases. At first, we consider a charged particle species ® and derive a master formula for the
coefficient v;57s5¢ which relates the coefficient to the self-energy of the particle ®. This master
formula is valid to the leading order in U and to all orders in the plasma interactions. Then
we show that similar relations hold for uncharged particles.

In the following sections and we closely follow the publication [4] which has been
written by the author of this thesis in collaboration with D. Bédeker and M. Woérmann. A
similar discussion of the following derivations can also be found in [45].

8.2 Charged particle species

At first we assume the particle ® to be charged. The interaction can be written as
U= / &z (76— ), (82.1)

where J is any elementary or composite operator which does not contain the fields . We
define ® = ® for bosons and ® = &', for spin 1/2.
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Like in section (I]), we define the phase-space density in the interaction picture with
respect to U. The fields ® can in the interaction picture be written as free on-shell fields

[ (2)]ine = kz; ﬁ [e—ikx Urcior + €7 vk,\dL)\] wn (8.2.2)
where the annihilation and creation operators are normalized such that
[ckA CL,\/] = Ok OAN, (8.2.3)
with the (anti-)commutator [A, B] = AB — 0BA like in [2.1.3) with o = 1 for bosons and
o = —1 for fermions. We define the phase-space density operator as
[fiJine = €hoycien- (8.2.4)

Since [fxx]int commutes with Hy the Heisenberg operator is given as
fin(®) = e[ frlinee ™ (8.2.5)
and thus its time derivative is determined by the Heisenberg equation of motion
fra(t) = i[H, fir(t)]. (8.2.6)
The commutator can be most easily computed in the interaction picture, where
Fra(t) = it e O Ui [ fiealing €70 e . (8.2.7)
Since we need the time derivative only at leading order in U, we can approximate
Fia(®) = i[Uine, [frerline] + O(U?). (8.2.8)

Then we use ([82.2) and (82.3]) which yields

[[@]int: [fiealine] = (8.2.9)

and thus in combination with (82Z1]), the time derivative at leading order in U reads
?
V2ELV

Let us now use the formula [8I0) to compute the equilibration rate. In contrast to the
washout rate in chapter [0l it turns out to be useful here to compute the spectral function

fia(t) = /d?’x [j(a;)e_ikxukAckA - H.c.} . (8.2.10)

Pl funy @) = /dt et ([ fa®), fion (@] ), (8.2.11)
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directly instead of obtaining it as the imaginary part of the retarded correlator. Since we
only need the leading order in U, the average in (82.I1]) can be computed in an ensemble
with free fields ®. Thus after plugging (BZI0) into (8211) we may use

(laix) = daeOrw fo (Brc), (8.2.12)
(et = daedon (1 + o fo(Ex)), (8.2.13)
where f, is equal to the Bose-Einstein or Fermi-Dirac distribution for ¢ = 1 and o = —1

receptively. The spectral function can then be expressed in terms of the Wightman functions
in (ZILI) with A =%,J and B = Al as

ERLINY
Pfier o (@) = k; E:A [fo(Ek)Aj 50 (B + w. k) (8.2.14)

—o(1+ 0 fe(Ex))AS

= 7. Bkt w, k) — (w = —w)|. (8.2.15)

Now we use the identities (Z.I.F) to express the Wightman functions in terms of the spectral
functions of the operators A = TyyJ and B = Af. This yields

Okk/ OAN
Pforfons (W) = 2B, fo(Ex) — fo(Ex + w)] Pag T Bk +w, k) — (w = —w), (8.2.16)

and expanding this to the first order in w leads to

RIY,
Pl @) =~ =5 F5(Br) pay 7 (B, ) + O(w?). (8.2.17)

The susceptibilities xs7ss are determined by the free theory. Using Wick’s theorem and the

averages (B2.12) and (8213]), we find
(Xsfaf iy = Ok O fo (Ei) (1 + 0 fo(Ex)) = =T f7(Ex). (8.2.18)

Now we can use the Kubo-type relation (8I.6) and obtain the result

(Vsgsf k' y = O v Ty, (8.2.19)
with the equilibration rate
1
Mo = EpﬂJju(Ek’k)‘ (8.2.20)

The @ self-energy at leading order in the interaction U is equal to
E(iwn, k) = A 5 (iwn, k). (8.2.21)

Therefore, using the relation (2.I.10) between the spectral function and the two-point corre-
lator, we find

1
T = mﬂkADiSCE(Eka k) uix. (8.2.22)
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This is one of the relations which Weldon proved at leading order [49]. Our derivation of this
equations is valid at leading order in the ® interaction U and to all orders in Hy.

A similar relation for the production rate and the self-energy of the particle ®, which is
valid at leading order in U and to all orders in Hy has for example been found in [91] 92, 93]
and reads o

pro _ <
Tev = 2F) AaJ Ju
For a review see for example [94]. Using the relation (ZI.5]) between the Wightman functions
and the spectral function one easily finds

(Ex, k), (8.2.23)

TRy = —T53 fo (B)- (8.2.24)

This is the other relation which has been found by Weldon [49] at leading order. Our proof
of this relation is valid at leading order in U and to all orders in Hy.

8.3 Uncharged particle

The annihilation operators of uncharged particles satisfy cxy = diy. Therefore, the fields ®
read in the interaction picture

1 ik ik i
[ ()i = kz; o [e K s e 4 ik UkACkA] oop (8.3.1)
Let us assume that the interaction can be written as
U=1% = I, (8.3.2)

where [ is an elementary or composed operator which does not depend on ®. This is clearly
true if ® is a real scalar field or a gauge field. We will later justify that this is also true for
fermions and show that an interaction like (821]) can be written as (83.2]), if ® is uncharged.
We use the same definition for the phase-space density as for the charged field (82.4) and
compute the time derivate according to ([82.8). For the uncharged field operator (831 we
do then find the commutator

1 o ,
[[@]int [fin)int] = e R — Mol (8.3.3)
V2EV
and therefore, the time-derivative at leading order in U reads
, i _ » .
() = xl(z) (e " Pugackn — e okaey,y ) - 3.
f (t) \/W d3 I( ) ikx ikx T (8 3 4)

The fact that fix(t) is real requires T(z)vgy = (T(2)uky)" and therefore the time derivative
of fi for an uncharged particle is the same as for the charged particle with J replaced by I,

fk)\(t) = ﬁ /d?’ﬂj <7(l‘)6_ikxuk)\ck)\ - H.C) . (8.3.5)
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For this reason, the steps for the computation of the spectral function are the same as for
the charged particle and we find

D = ﬁpmwk, k). (8.3.6)
The self-energy of the uncharged particle is at leading order in U the same as for the charged
particle with J replaced by I. Therefore, we find the same relation (82.22]) between the
equilibration rate and the self energy for an uncharged particle. For the production rate one
also finds the relation ([82:23)) to the self-energy, with J replaced by I. Therefore, the relation
of Weldon ([B:2Z.24) is also true for uncharged particles.

Let us now have a closer look at the operator I in ([83.2)). The fact that ® is uncharged

means that it is invariant under charge conjugation
COCT =0 = (8.3.7)

and we assume that fields transform under charge conjugation as

= ST, (8.3.8)
where S is a matrix with appropriate properties. For example, for spin % fermions we would
have S = —%. In general we see from terms like

3P =BST =005 T, (8.3.9)

that S has to satisfy the condition
ST =08. (8.3.10)

Let us now consider the interaction (8.2.1]) which we used for the charged particle and write
® as its charge conjugated. This yields

U=7S3 +3.. (8.3.11)
Then, in combination with (83I0) we have
U=o(J+ J. (8.3.12)

If we define I = (J + J¢), we end up with the interaction (83.2) which we used for the
uncharged particles. Therefore, if ® is uncharged, we can write the interaction ([82.1]) as
E32).

Let us now go back to the sterile neutrino Yukawa interaction (LZ4). Then ®(x) is
equal to the Majorana neutrinos Nj(z) and the interaction with the SM plasma is given by
Jr = (hy)ripl;. At first we rewrite the terms J_IC'LL]kS = UrksJ1 and Uk Jf = Jrvres and
then we use the fact that the expectation values (J;(z)J;(0)) and (Jy(x)J;(0)) vanish due
to B — L conservation in the SM. Then the equilibration rate for the Majorana neutrinos can

be written as )

—— [py i (Ba X) + po 5~ B, k)] 31
EIk [puJuJ( k> )+IO1)J1)J( k> )] (83 3)

eq  __
FIks - 2
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A similar expression has been derived in [50] for the production rate of spin-averaged sterile
neutrinos. In order to compare their result with ours, let us compute the spin averaged rate
as

1
The=15 > T (8.3.14)
S

Using the completeness relations (Z.ILI1]) and (Z.I.I2)) and using the fact that the fields J are
left-handed, so that the masses M; drop out, we end up with

1

R
Ik 4Elk

Tr (}é [ij(Ek, k) + ,()Jj(—Ek, —k)]) . (8.3.15)
Combining this result with the relation (8I4) we reproduce the the formula for sterile neu-
trino production rate which has first been derived in [50]. We conclude that the sterile
neutrino equilibration rate can be obtained from the known results for the sterile neutrino

production rate. In particular this justifies the usage of the NLO production rate of [53] in
[39] within the linear kinetic equation (L2ZI3) .
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Chapter 9

Summary and Outlook

We used the Kubo-type relations (8.2.12)) to compute dissipation rates of the linear kinetic
equations (LZI3) and (LZI4) which describe the evolution of the sterile neutrino phase-
space densities and charges which are broken in the presence of the sterile neutrino Yukawa
interaction. These Kubo-type formulas relate the dissipation rates to real-time correlation
functions and susceptibilities which can be calculated in thermal quantum field theory.

In chapter @l we computed the susceptibilities of conserved charges in the Standard Model
by calculating the grand canonical potential to order g2 in the Standard Model couplings and
to order 2 in the particle chemical potentials. The computation of the order g susceptibil-
ities completes the order g2 calculation of the AL = 1 washout rate [41]. We also used them
to compute the relation between B and B — L at order g2. The susceptibilities receive contri-
butions from different momentum scales, which we calculated in effective theories within the
framework of dimensional reduction. The NLO corrections are only due to the Higgs and are
smaller than 1% for the ratio k = B/(B — L). The NNLO corrections are much larger due
to QCD corrections, but still smaller than 5%. At low temperatures close to the electroweak
scale where the Higgs mass becomes ultrasoft (ms ~ ¢*>T'), we find that the contributions to
the Higgs chemical potential are determined by the non-perturbative electroweak magnetic
screening scale ¢>T, where the loop expansion breaks down. For a reliable calculation of these
contributions lattice simulations are needed.

In chapter [fl we computed the AL = 2 washout rate in the low temperature limit (7" <
M), where the sterile neutrino exchange can be approximated as a point-interaction which
can be described by a dimension-5 operator. Using the Kubo-type formula we computed
the leading order AL = 2 washout rate, using full quantum statistics. The next-to-leading
order of this rate is of order g in the SM couplings because the next-to-leading order of
the susceptibilities is of order g due to the thermal Higgs mass. We find that the spectral
function obtains a order ¢g2In g correction due to Higgs mass resummation which is beyond
next-to-leading order. Numerically we find that quantum statistics gives a 24.6% larger rate
than classical statistics and the order g corrections from the thermal Higgs mass are smaller
than 3%.

In chapter [l we derived a spectral representation for imaginary time three-point functions
at finite temperature. We found inverse relations between the spectral functions and the
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retarded correlators, which are very similar to the well-known relations for two-point spectral
functions summarized in section 2.11

In chapter [ we used the findings of chapter [l to compute the C'P violating asymmetry
rate. We derived from the Kubo-relation ([3:212) a master formula for this rate in the
hierarchical limit. This formula relates the asymmetry rate to a single three-point spectral
function of Standard Model fields, which can be computed to any order in the Standard
Model couplings, except the Yukawa interactions of SM leptons. As a first application we
used this formula to compute next-to-leading order corrections to the asymmetry rate at zero
temperature. In the non-relativistic limit 7" < M; this is the leading contribution of the
expansion in powers of T'/M; and e~ M1/T We find the corrections to be smaller than 2%.
An interesting future project could be to compute higher orders in 7'/M; with the master
formula (.49) and to compare them with the recently published results of [48]. Another
important project would be the computation of the leading order in the ultra-relativistic
regime M ~ ¢gT'. For this purpose one possibly has to generalize the master formula to the
non hierarchical limit. At high temperatures the three-point spectral function should receive
large contributions from infinitely many soft gauge bosons like in the case for the sterile
neutrino production rate [51].

Finally, in chapter [§ we showed that the sterile neutrino equilibration rate and the sterile
neutrino production rate are related by the simple equation (8I4]). This relation holds to
leading order in the Yukawa interaction (LZ4]) and to all orders in the Standard Model
interaction. Therefore, all results of the next-to-leading order analysis of the well studied
production rate can be simply related to the equilibration rate. We proved this formula in
a rather general framework, considering a charged or uncharged particle ®, which can be a
fermion or a boson with any spin and which is weakly and linearly coupled to a plasma. It
would be interesting to study if a similar relation also holds for the production rate of the
lepton asymmetry. A first step in this direction has been made in [95] where a formula for
the lepton asymmetry with fr, = 0 has been derived. In principle it should be possible to
use their approach to find a relation between the asymmetry rate and three-point spectral
functions similar to our master formula (ZZ.9]).
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Appendix A

Washout rate: Computation of the
phase-space integrals

The calculations and results of this appendix are planned to be published in [2].

A.1 Definitions

In this appendix we calculate the integrals 1% and I1{'° belonging to the integral class

1%1020304 :/dHldHQdﬂgdH4(27T)4(5(4)(k1 + ko — k3 — ky)

X (ki - k) fol(E1) fod(B2)(1 + o3 f33(E3))(1 + oafsl(Ey)) g (A.1.1)
0=E;

where o; is 1 for bosons and —1 fermions, fi=fg and f_i=fr, dll; = d°k;/(2E;), E; =

\/m? + k? with m; € {0,m3} and mg is defined in (Z45]). Thereby we expand the integrals
to the next-to-leading order in m3. For the calculation we will use the relation

foi(Ei)fcrj (E]) = fO’ij (EZ + E]) (1 + UifUi(Ei) + Ujfaj(Ej)) ) (A12)
where 0;; = 0;0;. In addition we will use in the following the notation
1 1

fr(z) = op@/T) +1' fe(z) = oxp(z/T) =1 (A.1.3)
~ 1 ~ 1

— e — Al4

fF(‘T) exp(a:)—l—l’ fB(x) eXp(ZL’) 1 ( )

A.2 Calculation of [{;"

At first we bring the integral I{2% to a simpler form using (AL2) for fg(E3) and fp(Ey)
and find

113%(mg3) = /dH1dH2(k‘1 ko) fr (B fr(E2)(1 + fe(E1 + Eo))Fog (k1 + k2),  (A.2.1)
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where

Fopy (k) = / d3dITy (2m)* 6™ (k — ks — ky) (1 + fB(E3) + fa(E4)), (A.2.2)

with k = (B + E, ki + ko), E12 = |kio| and E34 = k§74 +m3. We calculate (A2.2)
analytically with finite Higgs mass. For that purpose we choose k = ki + ko as z-axis,

perform the k4 integral and the integrals over the angles and end up with

1
Frng (k) = s7ikl ). dEs(l + 2fB(E3))0(ko — E3)0(2k|\/ E3 — m3 + k* — 2koEs3)

x 0(2/k]| E3 —m2 — k* + 2koE3).

(A.2.3)

The remaining integral over F3 can be solved exactly and the solution reads

4 2 1/2 fB( +)
Frny (k) = i |k| {y y ( ) + 2T In (fB (Ei )> } 0(k* — 4m3), (A.2.4)

where Ef = ko/2 + k| (1 — 4m§/k2)1/2 /2 are the zeros of the §—functions. For mg = 0 we

find
ko+|k
1 fB< 0‘5‘ |)
Fo(k) = ———= < |k|+2TIn | ——< . (A.2.5)
Sk o (52)
2
Substituting By = (z+y)T/2, By = (x—y)T/2 and |k; +ka| = 2T, the integral I13°°(mg = 0)
can be written as
T6 oo 00 oo f~B (Z-‘rl‘)
115" :0:—7/d/d/d 222 2In [ =22
(m3 =0) 16(2r)° x Yy ; z(2*—2°) [ z+2In =)
(A.2.6)

fo< )fF< )<1+fB<>><x—z>e<z—y>.
The y-integral can be solved exactly and reads
[ i (52 e (S52) 0 - ( +2m (—"2 ((E)) )) fa@. (A2

Thus we are left with the 2-dimensional integral

149 (1n5 = 0) 16% / d:s/ dz (2% — 2) (@) (1 + fi(2))0(x — 2)

B s




which can be further simplified by doing the substitution (z 4+ 2)/2 = s and (z — 2)/2 = t,
leading to

6 0 0 - -
1139 (ms = 0) :4(:;7)5/0 ds/o dt-s-tfg(s +t)(1+ fe(s +1))

X <s—t+21n (J;E((:)))) <s—t+21n (%8)) . (A.2.9)

The integral can now conveniently solved numerically and the solution is

[4%(m3 = 0) = 1.14 x 1077, (A.2.10)

The next step is to find the leading mg order of I13%°(m3). This can be obtained by

restricting to the infrared sensitive part of (A2.2), denoted by FLE. It corresponds to the
small arguments in the Bose distribution, where fg(E) ~ T/E. In this region we find

T Ey
FIf(k) = ———2In [ =2~ 2 — 4m3). A.2.11
A0 = —gr2in (55 ) 082 — am (A211)

It turns out that the mass derivative of F,{f; can be more easily integrated. Therefore, taking
the derivative and again restricting to the infrared sensitive part, yields
1 d T k
- 50 =
2dm3 4 k* + 4]k[?m3
We substitute E1 = (x +y)T/2, B2 = (x — y)T/2 and z12 = k; - ko/(E1E2) and solve the
integral over z15 which yields

Tky [* k20(k? — 4m3) 1 =z z? m3
— dzig———————=———F—=|In| —— In(— 7 . (A.2.13
At |4 2y 4|k[2m3 47 22 — 32 v y? Fin(zm) +0ma) ) - )

0(k* — 4m3). (A.2.12)

The remaining 2-dimensional integral is

1d ;5  TC(1\°( ,m} o) [ 2 (r+y
_§d—m§Ill—ww—_§<%> ln(ﬁ)+ﬁ(m3) /0 do i 2

oo 5 r—y 5
X dy fr — z(1+ fp(z)), (A.2.14)
0
and can be solved exactly. The result is
1 d g 1 2 2 m3 o 0
7 e =5 <E £10(2)? ) (22T + 0(m)
2
_ m
=1.66 x 10 51n(T—§)T4 + O(m3). (A.2.15)
Integrating over ms and using the condition that I14%(ms3 = 0) is equal to our result
(A2.10)), we find
190 = (1,141 0.33373 n(22)) x 10747 + (2 A.2.16
12 (m3) = 114 +0. ﬁn(ﬁ) X + O(m3). (A.2.16)
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A.3 Calculation of I{{"

At first we rename ky <+ k3 and then use (A.12) for fg(FEs3) and fg(Ey). Then we can write

1190 = / dIlydIIy (ks - ko) fe (E1) (1 — fr(E2)) f(E2 + E1)Go, (k1 — k2), (A.3.1)

where
Gy (k) = / A5 dIT, (2m)0W (k — ks — ks) (fB(E3) — fa(E4)). (A.3.2)

In this case kg = E1 — Es and k = k1 — ky. Again we first perform the k4 integral and the
integrals over the angles and obtain

1 o0

Gy (k) = —— [ dEsfp(E3)] 0(2|k|\/E3 — m3 + k* — 2k F3)
87|K| /s

0(2|k|\/E2 — m3 — k? + 2koE3)0(E3 + ko)

— 0(2|k|\/ E2 — m2 + k* + 2ko E3)

0(2|k|\/E2 — m3 — k?* — 2koE3)0(E3 — ko)}. (A.3.3)
The remaining integral over F3 has the simple solution

G () = 87r1|k| <% +1n (%)) . (A.3.4)

Again, we first consider the massless case and we substitute Fy = 27T, 1 — Es = yT and
|k; — ko| = 2T. Then we obtain

6 [e'9) 00 e 5 5 5
1 =0) == g [T [y [ defota) o)1 = Frle =)o =)

f8(*7°)
X <y+ln <f§(%y)>> 02z —y —2)0(z — y). (A.3.5)
The x-integral can be solved exactly and yields
00 B B B fF(erZ)
/ dz(1 — fr(z —y)) fr(x)0(2x —y —2) =y +1In | = |- (A.3.6)
0 fF( 2 )

Finally we end up with the 2-dimensional integral

6 00 e _ B
1 s = 0) =gz [y [ a1+ )Gz~ )7 - )

(s5) NS .
(ren(BZ)) 0o (5F) e
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which can be calculated numerically. The result is
9% ms = 0) = 5.91 x 107°7°, (A.3.8)

Now for the small mass behavior we consider again the mass derivative of the infrared
sensitive part and obtain

_ )=———— . A3.9
2dm3 ms (K) 47 k* + 4|k|2m3 ( )

Doing the substitutions Ey = 2T, E; — By = yT and z12 = k; - ko/(E1 Es) and integrating
over zio yields

Tko k2 y 2 m3
T d = In{—"—— 1 17
4 /_ 12 kt + 4|k|2m3 167mx(z —y) < . <4:E2(3: —y)? +in T2 +0(ms).

(A.3.10)

Then we get the 2-dimensional integral

a8 =5 () () + o))
<[ o [Ty (1= o) Fole - wulalole -y, (A1)
0 0

whose solution reads

1 d 400 ! 2 2 %
-7 = —41In(2 In(=2 %
_ m3
=1.27 x 107°7* <ln( T2 ) + ﬁ(m3)> (A.3.12)
and therefore )
09%mg) = 1° (5.91 +2.54 m%)) x 107° + 0(mY). (A.3.13)
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Appendix B

Asymmetry rate: Computation of
the spectral functions

In this appendix we present the computation of the spectral functions of the three-point
correlator (Z.6.)), (7.6.2), (C.6.3) and (T.6.4). The calculations and results of this appendix
are planned to be published in [3].

B.1 Dirac traces

At first we use the Symbolic Manipulation System FORM [96] to generate the diagrams with
Wick’s theorem, compute traces in the gauge group space and use the properties (LI.14)
of the matrix %. Since the resulting loop integrals are UV divergent, we use dimensional
regularization. We do not yet perform the traces over Dirac matrices because in dimensional
regularization in calculations beyond leading order we have to be careful with v5, appearing
in the chiral projectors P, /p.

Then we find the following expressionsEl for the NLO diagramsg

W = 2d(r)(d(r) + 1)(y2g7 + Ca(r)g3)Tr (Yu, PLu, Pr)

P ph? (p1 + p2 — 2k1)?

X , B.1.1
' /z>1,p2,p3 p%pg(m — k1) (p2 — Fk1)2(p3 + k2)%(p1 — p2)? ( )
. S U D2 + Co (M 2VTr (v, P P
W = 2d(r)(d(r) + 1)(yz97 + C2(r)g3) Tr (v, PLyus PR)
" / P ph? (ps + p2 + 2ks)? (B.12)
P1.P2,P3 p%pg(m — k1)2(p2 + k2)*(ps + k2)?(ps — p2)?’

W = 2d()(d(r) + 1)(s2e? + Ca(r)e})

: 4l i e _
"'We use jp =/ (;W?d with dp = dpod?'p and po = ipo.

2Due to lack of space we only show the diagrams in Feynman gauge & = & = 1
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X Tt (Yuy Prvus PRV Put® PYps Py, Pr)

PP pl Pt (B.13)

X M
/171,1727203 p%p%pg(pl - k1)2(p3 + k2)2(p1 - p2)2

W — 2d(r)(d(r) + 12e? + Calr)gd)

X T (Vg Pryus PRY™ PLyps PR Yus PLyus PR)

LWURANY (B.1.4)

X
/17171727103 p%p%p%(pl - kl)z(p2 + k2)2(p2 - p3)2’

= 2d(r)(d(r) + 1)(ypyegi + C2(r)g3) Tr (Vs PLYus PRYpso P Vs F)

P P2 ph? (p1 + po — 2k )M

X )
/pl,pg,ps pIp3p3(p1 — k1)2(p2 — k1)%(ps + k2)%(p1 — p2)?

= 2d(r)(d(r) + 1) (yayegi + Ca(r)g3) T (Vo PrVus PrVyus Pr Vs Pr)

(B.1.5)

" / P b ph? (p2 + p3 + 2ka)He (B.1.6)
orpaps DIDADA(D1 — k1)2(p2 + k2)?(p3 + k2)%(p2 — p3)?’
::.‘,-.--. ...‘J::' ©"": 2
W - —2d(7’)(d(7’) + 1)Nc‘ht’ Tr (7#1PL’Y/12PR) Tr (’YugPL’Y/MPR)
" / Py py° (s + K2)Me (p2 — p3)™ (B.17)
, P1,P2,P3 p%p%(pl — k1)%(p2 + k2)*(p3 + k2)2(p3 — p2)?’
S
W = —2d(r)(d(r) + 1) Ne|he|*Tr (11, PLps Pr) Tt (Y3 Py Pr)
» / P ph? (ki — p2)t3 (pg — p1)H4 (B.18)
prweps PIP3(01 — K1) (D2 — k1)2(p3 + k2)2(p1 — p2)?’
' =4d(r)(d(r) + 1A (Y43 PLyys Pr)
N (k1 — p1)" (p2 + ko)H2
X , B.1.9
/Plpziﬁs pip3(p1 — k1)%(p2 + k2)%(p1 — p3)?(p2 — p3)? ( )
i 2(d(r) + 1)g} + Co(r)g3)Tr (3 Ly Pr)
(k1 — p1)P (p2 + k2)H2 (p3 — 2p2)"> (p3 — 2P1) s B.1.10
X 212012 — k)2 ko )2 o 2 . 27 ( cte )
p1paps P1P3P5(P1 — k1)?(p2 + k2)?(p1 — p3)?(p2 — p3)
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= —2d(r) (y2(d(r) + 1)g% + Ca(r)g?)

X Tt (Yyuy PLAYps PRYpo PLYps PRY™ Py Pr)
" / Py (p1 — p3)"? (p2 — p3)Feph*
o1 paps PIDAD3 (D1 — k1) (p2 + k2)2(p1 — p3)2(p2 — p3)?

(B.1.11)

= 2d(r) (ypye(d(r) + 1)g; + Ca(r)g3) Tt (Vo PrVus PrVpus Prvus Pr)

. 11 . 2 M3 _ M5
. / (k1 — p1)* (ps — p1)*2ph° (ps — 2p1) 7 (B.1.12)
p

L paps PID3DE(P1 — k1)%(p2 + k2)?(p1 — p3)%(p2 — p3)?

(%51 _ H2 u3 _ M5
§ / A" (p1 — p3)"2 (P2 + 9)** (p3 — 2p2) (B.1.13)
p

Lp2ps PiD3P3 (D1 — K1)2(p2 + k2)?(p1 — p3)? (p2 — p3)?’

Here we use y, = —ys = —y¢ = 1/2, d(r) = 2, Cz(r) = 3/4 and N, = 3.
For the treatment of 75 we proceed similar to [53] and use the definition
_ L
4!
of 't Hooft and Veltman [97] and apply the prescription of [98] which allows a naively com-
muting 5 with 42 = 1 in traces with more than one 75, except in closed fermion loops. Then

only traces with one or no 5 remain. Let us for example consider the trace in the diagram
(B.19). Using the prescription of [98] we can write

Tr (v*Pry"Pr) = Tr (v"9" = ¥"[75,7"]) - (B.1.15)
Furthermore, with the definition of 5 through (BI.14]) we obtain (c.f. [53] )

V5 E,Wpa’Y”’YV’Yp’YU, (B114)

4 o
[7577/1/] = gel/,up (/y,u’)/p’yo‘ - ’707p’7,u)- (B116)

Then the 5 term in the trace drops out due to the total anti-symmetry of the € tensor and
the cyclicity of the trace. We can do exactly the same in the diagram (BII0).

The factorisable diagrams (B.1I))-(B.18)) are very similar to the diagrams which con-
tribute to the sterile neutrino productions rate in the non-relativistic regime [53]. In fact,
the diagrams are proportional to the NLO sterile neutrino self-energy for which it has been
shown in [53] that the 75 contributions cancel.

For the diagrams (B.LI1)-(B.1.13) such a cancellation does not happen and we need a
further argument. First of all we use a naively anti-commuting 5 and 72 = 1 in traces with
more than one 5. Then only traces with no or one v5 remain. Using the definition (B.1.14)
the traces containing one 5 can be written as

i
T (Vpy Yoo Vuz Yua¥5) = 56”“’2”3”4% (Yx Yz Yz Ysa Yoo Yoo Yoz Vo) - (B.1.17)
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Due to the total anti-symmetry of the ¢ tensor we can drop all combinations of

v 212 3V3 4V4
77#1 177M 77# 77#
which are anti-symmetric in the indices 1, ..., 4. Therefore, we have

Tr (K1 Fokskyys) = 4i€uup0k£“k75k§kz] (B.1.18)
and consequently, in the diagrams (B.LIIl) - (B.I13) the tensor integrals which come from
traces with one 75 have the generic form
/ TP ({pi}, k1, k2)
p1paps PIPPE (D1 — K1) (p2 + k2)?(p1 — p3)? (P2 — p3)?

Ig/pa(kl,ka) — , (Bllg)

where TH1#21314 ({p;} k1, ko) is one of the total anti-symmetric rank-4-tensors of the set

(oY pswbk?) p pslks ol Py k{3 ). (B.1.20)
Lorentz symmetry guarantees that a sub-integral such as
ph
J*(p1,p2) = / (B.1.21)
ps D3(03 — p1)2(p3 — p2)?

can be written in terms of scalar functions f; and fy as

J"(p1,p2) = P f1(p1,p2) + Db f2(p1, p2)- (B.1.22)

Thus all tensor integrals can be expressed in terms of integrals containing the tensor
THP? (p1,p2, k1, k) = p[l”pék”k 7] (B.1.23)

Lorentz symmetry guarantees that we can compute the three-point correlator for ki =
(k9,0). Since the spectral function function in (ZZJ) is evaluated at ky = —ks = —k we
can also set ko = (k9,0). Since TH%(py,pa, k1, ka) = 0, we see that traces with one 75 do
not contribute. Note that this argument does not hold at finite temperature since Lorentz
symmetry is broken there. For the finite temperature computation one would need to compute
the tensor sum-integrals in terms with ~5 explicitly.

B.2 Reduction to master integrals and c-expansion

We compute the diagrams (B.1.1]) - (B.1.13]) with arbitrary gauge parameters £; and &. We
perform the Dirac traces in FORM [96] which yields scalar products in the numerators of the
Feynman integrals, which can be expressed in terms of inverse scalar propagators through
the relations

1
pi i =5 (pz2 +p;— (pi — )%, (B.2.1)
1
1
pi- ko= =5 ((pi + k2)* — pf — K3) . (B.2.3)
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Then all three-point Feynman-integrals appearing in the computation of the NLO spectral
functions have the generic form

7 (it ) = / dipy dips dps 1
ovesF1oK2) = [ Gyt Gyt e g
" 1
(p1 — k)94 (pg — k1)295 (p3 — ky)2a0
1
x
(p1 + k2)?97 (pg + k2)?%s (ps + k)20
" ! (B.2.4)

(p1 — p2)?@10(py — p3)?@11 (pg — p3)?a2’

with integers a;. They can be mapped to a minimal set of master integrals, using the method
of integration by parts (IBP) [99]. With help of the program Reduze [100], which uses the La-

porta algorithm [I01] for IBP, we get the following gauge-parameter independent expressions
for the three-point correlators in terms of master integrals:

Ly ntac (K1, k2) = —2d(r) (ygye(d(r) + 1)g7 + Ca(r)g3)
< (d —2)(2d — 5)(—20 + 79d — 48d> + 8d3)I
X (d— 3) (3d — 10)(3d — 8)]@% 001000010110
4(d —2)(2d — 5)(2d — 3)1
(d— (34— 8k 000001010110

(d —2)(2(9 — 9d + 2d?) (k1 + k2)? + (=25 + 23d — 5d?)k2)
+ (A= 3)(3d -9k Ino1001010110
n (42560 — 78192d + 58256d> — 22318d° + 4561d* — 456d° + 16d°)

(d —4)2(d — 3)2(3d — 10)(3d — 8)k?

x(2d — 5) 1010001000110

—2320 + 2900d — 1168d? + 93d> + 41d* — 7d°

(d — 4)(d — 3)(3d — 10)(3d — 8) In10001010110
+2(—60 + 55d — 15d2 + d3)k2 — 2(d — 2)2(4d — 13)k; - k2]
(3d — 8)2 011001010110
(d—2)?

~ ]
+ d—3) 011001100100

8(—60 + 55d — 15d% + d®)k? k3

(34— 10)(3d = 8)2 To21001010110
—4(d —
—g 1 Ti00001010110

4
(d—2)iF
(d — 3) 101001010110

d— 2)k?
—I—ﬁhmoomlono
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(d — 2)(2d — 3)kf (k1 + k2)2loo1002010110
(d—3)(3d — 8)k2
(12 — 5d) (k; + k2)?
@ 3)(3d—9) 1910002010110

d—2)?
+7((d —3) 1101010001100>, (B.2.5)

L tac(kr, k2) =2d(r)(d(r) + 1)(y391 + Ca(r)g3)

(A=A —d+dks -k
(_4 +d)2k7% 011001100100

(d=2)(=4—d+d)ky ki,
101010001100
(=4 + d)%k?

A=k
(d — 4) 111011100000

d—2)ks - k
_((d)fi)lhnoouwooo) (B.2.6)
La(ky, ko) = —4d(r)(d(r) + 1)A
(=2 + d) (=5 + 2d)(—20 + 7d)
1
(=3 + d)(—10 + 3d)(—8 + 3d)k2 001000010110
2
—4(=2+ d)(=5 + 2d)
(41 d)(-813d)k2 Tooo001010110
(-2+d)
—]
+(—8—|—3d) 001001010110
—(=5 +2d)(=1040 + 1064d — 362d° + 41d°) |
(C4+d)(—3 + d)(—10 + 3d)(—8 + 3d)kz 010001000110
—(100 — 72d + 13d?) J
(10 + 3d)(—8 + 3d) 010001010110
—2((—4 +d)(=5 + 2d)k} + (=2 + d)*k1 - ko)
* (=8 + 3d)? Io11001010110
—8(—4 + d)(=5 + 2)k3k3 |
(=10 + 3d)(—8 + 3d)? 021001010110
—(2+ DRk + k2)?
(=3 + d) (=8 1 3d)k2 " o0to0010110
—(—4+d)(k1 + k2)?
((_3 T d)z(—g n 3;; 101000201011o>, (B.2.7)
Ty(k1, ko) = 2d(r)(d(r) + 1) N.|hy|?

x(W

T101010001100
T
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(d—2)ky - ky

1 . B.2.8
(d— D)k2 011001100100> ( )

Applying the inverse relation ([6€I1.19) to the above reduction, we can express the spectral
functions corresponding to the I'’s in terms of master spectral functions. The master spectral
functions are obtained from the master integrals in the reductions above from the inverse
relation (G.I.I9) as well. We compute these master spectral functions in appendix [B.3] - [B.Al

Let us discuss the master integrals which appear in the above reductions in more detail.
The factorisable contributions I'; and Iy . contain only the factorisable master integrals

Itac3n(k1, k2) = T1o1010001100 (K1, K2), (B.2.9)
Itac3r (K1, k2) = lot1001100100 (K1, K2), (B.2.10)
Itacar.(k1, k2) = I111011100000 (K1, K2), (B.2.11)
Itacar (K1, k2) = I111001110000 (K1, K2). (B.2.12)

We compute the e = (4 — d)/2 expansion of the spectral functions of these integrals in (B.3)

and find
Pracsi (=, k) = ﬁ (1 te <127 +3In <’Zz>>> (B.2.13)
pracsi (—k, k) = ﬁ (1 be <127 +3In <‘]£>>> (B.2.14)
P (— ki, ) = —W <1 4643 (‘;)) (B.2.15)
procar(—k, k) = —m <§ 464 3n (Z—j)) , (B.2.16)

where we introduced the MS - scale parameter i2 = 47pu2e .

In the reduction of the non-factorisable contributions I'y ,ac and I'y appear some master
integrals which trivially lead to vanishing spectral functions because they depend only on a
single variable. These integrals are

Io(k2) = Too1o00010110 (K1, K2), (B.2.17)
Io(k1) = Tooooo1010110 (K1, k2), (B.2.18)
Io(k1 + k2) = Iotoo01000110 (K1, K2). (B.2.19)

The remaining non-trivial non-factorisable integrals are

Issr(k1, k2) = Ioo1001010110 (F1, k2), (B.2.20)
Iss(k1, k2) = Ioiooo1010110 (K1, k2), (B.2.21)
Issrdot (K1, k2) = Too1o002010110 (K1, k2), (B.2.22)
IssLdot (K1, k2) = Io10002010110 (K1, k2), (B.2.23)
I (k1, k2) = Iotiooio10110 (K1, k2), (B.2.24)
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IgBdot (K1, k2) = In21001010110 (k1, k2), (B.2.25)
Iur(k1, k2) = Loooototonio (K1, k2), (B.2.26)
Iot, (K1, ko) = 10001010110 (K1, k2), (B.2.27)
Ior (K1, k2) = Lioroot010110 (K1, k2)- (B.2.28)

(B.2.29)

The integrals Issrdot (K1, k2) and Issnaot (K1, k2) are multiplied by (ky+k9)? in (B2.5). There-
fore, we only need to check whether their spectral functions have a pole for k1 = —ko. In
appendix [B.5.2] we find that this is not the case. We compute the other spectral functions in
sections [B.4] and and find the e-expansion

pssL(—k, k) =0, (B.2.30)
pssr(—k, k) =0, (B.2.31)
(—k k)——; l+7+31n 'a—z (B.2.32)
PEBLTE )= (167)2472 \ e k2) )’ -
1 1 i
kk) = —— 4+3ln (= B.2.
pBBdot( ) ) (1671')2471'2]{32 ( +4+3In <k2>> ) ( 33)
—kk)=——-— 1|1 1 In|— B.2.34
pLr(—k, k) (167T)287T2< +€<0+3n<k2>>>, (B.2.34)
1+ 1In(2)
—k k) =5 B.2.35
p2L( ) ) (167‘(’)247{'27 ( )
1+ 1In(2)
—k k) =55 B.2.36
p2R( ) ) (167‘(’)247{'27 ( )
k2 17 >
pfach(—k‘, k‘) = W <1 + € <7 + 3ln (p))) s (B237)
k2 17 i
pfac3R(_k7 k) = W <1 +ée <7 + 31ln (ﬁ))) 5 (B238)
1 1 2
acAL(—F, k) = ——-—5 | = In{=]]), B.2.
PracalL( ) (167)7272 <€+6+3n<k2>> ( 39)
1 1 i
acaR(—k, k) = ———5— - +6+3In|— | |. B.2.40
pracar (—Fk, k) (167)2272 <€ +6+3In <k2>> ( )

B.3 Factorisable three-point spectral functions

Some of three-point master integrals of the NLO correlator factorize into a product of two
real two-point integrals I(k1) and J(—ks2),

U(k1, ko) = I(k1)J(—k2). (B.3.1)
In this case one can further simplify the inverse relation (G.I.19) to
plkr, ks) = —4Im(I(ky + i0))Im(J (ks + i0F)). (B.3.2)
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Thus the three-point spectral-functions also factorizes into a product of two two-point spectral
functions.

B.3.1 Computation of pp.ar and pracar,

We compute the spectral functions of the integrals

(B.3.3)

1
Itacar,(k1, ko) = /

P1,P2,P3 p%p%pg(]b - k1)2(p3 - kl)z(pl + k72)2’

and Iraeqr (K1, k2) = Itacar (Ko, k1) which can be written as a product of the two integrals

dp 1
10 = [ G =i (B34
and
Ly(k) = I (k)? (B.3.5)
as
Itacar(k1, ko) = Ia(k1)I1(—k2). (B.3.6)
Using the inverse relation (B.3.2) and [53]
-
Ty (ko + 10, k) = 8K 1y (B0 | 4 ), (B.3.7)
167 k2
4 _ sgn(ko) 1 ﬂ_2
(ko + 07,1 = o (2 2 44 ) + 0(e) (B.3.8)
we find
ko k) = ko k) = = ! w2+ B
PracaL(—k, k) = pracar (=K, k) = “omm? \= +6+3In75 )+ (), (B.3.9)

where 71?2 = 4mp?e™7% is the MS renormalization scale parameter.

B.3.2 Computation of ppe3r and pracst,

We compute the spectral functions of the integrals

1

Tncsr (b1, ka) = /pl,pg,pg p%p?,(pz — k1)?(p3 + k2)%(p1 — p2)? (B.3.10)
and Igaesr (K1, k2) = Itacsr, (K2, k1), which can be written as
Ttacsr (K1, k2) = I3(k1)11(—ks), (B.3.11)
with .
I3(k) = /mg2 o ] S R (B.3.12)
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Using the inverse relation (B.3.2) and [53]

ko) k2
Tm13(ko +i07, k) = _Sg;(i;)) +0(e), (B.3.13)
we find
k2 17 i
Pracst(—k, k) = pracsr (—k, k) = W 1+4+¢ > + 3In ) (B.3.14)

B.4 Non-factorisable spectral functions without squared prop-
agators

B.4.1 Computation of pgp

We compute the spectral function to the integral
1

Igg(k1, ko) = / .
( ) orpaps Pr(01 — K)2p3(p2 + )% (p3 — p1)%(p3 — p2)?

(B.4.1)

At first we use a FORM [90] program to compute the integrals over the temporal components
p*l] = —z'p? for [ = 1,2. In order to simplify this task, we write the one-loop sub-integral over

ps3 as I1(p1 — po) defined in (B.3.4). This yields

Igg(ki, ko) =

Li(p1 — pa)- (B.4.2)
/pl,pz,pg pi(p1 — k)?p3(p2 + q)?

Now we use the spectral representatimﬂ

* ds s pn (s, [P1 — paf)
Il P1—pP2) = 2/ - ! — . B.4.3
( ) o 21 s+ (p) —PH) ( )

For simplicity we set k1 = (k?,0) and kg = (kJ,0). After the integration over p{ and pJ we
find

ds spr,(s,|p1 — p2|)
IBB(kh k2)’k1=0,k2 / / 271' s2 — : | —
P02 p1| — |p2[)?

|P1|2|P2|2| (kY — 2|P1|)(—k78 — Ip2l)
+ many terms which do not contribute to p(—k, k). (B.4.4)

In this representation one can conveniently use the inverse relation (G.I.19) in combination
with (Z1.9). Furthermore, we use the spectral representation of the integral I backwards.
Then we find

472
pBB(—k, k) = ——F / 1,(0, [p1 — p2])0((ko — 2[p1[)d(ko — 2|p2])
ko Jpipe
+ many terms which do not contribute to p(—k, k). (B.4.5)

3Here we made use of the fact that the spectral functions is odd in s.
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Working in (d — 1)-dimensional spherical coordinates with

Qa1 _
/ - / dlplilpi|* (B.4.6)

and Qg = 27%2/T'(d/2), we evaluate the radial integrals over |p;| and obtain

ko 2d—6 qd+1 1 5 dd
pBB(—kK, k) = — <—> - — / dz12(1 — 27) 2
2 (2m)2d20 (LT (42) J

X 11(0, |p1 — p2|)\p1\:|p1\=%0’ (B47)
where
2y = DL P2 (B.4.8)
Ip1/|p2|
For the one-loop sub-integral we use the solution
d 2 d
ey = N2 ZDTRZ9) ayg2 (B.4.9)

(4m)2T(d — 2)
Now the 215 integral is straightforward and we expand the resulting expression for the spectral
function in € = (4 — d)/2. This yields

1 1 7 i
-k k)= ———— 31ln 7 B.4.10
pBB( ) ) (1671')2 A2 <€ + = B + k2> + (5)7 ( )

where we have used Lorentz symmetry to replace k3 by k2.

B.4.2 Computation of prr

We compute the spectral function of the integral

1
Iir(kr, k) = / ,
( ) prpaps P03 — k1)2(p2 + k2)%(p1 — p2)?(p1 — p3)?
We proceed as for Ipp and write the integral in terms of the sub-integral I; which yields

1
IR (K1, ko) = / —11(p1 + k2) L1 (p1 — F1). (B.4.12)
p1 1

Then we use the spectral representation (Bi4.3)) to obtain

ds 4st  pr,(s,|p1 +ko|)pn (¢ [P1 — ki)
Lir(k1, K :/ / / L - 10 : . B.4.13
k) = [ 2 pf (s2+ <p9+zk9>2><t2 T —ayy B

Now we solve the p{ integral with a FORM program and use the inverse relation ([G.LI9) to
obtain d-functions. Then it is easy to solve the s- and t-integral and we find

1
pLr(—k, k) = / o ’Ph( « — [p1l,Ip1))20(Ex — |p1))- (B.4.14)

We use py, (k) = 2ImI; (kg + i0", k) together with (B:3.7) and solve the |p;| with spherical
coordinates in (d — 1) dimensions. Then, expanding in ¢ = (d — 4)/2, we finally get

pir(—k, k) = ﬁ (1 te <1o +3In (’;))) (B.4.15)
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B.4.3 Computation of pssp and psgr,

We compute the spectral functions of the integrals

1

Issy (K1, k2) = / B.4.16
( ) prpops P03 — k1)2(p2 + k2)2(p1 — p2)?(p1 — p3)? ( )
and Issg(k1, ko) = Issp(ke, k1). It can be written in terms of the sub-integral I3 as
Tssu (v, ko) = / LR - (B.A1T)
SSL ) 5, N P2 — 4.
o p1 p3(p2 + k2) ? '

Again, we write the sub-integral in the spectral representation and obtain

25 piy (s, P2 — ki)
Issy, (kq, k2) // 3 , ) B.4.18
k) pJo 27D} p2+k2) s? + (p§ + ikY)? ( )

Then we solve the pd-integral with a FORM program and use the inverse relation (.L19) to
obtain delta functions. Then we solve the s-integral and find

1
pssL(—k, k) = / —m6(ko — 2[p2|)prs (ko — [P2l, [P2])- (B.4.19)
p2 4P3

The d-function yields pr,(ko/2, ko/2) which is zero as we can see from (B.3.13). Therefore,
we find

pssu(—k, k) = pssr(—k, k) = 0. (B.4.20)

B.4.4 Computation of py;, and por

We compute the spectral functions of the integrals

1
Doy (k1 k2) = / B.4.21
( ) prpaps PID3 (3 — k1)2(p2 + k2)?(p1 — p2)?(p1 — p3)? ( )
and Iog (k1, ko) = Ior,(k2, k1). The integral can be written as
Lo (1, ko) / ! Lipr — k1) (B.4.22)
2L\l R2) = 1p1— k1), 4.
1.2 DID3 (D2 + k2)%(p1 — p2)?

We find it also convenient to use the spectral representation for the propagator

(p1—p2)?  Jo 27 s24+ () —p9)*

where
T

ps(ko, k) = Tk (0(ko — [K[) — d(ko + [K[)) - (B.4.24)
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Then, computing the integrals over p{ and py with a FORM program and using the inverse

relation (G.1.19), we find
pZL(_k7 k) :ﬂ./

P1P2

y [85(2\p21 — ko) f1(Ip1l. [p2l,t)

+86(2|p2| — ko) f2(|p1], [P2], 1)
—6(—ko +t+ [p1] + [p2]) f3(|p1l; P2, )

+0(—ko —t — [p2| + [p1]) fa(Ip1], [P2], 1) |, (B.4.25)

where

or, (ko /2 — £, [p)0(ko/2 — 1)
s ,t) = s B.4.26
Jillpal 1Pl 0) = e e T 26) o + 2l + 20) (B.4.26)

t pr, (ko — |p1l, [P1])0(ko — [P1])8(ko + |P1] — |P2])
k3|p1l(ko — 2|p1] — 2t) (ko — 2|p1] + 2t) 7
pr, (ko — |p1l, [P1])0(ko — |p1])0(ko — |P1]| — 1)
) ,t) = , B.4.28
Sollprl [P} ) = T o — 2lpa] — 20) (ko — Ipa] — ) (B.4.28)
~ pr (ko — [p1l, Ip1])0(ko — [P1))O(|P1] — t — ko)

’ 1) = . B.4.29
Sl pal 1) = P (429

Like in the case for pgg we first solve the integral over z1o = % in (d — 1)-dimensional

fo(lp1l, [p2|,t) = (B.4.27)

spherical coordinates. For this purpose it turns out to be convenient to substitute = |p1+p2|

with
xdr

212 = =T (B.4.30)
p1/|p2]
Then the integral over x is trivial due to the delta function in ps(t, ) and yields
[p1|+|p2|
A ol drzps(t,z) = —m0(|p1| + [p2| — t)0(t — [|p1] + |p2]|)- (BA.31)
P1l—IP2

Similarly we solve the integral over |ps|, making use of the other §-functions. Finally we solve
the remaining integrals over ¢ and |p;| with Mathematica [102] and obtain the finite result

1+1n(2)

par(—k, k) = par(—k, k) = —W-

(B.4.32)

B.5 Non-factorisable spectral functions with one squared prop-
agator

B.5.1 Computation of pgpqo

The situation is more complicated if propagators in the master integrals are squared. For
example in the reduction (B:2.7) and (B.2.5]) appears the integral
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Indot (k1, k2) = lo21001010110 (K1, k2), which explicitly reads

1
Ippdot (K1, ko) = / (B.5.1)

o1paps DiD3(D1 — k)2 (D2 + @)% (p1 — p2)%(p2 — p3)?

We can compute this integral with the same techniques as in section (B:AJ]) if we introduce
an artificial mass in the integral (B.4.1]) which defines the integral

1

Igp(k1, k2, m) E/ . (B5.2)
s DT (D3 +m2) (1 = k)2 (P2 + )2 (p1 — p2)?(p2 — p3)?
The spectral function of Iggqet is then determined by the mass derivative
d2
PBBdot (K1, k2) = — [WPBB(]CI, k‘z,m)} : (B.5.3)
m m=0

We compute the spectral function of the massive integral Ipp(ki, k2, m), applying the same
steps as in (B.4.1)), but with much more terms during the calculation. After a long calculation
and with help of Mathematica [102], we find

1

1 i’
,OBBdOt(—k', k‘) — m (g + 4 + 31H <ﬁ>> 5 (B54)

after expanding in € = (d — 4)/2 and taking the mass derivative (B.5.3)

B.5.2 Computation of pssraor and pssrdot

We do not need to compute pssraot and pssLdot explicitly because in the reduction (B.2.6))
the corresponding master integrals are multiplied with (k; + k2)2 which vanishes for k1 =
—ko = —k. Therefore, we only have to check if the spectral functions have a pole in k1 = —ks.
Let us start with

1
IssLdo 2/ , B.5.5
Lot = | ans P03 — RV (P2 + B2)2(p1 — p2)2(p1 — po)? (B.5.5)

which we can write as
1

I ki, k :/ 1340 — k), B.5.6
ssL(k1, k2) Rt ) 3dot (P2 — K1) ( )

where )
I3g0t (K :/ . B.5.7
o t( ) P2,P3 p%(pi% - k‘)4(p3 _p2)2 ( )

For simplicity we set ki = ko = 0 and assume £ < 0 and k9 > 0. Then, analogously to
section [B:4.3] we find

pSSLdot (K1, k2)

1
:/ Fﬁ(kg—?\l)z!)msam(—k?—!pz\,!pz\)e(—k?—ym\). (B.5.8)
k1=ko=0 p2 P2
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In order to compute py,, ., we proceed as follows. At first we take the derivative

9 2k - (ps — k)
EF——1I3(k) = / ) B.5.9
Okt (®) P2,P3 p%(pg — k)4 (ps — p2)? ( )
and cancel the scalar products in the numerator which yields
0
w_Z_ S _
k BT Is(k) = —k“I3q01 (k) — I3(k). (B.5.10)
On the other hand, we know that I3(k) ~ (k?)(*~?) such that
k‘“ilg(k‘) =2(d — 3)I5(k). (B.5.11)
okt
Therefore, we have
k‘2
I = I B.5.12
3(k7) 2d _ 5 3dot(k) ( D )
and consequently, for the spectral function
3 3sgn (ko)
pIBdot(k) = ﬁpl?)(k‘) - - 4(47’1’)4 : (B513)
Plugging this result into (B.5.15) and solving the integral po-integral, it is easy to see that the
result is well defined for k1 = —ky. Therefore pgsrdaor does not contribute to the asymmetry
rate.

For the computation of pgsrdot (k1,k2) we introduce an artificial mass for the squared
propagator. Then pssrdot(k1, k2) can be computed as the mass derivate of the spectral
function of

1
Tosp (ky Koy ) = Ts(ps + ko). B.5.14
ssr(k1, k2, m) /p3 O ey 3(p3 + k2) ( )

We write the massive propagator and the integral I3 in terms of their spectral functions,

perform the pJ integral and use the inverse relations. For simplicity we set ki = ky = 0 and
we assume kY < 0 and k9 > 0. This yields

d3p3 1
_/ Wm/)&(—k? — Ipsl, V/|p3|? +m2)

ki1=ks=0

X{pfg(k‘g b3l Ip3)0(—KY — [ps))(R — |ps)

pssr(k1, k2, m)

—p1,(—k3 + [p3, [P3)O(—kY — [p3)O(—k3 + !ps\)}, (B.5.15)

where ps and py, are given in (B.4.24) and (B.3.13) respectively. We assume that (k9)? > m?,
which allows to write

k0)2 + m2) m2 — (k0)2
— k9 — psl, /IpslZ + m2) = — (kY 5( _71>. B.5.16
ps(—ki — [Psl, V[P ) TN P3| 20 ( )
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The pg integral can now easily be solved which leads to

k3 ((k9)? — m?)((k9)* + k{kg — m?)
pssr (K1, kg, m) =2 : (B.5.17)
k1=ko=0 20487T4(]€?)3

Taking the derivative with respect to m? it is easy to see that no pole for k:g = —k? appears.
Therefore, pssrdot does not contribute to the asymmetry.

B.6 Counter terms

In this section we give some more details to the calculations of the counter terms. We consider
the interaction

iﬂliftf = —Ni(h)idi + %(gu)ijji—r(g_ljj + H.c, (B.6.1)
where (g,)ij = Zl¢1(h,,)1,-(h,,)1j/MI and J; = ¢1¢;. We renormalize the fields by
p=yrZY? (=2 (B.6.2)
and the couplings by
(hw)i = (hwr)1iZn (90)ij = (9uR)ij Zg- (B.6.3)

In the following we write Z; = 1 4+ §Z; and consider the leading SM contributions to §Z;. In
this case the counter-term Lagrangian can be written as

Lo =0Zlil + 6Z,(0,p) 0" (B.6.4)
1 _
-3 (62 +6Z¢ +26Zy) (N1(hw)1iJi + Hec) (B.6.5)
1
+5 (02, + 62+ 62,) ((g,,),'jJZ-T ¢ LT+ H.c) . (B.6.6)

B.6.1 Determination of 67, and 67,

Let ¥y = E}L + Z?T and X, = Z}pL + ZST be the lepton and Higgs self-energy respectively.
They consists of the one-loop parts Z%L and Z}pL and the counter-term parts

(S8 )ab =0 ZepPLbab, (B.6.7)
(EST)ab :5Zg0p25ab7 (B.6.8)

where a and b denote indices in electroweak SU(2) space. We compute SM contributions to
the one-loop parts, given by the diagrams in figure[B.Il, with arbitrary gauge parameter &; and
&. In order to simplify the calculation, we take the trace in SU(2) space, by multiplying the
self-energies with d,,. After applying standard Feynman rules, simplify the Dirac structure
and canceling scalar products in numerators, we find

(i ) =PRI G) (7 + 3036) (.69
S ) = — P0() (23— €) +33G - &) — NI . (B610)
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The integral I (p) is the standard one-loop integral defined in (B.3.4). In d = 4—2¢ dimensions
it has the € expansion

Li(p) = ﬁ + 0(£%). (B.6.11)

Enforcing the complete self-energies ¥, and X, to be finite leads to

1 1 1
0Zy = —W (Z&g% + Zﬁzﬂ%) ) (B.6.12)
1 1 3
62, = o (70— 60+ Sa3(0 - &) — v ). (B.6.13)

Figure B.1: One-loop Diagrams contributing to the Higgs and lepton self-energies Z}OL and

Z%L . The lepton self-energy (left) gets only corrections from gauge bosons. Higgs Higgs
self-energy gets also a correction from the top quark (right).

B.6.2 Determination of 67,

For the computation of §Z;, we have to consider the one-loop SM correction to the three-
vertex (Vlll-L)ab in figure Again, after using standard Feynman rules, we take the trace
in SU(2) space. In order to get rid off the Dirac structure we also take the trace over the
Dirac matrices. Then, after canceling all scalar products in the numerator of the Feynman
integrals, we can express the the one-loop vertex function in terms of integrals of the class

abe\PLP2) = [ 503 j2a(k — p1) B (k + po)2e

Here p; defines the external momentum of the Higgs. We use the program Reduze [100] to
write the result in terms of master integrals and find

(B.6.14)

. 1 d—3
Tr (606 (Vi) ab) = — i(hur)1i91 [1011 —(1-&) (51011 +— IlOl>:|

. 1 d—3
—i(hur)1i395 [1011 - (1-&) (51011 + 5 hmﬂ , (B.6.15)

where Tr denotes the trace in spinor space. All master integrals can be written in terms of
the integral I; and therefore yield the same infinite contribution (B.6.11). This implies

Tr (60 (V")) = — i(hur) i [9761 + 393&2] ﬁ +0(). (B.6.16)

From (B.6.6) we can read off the counter-term three-vertex
oT ) 1 1
(Vi Dy = —i(hur)vida | 50Zp + 5620 + 02y ) Pr. (B.6.17)
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Then, enforcing the complete three-vertex to be finite, that is,
SapTr (Vi) ab + (Vig Dav) = O(%), (B.6.18)
we find in the gauge invariant result

N 1

3
02 = — | (g7 +393) — 2 | (amye

g (B.6.19)

for the three-vertex coupling renormalization. Our result is consistent with the one in [53].

Figure B.2: One-loop correction to the three-vertex (ViiF),;

B.6.3 Determination of 67,

For the computation of §Z, we proceed as for 67;. We compute the one-loop SM corrections
to the four-vertex (V}),p.q in figure B3l Here a,b and c¢,d are the lepton and Higgs elec-

K Xx

Figure B.3: One-loop SM corrections to the four-vertex (Vi}L)ade. There are also contribu-

tions from the first diagram with permutations of external lines.

troweak SU(2) indices respectively. First we use a FORM [96] code to generate all diagrams
and multiply them with the projector

Paved = dacObd + dadObes (B.6.20)

in order to get rid of the SU(2) structure. Furthermore, we multiply the diagrams with ¢
in order to eliminate €~'. Then we take the Dirac trace and cancel all scalar products in
the numerator. The remaining integrals can be expressed in terms of the one-loop four-point
integrals

d
(1) d®k 1
I ,P2,p3) = , B.6.21
sninopn) = | (2m)T K2 (k + pr)?(k + ps)(k + p1 + p2)? o2l
d?k 1
19 (p1,pa, :/ . B.6.22
abea(PLsP2:P3) (2m)4 k2(k 4 p2)? (k + p3)2c(k + p1 + p2)?? ( )

Here p; and po define the external momenta of the SM leptons. We use the program Reduze
[100] to reduce these integrals to master integrals. Then, the terms which contribute to the

98



infinite part are

1 . 1 1 2 2
o Labed Tt (Vi) abed®] = —i(gur)ijgt [(6 — 3d)(I§101 + Li1ng) + (6 — 360) (IS, + 1)

(64 €1(6d— 18))(I, — 18, - Ié?’u»]
+ —i(guR)ij g2 [G(Iéé)n + 100 + (12— 3d — 3&) (14, + 1))
(B.6.23)
+ (6 + &2(6d — 18))(Iigh, — 215110 — 21870) (B.6.24)
2 2
+ (12 — 652)(1312)1 + [flz)o)}

. 1
+i(g0R)i 2\ (G
+ terms which do not contribute to the infinite part. (B.6.25)

Here we can again express all master integrals in terms of the integral I; so that each integral
yields the same infinite part (B.6.I1). Then the leading order in the e expansion is

21_4Pabchr (Vi) abea ] = ﬁ;};ﬁ; 3(9%Zg§) s 239352 +2)]. (B.6.26)
From (B.6.6) we read off the counter-term four-vertex
(VS ) abea = %(gm)ij(azw + 872y + 62Z4) (SacObd + Saadpe) €' Pr. (B.6.27)
Again, we enforce the complete corrections to be finite, that is,
Paped Tt ([(Vii)abea + (VST )abea] €) = O() (B.6.28)
which yields the gauge invariant result
57y = e |36+ 08) — (6t +BaB) + 20+ Nl (.6.29)
(4m)%e |4 4

for the coupling renormalization of the four-vertex.
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