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Abstract

The rising amount of digital data, which is available in almost every domain,
causes the need for intelligent, automated data processing. Classification models
constitute particularly popular techniques from the machine learning domain with
applications ranging from fraud detection up to advanced image classification
tasks. Within this thesis, we will focus on so-called prototype-based classifiers as
one prominent family of classifiers, since they offer a simple classification scheme,
interpretability of the model in terms of prototypes, and good generalisation
performance. We will face a few crucial questions which arise whenever such
classifiers are used in real-life scenarios which require robustness and reliability
of classification and the ability to deal with complex and possibly streaming data
sets. Particularly, we will address the following problems:

• Deterministic prototype-based classifiers deliver a class label, but no confi-
dence of the classification. The latter is particularly relevant whenever the
costs of an error are higher than the costs to reject an example, e. g., in
a safety critical system. We investigate ways to enhance prototype-based
classifiers by a certainty measure which can efficiently be computed based
on the given classifier only and which can be used to reject an unclear
classification.

• For an efficient rejection, the choice of a suitable threshold is crucial. We
investigate in which situations the performance of local rejection can surpass
the choice of only a global one, and we propose efficient schemes how to
optimally compute local thresholds on a given training set.

• For complex data and lifelong learning, the required classifier complexity can
be unknown a priori. We propose an efficient, incremental scheme which
adjusts the model complexity of a prototype-based classifier based on the
certainty of the classification. Thereby, we put particular emphasis on the
question how to adjust prototype locations and metric parameters, and how
to insert and/or delete prototypes in an efficient way.

• As an alternative to the previous solution, we investigate a hybrid architecture
which combines an offline classifier with an online classifier based on their
certainty values, thus directly addressing the stability/plasticity dilemma.
While this is straightforward for classical prototype-based schemes, it poses
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some challenges as soon as metric learning is integrated into the scheme
due to the different inherent data representations.

• Finally, we investigate the performance of the proposed hybrid prototype-
based classifier within a realistic visual road-terrain-detection scenario.



Thanks . . .

. . . to my encouraging supervisors who had a main impact on my development
as PhD student and the work I did.

. . . to Dr. Heiko Wersing.

. . . to Prof. Dr. Barbara Hammer.

. . . to my proofreaders of the thesis.

. . . to the Honda Research Institute (HRI-EU) for funding the PhD project giving
me this great opportunity.

. . . to my friends at the Honda Research Institute for a great time, fruitful discus-
sions, and your support.

. . . to my friends at the Technical Computer Science Group at Bielefeld University
for great conference trips, dinners, and jam sessions . . . we rocked ;-)

. . . to my friends at the Computational Intelligence Group at Mittweida University
of applied sciences.

. . . to my family.

v





Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Structural Overview of this Thesis . . . . . . . . . . . . . . . . . . 4
1.4. Publications and Funding Related to this Thesis . . . . . . . . . . 5

2. Principles of Rejection 7
2.1. General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Evaluation of Reject Options . . . . . . . . . . . . . . . . . . . . . 11
2.3. State of the Art Approaches . . . . . . . . . . . . . . . . . . . . . . 15
2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Prototype-based Classification 21
3.1. Generalised Learning Vector Quantisation . . . . . . . . . . . . . . 23
3.2. Generalised Matrix Learning Vector Quantisation . . . . . . . . . . 24
3.3. Localised Generalised Matrix Learning Vector Quantisation . . . . 26
3.4. Robust Soft Learning Vector Quantisation . . . . . . . . . . . . . . 26

4. Global Reject Option 29
4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3. Certainty Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1. Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2. Conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3. RelSim – The Relative Similarity . . . . . . . . . . . . . . . 32
4.3.4. Dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.5. d+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.6. Comb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.7. Characteristics of the Certainty Measures . . . . . . . . . . 34

4.4. Experiments for Global Rejection . . . . . . . . . . . . . . . . . . . 36
4.4.1. Artificial and Benchmark Data . . . . . . . . . . . . . . . . . 36
4.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3. Summary of the Main Findings . . . . . . . . . . . . . . . . 41

vii



viii Contents

4.5. Comparison with Probabilistic Approaches . . . . . . . . . . . . . . 42
4.5.1. Gaussian Mixture Model and its Certainty Measure . . . . . 42
4.5.2. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.3. Conclusion with Respect to Probabilistic Approaches . . . 46

4.6. Conclusion: Answering the Research Questions . . . . . . . . . . 47

5. Local Reject Option 49
5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3. Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1. Prototype-based Classifiers . . . . . . . . . . . . . . . . . . 50
5.3.2. Basic Decision Trees for Classification . . . . . . . . . . . . 51
5.3.3. Support Vector Machine for Classification . . . . . . . . . . 52

5.4. Local Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.1. Certainty Measures . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2. Local Reject Option . . . . . . . . . . . . . . . . . . . . . . 54

5.5. Optimal Choices of Rejection Thresholds . . . . . . . . . . . . . . 56
5.5.1. Extended Pareto Front . . . . . . . . . . . . . . . . . . . . . 56
5.5.2. Optimal Global Rejection . . . . . . . . . . . . . . . . . . . 57
5.5.3. Optimal Local Rejection . . . . . . . . . . . . . . . . . . . . 58
5.5.4. Formulation as Multiple Choice Knapsack Problem . . . . . 59
5.5.5. Local Threshold Adaptation by Dynamic Programming . . . 59
5.5.6. Local Threshold Adaptation by an Efficient Greedy Strategy 61

5.6. Experiments for Local Rejection . . . . . . . . . . . . . . . . . . . 62
5.6.1. Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6.2. Dynamic Programming versus Greedy Optimisation . . . . 62
5.6.3. Experiments on Artificial Data . . . . . . . . . . . . . . . . . 63
5.6.4. Experiments on Benchmarks . . . . . . . . . . . . . . . . . 65
5.6.5. Medical Application – The Adrenal Tumours Data . . . . . . 65

5.7. Conclusion: Answering the Research Questions . . . . . . . . . . 67

6. Incremental Online Learning Vector Quantisation 69
6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4. Incremental Online Learning Vector Quantisation . . . . . . . . . . 72
6.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.1. Influence of Parameters for Incremental Learning . . . . . . 76
6.5.2. Compatibility with Metric Learning . . . . . . . . . . . . . . 77
6.5.3. Comparative Evaluation . . . . . . . . . . . . . . . . . . . . 77

6.6. Conclusion: Answering the Research Questions . . . . . . . . . . 80



Contents ix

7. Combined Offline and Online Learning 81
7.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2. Description of the Scenario . . . . . . . . . . . . . . . . . . . . . . 83
7.3. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5. Combining Offline and Online Learning . . . . . . . . . . . . . . . 85
7.6. Experiments on Artificial and Benchmark Data . . . . . . . . . . . 87
7.7. Summary of the Main Findings . . . . . . . . . . . . . . . . . . . . 96
7.8. Online Metric Learning for an Adaptation to Confidence Drift . . . . 97
7.9. Conclusion: Answering the Research Questions . . . . . . . . . . 105

8. Application on Road Terrain Detection 107
8.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3. Road Terrain Detection – Related Work . . . . . . . . . . . . . . . 108
8.4. The Road Terrain Detection System . . . . . . . . . . . . . . . . . 110
8.5. The Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.6. Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.7. Conclusion: Answering the Research Questions . . . . . . . . . . 115

9. Conclusion 117

A. Appendix 121
A.1. Publications in the Context of this Thesis . . . . . . . . . . . . . . . 121
A.2. Data Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.3. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 129





List of Tables

4.1. Properties of the studied certainty measures . . . . . . . . . . . . 35

5.1. Sample rejects for three partitions and their losses and gains . . . 58

6.1. Comparison of several online, incremental LVQ approaches . . . . 70
6.2. Results of the ioLVQ and an incremental SVM . . . . . . . . . . . . 78

7.1. Comparison of Queißer’s architecture and the OOL architecture . . 90
7.2. The different incremental LVQ approaches . . . . . . . . . . . . . . 91
7.3. The parameters of the used approaches . . . . . . . . . . . . . . . 92
7.4. Results of the different lifelong learning architectures . . . . . . . . 93
7.5. Parameters of the offline and the online classifiers . . . . . . . . . 103
7.6. The results of the Chequerboard data . . . . . . . . . . . . . . . . 103
7.7. The results of the Blossom and the benchmark data . . . . . . . . 104

A.1. Data properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xi





List of Figures

1.1. Structural overview of this thesis . . . . . . . . . . . . . . . . . . . 4

2.1. Challenges in classification . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Rejection process . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Optimal reject option . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Optimal local reject option . . . . . . . . . . . . . . . . . . . . . . . 11
2.5. Examples of accuracy-reject-curves . . . . . . . . . . . . . . . . . 12
2.6. A k-nearest neighbour certainty measure . . . . . . . . . . . . . . 17
2.7. Our taxonomy for rejection . . . . . . . . . . . . . . . . . . . . . . 19

3.1. Development of learning vector quantisation . . . . . . . . . . . . . 22
3.2. Scheme of quantities used in generalised learning vector quantisation 23

4.1. Contour lines of the certainty measures for an artificial 2D data . . 31
4.2. Dist in case of multiple prototypes per class . . . . . . . . . . . . . 33
4.3. Accuracy-reject-curves on Gaussian clusters . . . . . . . . . . . . 37
4.4. Accuracy-reject-curves on benchmark data . . . . . . . . . . . . . 38
4.5. Comparison against the accuracy-reject-curves of the SVM . . . . 40
4.6. Accuracy-reject-curves of the comparison to probabilistic approaches 45

5.1. An exemplary decision tree with its partitions of the input space . . 51
5.2. Several certainty measures . . . . . . . . . . . . . . . . . . . . . . 53
5.3. Example where a global reject option fails . . . . . . . . . . . . . . 55
5.4. Example of losses/gains for a partition of the space . . . . . . . . . 57
5.5. Results of dynamic programming versus the greedy algorithm . . . 63
5.6. Results of local rejection for artificial data . . . . . . . . . . . . . . 64
5.7. Results of local rejection for benchmark data . . . . . . . . . . . . 66
5.8. Results for the medical adrenal tumours data set . . . . . . . . . . 67

6.1. Scheme of machine learning scenarios . . . . . . . . . . . . . . . 71
6.2. Scheme of error-based prototype insertion . . . . . . . . . . . . . 74
6.3. Scheme of prototype deletion . . . . . . . . . . . . . . . . . . . . . 74
6.4. The Outdoor data set . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5. Different perspectives of an object of the Outdoor data set . . . . . 75
6.6. Effect of the parameters of ioLVQ . . . . . . . . . . . . . . . . . . . 76

xiii



xiv List of Figures

6.7. Effect of the initialisation of the metric . . . . . . . . . . . . . . . . 77
6.8. Comparison of ioLVQ in several settings . . . . . . . . . . . . . . . 79
6.9. Comparison of ioLVQ in several settings with an incremental SVM 79

7.1. A possible application scenario . . . . . . . . . . . . . . . . . . . . 84
7.2. Two different types of lifelong learning architectures . . . . . . . . 84
7.3. An architecture combining an online and an offline classifier . . . . 85
7.4. The Blossom data set . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5. A possible split in offline and online data of the Outdoor data . . . 88
7.6. A 2D visualisation of the Outdoor data set . . . . . . . . . . . . . . 89
7.7. General data split in offline and online data . . . . . . . . . . . . . 90
7.8. The Chequerboard data set . . . . . . . . . . . . . . . . . . . . . . 97
7.9. The settings of the Chequerboard data . . . . . . . . . . . . . . . 98
7.10.The desired partitioning of setting A and B . . . . . . . . . . . . . . 98
7.11.Explanation of the result figures . . . . . . . . . . . . . . . . . . . . 99
7.12.Exemplary results without confidence drift adaptation . . . . . . . . 100
7.13.Scheme of OOL extension for confidence drift adaptation . . . . . 101
7.14.Exemplary results of the architecture with confidence drift adaptation102
7.15.The results of the Chequerboard data for three settings . . . . . . 104

8.1. Data labelling through human driving . . . . . . . . . . . . . . . . . 109
8.2. Examples for road-like area and semantic road . . . . . . . . . . . 110
8.3. The algorithmic steps of the road terrain detection system . . . . . 111
8.4. How the system collects ground truth data . . . . . . . . . . . . . . 111
8.5. Scheme of the used scenario . . . . . . . . . . . . . . . . . . . . . 112
8.6. Offline GMLVQ performance when features are removed . . . . . . 113
8.7. GMLVQ road classification on exemplary images . . . . . . . . . . 114
8.8. Frame-wise comparison of the GMLVQ and the RTDS . . . . . . . 116



Abbreviations and Symbols

Abbreviations

k-NN k-nearest neighbour classifier

ARC accuracy-reject-curve

CFE catastrophic forgetting effect

DP dynamic programming

GLVQ generalised learning vector quantisation

GMLVQ generalised matrix learning vector quantisation

GMM Gaussian mixture model

ioLVQ incremental online learning vector quantisation

iSVM incremental support vector machine

LGMLVQ localised generalised matrix learning vector quantisation

LVQ learning vector quantisation

NNC nearest neighbour classifier

OOL combined offline and online learning

RSLVQ robust soft learning vector quantisation

RTDS road terrain detection system

SVM support vector machine

Classifier variables

αj a leaf of a decision tree

η(w) accumulated certainty values of classifications of points in the Voronoi
cell represented by w

Γ the decision border induced by the decision tree

gmax maximum storage capacity of S

p̂(·) estimated probability

Λ global matrix of dΛ

Ω square root of Λ

Ω(l, k) single element in the l-th row and the k-th column of Ω

Φ(·) a monotone increasing function

xv



xvi Abbreviations and Symbols

rnum In periods of rnum seen training data points, it is checked if prototypes
should be removed.

σ variance of a Gaussian

ε learning rate

| · | cardinality of a set

w a prototype

w± closest prototype of the same class/a different class with respect to a
data point

x a data point

x(l),w(l), [·]l l-th element of a vector

ξ number of prototypes

ζ number of the partitions of the input space

ζ number of the partitions of the input space

cj label of prototype wj

d(·) dissimilarity measure

d± dissimilarity of a data point to the closest prototype of the same/of a
different class

dΛj (·) dissimilarity measure of LGMLVQ

dΛ(·) dissimilarity measure of GMLVQ

E... cost function of . . .

M dimension of data, prototypes

p(·) a probability

S set of wrongly classified data points

Vj Voronoi cell of prototype wj

W set of prototypes

X a set of data points

yi class label of data point xi
Z number of classes

Rejection

Eθj true rejects in Υj

Eθ true rejects: rejected data points which would be classified wrongly

Lθj false rejects in Υj

Lθ false rejects: rejected data points which would be classified correctly

Xθj rejected points in Υj

Xθ rejected data points with a lower certainty value than θ



Abbreviations and Symbols xvii

opt(n, j, i) It measures the maximum number of true rejects obtained with n

false rejects, and a restricted threshold vector (see 59).

θθθ threshold vector (local thresholds)

θθθ threshold vector (local thresholds)

Θ the set of thresholds corresponding to correctly classified points

θ threshold for rejection

Θj the set of thresholds corresponding to correctly classified points with
respect to Υj

θj local threshold, responsible for Υj

Υj The j-th partition of the input space, e. g., a Voronoi cell.

E set of wrongly classified data points, errors

Ej set of wrongly classified data points, errors in Υj

L set of correctly classified data points

Lj set of correctly classified data points in Υj

r(·) certainty measure

Xθj accepted points in Υj

Xθ accepted data points with a higher certainty value than θ





1. Introduction

Chapter overview In this chapter, we first motivate the tackled topics of this thesis. Thereafter

we give a structural overview of the single chapters.

1.1. Motivation

Digitalisation is progressing in many domains like in industrial applications with
regard to industry 4.0, in biomedicine, personalisation, and driver assistance
systems. This leads to a huge amount of data. Inspection and handling of
gathered data make automated data analysis more and more important, since
an analysis of the data could hardly be done by humans in an acceptable time
frame. Machine learning and related research areas1 provide techniques to extract
structures or information automatically from available data.

These techniques are either supervised or unsupervised2. If information is
available which groups data into a finite number of classes, a supervised technique
can be applied. Unsupervised techniques deal with data without such information.
For supervised machine learning, one aim is to extract characteristics of the
classes and to identify where classes differ and what they have in common,
respectively. One of the most popular principles to reach this aim is classification.

The learning techniques used for classification have a basic principle in common:
they want to minimise the number of errors in classification since they cause costs.
Depending on the application these costs range between low (not critical) and
huge (very critical, e. g., in the biomedical domain or safety related applications).
One realisation of this principle which puts a particular emphasis on its gener-
alisation ability, is based on maximising the margin between classes. Popular
representatives are support vector machines (SVM, Boser et al., 1992) and learn-
ing vector quantisation (LVQ, Kohonen, 1989). LVQ constitutes a prototype-based
technique, and it will play a central role in this thesis as classification scheme.
Another basic idea is to combine many weak classifiers into one powerful classifier,

1These areas are for instance data analysis, computational intelligence, neural computation,
pattern recognition, and statistical modelling. They aim at automatically extracting information
from given data.

2We are aware of finer grained subgroups as for instance semi-supervised techniques. Since we
only use supervised techniques, we only distinguish these two groups.
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to a so-called ensemble classifier. Random forests belong to ensemble classi-
fier and they consist of several decision trees. This classifier is suited for large
data sets due to its short training time and its very efficient classification scheme.
Neural networks are classifiers which are inspired by the human brain. They try
to mimic the functionality of the brain. Lately they got popular with deep neural
networks which are a powerful tool for classification, but the classifier is complex
and the internal mechanisms are hard to interpret. There are classifiers based on
probabilistic modelling as well, e. g., the Bayes classifier. They aim at estimating
the class densities, e. g., with Gaussian distributions. Later, we will deal mainly
with LVQ schemes as a typical classification techniques in this thesis because
of their simple classification scheme and interpretable classification models. In
chapter 3, we will explain the used LVQ schemes within this thesis as well as the
concept of metric learning.

Since wrong classifications can have severe effects, a certainty information can
be at least as important as the classification itself. Depending on the application,
it can be better to reject a classification instead of making a mistake. Hence a
reject can have lower costs than a false classification. Supervised techniques
based on a probabilistic data modelling include such certainty information. The
estimated probabilities of a data point belonging to a specific class can be used for
this purpose. A low probability value can lead to rejection since the classification is
uncertain. In chapter 4 we will discuss rejection based on probabilities. Techniques
lacking such information can be enhanced with a statistical modelling on top or
with certainty information based on heuristics, e. g., statistics of the neighbourhood
or on distances. Using rejection comes along with the issue of choosing a suited
certainty measure and a threshold judging an uncertain decision. More sophisti-
cated rejection strategies use multiple thresholds, e. g., class-wise or even more
fine-grained partitioning of the data. In chapter 4 we discuss several certainty
measures suited for prototype-based classifiers and it also analyses rejection with
one global threshold. The analysis of strategies with multiple thresholds can be
found in chapter 5. There we also provide techniques which determine the best
possible thresholds for a given setting.

Besides the hot topic of rejection, the area of lifelong machine learning gets
more and more important (Polikar and Alippi, 2014). A recent definition states:
”Lifelong Machine Learning, or LML, considers systems that can learn many tasks
over a lifetime from one or more domains. They efficiently and effectively retain
the knowledge they have learned and use that knowledge to more efficiently and
effectively learn new tasks (Silver et al., 2013).” Hence, approaches usable for
lifelong learning have to deal with various issues. They have to be flexible such that
including new content is possible (plasticity). Contrarily, already known information
has to be maintained for later use (stability). The trade-off between those two
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principles is known as stability plasticity dilemma (Grossberg, 1980). To our
knowledge there exists no satisfying solution for this dilemma in machine learning.
However, the human brain seems to have a very efficient solution. Some of its
working principles are explored and serve as inspiration for machine learning
techniques with promising results (see, e. g., Kirstein et al., 2005, 2009, 2012).
Ongoing research studies how these mechanisms operate and how to use them
in lifelong machine learning. In chapter 6 and 7, we will extend and merge existing
lifelong learning approaches in order to combine their advantages and to improve
their behaviour regarding the stability plasticity dilemma. With our approaches, we
focus on lifelong adaptability of the classifier complexity for LVQ schemes and on
guaranteeing a minimal performance of a system by the combination of an offline
and an online classifier.

1.2. Contribution of this Thesis

This thesis contains novel insights into the following questions:

• What are good deterministic certainty measures suitable for prototype-based
classifiers and which properties do they have?

We investigate several deterministic certainty measures, e. g., the distance to
the decision border. The analysed measures work well in almost all settings
and they show a similar performance as probabilistic counterparts.

• Rejection can be based on a global threshold or on local thresholds which
are valid in single partitions of the data space only. Which strategy should
be applied in which setting and how can we choose best thresholds (global
or local)?

Local thresholds are beneficial in settings where the data have local or class
specific characteristics which are not captured by the used classifier. For
settings with no local characteristics or with classifiers dealing with these
characteristics, a global threshold suffices. We provide an optimal dynamic
programming scheme and a fast greedy algorithm which determine the best
thresholds on a given setting.

• Is it useful to integrate certainty information in lifelong learning architec-
tures and is the powerful concept of metric adaptation (Bellet et al., 2013)
compatible with this learning concept?

We show that the integration of certainty information in lifelong learning
architectures is useful and that it can be combined with metric adaptation.
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• Is it beneficial to transfer the concept of the discussed lifelong learning
architecture to a real word application to improve its performance?

We exemplary test this for the road terrain detection system (RTDS, Fritsch
et al., 2014). The system distinguishes between road and non-road in real
traffic scenes. We show that a simple on-the-fly trained approach compared
to the advanced RTDS provides reasonable results with some limitations.

The next section contains the structure of this thesis and shortly recaps each
chapter.

1.3. Structural Overview of this Thesis

state of the art rejection (chap. 2)

classification model (chap. 3)

extraction of certainty information (chap. 4)

global rejection (chap. 4)

local rejection (chap. 5)

online incremental learning (chap. 6)

combination with offline learning (chap. 7)

RTDS – application (chap. 8)

Figure 1.1.: Structural overview of this thesis (RTDS – road terrain detection system).
The certainty information can either be used for rejection or for incremental learning.

The content of this thesis is visualised in Fig. 1.1. Each chapter of this thesis
discusses one part of the figure in general.

Rejection strategies are the main focus of this thesis. We start with the intro-
duction of basic rejection concepts and a literature overview in chapter 2. A reject
option relaxes the constraint of a classifier to provide a class label in case of
an uncertain decision. This way the classification of a data point is postponed
and marked for further treatment. We establish the notation of global and local
rejection and the theoretical framework for understanding and we discuss several
existing rejection strategies. The literature survey enables us to point to relevant
research topics which we tackle in chapter 4 and 5.

We present prototype-based classifiers and the later used LVQ schemes in
chapter 3. We chose these classification technique due to its simple classification
scheme, the interpretability of the classifiers and the lifelong learning suitability.
But there are only few rejection strategies available for prototype-based classifiers
such that we carry on the research in this important topic.
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The focus of chapter 4 is global rejection, especially in the context of prototype-
based classifiers. We present several dissimilarity-based certainty measures which
are suited for this classifier type and we discuss their properties. Subsequently, we
present results for global rejection based on those measures for artificial toy data
and public benchmarks and we compare the results with probabilistic counterparts
and a state of the art approach. Note that global rejection implicitly assumes an
equally scaled certainty measure in the whole input space.

In chapter 5 we move on to the topic of local rejection which relaxes the implicit
assumption of global rejection, since it relies on a partitioning of the input space
only assuming a homogeneous scaling in each partition. We describe an optimal
dynamic programming scheme and an efficient greedy scheme to determine the
best parameters for local rejection. Since lots of classifiers provide a partitioning
of the input space, we compare local and global rejection for several types of
classifiers on artificial toy data and public benchmarks. Experiments on a medical
data set highlight the usefulness in this domain.

Certainty measures indicate areas where a classifier tends to do mistakes.
In chapter 6 we analyse weather certainty information can be used not only for
rejection, but also in other machine learning areas, e. g., in lifelong learning. We
use certainty information as criterion for inserting or deleting prototypes in a new
online, incremental learning vector quantisation approach for lifelong learning.
Additionally, this chapter contains an analysis of the parameters of the incremental
classifier and an investigation of integrating different metric learning schemes. We
report results for public benchmarks and one real-life robotic data set.

Chapter 7 contains the analysis of a different approach for lifelong learning
which is an architecture combining the classifier from chapter 6 with a static
offline trained one to avoid the so-called catastrophic forgetting effect. A dynamic
classifier selection based on certainty values provided by the two classifiers
defines the final output class label for a given input. We provide results of this
architecture on artificial toy data, public benchmarks, and for real-life robotic data
and we compare them to other lifelong learning methods.

So far we analysed lifelong learning approaches without a concrete application.
A possible area of application could be the field of road terrain detection. Thus, we
analyse in chapter 8 how good an online, trained prototype-based classifier can get
in comparison to the offline trained road terrain detection system. Subsequently,
we sum up the achieved knowledge and we point to future work in chapter 9.

1.4. Publications and Funding Related to this Thesis

The following articles have been published in the context of this thesis:
(More detailed references are provided in the Appendix Section A.1, on page 121.)
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Chapter overview We introduce the basic concept of global and local rejection strategies and

we give an overview on existing state of the art approaches which can be applied to several types of

classifiers, e. g., probabilistic classifiers and support vector machines. It turns out that the literature is

lacking adequate certainty measures for prototype-based classifiers and an analysis/comparison of

them. Furthermore, there does not exist a comparison between global and local rejection strategies

for different classifier types. Regarding local rejection, there is no approach for determining

appropriate local thresholds for a given setting. Those weak points motivated our research which is

described in the subsequent chapters.

Parts of this chapter are based on:

[J16] L. Fischer, B. Hammer, and H. Wersing. Optimal Local Rejection for Classifiers. Neurocomputing,
submitted.

[J15] L. Fischer, B. Hammer, and H. Wersing. Efficient Rejection Strategies for Prototype-based Classifica-
tion. Neurocomputing, 169 (2015) 334–342.

When creating a classifier, the main target is to achieve the best possible
accuracy. In case of errors, one is interested in a mechanism indicating whether
the decision of a classifier can be trusted (certain classification) or if the classifier
is probably erring (uncertain classification) for a given input. Such a mechanism is
especially important in applications where a wrong classification can have severe
effects, e. g., in driver assistance systems or in the biomedical domain. Vailaya
and Jain (2000) discuss two main reasons for uncertain classification (Fig. 2.1):

• Ambiguity: The classification of the data point is unclear, e. g., the point is
close to a decision border, or it lies in a region with overlapping classes.

• Outliers: The data point is dissimilar to any already seen data point, e. g., it
is caused by noise or it is an instance of a yet unseen class or cluster.

A reject option can be used in order to decide if a classification is certain enough
(Fig. 2.2). Rejected inputs can be marked for further tests or they can be passed
to domain experts who will do a manual classification.

Based on such considerations, quite a few heuristic rejection strategies have
been proposed (see e. g., Cordella et al., 1995; Vailaya and Jain, 2000; Fumera
et al., 2000; Stefano et al., 2000; Fumera and Roli, 2002; Suutala et al., 2004).
In the next section we explain the general setting and we give a mathematical
formulation for rejection strategies.
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outliersoutliers

Figure 2.1.: Challenges in classification – A three class setting shows two main challenges
in classification: overlapping classes and outliers (different symbols and colour indicate
the class of the data points; the dashed lines indicate class borders and the grey area
shows overlapping classes).

trained
classifier

reject

accept assigned
class label

reject decision

data point class label
no

yes

Figure 2.2.: Rejection process: A trained classifier provides a class label for the given
data point. If the criteria for rejecting the decision is fulfilled, the decision is rejected and
otherwise the assigned class label is accepted.

2.1. General Setting

As stated previously, we consider multi-class classification problems with training
data X = {(xi, yi) ∈ RM × {1, . . . , Z}}Ni=1, whereby data are drawn according
to some unknown probability distribution P on RM × {1, . . . , Z}. A classifier
implements a function c : RM → {1, . . . , Z}. For typical settings, a classifier aims
at minimising the classification error

E(c) :=

∫
L(c(x), y)dP (x, y) .

With L(c(x), y) denoting the 0-1-loss function

L(c(x), y) :=

{
0 if c(x) = y

1 otherwise .

Since P is typically unknown, standard classification schemes often optimise
the empirical error (2.1) instead, or a related, numerically simpler (e. g., convex)
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surrogate loss.

Ê(c,X) :=
1

N

∑
1≤i≤N

L(c(xi), yi) (2.1)

For popular classifiers, results from computational learning theory guarantee
that the empirical error allows us to uniformly bound the true error for i. i. d. data
and a proper regularisation (Tewari and Bartlett, 2007).

A multi-class classifier can be extended by a reject option after training (Fig.
2.2). Hence, we assume a trained classifier is given. In addition to the output
class, many classifiers provide a certainty measure of its classification like the
class probability or the distance to the decision border. This fact is used whenever
classification is extended by a reject option. Points with a bad certainty value are
rejected since we consider reject options based on certainty measures where
a higher value indicates higher certainty. Formally, a reject option extends the
classifier to a mapping (denoted with the same symbol) c : RM → {1, . . . , Z, r },
where the symbol r denotes the rejection of the classification of input x which is
typically defined by an extended 0-1-loss function

L(c(x), y) :=


0 if c(x) = y

b if c(x) = r

1 if c(x) 6= y, c(x) 6= r ,

(2.2)

where costs b ∈ (0, 1) are assigned to a reject r (Bartlett and Wegkamp, 2008).
As example, for driver assistance systems it is better to reject an uncertain decision
instead of a classification which initiates a wrong interaction of the system possibly
causing severe effects.

The definition (2.2) is similar to the early definition used by Chow (1970) who
proposed an optimal rejection strategy in the sense of error reject trade-off when
the true class probabilities are known. For values b < 1, it is beneficial to reject a
wrong classification rather than to provide a false output, but rejects always come
at the risk of rejecting correctly classified points as well. Hence, the threshold (or
threshold vector, discussed later on) starting from which rejection is done, is a
crucial parameter. For settings with known class probabilities the optimal threshold
can be obtained according to Chow (1970), but in general this information is
unavailable. It is crucial to find an answer to the question how to choose thresholds
which optimise the modified classification error. While threshold optimisation is
straightforward in the case of one global threshold, the optimisation problem is
more difficult for local rejection strategies as proposed in Fumera et al. (2000) and
it will be discussed in chapter 5.

In the following, the basic concept and differences between global and local
rejection are explained.
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Global Rejection

Given a certainty measure:

r : RM → R,x 7→ r(x) ,

a data point x and a threshold θ ∈ R, a simple reject option is to reject x iff

r(x) < θ .

If a data point is rejected, no classification takes place and the decision is post-
poned. The data point is marked for further treatment. In most classical rejection
strategies one global threshold value is taken, and an optimal value depends on
the respective costs of misclassification versus reject. Since the threshold θ is
chosen uniformly for the whole input space, we denote such a reject option as
global reject option. This implicitly assumes an equally scaled measure across
the input space. For a true probability two conditions hold: (i) it is normalised, and
(ii) equal probability values lead to an identical uncertainty of the classification, in-
dependently of the location of the related data points. We say a certainty measure
is equally scaled when both conditions hold. Though we will see promising results
in section 4.4, we can construct situations where certainty measures violate these
conditions (see section 5.4.2). Local threshold strategies relax this assumption.

As Vailaya and Jain (2000) mentioned, uncertainty can have two different
reasons: data points being outliers, or data points being located in ambiguous
regions. An optimal reject option would reject exclusively wrongly classified data
points (Fig. 2.3). Of course in practice no certainty measure can fulfil this.

⇒

Figure 2.3.: Optimal reject option – Sketch of an artificial three-class setting (different
symbols). The bigger symbols are the prototypes of the classifier. Left: no rejection; An
optimal reject option rejects the red encircled errors only. Right: reject option is applied.

Local rejection strategies offer a finer grained control of rejection and the basic
concept is explained in the following.
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Local Rejection

A local threshold strategy relies on a given partition of the input space RM into ζ
disjunct, non-empty sets Υj such that

RM =
⋃

1≤j≤ζ
Υj .

Using a different threshold θj in every set Υj enables a finer control of rejection
(Vailaya and Jain, 2000). A separate threshold θj ∈ R is chosen for every set Υj ,
and the reject option is given by a threshold vector θθθ = (θ1, . . . , θζ) of dimension ζ
equal to the number of sets in the partition. A data point x is rejected iff

r(x) < θj where x ∈ Υj .

Hence, θj determines the behaviour for the set Υj only. In the special case of one
region Υj per classifier output class j, local thresholds realise class-wise rejection.

Figure 2.4 shows an instance of this local rejection strategy performing optimally
if only labelling errors are rejected. In general this is not the case for local/global
rejection strategies as mentioned before.

⇒

Υ1

Υ2

Υ3

θ1

θ3

θ2

Figure 2.4.: Optimal local reject option – Sketch of an artificial three-class setting (different
symbols) with an prototype-based model. The bigger symbols are the prototypes of the
classifier. It is the same plot as Fig. 2.3. New: There are three partitions Υj and each
one is associated with a single threshold θj . Left: Model without rejection, three encircled
points are errors. Right: Model with optimal rejection since the errors are rejected only.

Comparing global and local rejection strategies, the choice of the global thresh-
old θ or threshold vector θθθ is crucial.

2.2. Evaluation of Reject Options

Nadeem et al. (2010) introduced accuracy-reject-curves (ARC) for evaluating
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rejection strategies. An ARC is defined as follows: For a given global threshold θ
the data X decompose into two sets X = Xθ ∪ Xθ. The set Xθ contains rejected
data points and Xθ contains accepted data points. For an increasing threshold
θ starting from no reject (original model: θ = mini{r(xi)}) to full reject ( θ =

maxi{r(xi)}, no data point is classified) the cardinality of Xθ increases whereas
the cardinality of Xθ decreases. In the ARC (Fig. 2.5), the relative size of |Xθ|/|X|
(ta(θ)) versus the accuracy on Xθ (tc(θ)) is reported by means of a variation of the
threshold θ in the interval [mini{r(xi)},maxi{r(xi)}]. Hence, an ARC consists of
pairs (ta(θ), tc(θ)) which report the ratio of classified points (starting from a ratio
1 down to 0) versus the obtained accuracy for the classified points. An ARC can
behave in three ways when increasing the threshold θ′ to θ:

• increasing: rejection of more errors than correct classified data;

• constant: rejection of the same number of errors and correct classified data;

• decreasing: rejection of more correct classified data than errors.

|Xθ|/|X|

ac
cu
ra
cy

on
X

θ

1 0
0

1

accuracy of original model
without rejection

good rejection

bad rejection

Figure 2.5.: Examples of possible accuracy-reject-curves. The shape of the solid black
line (increasing, as fast as possible) is desired while the dash dotted shape is not desired.

Finding an optimal threshold (vector) for rejection refers to two contradicting
objectives: A threshold θ or threshold vector θθθ should be chosen such that the
rejection of errors (true rejects) is maximised, while the rejection of correctly
classified points (false rejects) is minimised. All optimal solutions/thresholds
define a Pareto front, which can be formalised in the following way.

Pareto Front

Assume a labelled data set X (|X| = N) is given to determine the optimal local
thresholds. A classifier decomposes X into a set of correctly classified data points
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L and a set of wrongly classified data points (errors) E, i. e., X = L ∪ E. These
sets split with respect to the partition1 Υj of the space into

Lj := L ∩Υj and Ej := E ∩Υj , j = 1, . . . , ζ .

An optimal reject option would reject all points in E, while classifying all points
in L. This is usually impossible using local or global rejection. Applying a global
threshold θ, the data set X decomposes into a set of rejected data points Xθ and
a set of accepted data points Xθ, i. e. X = Xθ ∪Xθ. We refer to false rejects as

Lθ = Xθ ∩ L

and to true rejects as
Eθ = Xθ ∩ E ,

i. e., Xθ = Lθ ∪ Eθ. Note that, when increasing θ, the cardinality of |Xθ|, |Lθ|, and
|Eθ| is monotonically increasing.

Similarly, for a threshold vector θθθ = (θ1, . . . , θζ), we denote the points in Υj

which are rejected as Xθj , and the accepted points in Υj as Xθj . This relates to
false rejects

Lθj = Xθj ∩ Lj for Υj , j = 1, . . . , ζ

and true rejects

Eθj = Xθj ∩ Ej for Υj , j = 1, . . . , ζ .

The false and true rejects are obtained as a union of these sets:

Lθθθ =
⋃

1≤j≤ζ
Lθj , Eθθθ =

⋃
1≤j≤ζ

Eθj and Xθθθ =
⋃

1≤j≤ζ
Xθj .

As for global rejection, monotonicity holds for the size of Xθj , Eθj , and Lθj when
raising the local threshold θj for partition Υj .

As mentioned before, the performance measure is an ARC (Nadeem et al.,
2010). A given threshold θ leads to the accuracy of the classified points

ta(θ) :=
|L\Lθ|
|Xθ|

1In case of global rejection, there exists only one partition which equals the input space.
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versus the ratio of the classified points

tc(θ) :=
|Xθ|
|X| .

These two measures quantify conflicting objectives with limits ta(θ)=1 and tc(θ)=0

for large θ (all points are rejected) and ta(θ)=|L|/|X| and tc(θ)=1 for small θ (all
points are classified, the accuracy equals the accuracy of the given classifier for
the full data set). The same quantities can be defined for a threshold vector θθθ.
Note that a large number of optimised thresholds can lead to over-fitting. For
simplicity, we refer to a single threshold or a threshold vector as threshold θ in
the following. The aim of an optimisation of θ is maximising the value ta, and
minimising tc. Hence, not all possible thresholds and correlated pairs (ta(θ), tc(θ))

are of interest, only optimal choices related to the so-called Pareto front. Note that
pairs (|Lθ|, |Eθ|) uniquely correspond to pairs (ta(θ), tc(θ)) and vice versa.

Every threshold uniquely induces a pair (|Lθ|, |Eθ|) and a pair (ta(θ), tc(θ)). We
say that θ′ dominates the choice θ if |Lθ′ | ≤ |Lθ| and |Eθ′ | ≥ |Eθ| for at least one
term, inequality holds. We aim at optimal rejection thresholds at the Pareto front

Pθ := {(|Lθ|, |Eθ|)| θ is not dominated by any θ′} .

A dominated threshold (threshold vector) corresponds to a sub optimal choice:
One can increase the number of true rejects without increasing the number of
false rejects, or, conversely, false rejects can be lowered without lowering true
rejects.

Optimal Thresholds for Given Rejection Costs

In the preceding section, we defined the Pareto front rather than a single threshold
which is optimised according to the extended empirical risk Ê(c,X) (2.1) for given
rejection costs b. This has the benefit that, for any b ∈ (0, 1), an optimal threshold
can be extracted from the Pareto front due to the following relation: assume a
threshold θ ∈ Pθ is chosen; using the notation from above, we can restate

Ê(c,X) =
1

N
· (|E| − (1− b) · |Eθ|+ b · |Lθ|) . (2.3)

Hence, the optimal threshold θ for rejection costs b is given by

θopt(b) = arg max
θ

(
|Eθ| −

b

1− b · |Lθ|
)
, (2.4)

what can be extracted from the Pareto front. This enables a user to pick the optimal
thresholds according to emerging rejection costs without a new optimisation.
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The basic concepts and formalisations of global and local rejection are com-
pleted and in the following we give an overview on state of the art approaches.

2.3. State of the Art Approaches

This section summarises the state of the art for rejection strategies and accom-
panying certainty measures in supervised learning. The topic of reject options
is also known as selective classification (El-Yaniv and Wiener, 2010). Vailaya
and Jain (2000) highlight two main reasons for rejection: ambiguity and outliers.
There exist several approaches explicitly addressing one of these reasons or a
combination of both. Mostly, reject options are based on a measure which provides
a certainty value about whether a given data point is correctly classified or not. In
the following, we distinguish probabilistic and deterministic approaches.

Probabilistic approaches: Common certainty measures are based on proba-
bilities. As already mentioned, Chow (1970) proposed optimal reject options, given
the true probability density function is known. In this case, global rejection is an
adequate strategy. A local strategy offers no benefit compared to a global one
in such a setting. Chow’s rule can therefore serve as a baseline provided that
this ground truth is available. In general this is not the case and there are many
approaches which use estimated class probabilities for rejection instead. There
are two main ways to get those. Either one uses a probabilistic classifier providing
an internal estimation of the probabilities, e. g., Bayes classifier, or the estimation
is done in addition to a non-probabilistic classifier.

Hansen et al. (1994) prove that in the limit case, the rejection strategy (Chow,
1970) provides a bound for any other measure in the sense of the error-reject
trade-off and they provide illustrative examples. They also extend Chows’s rule to
near optimal classifiers on finite data sets. The authors introduce a general scaling
approach to compare error-reject curves of several independent experiments even
with different classifiers or data sets. Herbei and Wegkamp (2006) link the work
of Chow to a regression function and they provide bounds for the performance
of rejection depending on the quality of the probability estimates. They further
extend the formal framework of Chow towards the two possible errors in binary
classification which is particularly important in medical studies where classifying
an ill patient as healthy is worse than vice versa. Santos-Pereira and Pires (2005)
propose a generalisation of Chows’s rule towards different class conditional costs
of wrong classifications, too. They also link rejection with the so-called receiver
operating characteristic. Fumera et al. (2000) directly builds on Chow (1970) and
they state that class-related rejection thresholds work better than a global one
in case of estimated class probabilities. This effect is caused by the difference
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between the original and the estimated probabilities which leads to shifted class
borders. Class-related thresholds can be used in order to balance this effect.

Due to this theoretical background outlined above, many approaches follow the
concept to empirically estimate the data distribution first. Often, Gaussian mixture
models (GMM) are used for this purpose (Devarakota et al., 2006; Vailaya and
Jain, 2000). Devarakota et al. (2006) extend a GMM to estimate the insecurity
of a particular class membership for novel, previously unseen patterns of a new
class; this estimation can lead to a reliable outlier reject option. Vailaya and
Jain (2000) investigate the suitability of GMMs for both, rejection of outliers and
ambiguous data for prototype-based models. In particular, they propose an
efficient strategy on how to determine suitable rejection thresholds in these cases.
The reliable estimation of GMMs is particularly problematic for high dimensional
data. Therefore, Ishidera et al. (2004) propose a suitable approximation of the
probability density function for high dimensionality, which is based on a low-
dimensional projection of the data.

In case of non-probabilistic classifiers, there are two main options. Either one
uses a probabilistic counterpart of the desired algorithm (e. g., the Bayes point
machine (Herbrich et al., 2001) instead of a SVM or the robust soft LVQ (Seo
and Obermayer, 2003) instead of distance-based LVQ variants) or one does a
probabilistic modelling of the data in a post-processing step. Both ways provide
estimated class probabilities which are usable for rejection. A third option is, to
turn deterministic measures which are available in deterministic classifiers, e. g.,
distances, into probability estimates.

Turning deterministic measures into probabilities: The following methods
turn deterministic measures into estimated probabilities such that rejection on
these estimates is possible. Platt (1999) proposed a nowadays popular approach
to turn the activity of a binary SVM into an approximation of a classification
confidence. The certainty measure is based on the distance of a data point to the
decision border, i. e., the activation of an SVM classifier. By means of a sigmoid
function, the distance is transformed into a confidence value. The parameters
of the sigmoid are fitted on the given training data. A transfer of this method
for multi-class tasks is provided by Wu et al. (2004) and it is implemented in
the LIBSVM toolbox (Chang and Lin, 2011). A newer approach (Langford and
Zadrozny, 2005) is based on the so-called probing reduction which is more general
than Platt’s approach. The authors also guarantee that a low error rate in the
binary classification task implies accurate probability estimates. A similar approach
by Gao and Tan (2006) turns output scores from outlier detection algorithms into
probabilities. The benefit of this method is that it is unsupervised and that the
estimated probabilities perform better than the pure scores.
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There exist settings where estimated class probabilities are unavailable or where
their estimation is undesired. Focussing on such settings there are many heuristic
approaches, e. g., distance-based measures.

Heuristic approaches: As an alternative, deterministic reject options have been
proposed, directly addressing extensions of the 0-1-classification loss towards a
reject option (2.2). Many rejection strategies base the reject option on a geometric
alternative such as the distance to the decision border (e. g., Alvarez et al.,
2007; Hu et al., 2009). For k-nearest neighbour classifiers (k-NN, Cover and
Hart, 1967) a variety of simple certainty measures exist using the neighbourhood
of a given data point (Delany et al., 2005; Hu et al., 2009). These measures
rely on the correlation of the label of the data point and its neighbours (Fig.
2.6). In these approaches, several different realisations and combinations of
neighbourhood statistics have been compared, resulting in an ensemble measure
largely raising the stability of the single measures. Sugiyama and Borgwardt
(2013) focus on effective outlier detection, relying on the distances of a new data
point from elements of a randomly chosen subset of the given data. An outlier
score is then given by the smallest distance. The resulting approach outperforms
state of the art approaches such as proposed by Ramaswamy et al. (2000) in
efficiency and accuracy. Zhang (2013) provides a survey with a large collection of
outlier detection approaches. Sousa and Cardoso (2013) introduce a reject option
identifying ambiguous regions in binary classifications. Their approach is based
on a data replication method with the advantage that no rejection threshold has
to be set externally, rather the approach itself provides a suitable cut-off. Stefano
et al. (2000) address different neural network architectures including multi-layer
perceptrons, learning vector quantisation, and probabilistic neural networks. Here
an effectiveness function is introduced taking different costs for rejection and
classification errors into account, very similar to the loss function as considered in
Chow (1970) and Herbei and Wegkamp (2006). Also, different certainty measures
based on the activation of the output neurons are studied.

These approaches deal often with a single rejection threshold and mostly with

Figure 2.6.: Sketch of a 3-NN rejection strategy. Different symbols indicate different
classes. Classification of the left data point (×) is more uncertain than that of the right
one (×) since all neighbours are of the same class for the latter.
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two-class classification only. Lately, extensions to more general settings such as
multi-label classification (Pillai et al., 2013a,b) and multiple classes (Tax and Duin,
2008; Ramaswamy et al., 2015; Capitaine, 2014) have been considered.

Integrated rejection strategies: If the costs for wrong classifications and re-
jects are identified beforehand, this information and the reject option can be
integrated in the classification model itself. Such models are based on the loss
function (2.2) or approximations thereof. E. g. for dissimilarity-based options, re-
jection can be added a posteriori to the classifier, or it can already be taken into
account while training (Villmann et al., 2015, 2016). Their approaches also provide
an adapted threshold for rejection. The cost function of both classifiers integrates
costs for rejected and wrongly classified data. While Villmann et al. (2016) focus
on outlier rejection, Villmann et al. (2015) focus on rejection due to ambiguity.
Fumera and Roli (2002) proposed one of the first embedded rejection strategies
for SVM. Alternative formulations which approximate the 0-1-loss by a convex
surrogate and which also prove the validity of this approach have been suggested
(Grandvalet et al., 2008; Bartlett and Wegkamp, 2008; Yuan and Wegkamp, 2010).
We are not focussing on such approaches because we assume settings without
a priori information about costs for errors and rejects, and settings with dynamic
costs due to, e. g., user interaction or concept drift.

A taxonomy for rejection (Fig. 2.7): In order to provide an overview of the
aforementioned approaches, we grouped some of them into a rough taxonomy.
We distinguish between probabilistic and deterministic approaches. The proba-
bilistic rejection approaches are based on known probabilities or estimated ones.
To obtain estimated probabilities one can simply use a probabilistic classifier
which provides the probability internally or one can estimate the probabilities in
a post-processing step independently of the used classifier. For deterministic
approaches, we distinguish between embedded rejection, which is integrated
in the classifier itself and optimised during training and approaches which work
as a post-processing step. The latter approaches rely also on the classifier but
parameters of the reject option are not optimised while training the classifier itself.
In our taxonomy only the approaches of Vailaya and Jain (2000) and Fumera et al.
(2000) provide local rejection.
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Rejection Strategies

Probabilistic Approaches

Known Probabilities
Chow (1970); Hansen et al. (1994);

Santos-Pereira and Pires (2005)

Estimated Probabilities
Herbei and Wegkamp (2006)

Embedded

Global
Devarakota

et al. (2006)

Local
Vailaya and Jain (2000);

Fumera et al. (2000)

Post Process
Platt (1999); Wu et al. (2004); Ishidera et al.

(2004); Gao and Tan (2006); Santos-Pereira

and Pires (2005); Alvarez et al. (2007)

Deterministic Approaches

Embedded
Fumera and Roli (2002); Bartlett

and Wegkamp (2008); El-Yaniv and

Wiener (2010); Yuan and Wegkamp

(2010); Villmann et al. (2015, 2016)

Post Process
Delany et al. (2005); Alvarez

et al. (2007); Hu et al. (2009);

Sugiyama and Borgwardt (2013)

Figure 2.7.: Our taxonomy for rejection
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2.4. Conclusion

Summing up the state of the art leads to the following findings: In settings with
known class probabilities the problem of finding the right certainty measure and
the optimal global threshold is solved by Chow (1970). Many approaches estimate
the class probabilities in settings where they are unavailable. Those estimations
are defective to varying degrees. The main shortcoming is, that it is difficult to
determine the precision of the estimated class probabilities. It turns out that
local thresholds are beneficial in scenarios with defective estimations (Fumera
et al., 2000). The other large group of approaches operates with deterministic
certainty measures, e. g., distance-based ones. There are well studied measures
available, e. g., for SVM, but there are only a few simple approaches suited for
prototype-based classifiers. Often it is difficult to set an appropriate threshold for
rejection since the deterministic measures, e. g., as the distance to the decision
border, may not be normalised. It is even more complicated if local thresholds
have to be chosen. The challenge is to determine the best possible thresholds in
order to optimise the error reject trade-off.

In the next chapter, we introduce the prototype-based classifiers first, which we
use later on. Afterwards, we report our research results on rejection strategies.



3. Prototype-based Classification

Chapter overview In this chapter we first motivate why we focus on prototype-based clas-

sifiers. A main advantage of those classifiers is their sparsity and that they allow a meaningful

interpretation. Second we describe the used classifiers which belong to the popular family of LVQ

approaches and we give a brief overview of their development.

A prototype-based classifier stores prototypes for different classes. Hence such
a classifier consists of a set W of ξ prototypes wj ∈ RM where every prototype
wj has a class label cj ∈ {1, . . . , Z}. A data point x ∈ RM gets the same label cl
as its closest prototype (nearest neighbour, NN) wl with

l = arg min
j=1,...,ξ

d(wj ,x) (3.1)

where d(·) is a dissimilarity measure; e. g., the Euclidean distance. The closest
prototype wl is called the best matching unit. By means of the rule (3.1), a
prototype-based classifier partitions the data into Voronoi cells or receptive fields

Vj = {x | d(wj ,x) ≤ d(wk,x),∀ k 6= j}, j = 1, . . . , ξ .

The classification in a Voronoi cell Vj is constant and defined by the representing
prototype wj .

A very basic approach is the nearest neighbour classifier (NNC) which uses
the training data points as prototypes. The benefits of such a prototype-based
classifier are:

• Prototypes wj are elements of the same space as the data (for NNC they
equal the data points) which make them interpretable and understandable.

• The classification scheme is simple and understandable.

But there are disadvantages as well since the number of prototypes in a NNC
equals the number of training data points, hence the model is very complex. Koho-
nen (1989) proposed learning vector quantisation (LVQ) which aims at a sparser
prototype-based model (Biehl et al., 2009). There the number of prototypes is
predefined and the LVQ relies on the Hebbian learning paradigm (Kohonen, 1989).
Although LVQ is a heuristic only, it achieves good results (Biehl et al., 2007). Due to
its simple strategy and its low computational effort together with good performance,
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LVQ is quite popular. In order to overcome instabilities and to achieve convergence
guarantees, Sato and Yamada (1995) introduced the generalised LVQ (GLVQ)
which is based on a suitable cost function. A probabilistic counterpart is the robust
soft LVQ (RSLVQ) (Seo and Obermayer, 2003). Since the prototype models often
focus on classification, the prototypes are discriminative. This means that they
may not represent data in a generative way. Hammer et al. (2014) propose an
approach enforcing generative prototypes. Due to the representation of models in
terms of prototypes, LVQ schemes are suited for online scenarios (Denecke et al.,
2009) or lifelong learning (Kirstein et al., 2012) as we will discuss in chapter 6.

The used dissimilarity measure of the prototype-based classifiers is a key
aspect and the use of more general dissimilarity measures like e. g., divergences
or functional metrics (Villmann and Haase, 2011) is easily possible. Hence a
suitable dissimilarity measure for the data can be chosen, or the dissimilarity
measure can be learned in addition to the prototypes because prototype-based
classifiers provide a particularly efficient framework for integrating the powerful
concept of metric learning (Bellet and Habrard, 2015; Bellet et al., 2013; Biehl et al.,
2013b). For instance they offer efficient metric parametrisation strategies by their
decomposition of the input space into Voronoi cells (see Schneider et al., 2009a,b).
Recent LVQ schemes rely on a cost function and allow an extension to a global
adaptive matrix: generalised matrix LVQ (GMLVQ) (Schneider et al., 2009a) and
its local version (LGMLVQ) (Schneider et al., 2009a) with local adaptive matrices.

Prototype locations are usually learned on a given offline data set X with N

data points (xi, yi) ∈ RM ×{1, . . . , Z} of Z different classes. The aim is to find pro-
totypes such that the induced classification of the data is as accurate as possible.
A quality criterion is the accuracy which is the percentage of correctly classified
data points of the given data. For the cost function based LVQ approaches there
are guarantees on the generalisation performance and learning convergence of
the related classifier (Biehl et al., 2007; Schneider et al., 2009a). The family of
LVQ approaches has gained much attention recently in the biomedical domain
(Arlt et al., 2011; Biehl et al., 2012) and in the context of big data and interpretable
models due to its flexibility and intuitive classification scheme (see e. g., Kirstein
et al., 2008, 2009, 2012; Bunte et al., 2012; Giotis et al., 2013; Biehl et al., 2013a,
2015; Nova and Estévez, 2014; Zhu et al., 2014; de Vries et al., 2015).

NNC LVQ

GLVQ GMLVQ LGMLVQ

RSLVQ

complex
heuristic

sparse
heuristic

cost
function

probabilistic

deterministic
static, global metric

adaptive
global metric

adaptive
local metrics

Figure 3.1.: Development of the learning vector quantisation methods used in this thesis
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The sketch (Fig. 3.1) contains the relations between GLVQ, GMLVQ, LGMLVQ,
and the RSLVQ which we mainly use and which we describe below.

Remark: Note that we refer to d as metric, although it may not be a metric in the
mathematical sense. For instance, often the squared Euclidean distance is used
which is not a metric in the mathematical sense since the triangular inequality
does not hold for every given set of data points.

3.1. Generalised LVQ – GLVQ

A robust LVQ approach is the GLVQ (Sato and Yamada, 1995) based on a differ-
entiable cost function approximating the classification error (3.2). It minimises:

EGLVQ(X) =
∑

1≤i≤N
Φ(µ(xi)) with µ(xi) =

(
d+(xi)− d−(xi)

d+(xi) + d−(xi)

)
. (3.2)

The value d+(xi) = d(xi,w
+) and d−(xi) = d(xi,w

−) denotes the dissimilarity
between a data point xi and the closest prototype w+ belonging to the same
class and the dissimilarity of the closest prototype w− of any different class (see
Fig. 3.2). The function Φ(·) is a monotonic increasing function, e. g., the identity
or the sigmoid function. The summands of (3.2) are negative if and only if the
classification of the corresponding point is correct, hence the costs correlate
to the overall error. In this way it optimises the so-called hypothesis margin of
the classifier (Schneider et al., 2009a). Note that the LVQ cost function (3.2)
approximates the loss (2.1), since it aims at minimising the empirical classification
error as explained. Minimising EGLVQ (3.2) is done by a stochastic gradient descent

d−

d+

w+

w−

xi

Figure 3.2.: Scheme of a three class setting (different colours, symbols). Bigger symbols
are prototypes. For one data point xi the quantities w+,w−, d+ and d− are displayed.



24 3. Prototype-based Classification

with respect to the prototypes w+ and w−, leading to the update

w± := w± − ε · ∂EGLVQ

∂w±
(3.3)

with a learning rate ε > 0. Using the squared Euclidean distance d(x,w) =

‖x−w‖2, the derivation in the update rule (3.3) becomes

∂EGLVQ

∂w±
=
∂Φ

∂µ
· ∂µ
∂d±

· ∂d
±

∂w±

∂µ

∂d±
=

±2d∓

(d+ + d−)2

∂d±

∂w±
= −2(x−w±)

Hence the GLVQ’s learning rule can be specified as:

w± := w± ± ε · ∂Φ

∂µ
· 4d∓

(d+ + d−)2
· (x−w±) .

One limitation of the GLVQ is the chosen dissimilarity measure. Often it is difficult
to chose a well suited measure since one does not know which aspects of the data
are relevant for classification a priori. More advanced models, e. g., GMLVQ (next
section) and LGMLVQ (sec. 3.3), learn the prototypes and the metric parameters.
These methods limit the general structure of the used dissimilarity measure but
the related parameters are learned in order to improve the overall performance.
Hence the learned measure stresses useful aspects of the data for classification.

3.2. Generalised Matrix LVQ – GMLVQ

The GMLVQ (Schneider et al., 2009a) is established on a cost function EGMLVQ

which is the same as (3.2) but it replaces the dissimilarity measure with

dΛ(w,x) = (x−w)TΛ(x−w) , (3.4)

a general quadratic form. The matrix Λ = ΩTΩ is positive semi definite and hence
dΛ(w,x) = [Ω(x−w)]2. Since every positive symmetric Λ has a symmetric root
Ω with Λ = Ω2, we will rely thereon in the following. The GMLVQ performs a
stochastic gradient descent on EGMLVQ with respect to the prototypes and with
respect to the metric parameters. A similar metric learning concept exists for k-NN
and nearest class mean classifiers (Bellet et al., 2013; Mensink et al., 2013) which
are related to LVQ approaches.

A substitution of the dissimilarity measure (3.4) in the prototype update (3.3)
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leads to a replacement of the used dissimilarity measure and its derivative

∂d±Λ
∂w±

= −2ΩΩ(x−w±) = −2Λ(x−w±)

and hence

∂EGMLVQ

∂w±
=
∂Φ

∂µ
· ∂µ
∂d±Λ

· ∂d
±
Λ

∂w±
=
∂Φ

∂µ
· ±2d∓

(d+ + d−)2
(−2Λ(x−w±)) . (3.5)

Therefore the prototype update is

w± := w± ± ε1 ·
∂Φ

∂µ
· 4d∓Λ

(d+
Λ + d−Λ)2

· Λ(x−w±) .

Additionally the single elements Ω(l, k) are learned through a stochastic gradient
descent (3.6) on EGMLVQ with respect to these elements.

Ω(l, k) := Ω(l, k)− ε2 ·
∂EGMLVQ

∂Ω(l, k)
(3.6)

To obtain the update rule for the elements of Ω we need the derivation

∂dΛ

∂Ω(l, k)
= (x(l)−w(l)) · [Ω(x−w)]k + (x(k)−w(k)) · [Ω(x−w)]l

since it is required in the gradient (3.7) of the cost function with respect to Ω(l, k).
The parameter l denotes the l-th component of the vector.

∂EGMLVQ

∂Ω(l, k)
=
∂Φ

∂µ

(
∂µ

∂d+
Λ

· ∂d+
Λ

∂Ω(l, k)
+

∂µ

∂d−Λ
· ∂d−Λ
∂Ω(l, k)

)
(3.7)

Putting all parts of (3.6) together, leads to

Ω(l, k) :=Ω(l, k)− ε2 ·
∂Φ

∂µ
· 2

(d+
Λ + d−Λ)2

·(
d−Λ

( [
Ω(x−w+)

]
k

(
x (l)−w+ (l)

)
+
[
Ω(x−w+)

]
l

(
x(k)−w+(k)

) )
− d+

Λ

( [
Ω(x−w−)

]
k

(
x (l)−w− (l)

)
+
[
Ω(x−w−)

]
l

(
x(k)−w−(k)

) ))
.

The parameter ε1 and ε2 are the learning rates of the updates. They can be
chosen independently but usually ε1 > ε2 holds. In order to prevent the algorithm
from degeneration, the matrix Λ should be normalised (Schneider et al., 2009a). It
is possible to use any optimisation solver instead of a stochastic gradient descent
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(de Vries, 2013, 2014) but then it is no longer applicable in online settings.
The next section describes a straightforward extension of the GMLVQ towards

local dissimilarity measures.

3.3. Localised Generalised Matrix LVQ – LGMLVQ

Attaching a local dissimilarity measure dΛj (3.8) to every prototype wj instead of
using a global measure (3.4), leads to the LGMLVQ (Schneider et al., 2009a) which
can stress local characteristics of the data that are beneficial for classification.

dΛj (wj ,x) = (x−wj)
TΛj(x−wj) (3.8)

Note that the Voronoi cells become more complex due to the usage of local metrics.
The respective derivative of the dissimilarity measure (3.8) is

∂d±

∂w±
= −2Ω±Ω±(x−w±) = −2Λ±(x−w±) (3.9)

and the index ± refers to the local matrices belonging to w±. Using (3.9) in
(3.5) leads to the prototype update of the LGMLVQ. The related matrices Λ±
respectively Ω± are again trained with a stochastic gradient descend, using

∂ELGMLVQ

∂Ω±(l, k)
=
∂Φ

∂µ
· ±2d∓

(d+ + d−)2
·
( [

Ω±(x−w±)
]
k

(
x (l)−w± (l)

)
+
[
Ω±(x−w±)

]
l

(
x (k)−w± (k)

) )
.

Further information to (L)GMLVQ can be found in (Schneider et al., 2009a).
So far the LVQ approaches are based on deterministic non-generative cost

functions. A probabilistic member of the LVQ family is described in the next
section.

3.4. Robust Soft LVQ – RSLVQ

The objective function of RSLVQ (Seo and Obermayer, 2003) is a statistical
generative modelling of the setting with the benefit of offering class probabilities
for given data. Assume a Gaussian mixture model (GMM) creates the data. The
probability of mixture component j generating a point x is

p(x | j) = K(j) · exp(f(x,wj)) =
1

(2πσ2
j )

M
2

· exp

(
−d(wj ,x)

2σ2
j

)
(3.10)
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where d(·) denotes the squared Euclidean distance. This induces a mixture model

p(x |W ) =
∑

1≤j≤ξ
P (j) · p(x | j)

describing the probability of having observed the (unlabelled) data. The priors sum
to one

∑
j P (j) = 1. Label information is integrated into the model by assigning

every mixture component (i. e., every prototype) with a class label. Then the
probability of having observed the labelled data is given by

p(x, y |W ) =
∑

1≤j≤ξ
cj=y

P (j) · p(x | j) .

The objective function of RSLVQ describes the log likelihood ratio of the observed
data

logL :=
∑

1≤i≤N
log

(
p(xi, yi |W )

p(xi |W )

)
which corresponds to the optimisation of the likelihood of the observed class labels
assuming an underlying mixture model and independence of the data. Training
optimises the log likelihood by means of a gradient ascend with respect to the
prototypes

wl := wl + ε · ∂(logL)

∂wl
(3.11)

with a learning rate ε > 0. The bandwidth σj is usually set identically for all mixture
components, and it is treated as a meta-parameter. There exist schemes adapting
the bandwidth additionally (Schneider et al., 2010a; Seo and Obermayer, 2006).
Executing the derivation of (3.11) leads to

∂

∂wl

[
log

p(x, y|W )

p(x|W )

]
=δ(cl = y) · (Py(l|x)− P (l|x)) · ∂f(x,wl)

∂wl

− δ(cl 6= y) · P (l|x) · ∂f(x,wl)

∂wl
(3.12)

where Py(l|x) and P (l|x) are assignment probabilities

Py(l|x) =
p(l) · exp(f(x,wl))∑

1≤j≤ξ
cj=y

p(j) exp(f(x,wj))
, P (l|x) =

p(l) · exp(f(x,wl))∑
1≤j≤ξ

p(j) exp(f(x,wj))
(3.13)

and with respect to (3.10)

∂f(x,wl)

∂wl
=

1

σ2
(x−wl) . (3.14)
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Assuming p(j) = 1/ξ, ∀j and using equations (3.10) to (3.14) for the stochastic
gradient ascent (3.11) leads to the update rule for the prototypes

wl =:= wl + ε ·
{

(Py(l|x)− P (l|x)) · (x−wl), cl = y

−P (l|x) · (x−wl), cl 6= y

with

Py(l|x) =
exp

(
− (x−wl)

2

2σ2

)
∑

1≤j≤ξ
cj=y

exp
(
− (x−wj)2

2σ2

) , P (l|x) =
exp

(
− (x−wl)

2

2σ2

)
∑

1≤j≤ξ
exp

(
− (x−wj)2

2σ2

) .

This closes the chapter about the classifiers used later on. The next chapter
deals with global rejection in the context of prototype-based classifiers which we
introduced in this chapter.
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Chapter overview In this chapter, we discuss global rejection strategies which enable

classifiers to reject data in regions where only an uncertain decision could be made. We analyse

several dissimilarity-based certainty measures, e. g., a cost function based measure, the distance to

the closest prototype, and the distance to the closest decision border, as counterparts to probabilistic

ones, suited for prototype-based classifiers like LVQ. We study properties and results of these

measures on various data sets. From the executed experiments, we draw the conclusion, that the

measures perform well for the used prototype-based models except one measure. The performance

of the measures keeps up with the performance of the optimal rejection in some settings and to a

state of the art certainty measure. In addition, the analysed deterministic measures can perform

equally good compared to integrated certainty measures of probabilistic classifiers independently of

their type (generative, discriminative).

Parts of this chapter are based on:

[J15] L. Fischer, B. Hammer, and H. Wersing. Efficient Rejection Strategies for Prototype-based Classifica-
tion. Neurocomputing, 169 (2015) 334–342.

[C14a] L. Fischer, B. Hammer, and H. Wersing. Rejection Strategies for Learning Vector Quantization. In
ESANN, pages 41–46, 2014.

[C14b] L. Fischer, D. Nebel, T. Villmann, B. Hammer, and H. Wersing. Rejection Strategies for Learning Vector
Quantization – A Comparison of Probabilistic and Deterministic Approaches. In WSOM, pages 109–
118, 2014.

4.1. Motivation

Improved sensor technology and the increasing availability of high quality digital
information provide new possibilities for machine learning technology in high
impact domains like personalised medicine (Weiss et al., 2012). In biomedical
applications or safety-related domains, a wrong classification can severely affect
the applicability of a classifier. The reliability of a classification constitutes a critical
property of any method used in such domains (Rudin and Wagstaff, 2014; Vellido
et al., 2012). In these areas, the reliability of classification results is as important as
the accuracy of a classifier. It is often better to refuse the classification of a given
data point rather than to predict a class with uncertain assignment (Hanczar and
Dougherty, 2008). In case of doubt, data can then be analysed by a human expert
or it can be marked for further tests instead of a direct, uncertain classification.

In the following we discuss several simple, efficient prototype-based reject
options: We consider rejection based on the distance of the point to the classi-



30 4. Global Reject Option

fication border, the dissimilarity to the closest prototype d+ as indication of the
point being an outlier, a combination of both, and a simple direct measurement
inspired by the GLVQ cost function, which we dub relative similarity (section 4.3).
These certainty measures take ambiguous and outlier rejection into account to
varying degrees. Further, the measures differ according to their scaling, allowing
an uniform threshold θ iff r(x) is normalised, and they differ according to their
computational complexity and online computability, i. e., efficiency. Afterwards the
sections introduce the used measures, discuss their properties, and results on
several data sets in order to answer the research questions of section 4.2.

4.2. Research Questions

A common choice for a certainty measure is the estimated probability of a data
point belonging to the assigned class of a classifier. For non-probabilistic clas-
sifiers, e. g., LVQ, it is often costly to get such an estimation. The next sections
tackle the following questions related to the proposed certainty measures for
prototype-based classifiers, focussing on LVQ approaches.

1. Are dissimilarity-based certainty measures which are easy to compute,
suited for efficient rejection?

2. How do these measures perform in comparison to probabilistic counterparts?

3. Which general properties do they have?

4.3. Certainty Measures

Common choices for a certainty measure r are based on estimated probabilities or
on heuristics. Probabilistic measures often either require a probabilistic classifier
(Chow, 1970) or a probabilistic model on top of the trained classifier estimating
the probabilities (Vailaya and Jain, 2000; Ishidera et al., 2004). Both approaches
are computationally expensive. Heuristic measures can be based on distances
(Suutala et al., 2004; Platt, 1999; Wu et al., 2004) or on the neighbouring class
labels (Hu et al., 2009). In the following we use two probabilistic measures based
on a probabilistic classifier and several heuristic measures based on dissimilarities.

Note that we use d as symbol for all dissimilarity measures. The definition of d
for the different used algorithms, is displayed in the list below:

• GLVQ: d(wj ,x) = (x−wj)
T (x−wj)

• GMLVQ: d(wj ,x) = (x−wj)
TΛ(x−wj)

• LGMLVQ: dj(wj ,x) = (x−wj)
TΛj(x−wj) for each prototype wj
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Figure 4.1.: [C14a] Contour lines of the measures for artificial 2D data. This binary prob-
lem consists of data of two Gaussians (symbols: ×, ◦). Black squares are GLVQ/RSLVQ
prototypes.

4.3.1. Bayes

The Bayes classifier provides class probabilities for each class provided that the
data distribution is known. The reject option related to the certainty measure

rBayes(x) = max
1≤z≤Z

p(z|x) (4.1)

is optimal in the sense of an error-reject trade-off (Chow, 1970). In general, the
class probabilities are unknown. Hence this optimal Bayes rejection can serve
as Gold standard for artificially designed settings with ground truth only as in Fig.
4.1(a). It shows the contour lines of Bayes for an artificial two class problem with
known class densities. The Bayes measure indicates ambiguous data.

4.3.2. Conf

Classifiers based on probabilistic models such as RSLVQ provide a confidence
value of the classification:

rConf(x) = max
1≤z≤Z

p̂(z|x) (4.2)
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with the estimated probability p̂(·) as obtained during training. We use Conf in
settings with available probabilities during training. Hence these settings fall under
the framework of plugin-rules as studied in (Herbei and Wegkamp, 2006). One
problem is that it is often unclear how good the empirical estimation p̂(·) resembles
the underlying probability. This is especially problematic in supervised settings
where the aim is often a good classification accuracy of the model rather than an
exact estimation of the probabilities. Figure 4.1(b) shows the contour lines of Conf
for an RSLVQ model trained on an artificial two class setting. Conf has low values
near the class border and it realises a rejection due to ambiguity.

4.3.3. RelSim – The Relative Similarity

The RelSim is a GLVQ cost function (3.2) related measure. It takes the dissimilarity
of the closest prototype d+(x) and the dissimilarity of the closest prototype of a
different class d−(x) for a new unlabelled data point into account. The measure
calculates values according to:

rRelSim(x) =
d−(x)− d+(x)

d−(x) + d+(x)
. (4.3)

Hence the closest prototype belonging to d+(x) defines the class label of this
unlabelled data point if it is accepted. The relation rRelSim(x) = −µ(x) holds for
the function µ(x) of Sato and Yamada (1995) in the case of a GLVQ classifier.
The measure ranges in the interval (0, 1) where values near 1 indicate a certain
classification and values near 0 are an indicator for uncertain class labels.

The values of d+(x) and d−(x) are already calculated by the used LVQ al-
gorithms and therefore no additional computational costs are caused. Further,
RelSim depends only on the stored prototypes W and the new unlabelled data
point x. The measure is well suited for online computation because it needs
no additional storage. Figure 4.1(e) shows the contour lines of RelSim for an
artificial two class problem with prototypes trained by GLVQ. The values near the
class border are low. This means the measure correctly performs rejection due
to ambiguity. In addition, as can be seen from the circular contour lines (squared
Euclidean metric), a rejection of outliers is included. Therefore, RelSim seems a
good compromise between an efficient measure and a richness of its usability.

4.3.4. Dist

The Dist considers the distance of a point to the closest decision border of the
classifier as certainty measure. The distance of a point x to the hyperplane
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Figure 4.2.: Sketch of an artificial binary setting. The two decision borders are defined
by the prototype pairs (w1,w2) and (w1,w4). Hence rDist(xi) states the exact distance
value to the decision border while rDist(xj) is just an approximation due to the fact that
the closest prototype w3 defines no decision border.

separating the receptive fields of w+ and w− is given by

rDist(x) =
|d+(x)− d−(x)|
2‖w+ −w−‖2 . (4.4)

Note the distance between the prototypes ‖w+ − w−‖2 has to be calculated
as the distances d±(x), i. e., as d(w+,w−) and d is the chosen measure in the
used algorithm. Figure 4.1(c) shows the contour lines of Dist for an artificial
two class problem with prototypes trained by the GLVQ. For settings with one
prototype per class Dist calculates the exact distance (Fig. 4.2). In cases with
more than one prototype per class, the underlying topology has to be estimated
using e. g., Hebbian learning (Martinetz and Schulten, 1994). Then, (4.4) can
be used for the pairs of prototypes that define the corresponding class border.
An experimental evaluation has shown that the approximation of Dist based on
d+(x), d−(x),w+,w− (even if w+ and w− do not define a class border) provides
good results with less effort compared to the correct calculation. Hence, we always
use this approximation, avoiding additional computational burden. Dist can be
computed efficiently. Unfortunately its range is (0,∞) which makes it more difficult
to choose a good threshold for rejection. Dist depends on the stored prototypes W ,
the distance calculation, i. e., d+(x), d−(x) and the new data point x. This means
no additional storage is needed and the needed values for the Dist calculation can
be used directly without much additional computational effort.

In a binary setting with one prototype per class, the classifier defines one sepa-
rating hyperplane. Dist uses the pure distance of a data point to the hyperplane
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for rejection. This scheme is related to SVM rejection. A binary SVM defines a
separating hyperplane too and its rejection is based on distances to its hyper-
plane. The SVM rejection (Platt, 1999) scales these distances with an adapted
Sigmoid function which can cause a shifting of the decision border especially for
unbalanced classes.

4.3.5. d+

Outliers are indicated by their dissimilarity to the closest prototype d+(x) (Fig.
4.1(d)). Using this information for an outlier-based certainty measure leads to:

rd+(x) = −d+(x) . (4.5)

The measure d+(x) uses the stored prototypes W and the dissimilarity calculation.
Hence this measure is efficient. Note, that the measure d+(x) is not normalised.

4.3.6. Comb

This measure combines the previous two reject options

rComb(x) = (rDist(x), rd+(x))

leading to a reject option based on a threshold vector θ = (θ1, θ2): x is rejected iff

rDist(x) < θ1 or rd+(x) < θ2 .

This option takes ambiguity and outliers into account, but it requires two thresholds.
For evaluation, we refer to the best combination of both thresholds determined via
exhaustive search. This combination is inefficient since it requires a loop over the
regime of threshold vectors, but it excellently serves as a baseline for comparison.

4.3.7. Characteristics of the Certainty Measures

In the following we compare some general properties of the measures which are
listed in Tab. 4.1. SVM refers to the SVM rejection (Platt, 1999; Wu et al., 2004)
implemented in the LIBSVM (Chang and Lin, 2011). The first row specifies re-
quirements for online training of the rejection strategies based on these measures.
The measures RelSim, d+, Dist and Comb do only rely on a set of prototypes W ,
whereas the measures Conf and Bayes need class probabilities or its estimations.
For the reject option as provided by an SVM, the training set needs to be stored
since the parameters of the Sigmoid rely on the distances of training data to the
separating hyperplane. Updating the SVM rejection because of new training data
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requires a retraining of the parameters of the Sigmoid. In case of offline training
and testing only, the SVM rejection requires only the trained parameters of the
Sigmoid and for the other measures it stays the same.

The next property specifies the co-domains of the measures. This is particularly
interesting since it indicates whether a natural predefined choice of the threshold
θ is possible (for a normalised co-domain) or not (unlimited co-domain). Still, even
for the same co-domains such as for RelSim and Conf, it is unclear whether their
interpretation coincides and hence if similar thresholds have the same meaning.

The next property, comparable scaling, makes this more precise. It refers to
the question whether the provided value displays the same range independent of
the location of data points in the data space, or whether the scaling can severely
change with different locations in the data space and e. g., in different Voronoi
cells. In the latter case, it is likely that global threshold strategies do not provide
satisfactory results, and local thresholds have to be used. Provided measurements
refer to probabilities such as for Conf and Bayes, a uniform scaling is present. For
all other measures (RelSim, d+, Dist, Comb) a uniform scaling is not guaranteed
since relative dissimilarities can vary severely across the input space.

The next two lines refer to the type of rejection offered by the measures: Do
they detect outliers and/or ambiguous regions, respectively?

The final row contains an interesting property: Can the measures be used in
online settings, i. e., is it computable based on a small number of parameters of
the classifier? The proposed measures (RelSim, d+, Dist, Comb, Conf) are suited
for online settings because they only depend on the prototypes W . This means
if the classifier is adapted online, the certainty measures take these changes
immediately into account because they are based on dissimilarities from data to
prototypes only. For Bayes and SVM rejection this is not possible in an online way
although there exist online training schemes of these algorithms: The rejection
strategies require the whole training data for its computation, hence an update of
the certainty measure cannot be done in online settings with a limited amount of
memory. Therefore a previously calculated certainty measure no longer fits to the
permanently updated model of a Bayes or SVM classifier trained in an online way.

Property RelSim d+ Dist Comb Conf Bayes SVM

Requirements W W W W p̂(z|x) p(z|x) data, model
Co-domain (0, 1) (−∞, 0) (0,∞) (−∞,∞) (0, 1) (0, 1) (0, 1)
Equal scaling - - - -

√ √
-

Outliers
√ √

-
√

- - -
Ambiguity

√
-

√ √ √ √ √
Online

√ √ √ √ √
- -

Table 4.1.: Properties of the studied measures. The symbols indicate yes (
√

) and no (-).
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4.4. Experiments for Global Rejection

After these theoretical inspections, we evaluate the results of the rejection strate-
gies for different data sets. In all cases, we use a 10-fold cross-validation with ten
repeats for RSLVQ, GLVQ, and (L)GMLVQ with one prototype per class1. Hence
we average 100 runs for each experiment. We compare our results with the results
of a standard certainty measure of SVM (Platt, 1999; Wu et al., 2004) implemented
in the LIBSVM toolbox (Chang and Lin, 2011).

We use ARC as evaluation measure for our experiments, as explained in
chapter 2. In Fig. 4.3 to 4.5, the ARC are averaged over 100 runs per data set
and certainty measure. The data set X for evaluation is the test fold of the related
cross validation. For numerical reasons, we omit the point for |Xθ| = 0 where no
point is classified. Since single curves can end in different points with maximal
threshold value, we only report those points where at least 80 % of the repetitions
deliver a value to ensure a reliable display.

4.4.1. Artificial and Benchmark Data

We report experiments on one artificial data set with known ground truth for the
Bayes optimal rejection and four benchmarks. (In section A.2 the properties of all
data sets of this thesis are listed in a table.)

Gaussian clusters: This data set contains two artificially generated overlapping
2D Gaussian clusters which are overlaid with uniform noise. (parameters:
means at the x-axis µx = (−4, 4.5), means at the y-axis µy = (4, 0.5), standard
deviations at the x-axis σx = (5.2, 7.1), and standard deviations at the y-axis
σy = (2.5, 2.1))

Tecator data: The task is to predict the fat content of meat probes, which is
turned into a binary classification problem to predict a high/low fat content by
binning into two classes of equal size. The data set consists of 215 spectra with
100 spectral bands ranging from 850 nm to 1,050 nm (Thodberg, 1995).

Image Segmentation: The image segmentation data set consists of 2,310 data
points representing small patches from outdoor images with 7 different classes
with equal distribution such as brick-face, sky, . . . (Bache and Lichman, 2013).
Each data point consists of 19 real-valued image descriptors.

Haberman: The Haberman survival data set contains 306 instances from two
classes indicating the survival for more than 5 years after breast cancer surgery

1We use the LVQ toolbox at: http://matlabserver.cs.rug.nl/gmlvqweb/web/ and the RSLVQ
code of Sambu Seo (Seo and Obermayer, 2003)

http://matlabserver.cs.rug.nl/gmlvqweb/web/
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(Bache and Lichman, 2013). Data are represented by three attributes related to
the age, the year, and the number of positive axillary nodes detected.

Coil: The Columbia Object Image Database Library (Coil) consists of grey scaled
images (128x128 pixels) of twenty objects (Nene et al., 1996). The task is to
classify each object. They are rotated in 5◦ steps, so that there are 72 images per
object. The data set contains 1,440 data points which are 16,384 dimensional.
We use the principal component analysis implementation of van der Maaten
(2013) to reduce the dimensionality to 30.

4.4.2. Results

We report the effect of the different rejection strategies for the different classifiers:
RSLVQ, GLVQ, and (L)GMLVQ. We combine RSLVQ with Conf since the former
provides explicit probabilities. All classifiers can be combined with d+, Dist, and
Comb, since these measures depend on the provided prototypes only. For GLVQ
and GMLVQ, the measure RelSim is already computed during the classification.
For the artificial data set, the ground truth of the data distribution is available.
Hence we can compare against the optimal Bayes decision.

Experiments on Artificial Data
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Figure 4.3.: [C14a] Accuracy-reject-curves for different reject options when applying
RSLVQ, GLVQ and GMLVQ models trained on Gaussian clusters.

Figure 4.3 shows the results for the Gaussian clusters data set. Note that errors
mostly stem from ambiguity in the overlapping region, such that a reject option
due to outliers is less efficient for this setting. We observe that the probabilistic
model RSLVQ together with its certainty measure Conf well resembles the optimal
rejection strategy of a Bayes classifier. GLVQ does not reach the performance of
the Bayes classifier because it relies on the squared Euclidean distance. Hence
it cannot account for the different standard variations in the two axes of the two
Gaussians. Matrix adaptation improves this behaviour, and RelSim as well as Dist
and Comb reach the performance of the optimal Bayes rejection in the (important)
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regime of up to 25 % rejected data points. For more rejected data, the accuracy
of RelSim drops since the chance is higher to reject correctly classified data that
are confound with outliers. Assume the underlying prototype-based classifier is
sufficiently flexible to capture the nature of the data. Then we can conclude for
this setting that the used reject options based on dissimilarities to the decision
border or the certainty value are well suited for a close to optimal rejection in the
relevant regime.

Experiments on Benchmark Data
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Figure 4.4.: [C14a] Accuracy-reject-curves for several prototype-based classifiers trained
on benchmark data sets.
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Figure 4.4 displays the average ARCs of the rejection strategies for the bench-
mark data sets. Mere outlier detection d+ does not work well on average, which
can be attributed to the fact that most errors can be accounted for ambiguities
rather than outliers. This principle might become more important in online scenar-
ios where the underlying distribution is subject to trend.

Dist and Conf show similar results for the RSLVQ models. This finding indicates
that the more efficient measure Dist can be sufficient for a reliable reject option,
making the (more complex) estimation of probability values superfluous. For the
Coil data, Dist is even superior, which indicates that the internal estimation of the
probability by the RSLVQ is not a good estimator for this data set.

The results of GLVQ are mostly inferior to RSLVQ, while GMLVQ can reach the
same or even better accuracy. GLVQ uses a static dissimilarity measure for the
whole input space and for every prototype. The RSLVQ offers more flexibility since
it can change the bandwidth as a meta parameter and the GMLVQ adapts the
global metric according to the data. The better accuracies of RSLVQ and GMLVQ
are due to this flexibility. For GLVQ, Dist and RelSim mostly provide comparable
results in the relevant regime of up to 25 % rejected data points. Interestingly,
taking into account an optimal combination with outlier detection can improve this
performance, albeit outlier detection alone (d+) is not very well performing. This
combination, however, does not offer an efficient strategy since it requires an
additional loop over possible threshold vectors.

For GMLVQ, RelSim and Dist both provide excellent results similar or even better
than a fully probabilistic modelling as offered by RSLVQ and Conf. Hence they
offer a good compromise between classifier accuracy and efficiency of the reject
option. In addition, they have the benefit that an adaptation to online scenarios is
easily possible since the measures depend on the position of the prototypes only.

Comparison to SVM Rejection

We compare the results of the certainty measures Conf, Comb, Dist, and RelSim
with a state of the art reject option on top of an SVM. This enables us to compare
the efficiency of the used reject options to alternative strategies which are not
based on prototypes. The SVM reject option for binary classes uses a strategy
which rescales the distance to the border (Platt, 1999): A sigmoid function is
fitted against the binned distances of the training data points to the separating
hyperplane such that probabilities which are estimated from the data are matched
as closely as possible. This approach can be extended to multi-class settings by
means of a pairwise coupling (Wu et al., 2004).

Figure 4.5 shows the results of RSLVQ and GMLVQ as in Fig. 4.4 and results
for the LGMLVQ in comparison to SVM for the relevant reject options and the
data sets: Tecator, Image Segmentation, Habermann, and Coil. For GMLVQ and
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Figure 4.5.: Accuracy-reject-curves of the proposed measures in comparison to them of
the support vector machine rejection on benchmark data sets.

RSLVQ all data but Habermann, SVM obtains a better accuracy at the price of a
more complex model: The average number of support vectors per model is 14.96
for Tecator, 265.81 for Image Segmentation, and 145.51 for Haberman. For the
sake of completeness, we show the results for Coil, although the SVM reaches
an accuracy close to 100 %, hence rejection cannot be evaluated in a meaningful
way. The difference between the accuracy of the SVM and the LGMLVQ is very
small because the latter is powerful due to its trained local metrics.

Interestingly, the reject options decrease the difference of the accuracy provided
by SVM and the accuracy of RSLVQ or GMLVQ. Hence the used reject options
seem to be suited as concerns the acquired performance. For the Haberman data
set, the results are even superior as compared to SVM. Hence prototype-based
classifiers such as (L)GMLVQ or RSLVQ together with efficient reject options
such as Conf or RelSim offer a good compromise of a sparse classification model
enhanced with the possibility of rejection, and a good classification accuracy.
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4.4.3. Summary of the Main Findings

We have proposed and systematically compared several reject options for prototype-
based classifiers using the example of learning vector quantisation. In particular,
we have proposed efficient geometric certainty measures for prototype-based clas-
sifiers which have the potential of direct online applicability. We have compared
these direct measures with statistical rejection strategies which are based on a
full (more demanding) probabilistic modelling, and with state of the art rejection
for SVM on benchmark data sets. Interestingly these settings constitute typical
representatives of popular classification paradigms: (L)GMLVQ as a popular LVQ
scheme based on a cost function and motivated by large margin optimisation,
incorporating the powerful framework of metric learning in its model; RSLVQ as
statistically motivated discriminative model; and, in comparison, SVM as discrimi-
native large margin model which, unlike sparse prototype-based representations,
relies on a representation of class borders in terms of support vectors.

We have demonstrated that efficient geometrically motivated measures (Dist,
RelSim) can be used as efficient reject options, providing results which are com-
parable to optimal Bayes rejection strategies where available, but releasing the
burden of explicit statistical modelling. Interestingly, geometric measures reach
the accuracy of fully probabilistic models used as plugin-rules. However, SVM
usually displays a better overall accuracy for the full model due to its ability to use
a flexible description of the class borders in terms of support vectors rather than
a sparse prototype-based representation only. We would like to stress the fact
that the proposed certainty measures are not restricted to LVQ classifiers but they
have a broader scope: On the one hand, the training technique is not relevant for
the scenario, rather any prototype-based classifier can be enhanced accordingly,
such as unsupervised techniques equipped with posterior labels. On the other
hand, some of the concepts transfer to alternative classifiers such as the distance
to the class border. E. g. any classifier where one can define the closest distance
to the class border of a data point one can apply a reject option based on this
measure. There exist approaches for example for decision trees (Alvarez et al.,
2007).

These findings open the way towards the design of efficient lifelong model
adaptation for popular prototype-based classifiers such as (L)GMLVQ: The model
complexity can easily be tailored online towards regions with a low certainty of the
classification, e. g., introducing novel prototypes which are capable of representing
novel aspects of the data (further details in chapter 6).

The next section contains a deeper analysis of the performance of the measures
in comparison to probabilistic approaches since up to now only a comparison to
RSLVQ model with Conf is done.
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4.5. Comparison with Probabilistic Approaches

Since we know that the used certainty measures work properly for LVQ methods,
it is interesting how this compares to probabilistic approaches. We consider the
key question: Are these geometric approaches comparable to rejection strategies
based on certainty values of probabilistic models which can be optimal as shown
in Chow (1970), and if so under which conditions? Hence, we systematically
compare the behaviour of the measures to rejection strategies for probabilistic
classifiers. We vary

• the rejection strategy, ranging from deterministic, geometric measures to
reject options based on confidence values,

• the data set, ranging from artificial data to typical benchmarks, and

• the nature of the prototype-based classifier for which the reject option is
taken, considering purely discriminative models (RSLVQ) in comparison to
generative ones (GMM).

Albeit both classifiers are derived as explicit probabilistic models, they have a
different design. Purely discriminative ones are tailored to the classification task
rather than the data, such that it is unclear whether rejection strategies can be
based on their certainty values. Similarly, it is unclear whether efficient deter-
ministic strategies based on simple geometric quantities reach the performance
of rejection strategies on certainty values, the latter is supposed to require valid
probabilistic models of the data. We show that this is indeed the case for real-life
settings: heuristic rejection strategies based on geometric quantities offer an
alternative to measures based on a probabilistic value. The description of the
RSLVQ can be found in section 3.4 while the Gaussian mixture model is explained
afterwards.

4.5.1. Gaussian Mixture Model and its Certainty Measure

Assume as before a data set X with elements x ∈ RM . As already stated
earlier, a prototype-based classifier is characterised by a set of prototypes W =

{wi ∈ RM}ξi=1, which are equipped with labels cj ∈ {1, . . . , Z} considering a
classification into Z classes.

In practice, generative models are often trained in an unsupervised way, directly
aiming at a representation of the data distribution p(x), popular examples being
GMM for density estimation. Here we consider a class-wise GMM which aims at a
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representation of every class by optimising the following data log-likelihood

EGMM(X) =
∑

1≤i≤N
log

 ∑
1≤j≤ξ

δ
cj
c(xi)
· p(wj) · p(xi|wj)

 (4.6)

where p(xi|wj) is a Gaussian distribution centred on wj , and p(wj) is the class-
wise prior of the prototype with∑

1≤j≤ξ
δ
cj
c(xi)
· p(wj) = 1 .

The model parameters can be optimised by means of a gradient technique or,
alternatively, a classical expectation maximisation scheme (Dempster et al., 1977)
for every class, since the objective decomposes according to the class labels
(Bishop, 2006). A GMM provides for each class y an explicit confidence measure

p(y|x,W ) =
p(y) · p(x, y|W )∑

z∈{1,...,Z} p(z) · p(x, z|W )
. (4.7)

A generative model, the GMM, represents the distribution on x with respect to the
training scheme and p(y) is the prior of the class with

∑
y∈{1,...,Z} p(y) = 1.

Certainty Measure: Since GMM is a probabilistic model like RSLVQ, the classi-
fication of a data point x can be based on the most likely class

c(x) = arg max
1≤z≤Z

p(z|x,W ) .

In practice, the resulting maximum z often corresponds to the class of the closest
prototype such that a close resemblance to a classical winner takes all scheme
(3.1) is obtained. As certainty measure one can immediately use the estimated
class probabilities like for RSLVQ. Hence the structure is the same as rConf (4.2)
but a GMM model provides the probabilities.

4.5.2. Experiments

We analyse the behaviour of the different certainty measures, focusing on the
following questions: What is the behaviour of the measures regarding different
characteristics of the classifier model ranging from a discriminative to a generative
one? What is the behaviour of simple deterministic heuristics in comparison to
rejection strategies based on confidence measures and do the latter require valid
probabilistic models? Since probabilistic models are needed for an evaluation
of Conf, we use the two probabilistic models RSLVQ and GMM. For all settings,
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RSLVQ and GMM are trained using one prototype per class. For RSLVQ, a
global parameter σ2 is optimised via cross-validation. For GMM, correlations
are set to zero and local scalings of the dimensions are adapted by means of
diagonal matrices attached to the prototypes which are optimised in an expectation
maximisation scheme. Training takes place until convergence using random
initialisation. Convergence is assumed if the training error changes less than 10−5

during two sequenced training steps. We use the following data sets: Gaussian
Clusters, Image Segmentation, Tecator, and Haberman (section 4.4.1).

For all data sets, two models are trained: a probabilistic generative model by
means of class-wise GMM, and a probabilistic discriminative model by means
of RSLVQ. For the resulting models, the effect of a reject option is compared for
different possible strategies as introduced above. As in the previous experimental
section, we vary the rejection threshold θ in small steps from no rejection (which
corresponds to the original model) to full rejection i. e., no data point is classified).
For Comb, a threshold vector is varied accordingly, and we report the result of the
respective best combination. The results are depicted as ARCs.

Figure 4.6 shows the results obtained for the different rejection strategies and
data sets. The resulting ARCs display a smooth transition from the accuracy of the
model without reject options to the limit value 1 (in the case of Gaussian clusters it
goes to 0) which results if |Xθ| approaches 0 (we leave out the value for the empty
set at |Xθ| = 0). The classification accuracy on Xθ does not change with θ if the
classification accuracy is already 100 % (as is the case for the Tecator data set for
RSLVQ), or if the errors are uniformly distributed over the range of the certainty
measure r which is the case for the Haberman data set, for example. In the latter
case, classes are imbalanced with the second class accounting for roughly one
third of the data only, and LVQ models tend to represent only class one properly,
such that class two accounts for errors equally distributed according to r. Note
that the graphs are subject of noise if the size |Xθ| approaches 0 which can be
attributed to the small sample size Xθ. Accordingly, the graphs are not reliable for
|Xθ|/|X| < 0.1, and the corresponding parts of the graphs should be seen as an
indicator only. We choose the values of θ equidistant between the extremal values
of each single measure.

Interestingly, the control of the number of points which are not rejected, |Xθ|,
depending on the threshold θ partially has gaps, as indicated in Fig. 4.6 by the
straight parts of the curves and the ending of the curves at some size of |Xθ| � 0.
Such gaps can occur provided the size of Xθ changes abruptly with the threshold,
which seems to be the case in some settings where a further increase of the
thresholds leads to a rejection of all remaining data points. This is the fact for
Conf for Gaussian clusters, Image Segmentation and Tecator for the GMM model,
indicating that no point with confidence larger than a maximum threshold value
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Figure 4.6.: Accuracy-reject-curves of different reject options when applied to generative
or discriminative models, trained on several data sets. The Conf ARC for the GMM model
of Tecator is rarely visible, since the probabilities of the data are all near one. For RSLVQ
no errors are in the test set and hence all points of the different ARCs have a accuracy of
one.
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θ exist. Interestingly these gaps can be observed for Conf for the generative
models only. Further, this behaviour is observed for d+ for the data sets Gaussian
clusters and Image Segmentation (both models) and Tecator (generative model).
In contrast, the graphs of Dist and Comb do not have large gaps.

We can draw a few general conclusions from the graphs displayed in Fig. 4.6:
In all cases, the discriminative model RSLVQ yields the same or better results
as compared to generative GMM models, albeit the latter have a higher degree
of freedom because of an adaptive diagonal matrix per prototype unlike RSLVQ,
which relies on a global bandwidth only. This also holds for the full range of cer-
tainty values taken for the rejection strategies, regardless of whether deterministic
of probabilistic certainty measures are used. Thus, it seems advisable to focus on
the discriminative task, where confidence-based or deterministic measures can
be used. As expected, rejection strategies based on confidence yield the best
behaviour in most cases, but it does not allow a smooth variation of the size of
Xθ for a large range in two of the settings. As mentioned, Conf cannot exclude
outliers. This is apparently not a problem for the used data sets, highlighting
the applicability of the optimality criterion of Chow (1970). Dist seems to offer
a reasonable strategy in all other settings, whereby the behaviour is universally
good for generative as well as discriminative classifiers, and it relaxes the burden
of computing an explicit confidence value. d+ gives better results than Dist in only
one case (Gaussian clusters, GMM), and worse results than Dist in three cases
(Gaussian cluster, RSLVQ; Image segmentation, both models; Tecator, GMM).
Thus, in general, focusing on the discriminative nature seems advisable also as
concerns the rejection strategy. As expected, Comb shows results comparable to
the best of the two geometric reject options Dist and d+, but also requiring a more
complex rejection strategy by the combination of both values.

4.5.3. Conclusion with Respect to Probabilistic Approaches

We have compared direct geometric reject options and their combination with
Bayesian motivated reject options in a couple of benchmarks using classifiers with
different characteristics. The resulting observations are that geometric measures
such as Dist can behave equally good as probabilistic measures, while often
allowing a more fine-grained control of the size of the rejected data. In addition,
they do not require explicit probabilistic models.

While allowing for simple measures which are applicable for a wider range of
classifiers, the scaling of appropriate thresholds is unclear a priori and it depends
on the data set at hand. In the literature, a few proposals how to automatically
determine data-adapted values have been proposed (Vailaya and Jain, 2000),
which can be transferred to our setting.
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4.6. Conclusion: Answering the Research Questions

From the summary of global rejection in section 4.4.3 and from the summary of
the comparison of probabilistic approaches in section 4.5.3, we can extract the
following answers to the stated research questions at the beginning of this chapter:

1. Are the easily available dissimilarity-based certainty measures suited?

From the executed experiments, we draw the conclusion, that the measures
perform well for the used prototype-based LVQ models except the outlier de-
tection d+ but the used data sets seem to have less outliers than ambiguous
data points. The performance of the measures keeps up with the perfor-
mance of the optimal Bayes rejection in some settings and the rejection of
the SVM.

2. How do these measures perform in comparison to probabilistic counterparts?

The analysed deterministic measures can perform equally good compared
to the natural certainty measure of probabilistic classifiers independently of
their type (generative, discriminative).

3. Which properties do they have?

Section 4.3.7 discusses the properties of the measures. Just pointing to a
main finding: There is no guarantee that a given value r(x) has the same
semantic meaning at every position x of the space RM .

The main finding regarding the third question indicates that one global threshold
for rejection may not suffice in cases where the semantic meaning of a given
value r(x) varies a lot for different positions x. Extending the concept of a global
threshold towards several thresholds valid in different partitions of the feature
space leads to a local rejection strategy which can balance the different semantic
meanings (local characteristics) if they are occurring. The next chapter 5 focusses
on local rejection strategies.
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Chapter overview In this chapter, we discuss local rejection strategies for classifiers providing

a partitioning of the feature space, e. g., learning vector quantisation, decision trees (DT) and SVM.

We propose an efficient greedy algorithm and an optimal dynamic programming (DP) solution for

defining the local thresholds. We analyse properties and performance of both solutions on various

data sets and we compare them to global rejection. Our experiments show that the results of

both solutions are very similar such that the fast greedy solution instead of the more complex DP

solution seems a reasonable choice. When investigating rejection for benchmarks, the benefit of

local strategies gets apparent in particular for simple prototype-based classifiers and DT. The effect

is less distinct for more complex classifiers such as the SVM or classifiers that involve local metric

learning like LGMLVQ.

Parts of this chapter are based on:

[J16] L. Fischer, B. Hammer, and H. Wersing. Optimal Local Rejection for Classifiers. Neurocomputing,
submitted

[TR15] L. Fischer, B. Hammer, and H. Wersing. Optimum Reject Options for Prototype-based Classification.
In CoRR, abs/1503.06549, 2015.

[C14c] L. Fischer, B. Hammer, and H. Wersing. Local Rejection Strategies for Learning Vector Quantization.
In ICANN, pages 563–570, 2014.

5.1. Motivation

Global rejection is restricted through its single threshold. More flexibility is available
for local rejection strategies since every threshold is only valid in a defined partition
of the input space as already mentioned in chapter 2. Local thresholds allow
to consider local characteristics of the data within the reject option and they
give the user better control over the complete rejection process. Using multiple
thresholds leads to the problem of finding suitable ones. So far we did not find any
method in the literature which solves this. Therefore, we analyse how to efficiently
choose local optimal thresholds based on a given partition of the input space e. g.,
according to the predicted output classes. We rely on first promising results of
an efficient greedy strategy. We extend this work by a general formalisation of
the problem to optimally choose local thresholds for any given classifier. This
problem can be treated as an optimisation problem in the form of a multiple
choice knapsack problem (Chandra et al., 1976), and we derive a polynomial
time dynamic programming (DP) scheme optimally solving the problem of local
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threshold selection. We compare both solutions experimentally. While our optimal
threshold selection strategy can be used for any classifier, we are focusing in
the experiments on three popular classifiers: learning vector quantisation and its
derivatives (Kohonen, 1989; Seo and Obermayer, 2003; Schneider et al., 2009a,
2010b), SVM, and DTs. We evaluate the rejection strategies extensively using
different benchmark data and one real-life example from the medical domain
whereby the evaluation of all experiments relies on the ARC (Nadeem et al., 2010;
Landgrebe et al., 2006).

In the next section we state the research questions which we tackle thereafter
in this chapter.

5.2. Research Questions

Global rejection implicitly assumes a suitable global scaling of the underlying
certainty measure. Usually this is not met in a given setting. Using local thresholds
instead releases the burden of a globally appropriate scaling of the underlying
certainty measure. In this chapter we tackle the following questions:

1. How to determine efficiently local thresholds?

2. How good is the generalisation of the optimal thresholds on new data sets?

3. Does a local rejection outperform its global counterpart?

4. Is the usage of local rejection always beneficial and when is it better to stick
with a global rejection?

Before answering these questions, the next section describes the used classifier.

5.3. Classifiers

In the following we introduce the classifiers used later on: prototype-based, DT
and SVM classifiers. We explain how these classifiers induce a natural partition of
the input space, on which to ground local rejection. We denote these sets defined
by the respective partition as Υj .

5.3.1. Prototype-based Classifiers

As introduced in chapter 3, a prototype-based classifier consists of a set W of ξ
prototypes (wj , cj) ∈ RM × {1, . . . , Z} and each prototype wj has a class label cj .
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Classification is done by a winner takes all rule: A data point x gets the label cl as
the closest prototype wl with

l = arg min
j=1,...,ξ

d(wj ,x)

where d(·) is a dissimilarity measure; e. g., the Euclidean distance. By means
of rule (3.1), a prototype-based classifier partitions the data into Voronoi cells or
receptive fields

Υj = {x | d(wj ,x) ≤ d(wk,x),∀ k 6= j}, j = 1, . . . , ξ; (5.1)

and it defines a constant classification on any Voronoi cell given by the label of its
representative prototype.

5.3.2. Basic Decision Trees for Classification

A DT for classification (Breiman et al., 1984) is a rooted tree with a single root-
node and interior-nodes which are equipped with a splitting criterion given by a
dimension and a threshold, and Ξ leaves αj which are equipped with a class label.
A data point x is passed through the DT with respect to the split-criteria at each
internal node. The leaf-node in which the data point x ends, defines the class
label c(x). We denote the decision border induced by the DT as Γ. A split-criterion
sets a threshold for a specific dimension of the input space, e. g., on the first
dimension: x(1) < β, hence it defines a hyperplane. We consider axis parallel
decision borders in this case. We use the receptive fields of the leaves of a given
DT as partition (Fig. 5.1):

Υj := {x |x falls into leaf αj}, j = 1, . . . ,Ξ; (5.2)

x(1) < β1

x(2) < β2
x(2) < β3

x(1) < β4

Υ1 Υ2 Υ3 Υ4 Υ5

x(2)

x(1)β1β4

β2

β3

Υ1

Υ2 Υ3

Υ4

Υ5

⇒

Figure 5.1.: Left: An example decision tree. The root-node in black, the terminal-nodes
in grey with their split-criteria, the leave-nodes in light-grey. Right: The partitions of the
space induced by the decision tree.
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5.3.3. Support Vector Machine for Classification

The SVM is a classifier which uses an implicit non-linear embedding of the data into
a high dimensional kernel space. For a binary setting, it realises the generalised
non-linear classification

x 7→ H(wT ·Ψ(x))

with Heaviside function H(·), linear weighing w, and feature map Ψ(·) which is
usually implicitly executed efficiently via a suitable kernel mapping. Training is
stated as a constrained optimisation problem, which can be solved efficiently based
on quadratic programming. For multiple classes, there exist different encoding
schemes which transfer the problem into several binary classification problems.
One popular approach is the one-versus-one scheme, which separates all pairs of
classes by a binary SVM. Coupling can be done by means of the output activation
(wij)

T ·Ψ(x) where wij refers to the separation border of classes i and j.
Let c(x) be the class label of a new data point x with respect to the SVM model,

then we define the partition of the input space according to the classes:

Υj = {x | c(x) = j}, j = 1, . . . , Z . (5.3)

Note that this is a general partitioning of the space usable for any classifier.

5.4. Local Rejection

We focus on rejection strategies for classifiers which partition the input space and
we rely on the following main parts:

• A certainty measure assigns a certainty value r(x) to a data point x indicating
the certainty of its classification,

• and a strategy how to reject a classification based on the certainty value;
suitable rejection has to consider that often r(x) is not scaled in an easily
interpretable or uniform way. Hence, the value r(x) does not necessarily
coincide with the statistical confidence (which would be uniformly scaled in
[0, 1]), and the scaling of the value r(x) might even change depending on
the location of the data point x.

Later, we compare two strategies for rejection: a global strategy with one global
threshold, and a local strategy based on the partitioning Υj of the input space,
and an optimised vector of thresholds. First, we briefly review suitable certainty
measures r(x) before discussing optimal rejection strategies based thereon. We
use some of the explained certainty measures for prototype-based classifiers
(section 4.3). Further, we use a popular certainty measure designed for DTs
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(Alvarez et al., 2007) and a particularly powerful certainty measure for SVM which
already strives at an approximation of the underlying probabilities (Platt, 1999; Wu
et al., 2004).

5.4.1. Certainty Measures

Reminder: Bayesian Confidence Chow (1970) analysed the error-reject trade-
off of Bayes classifiers. He proposed an optimal certainty measure in this sense.
The certainty value of a data point x in case of a Bayes classifier is defined as:

rBayes(x) = max
1≤z≤Z

p(z |x)

where p(z |x) is the known probability of class z for a given data point x.

Reminder: Empirical Estimation of the Bayesian Confidence Probabilistic
classifiers like the RSLVQ provide explicit estimations of the probability p̂(z |x) of
class z given a data point x leading to the certainty measure

rConf(x) = max
1≤z≤Z

p̂(z |x) .

(a) SVM rejection

d−

d+

w+

w−

xi

(b) Prototype-based rejection

x(2)

x(1)β1β4

β2

β3

Υ1

Υ2

Υ5

Υ3

Υ4

(c) DT rejection

Figure 5.2.: Certainty measures: (a) A binary classification setting with SVM. A Sigmoid is
fitted against the values of the bins of the distances from the data points to the separating
hyperplane. (b) A prototype-based classifier for an artificial three-class setting (different
symbols, bigger ones are prototypes). For a single data point d+, d− are shown. (c) A
partition of the input space of a DT. The leave-color (white/grey) encodes the class. The
grey pieces of the border are no real borders since they divide areas of the same class
while the black borders represent real borders dividing areas of different classes.

Reminder: Class Probability Estimates of SVM A popular approach by Platt
(1999) turns the activity of a binary SVM into an approximation of a classification
confidence. This activity (the distance of a data point to the decision border) is
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transformed into a certainty value by a Sigmoid. The parameters of the Sigmoid
are fitted on the given training data (Fig. 5.2(a)). Wu et al. (2004) provide an
extension of this method to multi-class tasks, which is integrated in the LIBSVM
toolbox (Chang and Lin, 2011). The method leads to a certainty measure like
(4.2), but the empirical probability estimates are extracted from the SVM.

Reminder: RelSim for Prototype-based Classifiers The RelSim is a cost
function based certainty measure (sec. 4.3). It used the normalised distance
d+(x) of a data point x to the closest prototype and the distance of x to a closest
prototype of a different class d−(x) (Fig. 5.2(b)):

rRelSim(x) =
d−(x)− d+(x)

d−(x) + d+(x)

whereby d is either dΛ (3.4) or dΛj (3.8). Note that the prototype which belongs to
d+ also defines the class label of x.

Distance to Decision Border for DT (Alvarez et al., 2007) The distance to the
closest decision border (Dist) d(x,Γ) denotes the distance of a data point x to the
closest decision border as defined by Γ; this border is formed by the hyperplanes
defined by the split-criteria of the internal-nodes. Since the partition Υj of leaf
αj of a DT is bounded by axes-parallel hyperplanes, it is easy to compute the
distance d(x,Γ) for a given point x ∈ Υj : x is projected orthogonally onto all
hyperplanes which bound the leaf αj , whereby we have to make sure to restrict
to points which are on the decision border only (Fig. 5.2(c)). Then the minimal
distance of x and this set of projections gives d(x,Γ) and the certainty measure

rDist(x) = d(x,Γ) . (5.4)

Tóth and Pataki (2007) offer an extension for DTs with more general decision
borders (e. g., non-axes parallel cuts, borders induced by a general quadratic
form).

5.4.2. Local Reject Option

Reminder: Global Rejection A global reject option extends a certainty measure
by a global threshold for the whole input space. Assume that

r(x) : RM → R, x 7→ r(x)



5.4. Local Rejection 55

refers to a certainty measure where a higher value indicates higher certainty.
Given a real-valued threshold θ ∈ R, a data point x is rejected if and only if

r(x) < θ .

Figure 5.3 shows an artificial five class data set consisting of five Gaussians
with very different variances where global rejection would fail for the considered
certainty measure (RelSim). The reason is that the measure neglects the local
characteristics (different variances of the Gaussians) of the data. This Pearl
Necklace data set serves as example where local thresholds should perform
much better than a global threshold for rejection.

0.2

0.4

0.6

0.8

Figure 5.3.: Pearl Necklace data set: An example where a global reject option fails –
Sketch of an artificial five-class setting (different symbols). The black squares are the
prototypes of a classifier. Each of the five classes consists of one Gaussian. The variances
of the Gaussians are very different which causes the problem for global rejection. Assume
the RelSim as certainty measure (its contour lines are displayed) and a global threshold
θ = 0.8: While applying this threshold on the data of the middle Gaussian would lead
to a reasonable reject option, the same threshold applied on data from the second
Gaussian from left would lead to a rejection of lots of correctly classified data. In case of a
single threshold per prototype this could be avoided by choosing different values for the
thresholds, hence using a local rejection strategy.

Reminder: Local Reject Option Global rejection relies on the assumption of
an equal scaling of the certainty measure r(x) for all inputs x. We relax this
assumption by using local thresholds. A local threshold strategy relies on a
partition of the input space RM into ζ disjunct, non-empty sets Υj such that

RM =
⋃

1≤j≤ζ
Υj .

For prototype-based classifiers we use the natural partition of the input space: the
Voronoi-cells (5.1) as proposed in Vailaya and Jain (2000). The leaf areas (5.2)
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are a proper partition for DT and for SVM we use a class-wise partitioning (5.3).
A separate threshold θj ∈ R is chosen for every set Υj , and the reject option is

given by a threshold vector θθθ = (θ1, . . . , θζ) of the dimension ζ equal to the number
of sets in the partition. A data point x is rejected iff

r(x) < θj where x ∈ Υj .

Rejection strategies crucially depend on the choice of the threshold θ or thresh-
old vector θθθ. Afterwards, we analyse how to choose those in an optimal way.

5.5. Optimal Choices of Rejection Thresholds

As mentioned in chapter 2, finding an optimal threshold (vector) for rejection refers
to multiple objectives: A threshold θ or threshold vector θθθ, should be chosen
such that the rejection of errors (true rejects) is maximised, while the rejection of
correctly classified points (false rejects) is minimised. Remember the following
symbols, introduced in chapter 2:

L, (Lj): correctly classified data points (in partition Υj)

E, (Ej): wrongly classified data points (in partition Υj)

Lθ, (Lθj ): false rejects (related to partition Υj)

Eθ, (Eθj ): true rejects (related to partition Υj)

5.5.1. Extended Pareto Front

Analysing the efficiency of a threshold strategy, it turns out that a slightly different
set is more easily accessible than the Pareto front Pθ (2.2). Without loss of
generality, we say that θ′ dominates θ with respect to the true rejects if |Lθ′ | = |Lθ|
and |Eθ′ | > |Eθ|. This induces the extended Pareto front

P̂θ := {(|Lθ|, |Eθ|)| θ is not dominated by any θ′ with respect to the true rejects} .
(5.5)

Hence, Pθ can be computed as the subset of P̂θ by taking the minima over the
false rejects. P̂θ has the benefit that it can be understood as a graph where |Lθ|
varies in between 0 and |L| and |Eθ| serves as function value. Having computed P̂θ
and the corresponding thresholds, we report the efficiency of a rejection strategy
by the related ARC. In the following, we discuss efficient strategies to compute the
extended Pareto front for global and local rejection.
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0.02 0.07 0.2 0.5 0.55 0.57 0.71 0.79 0.8 0.83 0.89 0.90.01
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|Eθj(i+1)\Eθj(i)|, i = 0, . . . , |Θj |
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|Lj | = 4

Figure 5.4.: Rejection thresholds for a partition with 13 points. The first row shows the
sorted certainty values r(xi), the second row depicts if a point is correctly (+)/wrongly
(−) classified. Here are 4 thresholds corresponding to the Pareto front, according to the
number of signs + (since point 13 belongs to E). The third row shows the gain when
increasing the threshold value θj .

5.5.2. Optimal Global Rejection

Global rejection needs only one threshold θ. We compute thresholds leading to
the extended Pareto front and the related pairs (ta(θ), tc(θ)) in time O(N logN)

due to the following observation: Consider a certainty measure r(xi) for all points
xi ∈ X and sort the values r(xi1) ≤ . . . ≤ r(xiN ) (Fig. 5.4). We sort certainty
values which are identical such that the points in L come first. The following holds:

• Each pair (|Lθ|, |Eθ|) ∈ P̂θ is generated by some θ = r(xij ) related to a
certainty value in this list or related to ∞ (i. e. rejecting all points), since
values in between do not alter the number of rejected points on X.

• Values r(xik) with xik ∈ E are dominated by r(xik+1
) (or∞ for the largest

value) with respect to true rejects since the latter threshold accounts for the
same number of false rejects, adding one true reject xik .

• Contrary, values r(xik) with xik ∈ L are not dominated with respect to
the number of true rejects. Increasing this threshold always increases the
number of false rejects by adding xik to the rejected points.

Therefore, the extended Pareto front is induced by the set of thresholds Θ corre-
sponding to correctly classified points:

Θ := {θ = r(xik) | xik ∈ L} ∪ {∞ | if xiN 6∈ L} . (5.6)

|Θ| ∈ {|L|, |L| + 1} depending on whether the last point in this list is classified
correctly or not. An exemplary setting is depicted in Fig. 5.4. We refer to thresholds
obtained this way as θ(0), . . . , θ(|Θ| − 1) assuming ascending sorted values.
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5.5.3. Optimal Local Rejection

Computing P̂θ (5.5) for local rejection is harder than for a global one since the
number of parameters (thresholds) in the optimisation rises from one to ζ. First, we
derive an optimal solution via DP (Bellman, 1957; Cormen et al., 2001). Secondly,
we introduce a faster greedy solution providing a good approximation of DP.

For every single partition Υj , the optimal choice of a threshold and its corre-
sponding extended Pareto front is given in exactly the same way as for global
rejection: We use the same notation as for global rejection, but indicate via an
additional index j ∈ {1, . . . , ζ} that these values refer to partition Υj . For any Υj ,
optimal thresholds as concerns the number of true rejects are induced by the
certainty values of correctly classified points in this partition, possibly adding∞.
These thresholds are referred to as

Θj := {θj(0), . . . , θj(|Θj | − 1)} (5.7)

equivalent to (5.6) with |Θj | ∈ {|Lj |, |Lj |+ 1}.
We are interested in threshold vectors describing the extended Pareto front of

the overall strategy, i. e., parameters θθθ such that no θθθ′ 6= θθθ exists which dominates
θθθ with respect to the true rejects. The following relation holds: θθθ is optimal ⇒
every θj is optimal in Υj . Otherwise, we could easily improve θθθ by improving
its suboptimal component. The converse is false: E. g., assume a partition and
thresholds as shown in Tab. 5.1. Here, we compare the threshold vectors (1,1,1)
and (0,0,3). While both choices lead to 3 false rejects, the first one causes 9 true
rejects and the second one leads to 25 true rejects. Hence the second vector
dominates the first one, albeit thresholds are optimal within each Υj .

|Lθj(i)| |Eθj(i)|
threshold i 0 1 2 3 0 1 2 3

Υ1 0 1 2 3 3 4 6 9
Υ2 0 1 2 - 2 3 6 -
Υ3 0 1 2 3 1 2 10 20

Table 5.1.: Sample rejects for three partitions Υj and their losses |Lθj(i)| and gains |Eθj(i)|.

It arises the question how to efficiently compute optimal combinations of the
single values in Θj . There exist at most |Θ1|· . . . ·|Θζ | = O(|L|ζ) different combina-
tions (using the trivial upper bound O(|Lj |) ≤ O(|L|) for each |Θj |). This number is
infeasible for large ζ, i. e., a fine grained decomposition. We describe two methods
to compute the Pareto front which are linear with respect to ζ, which depend on its
formalisation as multiple choice knapsack problem (Chandra et al., 1976).
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5.5.4. Formulation as Multiple Choice Knapsack Problem

Assume a fixed number n of false rejects. Then the problem of finding a threshold
vector θθθ which leads to a maximal number of true rejects can be formulated as
multiple choice knapsack problem (MCKP, Chandra et al., 1976) as follows:

max
aji

ζ∑
j=1

|Θj |−1∑
i=0
|Eθj(i)| · aji

subject to
ζ∑
j=1

|Θj |−1∑
i=0
|Lθj(i)| · aji = n

∀ 1 ≤ j ≤ ζ :
|Θj |−1∑
i=0

aji = 1

∀ 1 ≤ j ≤ ζ,∀ 0 ≤ i ≤ |Θj | − 1 : aji ∈ {0, 1}

(5.8)

where the variable aji ∈ {0, 1} denotes whether the local threshold θj(i) is chosen
for rejection in the partition Υj . The constraints guarantee that exactly one
threshold is chosen in each Υj , and that the sum of false rejects equals n. The
objective maximises the obtained number of true rejects. |Eθj(i)| is the gain
obtained in partition Υj and |Lθj(i)| are the costs which are paid for this choice.

In general, the MCKP allows a pseudo-polynomial algorithm. Since the involved
costs and gains in the formulation (5.8) are polynomial with respect to the number
of data points |X|, this allows a polynomial solution of this problem. For instance,
Chandra et al. (1976); Dudzinski and Walukiewicz (1987); Pisinger (1995) analyse
efficient exact solutions, mostly based on linear programming relaxations which
simplify the original MCKP such that it can be solved optimally by enumeration. We
derive an efficient and intuitive alternative with the same computational complexity
relying on the fact that thresholds in every partition Υj have an ordering according
to their gain/costs in our case. This enables us to derive a quadratic time and linear
memory algorithm similar to the DP scheme of the classical knapsack problem.

5.5.5. Local Threshold Adaptation by Dynamic Programming

For any number 0 ≤ n ≤ |L|, 1 ≤ j ≤ ζ, 0 ≤ i ≤ |Θj | − 1 we define:

opt(n, j, i) := max
θθθ
{|Eθθθ| | |Lθθθ| = n, θk ∈ {θj(0), . . . , θj(|Θj | − 1)}

∀k < j, θj ∈ {θj(0), . . . , θj(i)}, θk = θk(0)∀k > j}
(5.9)

The term opt(n, j, i) measures the maximum number of true rejects that we can
obtain with n false rejects, and a threshold vector that is restricted as follows: the
threshold in partition j is one of the first i thresholds, it is any threshold value
for partition k < j, and the threshold for any partition k > j is fixed to the first
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threshold value. For technical reasons, it is useful to extend the index range of the
partitions with 0 that refers to the initial case that all thresholds are set to 0 which
serves as an easy initialisation. Since there are no thresholds to pick in partition
Υ0, we define |Θ0| = 1, i. e., the index i is the constant 0 in this virtual partition Υ0.

The extended Pareto front can be recovered from the values opt(n, ζ, |Θζ |−1)

for n≤|L|, since these parameters correspond to the optimal number of true rejects
provided n false rejects and free choice of the thresholds. An efficient computation
scheme for the quantities opt(n, j, i) allows to efficiently compute the Pareto front.

For the values opt(n, j, i), the following Bellmann equality holds:

opt(n, j, i) =



if n = 0 :
∑ζ

k=1 |Eθk(0)|
if n > 0, j = 0 : −∞
if n > 0, j > 0, i = 0 : opt(n, j − 1, |Θj−1| − 1)

if 0 < n < i, j > 0 : opt(n, j, i− 1)

if n ≥ i > 0, j > 0 : max{opt(n, j, i− 1),

opt(n− i, j − 1, |Θj−1| − 1) + |Eθj(i)\Eθj(0)|}

(5.10)

This recursion captures the decomposition of the problem along the partitions:

• In the first case, no false rejects are allowed and the gain equals the sum of
the gains |Eθj(0)| obtained by the smallest thresholds in the partitions.

• In the second case, the number of false rejects has to be n, and only a trivial
threshold with no rejects is allowed which is impossible (reflected with −∞).

• In the third case, the threshold of partition j and all partitions with index
larger than j are fixed to the first one by definition of opt (5.9). This is exactly
the same as the term opt(n, j − 1, |Θj−1| − 1).

• In the fourth case, the i-th threshold is allowed, but it would account for i
false rejects in partition j with only n < i allowed false rejects. Hence we
cannot pick number i but a smaller one only.

• In the fifth case there are two options, and the better of these two yields the
result: Either a threshold with index smaller than i in partition j is chosen, or
the threshold i in partition j is chosen. The first option leads to opt(n, j, i−1)

true rejects. The second option causes i false rejects in partition j, hence
at most n−i further false rejects are allowed in partitions 1 to j−1, leading
to a number of opt(n−i, j−1, |Θj−1|−1) true rejects caused by thresholds
in partition 1 to j−1. In addition, by picking threshold i in partition j, we
gain |Eθj(i)| true rejects as compared to only |Eθj(0)| for the default 0. This is
mirrored by the term |Eθj(i)\Eθj(0)|.
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DP can solve this recursive scheme, since the value i or j is decreased in every
recursion, using loops over n, j and i (Algorithm 1, page 124); for memory effi-
ciency we reduce the tensor opt(n, j, i) to a matrix opt(n, j) denoting the maximal
number of true rejects with n false rejects and flexible thresholds in partitions
1, . . . , j. Since every evaluation of (5.10) itself is constant time, the computation
scheme has an effort of O(|L| · ζ ·maxk |Θk|) with memory efficiency O(|L| · ζ). A
standard back-tracing scheme reveals the related optimal threshold vectors.

5.5.6. Local Threshold Adaptation by an Efficient Greedy Strategy

Albeit enabling an optimal choice of the local threshold for given data, DP as
described above (5.10) is infeasible for large training sets since its time com-
plexity scales quadratically with the number of data: The number of possible
thresholds maxj |Θj | scales with N , we can expect it is of order O(N/ζ). We
describe a greedy approximation scheme1 yielding to a linear method (besides
pre-processing).

The basic idea is to start with the initial setting in analogy to opt(0, ζ, |Θζ | − 1):
All thresholds are set to the default choice θj(0), hence no false rejects are
present. Then, thresholds are increased greedily until the number of true rejects
corresponds to the maximal possible number |E|. While increasing their values,
the respective optima are stored and the values of the ARC are computed.

The greedy step proceeds as follows: In each round, the number of false rejects
n increases by at least one to yield the optimal achievable gain, as follows:

• We consider local gains |Eθj(k+1)\Eθj(k)| for each partition Υj gained by rising
the threshold index k by one. In addition, we evaluate global gains, which
are obtained when assigning all false rejects to one partition only.

• If a global gain surpasses the local gains, this setting is taken and greedy
optimisation continues.

• If a local gain surpasses the global gain, it is checked whether this choice is
unique. If so, the greedy step continues.

• Otherwise, a tie occurs; this is in particular the case when a threshold
increase does not increase the number of true rejects e. g., due to clusters
of correctly labelled points. In this case, we allow to increase the number of
false rejects until the tie is broken.

This procedure is described in detail in Algorithm 2 (page 126). Relying on
a greedy strategy, the algorithm can yield suboptimal solutions. As we see in

1We would like to thank Stephan Hasler for the basic idea of the greedy optimisation of local
thresholds and helpful discussions thereon.
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experiments, results tightly approximate the optimal choices. Unlike the exact
algorithm, the greed strategy only requires O(|L| · ζ) time and O(ζ) memory.

5.6. Experiments for Local Rejection

We evaluate both algorithms (greedy and DP) which determine optimal thresholds
as stated above for several data sets and classifiers. We use a 10-fold repeated
cross-validation with ten repeats. The optimal thresholds are obtained from the
training set and then used on the related test set of the cross validation. We
use RSLVQ, GMLVQ, and LGMLVQ with one prototype per class. Since RSLVQ
provides probability estimates, we combine it with the certainty measure Conf
(4.2). The GMLVQ and LGMLVQ lend itself to the RelSim (4.3) measure. For
the DT we use the default settings of the Matlab Statistics Toolbox2 except of the
splitmin-parameter and the related certainty measure Dist (5.4). We use the SVM
(Chang and Lin, 2011) with a RBF-kernel and choose the best parameters of a
cross-validation and a standard certainty measure (Platt, 1999; Wu et al., 2004).

In Fig. 5.6 and Fig. 5.7, we display the ARC averaged over 100 runs per data
set and classifier. Note that the single curves have different ranges for |Xθ|/|X|
corresponding to different thresholds. To ensure a reliable display, we only report
those points |Xθ|/|X| for which at least 80 runs deliver a value.

5.6.1. Data Sets

For evaluation, we consider the following benchmark data sets: Image Segmen-
tation, Tecator, Haberman, and Coil (section 4.4.1), an the artificial data set
Gaussian Clusters (section 4.4.1), and the

Pearl Necklace This data set consists of five 2D Gaussian clusters with overlap
(Fig. 5.3). Mean values are given by µyi = 3 ∀i, µx = (2, 44, 85, 100, 136), the
standard deviation per dimension is σx = (1, 20, 0.5, 7, 11), σx = σy.

Since the complete ground truth is available for the artificial data sets, we use
the optimal Bayesian rejection as a Gold standard for comparison.

5.6.2. Dynamic Programming versus Greedy Optimisation

First, we evaluate the performance of a greedy optimisation for the computation of
local rejection thresholds versus an optimal DP scheme for all data sets. Since
we are interested in the ability of the heuristics to approximate optimal thresholds,
ARCs are computed on the training set for which the threshold values are exactly

2MATLAB and Statistics Toolbox Release 2008b, The MathWorks, Inc.
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optimised using DP. The mean squared error of the two curves created by DP and
the greedy solution is below 0.0015 for all experiments, for all but two it is even
below 2.1 ·10−5, see Fig. 5.5. Hence the greedy optimisation provides near optimal
results for realistic settings, while requiring less time and memory consumption. In
the following, we use the greedy optimisation for the local reject options.
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Figure 5.5.: Averaged accuracy-reject-curves for dynamic programming (DP) and the
greedy optimisation applied on artificial and benchmark data sets for the relative similarity.
The other settings are not shown since they look similar.

5.6.3. Experiments on Artificial Data

We report the ARC obtained on a hold out test set not used for training or threshold
selection in order to judge the generalisation error of the classifiers with rejection.
For the artificial data sets, we compare local and global reject options with the
optimal Bayes rejection (Fig. 5.6). Thereby, RSLVQ is combined with Conf as
certainty measure, while RelSim is used for deterministic LVQ classifiers, relying
on the insights as gained in the studies (Sato and Yamada, 1995), and the findings
of chapter 4, the DT uses Dist (5.4) as certainty measure and the SVM uses its
estimated class probabilities. For all settings, the performance of the classifier on
the test set is depicted, after optimising model parameters and threshold values
on the training set. Results of a repeated cross-validation are shown, as specified.

Gaussian Clusters: For Gaussian clusters, global and local rejection ARCs are
almost identical for all three LVQ classifiers. In this setting, it is not necessary
to carry out a local strategy, rather a computationally more efficient global reject
option suffices. Only for the DT the curves are different and the local rejection
boosts the performance significantly. For SVM the local rejection does not improve
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the performance over the global one. Interestingly, rejection strategies reach
the quality of optimal Bayesian rejection in the relevant regime of up to 25 %
rejected data points as can be seen in the left part of the ARCs. RSLVQ, due to
its foundation on a probabilistic model, even enables a close to optimal rejection
for the full regime as well as the local rejection for DT (Fig. 5.6).

Pearl Necklace: The pearl necklace data set is designed to show the advantage
of local rejection. Here, local rejection performs better than global rejection for
RSLVQ and GMLVQ and slightly better for LGMLVQ and DT. Global and local
rejection show the same performance for SVM. As can be seen from Fig. 5.6,
neither RSLVQ nor GMLVQ reach the optimal decision quality, but the ARC curves
are greatly improved when using a local instead of a global threshold strategy.
This observation is attributed to the fact that the scaling behaviour of the certainty
measure is not the same for the full data space in these settings: RSLVQ is
restricted to one global bandwidth, similarly, GMLVQ is restricted to one global
quadratic form. This enforces a scaling of the certainty measure which does not
scale uniformly with the (varying) certainty as present in the data. In comparison,
LGMLVQ is capable of reaching the optimal Bayesian bound for both, local and
global rejection strategies, caused by the local scaling of the quadratic form in
the classifier. The analysis on these artificial data sets is a first indicator showing
that local reject options can be superior to global ones in particular for simple
classifiers. On the other side, there might be a small difference only between local
and global rejection for well performing classifiers.
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Figure 5.6.: Averaged accuracy-reject-curves for global and local rejection evaluated on
test data. For RSLVQ Conf (4.2) serves as certainty measure and for the other LVQ
classifiers, RelSim (4.3) serves as certainty measure. The decision tree (DT) uses the
certainty measure Dist (5.4) and the support vector machine (SVM) uses the estimated
class probabilities. The Bayes rejection with known class probabilities provides a Gold
standard for comparison.
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5.6.4. Experiments on Benchmarks

For the benchmark data sets, the underlying densities are unknown, hence we
omit the result of optimal Bayes rejection. Figure 5.7 displays all results.

The experiments show that local rejection performs at least as good as global
rejection for the important range from 0 % to 25 % rejection rate of the data. If the
used classifier is already performing well there are less (e. g., LGMLVQ: Coil) or no
(e. g., SVM: Coil) errors in the training data leading to bad or no local thresholds
which can be applied on the test data. For simpler classifiers such as GMLVQ,
RSLVQ, and DT, local thresholds improve the performance for several data sets.
Therefore local thresholds seem beneficial in particular for simple classifiers where
they can balance the local characteristics of the data neglected by the classifiers.

Based on these experiments, we conclude the following:

• Rejection can greatly enhance the classification performance, provided the
classification accuracy is not yet optimal.

• Local rejection yields better results than global ones, whereby this effect is
stronger for simple classifiers for which the classification accuracy on the
full data set is not yet optimal. For more flexible classifiers with excellent
classification accuracy for the full data set, this effect vanishes.

• Threshold optimisation by means of a linear time greedy strategy displays
the same accuracy as computationally more complex optimal choices.

• If the distribution of the training and the test data is too different, the optimised
thresholds on the training set will not likely perform well on the test set.

We would like to comment on the generalisation ability from the training to the
test set. We observe desired behaviour of the local rejection in the experiments.
But there are effects of overfitting, e. g., for Haberman, fortunately in regions which
are less important (rejection rates > 80 %). It can also happen that the local
thresholds do not affect the test data. This effect seems to occur only when the
accuracy of the classifier is already high and hence there are only less data points
for determining local thresholds, e. g., Tecator: SVM or Coil: LGMLVQ.

5.6.5. Medical Application – The Adrenal Tumours Data

We conclude with a recent instance from the medical area. The adrenal tumours
data3 (Biehl et al., 2012) contains 147 data points composed of 32 steroid marker
values. These values are measured from urine samples using gas chromatog-
raphy/mass spectrometry. We refer to (Biehl et al., 2012; Arlt et al., 2011) for

3 We would like to thank Wiebke Arlt and Michael Biehl for providing the medical data and the
support in related issues.
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Figure 5.7.: Averaged accuracy-reject-curves for global and local rejection of test data.
For RSLVQ Conf (4.2) serves as certainty measure, for the other LVQ classifiers the
RelSim (4.3), for the decision tree (DT) the Dist (5.4) and the SVM uses its estimated
class probabilities. The black points show the performance of the related classifier without
local rejection, if the obtained local thresholds from the training set do not affect the test
data.

further medical details. Two unbalanced classes are present: Patients with benign
adrenocortical adenoma (102 points) or malignant carcinoma (45 points).

Our analysis of the data and the pre-processing follow the evaluation in (Biehl
et al., 2012; Arlt et al., 2011): We train a GMLVQ model with one prototype per
class. For the analysis of rejection we split the data into a training (90 %) and
a test set (10 %). We evaluate the ARC of 1000 random splits of the data and
the related GMLVQ models. Figure 5.8 shows the averaged ARCs of the tested
rejections.

There is nearly no difference between the curves of the global and the local
rejection for small rejection rates (up to 10 %). For more than 10 % rejection, the
local rejection strategy improves the accuracy as compared to the global one.
Further, the GMLVQ model provides insight into potentially relevant biomarkers
and prototypical representatives of the classes (Arlt et al., 2011). As a conclusion,
the GMLVQ model together with the proposed rejection offers a reliable and
compact classifier for this medical application.
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Figure 5.8.: Averaged accuracy-reject-curves for global and local rejection based on the
RelSim (4.3) (test data).

5.7. Conclusion: Answering the Research Questions

In this chapter, we introduced rejection strategies for prototype-based, DT and
SVM classifiers and extensively evaluated the proposed methods for diverse data
sets. In particular, we explained global and local rejection and addressed the
problem of their efficient computation. We explained two algorithms to derive
optimal local thresholds: (i) An optimal solution based on DP and (ii) a fast greedy
approximation. While the first is provably optimal, the latter is based on heuristics.
Our experiments show that the results of both solutions are very similar such
that the fast greedy solution instead of the more complex DP solution seems a
reasonable choice. Its time complexity is only linear with respect to the number
of data, while DP requires quadratic time, and its memory complexity is constant
as concerns the number of data, while DPs memory size depends linearly on the
number of data points.

When investigating these approaches for benchmarks, the benefit of local
strategies becomes apparent in particular for simple prototype-based classifiers
and DT. The effect is less pronounced for more complex classifiers that involve
local metric learning like LGMLVQ or the SVM. Interestingly, the proposed rejection
strategies in combination with the intuitive deterministic method LGMLVQ lead to
results which are comparable to SVM and corresponding reject options. Thereby,
the LVQ classifiers base the rejection on their dissimilarity to few prototypes only,
hence they open the way towards efficient strategies for online scenarios.
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Regarding the stated research questions (section 5.2), we provide the following
answers:

1. How to determine efficiently local thresholds?

The experiments have shown that the greedy algorithm 2 provides efficiently
good approximations of optimal local threshold vectors.

2. How good is the generalisation of the optimal thresholds on new data sets?

The local thresholds are optimised on the training set. We observed effects
of overfitting but not in relevant regions. This is subject to future research.

3./4. Does a local rejection outperform its global counterpart? Is the usage of
local rejection always beneficial and when it is better to stick with a global
rejection?

A clear yes or no can not be given as the answer to the fourth question since
it strongly interacts with the third one. Due to the experiments we can say
that simple classifiers like the RSLVQ, GMLVQ, and DT strongly benefit from
local rejection for some data. For more advanced classifiers such as the
LGMLVQ and the SVM only less benefit can be gained since these classifiers
are able to deal with local characteristics of the data internally. Hence they
are less dependent on local thresholds and often a global threshold suffices.
The last two questions can only be adequately answered for a specific setting
containing technical and user requirements.

So far we studied certainty measures and their properties for global rejection
as well as for local rejection. Further we derived two algorithms for determining
local thresholds for various classifiers with different certainty measures which
closes the first part of the thesis. In the second part of the thesis we study the use
of certainty measures in the context of lifelong learning architectures. The next
chapter deals with an LVQ approach using a certainty measure in this context.



6. Incremental Online LVQ

Chapter overview In this chapter, we investigate incremental online learning for LVQ, in-

tegrating metric learning as well as a certainty measure. Since this measure indicates where

classification is uncertain with the current classifier, it is suited to point to areas where a higher

classifier complexity could be needed. We analyse for artificial and benchmark data if integrating

metric learning for incremental settings works and if using a certainty measure gives a benefit. The

results of our experiments have shown that integrating metric learning performs better than the

approaches without. Further the obtained results are comparable or even better than the results

obtained by batch learning and an incremental SVM version.

Parts of this chapter are based on:

[C15a] L. Fischer, B. Hammer, and H. Wersing. Certainty-based prototype insertion/deletion for classification
with metric adaptation. In ESANN, pages 7–12, 2015.

6.1. Motivation

The previous chapters dealt with certainty measures used for rejection. Another
field of application is lifelong learning which is in the focus of this chapter. Machine
learning methods like LVQ or SVM provide state of the art classification schemes
for automated data analysis (Schneider et al., 2009a; Seo and Obermayer, 2003;
Tsang et al., 2005). In most settings, classifiers are used in offline scenarios like in
the former chapters where a suitable classifier complexity can be adjusted based
on cross-validation. This procedure gets prohibitive for big or streaming data and
lifelong learning, where data cannot be inspected at once, and a proper classifier
complexity cannot be identified prior to training. In this setting, online, incremental,
or streaming algorithms are interesting, which are capable of adapting their model
complexity while training based on the observed data (Read et al., 2012).

For SVM, incremental variants have been proposed which inspect only one data
point at a time, but require extensive storage space due to a growing number of
support vectors1 (Cauwenberghs and Poggio, 2000; Diehl and Cauwenberghs,
2003; Laskov et al., 2006). For LVQ, a few online heuristics have been proposed:
some only incorporate new training data (Bharitkar and Filev, 2001), while others
adjust the number of prototypes either by error-based insertion only (Kirstein et al.,
2005, 2008; Kietzmann et al., 2008), or dynamic prototype deletion and insertion

1We will use the online SVM code at: http://www.isn.ucsd.edu/svm/incremental/

http://www.isn.ucsd.edu/svm/incremental/
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(Grbovic and Vucetic, 2009; Xu et al., 2012). Unsupervised counterparts are for
instance the growing neural gas (Fritzke, 1994) and extensions thereof. These
methods are based on heuristics rather than a cost function. Further, no classifier
dynamically adjusts the model complexity and an underlying general quadratic
form.

In this chapter we analyse an incremental LVQ method which inserts and
deletes prototypes based on a certainty measure strongly related to the GLVQ
costs and we study its interaction with metric adaptation. This method allows a
fast adaptation to new training data by prototype insertion, respecting noise or
overlaps by prototype deletion and it reaches results comparable to offline variants
or the incremental SVM (Cauwenberghs and Poggio, 2000), using less memory.

6.2. Research Questions

We want to study a cost function based LVQ approach which combines increasing
and decreasing of the model complexity and metric learning. To our knowledge
there are LVQ approaches combining some of those aspects but not all (Tab. 6.1).

property cost-function prototype insertion prototype deletion metric learning

Kirstein et al. (2005)
√ √

- -
Kietzmann et al. (2008)

√ √
-

√

Grbovic and Vucetic (2009) -
√ √

-
Xu et al. (2012)

√ √ √
-

new
√ √ √ √

Table 6.1.: Comparison of several online, incremental LVQ approaches. The symbol
√

denotes that the classifier has the property while the symbol - denotes that the property is
unavailable.

For this new approach we want to analyse the following questions:

1. Which effects do the model parameters have?

2. Does incremental online learning work when metric learning is integrated?

But first we present related work in the next section and we define the keywords:
offline/batch learning, online learning, and incremental learning.

6.3. Related Work

The following section summarises the state of the art in online learning respectively
in incremental learning. Since these terms are used differently, we define their
meaning for this thesis in the beginning (Fig. 6.1):



6.3. Related Work 71

Online learning: The assumption of online learning is that training data becomes
available in sequences or as single points. The classifier integrates the ap-
proaching data in its training. Hence the classifier is changing when new
training data arrives but its model complexity stays constant, e. g., the number of
prototypes does not change in LVQ approaches like (Bharitkar and Filev, 2001).

Offline/batch learning: A offline/batch learning scenario assumes a complete
training data set to train the classifier. The trained classifier stays fixed after
training, e. g., SVM (Chang and Lin, 2011) and the integration of new training
data is not necessary.

Incremental learning: The assumptions made for online learning are also valid
for incremental learning with the extension, that the complexity of the classifier
is allowed to change. This means the integration of new classes is possible as
well as the deletion of disappeared classes, e. g., adding/removing prototypes
in LVQ (Grbovic and Vucetic, 2009). For lifelong learning approaches this type
of learning is expected since there are mechanisms for learning new concepts
and forgetting obsolete ones.

machine learning
online

batch

incremental

Figure 6.1.: Scheme of machine learning scenarios

Since the main focus of this thesis lies on prototype-based approaches, we
provide a paragraph with related literature focusing on such classifiers and a para-
graph dealing with other classifiers usable in online and/or incremental settings.

Prototype-based classifiers: Some classifiers only incorporate new training
data (Bharitkar and Filev, 2001), while others adjust the number of prototypes
either by error-based insertion only (Kirstein et al., 2005, 2008; Kietzmann et al.,
2008), or dynamic prototype deletion and insertion (Grbovic and Vucetic, 2009; Xu
et al., 2012). A generalisation of Kirstein et al. (2008) towards an classifier usable
for category learning in a lifelong learning scenario was proposed by Kirstein et al.
(2012). Different insertion strategies for prototypes of an online, incremental LVQ
were analysed in Losing et al. (2015) for an application on a mobile robot. Xu
et al. (2009) deals with incremental, online learning and represents prototypes as
subspaces rather than vectors. This classifier is able to increase and to decrease
the number of prototypes. Unsupervised counterparts are for example the growing
neural gas (Fritzke, 1994) and extensions thereof.
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Non-prototype-based classifiers: A popular classifier is the SVM and there are
online versions of it. An early one is the approach of Cauwenberghs and Poggio
(2000) usable for binary problems only and implying to learn the whole classifier
again. To overcome the implicit retraining, Ralaivola and d’Alché-Buc (2001)
consider only status changes (data point being a support vector or not) of data in
the local neighbourhood of a new data point. A generalisation of Cauwenberghs
and Poggio (2000) towards unlearning and learning of single or multiple data points
as well as optimising the regularisation and kernel parameters was proposed in
Diehl and Cauwenberghs (2003). Zheng et al. (2013) propose an idea how to deal
with large-scale data and multi-class settings. The authors combine ideas from
prototype-based classification with SVM. Their approach consists of two parts:
learning prototypes and learning support vectors. Diethe and Girolami (2013)
give a wide review on online learning with kernel methods, including theoretical
comparisons of the methods and experiments on benchmark data sets. Besides
kernel methods there are e. g., random forests and online versions thereof (Saffari
et al., 2009; Abdulsalam et al., 2011; Schulter et al., 2011; Lakshminarayanan
et al., 2014). Random forests offer a high computational efficiency during training
and testing. Feed forward networks are also widely used for classification. Liang
et al. (2006) present an approach for such networks trainable on chunks of data or
even on single data points without retraining the whole network. Another method
to fit neural networks in the scenario of incremental online learning is based on
ensembles: Learn++ (Polikar et al., 2001) and extensions thereof (e. g., Ditzler
et al., 2010). The idea is to combine several so-called weak learners via a weighted
majority voting to create a dynamic and powerful classifier. The authors provide a
theoretical upper bound on the error of the Learn++ classifier (Polikar et al., 2001).

Summing up, there are a lot of different incremental classifiers. Regarding the
prototype-based ones there is no classifier which combines all advantages (Tab.
6.1) of (Kirstein et al., 2005; Kietzmann et al., 2008; Grbovic and Vucetic, 2009;
Xu et al., 2012). Subsequently we close this gap.

6.4. Incremental Online LVQ

We introduce a general incremental online learning framework for LVQ (ioLVQ)
usable in combination with any of GLVQ, GMLVQ, or LGMLVQ. The classifier gets
single training data points (x, y) ∈ RM × {1, . . . , Z} one after another aiming at a
good representation of the observed data in terms of a set of prototypes W and
an adequate trained metric depending on the chosen LVQ approach. Starting with
an empty set of prototypes, new prototypes are inserted or deleted on demand.
Existing ones are adapted according to the standard GLVQ scheme, possibly
including matrix learning. Hence the number of prototypes varies automatically to
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mirror the complexity of the observed training data. Remember that the

RelSim(x) =
d−(x)− d+(x)

d−(x) + d+(x)

relates to the summands of the GLVQ costs and can be interpreted as a certainty
of the classification: It provides values RelSim(x) ∈ (−1, 1), where values near 0
indicate high uncertainty, high values near 1 indicate a high certainty, and values
below 0 indicate a wrong classification since d+ > d−. As discussed in chapter 4
this value can serve as an efficient approximation of a confidence for classification
with rejection. In the following, this measure serves as signal which changes
of prototypes likely decrease the GLVQ costs. There are three mechanisms to
self-adjust the model complexity based on the observed data:

New classes insertion strategy taken from Xu et al. (2012): Each training
point (x, y) with y 6= cj ,∀ j, i. e., a new class, is directly used as new prototype
(6.1) with label y reducing the costs for class y.

W := W ∪ {(x, y)} (6.1)

Prototype insertion: Wrong classifications increase the costs (3.2), hence low-
ering their number decrease the costs, provided the remainder is not greatly
affected. Based on an idea from (Kirstein et al., 2005; Kietzmann et al., 2008),
wrongly classified training data are stored in a set S with maximum storage ca-
pacity gmax. Once |S| = gmax, for each class z for which errors are stored (i. e.,
∃ i : z = yi ∧ xi ∈ S) a prototype with label z is introduced (6.2). We determine its
position to minimise costs, i. e., the point (xi, z) in the set with lowest RelSim(xi)

is chosen as prototype position (Fig. 6.2).

W := W ∪ (xi, z) with (xi, z) = arg min
(xk,yk)∈S
yk=z

RelSim(xk) (6.2)

Note that this also corresponds to a high degree of uncertainty, that means a
potentially useful placement. After this insertion, the set S is cleared, i. e., S := ∅.

Prototype deletion: Unbounded prototype insertion can generate prototypes
with noisy Voronoi cells, hence they harm more than they use. We remove proto-
types based on their contribution to the costs (3.2), mimicking the idea underlying
Grbovic and Vucetic (2009) that counts correct versus wrong classifications as
score (Fig. 6.3). Here, every prototype w is accompanied by a parameter η(w),
initialised with zero, that sums up the certainty of the classifications of points in its
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w1

w2

w3

single error of class

error with the lowest certainty value of class

gmax = 4

(a) before insertion

w1

w2

w3

w4

w5

(b) after insertion

Figure 6.2.: Scheme of error-based prototype insertion – The red symbols are the wrongly
classified data points stored in S. The capacity of S gives gmax = 4 and the dashed lines
are the class borders. The two highlighted errors in (a) got new prototypes w4, w5 in (b).

Voronoi cell. Hence a presentation of a data point (x, y) with its closest prototype
wl leads to the update:

η(wl) := η(wl) + RelSim(x) .

The value η(wI) is negative if and only if, on average, the prototype accounts for
more wrongly classified points than correct ones, weighted by their certainty. In
periods of rnum seen training data points, prototypes w with η(w) < 0 are removed
since their deletion directly improves the GLVQ costs.

w1

w2

w3

w4

w5

rnum = 5

η1 = 2

η2 = 1
η5 = 2

η3 = 4

η4 = −2

(a) before deletion

w1

w2

w3

w5

(b) after deletion

Figure 6.3.: Scheme of prototype deletion – (a) shows the last training instances encircled
(cyan). After rnum training data points each parameter ηj := η(wj) is checked. If ηj < 0
the related prototype is removed. This is the case for w4, hence it is removed, see (b).
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6.5. Experiments

Unless stated otherwise, we consider randomly ordered data presented in a single
pass, like in a streaming setting, using constant learning rates. Evaluation is based
on ten repeats of a 10-fold cross validation. Considered data sets are: Image
Segmentation, Coil (see section 4.4.1, page 36), and

Outdoor2: The Outdoor obstacle data set (Losing et al., 2015) contains 4000
elements consisting of 21 values of a 6 bin rg chromaticity diagram (Jain and Li,
2005) and they belong to 40 objects like dog, red ball, book, etc. lying in grass
(Fig. 6.4). There are images with different perspectives (rotations, different
sizes) of the objects (see Fig. 6.5).

Figure 6.4.: The 40 objects of the Outdoor data set.

Figure 6.5.: Different perspectives of an object of the Outdoor data set

In first experiments, we analyse the impact of the parameters which control
insertion and deletion of prototypes. Then we move in the direction of integrating
metric learning. Therefore we study the impact of several initialisation schemes for

2Thanks to Viktor Losing for providing this real-life data set and the related images 6.4 and 6.5.
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the adaptive metric. Experiments with several classifiers for three different settings
close the experiments section.

6.5.1. Influence of Parameters for Incremental Learning

We first analyse the effect of the parameters gmax and rnum of ioGLVQ without
metric learning (Fig. 6.6). Because both parameters have a crucial influence on
how the classifier deals with the stability plasticity dilemma, like the parameters
of an unsupervised counterpart as discussed in Hamker (2001). The results
with square symbols show results varying gmax only without prototype deletion
(rnum = ∞). The parameter gmax controls the speed of prototype insertion, with
small values accounting for a fast reacting but possibly noise-fragile system. A
prototype removal strategy makes the system more robust with respect to noise.
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Figure 6.6.: Effect of the parameters gmax and rnum – We report the average test errors
and the average prototype number. The image shows the effect of the parameter gmax
without removing and of the parameter rnum with a fixed gmax = 20 (ioGLVQ). The precise
values can be found in [C15a].

The results with circle symbols show the effect of rnum for a fixed gmax. Changing
rnum to high values increases the number of prototypes. Too small values of rnum

prohibit a sufficient adaptation of prototype positions, and prototypes are merely
replaced. The parameters gmax and rnum control the trade-off between the error
rate and the number of prototypes. In the following, we arbitrarily choose gmax ≈ 40

and rnum ≈ 0.1· data set size based on these findings.
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6.5.2. Compatibility with Metric Learning

We analyse the effect of metric learning for ioLVQ using several initialisation
methods for the metric:

a) random values in (-1,1)

b) the unit matrix

c) a unit diagonal and random elements otherwise

d) initialisation with pre-trained global matrix obtained from a previous trained
model

e) initialisation with local matrix of the next prototype from the same class

Figure 6.7 shows the results. Clearly, differences are only minor. Only between
global and local metrics there are larger differences. Due to the results, we use
initialisations c) respectively e) as robust ones in the following.
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Figure 6.7.: The effect of the initialisation of the global/local metric. We report the average
test errors and the average prototype number.The precise values can be found in [C15a].

6.5.3. Comparative Evaluation

We show three experimental settings:

1) a single streaming pass through the data,
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Data Err |W | Err |W | Err |W | Err |SV |
1) GLVQ GMLVQ LGMLVQ

Image 20.4 42.8 16.3 21.9 15.9 23.5
Coil 9.0 57.3 11.1 29.6 3.0 24.3
Outdoor 20.3 155.9 16.2 184.1 17.9 191.3

2) increm. SVM
Image 16.6 70.1 4.8 58.3 3.4 55.0 4.2 611.4
Coil3 3.0 83.6 0.7 67.1 0.0 36.1 0.7 1546.3
Outdoor 16.6 241.9 14.8 255.8 16.7 245.2 16.5 446.3

3) batch SVM
Image 20.9 7 9.9 7 5.2 7 2.8 265.8
Coil 9.9 20 3.8 20 0.8 20 0.0 773.8
Outdoor 17.7 160 12.6 160 18.5 160 4.7 1537.4

Table 6.2.: Comparison of the online and batch version of LVQ, batch SVM (Chang and
Lin, 2011) and incremental SVM (Cauwenberghs and Poggio, 2000). For SVM, multiple
classes are addressed by one vs. rest encoding. We display the average test error Err
and the average number of prototypes |W |, support vectors |SV |. For settings 1) and 2)
Pareto optima are set boldface. In setting 3) the best error rate (omitting batch SVM) is
set italic.

2) multiple streaming passes (Image: 70, Coil: 120, Outdoor: 150; the number
of passes is adjusted according to the convergence speed of batch LVQ;
such that both methods have similar computational effort) these results are
compared with an incremental SVM (Cauwenberghs and Poggio, 2000), and

3) batch versions of the LVQ approaches, initialised with one prototype per class
(Image, Coil) and four prototypes per class (larger values hardly influence
the classification accuracy), this is compared with a batch SVM (Chang and
Lin, 2011)

In 1) and 2) learning rates are constant while in 3) the learning rates are annealed.
The learning rates (prototypes, metric) of ioLVQ are roughly one magnitude smaller
than in the batch version. Figure 6.8 and 6.9 show the results given in Tab. 6.2.

Learning a metric improves the performance and lowers the demand of proto-
types, except for the Outdoor data. The reached performances are better than the
performances of the batch counterparts for LVQ (except Outdoor: GMLVQ) but
the ioLVQ classifiers use more prototypes than the batch classifier, in the worst
case (Image: GLVQ) ten times more. In general, this higher number of prototypes
is acceptable since the number is still mostly in the same order of magnitude. The
results of ioGMLVQ are comparable to the results of an incremental SVM, while
ioLGMLVQ is even better for Image and Coil.

3Features are scaled to [0,1] for both SVMs.



6.5. Experiments 79

160 180 200 220 240 2600

2

4

6

8

10

12

14

16

18

20

number of prototypes

te
st
er
ro
r[
%
]

Outdoor data

0 20 40 60
number of prototypes

0 20 40 60 80
number of prototypes

Image Segmentation Coil

GLVQ

GMLVQ

LGMLVQ

GLVQ

GMLVQ
LGMLVQ

GLVQ
GMLVQ

LGMLVQ

multi pass

batch

single pass

Figure 6.8.: The image shows the results of ioLVQ in three settings contained in Tab. 6.2.
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6.6. Conclusion: Answering the Research Questions

We proposed an efficient strategy for inserting/deleting prototypes based on a
certainty measure for online incremental prototype-based classification, in partic-
ular with metric adaptation, and we demonstrated its performance using GLVQ,
GMLVQ, LGMLVQ in benchmarks.

1. Which effects do the model parameters have?

It turned out that the metric parameter initialisation only mildly effects the per-
formance, while proper (i. e., small) learning rates are often crucial. Further,
the models are very robust to the choice of the initialisation schemes and
parameters. As expected, the parameters gmax and rnum control complexity
and accuracy of the resulting models. Interestingly, most of the obtained
values are Pareto optimal when varying these parameters.

2. Does incremental online learning work when metric learning is integrated?

Yes the results have shown that using metric learning performs better than
the plain ioGLVQ. Further the obtained results are comparable or even better
than the results obtained by batch learning and an incremental SVM version,
displaying the great promise of the proposed classifier. One striking property
of the results which we obtained in real life benchmarks is the comparably
small complexity with a number of prototypes which is larger than for batch
variants but considerably smaller than the respective number of support
vectors in SVM training. This observation identifies ioLVQ as a classifier with
high promises for efficient online learning in the context of big data.

So far we assumed i. i. d. data and did not analyse the so-called catastrophic
forgetting effect which can occur especially in the setting of non i. i. d. data includ-
ing the issue of the so-called concept drift. In the next chapter several lifelong
learning architectures are discussed for such a scenario. One architecture is
directly designed to avoid this effect by combining offline and online learning.



7. Combined Offline and Online
Learning

Chapter overview In this chapter, we investigate a classifier architecture which combines

offline and online learning via a dynamic classifier selection. Further we compare this architecture

with other lifelong learning approaches on several data sets and we discuss their properties. It

turned out that none of the analysed architectures surpasses all the others, such that a decision

which one to use depends strongly on the desired application scenario. Furthermore, it came up

an effect regarding the architecture which we call confidence drift and which has a strong impact

on the dynamic classifier selection. We analysed this effect and we proposed a method in order to

avoid negative impact on the performance of the architecture regarding this effect.

Parts of this chapter are based on:

[C16] L. Fischer, B. Hammer, and H. Wersing. Online Metric Learning for an Adaptation to Confidence Drift.
In IJCNN, accepted, 2016.

[C15b] L. Fischer, B. Hammer, and H. Wersing. Combining Offline and Online Classifiers for Life-long Learning.
In IJCNN, pages 2808–2815, 2015.

7.1. Motivation

Several trends have caused a rapidly increasing interest in lifelong learning tech-
nology (Silver et al., 2013). Electronic systems get smarter and there is a trend
for their personalisation such that the capability of systems to learn during their
lifetime becomes essential. Application scenarios which require effort concerning
lifelong learning, are for instance autonomous robotics/driving or assistive systems
(Thrun and Mitchell, 1995; Sykes et al., 2013; Stavens et al., 2007).

Online learning crucially depends on the capability of a system for learning new
concepts while preserving already known information over its lifetime (Silver et al.,
2013). This setting violates usual assumptions of classical learning scenarios
as formalised (see e. g., Vapnik, 1999): here often i. i. d. data are assumed.
Furthermore many optimisation schemes depend on a formalisation of the problem
using all training data. In contrast, humans always learn in an online setting, while
interacting with their environment. Humans keep relevant knowledge from the past
and use it to support learning of new content. It is notable that humans employ
powerful strategies for lifelong learning which ensure that relevant basic concepts
are stable while important changes can rapidly be integrated into their knowledge.
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These two goals, encountering stability for ground concepts and at the same
time, flexibility to deal with a changing environment or new concepts, constitute
conflicting requirements which are difficult to realise in technical systems. Often
the so-called catastrophic forgetting effect (CFE) can be noticed, i. e., there is no
guarantee that ground knowledge (e. g., safety of a system) is respected unless it
is explicitly hard-coded in the decisions of the system (Jin and Sendhoff, 2006;
Goodfellow et al., 2013).

Within machine learning, the family of incremental learning approaches recently
caused a lot of attention (see e. g., Polikar and Alippi, 2014). A typical problem in
this context is concept drift which occurs in dynamically changing environments
(Gama et al., 2014). Here we relate concept drift to the occurrence of new classes
and to changing data distributions. We do not assume data points that change
their labels. There exist methods which directly try to inspect when concept drift
occurs (Minku and Yao, 2012), while we do this implicitly. Ditzler et al. (2015)
give an overview on active and passive approaches dealing with concept drift.
There are at least two ways how to deal with concept drift: one can rely on a
flexible classifier changing with its environment, facing the risk of forgetting known
concepts (He et al., 2011; Cauwenberghs and Poggio, 2000; Crammer et al.,
2013) or one can rely on a combination of different classifiers, enabling a more
flexible control about which information to keep and which one to adapt (Polikar
et al., 2001; Hosseini et al., 2013). There exist several approaches using more
than two classifiers, ensembles, to gather the diversity of the seen data in diverse
models enabling good generalisation performance and dealing with different types
of concept drift (Minku and Yao, 2012; Hosseini et al., 2013; Kolter and Maloof,
2007). We address the question of how to efficiently realise a combination of
different architectures, and how their performance scales with respect to their
ability to reliably deal with both basic known concepts and newly faced events in
comparison to alternative model designs.

A lately proposed hybrid architecture (Wersing and Queißer, 2014; Queißer,
2012) combines two complementary classifiers via a dynamic classifier selection
(Dasarathy and Sheela, 1979; Sabourin et al., 1993; Woods et al., 1997; Britto Jr.
et al., 2014). One classifier is completely static during the application time after it
is pre-trained with offline available data (offline classifier). The second classifier
starts from scratch and it learns incrementally during its whole lifetime. The online
classifier of the architecture allows to deal with concept drift. If the known data
distribution changes or new classes occur, the architecture follows this change
using the online classifier, while the static classifier preserves the already learned
knowledge. This scheme is rather simple, but it uses a heuristic for classifier
combination based on error counting.

This chapter describes an extension of this hybrid architecture, a detailed analy-
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sis, and comparisons to alternative designs. While keeping the basic structure, we
substitute the single parts of the architecture by more fundamental choices which
rely on the notion of the certainty of the two parts for efficient classifier selection.
Combining a static and a highly flexible incremental classifier in such a way seems
promising with respect to the system’s stability and plasticity. On an abstract
level one can interpret the static classifier as kind of a long-term memory and the
online learning part serves as a kind of short-term memory. The advantage of this
architecture is the higher robustness against noise and CFE than pure incremental
approaches without a backup model, as we will show in several benchmarks.

We demonstrate the capability of this architecture for lifelong learning tasks
based on LVQ classifiers (see chapter 3) and the ioLVQ as explained in the last
chapter 6. For a comparison we refer to state of the art incremental learners, such
as incremental support vector machines (iSVM1, Cauwenberghs and Poggio,
2000; Diehl and Cauwenberghs, 2003). Note that the latter, unlike LVQ classifiers,
often require extensive storage space due to a growing number of support vectors.
LVQ, depending on a prototypical data representation rather than a representation
of class borders, usually relies on much smaller resources as we demonstrate in a
number of experiments.

At first we describe the assumed scenario, followed by a related work section.
Then we present the extended architecture combining an online and offline classi-
fier. Later on we explain its parts, especially specifying how decisions on how to
combine and how to train can be based on certainty values. Finally, we compare
the architecture to purely incremental LVQ schemes as well as iSVM as regards
their accuracy and model complexity, using several benchmarks.

7.2. Description of the Scenario

We assume a scenario with two training phases. The first phase is offline assuming
complete available training data and it enables multiple passes through the data.
A second phase assumes online training, i. e., training data points are available
one after another and they can be used for training only once. We assume training
data with original class labels for both phases. The original class labels of the test
data are used to evaluate the performance of the classifiers explained later on
only.

Such a scenario is interesting for systems delivered with a pre-trained classifi-
cation model which can be personalised/adapted for the users needs, e. g., via
direct user interaction (Fig. 7.1). A user can specify new labelled training data,
e. g., instances of already known classes or completely new ones.

1iSVM code: https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB

https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB 
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Manufacturing
Device for application
⇒ offline training phase,

i. e., known data

Use at customer
Working & Training of device
⇒ online training phase,

i. e., known and new data

delivery

Figure 7.1.: A possible application scenario

7.3. Research Questions

Regarding the described scenario we are analysing several architectures, e. g., like
those shown in Fig. 7.2 with respect to their behaviour. We tackle the questions:

1. What are the strengths and the drawbacks of the analysed architectures?

2. Can they deal with the catastrophic forgetting effect?

3. What is the role of metric learning in this setting, and are specific adjustments
required?

Input
Offline Classifier

Online Classifier
Certainty-based decision Output

if input is usable for training

(a) A classifier architecture combining offline and online learning

Input Online Classifier Output

(b) A pure incremental online learning architecture

Figure 7.2.: Two different types of lifelong learning architectures. (a) is a combination of
offline and online learning and it will be introduced in this chapter. The second architecture
(b) is purely online learning. An example thereof was discussed in the previous chapter.

7.4. Related Work

As mentioned in section 7.2, we want to deal with lifelong learning in a changing
environment which is the topic of recent surveys (Gama et al., 2014; Ditzler
et al., 2015). One group of approaches dealing with changing environments use
ensembles of classifiers, e. g., Polikar et al. (2001); Ditzler et al. (2010). Either
the output of the classifiers is combined or a single classifier of the ensemble is
selected in order to provide a class label for a given data point. An early approach
with classifier selection was proposed by Dasarathy and Sheela (1979). They
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combine a linear classifier with a k-NN for a binary task. The latter classifier is
only selected near the class border where the linear classifier is unreliable. A
counterpart to this static selection is the dynamic one proposed by Woods et al.
(1997). They compare so-called local accuracies of the classifiers and choose the
most reliable one. This selection is dynamic since the accuracies are updated with
every new training sample.

We study an architecture with two classifiers and a dynamic classifier selection
like Woods et al. (1997), but we use certainty values of the classifiers instead of
local accuracies.

7.5. Combining Offline and Online Learning (OOL)

The main idea of the OOL architecture (Fig. 7.3) proposed in Wersing and
Queißer (2014); Queißer (2012) combines a pre-trained offline classifier that
provides known knowledge of the desired task with an incremental online classifier
that learns special characteristics or new classes during the lifelong learning
application in its (dynamic) environment. The classifier that is more reliable in its
classification with respect to the certainty value for a given data point will define
the class label. A schematic system architecture is displayed in Fig. 7.3. In the
following, we elaborate the basic components. A crucial point is how to define
and train an online classifier, and how to combine both classifiers, using the new
RelSim certainty measure.

Input
Offline Classifier

Online Classifier
Certainty-based decision Output

if input is usable for training

Figure 7.3.: OOL architecture combines an online and offline classifier (Queißer, 2012).

Input A data point x ∈ RM is the input of the system. It can contain a label y
denoting a new or one of the Z known classes. Both classifiers receive the input.

Offline Classifier This container refers to any offline classifier that provides a
certainty value in addition to its predicted class label. We choose a pre-trained
LGMLVQ model (instead of GMLVQ (Queißer, 2012)), i. e., a set of trained proto-
types wj for the Z known classes with their local metrics dj . The offline classifier
is static, i. e., it preserves the gained knowledge during the whole application. The
output of the offline classifier is a class label yoff and the related certainty value
(RelSimoff(x)) for an input data point x that is passed to the classifier selection.
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Online Classifier This container refers to any online incremental classifier that
provides a certainty value in addition to its predicted class label. It will be the focus
of this chapter to analyse how to efficiently set up and integrate ioLVQ to obtain
a balance of stability and flexibility of the overall system. Here we choose the
ioLVQ based on an LGMLVQ model instead of an incremental GMLVQ which only
allows prototype insertion (Queißer, 2012). Update rules of the online classifier are
performed under some conditions (see classifier selection) only. During training,
it is vital that suitable training data are available for the online classifier in order
to gain specific knowledge that is unknown in the offline classifier. The output of
the online classifier for an input data point x is a class label yon and the related
certainty value (RelSimon(x)) which is passed to the classifier selection.

Classifier Selection The classifier selection of the system has two functions:
1) mediating between the online and offline classifier based on their certainty
values and 2) deciding if the input is usable as training instance for the online
classifier. These two functions work as follows: 1) we mimic the idea of Woods
et al. (1997) with a better suited certainty measure instead of a heuristic based
on error counting (Queißer, 2012). We choose the more reliable classifier which
decides the class label of the system

ysys :=

{
yoff, if RelSimoff(x) ≥ RelSimon(x)

yon,else
.

2) training of the online classifier is controlled as follows: Firstly the input of the
system necessarily needs a class label, i. e., (x, y). Mainly the system does not
use the input data point for training if the offline classifier is reliable and provides
the correct class label. If at least one of the three following conditions is valid, the
online classifier uses the input for training.

1. The online classifier is more reliable than the offline one

RelSimon(x) > RelSimoff(x) (7.1)

2. The offline classifier is more reliable but it provides a wrong class label.

RelSimon(x) < RelSimoff(x) ∧ yoff 6= y (7.2)

3. Both models are unreliable (here: Γ = 0.6).

max{RelSimon(x),RelSimoff(x)} < Γ (7.3)
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Output The output of the system, for a given input, is the selected class label
ysys with its certainty value.

The extended OOL architecture provides a particularly simple scheme promising
an easy control of the model adaptation. It is also designed to perform better
than pure incremental approaches with respect to the CFE because of its static
offline classifier. We show that the extended OOL architecture enables an effective
learning in dynamic settings where the data distribution used for learning is
changing, i. e., the crucial assumption of training data being i. i. d is violated.

7.6. Experiments on Artificial and Benchmark Data

We consider experiments on three data sets: a 2D data set (Blossom) for visuali-
sation and analysing the different architectures, the U.S. Postal Service (USPS2)
Handwritten Digits data as a benchmark data set, and a real-life Outdoor data set
(Outdoor) obtained from a robot during its application. Each data set is divided
into two partitions. One partition of the data simulates a data distribution which
is only accessible in the second training phase of the system while the other
partition/distribution provides training instances for both phases.

known data new data

Figure 7.4.: The Blossom data set. The colour encodes the class of the data points. The
distribution of the left blossom provides samples for the offline and the online training
phase whereas the distribution of the right blossom is only available during the online
training phase. This data simulates a changing distribution of known classes.

2Data is obtained from: http://www.cs.nyu.edu/~roweis/data.html

http://www.cs.nyu.edu/~roweis/data.html
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Figure 7.5.: A possible split in offline and online data of the Outdoor data

Blossom: Artificially created three class data set (Fig. 7.4). Each blossom forms
one partition of the data.

USPS: This data set contains 8-bit greyscale images of ”0” to ”9”; 1100 samples
per class. The dimension of the data is reduced to 30 with principal component
analysis (van der Maaten, 2013). Each half of the classes forms a data partition.

Outdoor: Already introduced in section 6.5. Each half of the classes forms a
data partition (Fig. 7.5). Figure 7.6 shows a 2D visualisation of the data with
the Fisher t-SNE3 (Gisbrecht et al., 2015) showing highly overlapping classes.

Unless stated otherwise, we consider randomly ordered data presented in a
single pass, like in a streaming setting, using constant learning rates (except for
the batch LGMLVQ). The evaluation for the Blossom and the USPS data set is
based on a 10-fold cross validation with ten repeats as follows: Each data set
is decomposed in two balanced partitions as stated before. The first partition
symbolises data which is available for offline training and data which can be
encountered during use. The second partition symbolises data which can be
only encountered during use and it contains new classes or drifted data of known
classes (new data distribution, Fig. 7.5). For a 10-fold cross validation, each

3Thanks to Alexander Schulz for providing the code.
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Figure 7.6.: A 2D visualisation of the Outdoor data set with the Fisher t-SNE (Gisbrecht
et al., 2015). The different colors denote the different classes.

partition is divided into 10 folds (see Fig. 7.7). The offline training set trainoff

consists of four folds of the first half of the data and the online training data trainon

(encountered during use) consists of four folds of the first half and of eight folds
of the second half of the data. To evaluate the different approaches in a proper
way we define three different test sets: testknown, testnew and testall. The test set
testknown consists of two folds of the first half of the data and its error shows the
performance on these data which samples the static ground knowledge (i. e., the
performance tests the stability of a learning method). The test set testnew contains
two folds of the second half of the data and it shows the accuracy of newly gained
knowledge in the online part of the system, i. e., it tests the flexibility of a method.
The overall performance is checked with the last test set testall = testknown∪testnew,
i. e., it tests the capability to deal with both challenges, stability and plasticity.

In the following experiments we compare the primary architecture by Queißer
(2012) and the OOL architecture on an artificial and on the USPS data set.
Table 7.1 contains the results and it can be seen that the OOL performs better
than the other one. Queißer’s architecture needs more prototypes since there is
no prototype deletion mechanism. Hence the number of prototypes is monotone
increasing over time and presented training data. Furthermore the accuracies
are lower than those of the OOL on all three test sets. The reasons therefore are
that the OOL has an improved strategy for placing new prototypes and a deletion
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First half of the data (yi ∈ {1, . . . , Z/2} for USPS and Outdoor)

Second half of the data (yi ∈ {Z/2 + 1, . . . , Z} for USPS and Outdoor)

trainoff

trainon

trainon

testnew

testknown

testnew

Figure 7.7.: Each data set is partitioned in two balanced sets: the first and the second
half of the data. Two folds of each set form a test set: testknown and testnew respectively.
For the Blossom data set holds that the left blossom forms the first half of the data and
the right blossom forms the second half (Fig.7.4).

of needless ones as well as an enhanced classifier selection based on certainty
values rather than based on error counting. Therefore we will not report further
results for Queißer’s architecture in the following.

Data Quantities OOL Queißer (2012)

Blossom

|W | 27.0 40.5
testknown 95.0 94.2
testnew 89.0 84.1
testall 92.0 89.1

USPS

|W | 25.6 284.6
testknown 92.6 80.4
testnew 91.7 91.2
testall 92.1 85.8

Table 7.1.: Comparison of the architecture by Queißer and the proposed architecture.
We report the average accuracy on different test sets and the related average prototype
number |W | of the architectures. The value |W | denotes the average prototype number of
the architecture which is the sum of the prototypes of the online and offline classifier.

The Outdoor data set has the special characteristic that its data points represent
sequences of objects which we will use in further experiments. One sequence
consists of serial frames of an object approached by a mobile robot. For each
object there exist ten different sequences, each with ten data points which are
treated as a unit during the experiments (except in batch LGMLVQ). We use the
same training and testing scheme as aforementioned with the difference that
only 5-partitions are generated (since there are too few sequences for 10-folds)
and that we choose randomly the sequences for the different train/test sets. The
training data are presented in a single pass with random sequence order. This
experiment is performed ten times.

We compare the OOL architecture with four alternatives: ioLVQ, Combi, Batch
(Tab. 7.2) and iSVM defined as follows:
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OOL ioLVQ Combi

modeloff LGMLVQ ioLGMLVQ LGMLVQ
init with modeloff no yes yes
modelon ioLGMLVQ ioLGMLVQ ioLGMLVQ

Table 7.2.: Explanation of the incremental LVQ approaches used in the experiments.

OOL This is the proposed extension of the architecture (Wersing and Queißer,
2014; Queißer, 2012) described in section 7.5. The static offline classifier (batch
LGMLVQ) is trained offline with the training set trainoff and the training set trainon is
applied to the architecture and data points fulfilling one of the three conditions (7.1),
(7.2), (7.3) are used to train the online classifier (ioLVQ). The combination of an
offline trained classifier with an online incremental classifier is suggested to avoid
the CFE, especially to move in the direction of guaranteeing certain performances
on defined data, e. g., for safety relevant applications. The static offline classifier is
fine tuned with respect to the offline available data and preserves this knowledge
during the whole application. This offline classifier is combined with a flexible
online classifier which is capable of adapting to new data and classes.

ioLVQ The ioLVQ is a purely incremental classifier without a guaranteed static
offline part as provided by OOL. The resulting classifier uses only incremental
learning and serves as comparison. We expect that it more easily suffers from the
CFE while potentially being more accurate for the online data. Here, we first train
the incremental online LGMLVQ (ioLGMLVQ) using trainoff, before using trainon.

Combi This classifier is similar to the previous one, but uses batch LGMLVQ
(Schneider et al., 2009a) instead of ioLGMLVQ for the first training phase with
data trainoff. In this setting, we can expect to get the best prototypes with respect
to the available offline data. The obtained classifier provides an initialisation for
the training of the ioLGMLVQ with trainon. Combining these classifiers has the
advantage of getting the best prototypes with respect to the offline available data
and using this knowledge as reasonable initialisation for the online incremental
learning part. This boosts the performance of the online classifier since it does not
start from scratch. Because there is no static knowledge of the offline trained data,
the CFE can have a bad impact on the performance of this classifier like in ioLVQ.

Batch The batch LGMLVQ (Schneider et al., 2009a) trains on the union of both
training sets and it is a powerful classifier if the training data is accessible at once.
It is inept for tasks where training data is observed during the application especially
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if there is a concept drift or new classes, since the number of classes and the
number of prototypes per class have to be set as parameters before training. It
serves as comparison to the architecture, showing a baseline performance.

iSVM (Diehl and Cauwenberghs, 2003) The used iSVM code is adapted to
bound parts of the memory that we can set the number of the so-called reserve
vectors of the realisation1 to one corresponding to the full online case we consider
here. The iSVM trains with the data from trainoff followed by the trainon data.
Required parameters are the soft-margin regularisation constant C and the Gaus-
sian kernel parameter γ. Note, that we use the binary classification realisation
in a one vs. all mode enabling multi-class classification. The iSVM serves as a
comparison to a state of the art approach focusing on class borders rather than
typical representatives like LVQ.

LGMLVQ ioLVQ iSVM
epochs w/class εw εm gmax rnum εw εm C γ

Blossom 100 5 or 1 0.3 0.07 20 320 0.1 0.01 25 23.5

USPS 100 1 0.4 0.01 20 400 0.4 0.01 25 23.5

Outdoor 250 5 or 6 4·10−5 10−5 5 900 4·10−5 10−5 25 0.02

Table 7.3.: Parameters of the offline and the online classifier of the different approaches

Table 7.3 shows the parameters of the experiments and Tab. 7.4 shows the
results. It contains the accuracies of the three test sets and the number of
prototypes, respectively the number of support vectors. We mark in boldface the
results laying on the Pareto-front with respect to the two objectives: accuracy on
testall and the number of prototypes. A result is Pareto optimal if there is no other
result which is better in both objectives. First we discuss the results of the single
approaches and then we draw conclusions from their comparison to each other.

Evaluation of the different approaches

OOL It reaches the highest accuracies on the known data for all three data sets
(for the used LVQ classifiers). The good performance on testknown highlights the
robustness of the architecture only for LVQ classifiers against the CFE. It performs
well on the online data, even if the accuracies obtained on testnew are slightly
lower than for the known data. In particular the accuracy on testnew of the Outdoor
data set performs worse compared to the other approaches. The analysis of this
effect indicates that the classifier selections needs to be improved. The different
scaling of the certainty measure in the offline and online classifier seems to cause
this effect. Further analysis of this issue are addressed in section 7.8. The overall
accuracy of the OOL is mainly the average of the test accuracies on testknown
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Data Quantities OOL ioLVQ Combi iSVM batch LGMLVQ

Blossom

|W | 27.0 25.4 25.2 76.8 22
testknown 95.0 90.7 91.7 97.5* 98.2
testnew 89.0 92.3 93.1 98.6 98.2
testall 92.0 91.6 92.4 98.1 98.2

USPS4

|W | 25.6 17.5 14.8 304.3 11
testknown 92.6* 86.7 91.9 91.1 95.8
testnew 91.7 94.3 94.0 95.6 95.4
testall 92.1 90.5 93.1 93.3 95.6

Outdoor

|W | 127.9 128.3 120.5 1035.3 200
testknown 65.1* 44.8 42.8 52.8 63.1
testnew 38.9 58.2 60.9 65.2 58.0
testall 53.2 52.1 51.9 59.2 61.3

Table 7.4.: We report the average accuracy on different test sets and the corresponding
average prototype number |W | of the approaches. The value |W | denotes the average
prototype number of the approaches or the support vectors. For the OOL architecture
it is the sum of the prototypes of the online and the offline classifier. Results that are in
bold lay on the Pareto front with respect to overall accuracy on the test set testall and the
model complexity |W |. The results marked with * are the best ones compared to all other
approaches on testknown disregarding batch LGMLVQ. The t-test for the result of OOL of
Blossom is significantly different (p < 10−3) to iSVM and batch LGMLVQ. For the USPS
data set, every alternative to OOL provides significantly different (p < 10−3) results. Since
there are only 10 results averaged for Outdoor, no t-test is done.

and testnew and competes with the other approaches. Hence there exists a lower
bound of the performance (performance of modeloff) of the architecture, even if
the online classifier has little knowledge or if it is disturbed, e. g., by noise.

ioLVQ The ioLVQ reaches the highest accuracies on the test set testnew for all
three data sets. This shows that the classifier learns new data fast and that it
provides high performances especially on data that correspond to the last seen
training data. Table 7.4 shows clearly that the accuracies of testknown are below
testnew meaning the classifier suffers from a moderate forgetting effect. The
difference is significant for the Outdoor and the USPS data set. The overall
accuracy of the testall is comparable to the other approaches.

Combi The Combi classifier gets the highest accuracies on testnew but it suffers
from a forgetting effect comparing the accuracies of testknown and testnew, too.
This behaviour equals those of the ioLVQ. The offline trained prototypes (batch)
used as initialisation for the ioLVQ in the online training affect the needed number

4Scaled to [0,1] for the iSVM.



94 7. Combined Offline and Online Learning

of prototypes (Combi needs less prototypes than ioLVQ) and the accuracies of
the classifier in general. Combi has higher accuracies on the Blossom and the
USPS data set than the ioLVQ. While the differences among the accuracies of
Combi and ioLVQ are small (except testknown of USPS), they exist. Hence it seems
suitable to start training in batch mode for partly available data.

Batch This classifier provides the baseline accuracies, i. e., reachable accura-
cies if the whole data is available at once with a defined number of prototypes.

iSVM The iSVM reaches its highest accuracy on testnew. It exhibits the same
effect as Combi and ioLVQ that testknown has a lower accuracy than testnew which
means it suffers from a forgetting effect, too. Comparing the results to the other
approaches one has to say, that the accuracy is marginally higher except for
testknown. Note that the iSVM uses more resources than the other approaches.

Comparison The results in Tab. 7.4 indicate that there is no approach that
surpasses all the other approaches in terms of performance and model complexity.
It turns out that the approaches have different properties and suit different needs
which we discuss subsequently. In general iSVM can often provide a slightly better
accuracy at the costs of a greatly enhanced model complexity. This effect can be
expected due to the representation of a model in terms of its class borders for iSVM
in contrast to its class representatives for LVQ. However, if model complexity is not
an issue, a similar hybrid system could easily be built based on SVM as content of
the two containers for an online/offline model. Note, that such a system requires an
online suited certainty measure usable with an iSVM classifier. When comparing
incremental versions which are based on prototypes, the following conclusions can
be drawn: The OOL surpasses all the other approaches on the set testknown which
means it preserves offline gained knowledge during the whole application. The
accuracy on the test set testnew is comparable to the other approaches but slightly
lower except for the Outdoor data set. In general the ioLVQ and Combi classifiers
are good alternatives if focusing on a high accuracy on previously seen data,
especially if no offline data are available. If one is more focused on preserving
knowledge and gathering new information during the application, then the OOL
is a better choice. In particular for Outdoor which is a real-life data set obtained
from a robotic scenario, the OOL performs well since the overall performance
on the test set surpasses ioLVQ and Combi and is only slightly lower than the
performance of the iSVM while using a fraction of resources. This makes OOL
more attractive for devices with limited memory. Additionally the performance
of the OOL on testknown is higher than the performance of the competitors on
the Outdoor data which highlights the robustness on known data/classes. The
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baseline performance provided by the batch LGMLVQ is nearly reached by the
incremental approaches. The number of the prototypes for the OOL, ioLVQ and
Combi is still in the same range as the number of prototypes of the LGMLVQ while
the number of the support vectors of the iSVM is significantly higher. This shows
the effectiveness of the incremental LVQ approaches, i. e., they provide a high
performance with a low number of prototypes.

Discussion of the properties of the different approaches

The analysed approaches have different properties and hence are suited for
different lifelong learning tasks. In the following we discuss the availability of offline
data, the model size, the overall performance of the system and the performance
on known data/classes. This might help to choose the best approach for the given
circumstances of the desired task.

Offline data If data is offline available two schemes are possible: i) using them
as training set for the offline classifier of the OOL or of Combi or ii) simply present
them in an online fashion to the other approaches (ioLVQ, iSVM) to train the
related classifier. The results in Tab. 7.4 indicate that it is beneficial to choose
scheme i). If the offline data is used in the OOL, one gains a high and robust
performance on the offline data with respect to the known data/classes during the
ongoing application. Using Combi instead provides a highly flexible classifier that
is less robust against the CFE but needs less prototypes compared to the ioLVQ
or the number of support vectors of the iSVM. If there is no offline data available
one can only choose between the ioLVQ and the iSVM.

Model size In the proposed experiments, the approaches OOL, ioLVQ and
Combi use less prototypes compared to the batch LGMLVQ while the iSVM needs
significantly more support vectors. With the parameters gmax and rnum one can
regulate indirectly the tendency of the complexity of a model (see section 6.5).
Basically both parameters influence directly the insertion and the deletion strategy
of the algorithm. A hard coded upper bound of prototypes is possible (Grbovic
and Vucetic, 2009), e. g., for applications with limited resources.

Overall performance If one is mainly interested in the performance of the
system, the iSVM is a proper choice paying the price of a highly complex model,
i. e., it needs a high number of support vectors. Also the parameters C and γ

have to be defined. They do not directly correspond to an intuitive interpretation
which enables the user to set these values by hand. Their choice is critical
because they highly influence the performance of the iSVM. The other approaches
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reach performances comparable to iSVM using less resources and the required
parameters gmax and rnum are intuitively understandable and easier to choose.

Performance on known data/classes In safety relevant applications it is often
very important to guarantee performances on defined data during the whole
application time. With this view, the experiments have shown that the OOL
provides good performances on testknown highlighting the robustness against the
CFE while especially ioLVQ suffers from this effect on the evaluated data sets.
Combi and iSVM tend to provide worse results on known data compared to the
performance on new data. Hence, the best choice would be the OOL.

7.7. Summary of the Main Findings

The proposed OOL architecture is well suited for lifelong learning tasks or stream-
ing data. The general architecture consists of three parts: a static, pre-trained
offline classifier, a flexible online classifier and a dynamic classifier selection part.
Combining an offline and an online classifer has the advantage of learning new
knowledge with the online classifier while preserving the ground (offline) informa-
tion with the offline classifier. We have investigated the performance of the OOL
using the example of learning vector quantisation: LGMLVQ in batch mode serves
as the offline classifier of the architecture, the LGMLVQ in incremental mode offers
a flexible online classifier of the architecture and a dynamic classifier selection
can be based on a certainty measure that is well suited for LVQ approaches. We
analysed the properties and performances of the OOL in comparison to several
other incremental approaches (ioLVQ, Combi, iSVM). The experiments on artifi-
cial and real-life data have shown that the OOL is more robust against the CFE
compared to other state of the art approaches and that it is able to gather new
knowledge during application like other incremental learning approaches. Addi-
tionally, it turned out that none of the analysed approaches surpasses the others
with respect to performance and model complexity for all test sets and criteria. We
discussed the properties of the approaches in order to give hints which one to
choose for a desired task. The analyses give an overview of some existing lifelong
learning approaches highlighting the robustness of the OOL against the CFE.

So far we studied scenarios where the confidence estimation of both classifiers
is reasonable. Due to the integrated metric learning of the classifiers, it can
happen, that the confidence estimation can become invalid in particular for the
offline classifier. When this happens, we will call it confidence drift (explained in the
next section). Such a confidence drift can badly influence the OOL performance.
Within the next section we explain this drift and we give a solution for the problem,
enabling the OOL to deal with confidence drift.
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7.8. Online Metric Learning for an Adaptation to
Confidence Drift

So far we investigated the performance of the OOL architecture in lifelong learning
scenarios. In this section the main focus lies on the confidence estimation of the
classifiers and the related classifier selection mechanism. Note, that this general
architecture, though conceptually simple and efficient, bears a severe risk: while
the offline classifier remains valid for regions of the data space which are covered
by the offline training set, virtual concept drift, i. e., a change of the probability p(x),
can cause a wrong confidence estimation of the offline classifier for regions which
become relevant during online learning. Provided training and test data were
known in advance, this setting could be accounted for suitable data by reweighing
schemes which is one of the most promising techniques to deal with covariate shift
(Sugiyama and Kawanabe, 2012). In our setting, this information is not available
a-priori, and there occurs the need to adapt the classifier confidence estimation
according to the observed drift. We refer to this problem as confidence drift :
while training, the estimation of the confidence of the offline or online classifier
becomes invalid, such that their combination leads to a false result, albeit the
single classifiers are still valid in their respective regions.

Metric learning autonomously adapts the metric parameters of the classifiers,
i. e., the internal representation of the given data according to their relevance for the
classification task. While the latter aspect allows such classifiers to efficiently deal
with high dimensional or heterogeneous data sets where the standard Euclidean
metric would be inept, it adapts the data representation according to the given
setting. Hence the OOL architecture fails whenever concept drift requires a
different data representation, and it leads to a wrong confidence estimation in
such cases. In this section, we propose a simple yet efficient approach dealing
with such confidence drift: we suggest an online adaptation of the internal data
representation by means of online metric learning for both, offline and online
classifier, and a self-adjusted weighting scheme adjusting the relevance of the
respective data representation for confidence estimation.

An Example of Confidence Drift

Figure 7.8.: Chequerboard
data (Colour encodes class)

Assume a binary 2D 4x4 chequerboard data set
(Fig. 7.8). We consider three data splits for the
first and second training phase of the architecture
(Fig. 7.9). The offline classifier is trained on the
known data only (first training phase) while the ar-
chitecture during use encounters known and new
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data (second training phase). This leads to a desired data space partitioning with
respect to the classifiers, as shown in Fig. 7.10.

offline online

(a) Setting A

offline online

(b) Setting B

Figure 7.9.: The chequerboard data is used in three different settings: In setting A both
dimensions of the data are needed to classify the data in the known as well as in the new
part of the data. In the known data of setting B, one dimension is enough for classification
but in the new data both dimension are again needed. Setting C is setting B inverted.

(a) Setting A (b) Setting B

Figure 7.10.: The desired partitioning of setting A and B. The hatched areas should be
classified by the offline classifier while the white areas are related to the online classifier.
The desired partitioning of setting C is (b), inverted.

In the following, we visualise results of the architecture as shown in Fig. 7.11.
A desired result should have a low error rate which means in the visualisation
should be as few red and green areas as possible. Furthermore the offline
classifier should be responsible for the known data and the online classifier should
be responsible for the new data. This can be seen if the desired data space
partitioning for a defined setting match the corresponding visualisation of the result
(hatched/white areas should match the black/white areas in the visualisation).

Analysing setting A, one recognises that all dimensions are necessary in order
to classify the data and this holds for the known and the new data. Contrary in
setting B the known data can be classified using only one dimension of the data
while classification of the new data still has to use both dimensions. This difference
matters for metric learning, in particular for the metric of the offline classifier in
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(a) Setting A: desired partitioning

offline: class 1
offline: class 2
online: class 1
online: class 2

(b) Setting A: a GLVQ result

Figure 7.11.: Explanation of the result figures. (a) shows the desired partitioning of setting
A and (b) shows a result of the architecture with GLVQ models. The black areas are
classified by the offline classifier while the online classifier is responsible for the white
areas (correctly classified). Red areas are misclassified by the offline classifier and the
green areas are wrong classified by the online classifier. The prototypes of the classifiers
are shown as stars and circles. The colour encodes their class. A desired result should
have a low error rate which means there should be as few red and green areas as possible.
Furthermore the offline classifier should be responsible for the known data and the online
classifier should be responsible for the new data. This can be seen if the desired data
space partitioning for a defined setting match the corresponding visualisation of the result
(hatched/white areas in (a) should match the black/white areas in (b)).

setting B. In this case the matrix Λ will only focus on one dimension Λ11≈1 while
all other elements are approximately zero. Figure 7.12 contains exemplary results
of setting A and B for the described architecture with metric learning (GMLVQ) and
a similar architecture without metric learning, simply using the Euclidean distance
(GLVQ). The GLVQ architecture shows a similar data partitioning like the desired
ones in Fig. 7.10. Hence for this architecture there is no problem with the classifier
selection part. Analysing the GMLVQ architectures, one can see that setting A
works fine too but setting B does not due to its trained offline metric. For setting B
a confidence drift occurs for the GMLVQ architecture which cannot be followed by
the static internal metric since is suited for the known data but which is improper
for the new data. The problem occurs due to the fact that the offline classifier deals
with a too simplistic data representation: it disregards data dimensions which
are irrelevant for the offline training data, but which become relevant for future
data points; in consequence, confidence estimation as measured in form of the
certainty of the classification which is correlated to the classifier confidence is
wrong in the online scenario. Note that an abstraction from irrelevant regions is
crucial for LVQ classifiers to provide good generalisations for high dimensional
data sets. At the same time, it is a-priori unclear which abstractions are too rigid
for future data, hence online adaptation of this confidence measure is necessary.
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In the next paragraph, we develop a strategy which allows the offline classifier to
adapt its certainty estimation in the case of confidence drift.

offline: class 1
offline: class 2
online: class 1
online: class 2

(a) Setting A: GLVQ

offline: class 1
offline: class 2
online: class 1
online: class 2

(b) Setting B: GLVQ

offline: class 1
offline: class 2
online: class 1
online: class 2

(c) Setting A: GMLVQ

offline: class 1
offline: class 2
online: class 1
online: class 2

(d) Setting B: GMLVQ

Figure 7.12.: The images show the results for the specific setting and a specific architec-
ture. The black areas are classified by the offline classifier while the online classifier is
responsible for the white areas (correctly classified). Red areas are misclassified by the
offline classifier; green areas are wrong classified by the online classifier. The prototypes
of the classifiers are shown as stars and circles. Their colour encodes class. GLVQ refers
to the architecture using the standard Euclidean distance instead of metric learning.

Online Metric Learning for an Adaptation to Confidence Drift

The offline classifier is static and it consists of a set of prototypes W off and a
trained metric using Λoff. Since we want to keep the gained knowledge of the
offline classifier, we do not change the classifier itself. Instead, we introduce a
metric Λcorr which can be used to correct the wrong data representation for its
confidence estimation, taking into account concept drift on the online training set.
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The RelSim is computed by using the combination

Λconf = α · Λcorr + (1− α) · Λoff, α ∈ [0.1, 0.9] (7.4)

where the scaling parameter α is initialised with 0.1 and the matrix Λcorr is initialised
with Λoff, and both are adapted in online training, whenever the offline classifier
is erroneous, i. e., (7.2) holds. Figure 7.13 shows a schema thereof where Λcorr

is adapted using the GMLVQ update rule considering W off together with Λcorr as
GMLVQ model (but no prototype update is done). In case of a point with new
class label (unknown to the offline GMLVQ), w+ and d+ are taken from the online
classifier to update Λcorr.

Input

Offline Classifier
W off,Λoff

Online Classifier
W on,Λon

Λcorr

Classifier Selection Output

α modulates
confidence

train online classifier

offline classifier errs (7.2)

Figure 7.13.: Scheme of OOL extension for confidence drift adaptation. The offline
classifier (W,off Λoff) still predicts the label yoff but in order to calculate RelSim(x) the
metric Λconf (7.4) is used which takes into account the quantities Λ,off Λcorr and α.

The choice of α is crucial, and a static prior choice is usually suboptimal.
Therefore we use a simple Hebbian adaptation strategy for α ∈ [0.1, 0.9] as follows:
We introduce a counterΓ (initialised with zero) which counts the relevance of Λcorr

versus Λoff on the training data. It is decreased by one when ever

RelSimon(x) < RelSimoff(x) ∧ yoff = y (7.5)

and it is increased by one whenever (7.2) holds. We enforce an upper and lower
bound a1 ≤ Γ ≤ b2 on the counter to prevent plateaus for the optimisation, and we
disregard counters approximately equal to zero a2 ≤ Γ ≤ b1 for an adaptation of α
where a1<a2<0<b1<b2. Assume a small step size εα>0, the update rule of the
scaling parameter α is

α = α

{
−εα, a1 < Γ < a2 ∧ (7.2) holds

+εα, b1 < Γ < b2 ∧ (7.2) holds .

This corresponds to a Hebbian scheme since the relevance of Λcorr is increased/
decreased depending on its contribution to a correct classification.

Exemplary results for setting A and B of the architecture with confidence adapta-
tion are visualised in Fig. 7.14. It can be seen that this change enables the hybrid
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architecture to learn correctly for both settings. In the next section we evaluate the
proposed architecture on several data sets.

offline: class 1

offline: class 2

online: class 1

online: class 2

(a) Setting A

offline: class 1

offline: class 2

online: class 1

online: class 2

(b) Setting B

Figure 7.14.: The images show the results of OOL with confidence drift adaptation for
setting A and B . The black areas are classified by the offline classifier while the online
classifier is valid in white areas (correctly classified). Red areas are misclassified by the
offline classifier; green areas are wrong classified by the online classifier. The prototypes
of the classifiers are shown as stars and circles. Their colour indicates the class.

Experiments

We consider experiments on four data sets: two 2D data sets (Blossom, Che-
querboard) mainly for visualisation, the USPS, the Letter (Bache and Lichman,
2013), and the Outdoor data set as benchmarks. Each data set is divided into two
partitions: known and new data. Known data are available during both training
phases while instances of new data are only accessible in the second phase.

Chequerboard: Artificially created two class data set (Fig. 7.8) with 8000 points
per class. Each chequerboard field contains 1000 data points.

Chequerboard noise: The Chequerboard data are enhanced by a noisy third
dimension which contains values uniformly distributed in (0,1).

Letter: The Letter data (Bache and Lichman, 2013) contain 20,000 instances with
16 dimensions, related to 26 classes (capitals A . . . Z). Fourteen letters form the
first partition of the data and the other letters belong to the second partition.

Blossom, USPS, Outdoor5: Used as in the previous section 7.6.

We use the same experimental setting as in the previous section 7.6. Reminder:
We assume randomly ordered data points which are used only once, like in a

5For the current experiments, we use the data randomly ordered, neglecting the internal sequences.
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streaming setting, using constant learning rates (except for the batch GMLVQ).
The evaluation of the data sets is based on a 10-fold cross validation with ten
repeats as follows: Each data set is divided into two parts: known (offline training:
trainoff ) and new data (online training: trainon) as stated before. For a 10-fold
cross validation, each partition is divided into 10 folds (see Fig. 7.7). For a proper
evaluation of the architecture, we consider three different test sets: testknown,
testnew and testall as before.

GMLVQ ioLVQ
training epochs w/class εw εm gmax rnum εw εm

Chequerboard 100 4/2/6 (A/B/C) 0.3 0.07 20 320 0.1 0.01
Letter 300 1 0.01 0.001 20 400 0.01 0.001

Table 7.5.: Parameters of the offline and the online classifiers

Table 7.3 and Tab. 7.5 show the parameters of the experiments and Tab. 7.6
and Tab. 7.7 show the results. They contain the accuracies of the three test sets
and the number of prototypes, and (if available) the trained α value.

Data Setting α |W | testknown testnew testall

Chequerboard

A 0 28.14 96.45 90.64 93.60
plain OOLB 0 23.54 94.94 49.35 60.65

C 0 27.42 95.58 43.71 56.81
A 0.1127 36.58 93.91 93.78 93.79

with ΛcorrB 0.5217 36.84 92.06 90.28 90.91
C 0.6336 45.90 92.39 93.50 93.12

Chequerboard
noise

A 0 27.20 95.91 90.05 92.93
plain OOLB 0 22.25 94.82 49.08 60.54

C 0 25.36 95.12 43.51 56.37
A 0.1094 35.83 93.49 93.55 93.52

with ΛcorrB 0.5387 36.81 92.80 90.59 91.14
C 0.6348 45.50 93.31 93.56 93.57

Table 7.6.: The results of the Chequerboard data. We report the average accuracy on
the test sets, the related average prototype number |W | of OOL, and the α values. Results
with α = 0 belong to the plain architecture without confidence drift adaptation.

Evaluation of the Chequerboard Data (Tab. 7.6) Architecture without concept
drift adaptation: Firstly, the results of Chequerboard and Chequerboard noise are
similar which means that the integrated metric learning detects and neglects the
noisy dimension. This indicates the merit of metric learning. Secondly, the number
|W | of the prototypes is in the same range for all three settings indicating that the
number of prototypes is kind of invariant to the used setting. Thirdly, the accuracy
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Figure 7.15.: The results of testall on the Chequerboard data for three settings

values of testknown show a desired performance for all settings. The same holds
for testnew but for setting A only. In case of setting B or C the accuracy is low which
means that a confidence drift happened and the plain architecture is unable to
deal with it. This causes also low testall accuracies (setting B/C, Fig. 7.15).

Architecture with concept drift adaptation: This extended architecture provides
similar results for both Chequerboard data sets. Hence noisy dimensions without
information are neglected, too. In comparison to the plain architecture, the number
of used prototypes increases slightly. In setting A there is no confidence drift
and the results reflect this, since the value of α in both cases is near the lowest
possible value. Hence the architecture highlights that there is no need for a
confidence adaptation. The other two settings need a confidence adaptation
which is nicely reflected by the α values which improve together with the trained
Λcorr the performance especially on testnew and testall.

Data α |W | testknown testnew testall

Blossom 0 27.33 96.49 97.13 96.80
0.1 30.72 95.59 97.55 96.61

USPS 0 64.19 91.29 59.54 75.26
0.6986 77.25 89.13 84.70 86.98

Letter 0 212.88 80.62 70.09 75.70
0.7797 234.01 80.13 77.91 79.14

Outdoor 0 286.63 89.89 66.65 78.18
0.4135 286.64 90.03 66.74 78.05

Table 7.7.: The results of the Blossom and the benchmark data. We report the average
accuracy on the test sets, the related average prototype number |W |, and the α values of
OOL. Results with α=0 belong to the plain architecture without confidence drift adaptation.



7.9. Conclusion: Answering the Research Questions 105

Evaluation of the Blossom and the Benchmarks (Tab. 7.7) Since the known
and the new data of the Blossom data set are similar except an offset in one
coordinate, the trained metrics of the online and the offline classifier should be
comparable and hence there is no confidence drift. This can also be seen on
the already high accuracy values of the plain architecture. We expect that the
extended architecture reflects this with a low α value and similar performances
than the plain architecture. As can be seen in Tab. 7.7 this expectation is met.

For the USPS, one can see that there might be a confidence drift since the
performance on testnew and testall of the plain architecture is bad. Comparing those
results with those of the extended architecture, it turns out that the adaptation to
confidence drift is used and that it helps to improve the performance on these two
test sets. The same facts can be seen for the Letter data which emphasises the
usefulness of confidence drift adaptation.

The Outdoor data are a difficult task as mentioned previously. The OOL ar-
chitecture, however, manages to retain known knowledge (testknown) and to gain
new information. Comparing the plain architecture with the extended one, it turns
out that the results are similar. The reason therefore could be, that there is no
confidence drift.

Summing up the Results

The OOL architecture constitutes an approach suitable for lifelong learning scenar-
ios and for streaming data. As pointed out in this section, the classifier selection
strategy can cause problems in the case of confidence drift. This pitfall occurs
in the context of metric learning whenever the internal data representation of the
online and offline classifier mismatch. We have proposed an efficient extension to
this architecture which allows an adaptation to confidence drift adaptation based
on an online metric learning and weighting scheme. We analysed the OOL ar-
chitecture based on popular GMLVQ schemes. It turned out that the proposed
modification is effective for a number of artificial and benchmark data: it enables
an efficient scheme to avoid confidence drift for metric-based classifiers wherever
it would be present with the original OOL scheme.

7.9. Conclusion: Answering the Research Questions

In this chapter we analysed several architectures which are suited for lifelong
learning. We evaluated them on several data sets and we discovered a problematic
effect: confidence drift which can happen in the OOL architecture. In the following,
the main findings of this chapter are summarised regarding the research questions.

1. What are the strengths and the drawbacks of the analysed architectures?
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A detailed discussion on this topic can be found on page 95. Summing up
leads to: The OOL has its strength in combining a static classifier trained
on known data with a flexible classifier which learns new information from
the online training. It is also a simple scheme usable for various classifier
types, e. g., LVQ, SVM, decision trees. The strength of the ioLVQ is its
flexibility which enables a fast adaptation to new data. For this approach
it would be beneficial to have a mechanism avoiding oscillation prototype
insertion and deletion in areas with noise or highly overlapping classes. So
far such a mechanism is not included. Combi has its strength in extensively
using the available data in order to gain as much information as possible as
initialisation for the ioLVQ used in the online training phase of the system.
Hence it has the same drawbacks as the ioLVQ and that it assumes access
to training data for the first training phase. The mentioned approaches
have a moderate model complexity which the iSVM does not. The iSVM
has a high model complexity and the choice of needed model parameter is
difficult. With suitable parameter settings, the iSVM provides a model with
high performance.

2. Can they deal with the catastrophic forgetting effect (CFE)?

As the experiments in section 7.6 have shown, none of the approaches
suffers from a CFE but one can see that the performance on testknown is
often worse than the performance on testnew. Hence we have a forgetting
effect of different strength except for the OOL. This approach seem not to
suffer from a forgetting effect due to its static offline trained classifier.

3. What is the role of metric learning in this setting, and are specific adjustments
required?

Metric learning can be integrated into ioLVQ, Combi and the OOL, and similar
to the batch scenario, it plays a crucial role to achieve a good classification
accuracy. Including metric learning in the classifiers of the OOL architecture,
changes their internal data representation which causes what we refer to
as confidence drift. We proposed an elegant solution for this challenge by
incorporating an intuitive confidence adaptation scheme.

In the next chapter, we analyse their performance on a real world scenario from
the advanced driver assistance systems domain due to their promising results.



8. Application on Road Terrain
Detection

Chapter overview In this chapter we apply the basic ideas of the LVQ approaches for online

learning of the preceding chapter for a real world application, i. e., to the detection of road terrain

for driver assistant systems. We compare our online trained LVQ approach to a reference system

proposed by Fritsch et al. (2014). Therefore, we use a possible online learning strategy which we

experimentally test on Kitti1 data. According to our data analysis, we found out that we can achieve

the same performance with our approach using only six instead of eighty-two features as used by

the reference system. We show that our online trained LVQ approach is able to outperform the

reference system in some cases.

8.1. Motivation

There are quite a number of machine learning systems which tackle problems in
advanced driver assistance. For instance there exist adaptive intersection assis-
tants, lane change assistance, lane departure warning systems, and cruise control.
In this context, machine learning techniques are used to detect objects (Ren et al.,
2015; Struwe et al., 2013), e. g., cars or pedestrians, or to do behaviour prediction
(Platho and Eggert, 2012; Bonnin et al., 2014) for example. Some assistants
require a detection of the road terrain in front of the ego car. A representative of
such a system is the road terrain detection system (RTDS) proposed by Fritsch
et al. (2014).

In related practical applications, often the road detection classifiers are trained
offline on a huge data base. Nevertheless such a training data base does not
contain data of all possible driving situations. This is also true for the RTDS
which detects drivable road on a given image. Although it is performing well
on general scenes like e. g., highway, country road and inner city scenes which
are well presented in an offline training data base, there are scenes with difficult
conditions as e. g., strong shadows, overexposure or a non-standard road appear-
ance. Assuming that such scenes are special, they are a minority compared to
frequently occurring scenes. Online learning appears to be a good way to learn
the characteristics of this minority if those scenes happen. In the context of online

1The data is obtained from: http://www.cvlibs.net/datasets/kitti/index.php

http://www.cvlibs.net/datasets/kitti/index.php
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learning one major challenge is to get ground truth training data during usage. We
want to cope with this challenge and we investigate if online trained classifiers can
support the RTDS in such scenes following the basic scheme of the architecture
detailed in the former chapter. Since the LVQ schemes used in online learning
scenarios performed well (chapter 6 and 7), we study their suitability for the current
purpose2. Since the RTDS is a very advanced system compared to the online
trained LVQ classifiers, we frame-wise compare our approach with a subsystem
of the RTDS only. Firstly this is an adequate comparison as we explain latter on
and secondly if the online LVQ classifiers perform better than the subsystem of
the RTDS, it can be used to enhance the overall RTDS system.

In this chapter we want to tackle the related research questions, as stated in the
next section.

8.2. Research Questions

We consider online learning for road terrain detection using LVQ schemes. In this
context, the following questions are studied:

1. How do we get ground truth training data for online learning?

2. Are the LVQ approaches suited for road terrain detection in the assumed
context?

We tackle these questions after outlining related work and introducing the RTDS.

8.3. Road Terrain Detection – Related Work

In the following we want to point to related approaches which have mechanisms
to gather training data without manual labelling. Such a mechanism is important
for online learning because in related scenarios a manual labelling is infeasible.

Road terrain detection is a sub domain of terrain assessment. The aim of
the later topic is to distinguish traversable and non-traversable areas in the en-
vironment while road terrain detection aims at distinguishing road and non-road.
The three subsequent approaches are related to both topics and they provide
mechanisms for gathering training data for online learning.

2Thanks to Stephan Hasler and Thomas Weisswange for fruitful discussions on the topic and the
data interface as well as to Jannik Fritsch for the initial idea.
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Figure 8.1.: Thrun et al. (2006): Data labelling through human driving. Traversed areas
(blue) are assumed as drivable and two stripes with a defined distance to the left and to
the right are assumed as non-drivable (red).

Thrun et al. (2006): A milestone in this domain was Stanley, an autonomous
driving car which won the Darpa Grand Challenge 2006. Although the performance
was impressive, the authors state that Stanley is unable to navigate in traffic which
would be a core capability of an autonomous driving car. A final step in their
approach focusses on parameter tuning for the trained Gaussians which are
used to model the class probabilities. For this purpose a human drives the car
exclusively on drivable terrain such that labelled training data is collected as shown
in Fig. 8.1. Hence, the area which is traversed by the car is labelled as drivable
and two stripes with a defined distance to the left and right are assumed as
non-drivable. This labelled data is used to tune the parameters. The authors claim
that even such approximate labelling suffices to improve their terrain detection
performance. For our purpose, the idea to collect traversable samples from
traversed area is suitable but the collection of non-traversable samples seems too
simplified for real traffic scenes, e. g., intersections or roads with multiple lanes.

Álvarez et al. (2013): The authors propose an approach for road detection which
is based on an appearance-based model. The benefit of their approach is that a
predefined area of a training image is assumed to be road and hence they omit
a time consuming hand-labelling of training data. Pixels related to this area are
represented by a linear combination of colour planes whose weights yield minimal
variance in the road area. Classification is done by comparing input image pixels
against the learnt model. One disadvantage is that there is no guarantee that the
predefined area really contains road.

Berczi et al. (2015): In general training data is created as follows. In a first
step images of road scenes are collected and in a second step the road area is
annotated by a human. This process is time consuming and not applicable for
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online learning. In the robotics domain, Berczi et al. propose a training scheme
with Gaussian processes which automatically assigns labels to data seen during
application. They present a new data representation and their approach learns
directly from human demonstration. Hence, a controlled robot drives through a
region and the traversed areas by the robot in the related images are assumed as
traversable. Examples of non-traversable areas are collected when the bumper
of the robot is triggered or if the human controller pushes a button indicating the
same. The basic idea of collecting samples of traversable areas is similar to Thrun
et al. (2006). In order to collect samples for non-drivable area it is impossible to
use a bumper or a similar mechanisms in the car domain.

Conclusion: In our scenario, we deal with real-world traffic scenes/data without
restrictions. In Álvarez et al., positive samples are taken from a predefined area of
the taken traffic scene images which has no guarantee that this area really contains
road. The same holds for the collection of negative samples of the approach by
Thrun et al., because they also predefine areas where they expect non-traversable
terrain. Their approach is inept in real-world traffic scenes, because of e. g.,
intersections or roads with multiple lanes. In our scenario, we collect training data
of road samples with a mechanism mimicking the intuitive approach of Thrun et al.
(2006); Berczi et al. (2015). In this way, the area traversed by the car is assumed
to be road. Afterwards we briefly introduce the reference system, the RTDS.

8.4. The Road Terrain Detection System

The RTDS (Fritsch et al., 2014) is a vision-based system recognising road. To be
more specific, it aims at detecting semantic road which means the area where a car
is allowed to drive (e. g., detecting lanes of the road, exit lanes, acceleration and
deceleration lanes). This excludes for instance parking lots and breakdown lanes.
A simpler task is to detect road-like area which refers to the area of the scene
which has the same appearance as the current road. There the classification of
parking lots and breakdown lanes as road-like area is correct (Fig. 8.2).

(a) Road-like area (marked in yellow) (b) Semantic road area (marked in green)

Figure 8.2.: There are two road types: road-like area and semantic road. Note it is harder
to classify semantic road than road-like area versus non-road. (Image from Kitti data.)



8.5. The Scenario 111

The RTDS (Fig. 8.3) consists of two stages related to the two road types (road-
like area, semantic road). The first stage of the RTDS, the local visual appearance
stage, detects the road-like area of an image based on colour and texture features
(overall 82 features) and it generates a confidence map for the given image where
high values indicate road. The second stage uses this confidence map to compute
spatial features thereon. These features integrate the confidences of possible road
area on a large region and hence integrate geometric knowledge of the scene.
The aim of the second spatial stage is to detect semantic road which is the output
of the RTDS. Both stages are trained offline on a large data base. For further
details we refer to the thesis of T. Kühnl (2013). For our scenario, the RTDS is
trained on the Kitti road benchmark (Fritsch et al., 2013) and it serves as reference
system for the experiments.

Camera
input

Local visual
appearance stage

Spatial
stage

Semantic road
classification

Road-like area
classification

Colour/texture
features

Confidence
map

Spatial
features

Figure 8.3.: The algorithmic steps of the road terrain detection system

car traversed areadetected road

driving direction

Figure 8.4.: How the system collects ground truth data

8.5. The Scenario

As aforementioned, we assume a good road detection of the RTDS in general
traffic scenes and a possibly bad detection in scenes with difficult conditions like
strong shadows or overexposure. For such difficult scenes, we assume online
available training data which are collected in the following way. We assume a
mono camera in front of the car which does the images recordings. These images
are stored in a database and when the car traverses areas of the road, the related
areas in the images are labelled as road subsequently according to Pomerleau
(1993) and Thrun et al. (2006). Hence the ground truth data contains only samples
of road (see Fig. 8.4). Samples of non-road cannot be easily collected during
the application. If depth information is available, it might be possible to gather
instances of non-road. But in our case we have RGB images only. Hence we use
a predefined subset of offline available non-road training data for online learning.
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Figure 8.5.: Scheme of the used online training scenario – We assume a stream of frames.
On a sliding window of frames with a fixed number (here three) a single model is trained
and evaluated on the next frames (here two) till the next model is ready.

We rely on the Kitti road benchmark (Fritsch et al., 2013) for our experiments
because it is popular in this area and it contains a huge variation of recordings.
The data set contains images with a resolution of 1242 x 375. In this context, we
assume the following realisation of the scenario: A GMLVQ model is trained on a
sequence of frames and it is used on the next frames for evaluation until the next
GMLVQ model is ready (trained on the next sequence of frames, see Fig. 8.5). In
the context of this chapter, this learning strategy is referred to as online. We use a
stream (0086) with overexposure from the Kitti benchmark because such a stream
is challenging for the RTDS. This stream contains a labelling of semantic road and
non-road. For our purpose we annotated the ego lane of the car in addition. The
Kitti stream 0086 contains highly overexposed frames and it contains strong light
changes since sunny regions are followed by strong shadows and vice versa.

The next section consists of a data analysis together with results for the de-
scribed scenario.

8.6. Experimental Studies

We want to gain insight how good online trained GMLVQ models perform in our
scenario, especially in scenes with difficult conditions like strong shadows or
overexposure. Since those conditions change the appearance of the scene, we
use appearance-based features (colour/texture) to train the GMLVQ models. We
rely on the same feature set which is used to train the first stage of the RTDS. We
assume that the appearance-based features suit the desired road detection task.

In a first step we do a feasibility study with the GMLVQ on available data
(appearance-based features) in order to gain information about performance and
the data itself. Therefore we use offline training. The goal of this analysis is to
judge whether the model suits the data and to determine a baseline performance
that can be achieved when using a GMLVQ model for road detection. After the
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feasibility study, we frame-wise compare the performance of the first RTDS stage
with the online trained GMLVQ models on a specific stream.
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Figure 8.6.: Offline GMLVQ performance when features are removed

Offline Data Analysis

Considering an LVQ model as online classifier, in a feasibility study we check the
baseline performance of an offline trained GMLVQ classifier with one prototype per
class on Kitti data. From initial experiments we figured out that a higher number of
prototypes per class results only in a nominal performance improvement. In this
experiment we gain insight into how the appearance-based features contribute
to the road-like classification performance. According to a offline trained GMLVQ
model the features are ranked with respect to their relevance in the related Λ matrix
(3.4) of the model. Subsequently, the feature with the lowest rank (contribution)
is removed till only one feature remains. Figure 8.6 shows the accuracy of the
GMLVQ models offline trained for each feature set. From this visualisation we
draw the conclusion that relying on only 6 out of 82 features is a good choice since
the classification performance stays nearly the same. The six most important
features consist of five colour features and one basic texture feature. Additionally
the computational effort of the metric adaptation of the GMLVQ can be minimised
since training of a 82x82 Λ matrix can be replaced by training of a 6x6 Λ matrix.
The baseline performance of the offline GMLVQ is acceptable, since the reference
system achieves about 85 % test accuracy. Hence we expect accuracies in the
same range within the following experiments with online training.
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Online Learning from Image Stream Data

We trained and evaluated GMLVQ models as explained in the preceding section
(Fig. 8.5). Figure 8.7 shows exemplary results. One can see that the current
GMLVQ model of the scene is able to detect the road-like area quite well (Fig.
8.7), doing only few errors at the borders. Hence, the ego lane of the car is safely
detected. These promising results are striking since the GMLVQ models are only
trained on some frames and only use six features (colour/texture).

(a) (b)

Figure 8.7.: GMLVQ results. Green: correctly classified road-like area; blue: correctly
classified non-road; red: misclassified road-like area; yellow: misclassified non-road

In average, the performance of the online trained GMLVQ model is comparable
with the RTDS. Therefore we do a frame-wise evaluation in order to see in which
situations the online models perform better than the first stage of the RTDS
regarding recognising road-like area. Figure 8.8 shows the frame-wise evaluation
of the first stage of the RTDS and the GMLVQ models. As indicated through light
yellow and light grey, there are sunny and shady images in the stream 0086. The
GMLVQ models perform better than the first RTDS stage on sunny frames. In case
of shady images, the first RTDS stage mostly performs better than GMLVQ with
few exceptions. The classification on such images is more challenging since there
can be a high variation in the intensity of the shadows which can badly influence
an online trained model if this intensity changes fast. One can also see that on
transitions between sunny and shady images the performance of the GMLVQ
model drops before it is increasing again. This delay is due to the number of
training frames. The higher this number is the longer this delay occurs.

Nevertheless the GMLVQ models perform better on some images of the stream.
Assuming a mechanism which switches between the GMLVQ and the RTDS such
that the classifier with the best performance is chosen, the overall performance
can be improved as well. An architecture consisting of two classifiers connected
via a classifier selection was discussed in the previous chapter (OOL architecture).
There, a classifier is selected for the classification of a single data sample (e. g.,
single pixel of frame). In the approach of this chapter a classifier would be
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selected for a complete frame and hence for several data samples (many pixels).
A major challenge in this context is a certainty measure which is suited to judge
the reliability of the different classifier types on the given input frame. A reason
therefore is that it seems not sufficient to use the entire confidence estimation
of the classifiers because they are completely different in their type and scaling
for instance. The mechanism, described in section 7.8, tackles this issue but for
classifiers of the same type such that it is unclear if the used mechanism can be
directly transferred to the issue at hand. This analysis is subject of future work.

8.7. Conclusion: Answering the Research Questions

The main findings of this chapter are summarised in the following in order to
answer the research questions of section 8.2.

1. How do we get ground truth training data for online learning?

Analysing the available online training data leads to the following conclusions:
Instances for road-like area can be collected from the traversed road area
but the more interesting instances from the borders of the road are difficult
to retrieve. Furthermore data from non-road cannot be gathered during the
application and has to be stored beforehand. This has the huge drawback
that instances of non-road could be of the same appearance as the current
road scene which would confuse the classifier during training.

2. Are the LVQ approaches suited for road terrain detection?

First experiments with the offline trained GMLVQ on the Kitti benchmark give
insight into the data. It turns out that the same classification performance
can be reached with only 6 out of regularly 82 features. Since the number
of features defines the size of the quadratic Λ matrix in the GMLVQ model,
the computational effort is reduced. This insight initiated an analysis 3 if the
number of features can also be lowered in RTDS without performance loss.
Furthermore the current online model uses the appearance-based features
of the data only, leading to a model which recognises road-like area rather
than semantic road. Hence, a reasonable comparison can only be done
between the first RTDS stage and the online trained GMLVQ models. In our
experiment on a challenging Kitti stream, we could show that online trained
GMLVQ models are suited because they can perform better than the first
RTDS stage on particular image scenarios. Especially on sunny images this
seems to be the case whereas on shady ones the classification task is more
difficult. The reason therefore is the variability of shadows. They can be

3At Honda Research Institute Europe
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Figure 8.8.: (a) Frame-wise comparison of the GMLVQ and the RTDS (first stage) perfor-
mance on the Kitti stream 0086 . We omit the first frames since they are used to train the
first GMLVQ model and hence no reasonable comparison can be done. (b)-(e) sample
images of the stream.

really dark, e. g., from a house or less dark if it is a shadow from a treetop
for example. This different shadows cause different colour changes which
have an impact on the classification performance especially if they change
frequently. Nevertheless we could show that online trained models improve
the performance on particular images.
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Automated data analysis is an important tool to discover complex internal struc-
tures of data and it is necessary in settings with so-called big data where a manual
processing of data is impossible. One particularly relevant area of automated
data analysis, which has been central in our research, is classification which can
be equipped with a reject option. In general, a classifier provides a class label
for given data without any information if the assigned class labels are reliable.
Examples of such classifiers are described in chapter 3.

Within this thesis we focused on prototype-based classifiers in particular LVQ
schemes. There are several reasons for this choice. LVQ schemes have a
simple classification scheme, they can integrate the powerful concept of metric
learning, and they are especially suited for online learning scenarios which was
demonstrated in previous work, e. g., in Kirstein et al. (2005, 2008, 2009, 2012);
Kietzmann et al. (2008); Queißer (2012). In the context of lifelong learning,
certainty measures are particular important. This is why we studied certainty
measures suited for prototype-based classifier, for rejection (chapter 4 and 5),
lifelong learning (chapter 6) as well as classifier selection (chapter 7).

In chapter 2 we provided the fundamentals of certainty measures as well as
for global and local rejection. Also we gave a literature overview and we showed
our taxonomy of existing approaches. We found out that there are well studied
rejection strategies e. g., for SVM and k-NN, but only few for LVQ approaches.
Furthermore, global rejection got lots of attention while local rejection seemed not
to be a popular research target.

In chapter 4 we proposed deterministic certainty measures suited for LVQ
classifiers which worked well in our experiments. Also we showed that our certainty
measures can compete with probabilistic counterparts. Such that a deterministic
certainty measure together with an LVQ classifier is a reasonable choice.

In chapter 5 we studied local rejection strategies which rely on a partitioning
of the input space, as e. g., the Voronoi cells of LVQ classifiers. We compared
global and local rejection strategies for several classifier types (LVQ, SVM, DT)
and we gave suggestions when to use which strategy. One main challenge for
local rejection is the selection of appropriate local thresholds which gets more
complicated with an increasing number of thresholds. A simple straight forward
solution is to choose them based on an empirical evaluation which can be time
consuming and suboptimal. To overcome these drawbacks, we proposed two algo-
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rithms for finding appropriate local thresholds: (i) a dynamic programming scheme
which determines the optimal local thresholds for given data with respect to any
classifier with a certainty measure, and (ii) a fast greed approximation thereof.
Both algorithms provide the full ARC together with optimised local thresholds for
any defined costs for rejects and wrong classifications. Hence, if the setting or the
costs change, local thresholds can be looked up without recalculation. From a
theoretical point of view, we link the problem of finding optimal local thresholds for
a given number of false rejects with the multiple choice knapsack problem.

In chapter 6 we directly applied one of our certainty measure in the context of
lifelong learning. Classifiers used in lifelong learning have to deal with the so-called
stability plasticity dilemma which means they have to be flexible enough to integrate
new content without forgetting already acquired knowledge. In lifelong learning, we
used certainty information to indicate areas in the data space which are lacking an
adequate model representation (uncertain classification) or areas which are noisy
(e. g., due to over-fitting). We analysed a new LVQ variant (ioLVQ) for this domain
which combines the following benefits of earlier approaches: it is cost function
based, it adds and deletes prototypes on demand based on certainty information,
and it integrates metric learning. Besides the aforementioned advantages of
an LVQ classifier, it offers intuitively understandable parameters which control
the classifier complexity and it is easily possible to set an upper bound on the
number of prototypes. This possibility is especially important for applications which
have limited memory or computational resources, e. g., on autonomous robots.
Often such applications have to deal with dynamically changing environments,
i. e., changing data distributions which lead to the so-called concept drift. There
are mechanism detecting when concept drift happens. They can either be active
or passive. Since the ioLVQ adds and removes prototypes with respect to the
encountered data, it follows a concept drift passively.

In chapter 7 we studied an alternative to ioLVQ, the OOL architecture which
retains defined knowledge over the whole application time due to a static offline
classifier which is combined with a flexible online classifier. With a dynamic classi-
fier selection based on certainty measures, the most reliable classifier is chosen
for a given input. We demonstrated that the OOL architecture suffers less than
other lifelong learning approaches (e. g., ioLVQ) with respect to a forgetting effect
on early seen data. Since the offline and the online classifier can integrate metric
learning, their entire data space representation can vary a lot. This difference
can be caused by a virtual concept drift which means that the underlying data
distribution does not change but the current data does not well represent this
distribution. In this case the internal data representation of both classifiers varies
which results in different certainty measures which are no longer comparable.
We introduce this effect as confidence drift and we proposed a solution for this
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problem. Our solution uses an additional metric with the aim of correcting the
certainty calculation of the offline classifier. This metric is also trained during
application time. By design, the OOL architecture can cope with concept and
confidence drift during its application time.

In chapter 8 we analyse if the combination of an offline trained road terrain
classifier (RTDS) and an online trained one, is beneficial because of the promising
results in our experiments and the advantages of the OOL architecture studied
in the previous chapter. Hence, we adopted our concepts for road terrain classifi-
cation tasks. Since both classifiers are from a different classifier type, it is more
challenging to find a good measure for dynamic classifier selection. Therefore, we
did a frame-wise performance comparison of both classifiers on an image stream.
We demonstrated that the online classifier outperforms the offline classifier in
some frames although it is challenging to gather ground truth training data for the
online classifier during the application. Hence with a suited classifier selection,
the combination of an online and offline road detection classifier can be beneficial.

Outlook

The findings as developed in this thesis gave rise to interesting new research
areas as follows:

Generalisation guaranty: Theoretical guarantees on the generalisation ability
of global and local thresholds extracted from training data towards test data would
stress the usefulness and the suitability of the proposed strategies as already
demonstrated in this thesis.

General rejection costs: In this thesis, we demonstrated how rejection works
with constant rejection and misclassification costs independently of the data. A
straight forward extension is to consider more general costs such as class-related
ones for instance. This is especially relevant in applications where misclassifica-
tions of different classes have different consequences. In the domain of driver
assistance systems for instance, two types of misclassifications can happen. The
system wrongly initiates an action of the car which confuses the driver or even
more severe it badly interacts with other road users. Such an error is more costly
than the error, when the system misses a dangerous situation and does nothing,
because the human driver is probably aware of the situation and acts appropriately.
Another domain where different costs arise is the medical domain. There it is also
more ’costly’ to classify an ill person as healthy than vice versa.

Partitioning of the input space: We experimented with different classifiers and
their natural induced data space partitioning (e. g., Voronoi cells, leaf areas of
a decision tree). Maybe a different kind of data space partitioning and hence
local thresholds, e. g., class border related thresholds, can even improve upon the
results as obtained in this thesis. This could be relevant for applications where
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misclassifications between different classes have different costs and therefore
they need different treatment/thresholds.

Rejection for online learning: In this thesis we studied rejection applied on
offline trained classifiers with successful results. For future research it would be
important to study rejection applied on classifiers used in online learning scenarios.
We proposed certainty measures which are suited for online LVQ schemes. Online
learning gets more and more important because many applications deal with
streaming data or the personalisation of systems for example. A main challenge
related to online learning is concept drift as aforementioned. In this context, it
would be relevant to know if the global/local thresholds for rejection need to be
adapted according to observed training data or if for instance the costs for wrong
classifications/rejects change over time. Based on this thesis, the upcoming topic
of rejection in online learning opens the way to interesting research questions.

Data Fusion1: The main aim in this area is to fuse information from several
sensors to achieve an improved performance of a system, e. g., classification
accuracy. However, in real-world applications an improved classification is useless
until one has a robust mechanism indicating whether one can rely on the classifi-
cation. If the sensors work correct, the data they collect/transmit are reliable and
useful for the execution of the system’s task. But data of sensors can be noisy
or simply wrong due to a temporary functional disorder, a complete breakdown
of sensors or due to other environmental conditions. A system should notice if
the gathered data on which to ground its behaviour is reliable or not. In case of
distorted or wrong data severe consequences can happen. Hence, it is beneficial
to neglect such data only using reliable data. A reject option with an appropriate
certainty measure for each sensor can be used to indicate when sensor data is
unreliable. Since there is a large variety in sensors, data fusion is spread across
many domains, e. g., health care, smart homes, and autonomous driving.

1Thanks to Harvey Mitchell for pointing to this topic.
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A.2. Data Properties

property # data points # dimensions # classes

Artificial data:

Gaussian cluster 8030 2 2
Pearl necklace 5000 2 2
Blossom 7000 2 3
Checkerboard 16000 2 2
Checkerboard noise 16000 3 2

Benchmark data:

Letter 20000 16 26
USPS 11000 30 10
Outdoor 4000 21 40
Image segmentation 2310 19 7
Coil 1440 30 20
Habermann 306 3 2
Tecator 215 100 2
Adrenal 147 32 2

Table A.1.: Data properties
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A.3. Algorithms

Algorithm 1: Dynamic Programming
/* compute optimal number of true rejects by DP */

input :X, classifier
output :matrices opt(n, k) and θθθ(n, k)
/* initialisation */

h :=
∑ζ

k=1 |Eθk(0)|;
foreach k ∈ {0, . . . , ζ} do

opt(0, k) := h;
end
foreach n ∈ {1, . . . , |L|} do

foreach k ∈ {0, . . . , ζ} do
opt(n, k) := −∞;

end
end
/* loop over number of false rejects */

foreach n ∈ {1, . . . , |L|} do
/* loop over partitions */

foreach j ∈ {1, . . . , ζ} do
opt(n, j) := opt(n, j − 1);
/* loop over thresholds in partition j that agree with

false rejects */

foreach i ∈ {1, . . . ,min{n, |Θj | − 1}} do
n′ := n− i;
gain := |Eθj(i)\Eθj(0)|;
h := opt(n′, j − 1) + gain;
if h > opt(n, j) then

opt(n, j) := h;
end

end
end

end
/* algorithm is continuing on the next page */
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/* compute threshold vector by back-tracing; initialisation

with default value: first thresholds */

foreach n ∈ {0, . . . , |L|} do
foreach k ∈ {1, . . . , ζ} do

θθθ(n, k) := θk(0);
end

end
/* back-tracing in the matrix opt */

foreach n ∈ {1, . . . , |L|} do
/* start in last partition */

j := ζ;
n′ := n;
i := min(n′, |Θj | − 1);
while j > 0 do

if i = 0 then
/* threshold 0 */

j := j − 1;
i := min(n′, |Θj | − 1);

else
n′′ := n′ − i;
gain := |Eθj(i)\Eθj(0)|;
h := opt(n′′, j − 1) + gain;
if opt(n′, j) = h then

/* take threshold i */

θθθ(n, j) := θj(i);
n′ := n′′;
j := j − 1;
i := min(n′, |Θj | − 1);

else
/* take a smaller threshold */

i := i− 1;
end

end
end

end
/* return optimal true reject numbers and corresponding

threshold vectors */
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Algorithm 2: Greedy
/* compute optimal number of true rejects by DP */

input :X, classifier
output : accuracy reject curve tc, ta
/* initialisation by first thresholds */

foreach j ∈ {1, . . . , ζ} do
I(j) := 0;

end
h :=

∑ζ
k=1 |Eθk(0)|;

|Eθθθ| := h;
n := 0;
s := 1;
tc(s) := 1− |Eθθθ|/|X|;
ta(s) := |L|/(|X| − |Eθθθ|);
/* algorithm is continuing on the next page */
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/* loop while true rejects can be increased */

while |Eθθθ| 6= |E| do
/* most improvement locally */

gain := maxj{|Eθj(I(j)+1)\Eθj(I(j))|};
Igain := arg max j{|Eθj(I(j)+1)\Eθj(I(j))|};
/* most improvement globally */

GAIN := maxj{|Eθj(n+1)\Eθj(0)|};
IGAIN := arg max j{|Eθj(n+1)\Eθj(0)|};
if GAIN > (gain+ |Eθθθ| − h) then

foreach j ∈ {1, . . . , ζ} do
I(j) := 0;

end
I(IGAIN ) := n;
|Eθθθ| := GAIN + h;
n := n+ 1;

else
if Igain is unique then

I(Igain) := I(Igain) + 1;
|Eθθθ| := |Eθθθ|+ gain;
n := n+ 1;

else
/* increase the number of false rejects */

o := 1;
repeat

o := o+ 1;
gain := maxj{|Eθj(I(j)+o)\Eθj(I(j))|};
Igain := arg max j{|Eθj(I(j)+o)\Eθj(I(j))|};

until Igain is unique;
n := n+ o;
I(Igain) := I(Igain) + o;
|Eθθθ| := |Eθθθ|+ gain;

end
end
s := s+ 1;
tc(s) := 1− (n+ |Eθθθ|)/|X|;
ta(s) := (|L| − n)/(|X| − (n+ |Eθθθ|));

end
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