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Abstract

The lepton asymmetry L of the early Universe is generated through the out-of-equilibrium in-
teractions of sterile neutrinos, which is described by linear kinetic equations. These equations
are determined by dissipative coefficients (or rates). The focus of this work is the computa-
tion of next-to-leading order corrections to these rates. In order to avoid inconsistencies of
Boltzmann equations we use Landau’s theory of quasi-stationary fluctuations, which allows
to compute the rates from Kubo-type relations. The rates are then determined by real-time
correlation functions and susceptibilities of conserved charges and can be calculated at leading
order in the sterile neutrino interactions and to any order in the SM interactions.

Firstly we compute the susceptibilities of conserved charges at order g2 in the Standard
Model couplings, which completes the order g2 calculation of the ∆L = 1 washout rate and
provides a relation between the baryon number B and baryon number minus lepton number
B − L at order g2.

Then we calculate the ∆L = 2 washout rate in an effective theory for temperatures much
smaller than the lightest sterile neutrino mass. In contrast to earlier calculations, we take full
quantum statistics and so-called spectator processes into account. Furthermore, we consider
next-to-leading order contributions from the thermal Higgs mass which are of order g in the
Standard Model couplings.

Following that, we study the CP violating lepton asymmetry rate and derive a master
formula which relates this rate to a three-point spectral function of Standard Model fields.
We use this formula to compute the order g2 corrections to the CP asymmetry at zero
temperature.

Finally we show in a rather general framework that particle equilibration rates are simply
related to particle production rates. This implies that the coefficient in the kinetic equations,
which is identified as the sterile neutrino equilibration rate, is already known at order g2

through the well-known sterile neutrino production rate.
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Low-temperature lepton washout rate and bounds on neutrino masses.

3. The calculations and results of chapters 6 and 7 and appendix B of this thesis are
planned to be published under the title [3]:
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Chapter 1

Introduction

1.1 Baryogenesis

Despite the experimental and theoretical success of the Standard Model (SM) of particle
physics and its confirmation by the experimental discovery of the Higgs boson at the LHC
[5], the Universe is still full of mysteries. It is known from the cosmic microwave background
(CMB) that only about 4.6% [6] of the energy density of the Universe is made of ordinary
baryonic matter, the substance which we and every object in our daily life are made of. But
even this small fraction of baryonic matter is not fully understood. In particular the fact that
the Universe contains more baryons than anti-baryons cannot be explained within the SM.
This baryon asymmetry is oftentimes quantified as the ratio of the baryon number1 density
nB to the photon number density nγ , the so-called baryon to photon ratio,

ηB ≡ nB
nγ
, (1.1.1)

and can be measured from CMB data. The newest data from the WMAP experiment yields
the baryon to photon ratio [6]

ηCMB
B = (6.19 ± 0.14) × 10−10. (1.1.2)

The work of many theoretical physicists is motivated by the task to explain the observed
value of ηB. If we assume that no baryon asymmetry was present at the beginning of the Uni-
verse, it must have been generated by a mechanism. Such a generation is called baryogenesis
and, as stated by Sakharov in 1967 [7], requires at least three conditions:

1. The baryon number B must not be conserved.

2a. Charge conjugation (C) must not be a symmetry of the system. Otherwise a process
which produces baryons, and its charge conjugate process which produces anti-baryons
would occur with the same rate.

1The baryon number B is defined as the difference of the number of baryons and the number of anti-baryons.

3



2b. Charge-parity (CP ) transformations must not be a symmetry of the system. Otherwise
a process that produces left/right-handed baryons, and its conjugate process which
produces right/left-handed anti-baryons would occur with the same rate.

3. The system must be out of equilibrium. Otherwise for every baryon generating process
there would be an inverse process which reduces the number of baryons with the same
rate.

The first condition is satisfied in the SM due to the chiral anomaly in the electroweak sec-
tor. Let Q ∈ {Li, B/3}, where Li is the lepton number with flavor i. Then the corresponding
currents jQ satisfy the relation2 [8, 9, 10, 11]

∂µj
µ
Q =

1

64π2
εµνρσ

(
g22W

a
µνW

a
ρσ − g21FµνFρσ

)
, (1.1.3)

where Fµν and W a
µν are the field strength tensors of the U(1) and SU(2) gauge fields respec-

tively. The corresponding gauge couplings are g1 and g2. Integrating over the space-time
volume and assuming the spatial part of the currents to vanish at spatial infinity, (1.1.3)
implies that the total charge

Q =

ˆ

d3xj0Q (1.1.4)

changes as

∆Q = Q(t)−Q(t0) =
1

64π2
εµνρσ

ˆ t

t0

dt′
ˆ

d3x
(
g22W

a
µνW

a
ρσ − g21FµνFρσ

)
. (1.1.5)

The solutions of the field equations, for which ∆Q is not zero, are related to the topology
of the degenerate SM vacuum. As illustrated in figure 1.1, there exists a (discrete) set of
infinitely many gauge field configurations for which the system is in the ground state [12].
These configurations are separated by an energy barrier with the maximal energy [12, 13]

Esph =
4πv

g2
f

(
λ

g2

)
∼ O(10) TeV, (1.1.6)

where v is the Higgs vacuum expectation value, λ is the Higgs self-coupling and f is a
function that varies from 2.40 to 3.56 when λ/g2 is varied from 0 to ∞. The solutions for
which |∆Q| = 1 are those for which the gauge fields evolve from one vacuum configuration
to the next.

There are two possibilities for such a transition. At zero temperature instanton solutions
[14] allow for the system to tunnel through the barrier, but these processes occur with an
exponentially suppressed rate [15, 16, 17]

Γinst ∼ e−2Sinst , (1.1.7)

2Note that the SU(3) gauge fields do not contribute to the divergence of the total baryon number current
because left and right-handed quarks are equally coupled to the SU(3) gauge fields. Only the difference of left
and right-handed baryons is violated due to the chiral anomaly in QCD.
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Figure 1.1: The vacuum structure of the electroweak theory. Each minimum corresponds to
a vacuum configuration of the gauge fields. If the system changes from one minimum to the
next, the charge changes by ∆Q = 1.

where Sinst = 8π2/g22 ∼ 186. Therefore, this kind of transition is very inefficient and can be
neglected as source of B violation. At high temperatures or energies the system can change
between the vacua by evolving through field configurations which go over the top of energy
barrier [13, 18, 19]. A field configuration on the top of the energy well is called sphaleron
[13] and consequently, the transitions over the top of the energy well are called sphaleron
transitions. While in the broken phase in the SM (T < 160 GeV), the sphaleron rate3 is
Boltzmann suppressed by the height of the energy barrier [20],

Γsph ∼ exp(−Esph(T )/T ), (1.1.8)

the sphaleron transitions can be more frequent at high temperatures in the symmetric phase,
where the rate has the form [23, 24]

Γsph =

(
c1 ln

mD,2

g22T
+ c2

)
g22T

2

m2
D,2

(
g22
4π

)5

T 4. (1.1.9)

The coefficients c1 = 10.8 ± 0.7 [25] and c2 = 18 ± 3 [22] are numerical constants and
mD,2 = 11g22/6 is the thermal Debye mass of the SU(2) gauge fields.

In [26] it has been pointed out that the electroweak sphaleron transitions are in equilibrium
for temperatures T < 45/4Tsph, where Tsph is the temperature where the sphaleron rate

3A very detailed calculation of this rate can be found in [21] and recent lattice simulations can be found in
[22].
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(1.1.9) becomes equal to the Hubble rate 4, given as [27]

H ≈ 1.66
√
g∗
T 2

mpl
. (1.1.10)

Here mpl = 1.22 × 1019 GeV is the Planck mass and g∗ is the number of effectively
massless degrees of freedom, which for temperature T & 300 GeV is equal to the Standard
Model degrees of freedom gSM = 106.75 [27]. At high temperatures, g∗ can in principle be
larger than gSM because heavier particles which are not part of the SM can be relativistic. We
ignore this fact in order to give a rough estimate of the temperature, where the sphalerons
are in equilibrium and find T < 1012 GeV in accordance with [26].

We see that the first Sakharov condition of baryon violation is satisfied in the SM due
to the electroweak sphaleron transitions. They violate the baryon number and the lepton
numbers by

|∆B| = nf , |∆Li| = 1, (1.1.11)

whereas the differences of the charges

Xi ≡ Li −B/nf (1.1.12)

remain conserved in the SM.
The second Sakharov condition is satisfied in the SM as well. Charge conjugation C is

intrinsically violated in the SM because only left-handed leptons couple to the SU(2) gauge
bosons. Here and throughout the whole thesis we define the charge conjugation of a spinor
ψ as

ψc ≡ CψC† = γ0Cψ
∗, (1.1.13)

where C is a unitary and antisymmetric matrix with the property [28]

C γµC = −γ⊤µ . (1.1.14)

It is easy to see that left/right-handed currents jµL/R = ψγµPL/Rψ with

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5) (1.1.15)

are not invariant under charge conjugation. They transform as

(jµL)
c = −jµR. (1.1.16)

CP violation happens in the SM through Yukawa interactions

Lq,Y = −(hu)ij qiϕ̃uR,j − (hd)ij qiϕdR,j +H.c (1.1.17)

of right-handed up and down quarks uR and dR and the left-handed quark doublet q =
(uL, dL)

⊤ with the Higgs field ϕ. The field ϕ̃ = iσ2ϕ
∗ is the SU(2) conjugate Higgs field and

hu and hd are complex coupling matrices. In the broken phase, where the Higgs field obtains

4To be precise: Γsph/T
4|T=Tsph

= H/T |T=Tsph
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a vacuum expectation value 〈ϕ〉 = (0, v)⊤, these couplings define mass matrices mu = vhu
and md = vhd for up and down quarks respectively. In a basis where these matrices are
diagonal, the left-handed quark fields are linear combinations, given by d′L,i = (Ud)ijdL,j and
u′L,i = (Uu)ijuL,j, where dL,j and uL,j are the original fields and Uu and Ud are transformation
matrices. Then the weak quark current

jµ+ ≡ 1√
2
uL,iγ

µdL,i =
1√
2
u′L,i(U

†
u)ik(Ud)kjγ

µd′L,j (1.1.18)

contains in the mass eigenbasis the Cabibbo-Kobayashi-Maskawa (CKM) matrix V = U †
uUd

[29]. For nf = 3 flavors the CKM matrix depends on three real parameters and one CP
violating phase which cannot be absorbed by redefinition of the quark fields. The values of
these parameters have quite extensively measured and a summary can be found in [30].

The third Sakharov condition about non-equilibrium is satisfied in the early Universe
during the electroweak phase transition. However, in [20] is has been shown that the observed
baryon to photon ratio (1.1.2) could only be generated within the SM during the electroweak
phase transition, if it was a strongly first order one. The character of the phase transition
depends on the magnitude of the Higgs mass. A first order phase transition is only possible for
Higgs masses mH < 80 GeV [31]. At the currently observed Higgs mass mH ≈ 125 GeV, the
transition from the symmetric to the broken phase is rather a smooth crossover. Therefore,
physics beyond the SM is needed for an explanation the observed baryon asymmetry of the
Universe.

1.2 Leptogenesis

A very simple mechanism which can generate the baryon asymmetry in the Universe beyond
the SM, has been suggested in 1986 by Fukugita and Yanagida and is called leptogenesis [32].
The idea behind this mechanism is that a baryon asymmetry can be produced through the
generation of a lepton asymmetry L. If the sphaleron processes are in equilibrium during or
after leptogenesis, they tend to reduce B+L by partially converting the lepton asymmetry to
a baryon asymmetry. After leptogenesis when theB−L violating processes become inefficient,
B − L is a conserved charge and can be related to the baryon number through the relation

〈B〉 = κ〈B − L〉, (1.2.1)

where 〈...〉 is the equilibrium average.

The coefficient κ was first determined in [33] at leading order in the SM couplings, in the
symmetric phase and is given as

κ =
28

79
. (1.2.2)

Later it has also been computed in the broken phase at leading order [34] and in the symmetric
phase to order g2 in the SM couplings [1]. The order g2 calculation of [1] is part of this thesis
in chapter 4.
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Figure 1.2: The tree-level and one-loop graphs which contribute to the sterile neutrino decay
rate Γ(N → ℓϕ). Thick lines are sterile neutrinos, dashed lines represent Higgs and solid
lines with arrow are leptons.

Originally Yanagida and Fukugita suggested to extend the SM by right-handed neutrinos
νR, which are singlets under the SM gauge groups. The most general gauge invariant and
renormalizable Lagrangian for this theory allows a Majorana mass term

LM = −MIJνR,Iν
c
R,J +H.c, (1.2.3)

and a Yukawa interaction
Lint = −(hν)IiνR,I ϕ̃

†ℓi +H.c (1.2.4)

with the left-handed lepton doublet ℓi = (νL,i, eL,i)
⊤ and the neutrino coupling matrix (hν)Ii.

Here i denotes the SM lepton flavors and I, J denotes the right-handed neutrino flavor5.
In this work we find it convenient to express the Lagrangian in terms of Majorana fields

N = νR + νcR. (1.2.5)

Then, in a basis where the Majorana mass matrix is diagonal, MIJ = δIJMI , the complete
Lagrangian of the system can be written as

L = LSM +
1

2
NI(i/∂ −MI)NI −

[
(hν)IiNI ϕ̃

†ℓi +H.c
]
. (1.2.6)

In the simplest picture a lepton asymmetry can be generated through the decay of the
Majorana neutrinos. If the coupling hν in (1.2.4) is CP violating, the rate Γ(N → ℓϕ) for
the decay into particles differs from the rate Γ(N → ℓ̄ϕ†) for the decay into anti-particles. A
measure of this difference is the so-called CP asymmetry εIi which is defined as

εIi ≡
Γ(NI → ℓiϕ)− Γ(NI → ℓ̄iϕ

†)

Γ(NI → ℓϕ) + Γ(NI → ℓ̄ϕ†)
. (1.2.7)

At leading order in hν both rates are equal and therefore the CP asymmetry vanishes.
For example the zero temperature decay rates read [35]

Γ(NI → ℓϕ) = Γ(NI → ℓϕ†) =
(hνh

†
ν)IIM

2
I

16πEk

, (1.2.8)

5In leptogenesis the the number of right-handed flavors has to be at least two for the coupling hν to be
CP violating. But apart from that let us keep it arbitrary.
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and their sum yields the total decay rate

ΓNI
=

(hνh
†
ν)IIM

2
I

8πEk

. (1.2.9)

In order to generate non-vanishing CP asymmetries, one has to compute the difference of the
rates to order h4ν , which takes into account loop effects. At leading order the CP violation
comes from an interference of the tree level graph with the one-loop graphs in figure 1.2. The
first complete6 calculation of the CP asymmetries in leptogenesis at zero temperature has
been done in [36] and yields the result7

εIi =
1

8π

1(
hνh

†
ν

)
II

∑

J 6=I

Im
[
(hν)Ii(h

†
ν)iJ

(
hνh

†
ν

)
IJ

]
g(xJI)

+
1

8π

1(
hνh

†
ν

)
II

∑

J 6=I

Im
[
(hν)Ii(h

†
ν)iJ

(
hνh

†
ν

)

JI

] 1

1− xJI
, (1.2.10)

where xJI =M2
J/M

2
I and

g(x) =
√
x

[
1

1− x
+ 1− (1 + x) ln

(
1 + x

x

)]
. (1.2.11)

In this work we are interested in the hierarchical limit, where the lightest Majorana neutrino
with mass M1 is much lighter than the other ones. In this case one may expand the CP
asymmetries to the first order in M1/MJ and one finds [36]

ε1i =− 3

16π

1(
hνh

†
ν

)
11

∑

J 6=1

M1

MJ
Im
[
(hν)1i(h

†
ν)iJ

(
hνh

†
ν

)

1J

]
. (1.2.12)

So far we have only considered the zero temperature decay of Majorana neutrinos. For a
realistic description of a L generation in the Universe one has to consider the interactions of
the Majorana neutrinos with the hot SM plasma in an expanding background. In leptogenesis
the non-equilibrium system is characterized by a large separation of time-scales. There are
slow quantities, which are changed by the Yukawa interaction (1.2.4) but conserved in the
SM and fast quantities which are dominated by so-called spectator processes [37]. These
processes are so fast (compared to the expansion of the Universe) that the quantities which
are changed by them can be considered as being in equilibrium. We will discuss this separation
of time-scales in more detail in chapter 3.

In leptogenesis such non-equilibrium systems are often times described by kinetic equa-
tions which determine the time evolution of the slow quantities. It depends on the temper-
ature which quantities are considered as slow. Certainly during leptogenesis the Majorana
neutrino phase-space densities fIk

8 and the charges Xi = Li −B/nf are slow. But for exam-
ple, at temperatures above 1012 GeV, the electroweak sphalerons are out of equilibrium so

6Earlier calculations like in [35] did not take into account the self-energy graph.
7Note that the Yukawa couplings in [36] are defined as λiI = (hν)Ii
8We will from now on consider a finite volume V = L3 with periodic boundary conditions. Then we have

discrete momenta ki = 2πni/L, which we consider as indices. In the end of our calculations we take the

infinite volume limit, where 1
V

∑

k
→
´

d3k
(2π)3

.
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that B is separately conserved. In this case the lepton numbers Li are slow charges as well.
Of course the lepton numbers Li are not independent of the charges Xi, but we can choose a
linearly independent set of charges out of the set of all linear combinations of Xi’s and Li’s.
At higher temperatures the Hubble rate becomes larger, so that further processes are out of
equilibrium and more charges are conserved. Thus the set of slow charges becomes larger,
the higher the temperature was. In the following we denote the elements of a set of linearly
independent slow charges by Qa.

We assume that the system is close to equilibrium during leptogenesis, so that the values
of these charges are so small that their time evolution can be well described by linearized
kinetic equations9

DtfIk = − (γδfδf )IkJk′ δfJk′ − (γδf Q)IkaQa, (1.2.13)

DtQa = − (γQδf )aIk δfIk − (γQQ)abQb. (1.2.14)

Here we have defined
δfIk ≡ fIk − f eqIk (1.2.15)

as the deviation of the sterile neutrino phase-space density from its equilibrium value and
Dt as the total time derivative which takes into account the effects of the expansion of the
Universe.

For leptogenesis it is very common to derive kinetic equations such as (1.2.13) and (1.2.14)
with Boltzmann equations. These equations describe the evolution of phase-space densities,
such as fIk, through collision integrals CIk[f ] as

DtfIk =
1

EIk
CIk[f ], (1.2.16)

where CIk[f ] depends on all processes which change the quantities of the non-equilibrium
system. For a detailed definition of CIk[f ] see for example chapter 5 of [27]. The collision
integrals can be linearized in fIk and Qa and determine in this way the rates γ. A rather
detailed derivation of the leading order rates γ in (1.2.13) and (1.2.14), using Boltzmann
equation and assuming kinetic equilibrium for the sterile neutrinos, can be found in [35, 38].

In this work we will often consider the non-relativistic limit, where the lightest sterile
neutrino mass M1 is much larger than the temperature T . In this limit, the rates can be
expanded in powers of T/M1 and e−M1/T . In this expansion, the leading contribution of the
rates γδfδf and γQδf is the zero temperature limit. In this limit, it has been found in [39] that
the rates are determined through the decay rates (1.2.9) and the CP asymmetries (1.2.10)
by

(γδfδf )IkI′k′

∣∣
T=0

= δkk′δII′ΓNI
(k), (γQδf )iIk

∣∣
T=0

= εIiΓNI
(k). (1.2.17)

Although the definition of the rates through Boltzmann equations is widely used in lepto-
genesis, this might lead to inconsistencies and difficulties even at leading order. For example
the collision integrals depend on vacuum S-matrix elements. This might be inconsistent with
the interactions in a thermal plasma. Some complications also arise in the derivation of the
linear equation (1.2.14), using Boltzmann equations. The CP violating coefficient γQδf does

9Over repeated indices has to be summed

10



not only get contributions from ∆L = 1 violating sterile neutrino decay, but also from the real
intermediate state of s-channel ∆L = 2 violating scattering processes with sterile neutrino
exchange [35, 40] .

In this work we avoid these problems and extend the approach of Bödeker and Laine [41]
which is based on Landau’s theory of quasi-stationary fluctuations [42]. The large separa-
tion of time scales during leptogenesis guarantees that for small values of δfIk and Qa the
non-equilibrium system is completely described by the linear kinetic equations (1.2.13) and
(1.2.14). In contrast to Boltzmann equations, the rates γ can then computed from Kubo-type
relations [43]. They relate the rates to real-time correlation functions and susceptibilities,
which can be computed in thermal quantum field theory. Their calculation can be done at
leading order in the Yukawa interaction (1.2.4) and to any order in the SM model couplings
and thermal effects are naturally incorporated.

In this work we study radiative corrections to the rates in (1.2.13) and (1.2.14). At first,
in chapter 4 we compute susceptibilities of the conserved charges Qa at order g2 in the SM
couplings. This computation completes the order g2 of the order h2ν washout rate γQQ [41]
and yields a relation between B and B − L at order g2.

In chapter 5 we compute the washout rate γQQ in an effective theory for M1 ≫ T , where
the leading order is of order h4ν , determined by ∆L = 2 processes. In earlier calculations [44]
only classical statistics has been used for the thermal distribution functions of lepton and
Higgs. Since the order h4ν of this rate is an important ingredient for the determination of
upper bounds on active neutrino masses [45], we compute this rate taking into account full
quantum statistical effects, and study next-to-leading order corrections from thermal Higgs
mass. These corrections are of order g in the SM couplings.

Up to this point the CP violating rate γQδf has only been completely known at leading
order in the non-relativistic regime (see (1.2.17) ). Furthermore, corrections from scatterings
including gauge bosons have been computed in [46] and corrections including top quark
scatterings have been computed in [47]. However, a complete consistent expansion in powers
of SM couping has not been done yet. In chapter 7 we do the first step in this direction,
computing the next-to-leading order zero-temperature corrections to the CP violating rate
γQδf in the hierarchical limit. These corrections are of order g2 in the SM couplings. Recently,
also the first thermal corrections to the order g2 in powers of T/M1 have been computed in
[48] in the hirachical limit.

Finally, in chapter 8 we show that the rate γδf δf can be related to the sterile neutrino
production rate by a simple relation which has first been suggested by Weldon [49]. The
sterile neutrino production rate is known at leading order and next-to-leading order in several
temperature regimes [50, 51, 52, 53, 54, 55, 56, 57, 58]. Therefore, no explicit next-to-leading
order calculation for γδfδf needs to be done.

The rate γδf Q is oftentimes neglect in leptogenesis computations. We will do this here as
well. The reason is that the rate γδf Q is CP violating like γQδf , and thus of order h4ν . In
the kinetic equation (1.2.13) it is furthermore multiplied by the small asymmetry Q, which is
assumed to be much smaller than δf . Therefore, the term containing this rate is the smallest
one in the equations (1.2.13) and (1.2.14).
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Chapter 2

Two-point functions at finite

temperature

In chapter 3 we want to relate the coefficients γ to two-point functions and susceptibilities in
finite temperature field theory. Let us therefore review some basic definitions and relations
for such correlation functions.

2.1 Basic relations between two-point functions

Every real-time two-point correlator of elementary or composite operators A and B can be
constructed from the Wightman correlators [59]

∆>
AB(ω) =

ˆ

dteiωt〈A(t)B(0)〉, ∆<
AB(ω) =

ˆ

dteiωtσ〈B(0)A(t)〉, (2.1.1)

where the average is defined as 〈...〉 = Tr [... exp(−βH)] /Z with the inverse temperature
β = 1/T and Z = Tr [exp(−βH)]. Here σ = 1 if A and B are bosonic operators and σ = −1
if A and B are fermionic operators. The Wightman correlators can be used to define the
so-called spectral function as1 [59]

ρAB(ω) ≡ ∆>
AB(ω)−∆<

BA(ω) =

ˆ

dteiωt 〈[A(t), B(0)]〉 , (2.1.2)

with the (anti-)commutator

[A,B] ≡ AB − σBA. (2.1.3)

The cyclicity of the trace implies that both Wightman functions are related through the
simple equation [59]

∆>
AB(ω) = σeβω∆<

AB(ω). (2.1.4)

1Note that our definition of the spectral function differs from the one defined in [59] by a factor two.

13



Using this cyclicity property and the definition (2.1.2), one can also express each Wightman
function in terms of the spectral functions as

∆>
AB(ω) = (1 + σfσ(Ek)) ρAB(ω), ∆<

AB(ω) = σfσ(Ek)ρAB(ω), (2.1.5)

where fσ is the Bose-Einstein distribution for σ = 1 and the Fermi-Dirac distribution for
σ = −1.

In this work we are in particular interested in the imaginary time correlator which reads
in frequency space

∆AB(iωn) =

ˆ β

0
dτeiωnτ 〈A(−iτ)B(0)〉, (2.1.6)

with Matsubara frequencies ωn = πnT , where n is even (odd) integer if A and B are bosonic
(fermionic). This correlator can be written in the spectral representation [59]

∆AB(iωn) =

ˆ

dω

2π

ρAB(ω)

ω − iωn
, (2.1.7)

and can be analytically continued to the complex plane with frequencies ω off the real axis.
In particular it is useful to define the retarded and advanced two-point functions as [59]

∆ret
AB(ω) = ∆AB(ω + i0+), ∆adv

AB (ω) = ∆AB(ω + i0−), (2.1.8)

with real ω. Using the spectral representation (2.1.7) in combination with the identity

1

x− i0+
= P.V.

1

x
+ iπδ(x), (2.1.9)

where P.V. denotes the principal value, one easily finds the inverse relation [59]

ρAB(ω) =
1

i

(
∆ret

AB(ω)−∆adv
AB(ω)

)
≡ 1

i
Disc∆AB(ω), (2.1.10)

between the spectral function ρAB and the analytically continued two-point correlator ∆AB.

Let A and B now be bosonic operators. An important quantity which appears in the
computation of the coefficients γ is the so-called symmetric correlator

CAB(t) =
1

2
〈{A(t), B(0)}〉. (2.1.11)

In Fourier space we have CAB(ω) =
1
2

(
∆>

AB(ω) + ∆<
AB(ω)

)
and using the cyclicity property

(2.1.4) one finds [59]

CAB(ω) =

(
1

2
+ fB(ω)

)
ρAB(ω). (2.1.12)
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2.2 Symmetries of two-point correlators

Let us in the following assume the operators A and B to be Hermitian, bosonic and either
even or odd under CPT transformation, that is

CPTA(t)(CPT )−1 = εAA(−t) (2.2.1)

with εA = ±1. This is for instance the case if A and B represent charges or phase-space
densities. Then, invariance under CPT transformation [60, 61, 62] implies2

ρAB(ω) = εAεBρAB(ω)
∗. (2.2.2)

Thus, if A and B have the same sign under CPT transformation, the spectral function is real
and otherwise imaginary. On the other hand, hermiticity of A and B implies that

ρAB(ω)
∗ = −ρAB(−ω). (2.2.3)

Therefore, a real spectral functions is odd and an imaginary spectral functions is even in ω.
If the spectral function is real, the inverse relation (2.1.8) can be simplified to

ρAB(ω) = 2Im∆ret
AB(ω). (2.2.4)

In this work equal time two-point correlators play an important role as well. For hermitian
operators A and B they are called susceptibilities and are denoted as

χAB ≡ 〈AB〉. (2.2.5)

Like for the spectral function the CPT theorem implies

χAB = εAεBχ
∗
AB . (2.2.6)

In combination with hermiticity of A and B we find

χAB = εAεBχBA. (2.2.7)

If the quantities A and B are conserved, that is they commute with H, the susceptibilities
have the symmetry

χAB = χBA (2.2.8)

and therefore
χAB = εAεBχAB . (2.2.9)

Consequently, susceptibilities of conserved quantities vanish, if the quantities have different
signs under CPT transformation.

2A similar argument is given in [63] under the assumption of T invariance.
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Chapter 3

Theory of quasi-stationary

fluctuations

The aim of this chapter is to derive relations between the dissipative coefficient and correla-
tion functions in thermal quantum field theory. For this purpose we review the concepts of
Landau’s theory of quasi-stationary fluctuations, closely following [41] and [42].

3.1 Linear kinetic equations

A thermodynamic system in equilibrium is completely determined by the temperature T and
the values of all its conserved quantities like charges or number densities. We denote these
quantities by yi and define them in such a way that their equilibrium values 〈yi〉 vanish. In
thermal equilibrium the quantities yi fluctuate around their equilibrium values with average
fluctuations

∆yi =
√

〈y2i 〉. (3.1.1)

Let us now assume that a subset of the quantities yi has been prepared to have values
yi ≫ ∆yi. As long as there are no processes which would drive the system further out
of equilibrium, the quantities strive to reach their equilibrium values again. Some of these
quantities might reach their equilibrium value very fast with a relaxation time tfast, whereas
other quantities might have a relaxation time tslow ≫ tfast. Let us call these quantities slow
and denote them by xi. For example, in an expanding universe tslow is of order 1/H with the
Hubble rate H. If one considers the system on a time scale t with tfast ≪ t≪ tslow, then the
fast quantities have already reached their equilibrium values, whereas the slow quantities are
still equilibrating.

Although the whole system is not in equilibrium, the subsystem of fast quantities can
be considered as being in equilibrium for given values of the slow quantities. According to
Landau the system is then in a state of incomplete equilibrium, which is entirely determined
by the values of the slow quantities and the temperature (which determines the values of
the fast quantities). The non-equilibrium system can then be described by effective classical
equations of motion [42]

ẋi = Γi[x], (3.1.2)
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where Γ depends only on xi and the temperature T . For very small values of xi one can
linearize the equations

ẋi = −γxixj
xj, (3.1.3)

with dissipative coefficients (or rates) γxixj
. For xi ∈ {Qa, δfIk} we get the linear kinematic

equations (1.2.13) and (1.2.14)1 .

The solution for xi with the initial condition xi(0) = xi reads
2 [41]

xi(t) = xj
(
e−γt

)
xixj

. (3.1.4)

If the size of the slow quantities becomes similar to the size of the average fluctuation,
one additionally has to consider stochastic forces Fi, which causes the fluctuations of xi. In
this case the equations for the xi read [42]

ẋi = −γxixj
xj + Fi. (3.1.5)

Up to this point everything has been entirely classical. Every information about quantum
physics is hidden in the coefficients γ and in the next section we will show how to compute
these coefficients from correlation functions in thermal quantum field theory.

3.2 Determination of the coefficients γ

At first we use the solution (3.1.4) to find a linear relation between the coefficients γ and the
classical correlation function [42]

Cxixj
(t) ≡ 〈xi(t)xj(0)〉. (3.2.1)

Then we match the classical correlation function to its quantum mechanical equivalent for
times t in the interval tfast ≪ t≪ tslow. In order to allow for a quantum physical description
one has to define reasonable operators for the quantities xi. Then the quantum mechanical
generalization of the correlation function (3.2.1) which does not depend on the order of the
operators xi is the symmetric correlator (2.1.11),

Cxixj
(t) =

1

2
〈{xi(t), xj(0)}〉. (3.2.2)

Let us start with the classical correlators (3.2.1). Landau found a relation for the rates
γ, which does not depend on the stochastic forces Fi even if these forces cannot be neglected
in the kinetic equations. The idea is to assume that the stochastic forces are not correlated
at different times. This is a good approximation since the stochastic forces only control the
fluctuations and are thus only correlated at times of the order tfast. Since the quantities
xi(t = 0) are only correlated with stochastic forces Fi(t ≤ 0) we have 〈Fi(t)xj(0)〉 = 0 for

1Note that in (1.2.13) and (1.2.14) we have, for the sake of notational simplicity, considered the rates as
matrices in flavor and momentum space defined as (γQδf )a,Ik ≡ γQa δfIk and so on.

2Although the initial condition lies outside the time interval [tfast, tslow] the solution is still correct for times
within this interval.
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t > 0. Thus, taking the time derivative of (3.2.1) and using eq. (3.1.5), the correlation
function obeys for t > 0 the homogeneous equation [42]

Ċxixj
(t) = −γxixk

Cxkxj
(t), (3.2.3)

with the solution [41]

Cxixj
(t) = χxkxj

(
e−γt

)
xixk

, t > 0, (3.2.4)

where χxixj
are the susceptibilities of the quantities xi.

A linear relation between γ and the correlator can be found if one expands the one-sided
Fourier transform [41]

C
+
xixj

(ω) ≡
ˆ ∞

−∞
dtCxixj

(t)θ(t)eiωt = − (iω − γ)−1
ik χxkxj

(3.2.5)

for frequencies ω in the range ωUV ≫ ω ≫ |γ|, where |γ| is the absolute value of the largest
eigenvalue of the matrix γxixj

and ωUV ∼ 1/tfast. This yields [41]

ReC+
xixj

(ω) =
1

ω2
γxixk

χxkxj
+ O(ω−4). (3.2.6)

In order to compute the one-sided Fourier transform of the quantum mechanical correlator
we write the θ-function as

θ(t) = i

ˆ ∞

−∞

dω

2π

e−iωt

ω + i0+
(3.2.7)

and use the relation (2.1.12) between C and ρ. Then we find (see also [41])

C+
xixj

(ω) =

ˆ

dω′

2π

i

ω − ω′ + i0+

[
1

2
+ fB(ω

′)

]
ρxixj

(ω′). (3.2.8)

We only need the 1/ω2 pole of this correlator as we can see from (3.2.6). For large frequencies
ω′ the integrand in (3.2.8) is of order ω0 and does therefore not contribute. But for small
frequencies ω′ ≪ T we can expand (1/2 + fB(ω)) = T/ω+O(ω) and with (2.1.7) and (2.1.8)
we find3

C+
xixj

(ω) = −iT
ω
∆ret

xixj
(ω) + O(ω−1). (3.2.9)

Using equation (3.2.6) and matching the classical correlator with the quantum version (3.2.9),
we find the Kubo-type relation

γxixj
= T lim

|γ|≪ω≪ωUV

ωIm∆ret
xixk

(ω)(χ−1)xkxj
. (3.2.10)

The coefficients γ in (1.2.13) and (1.2.14) can now be computed with the formula (3.2.10),
using proper operators for the quantities xi. In order to simplify the problem we proceed as

3We used the partial fraction decomposition 1
(ω′−ω)ω′ =

(

1
ω′−ω

− 1
ω′

)

1
ω
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[41] and compute the correlation function of the time derivatives of xi. Using integration by
parts, this can easily related to the original correlator by

∆ẋiẋj
(ω) = ω2∆xixj

(ω), (3.2.11)

so that the formula (3.2.10) can be rewritten as

γxixj
= T lim

|γ|≪ω≪ωUV

Im∆ret
ẋiẋk

(ω)

ω
(χ−1)xkxj

. (3.2.12)

Since we consider quantities xi which are conserved in the SM, their time derivatives
are only determined by the interaction Lint, defined in (1.2.4), and only depend on fields
which are changed by Lint. These are the left-handed SM leptons ℓi, the SU(2) conjugate
Higgs ϕ̃ and the Majorana neutrinos NI . On the contrary, the quantities xi themselves can
depend on much more fields, which would only complicate the calculation of the correlator.
Furthermore, we are interested in the leading order of the correlator in the Yukawa interaction
(1.2.4). Since the time derivatives of xi are already of order hν , the perturbative expansion
can be abbreviated.

Keep in mind that ∆ret
ẋiẋj

(ω) in (3.2.12) can be written in terms of the spectral function

ρẋiẋj
(ω) through the spectral representation (2.1.7). If the spectral function is real, the Kubo

formula can be further simplified using (2.2.4) which yields [41]

γxixj
=
T

2
lim

|γ|≪ω≪ωUV

ρẋiẋk
(ω)

ω
(χ−1)xkxj

. (3.2.13)

We want to compute the rates γQQ, γQδf and γδfδf in the kinetic equations (1.2.13) and
(1.2.14) only at leading order in the sterile neutrino Yukawa interaction and to higher orders
in the SM interactions. The retarded correlators in those equations already contains the full
leading hν dependence and therefore the susceptibilities can be computed in a system, where
the sterile neutrinos are free and the quantities xi ∈ {Q, δf} are conserved. Then the CPT
properties from section (2.2) also imply4

χQδf = χδfQ = 0. (3.2.14)

The susceptibilities of the sterile neutrino phase-space densities χδfδf are completely deter-
mined by the free theory, but the computation of the susceptibilities χQQ is non-trivial. We
have done this computation in [1] which is part of the next chapter.

4Here and in the following we consider the susceptibilities as matrices in flavor and momentum space, such
that for example (χQδf )aIk ≡ χQaδfIk
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Chapter 4

Susceptibilities of conserved charges

In this chapter we take a closer look at the susceptibilities χQQ
1 of conserved charges in the

SM which are for example needed to complete the order g2 calculation of the washout rate in
[41] and for the relation between B and B−L which we present in section 4.7. This chapter
closely follows the author’s publication [1].

4.1 Computation of the susceptibilities

This section is a modified version of chapter 3 of the author’s publication [1].
The conserved charges in the SM can be divided into two categories, the almost conserved

charges which are only conserved in the SM and the strictly conserved charges which are also
conserved by the Yukawa interaction (1.2.4). Following [41], we denote the strictly conserved
charges by Qā and the almost conserved charges by Qa. The SM plasma is then described
by the partition function [64]

Z(T, µ) ≡ exp(−Ω(T, µ)/T ) ≡ Tr exp [(µAQA −HSM)/T ] , (4.1.1)

where Ω is the grand canonical thermodynamic potential, T is the temperature and µA are
the chemical potentials of the charges QA with A ∈ {a, ā}.

The washout rate γQQ in the kinetic equation (1.2.14) is determined by the susceptibilities
of the almost conserved charges Qa in an ensemble, where the equilibrium value of the strictly
conserved quantities is zero. This constrains the chemical potentials of the latter ones by the
equations

〈Qā〉 = −∂Ω(T, µ)
∂µā

= 0. (4.1.2)

The susceptibilities of the almost conserved charges Qa in the constrained system can then
be computed as [41]

(χQQ)ab = −T ∂2

∂µa∂µb

(
Ω(T, µ)

∣∣∣∣
∂Ω/∂µā=0

)∣∣∣∣
µ=0

. (4.1.3)

1Mind that we consider the susceptibilities as a matrix with (χQQ)ab ≡ χQaQb
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Explicit examples for these susceptibilities at different temperatures can be found in [41, 45].
The thermodynamic potential Ω defined through (4.1.1) can most conveniently be calcu-

lated with the imaginary time path-integral [34]

exp(−Ω/T ) =

ˆ

DΦSM exp

(
ˆ 1/T

0
dτ

[
µAQA(−iτ) +

ˆ

d3xLSM

])
, (4.1.4)

where ΦSM represents all SM fields. For the computation of Ω we pay special attention to
the hypercharge chemical potential µY. It can be identified with the constant mode of the
temporal component of the gauge fields [34, 65],

µY ≡ g1B̄0. (4.1.5)

Note that in the imaginary time formalism gauge invariance requires that the temporal com-
ponents of the gauge fields are imaginary which implies that the gauge charge chemical
potential is imaginary.

We proceed as in [34] and compute Ω in two steps by introducing an effective ther-
modynamic potential Ω̃(T, µ, µY) which can be obtained from the path integral (4.1.4) by
integrating over all fields except the constant mode B̄0. Once Ω̃ has been computed, Ω is
determined by the remaining integral over B̄0

exp(−Ω/T ) =

ˆ

dB̄0 exp
(
−Ω̃/T

)
. (4.1.6)

The integral over the constant mode ensures that Ω is independent of µY, so that the total
hypercharge QY vanishes (Gauß’ law). Since for the susceptibilities we only need the O(µ2)
part of Ω, the integral over B̄0 can be computed in the saddle point approximation where µY
is determined through the condition [1]

∂Ω̃

∂B̄0
=

∂Ω̃

∂µY
= 0, (4.1.7)

and yields
Ω(T, µ) = Ω̃(T, µ, µY)| ∂Ω̃

∂B̄0
=0

+ const× T. (4.1.8)

We could have considered the chemical potentials of other gauge charges like the third
component of the electroweak isospin as well. But in this work we consider only the symmetric
phase where the Higgs vacuum expectation value is zero. In this case only the hypercharge
chemical potential satisfies the saddle point condition (4.1.7) with a non-vanishing value.

In order to compute Ω̃ in perturbation theory it is convenient to introduce chemical
potentials for each particle species α ∈ {ϕ, ℓi, ei, qi, ui, di} like in [34]. These are linearly
related to the chemical potentials of the conserved charges Qi and the hypercharge QY by
the relation

µα(µY, µi) = yαµY +
∑

i

µiTi,α, (4.1.9)

where Ti,α is the generator of the symmetry transformation corresponding to the charge Qi

acting on the particle species α and yα is the hypercharge of the species α which we normalize
such that yϕ = 1/2. For example, the generator matrices of B − L are proportional to the
unit matrix, with TB−L,q = TB−L,u = TB−L,d = 1/3 and TB−L,ℓ = TB−L,e = −1.
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4.2 Dimensional reduction

This section is a modified version of chapter 3 of the author’s publication [1].

For a complete perturbative expansion of Ω̃ it is important to take special care of the
effects of different momentum scales. At high temperature this can be conveniently done
with the method of dimensional reduction [66, 67, 68, 69]. The contributions of the hard
scale p ∼ T , the soft scale p ∼ gT and the ultrasoft scale p ∼ g2T are then separately
computed within effective theories which can be obtained by integrating out one momentum
scale after another. For this purpose consider the Fourier expansion of the fields

Φ(x) =
∑ˆ

p

ei(p0t−p·x)Φ̃(ipn,p), (4.2.1)

with imaginary time t = −iτ , sum-integrals2
∑´

p = T
∑

p0

´ d3p
(2π)3

and Matsubara frequencies

p0 = iπnT with even (odd) integer n for bosons (fermions). In the bosonic case the expan-
sion has a zero-mode n = 0 and the fields get contributions from soft and ultrasoft spatial
momenta. Fermions do not have such a zero mode and thus all fermionic contributions are
hard.

Starting from the path integral (4.1.4) one first integrates over all hard field modes which
results in a potential Ω̃hard and an effective Lagrangian Lsoft for spatial momenta |p| ≪ T
such that

exp
(
−Ω̃/T

)
= exp

(
−Ω̃hard/T

) ˆ
DΦultrasoftDΦsoft exp

(
−
ˆ

d3xLsoft

)
. (4.2.2)

Since in the first integration step all fields modes with n 6= 0 have been eliminated, the
Lagrangian Lsoft does only contain effective three-dimensional fields.

In the second step one integrates over the remaining zero-modes with soft spatial momenta
|p| ∼ gT which leads to the potential Ωsoft and an effective ultrasoft Lagrangian Lultrasoft for
spatial momenta |p| ≪ gT . In the final step one integrates over the ultrasoft modes which
leads to the potential Ω̃ultrasoft. The complete effective grand canonical potential can then be
written as a sum of the three parts

Ω̃ = Ω̃hard + Ω̃soft + Ω̃ultrasoft. (4.2.3)

In practical calculations one works as follows [69]. Starting from the full four-dimensional
Lagrangian one computes all diagrams which contribute to Ω̃ to the desired order in g within
naive perturbation theory. But for the sum-integrals which appear in these diagrams one
neglects the zero-modes. The result is then Ωhard.

In order to get the effective three-dimensional Lagrangian Lsoft one has to write down
all possible terms with three-dimensional fields which give contributions to momentum scales
p≪ T . Of course there are no terms with fermionic fields in the effective Lagrangian because

2We assume the volume V to be so large that the sum over the spatial momenta can with a very good
approximation be identified with an integral.
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they are always hard. All terms in Lsoft have to respect the symmetries of the original four-
dimensional Lagrangian. Let us illustrate this by means of a simple example. The Lagrangian
of the massless four-dimensional Yukawa theory with a real scalar field φ reads

L =
1

2
∂µφ∂

µφ+ ψ̄i/∂ψ − gψ̄ψφ. (4.2.4)

At finite temperature this Lagrangian is invariant under rotations and under φ → −φ. The
most general three-dimensional Lagrangian with the same symmetries, with hard modes
integrated out, reads

Lsoft =
1

2
∂kφ∂

kφ− 1

2
m2φ2 − λ1φ

4 − λ2φ
6 + ..., (4.2.5)

with three dimensional fields φ. The parameters m and λi in the effective Lagrangian are
defined through the original four-dimensional theory and therefore depend only on g and
T . They can be determined by matching correlation functions in the original theory at
high temperatures T ≫ p with the corresponding correlation functions in the effective three-
dimensional theory. In principle one has to write down infinitely many terms with different
parameters λi. But since higher order vertices are of higher order in the original coupling con-
stants, only those vertices have to be considered in the effective Lagrangian which contribute
to the desired order in the perturbative expansion of Ωsoft.

In the same way one can proceed with the ultrasoft Lagrangian. One writes down all terms
with fields which yields contributions to momenta p ≪ gT . Analogously the parameters of
Lultrasoft are then determined by the parameter of Lsoft and can be computed by matching
correlation function of the soft theory with the corresponding correlation functions in the
ultrasoft theory.

Note that in the following we separate the constant mode B̄0 from the gauge fields because
it is associated with the hypercharge chemical potential, which is a free parameter of Ω̃. Then
the constant mode is not part of the three-dimensional gauge fields in the effective theory
neither. But it will then appear in the effective parameters of the dimensionally reduced
theory.

4.3 Hard contributions

This section is a modified version of chapter 4 of the author’s publication [1].

We are interested in contribution to Ω̃ to order µ2α in the particle chemical potentials
(4.1.9) up to order g2 ∼ g2i ∼ λ ∼ m2

0/T
2 ∼ |hi|2 in the SM couplings, where g3 is the

strong SU(3) gauge coupling, m0 is the zero temperature Higgs mass and hi stands for
the Yukawa couplings he, hu and hd of the charged SM leptons and quarks. Since the
fermionic contributions of Ω̃ have already been computed in [41], we only need to calculate
the contributions of the Higgs chemical potential. The Higgs contributions to Ω̃ which contain
Yukawa couplings are hard3 and have also been computed in [41]. Therefore, we need only

3This is easy to see since the integrals for diagrams with fermions can be written as products of one-loop
integrals.
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the terms

LSM = −ϕ†DµD
µϕ−m2

0ϕ
†ϕ− λ(ϕ†ϕ)2

− 1

4
FµνF

µν − 1

4
W a

µνW
aµν − 1

2ξ1
(∂µB

µ)2 − 1

2ξ2
(∂µA

aµ)2 + ..., (4.3.1)

from the SM Lagrangian, where ξ1 and ξ2 are the gauge parameter of the U(1) and SU(2)
gauge fields respectively. The terms which depend on the Higgs chemical potential µϕ = yϕµY
are

δL = µϕ

[
ϕ† (∂τϕ)−

(
∂τϕ

†
)
ϕ
]
+ µ2ϕϕ

†ϕ+ 2g1µϕB0ϕ
†ϕ+ 2g2µϕϕ

†A0ϕ. (4.3.2)

For convenience we include the quadratic part of (4.3.2) into the Higgs propagator. The
sum-integrals which appear in the diagrams do then depend on µϕ through the Higgs prop-
agator and can be expanded to order µ2ϕ. After this expansion we encounter the bosonic
one-loop sum-integral class

Kb
a =

∑ˆ

p

(−ip0)b
(−p2)a , (4.3.3)

with the solution for d = 3− 2ε spatial dimensions [70]

Kb
a =

2π3/2T 4

(2πT )2a−b

(
µ2

πT 2

)ε Γ(a− 3
2 + ε)

Γ(a)
ζ(2a− b− 3 + 2ε). (4.3.4)

As explained in the previous section, we need to neglect the zero modes in order to obtain
the hard contributions. Since the zero modes of these sum-integrals are scaleless integrals,
they vanish in dimensional regularization anyway. In the special case

K ≡
∑ˆ

p

ln(−p2), (4.3.5)

we follow [70] and exploit the fact that K ∼ (T 2)(d/2+1/2) and therefore

T 2∂T 2K =
d+ 1

2
K. (4.3.6)

On the other hand, by acting with the derivative on the sum-integral explicitly one finds

T 2∂T 2K =
1

2
K +K2

1 . (4.3.7)

Therefore, we have

K =
2

d
K2

1 . (4.3.8)

All diagrams which contribute to Ωhard up to order g2 can be reduced to the following
µϕ-dependent one-loop sum-integrals

J0(µϕ) ≡
∑ˆ

p

ln(−p̃2), J1(µϕ) ≡
∑ˆ

p

1

−p̃2 , (4.3.9)
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where p̃ is defined such that p̃0 = p0 + µϕ and p̃ = p, and the µϕ-independent two-loop
sum-integral

J2 ≡
∑ˆ

p,q

1

p2q2(p + q)2
= 0. (4.3.10)

We expand J0 and J1 to order µ2ϕ and express the result in terms of the sum-integral class
(4.3.3) and plug in the solution (4.3.4) which yields the finite results

J0(µϕ) = K + (2K2
2 −K0

1 )µ
2
ϕ +O(µ4ϕ) = −π

2T 4

45
− µ2ϕ

T 2

6
+O(µ4ϕ), (4.3.11)

J1(µϕ) = K0
1 + (K0

2 − 4K2
3 )µ

2
ϕ +O(µ4ϕ) =

T 2

12
−

µ2ϕ
8π2

+O(µ4ϕ). (4.3.12)

The two-loop sum-integral (4.3.10) is only needed for µϕ = 0 because it appears only in
the diagram (4.3.18) which contains the 3-vertices in (4.3.2) and therefore a factor µ2ϕ. The
fact that J2 is zero has been found to order O(ε) in [71, 72], and to all orders in [70].

We compute the diagrams which contribute to −Ω̃hard/V up to order g2. After performing
the SU(2) gauge group traces, we find the leading order and order g2 Higgs contributions

=− 2J0(µϕ) = 2

(
π2T 4

45
+ µ2ϕ

T 2

6
+O(µ4ϕ)

)
, (4.3.13)

=− 2J1(µϕ) = −2m2
0

(
T 2

12
−
µ2ϕ
8π2

+O(µ4ϕ)

)
, (4.3.14)

1

2
=− 6λJ2

1 (µϕ) = −λT
2

2

(
T 2

12
−
µ2ϕ
4π2

)
+O(µ4ϕ). (4.3.15)

Here we have explicitly written the symmetry factor 1/2 in front of the two-loop integral. In
the same way we find for the interactions of the Higgs with gauge bosons the contributions

1

2
=− d+ 1

2

(
g21 + 3g22

)
J1(µϕ)J1(0)

=− d+ 1

2

(
g21 + 3g22

) T 2

12

(
T 2

12
−
µ2ϕ
8π2

+O(µ4ϕ)

)
, (4.3.16)

1

2
=

1

4
(g21 + 3g22)

∑ˆ

p,q

(2p + q)2

p2q2(p + q)2

=
1

4
(g21 + 3g22)

[
4J1(µϕ)J1(0)− J2

1 (µϕ) +O(µ4ϕ)
]

=
1

4
(g21 + 3g22)

T 2

12

(
3
T 2

12
− 2

µ2ϕ
8π2

+O(µ4ϕ)

)
. (4.3.17)
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1

2
× × = −1

4
µ2ϕ(g

2
1 + 3g22)J2 +O(µ4ϕ) = O(µ4ϕ), (4.3.18)

where we used the gauge boson propagators in Feynman gauge. But we have checked that
the result is gauge parameter independent. The cross in the diagram (4.3.18) represents the
3-vertices in (4.3.2).

Now we combine the hard purely bosonic contributions above with the ones containing
fermions from [41] and obtain

− 12

V T 2

[
Ω̃− Ω̃(µ = 0)

]
hard

= 6

[
1− 3

8π2

(
g21
36

+
3g22
4

+
4g23
3

)]
tr(µ2q)

+ 3

[
1− 3

8π2

(
4g21
9

+
4g23
3

)]
tr(µ2u)

+ 3

[
1− 3

8π2

(
g21
9

+
4g23
3

)]
tr(µ2d)

+ 2

[
1− 3

8π2

(
g21
4

+
3g22
4

)]
tr(µ2ℓ)

+

[
1− 3

8π2
g21

]
tr(µ2e)

+ 4

[
1 +

3

4π2

(
1

2
λ+

g21 + 3g22
8

+
m2

0

T 2

)]
µ2ϕ

+ 3

[
1

4π2
tr(huh

†
u)µ

2
ϕ − 3

8π2
tr
(
h†uhuµ

2
q + huh

†
uµ

2
u

)]

+ 3

[
1

4π2
tr(hdh

†
d)µ

2
ϕ − 3

8π2
tr
(
h†dhdµ

2
q + hdh

†
dµ

2
d

)]

+

[
1

4π2
tr(heh

†
e)µ

2
ϕ − 3

8π2
tr
(
h†eheµ

2
ℓ + heh

†
eµ

2
e

)]
+O(µ4) . (4.3.19)

Here tr(...) denotes the trace in flavor space.

4.4 The dimensionally reduced theory

This section is a modified version of chapter 5 of the author’s publication [1].

Now we consider the effective soft theory. As explained in section 4.2, one has to write
down all terms with three-dimensional soft fields which respect the symmetries of the original
theory. For the SM this has been done in [69] at zero µ and the terms of their result which
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contribute to the order g2 are 4

−Lsoft, µϕ=0 =
1

4
FijFij +

1

4
WijWij +

1

2ξ1
(∂iBi)

2 +
1

2ξ2
(∂iA

a
i )

2

+ ϕ†D2ϕ+m2
3ϕ

†ϕ+ λ3

(
ϕ†ϕ

)2

− 1

2
(∂iB0)

2 − 1

2
m2

D,1B
2
0 −

1

2
(DiA0)

2 − 1

2
m2

D,2Tr
(
A2

0

)

− h1ϕ
†ϕB2

0 − h2ϕ
†ϕTr

(
A2

0

)
. (4.4.1)

In addition to (4.3.2) we get the following µϕ dependent terms

− δLsoft = −µ2ϕϕ†ϕ− ρ1ϕ
†B0ϕ− ρ2ϕ

†A0ϕ. (4.4.2)

For the couplings in (4.4.1) we only need the leading order matching [69]

g2i,3 = g2i T (i = 1, 2, 3), λ3 = λT, h1 = g21y
2
ϕT, h2 =

1

4
g22T. (4.4.3)

Furthermore, by matching three-point vertices of (4.3.2) with (4.4.2), we find the new pa-
rameters in δLsoft,

ρ1 = 2µϕyϕg1, ρ2 = 2µϕg2. (4.4.4)

We need the thermal masses of the Higgs and the gauge bosons only at order g2. Then the
thermal Higgs mass is [67, 69]

m2
3 = m2

0 + T 2

(
1

2
λ+

3

16
g22 +

1

16
g21 +

1

4
h2t

)
, (4.4.5)

and the Debye masses for A0, B0 are [69],

m2
D,1 =

(
Ns

6
+

5nf
9

)
g21T

2, (4.4.6)

m2
D,2 =

(
2

3
+
Ns

6
+
nf
3

)
g22T

2, (4.4.7)

where Ns = 1 is the number of Higgs doublets and nf = 3 is the number of families. For
convenience, we define a µϕ-dependent Higgs mass as

m2
3,µϕ

≡ m2
3 − µ2ϕ. (4.4.8)

The loop integrals which contribute to Ω̃soft are, like in section 4.3, µϕ - dependent through
the Higgs propagator. In our calculation we encounter the standard one-loop integrals5 [67]

I0(m) =

ˆ

k

ln(k2 +m2) =
2md

d

Γ(1− d
2)

(4π)d/2
= −m

3

6π
+O(ε), (4.4.9)

I1(m) =

ˆ

k

1

(k2 +m2)
= md−2Γ(1− d

2)

(4π)d/2
= −m

4π
+O(ε) . (4.4.10)

4The term ϕ†A0B0ϕ term does not contribute at O(g2).
5We use the notation

´

k
=
´

d3k
(2π)3
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In the case m = m3,µϕ we expand in powers of µ2ϕ,

I0(m3,µϕ) = −m
3
3

6π
+
µ2ϕm3

4π
+O(µ4ϕ), (4.4.11)

I1(m3,µϕ) = −m3

4π
+

µ2ϕ
8πm3

+O(µ4ϕ). (4.4.12)

The only two-loop integral we need is [67, 71]

I(ma,mb,mc) =

ˆ

k1,k2

1(
k2
1 +m2

a

) (
k2
2 +m2

b

)
[(k1 + k2)2 +m2

c ]

=
1

16π2

[
1

4ε
+ ln

(
µ̄

ma +mb +mc

)
+

1

2

]
+O(ε). (4.4.13)

where µ̄ is the MS scale parameter. In the special casema = m3,µϕ , mb = m ∈ {0,mD,1,mD,2}
and mc = m3,µϕ it is useful to expand in µ2ϕ,

I(m3,µϕ ,m,m3,µϕ) =
1

16π2

[
1

4ε
+ ln

(
µ̄

2m3,µϕ +m

)
+

1

2

]
(4.4.14)

=
1

16π2

[
1

4ε
+ ln

(
µ̄

2m3 +m

)
+

1

2
+

µ2ϕ
m3(2m3 +m)

]
+O(µ4ϕ).

4.5 Soft contributions for soft Higgs mass

This section is a modified version of chapter 6 of the author’s publication [1].

Let us take a closer look at the thermal Higgs mass (4.4.5). The zero temperature Higgs
mass parameter m2

0 is negative with
√

−m2
0 ≈ 125 GeV and can cancel the g2T contributions

at temperatures close to the electroweak scale (T ∼ 160 GeV). Then the thermal Higgs mass is
ultrasoft. This case will be discussed in section 4.6. In this section we consider temperatures
high enough so that m2

3 is of order (gT )2 and positive.

In the following we compute the diagrams which contribute to Ω̃soft up to order g2.
Performing traces in SU(2) gauge group space, we find the leading order and order g2 Higgs
contributions

=− 2TI0(m3,µϕ) = 2T

(
m3

3

6π
−
µ2ϕm3

4π
+O(µ4ϕ)

)
, (4.5.1)

1

2
=− 6λT 2

[
I1(m3,µϕ)

]2
= −3λT 2

8π2
(
m2

3 − µ2ϕ
)
+O(µ4ϕ). (4.5.2)

Note that the µ2ϕ-term has the same parametric form as the one in (4.3.15). The sum of
(4.5.2) and (4.3.15) yields the O(λ) correction, that has been computed in [41] by a Higgs
mass resummation. For the interaction between Higgs and the gauge fields we present the
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calculation again only in Feynman gauge. But we have also checked that the result is gauge
parameter independent. This yields

1

2
=
T 2

4
(g21 + 3g22)

ˆ

k1,k2

(2k1 + k2)
2

(k2
1 +m2

3,µϕ
)k2

2[(k1 + k2)2 +m2
3,µϕ

]

=− T 2

4
(g21 + 3g22)

{[
I1(m3,µϕ)

]2
+ 4m2

3,µϕ
I(m3,µϕ , 0,m3,µϕ)

}

=
µ2ϕT

2

32π2
(g21 + 3g22)

[
1

2ε
+

1

2
+ 2 ln

(
µ̄

2m3

)]
+ · · · , (4.5.3)

1

2
=− µ2ϕT

2
[
g21I(m3,µϕ ,mD,1,m3,µϕ) + 3g22I(m3,µϕ ,mD,2,m3,µϕ)

]

=−
µ2ϕT

2

32π2

{
g21

[
1

2ε
+ 1 + 2 ln

(
µ̄

2m3 +mD,1

)]

+3g22

[
1

2ε
+ 1 + 2 ln

(
µ̄

2m3 +mD,2

)]}
+ · · · , (4.5.4)

1

2
= −1

2
g21T

2I1(m3,µϕ)I1(mD,1)−
3

2
g22T

2I1(m3,µϕ)I1(mD,2)

= − T 2

32π2
(
g21m3,µϕmD,1 + 3g22m3,µϕmD,2

)

=
µ2ϕT

2

32π2
1

2m3

(
g21mD,1 + 3g22mD,2

)
+ · · · , (4.5.5)

where we omitted terms of orders other than µ2ϕ. The solid line in the above diagrams
represent the soft temporal components A0 and B0. Adding up all contributions we obtain
the finite result

− 12

V T 2

[
Ω̃(µ)− Ω̃(0)

]
soft

= 2µ2ϕ

{
−3m3

πT
+

9λ

4π2
+

3

32π2
[
g21C1 + 3g22C2

]}
+O(µ4ϕ), (4.5.6)

with

Ci ≡
mD,i

m3
− 1− 4 ln

(
2m3

2m3 +mD,i

)
. (4.5.7)

After integrating out the soft fields, we are left with an effective theory for the ultrasoft ones.
For soft m3 the ultrasoft theory contains only the spatial gauge fields and at order g2 and µ2ϕ
the effective Lagrangian is independent of µϕ so that this sector does not contribute to the

susceptibilities. This implies Ω̃ultrasoft = 0.
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4.6 Ultrasoft Higgs mass

This section is a modified version of chapter 7 of the author’s publication [1].

The perturbative expansion within the effective theory in section 4.5 works well, as long
as the Higgs mass is not much smaller than gT . From our result (4.5.6) we can estimate how
soft m3 can be for the perturbative expansion in section 4.5 to be valid. The diagram (4.5.5)
contains a self-energy contribution to the Higgs field from soft gauge fields. If m2

3 ∼ g3T 2,
this contributions is of the same size as m3 itself. The two-loop contribution (4.5.5) becomes
therefore as large as the one-loop contribution (4.5.1) and the perturbative expansion breaks
down. In this case the Higgs field has to be included in an effective theory for momenta
p≪ gT . For such small Higgs masses m3 does not contribute to Ωsoft. Therefore, we have to
set m3 = 0 in all diagrams in section 4.5. Then all diagrams but (4.5.4) vanish in dimensional
regularization and Ωsoft is divergent and reads

− 12

V T 2

[
Ω̃(µ)− Ω̃(0)

]
soft

=−
3µ2ϕ
8π2

{
g21

[
1

2ε
+ 1 + 2 ln

(
µ̄

mD,1

)]

+3g22

[
1

2ε
+ 1 + 2 ln

(
µ̄

mD,2

)]}
. (4.6.1)

We obtain the contributions for momenta p≪ gT from the effective ultrasoft Lagrangian

−Lultrasoft =
1

4
FijFij +

1

4
WijWij − ϕ†D2ϕ+m2

3,µϕ
ϕ†ϕ+ λ̄3

(
ϕ†ϕ

)2
, (4.6.2)

with the parameters [69]

m2
3,µϕ

= m2
3,µϕ

− 1

4π
(3h2mD,2 + yϕh1mD,1) , (4.6.3)

λ̄3 = λ3. (4.6.4)

The effective Higgs mass squared m2
3 does now contain a negative contribution of the order

g3T 2, corresponding to the self-energy correction from the soft temporal gauge fields in (4.5.5).
The perturbative expansion in this theory works well as long as the dimensionless expansion
parameter g2T/m3 ≪ 1, which is true as long as m3 is much larger than g2T . Let us consider
the case 0 < m2

3 ∼ g3T . Then the expansion parameter is g1/2 and we are still in the

symmetric phase. The diagrams which contribute to Ω̃ultrasoft are (4.5.1), (4.5.2) and (4.5.3)
with m3 replaced by m3. Then we obtain

− 12

V T 2

[
Ω̃(µ)− Ω̃(0)

]
ultrasoft

= µ2ϕ

{
−6m3

πT
+

9λ

2π2

+ 3
g21 + 3g22

8π2

[
1

2ε
+

1

2
+ 2 ln

(
µ̄

2m3

)]}
. (4.6.5)

Combining the soft contributions (4.6.1) with the ultra soft contributions (4.6.6), the diver-
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gences cancel and we find the finite result

− 12

V T 2

[
Ω̃(µ)− Ω̃(0)

]
soft+ultrasoft

= 2µ2ϕ

[
−3m̄3

πT
+

9λ

4π2
+

3

32π2
(
g21C̄1 + 3g22C̄2

)]
, (4.6.6)

with

C̄i ≡ −1− 4 ln

(
2m3

mD,i

)
. (4.6.7)

Since we consider m3 ∼ g3T , the leading order is O(g3/2) and the next-to-leading order is
O(g2). Furthermore, we have terms in this expression which are parametrically ln(mDi/m3) ∼
ln(1/g).

Now let us consider the case that m3 ∼ g2T . In this case the one-loop contribution is of
order g2 such as the two-loop contributions and perturbation theory again breaks down. The
reason is that the only mass scale in the ultrasoft theory is then the magnetic screening scale
g2T and the dimensionless expansion parameter is of order one. Thus an infinite number of
diagrams contribute to the order g2, which is the so-called Linde problem [73].

However, one can derive an expression for (4.6.6) which can also be evaluated with non-
perturbative methods. Writing the ultrasoft Lagrangian as

Lultrasoft = (Lultrasoft)µϕ=0 + µ2ϕϕ
†ϕ, (4.6.8)

one can easily expand the path integral

exp(−Ω̃ultrasoft/T ) =

ˆ

DΦultrasoft exp

{
ˆ

d3xLultrasoft

}
(4.6.9)

to second order in µϕ which yields

[
Ω̃(µ)− Ω̃(0)

]
ultrasoft

= −V Tµ2ϕ
〈
ϕ†ϕ

〉
+O(µ4ϕ). (4.6.10)

The expectation value of ϕ†ϕ can be extracted from effective potential and can be perturba-
tively expanded as long as m3 ≫ g2T . The two two-loop expansion is [53, 67, 69]

〈ϕ†ϕ〉2−loop = − m3T

2π
+

T 2

16π2

{
6λ+

(
g21 + 3g22

) [ 1

4ε
+ ln

(
µ̄

2m3

)
+

1

4

]}
, (4.6.11)

which again leads to our result (4.6.6).
When the Higgs mass becomes as small as the magnetic screening scale, m3 ∼ g2T , the

expression (4.6.10) is still valid, but its perturbative expansion in terms of loop diagrams
breaks down. From the perturbative expansion (4.6.11) we have seen that the ultrasoft one-
loop and two-loop contributions are of order g2 (plus order g2 ln(g)) if m3 ∼ g2T . With a
simple argument one can show that the complete contribution from ultrasoft fields is of this
order when m3 ∼ g2T . Since the three-dimensional fields have mass dimension 1/2, and since
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the only mass scale in the ultrasoft theory is g2T , we have 〈ϕ†ϕ〉 ∼ g2T plus possible order
g2 ln(g) contributions.

A reliable calculation of 〈ϕ†ϕ〉 near the electroweak crossover can be done with lattice
simulations of the three-dimensional theory (4.6.2). Such simulations have been done in
[74]for a SU(2)+Higgs theory for several Higgs masses and in [22] for mH = (125 − 126)
GeV. A study which also takes into account the U(1) gauge fields can be found in [75]. Near
the electroweak crossover 〈ϕ†ϕ〉 turned out to be a rather smooth function of the temperature.

We do not consider the case where m2
3 becomes negative. In this case the system would

be in the broken phase, where the Higgs field develops an expectation value. Furthermore, in
the presence of chemical potentials of the broken charges, the SU(2) gauge fields would have
a non-vanishing expectation value as well which can be identified with the chemical potential
of the third component of the electroweak isospin. This case has been studied at leading
order in [34].

4.7 Relation between B and B − L

This section is a modified version of chapter 8 of the author’s publication [1].
In this section we use our results for Ω̃ to compute the relation between the baryon number

B and B−L at order g2 in the symmetric phase. For the computation of 〈B〉 it is convenient
to introduce a chemical potential µB in the partition function as

exp(−Ω′/T ) ≡ Tr exp [(µAQA + µBB −HSM)/T ] . (4.7.1)

The artificial chemical potential µB is assumed to be independent of the chemical potentials
µi of the conserved charges. Then, the expectation value of B can be computed as

〈B〉 = − ∂Ω′

∂µB

∣∣∣∣
µB=0

. (4.7.2)

The introduction µB is only valid as long as the partition function is expanded to the linear
order in µB. At this order the cyclicity of the trace ensures that the ordering of the operators
B and H does not matter.

The results (4.3.19), (4.5.6) and (4.6.6) for Ω̃′ depend on the particle chemical potentials
which have to be related to the chemical potential of the conserved charges Xi = B/nf − Li

through the relation (4.1.9). Then, the chemical potentials of the particles are related to µXi

and µB by

µqi =
µY
6

+
µX + µB

3
,

µui
=

2µY
3

+
µX + µB

3
,

µdi = −µY
3

+
µX + µB

3
,

µli = −µY
2

− µXi
,

µei = −µY − µXi
,

33



µϕ =
µY
2
, (4.7.3)

where µX ≡ 1
nf

∑nf
i=1 µXi

. Using these relations, we express Ω̃′ in terms of µY , µXi
and µB and

use the saddle point condition (4.1.7) to eliminate µY and to obtain Ω′. Then, using (4.7.2),
yields 〈B〉 as a linear function of µX . Furthermore, we obtain a linear relation between Xi

and µXi
from

Xi = − ∂Ω

∂µXi

, (4.7.4)

which can be used to express the µX dependence of 〈B〉 in terms of 〈B − L〉, such that

〈B〉 = κ〈B − L〉. (4.7.5)

For m3 of order gT we obtain

κ =
4(2nf +Ns)

22nf + 13Ns
+
m3

πT

24nfNs

(22nf + 13Ns)2

+
g21

16π2
236n2f − (12C1 − 212)nfNs + 75N2

s

(22nf + 13Ns)2

+
g22

16π2
9(12n2f − 4(C2 − 1)nfNs + 3N2

s )

(22nf + 13Ns)2

− g23
16π2

96(8n2f + 11nfNs + 3N2
s )

(22nf + 13Ns)2

+
h2t

16π2
6(6n2f − 41nfNs − 18N2

s )

(22nf + 13Ns)2

− λ

16π2
384nfNs

(22nf + 13Ns)2

− m2
0

(πT )2
12nfNs

(22nf + 13Ns)2
, (4.7.6)

with the same definitions as in (4.4.7) and (4.5.7). When m̄2
3 ∼ g3T 2, the result for κ can be

obtained from (4.7.6) by replacing m3 by m3 and Ci by C̄i defined in (4.6.3) and (4.6.7).
In figure 4.1 it can be seen that the next-to-leading order (NLO) correction to κ which

comes from the one-loop Higgs correction is smaller than 1%. At next-to-next-to-leading
order (NNLO) the strong coupling g3 enters the perturbative expansion. Therefore, the
NNLO corrections are much larger than the NLO Higgs correction, but still smaller than
5%. However, as one can see in figure 4.1, the pure electroweak NNLO corrections are much
smaller than the NLO correction which indicates that perturbation theory works well.

Let us now consider temperatures close to the electroweak crossover. As long as m3 is not
much smaller than g3/2T , we can still identify the one-loop Higgs corrections with the NLO
and the two-loop corrections with the NNLO. In figure 4.2 have plotted the NLO, the NNLO
with the Higgs mass m3 treated as soft and and the NNLO with ultrasoft Higgs mass m3.
For such small temperatures the thermal Higgs mass m3 becomes very small and therefore
the NLO contribution tends to zero close to the electroweak crossover. If the Higgs mass
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Figure 4.1: The radiative corrections of κ compared to the leading order for mH = 126 GeV,
nf = 3 and Ns = 1. The NLO corrections are smaller than 1% and the electroweak NNLO
correction are even smaller. At NNLO the QCD corrections dominate the result, but they
are still smaller than 5%. This plot has been been published in [1]

m3 is treated as soft, the NNLO diverges like ∼ 1/m3 at low temperatures. This divergence
disappears if the Higgs is treated in the ultrasoft theory with a mass parameter m3. However,
there is still a logarithmic divergence at T & 165 GeV where m3 ≪ g3/2T . At this point the
perturbative expansion breaks down and lattice simulations for the expression (4.6.10) have
to be considered.

We have also compared the size of the contributions from the Higgs chemical potential
with the size of the contributions from fermionic chemical potentials. Figure 4.3 indicates
that the NNLO contributions from the Higgs chemical potential is nearly as large as the
electroweak NNLO contributions from fermionic chemical potentials.
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Figure 4.2: The radiative corrections of κ at low temperatures with mH = 126 GeV, nf = 3
and Ns = 1. If the Higgs mass is treated as soft, the result diverges for T < 160 GeV, and
if the the Higgs mass is treated as ultrasoft, it diverges even at T ∼ 165 GeV. This is the
region where perturbation theory breaks down. This plot has been been published in [1]
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Figure 4.3: The contribution of the Higgs chemical potential is similar large as the contri-
butions from fermionic chemical potentials. At T > 175 GeV the Higgs correction almost
cancels the fermionic NNLO corrections, so that the electroweak NNLO is almost as large as
the NLO.
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Chapter 5

Lepton washout rate at low

temperatures

The susceptibilities which we considered in the previous chapter are in particular important
for the computation of the washout rate γQQ. This rate has been computed at order h2ν in
[41]. In this chapter we consider the washout rate at low temperatures T ≪ M1. In this
limit the rate is of order h4ν and is dominated by ∆L = 2 sterile neutrino mediated scattering
processes. This rate is an important ingredient for finding upper bounds on sterile neutrino
masses, as pointed out in [45]. The calculations and results of this chapter are planned to be
published in [2].

5.1 Neutrino masses and the washout rate

The discovery of solar [76] and atmospheric [77] neutrino oscillations proves that at least
two of the three known (active) neutrinos are massive. These masses cannot be explained in
the SM, but the Yukawa interaction (1.2.4) which couples left-handed neutrinos with right-
handed neutrinos can be a source for neutrino masses. In the broken phase the Higgs field ϕ̃
obtains a vacuum expectation value 〈ϕ̃〉 = (v, 0)⊤ so that the interaction (1.2.4) leads to a
Dirac mass term

LDirac = −(mD)IiνR,IνL,i +H.c, (5.1.1)

with the Dirac mass matrix (mD)Ii = v(hν)Ii. In combination with the Majorana mass term
(1.2.3) for the right-handed neutrinos one can write the complete neutrino mass term as [78]

Lmass = −1

2

(
νL, νcR

)
M

(
νcL
νR

)
+H.c, (5.1.2)

with the mass matrix

M =

(
0 mD

m⊤
D M

)
. (5.1.3)

The mass matrix is symmetric and can therefore be diagonalized. In general, for an
arbitrary number of flavors, it is rather difficult to do this diagonalization. However, if we
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assume the Majorana masses to be much larger than the Dirac masses, one can approximate
the block-diagonalized version of M as [78, 79]

DM ≈
(
mν 0
0 M

)
, (5.1.4)

with the 3× 3 block of light neutrino masses

mν ≈ −m⊤
DM

−1mD. (5.1.5)

This formula has an intuitive interpretation which is known as the seesaw mechanism. The
light neutrino masses are light because they are inverse proportional to the heavy Majorana
masses.

The light neutrino masses play an important role in leptogenesis because they are directly
related to the Yukawa coupling hν which is responsible for the B − L violating interactions.
In particular, at temperatures much lower than the lightest sterile neutrino mass the mass
matrix mν becomes important for the washout rate γQQ. At temperatures T ∼ M1, where
M1 is the lightest sterile neutrino mass, the washout rate γQQ is dominated by ∆L = 1
processes which are of order h2ν . In [41] an expression for this rate has been derived using the
formula (3.2.13) for xi = Qa. This expression is valid to order h2ν and to all orders in the SM
couplings. However, at low temperatures (T ≪M1) the ∆L = 1 processes are exponentially
suppressed and the ∆L = 2 processes

ℓ+ ℓ↔ ϕ̃+ ϕ̃, (5.1.6)

ℓ̄+ ℓ̄↔ ϕ̃† + ϕ̃†, (5.1.7)

ℓ+ ϕ̃† ↔ ℓ̄+ ϕ̃, (5.1.8)

dominate γQQ [44]. These processes are mediated by virtual sterile neutrinos and are of order
h4ν .

At very low temperatures T ≪ M1 it has been shown in [44] in the single-flavor approx-
imation (see also section (5.5)), neglecting thermal effects and spectator processes, that the
the leading contribution to the washout rate is

γQQ =
cT 3

v4
m̄2, (5.1.9)

where m̄2 = tr(m†
νmν) is the sum of all squared light neutrino masses, and c is a numerical

constant. Since in this limit γQQ is proportional to m̄2, this rate is an important ingredient for
finding upper bounds on the parameter m̄. In [44] the value of c has been obtained neglecting
quantum-statistical effects in the collision integrals of Boltzmann equations. We expect these
effects on the constant c to be important because the sterile neutrino mediated processes
are, unlike the ∆L = 1 processes, not Boltzmann suppressed. Therefore, in this work we
compute γQQ in the low-temperature regime, including full quantum-statistical effects. Fur-
thermore, our approach naturally allows to include the effects of spectator processes through
the susceptibilities which we considered in the previous chapter. In this case c depends on
the temperature.
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For the calculation of the rate γQQ we proceed as [41] for the ∆L = 1 washout rate,
using the Kubo-type formula (3.2.13). We work within an effective low-temperature theory
which approximates the sterile neutrino exchange as point-like interactions, described by a
dimension-5 operator (see (5.2.6)).

Another analysis of the ∆L = 2 washout rate including quantum statistical effects and
thermal masses has been done in [80]. However no explicit analytical expression in the low-
temperature regime is given there.

A full leading order calculation of the ∆L = 2 washout rate within a low-temperature
effective theory might also be interesting for a recently proposed minimal leptogenesis scenario
[81] where a dimension-5 operator is used which is very similar to (5.2.6).

5.2 Kubo relations for the washout rate in an effective theory

In the following we consider the scattering processes (5.1.6)-(5.1.8) which are mediated by
sterile neutrino exchange. We assume these processes to occur at temperatures which are
much smaller than the lightest sterile neutrino mass M1. Then there are no sterile neutrinos
present in the hot plasma. Furthermore, virtual sterile neutrinos typically have momenta
much smaller than their mass. The interactions (5.1.6)-(5.1.8) can then be described by an
effective dimension-5 operator, which can be obtained from (1.2.4) by integrating out the
sterile neutrinos in the path integral. This has for example been done in [82]. Let us shortly
explain how it works. For the Majorana fields we write N̄ = N⊤C−1. The full action of the
theory can then be written as

S =

ˆ

d4x

(
1

2
N⊤

I DINI − ĪINI + LSM

)
, (5.2.1)

where DI ≡ C−1(i/∂ −MI) and I = J + Jc with J = ϕ̃hνℓ. Integrating over the neutrinos
in the path integral, we obtain the effective action

Seff
int = −1

2

ˆ

d4x

ˆ

d4yI I(x)GI(x− y)II(y), (5.2.2)

with

GI(x− y) =

ˆ

d4k

(2π)4
e−ik·(x−y) /k +MI

k2 −M2
I + i0+

. (5.2.3)

If k2 ≪M2
I , we can approximate

GI(x− y) ≈ −δ(4)(x− y)
1

MI
(5.2.4)

and then the effective interaction leads to the Lagrangian

L
eff
int =

1

2MI

ˆ

d3xI III , (5.2.5)
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which in terms of the Standard Model fields reads

L
eff
int =

1

2MI

ˆ

d3x

{(
ϕ̃†ℓi

)⊤
C

−1
(
ϕ̃†ℓj

)
(hν)Ij(h

⊤
ν )iI +H.c.

}
. (5.2.6)

Here we have used ℓℓ = 0 due to the left-handed nature of the leptons. The dimension-5
operator in (5.2.6) has also been found by [83] as a source of ∆L = 2 violating processes.

Let us now use the approach from section 3.2 to compute the washout rate within this
effective theory. First of all we use the fact that the equal time correlations of the charges
Qa with the phase-space density fIk vanish (see 3.2.14). Then, for the real-time correlator
we need only the correlations of quantities with the same sign under CPT transformation,
namely the charges Qa. Then the washout rate can be computed with the Kubo-type relation
(3.2.13) which explicitly reads [41]

(γQQ)ab =
1

2V
lim

γ≪ω≪ωUV

ρQ̇aQ̇c
(ω)

ω
(Ξ−1)cb, (5.2.7)

where we have defined the volume independent susceptibilities, according to [41], as

Ξab ≡
1

TV
(χQQ)ab. (5.2.8)

Since we consider temperatures much lower than the lightest sterile neutrino mass, the
time derivative of the almost conserved charges is determined by the effective interaction
(5.2.6) and can be computed in the Heisenberg picture as

Q̇a = i[Heff
int, Qa], (5.2.9)

where Heff
int = −L eff

int . Due to the fact that (5.2.6) changes only the number of left-handed
leptons, it is sufficient for the computation of the time derivatives to consider the depen-
dence of Qa on these fields only. Let T ℓ

a be the generator of the symmetry transformation
corresponding to the charge Qa acting on the left-handed lepton fields. Then we can write

Qa =

ˆ

d3x

(
ℓ̄iγ

0(T ℓ
a)ijℓj + contributions from other fields

)
, (5.2.10)

and a straightforward calculation, using (5.2.9) and (5.2.6) yields the time derivatives

Q̇a =
i

MI

ˆ

d3x

{
JaIC J

⊤
I + J⊤

I C
†JaI

}
, (5.2.11)

where JaI = (hν)Ii(T
ℓ
a)ijϕ̃

†ℓj . Since the Q̇a are of order h2ν the spectral function in (5.2.7) is
already of the order h4ν which we are interested in. Therefore, only SM interactions have to
be taken into account for the calculation of the spectral function and the susceptibilities.

For perturbative calculations of the spectral function in (5.2.7) it is most convenient to
compute first the imaginary time correlator

∆Q̇aQ̇b
(iωn) =

ˆ β

0
dτeiωnτ

〈
Q̇a(−iτ)Q̇b(0)

〉
(5.2.12)

and then to analytically continue the result to complex frequencies ω via iωn → ω and to use
the inverse relation (2.1.10) to obtain the spectral function.
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5.3 Leading order

First we calculate the imaginary time correlator (5.2.12) at leading order, using the operator
(5.2.11). Applying Wick’s theorem, contracting all gauge and flavor indices and performing
Dirac traces yields

∆LO
Q̇aQ̇b

(iωn) = −V d(r)(d(r) + 1)

MIMJ

{
2
(
hνT

ℓ
ah

†
ν

)
IJ

(
hνT

ℓ
bh

†
ν

)
IJ

+
(
hνh

†
ν

)
IJ

(
hν{T ℓ

a , T
ℓ
b }h†ν

)
IJ

}
∆0(iωn), (5.3.1)

where d(r) = 2 is the dimension of the representation of the gauge group SU(2) and

∆0(iωn) =
∑ˆ

{k1},{k2},k3

2k1 · k2
k21k

2
2k

2
3(k1 + k2 + k3 + q)2

(5.3.2)

is a three-loop sum-integral corresponding to the diagram in figure 5.1. Here {ki} denotes
fermionic Matsubara frequencies and q = (iωn,0). The analytical continuation of (5.3.2)

Figure 5.1: Diagrammatic representation of the sum-integral entering the leading order of
∆Q̇aQ̇b

(iωn). Dotted lines are bosons and solid lines are fermions.

can only be done after performing the Matsubara sums. Then we obtain an expression
consisting of three-dimensional integrals containing ratios of the form ∆/(ω2

n + ∆2), where
∆ = Ein−Eout can be identified with the difference of the energies of incoming and outgoing
particles in 0 ↔ 4, 1 ↔ 3 and 2 ↔ 2 processes. Only the 2 ↔ 2 processes (5.1.6)-(5.1.8) are
kinematically allowed and contribute to the rate. These terms are

∆0(iωn) = −4

ˆ

dΠ1

ˆ

dΠ2

ˆ

dΠ3

ˆ

dΠ4(2π)
3δ(3)(k1 + k2 − k3 − k4) (E1E2 − k1k2)

×
{

E1 + E2 − E3 − E4

ω2
n + (E1 + E2 − E3 −E4)2

×
(
fF,1fF,2(1 + fB,3 + fB,4)− fB,3fB,4(1− fF,1 − fF,2)

)

−2
E1 + E3 −E2 − E4

ω2
n + (E1 +E3 − E2 − E4)2

×
(
fF,1fB,3(1 + fB,2 − fF,4)− fF,2fB,4(1− fF,1 + fB,3)

)

+ similar terms which do not contribute to the rate

}
, (5.3.3)
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where dΠi = d3ki/(2Ei), Ei = |ki| and fF,i = fF(Ei) and fB,i = fB(Ei) are the Fermi-
Dirac and Bose-Einstein distributions, respectively. We calculate the discontinuity of (5.3.3),
making use of

Disc
∆

ω2
n +∆2

∣∣∣∣
iωn→ω

= iπ (δ(ω −∆)− δ(ω +∆)) (5.3.4)

and expand the result to order ω. Then, using (5.2.7) we obtain

(γQQ)ab =
12

TMIMJ

(
I110012 + 2I101013

) (
Ξ−1

)
cb

×
(
2
(
hνT

ℓ
ah

†
ν

)
IJ

(
hνT

ℓ
ch

†
ν

)
IJ

+
(
hνh

†
ν

)
IJ

(
hν{T ℓ

a , T
ℓ
c }h†ν

)
IJ

)
. (5.3.5)

Here we have defined the integral class

Iσ1σ2σ3σ4
ij =

ˆ

dΠ1dΠ2dΠ3dΠ4(2π)
4δ(4)(k1 + k2 − k3 − k4)

×(ki · kj)f eqσ1
f eqσ2

(1 + σ3f
eq
σ3
)(1 + σ4f

eq
σ4
)

∣∣∣∣
k0i=Ei

, (5.3.6)

where σi is 1 for bosons and −1 fermions, f1=fB and f−1=fF. We calculate the integrals
I110012 and I101013 in appendix A, using full quantum statistics and their results are

I110012 =1.14× 10−4T 6, (5.3.7)

I101013 =5.91× 10−5T 6. (5.3.8)

Our result (5.3.5) gives the leading order washout rate for the charges Qa in the symmetric
phase for temperatures T ≪M1.

5.4 Beyond leading order

As we have seen in chapter 4, the NLO susceptibilities are of order g due to soft thermal Higgs
mass (4.4.5). Therefore, the next-to-leading order corrections to the washout rate should be
of order g as well. Keep in mind that the susceptibilities of almost conserved charges are
defined trough the relation (4.1.3), that is, in an ensemble where the strictly conserved charges
vanish. It depends on the temperature which charges are conserved . A table for the order
g susceptibilities in the single flavor approximation for different temperature regimes can be
found in [45].

If one naively expands the spectral functions in (5.2.7) to order g2 one finds infrared
divergent diagrams which correspond to thermal Higgs mass corrections to the Higgs propa-
gator. These divergences can be cured by thermal Higgs mass resummation. The idea works
as follows. We write the Lagrangian as

L = L −m2
3ϕ

†ϕ+m2
3ϕ

†ϕ, (5.4.1)

with m3 defined in (4.4.5), and treat the first mass term as a part of the Higgs propagator
and the second one as a two-vertex in which we expand in perturbation theory. The infrared
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divergences are then cured due to the massive Higgs propagator. On the other hand, the
contributions of order g2 diagrams which correspond to thermal Higgs mass corrections are
canceled by diagrams with the two-vertex insertion.

The parametric dependence of the leading order diagram on the Higgs mass reflects the
nature of the infrared divergence and thus yields a contribution which is parametrically
larger than order g2. In appendix A we investigate the leading contribution of the Higgs
mass, computing the leading order diagram in figure 5.1 with massive Higgs propagator and
expand the result for small values of m3/T . Then we find that the integrals (5.3.6) have the
logarithmic mass dependence

I110012 (m3) =

(
1.14 + 0.333

m2
3

T 2
ln(

m2
3

T 2
) + O(g2)

)
× 10−4T 6 (5.4.2)

I101013 (m3) =

(
5.91 + 2.54

m2
3

T 2
ln(

m2
3

T 2
) + O(g2)

)
× 10−5T 6. (5.4.3)

Unlike for the susceptibilities, the Higgs mass resummation does not lead to an order g
correction of the spectral function, but rather to an order g2 ln(g) correction. Therefore, the
leading Higgs mass effect is due to the susceptibilities. We have not computed the effects of
thermal lepton and gauge boson masses on the spectral function. A complete calculation of
these effects would be a substantial amount of work, but we expect them, like the thermal
Higgs mass corrections to the spectral function, to be of order g2 ln(g2) or g2.

5.5 Size of the quantum statistical effects and order g Higgs

mass contribution

In the following we define the left-handed lepton which couples to the lightest sterile neutrino
N1 as ℓN1 and we define the lepton asymmetry in this flavor direction as LN1 . We assume
that during the generation of the lepton asymmetry only N1 is present in the plasma so that
only an asymmetry in ℓN1 is generated through the sterile neutrino Yukawa interaction. This
is a valid approximation in the hierarchical limit M1 ≪MI 6=1. If the charged lepton Yukawa
interactions are in equilibrium, the asymmetry in the left-handed lepton ℓN1 is partially
converted into an asymmetry in the right-handed sector. Since the charged lepton Yukawa
interactions are also flavor violating, the asymmetry LN1 is also partially converted into an
asymmetry in other flavors. In the following we use the single-flavor approximation, assuming
that the flavor violation can be neglected. Then asymmetries in directions other than LN1

are zero and we can choose the charge Qa such that it contains the lepton number summed
over all flavors. This corresponds to setting T ℓ

a = 1 in (5.3.5) and leads to the rate

γQQ = 1.12 × 10−2T
5m̄2

v4Ξ
. (5.5.1)

Let us investigate how strongly the quantum-statistical effects and spectator processes affect
the washout rate by comparing our result (5.5.1) to the one from [44], which translates in
our notation to

γQQ

∣∣∣∣
classical

= 2.68 × 10−2T
3m̄2

v4
. (5.5.2)
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There the rate has been computed with classical statistics and spectator processes have been
neglected. If we also neglect spectator processes, this corresponds to T 2Ξ−2 = 3 [45]. Then
our result is 24.8% larger than (5.5.2) due to quantum-statistical effects.

In [45] our result for the ∆L = 2 washout rate has been used for finding upper bounds
on the sum of the squared neutrino masses m̄2. There it turned out that full quantum
statistics yields a 5% tighter mass bound than classical statistics which yields the upper
bound m̄max < 0.2 eV.

In the same reference it has been shown that the ∆L = 2 washout rate becomes relevant
for sterile neutrino massesM1 & 1014 GeV. For such sterile neutrino masses let us consider two
examples for the susceptibilities which have been computed in [45] with the formula (4.1.3).
At temperatures T & 1013 GeV the strong sphalerons become active and the susceptibilities
read [45]

T 2Ξ−1 =
90

23

(
1 +

49

230

m3

πT

)
. (5.5.3)

In this case the washout rate is 30.4% larger compared to case where the spectator processes
have been neglected.

For lower temperatures between 1012 GeV < T < 1013 GeV the τ -Yukawa interaction
becomes active. In this case one has to distinguish the two cases whether LN1 is equal to the
τ flavor asymmetry Lτ or not. Then the susceptibilities are [45]

T 2Ξ−1 =

{
57
16

(
1 + 27

304
m3
πT

)
, LN1 6= Lτ

3
(
1 + 3

16
m3
πT

)
, LN1 = Lτ

(5.5.4)

In the first case the washout rate is 18.8% larger compared to the case there the spectator
processes have been neglected. In the second case (LN1 = Lτ ) the washout rate differs from
the case where spectator processes are neglected only due to the Higgs mass correction.

For temperatures between 1012 GeV < T < 1014 GeV we have 0.13 < m3
πT < 0.18. Then

we find, if LN1 6= Lτ , that the order g (or NLO) correction to the ∆L = 2 washout rate from
the thermal Higgs mass are smaller than 2% in this temperature regime. If LN1 6= Lτ , they
are smaller than 3% which has also been pointed out in [45].
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Chapter 6

Three-point functions at finite

temperature

Before we continue with the computation of the CP violating lepton asymmetry rate γQδf ,
we have to introduce some mathematical tools. In chapter (7) we show that this rate can
be related to three-point spectral functions at finite temperature. Therefore, the aim of this
chapter is to derive relations for three-point functions analogous to the relation (2.1.7), (2.1.2)
and (2.1.10) which hold for two-point functions. Furthermore, we investigate the properties
of three-point functions if the system is symmetric under CP and T transformations. The
calculations and results of this chapter are planned to be published in [3].

6.1 The three-point spectral representation

Three-point functions at finite temperature and their spectral representation have been stud-
ied in several references in the real-time formalism. For example, in 1990 Kobes and Evans
showed in [84, 85] that a spectral representation exists for three-point functions at finite
temperature. But their notion of a spectral representation differs from ours. In particular,
they do not give an integral representation analogous to (2.1.7).

Spectral representations similar to (2.1.7) have been derived in [86, 87] for retarded and
advanced real-time three-point correlators, but not for the imaginary time correlator. Fur-
thermore, they use different representations for each real-time correlator, but we only want
a single spectral representation for the imaginary time correlator.

An integral representation which relates the imaginary time correlator to real-time correla-
tors has been derived in [88]. However, this integral representation differs somewhat from the
simple structure of (2.1.7) which we are interested in. For example, their integral representa-
tion still depends on thermal distributions and does not give a simple relation to three-point
spectral functions which are defined through (anti-)commutators similar to (2.1.2). In this
section we closely follow [88] and show that a simple spectral representation can be obtained
which is very similar to (2.1.7). In [88] it has also been shown that the imaginary time corre-
lator can be related to advanced and retarded correlators via analytical continuation similar
to (2.1.8). Using this fact, we can furthermore show that inverse relations similar to (2.1.10)
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exist.

We consider three operators A, B, and C, which can be fermionic or bosonic, elementary
or composite. They define six three-point correlation functions, one for each permutation of
ABC, of which one is given as

ΓABC(tA, tB) ≡ 〈A(tA)B(tB)C(0)〉 . (6.1.1)

Here we have already used translational invariance in time which allows to set tC = 0. The
correlator is well defined for complex times with

0 ≥ Im tB ≥ Im tA ≥ −β (6.1.2)

and in this region its Fourier representation

ΓABC(tA, tB) =

ˆ

dωA

2π

ˆ

dωB

2π
e−i(ωAtA+ωBtB)γABC(ωA, ωB) (6.1.3)

exists. Due to the cyclicity of the trace the Fourier transform satisfies the relation

γABC(ωA, ωB) = e−ωC/T γCAB(ωA, ωB), (6.1.4)

with ωC = −ωA − ωB .

For the asymmetry rate in the next chapter we need the time ordered imaginary time
three-point correlator in frequency space, which we define as

ΓABC(iωn, iωn′) ≡
ˆ β

0
dτ

ˆ β

0
dτ ′ exp(iωnτ + iωn′τ ′)

〈
T
{
A(−iτ)B(−iτ ′)C(0)

}〉
, (6.1.5)

with Matsubara frequencies ωn = nπT , with even (odd) integers n for bosonic (fermionic)
operators. Writing the time ordering in (6.1.5) explicitly, we have

ΓABC(iωn, iωn′) =

ˆ β

0
dτ

ˆ β

0
dτ ′ exp(iωnτ + iωn′τ ′)

[
θ(τ − τ ′)

〈
A(−iτ)B(−iτ ′)C(0)

〉

+ (−1)degA degBθ(τ ′ − τ)
〈
B(−iτ ′)A(−iτ)C(0)

〉]
, (6.1.6)

where deg stands for the degree defined as

degA =

{
0 if A bosonic

1 if A fermionic.
(6.1.7)

Like in [88], we plug in the Fourier representation (6.1.3) of the correlators on the right-hand
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side and perform the τ and τ ′ integral. This yields

ΓABC(iωn, iωn′) =

ˆ

dω

2π

ˆ

dω′

2π

(
(−1)degA+degBe−β(ω+ω′) − 1

)
γABC(ω, ω

′)

(iωn + iω′
n − ω − ω′)(iωn − ω)

+
(−1)degAdegB

(
(−1)degA+degBe−β(ω+ω′) − 1

)
γBAC(ω

′, ω)

(iωn + iω′
n − ω − ω′)(iω′

n − ω′)

+

(
1− (−1)degAe−βω

)
γABC(ω, ω

′)

(iω′
n − ω′)(iωn − ω)

+
(−1)degAdegB

(
1− (−1)degBe−βw′

)
γBAC(ω

′, ω)

(iω′
n − ω′)(iωn − ω)

. (6.1.8)

In contrast to [88], we now use the cyclicity property (6.1.4) to eliminate all exponential
functions and do the partial fraction decomposition

1

(iωn − ω)(iωn′ − ω′)
=

1

iωn + iω′
n − ω − ω′

(
1

iωn − ω
+

1

iω′
n − ω′

)
. (6.1.9)

Furthermore, we assume that ABC is a bosonic operator, so that degC = deg(AB). Then
we obtain the spectral representation

ΓABC(iωn, iωn′) =

ˆ

dω

2π

ˆ

dω′

2π

1

iωn + iωn′ − ω − ω′
[
ρABC(ω, ω

′)

iωn − ω1
+ (−1)degA degB ρBAC(ω

′, ω)

iωn′ − ω′

]
, (6.1.10)

which contains the spectral functions

ρABC(ω, ω
′) ≡
ˆ

dt

ˆ

dt′ exp(iωt+ iω′t′)
〈[
A(t),

[
B(t′), C(0)

]]〉
, (6.1.11)

with the graded commutator

[A,B] ≡ AB − (−1)degA degBBA. (6.1.12)

According to [88], we can obtain all retarded correlators via analytical continuation of
(6.1.5). In the notation of [88] the six different retarded functions are

R1(ωA, ωB) = ΓABC(ωA + 2iε, ωB − iε), (6.1.13)

R2(ωA, ωB) = ΓABC(ωA − iε, ωB + 2iε), (6.1.14)

R3(ωA, ωB) = ΓABC(ωA − iε, ωB − iε), (6.1.15)

Ri(ωA, ωB) = Ri(ωA, ωB)
∣∣∣
ǫ→−ε

(i = 1, . . . , 3). (6.1.16)

Writing these retarded and advanced correlators in terms of the spectral representation
(6.1.10) and using (2.1.9), we find two combinations where all principal values drop out and
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only delta functions remain in the spectral representation. This allows to write the spectral
functions explicitly in terms of advanced and retarded correlators as

ρABC =R2 +R2 −R3 −R3, (6.1.17)

ρBAC =(R1 +R1 −R3 −R3)(−1)degAdegB. (6.1.18)

These are the inverse relations analogous to (2.1.10). If the spectral functions are real, it can
easily be seen from the spectral representation (6.1.10) that these relations can be further
simplified to

ρABC = 2Re(R2 −R3) (6.1.19)

ρBAC = 2Re(R1 −R3)(−1)degAdegB. (6.1.20)

In the next section we give conditions for the spectral functions to be real.

6.2 Implications of CP and T invariance

Like for the two-point spectral functions in section 2.2, we can find conditions for the three-
point spectral functions to be real valued. Here we assume that the system is CP and
consequently, T invariant. Let us for a moment suppress a possible dependence of the op-
erators A, B and C on spatial vectors. Then we assume that the operators in the spectral
function (6.1.11) transform under T and CP transformations such that

T [A(tA), [B(tB), C(0)]]T−1 = εT [A(−tA), [B(−tB), C(0)]] (6.2.1)

CP [A(tA), [B(tB), C(0)]] (CP )−1 = εCP [A(tA), [B(tB), C(0)]]∗ , (6.2.2)

where εT and εCP are ±1. Then it is easy to see that the spectral functions obey the relations

ρABC(ωA, ωB) = εTρ
∗
ABC(ωA, ωB), (6.2.3)

ρABC(ωA, ωB) = εCP ρ
∗
ABC(−ωA,−ωB), (6.2.4)

where for the first relation we have used the anti-unitarity of T . Both relations can be
combined to

ρABC(ωA, ωB) = εT εCP ρABC(−ωA,−ωB). (6.2.5)

In the next chapter we are explicitly confronted with the case

A(x) = Jα
i (x), B(y) = (C †Jj)

α(y), C(0) = JkC Jl
⊤
(0), (6.2.6)

with the fields Ji = ϕ̃†ℓi. Here α is a spinor index which is summed over in the product
AB. Let us investigate the CP and T properties of these operators. Like in [89], we choose
a representation where C = iγ2γ0 and

PJ(t,x)P−1 = ηγ0J(t,−x), TJ(t,x)T−1 = γ1γ3J(−t,x), (6.2.7)
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where η is a complex number with |η| = 1. Then we find

(CP )A(x0,x)B(y0,y)(CP )
−1 = (B(y0,−y)A(x0,−x))† , (6.2.8)

(CP )C(0)(CP )−1 = −C†(0), (6.2.9)

and

TA(x0,x)B(y0,y)T
−1 = A(−x0,x)B(−y0,y), (6.2.10)

TC(0)T−1 = C(0). (6.2.11)

For the spectral functions we can use rotational invariance. This implies that the spectral
functions only depend on scalar combinations ki ·kj of the spatial momenta and the frequen-
cies. This implies the symmetry

ρABC(ω1,k1, ω2,k2) = ρABC(ω1,−k1, ω2,−k2). (6.2.12)

Now, using the CP properties (6.2.8) and (6.2.9) in combination with rotational invariance,
we find

ρABC(ω1,k1, ω2,k2) = ρABC(−ω1,−k1,−ω2,−k2)
∗. (6.2.13)

The properties under T transformation (6.2.10) and (6.2.11) imply

ρABC(ω1,k1, ω2,k2) = ρABC(ω1,k1, ω2,k2)
∗, (6.2.14)

that is, εT = 1 and εCP = 1. The spectral representation (6.1.10) implies that these symme-
tries hold for the corresponding Euclidean correlator (7.2.14) as well,

Γ∗(k1, k2) = Γ(k1, k2) Γ(−k1,−k2) = Γ(k1, k2). (6.2.15)
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Chapter 7

Lepton asymmetry rate

In this chapter we compute the CP violating coefficient (γQδf )aIk which describes the rate
of the generation of the asymmetries Qa due the deviation of the sterile neutrino phase-
space densities fIk from equilibrium. We first derive a master formula for the rate in the
hierarchical limit. This formula relates the rate to a three-point spectral function of SM fields.
Then as an application, we compute the leading order and the next-to-leading order rate at
zero temperature. The calculations and results of this chapter are planned to be published
in [3].

7.1 Kubo relations for the asymmetry rate

The CP violating rate can, according to (3.2.12) be computed from the relation

(γQδf )aIk =
T

ω
Im∆ret

Q̇aḟJk′
(ω)(χ−1

δfδf )Jk′Ik (γ ≪ ω ≪ ωUV), (7.1.1)

where we have used that the equal-time correlators (4.1.3) of Xa with δfIk vanish due to
CPT invariance (see also section 2.2).

The charges Qa are described by the same operators (5.2.10) as for the washout rate, but
we compute their time derivatives now in the full theory (1.2.4) which yields

Q̇a(t) = i

ˆ

d3x
[
Ka(x)−K†

a(x)
]
, (7.1.2)

where Ka = NIJIa with
JIa = (hν)Ii(Ta)ijϕ̃

†ℓi. (7.1.3)

In order to define operators for the sterile neutrino phase-space densities, we consider the
sterile neutrino fields in the interaction picture. We define the Hamiltonian as

H = H0 +Hint, (7.1.4)

where H0 contains the full SM and the free sterile neutrinos and Hint = −Lint represents
the Yukawa interaction (1.2.4). Then in the interaction picture, the sterile neutrinos can be
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written as solutions of the free field equations in terms of annihilation and creation operators
c†Iks and cIks as1

[NI(x)]int =
∑

k,s

1√
2EIkV

[
e−ikx uIks cIks + eikx vIks c

†
Iks

]

k0→EIk

, (7.1.5)

where EIk = (k2 + M2
I )

1/2 , and V is the volume. We normalized the annihilation and
creation operators such that

{cIks , c†I′k′s′} = δII′δkk′δss′ . (7.1.6)

We define the phase-space densities (or occupation number) in the interaction picture as the
spin averages operator

[fIk]int ≡
1

2

∑

s

c†IkscIks. (7.1.7)

Since the occupation number is conserved in the free theory it commutes with H0. Therefore,
we have fIk(t) = eiHt[fIk]inte

−iHt in the Heisenberg picture.
Now we use the orthogonality of the spinors

u†IksuI′ks′ = v†IksvIks′ = 2EIkδss′δII′ , (7.1.8)

v†IksuI′−k′s′ = u†IksIvI′−k′s′ = 0, (7.1.9)

to write the creation and annihilation operators in terms of N as

cIks =
1√

2EIkV
u†IksNI(0,k) , c†Iks =

1√
2EIkV

v†IksNI(0,−k), (7.1.10)

where N(t,k) ≡
´

d3xe−ikxN(t,x) denotes the spatial Fourier transform of N . Then, with
the completeness relations

∑

s

uIksūIks = /k +MI , (7.1.11)

∑

s

vIksv̄Iks = /k −MI , (7.1.12)

we can easily write the phase-space density in the Heisenberg picture as

fIk(t) =
1

2V EIk

ˆ

d3xd3x′eik(x−x′)NI(t,x)γ
0 (/k +MI) γ

0NI(t,x
′)

∣∣∣∣
k0=EIk

. (7.1.13)

Using the Heisenberg equations of motion, the time derivative reads

ḟIk(t) =
−i

4V EIk

{[
RIk(t)−R†

Ik(t)
]
+ (k → −k)

}
, (7.1.14)

1Keep in mind that we consider a finite volume V with periodic boundary conditions, where the momenta
k are discrete.
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with

RIk(t) ≡
ˆ

d3xd3x′eik(x−x′)NI(t,x)γ
0
(
✓k +MI

)
JI(t,x

′)

∣∣∣∣
k0=EIk

(7.1.15)

and

JI = ϕ̃(hν)Iiℓi. (7.1.16)

The retarded correlator in (7.1.1) is of order h4ν and therefore, the susceptibilities χδfδf

are determined by the free theory. In the free theory we have

〈c†IkscJk′s′〉 = δIJδkk′δss′fF(EIk), (7.1.17)

which implies for the susceptibilities, using Wick’s theorem,

(χδf,δf )Ik,Jk′ = δIJδkk′χIk, (7.1.18)

with
χIk = fF(EIk) [1− fF(EIk)] = −Tf ′F(EIk). (7.1.19)

Let us without loss of generality choose I = 1. Then (7.1.1) simplifies to

(γQδf )a1k =
1

χ1k

T

ω
Im∆ret

Q̇aḟ1k
(ω) (γ ≪ ω ≪ ωUV). (7.1.20)

7.2 Relation to three-point functions in the hierarchical limit

In this section we show that the retarded correlator in (7.1.20) can at order h4ν be related to
a single three-point function of SM fields, if the hierarchical limit M1 ≪MI 6=1 is considered.
We start from the imaginary time correlator

∆Q̇aḟ1k
(iωn) =

ˆ β

0
dτeiωnτ

〈
Q̇a(−iτ)ḟ1k(0)

〉
, (7.2.1)

and insert the results for the time derivatives (7.1.2) and (7.1.14) which yields

∆Q̇aḟ1k
(iωn) =

1

4V E1k

ˆ (
d4x
)
E
eiωnτ

〈[
Ka(x)−K†

a(x)
] [
R1k(0)−R†

1k(0)
]〉
, (7.2.2)

where (d4x)E ≡ dτd3x. The cyclicity of the trace allows to write

〈
Ka(−iτ,x)R†

1k(0)
〉
=
〈
R†

1k(0)Ka(iβ − iτ,x)
〉
, (7.2.3)

and using the fact that in imaginary time K(−iτ,x)† = K†(iτ,x), we find

〈
Ka(−iτ,x)R†

1k(0)
〉
=
〈
K†

a(−iβ + iτ,x)R1k(0)
〉∗
. (7.2.4)
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The same relations hold for Ka ↔ K†
a. Applying these relations to (7.2.2) and using period-

icity in imaginary time, we find

∆Q̇aḟ1k
(iωn) =

1

2E1kV
Re

ˆ (
d4x
)
E
eiωnτ

〈 [
Ka(x)−K†

a(x)
]
R1k(0) + (k → −k)

〉
k0→E1k

. (7.2.5)

We want to compute the rate which describes the generation of asymmetries Qa due to
the CP violating Yukawa interaction (1.2.4). This interaction does not violate CP at order
h2ν , as we have seen in section 1.2. Therefore, we have to expand the Euclidean correlator
(7.2.5) to order h4ν . After the perturbative expansion the sterile neutrinos can be considered
as free particles and we can use Wick’s theorem for them. Then (7.2.5) contains, for instance,
correlation functions like 〈NI(x)NJ(0)〉 and 〈NI(x)NJ(0)〉. Using the fact thatN is Majorana,

that is, NI(x) = −CN
⊤
I (x), we write these correlation functions in momentum space as the

sterile neutrino propagator

SI(p) ≡
ˆ (

d4x
)
E
eipx〈NI(x)NI(0)〉. (7.2.6)

We also assume the sterile neutrinos to be hierarchical, that is M1 ≪ MI for I 6= 1 and
that the temperature is not much larger than M1. Then we have T ≪ MI 6=1 and as for the
effective theory in section 5.2 we can approximate the propagator for I 6= 1 as

SI(p) ≃
1

MI
for I 6= 1. (7.2.7)

If we also use that the operators JaI and JI are left-handed, then terms containing the
product J J vanish. Finally, we end up with the contributions2

ˆ (
d4x
)
E
〈Ka(x)R1k〉 eiωnτ = V

ˆ (
d4x
)
E

(
d4x′

)
E
T
∑

{ωn′}

ei(ωn−ωn′)τ+ikx
∑

I

1

MI

1

2
eikx

〈
T
{
J⊤
1a(x)CS1(iωn′ ,k)γ0(✓k +M1)J1(0)JICJI

⊤
(x′)

}〉∣∣∣∣
k0=E1k

(7.2.8)

and
ˆ (

d4x
)
E

〈
K†

a(x)R1k

〉
eiωnτ = V

ˆ (
d4x
)
E

(
d4x′

)
E
T
∑

{ωn′}

ei(ωn−ωn′ )τ
∑

I

1

MI

eikx
′
〈
T
{
J1aCJ1

⊤
(x)J⊤

1 (x′)CS1(iωn′ ,k)γ0(✓k +M1)J1(0)
}〉

|k0=E1k
. (7.2.9)

Let us write the sterile neutrino propagator as

S1(k) = (✓k +M1)∆1(k) (7.2.10)

2Keep in mind that {ωn′} denotes fermionic Matsubara frequencies.
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with ∆1 ≡ (−k2 +M2
I )

−1. The left-handed nature of the Standard Model fermions can be
used to simplify the Dirac structure in (7.2.8) and (7.2.9). For example, we have

PLS1 (iωn′ ,k) γ0 (/k +M1)PL =M1(iωn′ + k0)∆1 (iωn′ ,k)PL. (7.2.11)

Furthermore, we cancel the numerator with the denominator

(iωn′ + k0)∆I (iωn′ ,k) =
1

k0 − iωn′

(k0 = EIk) (7.2.12)

and we pull out the Yukawa coupling by writing JI and JIa defined in (7.1.16) and (7.1.3) in
terms of

Ji = ϕ̃ℓi. (7.2.13)

The Euclidean correlator (7.2.5) can then be written in terms of the three-point function

Γijlm(k1, k2) ≡
ˆ (

d4x1
)
E

(
d4x2

)
E
ei(k1x1+k2x2)

〈
T
{
J⊤
i (x1)C

†Jj(x2)JlC Jm
⊤
(0)
}〉

(7.2.14)

as

∆Q̇aḟ1k
(iωn) =

1

2E1k

∑

I

M1

MI
Re

{
T
∑

{k0}

1

k0 − E1k
(7.2.15)

([
1

2
(hν)

∗
Il(hν)

∗
Im(hνTa)1i(hν)1jΓijlm(k − q, q − k)

−(Tahν)
∗
Il(hν)

∗
Im(hν)1i(hν)1jΓijlm(k − q,−k)

]
−
[
k → −k

])}
, (7.2.16)

where we have renamed ωn′ to k0 and q = (iωn,0). Keeping in mind that J is fermionic and
that the matrix C is antisymmetric, we have

T
{
J⊤
i (x)C †Jj(y)

}
= T

{
J⊤
j (y)C †Ji(x)

}
, (7.2.17)

T
{
Jk(x)C J

⊤
l (y)

}
= T

{
J l(y)C J

⊤
k (x)

}
, (7.2.18)

and consequently, the three-point correlator (7.2.14) has the symmetries

Γijlm(k1, k2) = Γjilm(k2, k1), (7.2.19)

Γijlm(k1, k2) = Γijml(k1, k2). (7.2.20)

7.3 CP , T and SU(nf)-flavor symmetry

In this work we only study the effects of CP violation due to the sterile neutrino Yukawa
interactions. Therefore, we neglect the CP violation of the Standard Model in the following.
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In this case we can use the symmetries for the three-point function from section 6.2. First of
all, we use that Γ is real. Then we can simplify the Euclidean correlator to

∆Q̇aḟ1k
(iωn) =

i

2E1k

∑

I>1

M1

MI
T
∑

{k0}

1

k0 − E1k

{
− 1

2
Im
[
(hν)1i(hνTa)1j(hν)

∗
Il(hν)

∗
Im

]
Γijlm(−k − q, k + q)

+ Im
[
(hν)1i(hν)1j(Tahν)

∗
Il(hν)

∗
Im

]
Γijlm(−k − q, k)− (k → −k)

}
. (7.3.1)

Then we use the fact that Γ(k1, k2) = Γ(−k1,−k2). This allows to write the correlator as

∆Q̇aḟ1k
(iωn) =

i

2E1k

∑

I>1

M1

MI
T
∑

{k0}

1

k0 −E1k

{
− 1

2
Im
[
(hν)1i(hνTa)1j(hν)

∗
Il(hν)

∗
Im

]
Γijlm(−k − q, k + q)

+ Im
[
(hν)1i(hν)1j(Tahν)

∗
Il(hν)

∗
Im

]
Γijlm(−k − q, k)

}
− (ωn → −ωn). (7.3.2)

The three-point correlator (7.2.14) is in general a complicated tensor in flavors space which
depends on the leptonic SM Yukawa interactions. We can tremendously simplify the problem
if we neglect the Yukawa interactions of SM leptons. This is a good approximation since
these interactions are very weak during leptogenesis. Then the remaining interactions are
invariant under leptonic SU(nf) flavor transformations. In combination with the symmetry
(7.2.20) this implies that the correlation function has the flavor structure

Γijlm =
1

2
(δilδjm + δimδjl)Γ, (7.3.3)

where

Γ = δijδlmΓijlm/nf . (7.3.4)

Using this, we obtain

∆Q̇aḟ1k
(iωn) =

(
∑

I>1

M1

MI
Im
[(
hνh

†
ν

)

1I

(
hνTah

†
ν

)

1I

])
Mk(iωn), (7.3.5)

where we defined the function

Mk(iωn) =
iT

4Ek

∑

{k0}

−Γ(−k − q, k + q) + 2Γ(−k − q, k)

k0 − Ek

− (ωn → −ωn) . (7.3.6)

Note that (7.3.6) only depends on Standard Model parameters. Therefore, from here on we
drop the subscript 1 on Ek.
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7.4 Analytic continuation and ω-expansion

Before we analytically continue the retarded correlator (7.3.5) to complex frequencies, we
have to perform the Matsubara sum over the heavy neutrino frequency in (7.3.6). We do
this by using the three-point spectral representation (6.1.10). The symmetries (7.2.19) and
(7.2.20) imply that the two spectral functions ρABC and ρBAC in (6.1.10) are related through

ρBAC(ω2,k2, ω1,k1) = −ρABC(ω2,k2, ω1,k1), (7.4.1)

so that the spectral representation consists of a single spectral function which we denote as
ρ ≡ ρABC . Using this and the fact that the spectral function is even in (k1, k2), we can write
the spectral representation (6.1.11) of the three-point correlator (7.3.4) as as

Γ(k1, k2) =

ˆ

dω1

2π

dω2

2π

1

k01 + k02 − ω1 − ω2

×
[
ρ(ω1,k1, ω2,k2)

k01 − ω1
+
ρ(−ω2,−k2,−ω1,−k1)

k02 − ω2

]
. (7.4.2)

We insert (7.4.2) in (7.3.6) and obtain

Mk(iωn) =
i

4Ek

ˆ

dω1

2π

ˆ

dω2

2π
T
∑

{k0}

1

k0 − Ek

×
{
ρ(ω1,−k, ω2,k)

[
− 1

ω1 + ω2

1

k0 + ω1 + iωn
+

2

ω1 + ω2 + iωn

1

k0 + ω1 + ω

]

+ρ(−ω2,−k,−ω1,−k)

[
1

ω1 + ω2

1

k0 − ω2 + iωn
− 2

ω1 + ω2 + iωn

1

k0 − ω2

]}

−(ωn → −ωn). (7.4.3)

The apparent singularity in the terms with 1/(ω1+ω2) cancels because the numerator vanishes
for ω1 = −ω2. We can therefore replace 1/(ω1+ω2) by its principal value. Then we substitute
ω1 ↔ ω2 in the third line and rewrite the terms such that

Mk(iωn) =
i

2Ek

ˆ

dω1

2π

ˆ

dω2

2π
ρ(ω1,−k, ω2,k)T

∑

{k0}

1

k0 − Ek

×
(

1

k0 + ω1 + iωn
− 1

k0 + ω1

)(
1

ω1 + ω2 + iωn
− P.V.

1

ω1 + ω2

)
− (ωn → −ωn). (7.4.4)

Using this expression, we perform the Matsubara sum which gives

Mk(iωn) =
i

2Ek

ˆ

dω1

2π

ˆ

dω2

2π
ρ(ω1,−k, ω2,k) [fF(−ω1)− fF(Ek))]

× −iωn

(Ek + ω1 + iωn)(Ek + ω1)

(
1

ω1 + ω2 + iωn
− P.V.

1

ω1 + ω2

)
− (ωn → −ωn). (7.4.5)

Now we can analytically continue iωn → ω + i0+ with real ω. Then we can use

1

x− i0+
= P.V.

1

x
+ iπδ(x), (7.4.6)
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and expand (7.4.5) to the leading order in ω. Then the principal values cancel inside the
bracket and only the δ-function remains. This gives

Mk(ω + i0+) =
i

2Ek

ˆ

dω1

2π

ˆ

dω2

2π
ρ(ω1,−k, ω2,k) [fF(−ω1)− fF(Ek))]

× −ω
(Ek + ω1 + i0+)(Ek + ω1)

(−iπ)δ(ω1 + ω2)− (ω → −ω) +O(ω3). (7.4.7)

For the rate we need the imaginary part of this expression. Since ρ is real, as we have shown
in section 6.2, we get a second δ-function, so that the ω1 and ω2 integrals are trivial. This
yields

ImMk(ω + i0+) = − ω

4Ek

ρ(−Ek,−k, Ek,k)f
′
F(Ek) +O(ω3). (7.4.8)

Using the formula (7.1.20) for the asymmetry rate in combination with (7.3.5), (7.4.8) and
with χ1k = −Tf ′F(Ek), we obtain the master formula

(γQδf )a1k =
ρ(−Ek,−k, Ek,k)

4Ek

(
∑

I>1

M1

MI
Im
[(
hνh

†
ν

)
1I

(
hνTah

†
ν

)
1I

])
. (7.4.9)

for the lepton asymmetry rate. This formula is valid to order h4ν and only in the hierarchical
limit, where the lightest sterile neutrino mass is much smaller than the heavier sterile neutrino.
It can be expanded to all orders in the SM couplings, except in the Yukawa interactions of
SM leptons. The formula does also not take into account effects of SM CP -violation.

7.5 Leading order at zero temperature

As a first application of the master formula (7.4.9) we compute the zero-temperature contri-
bution to the asymmetry rate at leading order in the symmetric phase. We start from the
Euclidean three-point correlator (7.2.14), which at leading order corresponds to the diagram

Γ(0)(k1, k2) = , (7.5.1)

where solid thick lines are heavy neutrinos carrying the ingoing momenta k1 an k2 respectively.
The solid lines with arrows are SM leptons and the dotted lines are Higgs. The dashed line
represents the outgoing momentum k1+k2 which will be set zero in the corresponding spectral
function. Using Wick’s theorem, contracting all gauge indices, using the properties of the C

matrix (1.1.14) and computing the Dirac trace, we find3

Γ(0)(k1, k2) = 4d(r)(d(r) + 1)

ˆ

ddp1
(2π)d

ddp2
(2π)d

p1 · p2
p21(p1 − k1)2(p2 + k2)2p22

, (7.5.2)

3We use ddp = dp̄0d
d−1p and p0 = ip̄0
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where d(r) = 2 is the dimension of the representation of the gauge group SU(2). This
two-loop integral can be interpreted as a product of two one-loop tensor integrals of the form

Iµ1 (k) ≡
ˆ

ddp

(2π)d
pµ

p2(p − k)2
. (7.5.3)

Now, substituting p→ −p+ k, we find

Iµ1 (k) = −Iµ1 (k) + kµI1(k), (7.5.4)

where

I1(k) ≡
ˆ

ddp

(2π)d
1

p2(p − k)2
. (7.5.5)

Therefore, we can write

Iµ1 (k) =
kµ

2
I1(k) (7.5.6)

which simplifies the three-point functions to

Γ(0)(k1, k2) = −6k1 · k2I1(k1)I1(−k2). (7.5.7)

Now we use the inverse relation (B.3.2) in combination with (B.3.7). Then we set k1 = −k
and k2 = k with k2 =M2

1 and obtain for the leading order spectral function in (7.4.9)

ρ(0)(−k, k) = − 24M2
1

(16π)2
. (7.5.8)

The master formula (7.4.9) then yields

(γ
(0)
Qδf )a1k = − 6M2

1

(16π)2Ek

∑

I>1

1

MI
Im
[(
hνTah

†
ν

)
1I

(
hνh

†
ν

)
1I

]
. (7.5.9)

This result can be written as

(γ
(0)
Qδf )a1k = ε

(0)
1a (γ

(0)
δfδf )1k, (7.5.10)

where

(γ
(0)
δf δf )1k =

M2
1 (hνh

†
ν)11

8πEk

(7.5.11)

is the leading order neutrino decay rate (c.f (1.2.9)) and

ε
(0)
1a = − 3

16π

∑

I>1

M1

MI

Im
[(
hνTah

†
ν

)
1I

(
hνh

†
ν

)
1I

]

(hνh
†
ν)11

(7.5.12)

is the CP asymmetry which agrees with (1.2.12) for (Ta)ij = δaiδaj . We have therefore
reproduced the well-known leading order relation from section (1.2).
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7.6 Next-to-leading order at zero temperature

Now we compute the next-to-leading order SM corrections to the asymmetry rate at zero
temperature. For the next-to-leading order three-point correlator we consider only contribu-
tions from the Higgs self-interaction λ, the top Yukawa coupling ht and the U(1) × SU(2)
gauge couplings g1 and g2. The only Higgs contribution at zero-temperature at order g2 is

Γλ(k1, k2) ≡ . (7.6.1)

The top quark contribution comes from the diagrams

Γt(k1, k2) ≡ + . (7.6.2)

Here the fermionic lines in the closed lepton loop represent the top-quarks.
The diagrams contributing to g1 and g2 decompose into two gauge invariant sets, the

factorisable diagrams

Γg,fac(k1, k2) = +

+ +

+ + , (7.6.3)

and the non-factorisable diagrams

Γg,nfac(k1, k2) = + + + .

(7.6.4)

Here the wiggled lines are the gauge bosons. The complete next leading order correlator is
then given by

Γ(2)(k1, k2) = Γg,nfac(k1, k2) + Γg,fac(k1, k2) + Γλ(k1, k2) + Γt(k1, k2). (7.6.5)

We compute the spectral functions of the three-point functions Γg,nfac, Γg,fac, Γλ and Γt

in appendix B. At first we study the Dirac traces in B.1 and show that all terms containing
γ5 drop out. After performing the Dirac traces the three-point functions can be expressed
in terms of scalar Feynman integrals. We reduce these integrals to a minimal set of master
integrals in B.2. Then, in B.3 - B.5 we compute the master spectral functions of the master
integrals. Combining all results we find the spectral functions
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ρg,nfac(−k, k) =
3(g21 + g22)M

2
1

(16π)28π2

(
3

ε
+

23

2
+ 8 ln(2) + 9 ln

µ̄2

M2
1

)
, (7.6.6)

ρg,fac(−k, k) = −3(g21 + 3g22)M
2
1

(16π)24π2

(
3

ε
+

53

2
+ 9 ln

µ̄2

M2
1

)
, (7.6.7)

ρλ(−k, k) =
3λM2

1

(16π)2 π2

(
1

ε
+

13

2
+ 3 ln

µ̄2

M2
1

)
, (7.6.8)

ρt(−k, k) =
3|ht|2M2

1

(16π)2 π2

(
3

ε
+

45

2
+ 9 ln

µ̄2

M2
1

)
. (7.6.9)

For the renormalization it turns out to be convenient to describe the exchange of virtual
heavy neutrinosNI with I 6= 1 by an effective theory with an dimension-5 operator. Following
section 5.2 we find

L
eff
int = −N̄1(hν)1iJi +

1

2
(gν)ijJ

⊤
i C

−1Jj +H.c, (7.6.10)

where (gν)ij =
∑

I 6=1(hν)Ii(hν)Ij/MI . We renormalize the fields by

ϕ = ϕRZ
1/2
ϕ , ℓ = ℓRZ

1/2
ℓ (7.6.11)

and the couplings by

(hν)1i = (hνR)1iZh (gν)ij = (gνR)ijZg. (7.6.12)

In appendix B.6 we summarize the calculation of Zh and Zg and find

Zh = 1 +
1

(4π)2ε

(
−3

8
(g21 + 3g22) +

Nc

2
|ht|2

)
, (7.6.13)

Zg = 1 +
1

(4π)2ε

(
−3

4
(g21 + 3g22) +

3

4
(g21 + g22) + 2λ+Nc|ht|2

)
, (7.6.14)

where in Zg we have explicitly distinguished the coupling structures (g21 + g
2
2) and (g21 +3g22).

The reason is that the first one cancels the divergences of the non-factorisable and the second
one in combination with Zh the factorisable gauge field corrections. Note that our result for
Zh is consistent with the one in [53]. Using the master formula (7.4.9) in combination with
the spectral functions (7.6.6)-(7.6.9) and expressing the result in terms of the renormalized
couplings (B.6.3), we find the finite expression

(γ
(2)
Qδf )a1k = (γ

(0)
Qδf )a1k

{
1 +

g21 + 3g22
(8π)2

(
29 + 6 ln

µ̄2

M2
1

)

+
g21 + g22
(8π)2

(
1

2
− 8 ln(2) − 3 ln

µ̄2

M2
1

)

− |ht|2
(8π)2

(
84 + 24 ln

µ̄2

M2
1

)
− λ

(8π)2

(
20 + 8 ln

µ̄2

M2
1

)}
, (7.6.15)
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where (γ
(0)
Qδf )a1k is the leading order rate (7.5.9). Note that the factorisable corrections are

exactly twice the order g2 corrections to the zero-temperature sterile neutrino productions
rate in [53]. We choose the renormalization scale µ̄ = T and define z = M1/T . The size of
the corrections is given in table 7.1 and they are found to be very small. Even in the very
non-relativistic limit z = 10, where the contributions of the logarithms become relevant, the
corrections are smaller than 3%.

M1/GeV z γ
(2)
aIk/γ

(0)
aIk

109 1 0.9998
109 5 1.0181
109 10 1.0277
1013 1 1.0096
1013 5 1.0176
1013 10 1.0219

Table 7.1: Size of the corrections to the asymmetry rate for different values of M1 and z.

Using the zero-temperature limit of the NLO neutrino decay rate of [53], we find for the
NLO CP asymmetry

ε
(2)
1a = ε

(0)
1a

{
1 +

g21 + 3g22
(8π)2

(
29

2
+ 3 ln

µ̄2

M2
1

)

+
g21 + g22
(8π)2

(
1

2
− 8 ln(2) − 3 ln

µ̄2

M2
1

)

− |ht|2
(8π)2

(
42 + 12 ln

µ̄2

M2
1

)
− λ

(8π)2

(
20 + 8 ln

µ̄2

M2
1

)}
. (7.6.16)
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Chapter 8

Sterile neutrino equilibration rate

In this chapter we study the coefficient γδfδf in the kinetic equation (1.2.13) which describes
the evolution of the sterile neutrino phase-space densities fIk. This chapter is based on the
author’s publication [4].

8.1 Relation between production and equilibration rates

For the derivation of the linear kinetic equations (1.2.13) and (1.2.14) we assumed that the
phase-space densities fIk and the charges Qa are close to their equilibrium values. One
would therefore naturally think that the equations are wrong if fIk ≪ f eqIk and consequently,
δfIk ≈ −f eqIk, which can be of order one. In order to get the correct kinetic equation for
small fIk, one would not expand the kinetic equations (3.1.2) in δfIk but in fIk. The leading
contribution to this equation does then read

(∂t −Hk∂k) fIk = Γpro
Ik + ..., (8.1.1)

where “...” contains terms of order fIk and Qa. The coefficient Γpro is the sterile neutrino
production rate and has been widely studied in several temperature regimes at leading order
and next-to-leading order in the SM couplings [50, 51, 52, 53, 54, 55, 56, 57, 58]. Let us for a
moment assume that the linear equation (1.2.13) is true for small values of fIk as well. Then,
for fIk = 0 and Qa = 0 (1.2.13) implies that

Γpro
Ik = −(γδfδf )IkI′k′f eqIk. (8.1.2)

We will see that at leading order in hν

(γδfδf )IkI′k′ = δkk′δII′Γ
eq
Ik, (8.1.3)

which defines the sterile neutrino equilibration rate Γeq
Ik. This implies the simple relation

Γpro
Ik = −Γeq

Ikf
eq
Ik, (8.1.4)

between the sterile neutrino production rate and the equilibration rate. The great achieve-
ment of this relation is that one can simply use everything which is known about the so well
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studied production rate also for the equilibration rate Γeq
Ik. In 1983 Weldon [49] showed with

Boltzmann equations that this relation is indeed correct at leading order in perturbation
theory. However, if one wants to take radiative corrections like in [39] into account, (8.1.4)
has to be proved beyond leading order. Shortly before we did the proof in [4], it has been
proved implicitly in [90]. In this reference, a kinetic equation for fIk has been derived, which
is valid at h2ν , for any value of fIk and to all orders in the SM couplings. In the absence of
chemical potentials of SM charges the equation agrees with the linear equation (1.2.13) at
order h2ν .

Here we prove the relation (8.1.4)in a rather general framework and consider the pro-
duction and equilibration rate of a particle with any spin or helicity, bosonic or fermionic,
charged or uncharged, which is described by a field Φ. We assume the particle to be weakly
and linearly coupled to a plasma such that its interactions can be considered as slow. Then
the non-equilibrium system is completely determined by all slow quantities such as the phase-
space density fkλ of the particle Φ. Here λ labels possible spins or helicities. If the phase-space
density is close to its equilibrium value, its time evolution is described by the linear equation

(∂t −Hk∂k)fkλ = −(γδfδf )kλk′λ′δfk′λ′ + ..., (8.1.5)

where “...” denotes all other slow quantities in the system. The coefficient γδfδf can then be
computed according to (3.2.13) as

(γδfδf )kλk′λ′ =
T

2
lim

γ≪ω≪ωUV

ρḟkλḟk′λ′
(ω)

ω
(χ−1

δfδf )k′′λ′′k′λ′ . (8.1.6)

We assume that the system is described by the Hamiltonian

H = H0 + U, (8.1.7)

whereH0 is the Hamiltonian which describes the plasma and the free fields Φ and U describes
the weak interaction of the fields Φ with the plasma. In the following, we distinguish two
cases. At first, we consider a charged particle species Φ and derive a master formula for the
coefficient γδfδf which relates the coefficient to the self-energy of the particle Φ. This master
formula is valid to the leading order in U and to all orders in the plasma interactions. Then
we show that similar relations hold for uncharged particles.

In the following sections 8.2 and 8.3 we closely follow the publication [4] which has been
written by the author of this thesis in collaboration with D. Bödeker and M. Wörmann. A
similar discussion of the following derivations can also be found in [45].

8.2 Charged particle species

At first we assume the particle Φ to be charged. The interaction can be written as

U =

ˆ

d3x
(
JΦ− ΦJ

)
, (8.2.1)

where J is any elementary or composite operator which does not contain the fields Φ. We
define Φ ≡ Φ† for bosons and Φ ≡ Φ†γ0 for spin 1/2.
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Like in section (7.1), we define the phase-space density in the interaction picture with
respect to U . The fields Φ can in the interaction picture be written as free on-shell fields

[Φ(x)]int =
∑

k,λ

1√
2EkV

[
e−ikx ukλckλ + eikx vkλd

†
kλ

]
k0=Ek

, (8.2.2)

where the annihilation and creation operators are normalized such that

[ckλ, c
†
k′λ′ ] = δkk′δλλ′ , (8.2.3)

with the (anti-)commutator [A,B] = AB − σBA like in (2.1.3) with σ = 1 for bosons and
σ = −1 for fermions. We define the phase-space density operator as

[fkλ]int = c†kλckλ. (8.2.4)

Since [fkλ]int commutes with H0 the Heisenberg operator is given as

fkλ(t) = eiHt[fkλ]inte
−iHt (8.2.5)

and thus its time derivative is determined by the Heisenberg equation of motion

ḟkλ(t) = i[H, fkλ(t)]. (8.2.6)

The commutator can be most easily computed in the interaction picture, where

ḟkλ(t) = ieiHte−iH0t[Uint, [fkλ]int]e
iH0te−iHt. (8.2.7)

Since we need the time derivative only at leading order in U , we can approximate

ḟkλ(t) = i[Uint, [fkλ]int] + O(U2). (8.2.8)

Then we use (8.2.2) and (8.2.3) which yields

[[Φ]int, [fkλ]int] =
e−ikx

√
2EkV

ukλckλ, (8.2.9)

and thus in combination with (8.2.1), the time derivative at leading order in U reads

ḟkλ(t) =
i√

2EkV

ˆ

d3x
[
J(x)e−ikxukλckλ − H.c.

]
. (8.2.10)

Let us now use the formula (8.1.6) to compute the equilibration rate. In contrast to the
washout rate in chapter 5 it turns out to be useful here to compute the spectral function

ρḟkλḟk′λ′
(ω) =

ˆ

dt eiωt
〈[
ḟkλ(t), ḟk′λ′(0)

]〉
, (8.2.11)
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directly instead of obtaining it as the imaginary part of the retarded correlator. Since we
only need the leading order in U , the average in (8.2.11) can be computed in an ensemble
with free fields Φ. Thus after plugging (8.2.10) into (8.2.11) we may use

〈c†kλck′λ′〉 = δkk′δλλ′fσ(Ek), (8.2.12)

〈ckλc†k′λ′〉 = δkk′δλλ′(1 + σfσ(Ek)), (8.2.13)

where fσ is equal to the Bose-Einstein or Fermi-Dirac distribution for σ = 1 and σ = −1
receptively. The spectral function can then be expressed in terms of the Wightman functions
in (2.1.1) with A = ukλJ and B = A† as

ρḟkλḟk′λ′
(ω) =

δkk′δλλ′

2Ek

[
fσ(Ek)∆

>
uJ Ju

(Ek + ω,k) (8.2.14)

−σ(1 + σfσ(Ek))∆
<
uJ Ju

(Ek + ω,k)− (ω → −ω)
]
. (8.2.15)

Now we use the identities (2.1.5) to express the Wightman functions in terms of the spectral
functions of the operators A = ukλJ and B = A†. This yields

ρḟkλḟk′λ′
(ω) =

δkk′δλλ′

2Ek

[
fσ(Ek)− fσ(Ek + ω)

]
ρuJ Ju(Ek + ω,k)− (ω → −ω), (8.2.16)

and expanding this to the first order in ω leads to

ρḟkλḟk′λ′
(ω) = −ωδkk′δλλ′

Ek

f ′σ(Ek)ρuJ Ju(Ek,k) + O(ω3). (8.2.17)

The susceptibilities χδfδf are determined by the free theory. Using Wick’s theorem and the
averages (8.2.12) and (8.2.13), we find

(χδfδf )kλk′λ′ = δkk′δλλ′fσ(Ek)(1 + σfσ(Ek)) = −Tf ′σ(Ek). (8.2.18)

Now we can use the Kubo-type relation (8.1.6) and obtain the result

(γδfδf )kλk′λ′ = δkk′δλλ′Γeq
kλ, (8.2.19)

with the equilibration rate

Γeq
kλ =

1

2Ek

ρuJ Ju(Ek,k). (8.2.20)

The Φ self-energy at leading order in the interaction U is equal to

Σ(iωn,k) = ∆JJ(iωn,k). (8.2.21)

Therefore, using the relation (2.1.10) between the spectral function and the two-point corre-
lator, we find

Γeq
kλ =

1

2iEk

ukλDiscΣ(Ek,k)ukλ. (8.2.22)
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This is one of the relations which Weldon proved at leading order [49]. Our derivation of this
equations is valid at leading order in the Φ interaction U and to all orders in H0.

A similar relation for the production rate and the self-energy of the particle Φ, which is
valid at leading order in U and to all orders in H0 has for example been found in [91, 92, 93]
and reads

Γpro
kλ =

σ

2Ek

∆<
uJ Ju

(Ek,k), (8.2.23)

For a review see for example [94]. Using the relation (2.1.5) between the Wightman functions
and the spectral function one easily finds

Γpro
kλ = −Γeq

kλfσ(Ek). (8.2.24)

This is the other relation which has been found by Weldon [49] at leading order. Our proof
of this relation is valid at leading order in U and to all orders in H0.

8.3 Uncharged particle

The annihilation operators of uncharged particles satisfy ckλ = dkλ. Therefore, the fields Φ
read in the interaction picture

[Φ(x)]int =
∑

k,λ

1√
2EkV

[
e−ikx ukλckλ + eikx vkλc

†
kλ

]
k0=Ek

. (8.3.1)

Let us assume that the interaction can be written as

U = IΦ = ΦI, (8.3.2)

where I is an elementary or composed operator which does not depend on Φ. This is clearly
true if Φ is a real scalar field or a gauge field. We will later justify that this is also true for
fermions and show that an interaction like (8.2.1) can be written as (8.3.2), if Φ is uncharged.
We use the same definition for the phase-space density as for the charged field (8.2.4) and
compute the time derivate according to (8.2.8). For the uncharged field operator (8.3.1) we
do then find the commutator

[[Φ]int, [fkλ]int] =
1√

2EkV

(
e−ikxukλckλ − eikxvkλc

†
kλ

)
(8.3.3)

and therefore, the time-derivative at leading order in U reads

ḟkλ(t) =
i√

2EkV

ˆ

d3xI(x)
(
e−ikxukλckλ − eikxvkλc

†
kλ

)
. (8.3.4)

The fact that ḟkλ(t) is real requires I(x)vkλ = (I(x)ukλ)
† and therefore the time derivative

of fkλ for an uncharged particle is the same as for the charged particle with J replaced by I,

ḟkλ(t) =
i√

2EkV

ˆ

d3x
(
I(x)e−ikxukλckλ −H.c

)
. (8.3.5)
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For this reason, the steps for the computation of the spectral function are the same as for
the charged particle and we find

Γeq
kλ =

1

2Ek

ρuI uI(Ek,k). (8.3.6)

The self-energy of the uncharged particle is at leading order in U the same as for the charged
particle with J replaced by I. Therefore, we find the same relation (8.2.22) between the
equilibration rate and the self energy for an uncharged particle. For the production rate one
also finds the relation (8.2.23) to the self-energy, with J replaced by I. Therefore, the relation
of Weldon (8.2.24) is also true for uncharged particles.

Let us now have a closer look at the operator I in (8.3.2). The fact that Φ is uncharged
means that it is invariant under charge conjugation

CΦC† ≡ Φc = Φ (8.3.7)

and we assume that fields transform under charge conjugation as

Φc ≡ SΦ
⊤
, (8.3.8)

where S is a matrix with appropriate properties. For example, for spin 1
2 fermions we would

have S = −C . In general we see from terms like

ΦΦ = ΦSΦ
⊤
= σΦS⊤Φ

⊤
, (8.3.9)

that S has to satisfy the condition
S⊤ = σS. (8.3.10)

Let us now consider the interaction (8.2.1) which we used for the charged particle and write
Φ as its charge conjugated. This yields

U = JSΦ
⊤
+ΦJ. (8.3.11)

Then, in combination with (8.3.10) we have

U = Φ(J + Jc). (8.3.12)

If we define I = (J + Jc), we end up with the interaction (8.3.2) which we used for the
uncharged particles. Therefore, if Φ is uncharged, we can write the interaction (8.2.1) as
(8.3.2).

Let us now go back to the sterile neutrino Yukawa interaction (1.2.4). Then Φ(x) is
equal to the Majorana neutrinos NI(x) and the interaction with the SM plasma is given by
JI = (hν)Iiϕ̃ℓi. At first we rewrite the terms Jc

IuIks = vIksJI and uIksJ
c
I = JIvIks and

then we use the fact that the expectation values 〈JI(x)JI(0)〉 and 〈JI(x)J I(0)〉 vanish due
to B−L conservation in the SM. Then the equilibration rate for the Majorana neutrinos can
be written as

Γeq
Iks =

1

2EIk

[
ρuJ uJ(Ek,k) + ρvJ vJ(−Ek,−k)

]
. (8.3.13)
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A similar expression has been derived in [50] for the production rate of spin-averaged sterile
neutrinos. In order to compare their result with ours, let us compute the spin averaged rate
as

Γeq
Ik =

1

2

∑

s

Γeq
Iks. (8.3.14)

Using the completeness relations (7.1.11) and (7.1.12) and using the fact that the fields J are
left-handed, so that the masses MI drop out, we end up with

Γeq
Ik =

1

4EIk
Tr
(
/k
[
ρJJ(Ek,k) + ρJJ(−Ek,−k)

])
. (8.3.15)

Combining this result with the relation (8.1.4) we reproduce the the formula for sterile neu-
trino production rate which has first been derived in [50]. We conclude that the sterile
neutrino equilibration rate can be obtained from the known results for the sterile neutrino
production rate. In particular this justifies the usage of the NLO production rate of [53] in
[39] within the linear kinetic equation (1.2.13) .
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Chapter 9

Summary and Outlook

We used the Kubo-type relations (3.2.12) to compute dissipation rates of the linear kinetic
equations (1.2.13) and (1.2.14) which describe the evolution of the sterile neutrino phase-
space densities and charges which are broken in the presence of the sterile neutrino Yukawa
interaction. These Kubo-type formulas relate the dissipation rates to real-time correlation
functions and susceptibilities which can be calculated in thermal quantum field theory.

In chapter 4 we computed the susceptibilities of conserved charges in the Standard Model
by calculating the grand canonical potential to order g2 in the Standard Model couplings and
to order µ2 in the particle chemical potentials. The computation of the order g2 susceptibil-
ities completes the order g2 calculation of the ∆L = 1 washout rate [41]. We also used them
to compute the relation between B and B−L at order g2. The susceptibilities receive contri-
butions from different momentum scales, which we calculated in effective theories within the
framework of dimensional reduction. The NLO corrections are only due to the Higgs and are
smaller than 1% for the ratio κ = B/(B − L). The NNLO corrections are much larger due
to QCD corrections, but still smaller than 5%. At low temperatures close to the electroweak
scale where the Higgs mass becomes ultrasoft (m3 ∼ g2T ), we find that the contributions to
the Higgs chemical potential are determined by the non-perturbative electroweak magnetic
screening scale g2T , where the loop expansion breaks down. For a reliable calculation of these
contributions lattice simulations are needed.

In chapter 5 we computed the ∆L = 2 washout rate in the low temperature limit (T ≪
M1), where the sterile neutrino exchange can be approximated as a point-interaction which
can be described by a dimension-5 operator. Using the Kubo-type formula we computed
the leading order ∆L = 2 washout rate, using full quantum statistics. The next-to-leading
order of this rate is of order g in the SM couplings because the next-to-leading order of
the susceptibilities is of order g due to the thermal Higgs mass. We find that the spectral
function obtains a order g2 ln g correction due to Higgs mass resummation which is beyond
next-to-leading order. Numerically we find that quantum statistics gives a 24.6% larger rate
than classical statistics and the order g corrections from the thermal Higgs mass are smaller
than 3%.

In chapter 6 we derived a spectral representation for imaginary time three-point functions
at finite temperature. We found inverse relations between the spectral functions and the
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retarded correlators, which are very similar to the well-known relations for two-point spectral
functions summarized in section 2.1.

In chapter 7 we used the findings of chapter 6 to compute the CP violating asymmetry
rate. We derived from the Kubo-relation (3.2.12) a master formula for this rate in the
hierarchical limit. This formula relates the asymmetry rate to a single three-point spectral
function of Standard Model fields, which can be computed to any order in the Standard
Model couplings, except the Yukawa interactions of SM leptons. As a first application we
used this formula to compute next-to-leading order corrections to the asymmetry rate at zero
temperature. In the non-relativistic limit T ≪ M1 this is the leading contribution of the
expansion in powers of T/M1 and e−M1/T . We find the corrections to be smaller than 2%.
An interesting future project could be to compute higher orders in T/M1 with the master
formula (7.4.9) and to compare them with the recently published results of [48]. Another
important project would be the computation of the leading order in the ultra-relativistic
regime M1 ∼ gT . For this purpose one possibly has to generalize the master formula to the
non hierarchical limit. At high temperatures the three-point spectral function should receive
large contributions from infinitely many soft gauge bosons like in the case for the sterile
neutrino production rate [51].

Finally, in chapter 8 we showed that the sterile neutrino equilibration rate and the sterile
neutrino production rate are related by the simple equation (8.1.4). This relation holds to
leading order in the Yukawa interaction (1.2.4) and to all orders in the Standard Model
interaction. Therefore, all results of the next-to-leading order analysis of the well studied
production rate can be simply related to the equilibration rate. We proved this formula in
a rather general framework, considering a charged or uncharged particle Φ, which can be a
fermion or a boson with any spin and which is weakly and linearly coupled to a plasma. It
would be interesting to study if a similar relation also holds for the production rate of the
lepton asymmetry. A first step in this direction has been made in [95] where a formula for
the lepton asymmetry with fIk = 0 has been derived. In principle it should be possible to
use their approach to find a relation between the asymmetry rate and three-point spectral
functions similar to our master formula (7.4.9).
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Appendix A

Washout rate: Computation of the

phase-space integrals

The calculations and results of this appendix are planned to be published in [2].

A.1 Definitions

In this appendix we calculate the integrals I110012 and I101013 belonging to the integral class

Iσ1σ2σ3σ4
ij =

ˆ

dΠ1dΠ2dΠ3dΠ4(2π)
4δ(4)(k1 + k2 − k3 − k4)

×(ki · kj)f eqσ1
(E1)f

eq
σ2
(E2)(1 + σ3f

eq
σ3
(E3))(1 + σ4f

eq
σ4
(E4))

∣∣∣∣
k0i=Ei

, (A.1.1)

where σi is 1 for bosons and −1 fermions, f1=fB and f−1=fF, dΠi = d3ki/(2Ei), Ei =√
m2

i + k2
i with mi ∈ {0,m3} and m3 is defined in (4.4.5). Thereby we expand the integrals

to the next-to-leading order in m3. For the calculation we will use the relation

fσi
(Ei)fσj

(Ej) = fσij
(Ei + Ej)

(
1 + σifσi

(Ei) + σjfσj
(Ej)

)
, (A.1.2)

where σij = σiσj . In addition we will use in the following the notation

fF(x) =
1

exp(x/T ) + 1
, fB(x) =

1

exp(x/T )− 1
(A.1.3)

f̃F(x) =
1

exp(x) + 1
, f̃B(x) =

1

exp(x)− 1
. (A.1.4)

A.2 Calculation of I110012

At first we bring the integral I110012 to a simpler form using (A.1.2) for fB(E3) and fB(E4)
and find

I110012 (m3) =

ˆ

dΠ1dΠ2(k1 · k2)fF(E1)fF(E2)(1 + fB(E1 + E2))Fm3(k1 + k2), (A.2.1)
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where

Fm3(k) =

ˆ

dΠ3dΠ4(2π)
4δ(4)(k − k3 − k4)(1 + fB(E3) + fB(E4)), (A.2.2)

with k = (E1 + E2,k1 + k2), E1,2 = |k1,2| and E3,4 =
√

k2
3,4 +m2

3. We calculate (A.2.2)

analytically with finite Higgs mass. For that purpose we choose k = k1 + k2 as z-axis,
perform the k4 integral and the integrals over the angles and end up with

Fm3(k) ≡
1

8π|k|

ˆ ∞

m3

dE3(1 + 2fB(E3))θ(k0 − E3)θ(2|k|
√
E2

3 −m2
3 + k2 − 2k0E3)

× θ(2|k|
√
E2

3 −m2
3 − k2 + 2k0E3). (A.2.3)

The remaining integral over E3 can be solved exactly and the solution reads

Fm3(k) = − 1

8π|k|

{
|k|
(
k2 − 4m2

3

k2

)1/2

+ 2T ln

(
fB
(
E+

3

)

fB
(
E−

3

)
)}

θ(k2 − 4m2
3), (A.2.4)

where E±
3 = k0/2 ± |k|

(
1− 4m2

3/k
2
)1/2

/2 are the zeros of the θ−functions. For m3 = 0 we
find

F0(k) = − 1

8π|k|



|k|+ 2T ln



fB

(
k0+|k|

2

)

fB

(
k0−|k|

2

)






 . (A.2.5)

Substituting E1 = (x+y)T/2, E2 = (x−y)T/2 and |k1+k2| = zT , the integral I110012 (m3 = 0)
can be written as

I110012 (m3 = 0) =− T 6

16(2π)5

ˆ ∞

0
dx

ˆ ∞

0
dy

ˆ ∞

0
dz
(
x2 − z2

)
(
z + 2 ln

(
f̃B
(
z+x
2

)

f̃B(
x−z
2 )

))

× f̃F

(
x+ y

2

)
f̃F

(
x− y

2

)
(1 + f̃B(x))θ(x− z)θ(z − y). (A.2.6)

The y-integral can be solved exactly and reads

ˆ ∞

0
dyf̃F

(
x+ y

2

)
f̃F

(
x− y

2

)
θ(z − y) =

(
z + 2 ln

(
f̃F
(
z+x
2

)

f̃F(
x−z
2 )

))
f̃B(x). (A.2.7)

Thus we are left with the 2-dimensional integral

I110012 (m3 = 0) =− T 6

16(2π)5

ˆ ∞

0
dx

ˆ ∞

0
dz
(
x2 − z2

)
f̃B(x)(1 + f̃B(x))θ(x− z)

×
(
z + 2 ln

(
f̃B
(
z+x
2

)

f̃B(
x−z
2 )

))(
z + 2 ln

(
f̃F
(
z+x
2

)

f̃F(
x−z
2 )

))
, (A.2.8)
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which can be further simplified by doing the substitution (x + z)/2 = s and (x − z)/2 = t,
leading to

I110012 (m3 = 0) =
T 6

4(2π)5

ˆ ∞

0
ds

ˆ ∞

0
dt · s · tf̃B(s+ t)(1 + f̃B(s + t))

×
(
s− t+ 2 ln

(
f̃B(s)

f̃B(t)

))(
s− t+ 2 ln

(
f̃F(s)

f̃F(t)

))
. (A.2.9)

The integral can now conveniently solved numerically and the solution is

I110012 (m3 = 0) = 1.14 × 10−4T 6. (A.2.10)

The next step is to find the leading m3 order of I110012 (m3). This can be obtained by
restricting to the infrared sensitive part of (A.2.2), denoted by F IR

m3
. It corresponds to the

small arguments in the Bose distribution, where fB(E) ≈ T/E. In this region we find

F IR
m3

(k) = − T

8π|k|2 ln
(
E−

3

E+
3

)
θ(k2 − 4m2

3). (A.2.11)

It turns out that the mass derivative of F IR
m3

can be more easily integrated. Therefore, taking
the derivative and again restricting to the infrared sensitive part, yields

− 1

2

d

dm2
3

F IR(k) =
T

4π

k0
k4 + 4|k|2m2

3

θ(k2 − 4m2
3). (A.2.12)

We substitute E1 = (x + y)T/2, E2 = (x − y)T/2 and z12 = k1 · k2/(E1E2) and solve the
integral over z12 which yields

Tk0
4π

ˆ 1

−1
dz12

k2θ(k2 − 4m2
3)

k4 + 4|k|2m2
3

= − 1

4π

x

x2 − y2

(
ln

(
x2

x2 − y2

)
+ ln(

m2
3

T 2
) + O(m3)

)
. (A.2.13)

The remaining 2-dimensional integral is

−1

2

d

dm2
3

IIRll→ϕϕ =− T 6

8

(
1

2π

)5(
ln(

m2
3

T 2
) + O(m0

3)

)
ˆ ∞

0
dxf̃F

(
x+ y

2

)

×
ˆ ∞

0
dyf̃F

(
x− y

2

)
x(1 + f̃B(x)), (A.2.14)

and can be solved exactly. The result is

−1

2

d

dm2
3

IIRll→ϕϕ =
1

8(2π)5

(
π2

12
+ ln(2)2

)
ln(

m2
3

T 2
)T 4 + O(m0

3)

=1.66 × 10−5 ln(
m2

3

T 2
)T 4 + O(m0

3). (A.2.15)

Integrating over m3 and using the condition that I110012 (m3 = 0) is equal to our result
(A.2.10), we find

I110012 (m3) =

(
1.14 + 0.333

m2
3

T 2
ln(

m2
3

T 2
)

)
× 10−4T 6 + O(m2

3). (A.2.16)
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A.3 Calculation of I101013

At first we rename k2 ↔ k3 and then use (A.1.2) for fB(E3) and fB(E4). Then we can write

I101013 =

ˆ

dΠ1dΠ2(k1 · k2)fF(E1)(1− fF(E2))fB(E2 + E1)Gm3(k1 − k2), (A.3.1)

where

Gm3(k) =

ˆ

dΠ3dΠ4(2π)
4δ(4)(k − k3 − k4) (fB(E3)− fB(E4)) . (A.3.2)

In this case k0 = E1 − E2 and k = k1 − k2. Again we first perform the k4 integral and the
integrals over the angles and obtain

Gm3(k) =
1

8π|k|

ˆ ∞

m3

dE3fB(E3)

{
θ(2|k|

√
E2

3 −m2
3 + k2 − 2k0E3)

θ(2|k|
√
E2

3 −m2
3 − k2 + 2k0E3)θ(E3 + k0)

− θ(2|k|
√
E2

3 −m2
3 + k2 + 2k0E3)

θ(2|k|
√
E2

3 −m2
3 − k2 − 2k0E3)θ(E3 − k0)

}
. (A.3.3)

The remaining integral over E3 has the simple solution

Gm3(k) =
1

8π|k|

(
k0
T

+ ln

(
fB(E

+
3 )

fB(−E−
3 )

))
. (A.3.4)

Again, we first consider the massless case and we substitute E1 = xT , E1 − E2 = yT and
|k1 − k2| = zT . Then we obtain

I101013 (m3 = 0) =− T 6

8(2π)5

ˆ ∞

0
dx

ˆ ∞

0
dy

ˆ ∞

0
dzf̃F(x)f̃B(−y)(1− f̃F(x− y))(y2 − z2)

×
(
y + ln

(
f̃B(

y−z
2 )

f̃B(
z−y
2 )

))
θ(2x− y − z)θ(z − y). (A.3.5)

The x-integral can be solved exactly and yields

ˆ ∞

0
dx(1 − f̃F(x− y))f̃F(x)θ(2x− y − z) = y + ln

(
f̃F(

y+z
2 )

f̃F(
y−z
2 )

)
. (A.3.6)

Finally we end up with the 2-dimensional integral

I101013 (m3 = 0) =
T 6

8(2π)5

ˆ ∞

0
dy

ˆ ∞

0
dzf̃B(y)(1 + f̃B(y))θ(z − y)(y2 − z2)

×
(
y + ln

(
f̃B(

y−z
2 )

f̃B(
z−y
2 )

))(
y + ln

(
f̃F(

y−z
2 )

f̃F(
z−y
2 )

))
, (A.3.7)
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which can be calculated numerically. The result is

I101013 (m3 = 0) = 5.91 × 10−5T 6. (A.3.8)

Now for the small mass behavior we consider again the mass derivative of the infrared
sensitive part and obtain

− 1

2

d

dm2
3

GIR
m3

(k) = − 1

4π

Tk0
k4 + 4|k|2m2

3

. (A.3.9)

Doing the substitutions E1 = xT , E1 − E2 = yT and z12 = k1 · k2/(E1E2) and integrating
over z12 yields

Tk0
4π

ˆ 1

−1
dz12

k2

k4 + 4|k|2m2
3

=
y

16πx(x− y)

(
ln

(
y2

4x2(x− y)2

)
+ ln

(
m2

3

T 2

))
+ O(m3).

(A.3.10)
Then we get the 2-dimensional integral

−1

2

d

dm2
3

I101013 (m3) =
T 6

8

(
1

2π

)5(
ln(

m2
3

T 2
) + O(m0

3)

)

×
ˆ ∞

0
dx

ˆ ∞

0
dy
(
1− f̃F(x)

)
f̃F(x− y)yf̃B(y)θ(x− y), (A.3.11)

whose solution reads

−1

2

d

dm2
3

I101013 (m3) =
T 4

64(2π)5
(
π2 − 4 ln(2)2

)(
ln(

m2
3

T 2
) + O(m0

3)

)

=1.27 × 10−5T 4

(
ln(

m2
3

T 2
) + O(m0

3)

)
, (A.3.12)

and therefore

I101013 (m3) = T 6

(
5.91 + 2.54 ln(

m2
3

T 2
)

)
× 10−5 + O(m0

3). (A.3.13)
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Appendix B

Asymmetry rate: Computation of

the spectral functions

In this appendix we present the computation of the spectral functions of the three-point
correlator (7.6.1), (7.6.2), (7.6.3) and (7.6.4). The calculations and results of this appendix
are planned to be published in [3].

B.1 Dirac traces

At first we use the Symbolic Manipulation System FORM [96] to generate the diagrams with
Wick’s theorem, compute traces in the gauge group space and use the properties (1.1.14)
of the matrix C . Since the resulting loop integrals are UV divergent, we use dimensional
regularization. We do not yet perform the traces over Dirac matrices because in dimensional
regularization in calculations beyond leading order we have to be careful with γ5, appearing
in the chiral projectors PL/R.

Then we find the following expressions1 for the NLO diagrams2

= 2d(r)(d(r) + 1)(y2ϕ̃g
2
1 + C2(r)g

2
2)Tr (γµ1PLγµ2PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
3 (p1 + p2 − 2k1)

2

p21p
2
3(p1 − k1)4(p2 − k1)2(p3 + k2)2(p1 − p2)2

, (B.1.1)

= 2d(r)(d(r) + 1)(y2ϕ̃g
2
1 + C2(r)g

2
2)Tr (γµ1PLγµ2PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
2 (p3 + p2 + 2k2)

2

p21p
2
2(p1 − k1)2(p2 + k2)4(p3 + k2)2(p3 − p2)2

, (B.1.2)

= 2d(r)(d(r) + 1)(y2ℓ g
2
1 +C2(r)g

2
2)

1We use
´

p
=
´

ddp

(2π)d
with ddp = dp̄0d

d−1p and p0 = ip̄0.
2Due to lack of space we only show the diagrams in Feynman gauge ξ1 = ξ2 = 1
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× Tr (γµ1PLγµ5PRγµ2PLγ
µ5PRγµ3PLγµ4PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
2 p

µ3
1 p

µ4
3

p41p
2
2p

2
3(p1 − k1)2(p3 + k2)2(p1 − p2)2

, (B.1.3)

= 2d(r)(d(r) + 1)(y2ℓ g
2
1 + C2(r)g

2
2)

× Tr (γµ1PLγµ2PRγ
µ5PLγµ3PRγµ5PLγµ4PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
2 p

µ3
3 p

µ4
2

p21p
4
2p

2
3(p1 − k1)2(p2 + k2)2(p2 − p3)2

, (B.1.4)

= 2d(r)(d(r) + 1)(yϕ̃yℓg
2
1 + C2(r)g

2
2)Tr (γµ1PLγµ5PRγµ2PLγµ3PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
2 p

µ3
3 (p1 + p2 − 2k1)

µ5

p21p
2
2p

2
3(p1 − k1)2(p2 − k1)2(p3 + k2)2(p1 − p2)2

, (B.1.5)

= 2d(r)(d(r) + 1)(yϕ̃yℓg
2
1 + C2(r)g

2
2)Tr (γµ1PLγµ2PRγµ5PLγµ3PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
2 p

µ3
3 (p2 + p3 + 2k2)

µ5

p21p
2
2p

2
3(p1 − k1)2(p2 + k2)2(p3 + k2)2(p2 − p3)2

, (B.1.6)

= −2d(r)(d(r) + 1)Nc|ht|2Tr (γµ1PLγµ2PR)Tr (γµ3PLγµ4PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
2 (p3 + k2)

µ3(p2 − p3)
µ4

p21p
2
2(p1 − k1)2(p2 + k2)4(p3 + k2)2(p3 − p2)2

, (B.1.7)

= −2d(r)(d(r) + 1)Nc|ht|2Tr (γµ1PLγµ2PR)Tr (γµ3PLγµ4PR)

×
ˆ

p1,p2,p3

pµ1
1 p

µ2
3 (k1 − p2)

µ3(p2 − p1)
µ4

p21p
2
3(p1 − k1)4(p2 − k1)2(p3 + k2)2(p1 − p2)2

, (B.1.8)

=4d(r)(d(r) + 1)λTr (γµ1PLγµ2PR)

×
ˆ

p1p2p3

(k1 − p1)
µ1(p2 + k2)

µ2

p21p
2
2(p1 − k1)2(p2 + k2)2(p1 − p3)2(p2 − p3)2

, (B.1.9)

= 2d(r)(y2ϕ̃(d(r) + 1)g21 +C2(r)g
2
2)Tr (γµ1PLγµ2PR)

×
ˆ

p1,p2,p3

(k1 − p1)
µ1(p2 + k2)

µ2(p3 − 2p2)
µ5(p3 − 2p1)µ5

p21p
2
2p

2
3(p1 − k1)2(p2 + k2)2(p1 − p3)2(p2 − p3)2

, (B.1.10)
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= −2d(r)(y2ℓ (d(r) + 1)g21 + C2(r)g
2
2)

× Tr (γµ1PLγµ5PRγµ2PLγµ3PRγ
µ5PLγµ4PR)

×
ˆ

p1,p2,p3

pµ1
1 (p1 − p3)

µ2(p2 − p3)
µ3pµ4

2

p21p
2
2p

2
3(p1 − k1)2(p2 + k2)2(p1 − p3)2(p2 − p3)2

, (B.1.11)

= 2d(r)(yϕ̃yℓ(d(r) + 1)g21 + C2(r)g
2
2)Tr (γµ1PLγµ2PRγµ5PLγµ3PR)

×
ˆ

p1,p2,p3

(k1 − p1)
µ1(p3 − p1)

µ2pµ3
2 (p3 − 2p1)

µ5

p21p
2
2p

2
3(p1 − k1)2(p2 + k2)2(p1 − p3)2(p2 − p3)2

, (B.1.12)

= 2d(r)(yϕ̃yℓ(d(r) + 1)g21 + C2(r)g
2
2)Tr (γµ1PLγµ5PRγµ2PLγµ3PR)

×
ˆ

p1,p2,p3

pµ1
1 (p1 − p3)

µ2(p2 + q)µ3(p3 − 2p2)
µ5

p21p
2
2p

2
3(p1 − k1)2(p2 + k2)2(p1 − p3)2(p2 − p3)2

. (B.1.13)

Here we use yϕ = −yϕ̃ = −yℓ = 1/2, d(r) = 2, C2(r) = 3/4 and Nc = 3.
For the treatment of γ5 we proceed similar to [53] and use the definition

γ5 =
i

4!
εµνρσγ

µγνγργσ, (B.1.14)

of ’t Hooft and Veltman [97] and apply the prescription of [98] which allows a naively com-
muting γ5 with γ25 = 1 in traces with more than one γ5, except in closed fermion loops. Then
only traces with one or no γ5 remain. Let us for example consider the trace in the diagram
(B.1.9). Using the prescription of [98] we can write

Tr (γµPLγ
νPR) = Tr (γµγν − γµ[γ5, γ

ν ]) . (B.1.15)

Furthermore, with the definition of γ5 through (B.1.14) we obtain (c.f. [53] )

[γ5, γ
ν ] =

i

3!
ενµρσ(γµγργσ − γσγργµ). (B.1.16)

Then the γ5 term in the trace drops out due to the total anti-symmetry of the ε tensor and
the cyclicity of the trace. We can do exactly the same in the diagram (B.1.10).

The factorisable diagrams (B.1.1)-(B.1.8) are very similar to the diagrams which con-
tribute to the sterile neutrino productions rate in the non-relativistic regime [53]. In fact,
the diagrams are proportional to the NLO sterile neutrino self-energy for which it has been
shown in [53] that the γ5 contributions cancel.

For the diagrams (B.1.11)-(B.1.13) such a cancellation does not happen and we need a
further argument. First of all we use a naively anti-commuting γ5 and γ25 = 1 in traces with
more than one γ5. Then only traces with no or one γ5 remain. Using the definition (B.1.14)
the traces containing one γ5 can be written as

Tr (γµ1γµ2γµ3γµ4γ5) =
i

4!
ǫν1ν2ν3ν4Tr (γµ1γµ2γµ3γµ4γν1γν2γν3γν4) . (B.1.17)
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Due to the total anti-symmetry of the ε tensor we can drop all combinations of

ηµ1ν1ηµ2ν2ηµ3ν3ηµ4ν4

which are anti-symmetric in the indices µ1, ..., µ4. Therefore, we have

Tr (/k1/k2/k3/k4γ5) = 4iǫµνρσk
[µ
1 k

ν
2k

ρ
3k

σ]
4 (B.1.18)

and consequently, in the diagrams (B.1.11) - (B.1.13) the tensor integrals which come from
traces with one γ5 have the generic form

IµνρσT (k1, k2) =

ˆ

p1,p2,p3

T µνρσ({pi}, k1, k2)
p21p

2
2p

2
3(p1 − k1)2(p2 + k2)2(p1 − p3)2(p2 − p3)2

, (B.1.19)

where T µ1µ2µ3µ4({pi}, k1, k2) is one of the total anti-symmetric rank-4-tensors of the set

{p[µ1 pν2p
ρ
3k

σ]
1 , p

[µ
1 p

ν
2p

ρ
3k

σ]
2 , p

[µ
i p

ν
j k

ρ
1k

σ]
2 }. (B.1.20)

Lorentz symmetry guarantees that a sub-integral such as

Jµ(p1, p2) =

ˆ

p3

pµ3
p23(p3 − p1)2(p3 − p2)2

(B.1.21)

can be written in terms of scalar functions f1 and f2 as

Jµ(p1, p2) = pµ1f1(p1, p2) + pµ2f2(p1, p2). (B.1.22)

Thus all tensor integrals can be expressed in terms of integrals containing the tensor

T µνρσ(p1, p2, k1, k2) = p
[µ
1 p

ν
2k

ρ
1k

σ]
2 (B.1.23)

Lorentz symmetry guarantees that we can compute the three-point correlator for k1 =
(k01 ,0). Since the spectral function function in (7.4.9) is evaluated at k1 = −k2 = −k we
can also set k2 = (k02 ,0). Since T µν00(p1, p2, k1, k2) = 0, we see that traces with one γ5 do
not contribute. Note that this argument does not hold at finite temperature since Lorentz
symmetry is broken there. For the finite temperature computation one would need to compute
the tensor sum-integrals in terms with γ5 explicitly.

B.2 Reduction to master integrals and ε-expansion

We compute the diagrams (B.1.1) - (B.1.13) with arbitrary gauge parameters ξ1 and ξ2. We
perform the Dirac traces in FORM [96] which yields scalar products in the numerators of the
Feynman integrals, which can be expressed in terms of inverse scalar propagators through
the relations

pi · pj =
1

2

(
p2i + p2j − (pi − pj)

2
)
, (B.2.1)

pi · k1 =
1

2

(
p2i + k21 − (pi − k1)

2
)
, (B.2.2)

pi · k2 =
1

2

(
(pi + k2)

2 − p2i − k22
)
. (B.2.3)
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Then all three-point Feynman-integrals appearing in the computation of the NLO spectral
functions have the generic form

Ia1...a12(k1, k2) =

ˆ

ddp1
(2π)d

ddp2
(2π)d

ddp3
(2π)d

1

p2a11 p2a22 p2a33

× 1

(p1 − k1)2a4(p2 − k1)2a5(p3 − k1)2a6

× 1

(p1 + k2)2a7(p2 + k2)2a8(p3 + k2)2a9

× 1

(p1 − p2)2a10(p1 − p3)2a11(p2 − p3)2a12
, (B.2.4)

with integers ai. They can be mapped to a minimal set of master integrals, using the method
of integration by parts (IBP) [99]. With help of the program Reduze [100], which uses the La-
porta algorithm [101] for IBP, we get the following gauge-parameter independent expressions
for the three-point correlators in terms of master integrals:

Γg,nfac(k1, k2) = −2d(r)(yϕ̃yℓ(d(r) + 1)g21 +C2(r)g
2
2)

×
(−(d− 2)(2d − 5)(−20 + 79d − 48d2 + 8d3)

(d− 3)2(3d− 10)(3d − 8)k22
I001000010110

+
4(d− 2)(2d − 5)(2d − 3)

(d− 4)(3d − 8)k22
I000001010110

+
(d− 2)(2(9 − 9d+ 2d2)(k1 + k2)

2 + (−25 + 23d− 5d2)k22)

(d− 3)(3d − 8)k22
I001001010110

+
(42560 − 78192d + 58256d2 − 22318d3 + 4561d4 − 456d5 + 16d6)

(d− 4)2(d− 3)2(3d− 10)(3d − 8)k21
×(2d− 5)I010001000110

+
−2320 + 2900d − 1168d2 + 93d3 + 41d4 − 7d5

(d− 4)(d − 3)(3d − 10)(3d − 8)
I010001010110

+
2(−60 + 55d − 15d2 + d3)k21 − 2(d − 2)2(4d− 13)k1 · k2

(3d − 8)2
I011001010110

+
(d− 2)2

(d− 3)
I011001100100

+
8(−60 + 55d − 15d2 + d3)k21k

2
2

(3d− 10)(3d − 8)2
I021001010110

+
−4(d− 2)

d− 4
I100001010110

+
(d− 2)k21
(d− 3)

I101001010110

+
(d− 2)k22
(d− 3)

I110001010110
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+
(d− 2)(2d − 3)k21(k1 + k2)

2

(d− 3)(3d − 8)k22
I001002010110

+
(12 − 5d)(k1 + k2)

2

(d− 3)(3d − 8)
I010002010110

+
(d− 2)2

(d− 3)
I101010001100

)
, (B.2.5)

Γg,fac(k1, k2) =2d(r)(d(r) + 1)(y2ϕ̃g
2
1 + C2(r)g

2
2)

×
(
(d− 2)(−4− d+ d2)k2 · k1

(−4 + d)2k22
I011001100100

+
(d− 2)(−4 − d+ d2)k2 · k1

(−4 + d)2k21
I101010001100

−(d− 2)k2 · k1
(d− 4)

I111011100000

−(d− 2)k2 · k1
(d− 4)

I111001110000

)
, (B.2.6)

Γλ(k1, k2) =− 4d(r)(d(r) + 1)λ

×
(

(−2 + d)(−5 + 2d)(−20 + 7d)

(−3 + d)(−10 + 3d)(−8 + 3d)k22
I001000010110

+
−4(−2 + d)(−5 + 2d)

(−4 + d)(−8 + 3d)k22
I000001010110

+
(−2 + d)

(−8 + 3d)
I001001010110

+
−(−5 + 2d)(−1040 + 1064d − 362d2 + 41d3)

(−4 + d)(−3 + d)(−10 + 3d)(−8 + 3d)k21
I010001000110

+
−(100− 72d + 13d2)

(−10 + 3d)(−8 + 3d)
I010001010110

+
−2((−4 + d)(−5 + 2d)k21 + (−2 + d)2k1 · k2)

(−8 + 3d)2
I011001010110

+
−8(−4 + d)(−5 + 2d)k21k

2
2

(−10 + 3d)(−8 + 3d)2
I021001010110

+
−(−2 + d)k21(k1 + k2)

2

(−3 + d)(−8 + 3d)k22
I001002010110

+
−(−4 + d)(k1 + k2)

2

(−3 + d)(−8 + 3d)
I010002010110

)
, (B.2.7)

Γt(k1, k2) = 2d(r)(d(r) + 1)Nc|ht|2

×
(
(d− 2)k2 · k1
(d− 4)k21

I101010001100
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+
(d− 2)k2 · k1
(d− 4)k22

I011001100100

)
. (B.2.8)

Applying the inverse relation (6.1.19) to the above reduction, we can express the spectral
functions corresponding to the Γ’s in terms of master spectral functions. The master spectral
functions are obtained from the master integrals in the reductions above from the inverse
relation (6.1.19) as well. We compute these master spectral functions in appendix B.3 - B.5.

Let us discuss the master integrals which appear in the above reductions in more detail.
The factorisable contributions Γt and Γg,fac contain only the factorisable master integrals

Ifac3L(k1, k2) ≡ I101010001100(k1, k2), (B.2.9)

Ifac3R(k1, k2) ≡ I011001100100(k1, k2), (B.2.10)

Ifac4L(k1, k2) ≡ I111011100000(k1, k2), (B.2.11)

Ifac4R(k1, k2) ≡ I111001110000(k1, k2). (B.2.12)

We compute the ε = (4− d)/2 expansion of the spectral functions of these integrals in (B.3)
and find

ρfac3L(−k, k) =
k2

(16π)28π2

(
1 + ε

(
17

2
+ 3 ln

(
µ̄2

k2

)))
, (B.2.13)

ρfac3R(−k, k) =
k2

(16π)28π2

(
1 + ε

(
17

2
+ 3 ln

(
µ̄2

k2

)))
, (B.2.14)

ρfac4L(−k, k) = − 1

(16π)22π2

(
1

ε
+ 6 + 3 ln

(
µ̄2

k2

))
, (B.2.15)

ρfac4R(−k, k) = − 1

(16π)22π2

(
1

ε
+ 6 + 3 ln

(
µ̄2

k2

))
, (B.2.16)

where we introduced the MS - scale parameter µ̄2 = 4πµ2e−γE .
In the reduction of the non-factorisable contributions Γg,nfac and Γλ appear some master

integrals which trivially lead to vanishing spectral functions because they depend only on a
single variable. These integrals are

I0(k2) ≡ I001000010110(k1, k2), (B.2.17)

I0(k1) ≡ I000001010110(k1, k2), (B.2.18)

I0(k1 + k2) ≡ I010001000110(k1, k2). (B.2.19)

The remaining non-trivial non-factorisable integrals are

ISSR(k1, k2) ≡ I001001010110(k1, k2), (B.2.20)

ISSL(k1, k2) ≡ I010001010110(k1, k2), (B.2.21)

ISSRdot(k1, k2) ≡ I001002010110(k1, k2), (B.2.22)

ISSLdot(k1, k2) ≡ I010002010110(k1, k2), (B.2.23)

IBB(k1, k2) ≡ I011001010110(k1, k2), (B.2.24)
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IBBdot(k1, k2) ≡ I021001010110(k1, k2), (B.2.25)

ILR(k1, k2) ≡ I100001010110(k1, k2), (B.2.26)

I2L(k1, k2) ≡ I110001010110(k1, k2), (B.2.27)

I2R(k1, k2) ≡ I101001010110(k1, k2). (B.2.28)

(B.2.29)

The integrals ISSRdot(k1, k2) and ISSLdot(k1, k2) are multiplied by (k1+k2)
2 in (B.2.5). There-

fore, we only need to check whether their spectral functions have a pole for k1 = −k2. In
appendix B.5.2 we find that this is not the case. We compute the other spectral functions in
sections B.4 and B.5 and find the ε-expansion

ρSSL(−k, k) = 0, (B.2.30)

ρSSR(−k, k) = 0, (B.2.31)

ρBB(−k, k) = − 1

(16π)24π2

(
1

ε
+ 7 + 3 ln

(
µ̄2

k2

))
, (B.2.32)

ρBBdot(−k, k) =
1

(16π)24π2k2

(
1

ε
+ 4 + 3 ln

(
µ̄2

k2

))
, (B.2.33)

ρLR(−k, k) =
k2

(16π)28π2

(
1 + ε

(
10 + 3 ln

(
µ̄2

k2

)))
, (B.2.34)

ρ2L(−k, k) = − 1 + ln(2)

(16π)24π2
, (B.2.35)

ρ2R(−k, k) = − 1 + ln(2)

(16π)24π2
, (B.2.36)

ρfac3L(−k, k) =
k2

(16π)28π2

(
1 + ε

(
17

2
+ 3 ln

(
µ̄2

k2

)))
, (B.2.37)

ρfac3R(−k, k) =
k2

(16π)28π2

(
1 + ε

(
17

2
+ 3 ln

(
µ̄2

k2

)))
, (B.2.38)

ρfac4L(−k, k) = − 1

(16π)22π2

(
1

ε
+ 6 + 3 ln

(
µ̄2

k2

))
, (B.2.39)

ρfac4R(−k, k) = − 1

(16π)22π2

(
1

ε
+ 6 + 3 ln

(
µ̄2

k2

))
. (B.2.40)

B.3 Factorisable three-point spectral functions

Some of three-point master integrals of the NLO correlator factorize into a product of two
real two-point integrals I(k1) and J(−k2),

Γ(k1, k2) = I(k1)J(−k2). (B.3.1)

In this case one can further simplify the inverse relation (6.1.19) to

ρ(k1, k2) = −4Im(I(k1 + i0+))Im(J(−k2 + i0+)). (B.3.2)
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Thus the three-point spectral-functions also factorizes into a product of two two-point spectral
functions.

B.3.1 Computation of ρfac4R and ρfac4L

We compute the spectral functions of the integrals

Ifac4L(k1, k2) =

ˆ

p1,p2,p3

1

p21p
2
2p

2
3(p2 − k1)2(p3 − k1)2(p1 + k2)2

, (B.3.3)

and Ifac4R(k1, k2) = Ifac4L(k2, k1) which can be written as a product of the two integrals

I1(k) =

ˆ

ddp

(2π)d
1

p2(p− k)2
(B.3.4)

and

I2(k) = I1(k)
2 (B.3.5)

as
Ifac4L(k1, k2) = I2(k1)I1(−k2). (B.3.6)

Using the inverse relation (B.3.2) and [53]

ImI1(k0 + i0+,k) =
sgn(k0)

16π

[
1 + ε

(
ln
µ̄2

k2
+ 2

)]
+ O(ε2), (B.3.7)

ImI2(k0 + i0+,k) =
sgn(k0)

2(4π)3

(
1

ε
+ 2 ln

µ̄2

k2
+ 4

)
+ O(ε), (B.3.8)

we find

ρfac4L(−k, k) = ρfac4R(−k, k) = − 1

(16π)22π2

(
1

ε
+ 6 + 3 ln

µ̄2

k2

)
+ O(ε), (B.3.9)

where µ2 = 4πµ2e−γE is the MS renormalization scale parameter.

B.3.2 Computation of ρfac3R and ρfac3L

We compute the spectral functions of the integrals

Ifac3L(k1, k2) =

ˆ

p1,p2,p3

1

p21p
2
3(p2 − k1)2(p3 + k2)2(p1 − p2)2

(B.3.10)

and Ifac3R(k1, k2) = Ifac3L(k2, k1), which can be written as

Ifac3L(k1, k2) = I3(k1)I1(−k2), (B.3.11)

with

I3(k) ≡
ˆ

p1p2

1

p21(p1 − p2)2(p2 − k1)2
. (B.3.12)

89



Using the inverse relation (B.3.2) and [53]

ImI3(k0 + i0+,k) = −sgn(k0)k
2

8(4π)3
+ O(ε), (B.3.13)

we find

ρfac3L(−k, k) = ρfac3R(−k, k) =
k2

(16π)28π2

(
1 + ε

(
17

2
+ 3 ln

(
µ̄2

k2

)))
. (B.3.14)

B.4 Non-factorisable spectral functions without squared prop-

agators

B.4.1 Computation of ρBB

We compute the spectral function to the integral

IBB(k1, k2) =

ˆ

p1,p2,p3

1

p21(p1 − k)2p22(p2 + q)2(p3 − p1)2(p3 − p2)2
. (B.4.1)

At first we use a FORM [96] program to compute the integrals over the temporal components
p̄0l = −ip0l for l = 1, 2. In order to simplify this task, we write the one-loop sub-integral over
p3 as I1(p1 − p2) defined in (B.3.4). This yields

IBB(k1, k2) =

ˆ

p1,p2,p3

1

p21(p1 − k)2p22(p2 + q)2
I1(p1 − p2). (B.4.2)

Now we use the spectral representation3

I1(p1 − p2) = 2

ˆ ∞

0

ds

2π

s ρI1(s, |p1 − p2|)
s2 + (p̄01 − p̄02)

. (B.4.3)

For simplicity we set k1 = (k01 ,0) and k2 = (k02 ,0). After the integration over p̄01 and p̄02 we
find

IBB(k1, k2)|k1=0,k2=0 =
1

8

ˆ

p1,p2

ˆ ∞

0

ds

2π

s ρI1(s, |p1 − p2|)
s2 − (|p1| − |p2|)2

× 1

|p1|2|p2|2|
1

(k01 − 2|p1|)(−k02 − |p2|)
+ many terms which do not contribute to ρ(−k, k). (B.4.4)

In this representation one can conveniently use the inverse relation (6.1.19) in combination
with (2.1.9). Furthermore, we use the spectral representation of the integral I backwards.
Then we find

ρBB(−k, k) = −4π2

k40

ˆ

p1,p2

I1(0, |p1 − p2|)δ((k0 − 2|p1|)δ(k0 − 2|p2|)

+ many terms which do not contribute to ρ(−k, k). (B.4.5)

3Here we made use of the fact that the spectral functions is odd in s.
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Working in (d− 1)-dimensional spherical coordinates with
ˆ

pi

=
Ωd−1

(2π)d−1

ˆ

d|p|i|pi|d−2 (B.4.6)

and Ωd ≡ 2πd/2/Γ(d/2), we evaluate the radial integrals over |pi| and obtain

ρBB(−k, k) = −
(
k0
2

)2d−6 πd+1

(2π)2d−2Γ(d−1
2 )Γ(d−2

2 )

ˆ 1

−1
dz12(1− z212)

d−4
2

× I1(0, |p1 − p2|)|p1|=|p1|=
k0
2

, (B.4.7)

where
z12 ≡

p1 · p2

|p1||p2|
. (B.4.8)

For the one-loop sub-integral we use the solution

I1(k) =
Γ(d2 − 1)2Γ(2− d

2)

(4π)
d
2Γ(d− 2)

(
k2
) d

2
−2
. (B.4.9)

Now the z12 integral is straightforward and we expand the resulting expression for the spectral
function in ε = (4− d)/2. This yields

ρBB(−k, k) = − 1

(16π)2 4π2

(
1

ε
+

7

2
+ 3 ln

µ̄2

k2

)
+ O(ε), (B.4.10)

where we have used Lorentz symmetry to replace k20 by k2.

B.4.2 Computation of ρLR

We compute the spectral function of the integral

ILR(k1, k2) ≡
ˆ

p1,p2,p3

1

p21(p3 − k1)2(p2 + k2)2(p1 − p2)2(p1 − p3)2
. (B.4.11)

We proceed as for IBB and write the integral in terms of the sub-integral I1 which yields

ILR(k1, k2) =

ˆ

p1

1

p21
I1(p1 + k2)I1(p1 − k1). (B.4.12)

Then we use the spectral representation (B.4.3) to obtain

ILR(k1, k2) =

ˆ

p1

ˆ ∞

0

dt

2π

ˆ ∞

0

ds

2π

4st

p21

ρI1(s, |p1 + k2|)ρI1(t, |p1 − k1|)
(s2 + (p̄01 + ik01)

2)(t2 + (p̄01 − ik02)
2)
. (B.4.13)

Now we solve the p̄01 integral with a FORM program and use the inverse relation (6.1.19) to
obtain δ-functions. Then it is easy to solve the s- and t-integral and we find

ρLR(−k, k) =
ˆ

p1

1

2|p1|
ρI1(Ek − |p1|, |p1|)2θ(Ek − |p1|). (B.4.14)

We use ρI1(k) = 2ImI1(k0 + i0+,k) together with (B.3.7) and solve the |p1| with spherical
coordinates in (d− 1) dimensions. Then, expanding in ε = (d− 4)/2, we finally get

ρLR(−k, k) =
k2

(16π)28π2

(
1 + ε

(
10 + 3 ln

(
µ̄2

k2

)))
. (B.4.15)
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B.4.3 Computation of ρSSR and ρSSL

We compute the spectral functions of the integrals

ISSL(k1, k2) =

ˆ

p1,p2,p3

1

p22(p3 − k1)2(p2 + k2)2(p1 − p2)2(p1 − p3)2
(B.4.16)

and ISSR(k1, k2) = ISSL(k2, k1). It can be written in terms of the sub-integral I3 as

ISSL(k1, k2) =

ˆ

p1

1

p22(p2 + k2)
I3(p2 − k1). (B.4.17)

Again, we write the sub-integral in the spectral representation and obtain

ISSL(k1, k2) =

ˆ

p2

ˆ ∞

0

ds

2π

1

p22(p2 + k2)

2s ρI3(s, |p2 − k1|)
s2 + (p̄02 + ik01)

2
. (B.4.18)

Then we solve the p̄02-integral with a FORM program and use the inverse relation (6.1.19) to
obtain delta functions. Then we solve the s-integral and find

ρSSL(−k, k) =
ˆ

p2

1

4p2
2

πδ(k0 − 2|p2|)ρI3(k0 − |p2|, |p2|). (B.4.19)

The δ-function yields ρI3(k0/2, k0/2) which is zero as we can see from (B.3.13). Therefore,
we find

ρSSL(−k, k) = ρSSR(−k, k) = 0. (B.4.20)

B.4.4 Computation of ρ2L and ρ2R

We compute the spectral functions of the integrals

I2L(k1, k2) =

ˆ

p1,p2,p3

1

p21p
2
2(p3 − k1)2(p2 + k2)2(p1 − p2)2(p1 − p3)2

(B.4.21)

and I2R(k1, k2) = I2L(k2, k1). The integral can be written as

I2L(k1, k2) =

ˆ

p1,p2

1

p21p
2
2(p2 + k2)2(p1 − p2)2

I1(p1 − k1). (B.4.22)

We find it also convenient to use the spectral representation for the propagator

1

(p1 − p2)2
=

ˆ ∞

0

dt

2π

2t ρδ(t, |p1 − p2|)
s2 + (p̄01 − p̄02)

2
, (B.4.23)

where

ρδ(k0,k) = − π

|k| (δ(k0 − |k|)− δ(k0 + |k|)) . (B.4.24)
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Then, computing the integrals over p̄01 and p̄02 with a FORM program and using the inverse
relation (6.1.19), we find

ρ2L(−k, k) =π
ˆ

p1p2

ˆ ∞

0

dt

2π
ρδ(t, |p1 − p2|)

×
[
8δ(2|p2| − k0)f1(|p1|, |p2|, t)

+8δ(2|p2| − k0)f2(|p1|, |p2|, t)
−δ(−k0 + t+ |p1|+ |p2|)f3(|p1|, |p2|, t)

+δ(−k0 − t− |p2|+ |p1|)f4(|p1|, |p2|, t)
]
, (B.4.25)

where

f1(|p1|, |p2|, t) =
ρI1(k0/2− t, |p1|)θ(k0/2− t)

k20(k0 − 2|p1|+ 2t)(k0 + 2|p1|+ 2t)
, (B.4.26)

f2(|p1|, |p2|, t) =
t ρI1(k0 − |p1|, |p1|)θ(k0 − |p1|)θ(k0 + |p1| − |p2|)

k20 |p1|(k0 − 2|p1| − 2t)(k0 − 2|p1|+ 2t)
, (B.4.27)

f3(|p1|, |p2|, t) =
ρI1(k0 − |p1|, |p1|)θ(k0 − |p1|)θ(k0 − |p1| − t)

2k0|p1|(k0 − 2|p1| − 2t)(k0 − |p1| − t)
, (B.4.28)

f4(|p1|, |p2|, t) =
ρI1(k0 − |p1|, |p1|)θ(k0 − |p1|)θ(|p1| − t− k0)

2k0|p1|(k0 − |p1|+ t)(k0 − 2|p1|+ 2t)
. (B.4.29)

Like in the case for ρBB we first solve the integral over z12 = p1·p2

|p1||p2|
in (d − 1)-dimensional

spherical coordinates. For this purpose it turns out to be convenient to substitute x ≡ |p1+p2|
with

dz12 = − xdx

|p1||p2|
. (B.4.30)

Then the integral over x is trivial due to the delta function in ρδ(t, x) and yields

ˆ |p1|+|p2|

||p1|−|p2||
dxxρδ(t, x) = −πθ(|p1|+ |p2| − t)θ(t− ||p1|+ |p2||). (B.4.31)

Similarly we solve the integral over |p2|, making use of the other δ-functions. Finally we solve
the remaining integrals over t and |p1| with Mathematica [102] and obtain the finite result

ρ2L(−k, k) = ρ2R(−k, k) = − 1 + ln(2)

(16π)24π2
. (B.4.32)

B.5 Non-factorisable spectral functions with one squared prop-

agator

B.5.1 Computation of ρBBdot

The situation is more complicated if propagators in the master integrals are squared. For
example in the reduction (B.2.7) and (B.2.5) appears the integral
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IBBdot(k1, k2) ≡ I021001010110(k1, k2), which explicitly reads

IBBdot(k1, k2) =

ˆ

p1,p2,p3

1

p21p
4
2(p1 − k)2(p2 + q)2(p1 − p2)2(p2 − p3)2

. (B.5.1)

We can compute this integral with the same techniques as in section (B.4.1) if we introduce
an artificial mass in the integral (B.4.1) which defines the integral

IBB(k1, k2,m) ≡
ˆ

p1,p2,p3

1

p21
(
p22 +m2

)
(p1 − k)2(p2 + q)2(p1 − p2)2(p2 − p3)2

. (B.5.2)

The spectral function of IBBdot is then determined by the mass derivative

ρBBdot(k1, k2) = −
[
d2

dm2
ρBB(k1, k2,m)

]

m=0

. (B.5.3)

We compute the spectral function of the massive integral IBB(k1, k2,m), applying the same
steps as in (B.4.1), but with much more terms during the calculation. After a long calculation
and with help of Mathematica [102], we find

ρBBdot(−k, k) =
1

(16π)24π2k2

(
1

ε
+ 4 + 3 ln

(
µ̄2

k2

))
, (B.5.4)

after expanding in ε = (d− 4)/2 and taking the mass derivative (B.5.3)

B.5.2 Computation of ρSSRdot and ρSSLdot

We do not need to compute ρSSRdot and ρSSLdot explicitly because in the reduction (B.2.6)
the corresponding master integrals are multiplied with (k1 + k2)

2 which vanishes for k1 =
−k2 = −k. Therefore, we only have to check if the spectral functions have a pole in k1 = −k2.
Let us start with

ISSLdot =

ˆ

p1,p2,p3

1

p22(p3 − k1)4(p2 + k2)2(p1 − p2)2(p1 − p3)2
, (B.5.5)

which we can write as

ISSL(k1, k2) =

ˆ

p1

1

p22(p2 + k2)
I3dot(p2 − k1), (B.5.6)

where

I3dot(k) =

ˆ

p2,p3

1

p23(p3 − k)4(p3 − p2)2
. (B.5.7)

For simplicity we set k1 = k2 = 0 and assume k01 < 0 and k02 > 0. Then, analogously to
section B.4.3, we find

ρSSLdot(k1, k2)

∣∣∣∣
k1=k2=0

=

ˆ

p2

1

4p2
2

πδ(k02 −2|p2|)ρI3dot(−k01 −|p2|, |p2|)θ(−k01 −|p2|). (B.5.8)
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In order to compute ρI3dot , we proceed as follows. At first we take the derivative

kµ
∂

∂kµ
I3(k) =

ˆ

p2,p3

2k · (p3 − k)

p23(p3 − k)4(p3 − p2)2
, (B.5.9)

and cancel the scalar products in the numerator which yields

kµ
∂

∂kµ
I3(k) = −k2I3dot(k) − I3(k). (B.5.10)

On the other hand, we know that I3(k) ∼ (k2)(d−3) such that

kµ
∂

∂kµ
I3(k) = 2(d− 3)I3(k). (B.5.11)

Therefore, we have

I3(k) =
k2

2d− 5
I3dot(k) (B.5.12)

and consequently, for the spectral function

ρI3dot(k) =
3

k2
ρI3(k) = −3sgn(k0)

4(4π)4
. (B.5.13)

Plugging this result into (B.5.15) and solving the integral p2-integral, it is easy to see that the
result is well defined for k1 = −k2. Therefore ρSSLdot does not contribute to the asymmetry
rate.

For the computation of ρSSRdot(k1, k2) we introduce an artificial mass for the squared
propagator. Then ρSSRdot(k1, k2) can be computed as the mass derivate of the spectral
function of

ISSR(k1, k2,m) ≡
ˆ

p3

1

p23((p3 − k1)2 +m2)
I3(p3 + k2). (B.5.14)

We write the massive propagator and the integral I3 in terms of their spectral functions,
perform the p̄03 integral and use the inverse relations. For simplicity we set k1 = k2 = 0 and
we assume k01 < 0 and k02 > 0. This yields

ρSSR(k1, k2,m)

∣∣∣∣
k1=k2=0

=

ˆ

d3p3
(2π)3

1

2|p3|
ρδ(−k01 − |p3|,

√
|p3|2 +m2)

×
{
ρI3(k

0
2 − |p3|, |p3|)θ(−k01 − |p3|)θ(k02 − |p3|)

−ρI3(−k02 + |p3|, |p3|)θ(−k01 − |p3|)θ(−k02 + |p3|)
}
, (B.5.15)

where ρδ and ρI3 are given in (B.4.24) and (B.3.13) respectively. We assume that (k01)
2 > m2,

which allows to write

ρδ(−k01 − |p3|,
√

|p3|2 +m2) = − π((k01)
2 +m2)

2(k01)
2
√

p2
3 +m2

δ

(
|p3| −

m2 − (k01)
2

2k01

)
. (B.5.16)
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The p3 integral can now easily be solved which leads to

ρSSR(k1, k2,m)

∣∣∣∣
k1=k2=0

= −k
0
2((k

0
1)

2 −m2)((k01)
2 + k01k

0
2 −m2)

2048π4(k01)
3

. (B.5.17)

Taking the derivative with respect to m2 it is easy to see that no pole for k02 = −k01 appears.
Therefore, ρSSRdot does not contribute to the asymmetry.

B.6 Counter terms

In this section we give some more details to the calculations of the counter terms. We consider
the interaction

L
eff
int = −N1(hν)1iJi +

1

2
(gν)ijJ

⊤
i C

−1Jj +H.c, (B.6.1)

where (gν)ij =
∑

I 6=1(hν)Ii(hν)Ij/MI and Ji = ϕ̃†ℓi. We renormalize the fields by

ϕ = ϕRZ
1/2
ϕ , ℓ = ℓRZ

1/2
ℓ (B.6.2)

and the couplings by

(hν)1i = (hνR)1iZh (gν)ij = (gνR)ijZg. (B.6.3)

In the following we write Zi = 1 + δZi and consider the leading SM contributions to δZi. In
this case the counter-term Lagrangian can be written as

LCT =δZℓℓ̄i/∂ℓ+ δZϕ(∂µϕ)
†∂µϕ (B.6.4)

−1

2
(δZϕ + δZℓ + 2δZh)

(
N1(hν)1iJi +H.c

)
(B.6.5)

+
1

2
(δZϕ + δZℓ + δZg)

(
(gν)ijJ

⊤
i C

−1Jj +H.c
)
. (B.6.6)

B.6.1 Determination of δZℓ and δZϕ

Let Σℓ = Σ1L
ℓ +ΣCT

ℓ and Σϕ = Σ1L
ϕ + ΣCT

ϕ be the lepton and Higgs self-energy respectively.

They consists of the one-loop parts Σ1L
ℓ and Σ1L

ϕ and the counter-term parts

(ΣCT
ℓ )ab =δZℓ/pPLδab, (B.6.7)

(ΣCT
ϕ )ab =δZϕp

2δab, (B.6.8)

where a and b denote indices in electroweak SU(2) space. We compute SM contributions to
the one-loop parts, given by the diagrams in figure B.1, with arbitrary gauge parameter ξ1 and
ξ2. In order to simplify the calculation, we take the trace in SU(2) space, by multiplying the
self-energies with δab. After applying standard Feynman rules, simplify the Dirac structure
and canceling scalar products in numerators, we find

1

2
δab(Σ

1L
ℓ (p))ab =

d− 2

8
/pPLI1(p)

(
g21ξ1 + 3g22ξ2

)
, (B.6.9)

1

2
δab(Σ

1L
ϕ (p))ab =− 1

4
p2I1(p)

(
g21(3− ξ1) + 3g22(3− ξ2)− 4Nc|ht|2

)
. (B.6.10)
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The integral I1(p) is the standard one-loop integral defined in (B.3.4). In d = 4−2ε dimensions
it has the ε expansion

I1(p) =
1

(4π)2ε
+ O(ε0). (B.6.11)

Enforcing the complete self-energies Σℓ and Σϕ to be finite leads to

δZℓ = − 1

(4π)2ε

(
1

4
ξ1g

2
1 +

1

4
ξ2g

2
2

)
, (B.6.12)

δZϕ =
1

(4π)2ε

(
1

4
g21(3− ξ1) +

3

4
g22(3− ξ2)− 4Nc|ht|2

)
. (B.6.13)

Figure B.1: One-loop Diagrams contributing to the Higgs and lepton self-energies Σ1L
ϕ and

Σ1L
ℓ . The lepton self-energy (left) gets only corrections from gauge bosons. Higgs Higgs

self-energy gets also a correction from the top quark (right).

B.6.2 Determination of δZh

For the computation of δZh we have to consider the one-loop SM correction to the three-
vertex (V 1L

1i )ab in figure B.2. Again, after using standard Feynman rules, we take the trace
in SU(2) space. In order to get rid off the Dirac structure we also take the trace over the
Dirac matrices. Then, after canceling all scalar products in the numerator of the Feynman
integrals, we can express the the one-loop vertex function in terms of integrals of the class

Iabc(p1, p2) ≡
ˆ

ddk

(2π)d
1

k2a(k − p1)2b(k + p2)2c
. (B.6.14)

Here p1 defines the external momentum of the Higgs. We use the program Reduze [100] to
write the result in terms of master integrals and find

Tr
(
δab(V

1L
1i )ab

)
=− i(hνR)1ig

2
1

[
I011 − (1− ξ1)

(
1

2
I011 +

d− 3

2
I101

)]

−i(hνR)1i3g22
[
I011 − (1− ξ2)

(
1

2
I011 +

d− 3

2
I101

)]
, (B.6.15)

where Tr denotes the trace in spinor space. All master integrals can be written in terms of
the integral I1 and therefore yield the same infinite contribution (B.6.11).This implies

Tr
(
δab(V

1L
1i )ab

)
=− i(hνR)1i

[
g21ξ1 + 3g22ξ2

] 1

(4π)2ε
+ O(ε0). (B.6.16)

From (B.6.6) we can read off the counter-term three-vertex

(V CT
1i )ab = −i(hνR)1iδab

(
1

2
δZϕ +

1

2
δZℓ + δZh

)
PL. (B.6.17)
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Then, enforcing the complete three-vertex to be finite, that is,

δabTr
(
(V 1L

1i )ab + (V CT
1i )ab

)
= O(ε0), (B.6.18)

we find in the gauge invariant result

δZh = −
[
3

8
(g21 + 3g22)−

Nc

2

]
1

(4π)2ε
(B.6.19)

for the three-vertex coupling renormalization. Our result is consistent with the one in [53].

Figure B.2: One-loop correction to the three-vertex (V 1L
1i )ab

B.6.3 Determination of δZg

For the computation of δZg we proceed as for δZh. We compute the one-loop SM corrections
to the four-vertex (V 1L

ij )abcd in figure B.3. Here a, b and c, d are the lepton and Higgs elec-

Figure B.3: One-loop SM corrections to the four-vertex (V 1L
ij )abcd. There are also contribu-

tions from the first diagram with permutations of external lines.

troweak SU(2) indices respectively. First we use a FORM [96] code to generate all diagrams
and multiply them with the projector

Pabcd = δacδbd + δadδbc, (B.6.20)

in order to get rid of the SU(2) structure. Furthermore, we multiply the diagrams with C

in order to eliminate C−1. Then we take the Dirac trace and cancel all scalar products in
the numerator. The remaining integrals can be expressed in terms of the one-loop four-point
integrals

I
(1)
abcd(p1, p2, p3) =

ˆ

ddk

(2π)d
1

k2a(k + p1)2b(k + p3)2c(k + p1 + p2)2d
, (B.6.21)

I
(2)
abcd(p1, p2, p3) =

ˆ

ddk

(2π)d
1

k2a(k + p2)2b(k + p3)2c(k + p1 + p2)2d
. (B.6.22)

Here p1 and p2 define the external momenta of the SM leptons. We use the program Reduze
[100] to reduce these integrals to master integrals. Then, the terms which contribute to the
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infinite part are

1

24
PabcdTr

[
(V 1L

ij )abcdC
]
= −i(gνR)ijg21

[
(6− 3d)(I

(1)
0101 + I

(1)
1100) + (6− 3ξ1)(I

(2)
0101 + I

(2)
1100)

+ (6 + ξ1(6d− 18))(I
(1)
1001 − I

(1)
0110 − I

(2)
0110)

]

+−i(gνR)ijg22
[
6(I

(1)
0011 + I

(1)
1010) + (12− 3d− 3ξ2)(I

(1)
0101 + I

(1)
1100)

(B.6.23)

+ (6 + ξ2(6d− 18))(I
(1)
1001 − 2I

(1)
0110 − 2I

(2)
0110) (B.6.24)

+ (12 − 6ξ2)(I
(2)
0101 + I

(2)
1100)

]

+ i(gνR)ij2λI
(1)
1001

+ terms which do not contribute to the infinite part. (B.6.25)

Here we can again express all master integrals in terms of the integral I1 so that each integral
yields the same infinite part (B.6.11). Then the leading order in the ε expansion is

1

24
PabcdTr

[
(V 1L

ij )abcdC
]
=
i(gνR)ij
(4π)2ε

[
3(g21 + g22)

4
− g21ξ1 + 3g22ξ2

2
+ 2λ

]
. (B.6.26)

From (B.6.6) we read off the counter-term four-vertex

(V CT
ij )abcd =

i

2
(gνR)ij(δZϕ + δZℓ + δZg) (δacδbd + δadδbc)C

−1PL. (B.6.27)

Again, we enforce the complete corrections to be finite, that is,

PabcdTr
([
(V 1L

ij )abcd + (V CT
ij )abcd

]
C
)
= O(ε0) (B.6.28)

which yields the gauge invariant result

δZg =
1

(4π)2ε

[
3

4
(g21 + g22)−

3

4
(g21 + 3g22) + 2λ+Nc|ht|2

]
(B.6.29)

for the coupling renormalization of the four-vertex.
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