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The vast majority of microbial species found in nature has yet
to be grown in pure culture, turning metagenomics and – more
recently – single cell genomics into indispensable methods to
study the microbial dark matter.

I developed, applied, and benchmarked genome assembly
protocols for single cell and metagenome sequencing data to
access microbial dark matter genomes.

In the first part of my thesis, I propose new algorithms that
naturally exploit the complementary nature of single cells and
metagenomes to improve the quality of single cell assemblies.

In the second part, I apply advanced metagenome assembly
and binning techniques to untangle genomes from metagenomes,
eventually reconstructing hundreds of near-complete genomes of
process-relevant community members in the biogas microbiome.
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Introduction

Figure 0.1: Darwin’s
tree of life. Above it,
he scribbled “I think.”

In 1837, Charles Darwin sketched a small evolutionary tree in his
“B” notebook, Transmutation of Species, perfectly encapsulating
his big idea that all species descend from a common ancestor
(Figure 0.1).1 Since then, generations of scientists have been 1 Darwin, 1837, 1859

adding nodes (and edges) to this tree of life.

DNA sequencing – in particular targeted sequencing of the
small subunit ribosomal RNA gene – greatly expanded our view
of the tree, currently incorporating three domains of life: Bacte-
ria, Archaea, and Eukarya.2 However, depictions of the tree of 2 Woese and Fox, 1977; Lane

et al., 1985; Woese et al.,
1990; Yarza et al., 2014

life have largely focused on eukaryotic diversity.3

3 Hinchliff et al., 2015
A recent study presents a new view of the tree of life by also

including 1,011 microorganisms from lineages for which genome
sequences were previously unavailable.4 Bacteria and – to a 4 Hug et al., 2016

lesser extent – archaea occupy most of the tree; all eykaryotes
are crowded together on one thin branch (Figure 0.2). 68 of 123

major lineages lack an isolated (cultured) representative, thus
counting towards the micobial dark matter.5 5 Filée et al., 2005; Rinke

et al., 2013

Metagenomics and single cell genomics are essential,
culture-independent, and complementary methods to access the
genetic makeup of microbial dark matter.6 An estimated 85–99% 6 Brown et al., 2015; Rinke

et al., 2013of bacteria and archaea cannot be grown in pure culture yet,
holding back the search for novel compounds of pharmaceu-
tical or biotechnological relevance, such as new antibiotics or
carbohydrate-active enzymes (CAZymes).7 7 Lok, 2015

Antimicrobial resistance is a global threat to public health,
but the pace of antibiotic discovery has slowed down.8 Almost 8 Lewis, 2013
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Figure 0.2: A current
view of the tree of
life. The tree – mod-
ified from Hug et al.,
2016 – includes 92 bac-
terial and 26 archaeal
phyla, and all five eu-
karyotic supergroups.
Red dots highlight the
68 lineages lacking an
isolated representative.

all of our antibiotics were sourced from marine or soil-derived
actinomycetes, which represent only a fraction of the prokaryotic
diversity.9 Microbial dark matter is therefore perceived as an 9 Demain and Sanchez,

2009; Gallagher et al., 2010;
Manivasagan et al., 2014

untapped resource of new antibiotics.10

10 Wilson et al., 2014
Cellulose, a renewable resource for biofuel production, is

notoriously difficult to deconstruct using currently available
enzyme technology.11 In nature, however, a variety of diges- 11 Klemm et al., 2005

tive ecosystems – such as the hindgut of higher termites or the
cow rumen – are able to efficiently degrade plant biomass.12 12 Warnecke et al., 2007; Hess

et al., 2011
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Culture-independent methods continue to expand the catalog of
carbohydrate-active genes and genomes for biofuel production.13 13 Morrison et al., 2009; Pope

et al., 2010; Hess et al., 2011

Genome sequencing and assembly of culturable microbes
turned from a challenge into a routine, primarily due to the
advent of long-read sequencing.14 Assembling microbial dark 14 Wibberg et al., 2014, 2016;

Goodwin et al., 2016matter genomes from single cells or metagenomes, on the other
hand, is an open question – addressed in my thesis.

Thesis structure

First, I disclose limitations and the state of the art in single cell P A R T I

assembly. I benchmark three modern single cell assemblers on
real data and perform regression testing of one (Chapter 1).
Consequently, I propose new algorithms exploiting metagenome
sequencing data to improve the quality of single cell assemblies:
MeCorS15 is a metagenome-enabled error correction method to 15 Bremges et al., 2016

accurately correct sequencing errors and chimeras in single cell
sequencing reads (Chapter 2); kgrep

16 identifies metagenomic 16 Bremges et al., in prep.

“proxy” reads to assemble instead of the original single cell
reads and circumvents most challenges of single cell assembly
(Chapter 3). Chapter 4 concludes this first part of my thesis.

In the second part, I focus on biogas metagenomics. After P A R T I I

briefly reviewing advanced metagenome assembly and binning
techniques (Chapter 5), I present the first metagenome assembly
of a biogas-producing microbial community from a production-
scale biogas plant (Chapter 6).17 In Chapter 7, I describe how 17 Bremges et al., 2015

deeper sequencing of more samples enabled a more inclusive
assembly of the biogas microbiome. Successive binning of as-
sembled contigs recovered hundreds of near-complete genomes
of process-relevant community members.18 Lastly, I gauge at 18 Stolze et al., 2016

the value of this genome catalog and advocate the integration of
metatranscriptomic, -proteomic, and single cell data (Chapter 8).

I conclude my thesis by motivating the need for systematic E P I L O G U E

benchmarking of methods in metagenomics, as implemented in
the Critical Assessment of Metagenome Interpretation challenge.19 19 http://cami-challenge.org

http://cami-challenge.org




Reproducibility statement

Reproducibility is a main principle of the scientific method, yet
analyses in psychology and cancer biology revealed that only
39% and 11%, respectively, of published work is reproducible.20 20 Open Science Collabora-

tion, 2015; Begley and Ellis,
2012

To foster reproducibility, all analyses throughout my thesis
are performed using free and open-source software (Table 0.1).
All (sequencing) data are publicly available.

Software Version Reference

BayesHammer 3.6.0 Nikolenko et al., 2013

BEDTools 2.22.0 Quinlan and Hall, 2010

BLAST 2.2.29+ Altschul et al., 1990

BlastKOALA 2.1 Kanehisa et al., 2016b
Bowtie 2 2.2.4 Langmead and Salzberg, 2012

BWA-MEM 0.7.12 Li, 2013

CheckM 1.0.4 Parks et al., 2015

IDBA-UD 1.1.2 Peng et al., 2012

kgrep 0.7.0 Bremges et al., in prep.
Mash 1.1 Ondov et al., 2016

MeCorS 0.4.1 Bremges et al., 2016

MEGAHIT 1.0.5 Li et al., 2015

MetaBAT 0.23.1 Kang et al., 2015

MetaProdigal 2.6.0 Hyatt et al., 2012

Prokka 1.11 Seemann, 2014

QUAST 3.1 Gurevich et al., 2013

Ray Meta 2.3.1 Boisvert et al., 2012

SAMtools 1.1 Li et al., 2009

SPAdes 3.8.0 Bankevich et al., 2012

taxator-tk 1.2.1 Dröge et al., 2015

Trimmomatic 0.33 Bolger et al., 2014

Table 0.1: Software.
All tool names, used
versions, and their
primary references.
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Part I

GENOMES FROM
SINGLE CELLS





1 The cutting edge of single cell assembly

Single cell genomics revolutionized our understanding of biol-
ogy by bringing the study of genomes to the cellular level. The
sequencing of single microbial cells from environmental sam-
ples grants access to the genetic makeup of as-yet unculturable
bacterial phyla and major archaeal groups.1 1 Ishoey et al., 2008;

Stepanauskas, 2012; Clingen-
peel et al., 2014a

In 2007, the first single cell genomes – rare and uncultivated
members of the TM7 phylum from the human mouth – were
amplified and sequenced.2 Since then, single amplified genomes 2 Marcy et al., 2007; Podar

et al., 2007(SAGs) were generated for more candidate phyla, e.g.

• OP11 (from an anoxic spring),3 3 Youssef et al., 2011

• SR-1 (from human oral mucosa),4 4 Campbell et al., 2013

• TM6 (from biofilm on a hospital sink),5 5 McLean et al., 2013

• OP9 (from a hot spring),6 and 6 Dodsworth et al., 2013

• JS1 (from marine sediment),7 7 Nobu et al., 2016

shedding light on their phylogeny and physiology. In the largest
(microbial) single cell sequencing study to date, Tanja Woyke and
colleagues from the Joint Genome Institute generated 201 SAGs
of unculturable microorganisms from diverse environments, un-
covering biological phenomena, such as an archaeal-type purine
synthesis in Bacteria and complete sigma factors in Archaea.8 8 Rinke et al., 2013

The current state of the art in single cell genomics has
been reviewed extensively, highlighting recent (and mostly tech-
nical) advancements.9 After the physical separation and lysis 9 Lasken, 2013; Blainey and

Quake, 2014; Eberwine et al.,
2014; Gawad et al., 2016

of an individual cell, its DNA needs to be amplified before it
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is sequenced.10 Almost all studies to date have used multiple 10 Rinke et al., 2014

displacement amplification (MDA).11 11 Lasken, 2007; Gawad et al.,
2016This amplification is heavily biased and leads to highly un-

even sequencing depth, including ultra-low coverage regions.12 12 Chitsaz et al., 2011

To make things worse, chimera formation occurs roughly once
per 10 kbp.13 Alternatives to MDA – such as MALBAC14 – were 13 Rodrigue et al., 2009

14 Zong et al., 2012developed, but their amplification of microbial genomes is even
less reliable than MDA.15 15 Blainey, 2013; de Bourcy

et al., 2014

Assembling microbial dark matter genomes from single
cells therefore remains a bioinformatics challenge. In this chap-
ter, I benchmark state-of-the-art single cell assemblers on real
sequencing data to access genome recovery and error rates. Con-
sequently, I emphasize current limitations and advocate the use
of metagenomic sequencing data to improve SAG assembly.

1.1 Reference single amplified genomes

As a realistic benchmark, I use 24 publicly available SAGs from
three bacterial strains: Escherichia coli K12-MG1655 (51% GC),
Meiothermus ruber DSM 1279 (63% GC), and Pedobacter heparinus
DSM 2366 (42% GC).16 For each strain, the complete genome 16 Clingenpeel et al., 2014a

sequence is known and eight SAGs were sequenced to a mean
coverage of 315×.17 17 Clingenpeel et al., 2014b

I used Bowtie 2
18 to map all SAG reads on the corresponding 18 Langmead and Salzberg,

2012reference genome and SAMtools19 to sort the alignment file
19 Li et al., 2009

and calculate mapping statistics (Table 1.1). I used Circos20 to 20 Krzywinski et al., 2009

generate the circular read coverage plots (Figure 1.1).

Eco Mru Phe

Figure 1.1: Read cover-
age. Circular coverage
tracks, capped at 10×,
for E. coli (Eco), M.
ruber (Mru), and P.
heparinus (Phe) SAGs.
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Reference SAG # reads # bases % ref. covered

E. coli 0 9365134 1404770100 96.41
1 9604918 1440737700 99.37
2 8811278 1321691700 96.88
3 8396488 1259473200 92.13
4 9257066 1388559900 87.91
6 8609900 1291485000 100.00
7 8990744 1348611600 100.00
8 9682468 1452370200 98.25

M. ruber 0 2859916 428987400 88.26
2 4661806 699270900 88.50
3 4274040 641106000 45.67
5 1091400 163710000 74.60
6 2236560 335484000 47.18
7 1770260 265539000 54.89
8 2605244 390786600 73.50
9 2188386 328257900 62.02

P. heparinus 1 8604456 1290668400 78.26
3 9064332 1359649800 83.96
4 7856752 1178512800 55.02
5 7793844 1169076600 81.44
6 5194106 779115900 71.07
7 6025058 903758700 96.93
8 9106278 1365941700 79.90
9 7995640 1199346000 76.63

Table 1.1: Sequencing
statistics. Number
of reads, bases, and
genome fraction with
at least 1× coverage
for the E. coli, M. ruber,
and P. heparinus SAGs.

The MDA-induced coverage bias varies from SAG to SAG
and does not follow any obvious pattern. Genome coverage is
the most important variable for de novo genome assembly; the 24

reference SAGs are therefore realistic benchmarking data.

1.2 Assessment of single cell assemblers

All modern single cell assemblers – IDBA-UD21, SPAdes22, and 21 Peng et al., 2012

22 Bankevich et al., 2012MEGAHIT23 – use de Bruijn graphs as their underlying data
23 Li et al., 2015structures. How to apply de Bruijn graphs to genome assembly

is well-known and has been reviewed extensively.24 24 Compeau et al., 2011;
Nagarajan and Pop, 2013One notable characteristic that all three assemblers share, is

the use of multiple k-mer sizes to increase assembly contiguity
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while avoiding misassemblies. Iteratively increasing the k-mer
size from small (e.g. k = 21) to large (e.g. k = 99), they try
to assemble low-coverage regions (small k) as well as resolve
genomic repeats (large k).

To benchmark single cell assemblers, I assemble the 24 refer-
ence SAGs generated from E. coli (Eco), M. ruber (Mru), and P.
heparinus (Phe) with IDBA-UD, MEGAHIT, and SPAdes, using
the default settings recommended for SAG assembly. I also in-
clude “perfect” assemblies – Gold(x) – for each SAG, generated
by extracting all regions of the reference genome with SAG read
coverage of at least x, as gold standards to compare against.

Figure 1.2 shows the recovered genome fraction in contigs
greater than 500 bp, as determined by QUAST25, for all SAGs 25 Gurevich et al., 2013

including gold standard assemblies for x ∈ 1, 2, 4, 8, 16.
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Figure 1.2: Genome
fraction. Quality as-
sessment with QUAST.

As expected, the recovered genome fraction varies a lot, but
differences between assemblers are much smaller than differ-
ences between SAGs (and organisms) and can be attributed
largely to the quality of the data for the respective SAG. IDBA-
UD and SPAdes approach genome recovery rates close to Gold(2),
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i. e. they also assemble ultra-low coverage regions of the single
cell. MEGAHIT performs slightly worse in this metric – but sur-
prisingly well given that assembling single cell data was only
recently added and is still flagged as an experimental feature.

Genome assemblers use heuristic methods to minimize as-
sembly errors while maximizing contiguity.26 Errors are either 26 Earl et al., 2011; Bradnam

et al., 2013local (i. e. mismatches or indels) or of larger scale (i. e. rearrange-
ments or chimeric contigs).27 27 Gurevich et al., 2013

Figure 1.3 shows the total amount of such assembly errors per
100 kbp assembly for the three assemblers and the (error-free)
perfect assembly, Gold(1). SPAdes and IDBA-UD outperform
MEGAHIT, and – unsurprisingly – the M. ruber (Mru) SAG as-
semblies contain the most errors.
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Figure 1.3: Assembly
errors. Mismatches,
indels, and misassem-
blies count as errors.
Quality assessment
with QUAST.

Assembly contiguity is usually evaluated by the N50 metric.
The N50 value is the length-weighted median contig size, i. e.
half of the total assembly is contained in contigs of length larger
than (or equal to) the N50 value.

There are two problems with this metric, as the N50 (1) is not
comparable between assemblies of different lengths, and (2) does
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not account for assembly errors, especially misassembly events.
If the reference genome is known, the NGA50 can be used

instead; a useful combination of NG50 (normalize by the real
genome length instead of assembly size) and NA50 (break con-
tigs at large-scale misassemblies). This metric is also imple-
mented in QUAST and Figure 1.4 shows that assembly contigu-
ity could theoretically be improved for all assemblers and SAGs.
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Figure 1.4: Assem-
bly contiguity. The
NGA50 values for Eco
Gold(1) assemblies are
literally off the charts.
Quality assessment
with QUAST.

To conclude, modern single cell assemblers already do a good
job recovering much of the genome – even regions covered only
barely –, but there is room for improvement when it comes to
error rate and assembly contiguity.

1.3 Evolution of the SPAdes assembler

The SPAdes assembler is one of the most widely used assemblers
today, probably thanks to its ease of use combined with favorable
rankings in genome assembly benchmarks.28 It has been under 28 Magoc et al., 2013; Jüne-

mann et al., 2014active development for more than three years, with – according
to the changelog – significant improvements in terms of genome
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recovery, accuracy, and contiguity (not to mention runtime and
memory requirements, which also improved).

Inspired by regression testing in software development, I
in retrospect assemble the 24 reference SAGs with each (major)
version of the SPAdes assembler and compare the results.

The genome fraction different SPAdes versions assemble into
contigs greater than 500 bp is almost constant (Figure 1.5).
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Figure 1.5: Genome
fraction. Quality as-
sessment with QUAST.

The assembly accuracy, assessed by the sum of mismatches,
indels, and misassemblies per 100 kbp assembly, is depicted in
Figure 1.6; contiguity in terms of NGA50 is shown in Figure 1.7.
These results suggest that the developers of SPAdes first focused
on improving assembly contiguity at the cost of introducing
more errors, and then worked on the latter.

1.4 Conclusions

Single cell genome assembly algorithms matured and reconstruct
most of the genome represented by SAG reads. Compared to
the gold standard, assembly accuracy and contiguity eventually
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Figure 1.6: Assembly
errors. Quality assess-
ment with QUAST.
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Figure 1.7: Assembly
contiguity. Quality as-
sessment with QUAST.
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increased for more recent versions of the tool of choice, SPAdes.
Also, technical advancements, such as an improved DNA ampli-
fication with less bias or the direct sequencing of a cell’s DNA,
will eventually enable better single cell genome assemblies.

Reframing a problem helps to unlock innovation. In the
following two chapters, I therefore propose new bioinformatic
methods that take a different perspective to improve upon the
state-of-the-art in single cell assembly, leveraging another data
type that is often available for SAGs: the shotgun metagenome of
the environmental sample that the SAG was generated from.

I conceived and developed MeCorS and kgrep. Both tools
incorporate unbiased metagenomic sequence information to
increase the accuracy, contiguity, and genome recovery rate for
single cell genomes.





2 Metagenome-enabled error correction

Correcting potential errors in sequencing reads prior to assembly
usually improves the downstream assembly result.1 Modern 1 Laehnemann et al., 2016

error correction tools typically use algorithms similar to solving
the spectral alignment problem.2 Given a set of trusted k-mers, they 2 Pevzner et al., 2001

try to find a sequence with minimal corrections such that each
k-mer on the corrected sequence is trusted. When sequencing
isolate-grade genomes, a simple k-mer coverage threshold can
be used to accurately distinguish between trusted and untrusted
k-mers.3 3 Kelley et al., 2010; Song

et al., 2014However, a single cell’s DNA needs to be amplified prior to
sequencing, as usually accomplished by multiple displacement
amplification (MDA).4 This amplification is heavily biased, leads 4 Lasken, 2007

to uneven sequencing depth throughout the single amplified
genome (SAG), and thus revokes the assumption of uniform se-
quencing depth that most error correction tools make. Only one
tool was specifically designed to correct SAG data with uneven
sequencing depth: hammer5, recently refined to BayesHammer6. 5 Medvedev et al., 2011

6 Nikolenko et al., 2013

I propose MeCorS, a metagenome-enabled error correction
strategy for single cell sequencing reads.7 Frequently, single cells 7 Bremges et al., 2016

and shotgun metagenomes are generated from the same envi-
ronmental sample, and are methodologically combined e.g. to
validate metagenome bins with single cell reads or to improve
the SAG’s assembly contiguity.8 MeCorS takes advantage of 8 Hess et al., 2011; Campbell

et al., 2013largely unbiased metagenomic coverage, enabling it to correct
positions with too low a coverage for SAG-only error correc-
tion, and to correct chimeric SAG reads through non-chimeric
metagenome reads.
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2.1 Cartoonesque k-mer relationship

If a SAG and a shotgun metagenome were generated from one
sample, then the organism represented by the single cell is also
a member of the microbial community (otherwise it would have
been impossible to capture it). Therefore – assuming sufficient
metagenomic sequencing coverage – all true genomic k-mers
in the SAG data have to occur in the metagenome, too. Any k-
mers without support in the metagenome likely originate from
sequencing errors or MDA-induced chimeric junctions in the
single cell sequencing reads (Figure 2.1).

MetagenomeSAG

correct k-mers

erroneous k-mers

Figure 2.1: Simplified
k-mer relationship.
True genomic k-mers
are shared between a
SAG and its accompa-
nying metagenome.

2.2 Error correction algorithm

The correction algorithm of MeCorS was inspired by fermi9 9 Li, 2012

and BFC10, but it does not act on the assumption of uniform se- 10 Li, 2015

quencing coverage. Instead, it exploits metagenomic sequence
information to correct errors resulting from amplification and se-
quencing, as well as chimeras, even in ultra-low coverage regions
of the SAG.
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MeCorS works in three phases:

1. MeCorS collects all 31-mers (and their reverse complements)
occurring in the SAG reads. It uses this information to initial-
ize a hash table with the 31-mers being valid keys.

2. MeCorS scans the accompanying metagenomic reads. For
each stored 31-mer, it counts the occurrence of the next (i.e.
the 32nd) base in the metagenome and stores the totals in
the hash table. This step is largely I/O bound and dominates
MeCorS’s runtime.

3. MeCorS processes each SAG read by using the 31-mer hash
table to check if the 32nd base is sufficiently supported in the
metagenome. Untrusted 32nd bases are replaced with the
most frequent and trusted 32nd bases from the metagenome.

MeCorS considers a 31-mer trusted if it occurs at least twice
in the accompanying metagenome. This coverage threshold were
determined empirically (as discussed further down) and the
k-mer size of 31 for error correction was chosen according to
the literature.11 Both parameters can be adjusted by the user to 11 Li, 2015

potentially improve MeCorS’s performance for specific data
sets.

The non-chimeric nature of the metagenome reads enables
a correction of chimeric SAG reads. Metagenome sequencing is
largely unbiased and free of chimeras, while MDA introduces
chimeric junctions roughly once per 10 kbp in SAGs.12 12 Lasken and Stockwell,

2007Chimeric reads contain DNA sequences originating from
two different genome regions, say A and B, with the first part
originating from region A, the second part from region B. A
chimeric junction will (in most cases) result in an untrusted 32nd
base (from region B) when looking at its 31-mer prefix (from
region A; phase 3 of MeCorS). MeCorS then tries to correct
this position of the SAG read by replacing the untrusted 32nd
base (B) with the most frequent and trusted 32nd base from
the metagenome (A). MeCorS therefore performs an implicit
and thorough write-through correction of chimeric SAG reads,
completely rewriting their second parts.
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2.3 Reference SAGs and mock metagenome

As a realistic benchmark, I used the eight previously described
Escherichia coli K12-MG1655 reference SAGs.13 A concomitant in 13 Clingenpeel et al., 2014b

vitro mock metagenome consisting of 3 archaeal and 23 bacterial
species, including E. coli K12-MG1655, was sequenced on the
Illumina HiSeq 2000 platform using 2× 150 bp paired-end se-
quencing and generating a total of 355, 875, 608 reads (53 Gbp).14 14 Bowers et al., 2015

I mapped these with BWA-MEM15 simultaneously against all 15 Li, 2013

26 reference genomes, postprocessed the alignment files with
SAMtools16, and calculated the per-base coverage values (Ta- 16 Li et al., 2009

ble 2.1). The relative abundance of E. coli is 0.15%, corresponding
to a mean per-base coverage of only 20.7×. The taxonomic pro-
file of the mock community, visualized with Krona17, is shown in 17 Ondov et al., 2011

Figure 2.2.

Taxonomy ID Phylum Species # reads coverage abundance

771875 Thermotogae Fervidobacterium pennivorans 39566833 2708.24 19.39%
646529 Firmicutes Desulfosporosinus acidophilus 53202915 1579.64 11.31%
526227 Deinococcus-Thermus Meiothermus silvanus 32231620 1276.02 9.14%
573413 Spirochaetes Spirochaeta smaragdinae 39431130 1255.97 8.99%
582402 Proteobacteria Hirschia baltica 28144226 1181.16 8.46%
717605 Firmicutes Thermobacillus composti 30954326 1046.39 7.49%
767817 Firmicutes Desulfotomaculum gibsoniae 24329020 741.83 5.31%
767434 Proteobacteria Frateuria aurantia 13922996 568.16 4.07%
633147 Actinobacteria Olsenella uli 7839526 552.99 3.96%
768704 Firmicutes Desulfosporosinus meridiei 16066750 487.57 3.49%
583355 Verrucomicrobia Coraliomargarita akajimensis 11810956 467.03 3.34%
694430 Euryarchaeota Natronococcus occultus 12505736 403.70 2.89%
797304 Euryarchaeota Natronobacterium gregoryi 8676937 335.23 2.40%
797302 Euryarchaeota Halovivax ruber 6060380 274.95 1.97%
926566 Acidobacteria Terriglobus roseus 8464573 239.33 1.71%
640132 Actinobacteria Segniliparus rotundus 4886507 225.63 1.62%
644801 Proteobacteria Pseudomonas stutzeri 5448168 174.50 1.25%
160490 Firmicutes Streptococcus pyogenes 1502208 120.44 0.86%
195103 Firmicutes Clostridium perfringens 1461840 66.55 0.48%
203119 Firmicutes Clostridium thermocellum 1542460 59.62 0.43%
882884 Proteobacteria Salmonella enterica 1831145 58.72 0.42%
926556 Bacteroidetes Echinicola vietnamensis 2160987 57.22 0.41%
196627 Actinobacteria Corynebacterium glutamicum 1063668 47.67 0.34%
511145 Proteobacteria Escherichia coli 647555 20.65 0.15%
218493 Proteobacteria Salmonella bongori 501312 16.61 0.12%
446468 Actinobacteria Nocardiopsis dassonvillei 6640 0.06 < 0.01%

Table 2.1: Mock com-
munity members. 26

microbial species.

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=771875
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=646529
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=526227
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=573413
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=582402
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=717605
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=767817
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=767434
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=633147
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=768704
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=583355
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=694430
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=797304
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=797302
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=926566
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=640132
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=644801
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=160490
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=195103
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=203119
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=882884
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=926556
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=196627
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=511145
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=218493
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=446468
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Figure 2.2: Mock com-
munity profile. 26

microbial species.

2.4 Performance of SAG error correction

I evaluated MeCorS along with BayesHammer18, the state-of- 18 Nikolenko et al., 2013

the-art error correction tool for SAG data. I evaluated the per-
formance of read error correction as described in Li, 2015, using
BWA-MEM19 and calculating the same read-based metrics:20 19 Li, 2013

20 Li, 2015

“A read is said to become better (or worse) if the best alignment
of the corrected sequence has more (or fewer) identical bases
to the reference genome than the best alignment of the original
sequence. The table gives [. . . ] the number of reads mapped
perfectly, number of chimeric reads (i.e. reads with parts mapped to
different places), number of corrected reads becoming better and
the number of corrected reads becoming worse than the original
reads.”
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MeCorS corrects more errors than BayesHammer, pro-
ducing a significantly higher fraction of better and perfect reads
after correction (Table 2.2; detailed statistics for each SAG, in-
cluding runtime and memory usage, are given in Table 2.3).

Program % perfect % chimeric % better % worse

raw 22.52± 1.07 0.73± 0.15 – –
BayesHammer 80.35± 8.77 0.77± 0.17 71.66± 2.12 0.33± 0.06
MeCorS 95.52± 0.43 0.06± 0.02 75.45± 1.11 0.26± 0.03

Table 2.2: Performance
of SAG error correc-
tion. Evaluation as
described in Li, 2015.

In contrast to BayesHammer, MeCorS also considerably
reduces the amount of chimeric SAG reads, likely due to the
non-chimeric nature of the metagenome reads. Despite only
implicitely correcting chimeric SAG reads, MeCorS reduces the
amount of chimeras by one order of magnitude. Chimeric reads
originate from amplification errors during MDA and greatly
complicate de novo SAG assembly.21 Therefore, I look at the effect 21 Nurk et al., 2013

of the improved error correction on SAG assembly next.

SAG

Metric Program 0 1 2 3 4 6 7 8

Reads – 9365134 9604918 8811278 8396488 9257066 8609900 8990744 9682468

Perfect raw 2120932 2179609 1937541 1954244 1872800 2049675 2063874 2183454
BayesHammer 7656274 8260510 6302861 5970186 6297298 7639715 8068555 8317006
MeCorS 8886436 9188854 8440502 7965810 8829995 8264229 8611867 9272559

Chimeric raw 69568 67625 81938 75509 79443 52246 44983 59265
BayesHammer 72820 70590 87564 80336 84813 53875 46387 61948
MeCorS 5502 4593 10397 4648 5257 3941 3824 4889

Better raw − − − − − − − −
BayesHammer 6743983 7026478 6156387 5669978 6574627 6244274 6645542 7095951
MeCorS 7008163 7236195 6707136 6260408 7206731 6403639 6749255 7306961

Worse raw − − − − − − − −
BayesHammer 31644 26951 32315 29096 41584 25270 26959 28960
MeCorS 25990 25304 20560 27335 27390 20791 21074 24001

Time (h) BayesHammer 1:43 1:45 1:51 2:04 2:24 1:35 1:38 1:46
MeCorS 1:13 1:09 0:58 0:53 1:06 1:00 1:08 1:13

RAM (GB) BayesHammer 14.90 15.64 13.70 12.34 15.33 14.59 15.72 15.77
MeCorS 10.77 10.75 10.76 9.65 10.76 10.79 10.75 10.75

Table 2.3: Detailed
performance. Time
using 16 threads.
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2.5 Effect on SAG assembly

I used IDBA-UD22 and SPAdes23 to assemble raw and corrected 22 Peng et al., 2012

23 version 3.6.0; Bankevich
et al., 2012

SAG reads, and QUAST24 to evaluate the 48 SAG assemblies.

24 Gurevich et al., 2013

SPAdes was run with the parameters --careful (to mini-
mize the number of mismatches in the final contigs) and -k

21,33,55,77 (to account for longer SAG sequencing reads; iter-
ating over these four k-mer sizes generated assemblies of higher
contiguity than the default settings of -k 21,33,55, while main-
taining a high accuracy).

MeCorS works well with both single cell assemblers, most
notably reducing their misassembly rate by half, while providing
high sequence contiguity (Figure 2.3).

IDBA-UDSPAdesIDBA-UD SPAdes
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Figure 2.3: Effect
on SAG assembly.
We corrected the
raw reads (R) with
BayesHammer (B) or
MeCorS (M). Statistical
significance (p < 0.05;
two-tailed Wilcoxon
signed-rank test) ac-
centuated.

In particular poorly amplified SAGs benefit from metagenome-
enabled error correction, yielding improved assembly accuracy
and contiguity (Table 2.4; Table 2.5).

While there are subtle differences between the IDBA-UD and
SPAdes assemblies, both results demonstrate the large potential
of metagenome-enabled error correction.
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SAG

Metric Program 0 1 2 3 4 6 7 8

NG50 R 45284 53863 31250 24834 17196 87102 80574 59754
B 40924 51004 29256 24023 17246 95532 87102 44292
M 59081 73496 54946 41749 31569 90184 80997 80997

# contigs R 330 342 514 607 654 201 200 303
B 335 345 530 626 653 191 194 328
M 277 272 409 497 512 200 198 249

Largest contig R 227106 203026 203098 141383 102074 221687 232585 162612
B 203098 157125 197417 141494 107872 221687 178322 139398
M 236473 203098 144213 141579 124628 221683 221683 236473

Total length R 4400079 4587934 4400469 4139052 3940625 4640153 4639167 4533515
B 4402128 4591089 4400334 4144742 3934141 4641409 4638005 4538546
M 4408926 4590112 4421966 4171137 3972787 4639453 4636457 4538141

# misassemblies R 16 11 15 32 36 0 0 10
B 17 11 9 37 37 0 0 8
M 9 4 2 13 20 0 0 7

# mismatches R 4.17 3.64 10.16 17.02 20.41 0.31 0.13 3.16
per 100 kbp B 4.88 3.88 12.50 16.35 20.76 0.15 0.11 2.90

M 4.38 3.80 7.93 8.86 12.82 2.30 2.39 3.27

# indels R 0.32 0.24 0.69 1.47 1.09 0.13 0.09 0.36
per 100 kbp B 0.32 0.29 0.79 1.52 1.51 0.11 0.09 0.34

M 0.25 0.31 0.53 0.90 0.85 0.09 0.09 0.18

Genome R 93.656 97.182 93.344 87.892 83.101 98.266 98.245 96.104
fraction (%) B 93.631 97.165 93.304 87.924 82.958 98.211 98.175 96.028

M 93.928 97.431 93.988 88.827 84.053 98.271 98.252 96.265

# genes R 3873 4049 3741 3477 3220 4186 4191 4027
B 3859 4052 3709 3469 3208 4194 4199 4005
M 3931 4126 3857 3593 3347 4204 4202 4088

Table 2.4: IDBA-UD
assembly results.
Quality assessment
with QUAST.
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SAG

Metric Program 0 1 2 3 4 6 7 8

NG50 R 65444 95218 66287 48903 26823 114661 117715 86966
B 86625 95218 67436 52817 31448 120770 132608 105995
M 86625 95517 72055 53947 36236 112350 132608 112853

# contigs R 447 400 606 718 813 245 233 324
B 302 275 474 594 676 198 185 250
M 288 279 418 534 569 210 213 263

Largest contig R 203603 224667 218793 178300 113773 269308 268816 223154
B 204882 203257 218793 167410 135551 312119 269348 269318
M 203394 224320 218793 178231 155221 268535 312008 268327

Total length R 4522153 4703061 4533214 4290463 4138591 4713277 4718163 4633297
B 4443696 4633876 4464269 4233011 4046113 4686582 4689565 4584513
M 4452849 4645907 4471868 4240428 4065827 4698390 4702810 4600454

# misassemblies R 15 2 22 45 51 1 3 12
B 11 7 19 31 38 1 2 7
M 6 3 10 23 22 1 0 6

# mismatches R 15.30 11.57 34.70 48.21 50.53 2.84 2.14 9.72
per 100 kbp B 12.70 10.30 30.34 40.41 48.42 1.27 2.17 7.66

M 10.41 9.32 22.69 30.86 36.47 5.66 5.21 8.43

# indels R 0.89 1.17 2.26 4.48 4.24 0.31 0.22 1.00
per 100 kbp B 1.17 1.19 3.16 3.48 4.58 0.24 0.35 0.94

M 0.64 0.95 2.24 3.30 3.28 0.55 0.31 0.83

Genome R 94.241 97.948 94.239 89.098 84.372 98.665 98.708 96.702
fraction (%) B 94.050 97.527 93.984 89.133 84.220 98.505 98.446 96.459

M 94.223 97.629 94.223 89.543 84.798 98.580 98.541 96.603

# genes R 3876 4117 3782 3532 3281 4217 4224 4081
B 3898 4124 3805 3562 3300 4211 4219 4093
M 3937 4133 3866 3608 3390 4218 4220 4097

Table 2.5: SPAdes
assembly results.
Quality assessment
with QUAST.
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2.6 Metagenome coverage threshold

By default, MeCorS considers a k-mer trusted if it occurs at
least twice in the accompanying metagenome. The user can
adjust this threshold to potentially improve its performance for
specific data sets. Figure 2.4 shows the effect of a parameter
sweep for the E. coli SAGs and the in vitro mock metagenome.
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Figure 2.4: Effect of
different coverage
thresholds. MeCorS
considers a k-mer
trusted if it occurs
at least twice in the
metagenome.

Increasing the k-mer coverage threshold from 1 to 2 is the
most beneficial, further increasing this threshold only marginally
improves results. Above some coverage threshold error correc-
tion performance begins to decline, which seems to be depen-
dent on the taget genome’s metagenomic coverage. For the E. coli
SAGs and the concomitant mock metagenome, this turning point
seems to be around 4.

I recommend running MeCorS with default settings; they
work sufficiently well for most SAG/metagenome combinations.
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2.7 Conclusions

It should be noted that such a hybrid error correction of SAG
data may result in miscorrection(s) of rare variants. If the cap-
tured cell contains a variant that is rare or absent in the corre-
sponding metagenome, correction will be biased towards the
most abundant variant in the metagenome sequence. If strain
resolution is desired, I suggest polishing the SAG assembly with
e.g. SEQuel25 or Pilon26 using the uncorrected raw data as input 25 Ronen et al., 2012

26 Walker et al., 2014reads. In all other cases, SAG assemblies benefit directly from
metagenome-enabled error correction via MeCorS.

Uneven genome coverage and chimera formation present the
biggest challenges in the downstream processing and analysis of
SAG datasets to date. I developed MeCorS for the correction of
SAG reads when complementary metagenome datasets are avail-
able. Error and chimera correction is essential for improved SAG
assembly and demonstrates a powerful application of combined
shotgun metagenome and single cell sequencing.

2.8 Software availability

MeCorS is implemented in C and is freely available under the
open-source MIT license at:

https://github.com/abremges/mecors

https://github.com/abremges/mecors




3 Metagenomic proxy assemblies

Prior to sequencing of a single cell, its DNA needs to be ampli-
fied. This usually is done by multiple displacement amplification
(MDA), introducing a tremendous coverage bias.1 Poorly am- 1 Lasken, 2007; Chitsaz et al.,

2011; Nikolenko et al., 2013plified regions result in extremely low sequencing coverage or
physical sequencing gaps.2 Those regions of the genome cannot 2 Bankevich et al., 2012;

Bremges et al., 2016be reconstructed in the subsequent assembly step and genomic
information is lost.3 3 Nurk et al., 2013; Clingen-

peel et al., 2014aA complementary approach to single cell genomics is metage-
nomics, i. e. the direct sequencing of environmental samples.
Frequently, single amplified genomes (SAGs) and shotgun
metagenomes are generated from the same environmental sam-
ple.4 In a metagenome, each genome’s coverage is (more or less) 4 Hedlund et al., 2014;

Bremges et al., 2016constant and depends only on its abundance.5
5 Wooley et al., 2010;
Escobar-Zepeda et al.,
2015I propose kgrep, a fast, k-mer based recruitment method to

identify metagenomic proxy reads representing the single cell
genome of interest (using the raw single cell sequencing reads
as recruitment seeds). By assembling metagenomic proxy reads
instead of the single cell reads, I circumvent most challenges of
single cell assembly, such as the aforementioned coverage bias
and chimeric MDA products.6 In a final step, the original single 6 Lasken and Stockwell, 2007;

Gole et al., 2013cell reads are used for quality assessment of the proxy assembly.
A conceptionally similar approach – mitochondrial baiting and

iterative mapping – has been used to reconstruct complete mito-
chondrial genomes from sequencing data.7 My implementation, 7 Hahn et al., 2013

kgrep, is more flexible and e.g. allows to ignore k-mers originat-
ing from known contaminants, and is significantly faster, which
is essential to process large metagenomic data sets.
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3.1 Metagenomic proxy reads

Figure 3.1: Error-free
read. A perfect read
(R; green) shares all
k-mers with its source
genome (G; blue).

The declared goal is to identify metagenomic sequencing reads
that belong to a genome of interest. Let R be a metagenomic
read of length |R|, composed of |R| − k + 1 k-mers (words of
length k). If R belongs to genome G, for which the complete
sequence is known, and R contains no sequencing errors, then it
shares all of its k-mers with G (Figure 3.1).

Without loss of generality, I can assume that sequencing errors
are randomly distributed and that each error introduces at most
k erroneous k-mers. The latter holds true for base substitutions
and indels (insertions or deletions) of length 1, which happen to
represent the vast majority of all sequencing errors in Illumina
data.8 Errors in the first or last k − 1 bases of R introduce less 8 Minoche et al., 2011;

Goodwin et al., 2016than k erroneous k-mers. Thus, the expected number N of shared
k-mers between R and G depends on the read length |R| and the
sequencing error rate SER:

N = |R| − k + 1−E,

where: E = d|R| · SERe · k

The above mimics Ukkonen’s q-gram lemma for approximate
string matching within a certain edit distance.9 I estimate the 9 Ukkonen, 1992

expected edit distance between R and G as the product of read
length and error rate. For Illumina data (the most predominant
data type), this currently means read lengths of ∼ 150 bp and a
per-base error rate of ε = 0.1–0.3%.10 In other words, I expect 10 Goodwin et al., 2016;

Laehnemann et al., 2016less than one error per 150 bp read. Inserting these numbers into
the error term’s formula gives:

E = d150 · εe · k = k

Figure 3.2: Read with
error. A sequencing er-
ror introduces at most
k erroneous k-mers.

I therefore allow an edit distance of 1 or k erroneous k-mers
(Figure 3.2). I call a 150 bp metagenomic read a metagenomic
proxy read if it shares n ≥ N k-mers with G. In theory, metage-
nomic proxy reads resemble isolate-grade genome data with a
Poisson-like coverage distribution and I circumvent most chal-
lenges of single cell assembly, such as the aforementioned cover-
age bias and chimeric MDA products, by assembling the proxy
reads instead of the original single cell ones.
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Figure 3.3: Starting
from SAG reads. No
single cell assembly
is needed to recruit
metagenomic proxy
reads.

This strategy does not require a closed genome sequence G,
but it works just as good on the raw single cell sequencing reads
instead. Single cell assemblies tend to be incomplete and usually
do not include 100% of the reads as single cell sequencing reads
are only sparsely scattered throughout low-coverage regions,
which makes their assembly difficult or impossible.11 Therefore, 11 Nurk et al., 2013; Clingen-

peel et al., 2014athe initial read set contains more information than any SAG
assembly and single cell reads should be used as a starting point
to recruit metagenomic proxy reads (Figure 3.3).

Analogous to above: Let R be a metagenomic read of length
|R|, composed of |R| − k + 1 canonical k-mers, with the error rate
SER. If R belongs to the genome G, for which only an arbitrarly
large set of sequencing reads G′ is known, then it shares at least
|R| − k + 1− d|R| · SERe · k canonical k-mers with the read set
G′. I use canonical k-mers to allow strand-neutral comparisons,
i. e. we only consider the lexicographically smaller k-mer of the
forward and reverse complement representation of a k-mer.

Each sequencing error (or chimeric junction) in the read set
G′ adds at most k erroneous k-mers to the reference (Figure 3.3).
However, because errors are randomly distributed and infre-
quent, the added noise is insignificant as long as k is big enough.
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3.2 The choice of k

In nucleotide space, i. e. with the well-known DNA alphabet
∑ = {A, C, G, T}, there are 4k possible non-canonical k-mers and
the probability to observe a given k-mer K in an i.i.d. uniform
random (meta)genome sequence X of length |X| is:

P(K ∈ X) = 1−
(

1− 1
4k

)|X|−k+1

I can avoid random hits by choosing a suitable large value
for k; k-mer sizes of 15 and 18 were suggested for bacterial and
human genomes, resprectively.12 For k = 15, the probability of 12 Kelley et al., 2010

observing a given k-mer in a 5 Mbp bacterial genome is 0.46%.

The choice of k, e.g. for read error correction or de novo
genome assembly, is usually a tradeoff between sensitivity and
specificity.13 Longer k-mers are per se more specific, but to iden- 13 Li, 2015; Chikhi and

Medvedev, 2014tify metagenomic proxy reads a too large value for k is detrimen-
tal (because E = k). Therefore, an optimal k is small, but large
enough to avoid random k-mer hits between genomes.

Closely related genomes in the metagenome, e.g. multi-
ple strains of one species or similar species of one genus, de-
serve my closer attention. Starting with single cell reads from
only one strain A1, kgrep probably recruits reads from strains
A2, A3, . . . , An present in the metagenome. This might (or might
not) pose a challenge for the downstream assembly of metage-
nomic proxy reads probably representing a strain-mixture.

The average nucleotide identity (ANI) between two
genomes is a robust measure of genome relatedness; an ANI
value of 95% roughly corresponds to a 70% DNA-DNA reassoci-
ation value – a historical definition of bacterial species.14 14 Varghese et al., 2015;

Konstantinidis and Tiedje,
2005

To determine suitable values for k (and to quantify the im-
pact of genome relatedness on kgrep), I analyzed 500 publicly
available Escherichia genomes for which pairwise ANI values
are available.15 The majority of Escherichia genome pairs fall in 15 Ondov et al., 2016

the 96–99% ANI range and constitute of various Escherichia coli
strains (Figure 3.4).
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Figure 3.4: Average
nucleotide identity.
The ANI between 500

Escherichia genomes.

Let X and Y be two genomes. X should represent the single
cell, i. e. the recruitment seed, and Y a genome present in the ac-
companying metagenome. I determine and store all constituent
k-mers in X. Then, I simulate “reads” for Y by sliding a window
of length 150 bp (a typical read length for Illumina data) across
the genome sequence. I count how many of these reads kgrep

would identify as metagenomic proxy reads within a given (esti-
mated edit) distance d ∈ {0, 1, 2, 3}. The number of proxy reads
divided by the total number of reads in Y is the cross-genome
recruitment rate.

I calculated cross-genome recruitment rates for all 250,000

pairwise combinations in the collection of Eschericia genomes
for k ∈ {11, 12, . . . , 17} (Figure 3.5). Increasing the k-mer size
reduces the cross-recruitment rate rate for k ≤ 15, further in-
creasing k shows no effect. This suggests that kgrep should be
run with k ≥ 15 for d = 1 and 150 bp reads. I observed that
the practical difference of choosing e.g. 15 or 17 as the k-mer
size is negligibly small and empirically selected k = 17 as the
default value in my implementation, giving good results for all
SAG/metagenome combinations in my hands.
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3.3 Precision and recall

The first benchmark data are the eight Escherichia coli SAGs and
their concominant in vitro mock metagenome from Chapter 2.16 16 Clingenpeel et al., 2014a;

Bowers et al., 2015I estimated the relative abundance of E. coli to amount to 0.15%,
corresponding to a mean per-base coverage of only 20.7× – too
little coverage for a de novo proxy assembly, but enough reads to
calculate kgrep’s precision and recall on this data set:

Precision =
tp

tp + f p

= % recruited reads that can be mapped

Recall =
tp

tp + f n

= % mappable reads that are recruited

I used Bowtie 2
17 to map all metagenome and the subsets of 17 Langmead and Salzberg,

2012
kgrep-recruited proxy reads against the E. coli reference genome
and report mapping rates, precision, and recall in Table 3.1.

E. coli GF [%] Proxy reads # mappable Precision Recall

SAG 0 96.41 553, 838 536, 312 0.968 0.662
SAG 1 99.37 575, 114 554, 551 0.964 0.685
SAG 2 96.88 552, 732 529, 328 0.958 0.653
SAG 3 92.13 523, 956 503, 076 0.960 0.621
SAG 4 87.91 528, 404 482, 075 0.912 0.595
SAG 6 100 599, 842 560, 217 0.934 0.692
SAG 7 100 602, 900 561, 757 0.932 0.694
SAG 8 98.25 585, 386 548, 667 0.937 0.677

Reference 100 523, 438 523, 116 0.999 0.646

Table 3.1: Recruitment
benchmark. A total of
810, 015 metagenomic
reads align against the
E. coli genome.

A total of 810, 015 metagenomic reads can be aligned to the
reference – slightly more than previously observed, because I
align against one genome instead of all 26 genomes of the mock
community –, I count these as condition positive reads. kgrep is
very precise. Moderate recall values suggest that kgrep rejects
(mappable) reads that contain too many errors.
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3.4 On-the-fly recruitment seed expansion

A greedy extension of my recruitment strategy enables the re-
construction of genomic regions that otherwise would have
been lost. Poorly amplified regions of the single cell introduce
physical sequencing gaps, i. e. regions without SAG read cov-
erage (Figure 3.6).18 However, the per-genome coverage in a 18 Bankevich et al., 2012;

Bremges et al., 2016metagenome is (more or less) constant; the per-base metage-
nomic coverage depends only on the genome’s abundance and
the metagenomic sequencing depth.19 Therefore, metagenomic 19 Wooley et al., 2010;

Escobar-Zepeda et al.,
2015

reads most likely cover all positions of the target genome, also
spanning regions missed by single cell sequencing.

Figure 3.6: Region
without SAG read
coverage. Metage-
nomic proxy reads
span regions missed
by SAG sequencing.

If R is a metagenomic proxy read and contains m k-mers
not present in G′, then I add these m novel k-mers to the list of
known k-mers from G′. In other words, if a metagenomic proxy
read contains unobserved k-mers, potentially spanning (or reach-
ing into) uncovered regions of the single cell, then I add these
k-mers to my reference set (Figure 3.7).

Figure 3.7: Greedy
recruitment seed
expansion. Orange
k-mers are added.

Afterwards, I continue evaluating the next metagenomic read
with the newly extended set of k-mers representing G′ until I
have processed all metagenomic reads.
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3.5 Contaminating or decontaminating?

Reagent and laboratory contamination is ubiquitous in labora-
tory reagents, i. e. commonly used DNA extraction kits.20 Most 20 Laurence et al., 2014; Lusk,

2014; Salter et al., 2014enzymes are produced by living organisms and therefore include
almost inevitably contaminant DNA from the producer. It has
been shown that even commercially available MDA reagents fre-
quently contain contaminant DNA, which then is co-amplified
with the target DNA.21 This contamination not only reduces 21 Woyke et al., 2011

the efficiency of sequencing microbial single cells, but also con-
founds the analysis of potentially unknown genomes.22 Re- 22 Woyke et al., 2010; Blainey

and Quake, 2011cently, automated methods to screen against contamination in
genome assemblies became available, but it is still advised to
avoid known sources of contamination whenever possible.23 23 Lux et al., 2015; Tennessen

et al., 2016

Metagenomic proxy reads are immune to contamination
exclusively affecting either single cells or the metagenome, e.g.
contaminant MDA reagents introduce contamination to the SAG,
but not the metagenome. Also laboratory contamination during
single cell sorting is less of an issue.

However, if metagenomic and single cell DNA is treated with
the same reagents, they share contaminant DNA (and therefore
contaminant k-mers). I solve this problem by allowing to ignore
certain k-mers known to originate from contaminant DNA to
avoid spurious recruitments due to contaminant k-mer hits. A
curated list of contaminant sequences is bundled with kgrep.

3.6 Assembling metagenomic proxy reads

Metagenomic proxy reads can be treated as if they originated
from an isolate-grade genome. The metagenomic coverage of a
genome is constant and chimeric reads are rare (because metage-
nomic DNA is usually not amplified with MDA).

I therefore assemble proxy reads with SPAdes24 in its regular 24 Bankevich et al., 2012

(multi-cell) mode. Afterwards, I map the original SAG reads to
the assembled proxy contigs with Bowtie 2

25 and remove the few 25 Langmead and Salzberg,
2012(and usually very short) contigs without any SAG hits.
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3.7 Aminacenantes (OP8) single cells from Sakinaw Lake

As a realistic benchmark, I use 24 Aminacenantes (OP8) single
cells from Sakinaw Lake, for which a reference genome (co-
assembled from these 24 SAGs and manually decontaminated)
is available.26 While this OP8 co-assembly was estimated to 26 Rinke et al., 2013

be 100% complete (based on a marker gene analysis), it is by
no means a closed reference genome and some regions of the
genome might be missing. SAG sequencing reads originating
from these regions cannot be aligned to the reference genome
and therefore appear contaminant. Consequently, metagenomic
proxy reads recruited from these regions are also unmappable,
as are the resulting contigs in the metagenomic proxy assembly.

Therefore, I first map all SAG reads to the available reference
genome with Bowtie 2

27 and keep all reads that align. Table 3.2 27 Langmead and Salzberg,
2012gives the alignment rates for all 24 single cells. I use this curated

set of SAG sequencing reads to further benchmark kgrep and
metagenomic proxy assemblies.

Sakinaw Lake in British Columbia, Canada, is a meromic-
tic lake, i. e. it has layers of water that do not intermix, which
became famous among microbiologists for its richness in candi-
date phyla.28 Samples from 120m depth were used to generate 28 Gies et al., 2014; Nobu

et al., 2016SAGs and a corresponding deeply sequenced metagenome; the
latter was sequenced on the Illumina HiSeq 2000 platform us-
ing 2× 150 bp paired-end sequencing and generating a total of
386, 581, 812 reads (58 Gbp).29 29 Rinke et al., 2013

Based on metagenome read mapping with Bowtie 2
30, I esti- 30 Langmead and Salzberg,

2012mate the relative abundance of Aminacenantes (OP8) to account to
3.3%, corresponding to a mean per-base coverage of 656.5×.

3.8 Aminacenantes (OP8) metagenomic proxy assemblies

I use the filtered OP8 single cell sequencing reads as recruitment
seeds to recruit metagenomic proxy reads with kgrep. In the
following, Proxy denotes the proxy assembly of kgrep-recruited
reads without the recruitment seed expansion; Proxy* means
the recruitment seed expansion was enabled. It makes sense to
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SAG ID # raw reads # mapped reads % mapped reads

31 21, 417, 846 16, 238, 861 75.82
33 17, 032, 640 15, 445, 876 90.68
36 10, 764, 770 10, 335, 857 96.02
38 23, 885, 748 22, 832, 580 95.59
40 14, 706, 772 10, 245, 506 69.67
47 16, 909, 846 13, 785, 069 81.52
48 17, 586, 704 16, 758, 449 95.29
49 25, 726, 550 22, 868, 807 88.89
52 9, 320, 936 8, 077, 828 86.66
54 24, 744, 270 21, 851, 004 88.31
57 24, 243, 792 17, 293, 311 71.33
58 11, 250, 846 10, 727, 597 95.35
59 22, 732, 658 21, 178, 380 93.16
64 10, 937, 730 10, 186, 356 93.13
67 25, 259, 458 21, 063, 146 83.39
83 17, 227, 512 15, 682, 729 91.03
84 10, 421, 578 9, 504, 274 91.20
88 3, 160, 992 2, 191, 597 69.33
93 26, 014, 290 12, 263, 311 47.14

119 35, 809, 646 29, 699, 887 82.94
125 36, 529, 520 26, 228, 359 71.80
128 8, 735, 682 7, 920, 678 90.67
134 8, 910, 092 2, 867, 125 32.18
137 6, 439, 768 2, 891, 745 44.90

Table 3.2: SAG read
preprocessing. OP8

single cell sequencing
reads mapped against
the manually decon-
taminated co-assembly
of 24 SAGs.

iteratively recruit proxy reads with on-the-fly seed expansion
enabled; Proxy** therefore denotes a two-pass recruitment and
Proxy*** a three-pass recruitment and successive assembly.

I assemble all metagenomic proxy reads into metagenomic
proxy assemblies with SPAdes31 in its regular (multi-cell) mode 31 Bankevich et al., 2012

and the filtered SAG reads with SPAdes in its single-cell mode.

Metagenomic proxy assemblies in all flavours recover more
of the genome (Figure 3.8), contain less errors (Figure 3.9), and
are of higher contiguity (Figure 3.10) than SAG-only assemblies.
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Figure 3.8: Genome
fraction. Quality as-
sessment with QUAST.
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Figure 3.10: Assembly
contiguity. Quality as-
sessment with QUAST.
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Iteratively extending the recruitment seed seems to further
improve assembly results, while the percentage of unaligned
contigs – possibly originating from cross-genome recruitments –
remains negligibly small (Figure 3.11).

I conclude that metagenomic proxy assemblies are the better
single cell assemblies for these 24 SAGs.

3.9 Conclusions

De novo SAG assemblies greatly suffer from uneven genome cov-
erage and are therefore limited in their contiguity and accuracy.
I propose to exploit shotgun metagenomic data to improve the
quality of single cell genome assemblies and developed kgrep,
a fast, k-mer based recruitment method to identify metagenomic
proxy reads representing the single cell genome of interest.

I circumvent most challenges of single cell assembly by as-
sembling proxy reads instead of the single cell reads. Effectively,
the assembly of metagenomic proxy reads enables me to span
(or walk into) physical sequencing gaps of the single cell and
to reconstruct a more complete representation of the genome.
Metagenomic proxy assemblies therefore demonstrate yet an-
other powerful combination of shotgun metagenome and single
cell sequencing.

3.10 Implementation details

kgrep requires 2 bits per k-mer: one bit to encode the k-mer
presence (or absence) in the SAG data; a second bit to flag
known contaminant k-mers to ignore during recruitment. It
stores all possible canonical k-mers in a bitset of 4k−1 byte length
(Table 3.3).

Storing the k-mer occurences in a bitset (instead of e.g. a more
space-efficient hash table) enables kgrep to process ∼ 250, 000
reads per second per core! To put this into perspective, kgrep

identifies metagenomic proxy reads in the complete 58 Gbp
Sakinaw Lake metagenome in half an hour.
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k-mer size (14) 15 16 17 18 (19)

Memory [MB] (64) 256 1, 024 4, 096 16, 384 (65, 536)
Table 3.3: Memory
requirements. kgrep

stores a k-mer in 2 bits.

When paired-end sequencing data is available, requiring
k-mer hits in both mates obviously further reduces the cross-
genome recruitment rate (and is enabled by default).

3.11 Software availability

kgrep is implemented in C and is freely available under the
open-source MIT license at:

https://github.com/abremges/kgrep

https://github.com/abremges/kgrep




4 An integrated assembly pipeline

I presented two approaches that exploit shotgun metagenome
data to improve the quality of single cell assemblies: MeCorS1 1 Bremges et al., 2016

and kgrep.2 However, it is not obvious from the start which 2 Bremges et al., in prep.

strategy works best for new SAG/metagenome combinations.
This has been shown to apply for genome assembly in general.3 3 Earl et al., 2011; Salzberg

et al., 2012; Magoc et al.,
2013; Bradnam et al., 2013

For e.g. the biogas microbiome – my research focus in Part
II of this thesis – we already have shotgun metagenome data
available and wait for 96 single cells to be generated eventu-
ally. I cannot predict which approach produces the best results
for these – and, in fact, performance might vary by SAG – and
therefore suggest to try all.

To facilitate the assembly of a large number of SAGs and
their accompanying metagenomes, I implemented YinYang,
an integrated and automated assembly pipeline for single cell
genomes. Given a list of SAG and metagenome FASTQ files,
YinYang produces an array of assemblies for each single cell us-
ing SPAdes4: (1) a SAG-only assembly, (2) a MeCors-corrected 4 Bankevich et al., 2012

SAG assembly, and (3) metagenomic proxy assemblies via kgrep

(Figure 4.1).

To estimate the inclusivity of each assembly, YinYang

maps the SAG reads to the assembled contigs with Bowtie 2
5 5 Langmead and Salzberg,

2012and SAMtools6 and reports the overall mapping rate. Option-
6 Li et al., 2009

ally, YinYang also runs QUAST7 to determine basic assembly 7 Gurevich et al., 2013

statistics (e.g. the N50 value) and CheckM8 to estimate genome 8 Parks et al., 2015

completeness and possible contamination. All reports are col-
lected in one place for the user to decide which assembly to pick.
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Figure 4.1: Integrated
assembly pipeline.
YinYang is my
pipeline to assemble
single cell genomes.

On my wish list for YinYang in future versions is the
inclusion of a fully automated tool for the decontamination
of genome assemblies. ACDC9 and ProDeGe10 are the most 9 Lux et al., 2015

10 Tennessen et al., 2016promising candidates that I will investigate.

Software availability

YinYang is implemented in Perl and is freely available under
the open-source MIT license at:

https://github.com/abremges/yinyang

https://github.com/abremges/yinyang
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5 Metagenome assembly and binning techniques

If single cell genomics is Yin, then metagenomics is Yang – they
are complementary (rather than opposing) approaches to study
the microbial dark matter.1 In Part II of my thesis, I focus on 1 Ohsawa, 1931

computational metagenomics.

Shotgun metagenomics is a method of choice to analyze the
coding potential of whole microbial communities.2 Untangling 2 Sharon and Banfield, 2013

individual genomes from metagenomes requires (1) the assembly
of metagenome sequencing reads into contigs and (2) the succes-
sive grouping of these contigs into genome bins (Figure 5.1).

metagenome assembly genome binningshotgun sequencing

Figure 5.1: Assembly
and binning. Key
challenges in computa-
tional metagenomics.

Metagenome assembly is computational challenging because
(1) metagenomic datasets are huge and approach terabytes in
size, (2) read coverage of different organisms in the environmen-
tal sample is non-uniform, and (3) cross-genome repeats (e.g.
rRNA genes) are longer than typical read lengths and therefore
impossible to fully resolve.3 3 Kunin et al., 2008; Hess

et al., 2011; Nagarajan and
Pop, 2013
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Metagenome assemblers address these challenges by e.g.
massively distributing computation4, using Bloom filters or 4 Boisvert et al., 2012

succint de Bruijn graphs (to reduce the memory footprint)5, or 5 Chikhi and Rizk, 2012; Li
et al., 2015adopting ideas proven useful in the assembly of single cells and

highly polymorphic diploid genomes.6 6 Prjibelski et al., 2014;
Safonova et al., 2015; Nurk
et al., 2016

Metagenome binning is the post-assembly taxonomic as-
signment of contigs into genome bins that enables the study
of individual organisms (and their interactions), directly from
deeply sequenced metagenomes. Therefore, the task of a binning
tool is to assign an identifier to every assembled contig, with
each identifier ideally representing a single genome.7 7 McHardy and Rigoutsos,

2007Taxonomic binning tools, such as Megan8 or CARMA9, act as
8 Huson et al., 2007

9 Krause et al., 2008; Gerlach
et al., 2009

classifiers and label contigs with taxa from an existing taxonomy,
such as the NCBI Taxonomy database.10

10 Federhen, 2012Unsupervised and reference-free binning tools traditionally
use nucleotide composition (in particular tetranucleotide fre-
quencies) to group contigs with similar usage, thus effectively
differentiating between contigs of different species.11 Today, 11 Teeling et al., 2004; Dick

et al., 2009binning tools increasingly leverage additional information to
improve genome recovery – even in the presence of multiple
genomes from individual species in a sample –, such as paired-
end read linkage12, mean contig coverage13, per-sample (differ- 12 Iverson et al., 2012

13 Wu et al., 2014ential) coverage14, or combinations thereof.15

14 Albertsen et al., 2013;
Imelfort et al., 2014

15 Alneberg et al., 2014; Kang
et al., 2015

Near-complete genome bins can often be recovered and
subsequently mined for their metabolic potential.16 Nevertheless,

16 Campanaro et al., 2016;
Stolze et al., 2016

all assembly and binning results – even if the presumably “best”
tool was chosen – should be inspected carefully by e.g. looking
at taxonomic assignments of individual contigs, visualizing
the underlying differential coverage information, or using an
automated method for assessing the quality of metagenome-
derived microbial genomes.17 17 Albertsen et al., 2013;

Parks et al., 2015; Eren et al.,
2015



6 Assembling a biogas-producing community

Biogas is regarded a clean, renewable, and environmentally com-
patible energy source.1 Moreover, the generation of energy from 1 Weiland, 2010

biogas relies on a balanced carbon dioxide cycle. In Germany,
there are close to 9,000 biogas plants (BGPs) with a combined
electric capacity of over 4,000 MW and a gross electricity produc-
tion of over 30 TWh per year. They can supply more than nine
million households with biogas-based electricity.2 2 German Biogas Associa-

tion; http://www.biogas.org

The process of biogas production takes place under anaer-
obic conditions and involves microbial decomposition of or-
ganic matter, yielding methane as the main final product of the
fermentation process (Figure 6.1). Complex consortia of mi-
croorganisms are responsible for biomass decomposition and
biogas production.3 The majority of the participating microbes 3 Schlüter et al., 2008; Maus

et al., 2016bare still unknown, as is their influence on reactor performance.4
4 Wirth et al., 2012

Since most of the organisms within biogas communities are non-
cultivable by today’s conventional microbiological techniques,
shotgun metagenome sequencing currently is the method of
choice to obtain unbiased insights into community composition
and the metabolic potential of key community members.

Here, I describe the first deeply sequenced metagenome and
metatranscriptome of an agricultural production-scale biogas
plant on the Illumina platform.5 I assembled the metagenome 5 Bremges et al., 2015

and e.g. reconstructed most genes involved in the methane
metabolism, a key pathway involving methanogenesis performed
by methanogenic Archaea.

http://www.biogas.org
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Figure 6.1: Biogas
production. Overview
of the biogas system
(anaerobic digestions).
Figure courtesy of
Renewable Energies
Agency, Germany.

6.1 Digester management and process characterization

The biogas plant, located in North Rhine Westphalia, Germany,
features a mesophilic continuous wet fermentation technol-
ogy characterized recently.6 It was designed for a capacity of 6 Stolze et al., 2015

537 kWel combined heat and power (CHP) generation. The pro-
cess comprises three digesters: a primary and secondary di-
gester, where the main proportion of biogas is produced, and a
storage tank, where the digestate is fermented thereafter.

The primary digester is fed hourly with a mixture of 72%
maize silage and 28% liquid pig manure. The biogas and methane
yields at the time of sampling were at 810.5 and 417.8 liters per
kg organic dry matter (l/kg oDM), respectively. After a theoreti-
cal retention time of 55 days, the digestate is stored in the closed,
non-heated final storage tank. Further metadata are summarized
in Table 6.1.
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Process parameter Sample

Net volume 2, 041 m3

Dimensions 6.4 m high, diameter of 21 m
Electrical capacity 537 kWel

pH 7.83
Temperature 40 ◦C
Conductivity 22.10 mS/cm

Volative organic acids (VOA) 5, 327 mg/l
Total inorganic carbon (TIC) 14, 397 mg/l

VOA/TIC 0.37
Ammoniacal nitrogen 2.93 g/l

Acetic acid 863 mg/l
Propionic acid 76 mg/l

Fed substrates 72% maize silage, 28% pig manure
Organic load 4.0 kg oDM m−3 d−1

Retention time 55 d
Biogas yield 810.5 l/kg oDM

Methane yield 417.8 l/kg oDM

Table 6.1: Charac-
teristics of the BGP.
Primary digester, sam-
pled on Nov 15, 2010.

6.2 Sampling and library construction

Samples from the primary digester of the aforementioned bio-
gas plant were taken in November 2010. Prior to the sampling
process, approximately 15 l of the fermenter substrate were dis-
carded before aliquots of 1 l were transferred into clean gastight
sampling vessels and transported directly to the laboratory.

For the metagenome, aliquots of 20 g of the fermentation
sample were used for total community DNA preparation as
described previously.7 7 Schlüter et al., 2008

For the metatranscriptome, a random-primed cDNA li-
brary was prepared. Total RNA was first treated with 5′-P de-
pendent Terminator exonuclease to enrich for full-length mRNA
carrying 5′ CAP or triphosphate structures. Then, first-strand
cDNA was synthesized using a N6 random primer and M-MLV-
RNase H reverse transcriptase, and second-strand cDNA synthe-
sis was performed according to the Gubler-Hoffman protocol.8 8 Gubler and Hoffman, 1983
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6.3 Metagenomic and metatranscriptomic sequencing

We sequenced one metatranscriptome and two metagenome
shotgun libraries on Illumina’s Genome Analyzer IIx system,
applying the Paired-End DNA Sample Preparation Kit (Illumina
Inc.) as described by the manufacturer and generating 2× 161 bp
paired-end reads. On Illumina’s MiSeq system, we sequenced
three further metagenome shotgun libraries, applying the Nex-
tera DNA Sample Preparation Kit (Illumina Inc.) as described by
the manufacturer and generating 2× 155 bp paired-end reads.
Our sequencing efforts, yielding 35 Gbp in total, are summarized
in Table 6.2.

Library name Library type Insert size1 Cycles Reads Bases

GAIIx, Lane 6 RNA, TruSeq 202± 49 2× 161 78, 752, 308 12, 679, 121, 588
GAIIx, Lane 7 DNA, TruSeq 157± 19 2× 161 54, 630, 090 8, 795, 444, 490
GAIIx, Lane 8 DNA, TruSeq 298± 32 2× 161 74, 547, 252 12, 002, 107, 572
MiSeq, Run A1

2 DNA, Nextera 173± 53 2× 155 4, 915, 698 761, 933, 190
MiSeq, Run A2

2 DNA, Nextera3 522± 88 2× 155 1, 927, 244 298, 722, 820
MiSeq, Run B1

2 DNA, Nextera 249± 30 2× 155 3, 840, 850 573, 901, 713
MiSeq, Run B2

2 DNA, Nextera3 525± 90 2× 155 4, 114, 304 614, 787, 564
1Insert sizes determined with Picard tools. 2Partial runs. 3This Nextera library was sequenced twice.

Table 6.2: Sequencing
statistics. Overview of
the different sequenc-
ing libraries.

6.4 Read quality control

Prior to assembly, I used Trimmomatic (Bolger et al., 2014) for
adapter removal and moderate quality trimming. After adapter
clipping, using Trimmomatic’s Truseq2-PE and Nextera-PE tem-
plates, I removed leading and trailing ambiguous or low quality
bases (below Phred quality scores of 3). Table 6.3 summarizes the
effect on sequencing depth, more than 25 Gbp of sequence data
passed quality control.

Library type Reads, raw post-QC Bases, raw post-QC

Metagenome (total) 143, 975, 438 137, 365, 053 23, 046, 897, 349 17, 267, 320, 221
Metatranscriptome 78, 752, 308 73, 165, 986 12, 679, 121, 588 8, 455, 809, 264

Table 6.3: Quality con-
trol. Adapter removal
and quality trimming.
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6.5 Metagenome assembly and annotation

I assembled the metagenome with IDBA-UD9, MEGAHIT10, 9 Peng et al., 2012

10 Li et al., 2015and Ray Meta11, trying a range of k-mer sizes from 21 to 61 in
11 Boisvert et al., 2012steps of 10 for the latter. To estimate the inclusivity of the set

of assemblies, I aligned the post-QC sequencing reads to the
assembled contigs with Bowtie 2

12 and used SAMtools13 to 12 Langmead and Salzberg,
2012

13 Li et al., 2009

convert SAM to BAM, sort the alignment file, and calculate the
mapping statistics.

Based on total assembly size, contiguity, and the percentage
of mapped back metagenomic reads, we selected the Ray Meta
assembly produced with a k-mer size of 31. Here, we assembled
approximately 228 Mbp in 54, 489 contigs greater than 1, 000 bp,
with an N50 value of 9, 796 bp.14 77% (79%) of metagenomic 14 It’s over 9000!

(metatranscriptomic) reads mapped back to this assembly.

I used MetaProdigal
15 to predict 250, 596 protein-coding 15 Hyatt et al., 2012

genes on the assembled contigs. I blasted the protein sequences
of all predicted genes against the KEGG database16, release 16 Kanehisa et al., 2014, 2016a

72.0, using Protein-Protein BLAST.17 Of the 250, 596 predicted 17 Camacho et al., 2009

genes, 191, 766 (76.5%) had a match in the KEGG database, using
an Evalue cutoff of 10−6. I determined the KEGG Orthology
(KO) for each gene by mapping the top-scoring BLAST hit to its
orthologous gene in KEGG, resulting in 109, 501 genes with an
assigned KEGG Orthology. Table 6.4 summarizes these results.

Assembly metric Our assembly

Total size 228, 382, 457 bp
Number of contigs 54, 489

N50 value 9, 796 bp
Largest contig 333, 979 bp

Mapped DNA reads 105, 461, 596 (77%)

Mapped RNA reads 57, 436, 058 (79%)

Predicted genes 250, 596
of these, full-length 172, 372 (69%)

Match in KEGG Genes 191, 766
of these, assigned KO 109, 501

of these, in KEGG pathways 61, 100

Table 6.4: Assembly
and annotation re-
sults. Minimum contig
size of 1, 000 bp.
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Figure 6.2: Methane
metabolism pathway.
Genes involved in the
methane metabolism
highlighted: Genes
with only metage-
nomic support in
yellow, genes with also
metatranscriptomic
support in orange.

6.6 Relating the metagenome and the metatranscriptome

To illustrate potential use cases, I first counted the number of
reads within genes using BEDTools (Quinlan and Hall, 2010)
and highlighted metagenomic and metatranscriptomic coverage
of the methane metabolism pathway in Figure 6.2. The assem-
bly therefore containes the majority of genes involved in the
methane metabolism from our metagenomic data, with accompa-
nying metatranscriptomic data suggesting active gene expression
for many.
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Figure 6.3: Relat-
ing the metagenome
and metatranscrip-
tome. Highlighted
are genes involved
in methanogenesis;
in the background a
two-dimensional den-
sity estimation for all
250, 596 genes.

For a second example, I calculated the reads per kilobase per
million mapped reads (RPKM) for each gene as a crude measure
for abundance (metagenome) or expression (metatranscriptome).
Figure 6.3 relates the two; I accentuated all genes assigned to
either of the three known types of methanogenic pathways:
CO2 to methane (96 genes), methanol to methane (5 genes), and
acetate to methane (209 genes). 80 common genes are shared
between pathway types.

Hydrogenotrophic methanogenesis, i. e. the reduction
of CO2 with hydrogen, appears to be highly expressed in the
reactor analyzed, which is in agreement with results obtained via
metatranscriptome sequencing.18 18 Zakrzewski et al., 2012
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Figure 6.4: Binning of
the metagenome. One
hundred genome bins
were generated, but
most are either incom-
plete or contaminated
(or both).
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6.7 In retrospect: Metagenome binning

Extending Bremges et al., 2015, I tried to recover genome bins
from our assembly using MetaBAT.19 MetaBAT is an unsuper- 19 Kang et al., 2015

vised binning tool that always leverages tetranucleotide fre-
quencies and paired-end linkage to group contigs into genome
bins. If multiple samples are available, it additionally uses per-
sample (differential) coverage information. If only one sample
is available – as it is the case here –, it resorts to the mean contig
coverage instead.

One hundred genome bins were generated and I assessed
their quality with CheckM.20 CheckM estimates genome com- 20 Parks et al., 2015

pleteness, contamination, and strain heterogeneity.
First, CheckM places the genome bin onto a fixed phyloge-

netic reference tree with pplacer21) to determine the most likely 21 Matsen et al., 2010

clade it originates from. Then, it used profile hidden Markov
models22 to search for the clade-specific marker genes and 22 Eddy, 1998, 2008

counts their presence (or absence) in the genome bin.
If there are e.g. 100 marker genes for a certain clade and the

genome bin contains 69 of them, then its estimated genome com-
pleteness is 69%. Furthermore, if 42 of the marker genes occur
more than once, the bin’s estimated contamination is 42%. Pairs
of multi-copy marker genes with an average amino acid identity
AAI ≥ 90% count towards strain heterogeneity (assuming that
genes from different strains are very similar). In other words,
if a genome bin appears highly contaminated but has a strain
heterogeneity value of 100%, then the entire contamination can
be explained by having multiple strain of the same species in one
genome bin.

I present each genome bin’s completeness, contamination, and
strain heterogeneity as a Cleveland dot plot in Figure 6.4. As
a rule of thumb, we aim for ≥ 90% completeness and ≤ 10%
contamination.23 This leaves us with only ten genome bins – we 23 Parks et al., 2015; Eren

et al., 2015surely can do better (as shown in Chapter 7). Genome binning
works more reliable when multiple (related) samples are avail-
able that contribute valuable differential coverage information.24 24 Turaev and Rattei, 2016
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6.8 Conclusions

At the time of publication, the sequencing depth was unprece-
dented for any microbial community from a production-scale
biogas plant. We sequenced the metagenome 27× and 19×
deeper, respectively, than previous studies applying 454 or
SOLiD sequencing (and primarily focusing on community com-
position).25 Metatranscriptomic sequencing of total community 25 Jaenicke et al., 2011; Wirth

et al., 2012RNA, 230× deeper than previously reported, complemented our
metagenome.26 We therefore anticipated that the data were of 26 Zakrzewski et al., 2012

great interest to the biogas research community in general and
microbiologists working on biogas-producing microbial commu-
nities in particular – even without genome bins.

The metagenome assembly has since been used in one applied
study to improve the characterization of a metaproteome gener-
ated from biogas plant fermentation samples and to investigate
the metabolic activity of the microbial community.27 27 Kohrs et al., 2015

(a) GigaScience blog entry.
July 30, 2015, Scott Edmunds.

(b) EurekAlert! press release.
July 30, 2015, GigaScience.

(c) Article in BiofuelsDigest.
July 30, 2015, Jim Lane.

Figure 6.5: Reactions.
Making our analyses
reproducible paid off.

What took me by surprise was the press and social media
coverage that Bremges et al., 2015 received, largely triggered
by the fact that we dockerized all data and analyses, and there-
fore made our research more accessible and reproducible. The
Docker container accompanying our manuscript is available at:

https://registry.hub.docker.com/u/metagenomics/2015-biogas-cebitec

https://registry.hub.docker.com/u/metagenomics/2015-biogas-cebitec


7 A genome catalog of the biogas microbiome

Most members of the biogas microbiome belong to microbial
dark matter, i. e. they are non-cultivable by today’s conventional
microbiological techniques. In a pilot study, we sequenced and
assembled the metagenome of a biogas-producing microbial
community from a production-scale biogas plant, but eventually
failed to generate (more than a few) high-quality genome bins.1 1 Bremges et al., 2015

Untangling dozens of near-complete genomes from biogas
metagenomes was my dream, turned into reality in the context
of our Community Science Program “Biogas-producing micro-
bial communities” at the DOE Joint Genome Institute.2 2 FY 2013; PI: Alex Sczyrba

Extensive metagenome sequencing of four production-scale
biogas plants, greatly surpassing our previous efforts, enabled
a more inclusive assembly of the biogas microbiome. Succes-
sive binning of assembled contigs recovered hundreds of near-
complete genomes for process-relevant community members,
also comprising the prevalent distinctive phyla Cloacimonetes,
Spirochaetes, Fusobacteria, and Thermotogae.3 3 Stolze et al., 2016

Yvonne Stolze and I contributed equally and we both wish to
include this joint project in our doctoral theses. Therefore – and
to avoid too many overlaps with regards to content –, I primarily
describe the bioinformatics part: metagenome assembly and
binning.

For laboratory details and the binning-enabled insights into
the biology of distinct abundant taxa, please refer to Yvonne’s
forthcoming thesis or our co-first-authored manuscript in the
journal Biotechnology for Biofuels.
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7.1 Metagenome sampling and sequencing

The production of biogas happens usually at mesophilic (34–40 ◦C)
or thermophilic (55–60 ◦C) conditions.4 Differences in the biogas 4 Weiland, 2010

microbiome have been observed depending on the process con-
ditions, e.g. temperature.5 5 Ritari et al., 2012;

Ziembińska-Buczyńska
et al., 2014

Accounting for availability and accessibility, we selected three
mesophilic and one thermophilic industrial biogas plants (BGPs)
for metagenomic sequencing. For each BGP, total community
DNA was extracted and sequenced in replicates at the DOE Joint
Genome Institute. Table 7.1 lists our sequencing efforts, a total of
2.3 billion reads (347.5 Gbp) were sequenced.

BGP # raw reads # raw bases # QC’ed reads # QC’ed bases

1.1 267, 749, 142 40, 162, 371, 300 256, 033, 246 38, 404, 986, 900
1.2 289, 930, 844 43, 489, 626, 600 276, 028, 796 41, 404, 319, 400
2.1 298, 185, 500 44, 727, 825, 000 283, 504, 064 42, 525, 609, 600
2.2 281, 693, 590 42, 254, 038, 500 277, 123, 112 41, 568, 466, 800
3.1 242, 121, 112 36, 318, 166, 800 208, 532, 304 31, 279, 845, 600
3.2 338, 184, 952 50, 727, 742, 800 326, 116, 028 48, 917, 404, 200
4.1 307, 971, 670 46, 195, 750, 500 288, 040, 900 43, 206, 135, 000
4.2 290, 604, 188 43, 590, 628, 200 271, 494, 384 40, 724, 157, 600

Total 2, 316, 440, 998 347, 466, 149, 700 2, 186, 872, 834 328, 030, 925, 100

Table 7.1: Sequenc-
ing statistics. We
sequenced the
metagenomes from
four BGPs in repli-
cates.

7.2 Community structure and similarity

Metagenome binning techniques are most effective when mutli-
ple samples are available, e.g. a time-series or employing differ-
ent DNA extraction methods, for which a combined metagenome
assembly makes sense.6 6 Albertsen et al., 2013;

Alneberg et al., 2014; Turaev
and Rattei, 2016

I used Mash7 to quantify the pairwise similarity of the biogas
7 Ondov et al., 2016

metagenomes prior to assembly. Mash reduces large sequence
sets to compressed sketches using the MinHash algorithm.8 8 Broder, 1997

Using these sketches, Mash rapidly estimates pairwise distances
between two sets. Table 7.2 gives the pairwise Mash distances.
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BGP 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2

1.1 0 0.028 0.062 0.061 0.067 0.067 0.094 0.08
1.2 0.028 0 0.063 0.063 0.067 0.067 0.093 0.08
2.1 0.062 0.063 0 0.024 0.038 0.038 0.099 0.08
2.2 0.061 0.063 0.024 0 0.038 0.039 0.100 0.081
3.1 0.067 0.067 0.038 0.038 0 0.024 0.095 0.077
3.2 0.067 0.067 0.038 0.039 0.024 0 0.095 0.079
4.1 0.094 0.093 0.099 0.100 0.095 0.095 0 0.028
4.2 0.08 0.08 0.08 0.081 0.077 0.079 0.028 0

Table 7.2: Mash
distances. Pairwise
comparisons of 4×2

metagenome read
sets using Mash with
a k-mer size of 21

and a sketch size of
1,000,000.

Pairwise Mash distances are small, indicating a high fraction
of similar genomes across samples. Replicates are most similar,
closely followed by a high similarity between the metagenome
samples of BGP2 and BGP3. BGP4 is the outlier, which I ex-
pected because it is the only thermophilic BGP we sampled.
Nevertheless, the Mash results support the combined assembly
of all samples to facilitate the reconstruction of low-abundance
community members and downstream genome binning.

7.3 Combined metagenome assembly

I used Ray Meta9 to co-assemble all metagenome reads, using a 9 Boisvert et al., 2012

k-mer size of 31. The gene prediction tool Prodigal10 was used to 10 Hyatt et al., 2012

predict genes on assembled contigs (Table 7.3).

Total bases # contigs N50 Largest contig # genes

1, 488, 298, 777 330, 955 10, 556 668, 635 1, 591, 820

Table 7.3: Assembly
results. Minimum
contig size of 1, 000 bp.

I aligned all metagenome reads to the assembled contigs with
Bowtie 2 (Langmead and Salzberg, 2012) and calculated mapping
statistics with SAMtools (Li et al., 2009; Table 7.4). Figure 7.1 and
7.2 visualize differential contig coverages between BGPs.

% reads of BGP1 % reads of BGP2 % reads of BGP3 % reads of BGP4

74.83 | 75.14 78.07 | 78.34 81.11 | 81.29 86.53 | 86.50

Table 7.4: Mapping
results. 80.3% of all
reads are included.
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7.4 Metagenome binning

At the time of analyses, three unsupervised binning tools that
leverage differential coverage information became available:
GroopM11, CONCOCT12, and MetaBat.13 I ran all tools on our 11 Imelfort et al., 2014

12 Alneberg et al., 2014

13 Kang et al., 2015

data:

• GroopM failed to generate any genome bins on our data. I
suspect that either our experimental design – metagenomes
originating from four different samples – violates (and breaks)
GroopM’s statistical model, or that it simply was not tested on
such large datasets;

• CONCOCT14 grouped 316, 848 contigs (95.7% of all contigs) 14 I used an early version of
CONCOCT, recent versions
might behave differently.

into 283 genome bins; and

• MetaBAT – in its very specific mode – grouped 72, 891 contigs
(22% of all contigs) into 532 genome bins.

Figure 7.3: Contig
coverages for three
CONCOCT bins. This
doesn’t look right. . .

I visually and interactively explored the binning results by
generating separate contig coverage plots for each CONCOCT
and MetaBAT genome bin. For CONCOCT, I observed many
cases for which the contigs’s coverages did not align well (Fig-
ure 7.3). I did not observe the same effect for any MetaBAT bin.

Following our intuition, we picked the MetaBAT binning
results. Even though only 22% of all contigs are binned, the 532
bins contain 62.6% (932 Mbp) of the total assembly.

Eventually, our decision was confirmed by a “real” quality
assessment with a (then) new tool – CheckM15 – and I estimated 15 Parks et al., 2015

each bin’s genome completeness and contamination (Figure 7.5).
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Figure 7.4: 16S-based
profile. Madis Rum-
ming analyzed the 16S
amplicon data.

7.5 Abundant distinct taxa

16S-based community profiling uncovered four distinct abundant
phyla: Thermotogae in BGP4 (the thermophilic BGP); Fusobacte-
ria in BGP3; Spirochaetes in BGP2 and BGP3; and Cloacimonetes
in BGP2 and BGP3 (Figure 7.4).16 16 Stolze et al., 2016

I identified genome bins matching these taxa by (A) counting
the taxonomic assignments on gene level (which were generated
by comparing predicted protein sequences to NCBI’s database
using the BLASTP mode of DIAMOND17 and then loading the 17 Buchfink et al., 2015

resulting output file into MEGAN5
18 for taxonomic classifi- 18 Huson et al., 2007

cation), and (B) running taxator-tk’s BLASTN-based binning
workflow19 to additionally assign a taxon label on contig level. 19 Dröge et al., 2015

These two approaches were largely in agreement, identifying
high-confident genome bins for the taxa of interest (Table 7.5).
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Figure 7.5: Top 200
genome bins. A
genome catalog of
the biogas microbiome.
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Bin ID Assembly size # contigs N50

206_Thermotogae 1, 904, 666 277 8, 541
175_Fusobacteria 2, 063, 893 143 26, 189
138_Spirochaetes 2, 196, 644 86 38, 653
244_Cloacimonetes 1, 745, 914 101 25, 062
120_Cloacimonetes 2, 265, 914 162 18, 253

Bin ID % completeness % contamination % strain heterogeneity

206_Thermotogae 82.81 7.37 87.50
175_Fusobacteria 94.38 3.37 100.00
138_Spirochaetes 96.48 4.16 100.00
244_Cloacimonetes 96.70 2.33 75.00
120_Cloacimonetes 95.60 28.42 97.44

Table 7.5: Genome
bins of abundant dis-
tinct taxa. Assembly
statistics and quality
assessment.

The genome bins representing the abundant distinct taxa are
(with one exception) ≥ 90% complete and ≤ 10% contami-
nated. Members of the phylum Cloacimonetes occur in BGP2

and BGP3; I recovered one genome bin from each BGP. The pre-
sumably high contamination value for the 120_Cloacimonetes
bin is due to strain heterogeneity, i. e. different strains of the
same species got sorted into this bin.

Of special interest is the 206_Thermotogae bin because it
matches Defluviitoga tunisiensis L3, a strain for which the com-
plete reference genome is known.20 Comparing the reference 20 Maus et al., 2016a

genome with our genome bin, we observed that e.g. for the
known sugar utilization pathways, bin 206_Thermotogae con-
tains all but 13 modules of the closed reference genome (Fig-
ure 7.6). This finding further confirmed the applicability and
reliability of our binning approach.

7.6 Conclusions

Applying state-of-the-art metagenome assembly and binning
techniques, I compiled a genome catalog of the biogas micro-
biome containing hundreds of near-complete genomes.
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8 Setting the stage for future biogas research

Research of microbial communities residing in industrial biogas
plants has long been a focus at the CeBiTec, Bielefeld University.1 1 Schlüter et al., 2008; Kröber

et al., 2009; Jaenicke et al.,
2011; Zakrzewski et al., 2012;
Eikmeyer et al., 2013

We heralded a new era of assembly-based metagenomics and
eventually compiled an exhaustive genome catalog of the biogas
microbiome.2 Metagenome assembly and binning therefore 2 Bremges et al., 2015; Stolze

et al., 2016complements the cultivation and sequencing of key players in
the biogas-producing microbial community.3 Combined, these 3 Maus et al., 2015, 2016a

results enable the return to genome-centric analyses and will
shape future biogas research at the CeBiTec – and beyond.

8.1 Binning-enabled metatranscriptomics

Relating the metagenome and metatranscriptome can identify
active members in a microbial community. In our pilot biogas
metagenome study, we focused only on distinct abundant taxa in
the four biogas plants and identified four of them (represented
by five near-complete genome bins).4 In a follow-up study, we 4 Stolze et al., 2016

plan to incorporate the corresponding metatranscriptomes to
depict the metabolic activity of those genome bins. Metatran-
scriptomic sequencing was done at the Joint Genome Institute,
too; Table 8.1 summarizes these sequencing efforts.

To get a first impression, I aligned all metatranscriptome
reads to the metagenome assembly – using Bowtie2

5 – and plot 5 Langmead and Salzberg,
2012each bins’s genomic abundance against its expression. Figure 8.1

illustrates this relationship for the Top 200 genome bins, high-
lighting the ones we focus on and indicating that these are both,
abundant and active (part of Yvonne Stolze’s PhD project).6 6 Andreas Schlüter’s group,

CeBiTec, Bielefeld University
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BGP # reads # bases % mapped to assembly

1.1 166, 280, 226 24, 942, 033, 900 77.76

1.2 223, 517, 128 33, 527, 569, 200 87.22

2.1 263, 289, 018 39, 493, 352, 700 80.81

2.2 227, 006, 018 34, 050, 902, 700 75.50

3.1 261, 433, 302 39, 214, 995, 300 78.76

3.2 258, 702, 414 38, 805, 362, 100 78.09

4.1 161, 677, 326 24, 251, 598, 900 84.74

4.2 233, 914, 040 35, 087, 106, 000 88.97

Table 8.1: Metatran-
scriptome sequencing.
1, 795, 819, 472 reads
(269.4 Gbp) were se-
quenced at the JGI.

8.2 Integration of other ’omics data

Due to circumstances beyond our control, we do not yet have
single cell sequencing data for biogas-producing community
members available. When SAGs are generated eventually, we
will (1) assemble them using e.g. MeCors or kgrep and thus
add dozens of SAG-derived genomes to our catalog; and (2) use
SAG reads to validate existing metagenome-derived genomes.7 7 Hess et al., 2011

Integrated metagenome and -proteome analyses will
further elucidate the metabolic activity of biogas-producing
microbial communities. We have shown that e.g. metagenomics
complements metaproteomics by significantly improving protein
classification rates, but – so far – only scratched the surface.8 8 Kohrs et al., 2015; Ortseifen

et al., 2016

8.3 A focus on Archaea

The methane metabolism is a key pathway involving methano-
genesis performed by methanogenic Archaea, a group for which
only a few reference genomes are available.9 Browsing our bio- 9 Maus et al., 2012, 2016c

gas genome catalog, I immediately spotted eight near-complete
archaeal genome bins. I preliminarily annotated the genome
bins with Prokka10 and BlastKOALA11 to gauge if methane 10 Seemann, 2014

11 Kanehisa et al., 2016bmetabolism pathways are present (they largely are; Figure 8.2).

Genome-scale metabolic reconstruction of the archaeal
subcommunity is (part of) Julia Hassa’s PhD project.12 The foun- 12 Andreas Schlüter’s group,

CeBiTec, Bielefeld Universitydation for her work is my newly established genome catalog of
the biogas microbiome.
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(a) 42_Euryarchaeota; 95.4%

(b) 185_Euryarchaeota; 90.4%
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(c) 193_Euryarchaeota; 99.2%

Figure 8.2: Methane
metabolism pathway
analyses for eight ar-
chaeal genome bins.
Subcaptions give each
bin’s ID and estimated
genome completeness.

(d) 216_Euryarchaeota; 97.4%
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(e) 239_Euryarchaeota; 93.6%

(f) 257_Euryarchaeota; 98.4%
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(g) 266_Euryarchaeota; 98.3%

Figure 8.2: Methane
metabolism pathway
analyses for eight ar-
chaeal genome bins.
Subcaptions give each
bin’s ID and estimated
genome completeness.

(h) 289_Euryarchaeota; 92.2%





Epilogue: The CAMI initiative

Metagenome assembly and successive genome binning is one
promising approach to access microbial dark matter genomes.1 1 Turaev and Rattei, 2016

Computational tool development for metagenome assembly and
binning is a very active research area and tremendous progress
has been achieved during the last years.2 However, a systematic 2 Marx, 2016

benchmarking of tools in metagenomics is lacking.

The Critical Assessment of Metagenomic Information

initiative will continuously benchmark tools for metagenome
assembly, binning, and profiling. Reproducibility is fostered by
using bioboxes, i. e. standardised containers for interchangeable
bioinformatics software.3 In the future, researchers will be able 3 Belmann et al., 2015

to select the most suitable tool for their metagenomic analysis
task based on always up-to-date CAMI evaluation results.

We started CAMI in 2014 – spearheaded by Alexander Sczyrba,
Thomas Rattei, and Alice C. McHardy – and the first results of
our evaluations are available at:

https://data.cami-challenge.org

Thank you.

https://data.cami-challenge.org
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