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Summary

For a long time in the literature, the usual way of modeling an auction participant’s beliefs has
been exogenous - the distribution of private value is simply given, fixed, commonly known
and out of any doubt for the involved participants. Growing awareness on information
uncertainty and its strong influence on decision choices and social outcomes is the reason
why we focus on introducing information uncertainty in auction theory. In particular, we
allow involved subjects to question underlying information structure. We propose three
different ways to design the endogenous belief formation process and explore its influence
on state of the art in auction theory. This research approach results in three different setups,
each examined in depth in a separate chapter.

Chapter 2 shows the importance of our modeling approach. The genericity of an optimal
auction format - in the literature known as the Crémer-McLean auction - is challenged and its
robustness against a change of information structure is examined. We show that participation
constraints in the auction format fail to hold once the seller and bidders have slightly different
beliefs over the joint distribution of private values. We propose the definition of a belief
neighborhood in order to capture this slight discrepancy between seller’s and bidders’ beliefs.
Moreover, we also give a quantitative assessment of how often the failure occurs in the case
of a common prior assumption as well as once the common prior assumption among bidders
is relaxed. In particular, participation constraints fail in at least one half of any plausible
belief’s neighborhood. Once the common prior assumption among bidders is relaxed, the
failure occurs everywhere except in 1/22m of a belief’s neighborhood, where m is the number
of possible private values for each bidder.

The origin of private values in auction models is examined in Chapter 3. In contrast with
the standard literature, we let participants question the information structure involved in
auctions. We focus on the most prevalent forms of sealed-bid auctions on the market: the
first-price and second-price auctions. Instead of being exogenously given, we permit the
observed distribution of private value to take the form of mixture probability distribution,
which in turn allows participants to speculate on the true distribution of the values. The
speculations are done in accordance with Bayes’ rule - the bidders use their private value to
infer the distribution, whereas the seller bases his belief on an observed mixture form of the
values’ distribution. We explore the consequences of allowing this particular belief forma-
tion on bidders’ and seller’s behavior. First of all, despite the independently and identically
distributed values, we show that the belief formation leads to the revenue equivalence failure
in such a way that the seller prefers the second-price auction. Moreover, in our setup, truth-
fully bidding one’s own private value continues to be optimal in the second-price auction.
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However, the bidding behavior in the first-price auction is influenced by the belief formation
in the following way. Comparison of bidding strategies in the standard framework and our
model leads to the statement that these two strategies cross at most once. In other words,
we discover that there is either dominance ordering or a single-crossing property between the
compared strategies.

The final chapter presents a model with a new kind of information uncertainty - the un-
certainty about seller’s type. Motivated by recent security and fraud issues in auctions, we
develop a model where a manipulative seller has an opportunity to send an agent to bid
secretly on the seller’s behalf. Out of the possible auction formats, we choose the second-
price auction and the all-pay auction. We look at the all-pay auction because of its design:
everyone pays her own bid, irrespective of whether she wins the auction. Consequently, it
seems that the manipulative seller can make the best use of his manipulation in the all-pay
auction. In the all-pay auction, the seller may keep the object and collect all bids, which
is not the case with either a second-price or first-price auction. In this way we change the
standard information structure of an auction by proposing that the seller also holds private
information, whether or not he is a manipulative (with an agent) or an honest seller (with-
out an agent). Even though a priori there is a common prior over the possibility of facing a
cheating seller, bidders in our model perceive the choice of auction format as a signal about
the seller’s intentions. Thus, our setup extends the standard auction framework to a form of
signaling game. To this end, we explore the pure weak perfect Bayesian Nash equilibria of
this game. We show that the only robust weak Bayesian Nash equilibrium is pooling on the
second-price: that is, it is beneficial for both type of sellers to choose the second-price auction.
In addition, there is a special non-generic equilibrium scenario in which the honest seller
chooses the all-pay auction and the cheating seller chooses the second-price auction. How-
ever, this equilibrium is very unstable and not robust against the smallest change of bidders’
belief on seller’s honesty. Thus, it turns out that the signaling effect is stronger than the effect
of manipulation. Unlike the discussion in related literature on the disadvantage of the appli-
cation of the second-price auction in a setup with independently and identically distributed
private values and a similar seller’s manipulation (with different timing), our model favors
the second-price auction.
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Last but not least, it is hard to find right words and express the way I feel about your role and
contribution to this life chapter of mine - my dear Herwin. The halfway of the doctoral studies
brought you into my life - so, in certain sense, you are my the most important (side) effect of
this journey :-). Thank you for being always at the right place and right time for me, making
it together through my ups and downs, dealing with my grumpiness and being so supportive
in each decision I make. Your help did not remain only on the level of encouragement and
moral support, but you really meant it, when you accepted to commute because of me,
helped by making the text editor LyX set formats as I want it to do, offered and did indeed
proofread my thesis. You make me feel, it was really worth it.

Sometimes, supposedly by my appearance, some characteristics such as humility and toler-
ance, I do evoke memories of my father Mirko. I am very proud of it. Ponekad, pretpostavl-
jam svojom pojavom i nekim karakteristikama kao što su skromnost i tolerancija, probudim
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Chapter 1

Introduction

Auctions, or more precisely information involved in auction models is the topic covered in
this thesis. We are tackling the problem regarding the source of knowledge involved in
auction models. There is a gap in the literature both in explaining the thought formation
process and on the origin of information possessed by participants (here also called players).
On one side, it has been long assumed that knowledge is simply given and that participants
always hold perfectly correct (private or not) information. On the other side, the recent
literature has been going in the opposite direction: any kind of information must be taken
into account and assumed as relevant for a model and the players might be uncertain about
anything in the model. Our goal here is to point out and fill the gap between these two
extremes and come up with models which would be, in a certain sense, closer to the reality
where some pieces of information possessed by players will be correct and well-justifiable
whereas some other pieces of information will be missing from players’ knowledge and thus
treated as a variable of the model.

1.1 Research Focus

In economics, auctions, as one of the most popular and prominent selling mechanisms have
for a long time been modeled as a well-known game-theoretic concept of a certain class of
games. These games involve players with private information. The economic model repre-
senting an auction is indeed nothing more than Harsanyi’s game of incomplete information
introduced in Harsanyi (1967). Roughly speaking, an auction might be seen as a game of
incomplete information with two sorts of players: “seller” and “bidder”. We focus on single-
object auctions where there is typically one seller, selling a non-divisible object to two or
more potential buyers or “bidders”. The information structure of Harsanyi’s model is rep-
resented by type spaces of players. In an auction framework, the Harsanyi’s type spaces are
identified by valuation spaces, where a valuation is the private information of each bidder
and denotes the value which they attach to the object. All other aspects of Harsanyi’s model,
such as strategy space, equilibrium definition and so on, are naturally translated into the
auction model.
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2 Introduction

Furthermore, the auction model has also inherited the underlying assumptions of Harsanyi’s
concept. One of these assumptions is the common prior assumption (CPA). It supposes that
players hold identical beliefs (named common prior) about the probability of each single
profile of a bidder’s values. Furthermore, based on the common prior and their own private
information - the valuation - a bidder acts in the model and influences the outcome of the
game. Beside this assumption, the common knowledge assumption (CKA) has also been long
kept as a matter of course in auction theory. The CKA is nothing more than assuming that
the CPA is known by all players in the following sense: each player is aware of the common
prior’s existence, they know that the other players know the prior and know that the other
knows that they know it and so on ad infinitum. The combination of CPA and CKA has been
an inevitable element of any model describing an auction format in the literature. Usually
the CPA was explicitly assumed, whereas the CKA was implicitly assumed. We question and
address these assumptions in our research.

These assumptions might be a justified and appropriate description of certain real life situ-
ations, whereas they might be too restrictive and unrealistic in some other situations (for a
good overview and examples, see Morris (1995)). Where does the common prior come from?
Aren’t the participants in the real world exposed to different kinds of information source
which might cause not only different private values, but also different priors over the set
of all possible value profiles? These are the questions which motivate and determine our
research road map.

Related to our work, there is already a vast literature criticizing the CKA and CPA assump-
tions. The origin of the critique dates back to Wilson (1987) and is commonly known as “Wil-
son’s Doctrine”. The article has brought to light the problem of the CKA assumption and
strong dependence of auction models that use this assumption on assumed players’ knowl-
edge and private information. The work has initiated a long series of research papers ever
since and still represents one of the most popular research topics. The literature following
Wilson’s critique heavily employs the universal type space formally introduced by Mertens
and Zamir (1985). The type space is a full mathematical description of all possible types of
player, where a type is determined by an infinite consistent hierarchy of beliefs. The scope of
this universal type spaces is as large as one can imagine and also incorporates types of player
who do not satisfy CPA. In addition, the literature following this research agenda gives rise
to the term “detail-free mechanism”.1 Loosely speaking, the detail-free is an auction which
does not depend on the assumptions of players’ knowledge at all. For example, an auction
with an ex post dominant-strategy is an obvious instance of the detail-free mechanism.

Therefore, on one side, by employing a detail-free mechanism one overcomes the problem
of assuming a specific information structure imposed on a player’s knowledge and in par-
ticular avoids difficulties caused by CPA or CKA. However, on the other side, use of such
a mechanism may completely ignore the eventual benefit from information which is cer-
tainly available to players of the auction. It is unclear why, for example, a seller would like

1Some of the pioneer works in this research area are: d’Aspremont and Gerard-Varet (1979), Das-
gupta and Maskin (2000), Perry and Reny (2002), Bergemann and Morris (2005) and Chung and Ely
(2007).



§1.2 Roadmap of This Thesis 3

to employ a detail-free mechanism and thus ignore some “certain” or “almost certain” in-
formation, whose use could lead to higher expected revenue than the one obtained by the
detail-free mechanism.

Overall, as we can see, there exist two extreme approaches to modeling the information
structure in auctions. The earliest auction models have heavily and essentially depended on
assumptions of player’s perfectly correct beliefs and did not leave any space to possibility
of having any slightly inaccurate information. That is, this models cannot address any form
of information uncertainty. On the other side, the current literature on “robust mechanism
design” completely rules out the role of private information by allowing that any potential
information structure is always possible and must be taken into consideration by designing
a detail-free auction. In other words, absolute information uncertainty turns out to be an
inevitable building block of the models. This is the issue we want to address. We make
a compromise between these two approaches by introducing auction models which involve
information uncertainty with limited scope: in our setups, the knowledge of the players is
uncertain, but this uncertainty is limited and partial.

1.2 Roadmap of This Thesis

Our goal is to introduce information uncertainty into the auction models and model the
participants’ beliefs as an endogenous intellectual process rather than an exogenously given
and non-questionable component of the model. There are several ways we approach our
research goal: adding a possibility of erroneous seller belief, allowing bidders to update their
private values or allowing the seller to manipulate auctions. With the different methods
we use in order to address the research question, we have defined three different research
projects. Each are separately covered in great detail in the form of a chapter of this thesis.
The following subsections give short descriptions of each project separately, and as such
introduce the content of this thesis.

1.2.1 Non-Robustness of the Crémer-McLean Auction

Our departing point is a chapter whose goal is to formally (in terms of modeling) represent
the relevance of this research focus. Namely, in this chapter we test the robustness of an op-
timal auction format: the Crémer-McLean Auction. In spirit of our focus, the robustness test
is designed by introducing a change in information structure. More precisely, we introduce
uncertainty in the accuracy of the involved beliefs. That is, instead of assuming complete
certainty about the distribution of private values, we consider a framework where beliefs are
estimations and analyze the case in which these estimates are partially incorrect. To this end,
the CPA is relaxed in such a way that the bidders may or may not share the same prior, but
the seller certainly does not have to have an identical prior as the bidders. As the seller and
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bidders belong to opposite sides of the trade, it seems plausible to model a situation where
the seller and bidders might possess different knowledge. Finally, the core of the chapter
is the analysis of the consequences of this relaxation on bidders’ behavior and the selling
mechanism. In conclusion, you will discover within the lines of the chapter that even the
smallest fluctuation of belief certainty leads to a dramatic influence on the model’s outcome.
The novelty of the chapter is our quantitative qualification of the consequences on bidders’
participation that the information uncertainty caused.

1.2.2 Bayesian Updating on Origin of Private Values

Here we grasp the problem of the origin of knowledge about the distributions of values in
standard auction formats, in particular, within first-price and second-price auctions. As in
the standard models, we assume that private values are independently identically distributed
(i.i.d.). However, the new component of modeling is that we assume that the exact distribu-
tion of a value is unknown and comes from a finite set of distributions, with the property
that each element of the set is equally likely to be the true distribution. Depending on the
manner of how players resolve the introduced uncertainty, we create two scenarios. The
benchmark scenario is pretty much in line with the standard scenario in the literature - the
players treat the true distribution to be equal to the average distribution over the given set
and behave accordingly. In the second scenario, we allow bidders to update their beliefs
(in a Bayesian manner) once they become aware of their own private value. Meanwhile, the
seller considers the convex combination of all joint distributions as the one defining the joint
distribution of values. Therefore, in this scenario we emphasize the role of private informa-
tion on the belief formation procedure. Furthermore, we compare the bidding behaviors and
expected revenue across these two scenarios. Under some imposed structure on the set of
possible marginal distributions (namely, we assumed that the set is ordered in the terms of
likelihood ratio dominance), we have shown the failure of the revenue equivalence principle
within the second scenario - in particular, that the seller favors a second-price auction for the
sale. Moreover, once the bidding strategies in the first-price auction between scenarios are
opposed to each other, we show that the bidding strategies can be either ordered in terms of
dominance or exhibit a single-crossing property.

1.2.3 Endogenous Auction Choice under Possible Seller’s Manipulation:
All-Pay and Second-Price Auction

We end our research journey in this thesis with a model that differs in several ways to the
ones developed in the earlier described projects. The set of bidders’ beliefs is enriched by
introducing two types of the seller: an honest seller and a manipulative seller. To the ma-
nipulative type of seller we give the possibility of sending a secret agent in the second-price
or all-pay auction. The secret selfless agent bids on the behalf of the manipulative seller and
takes role similar to a double account in online auctions. Meanwhile, the honest seller may
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choose only regular forms (without reserve price or reserve payments) of these two auction
formats for sale. Therefore, the existence of two seller’s types gives rise to a new kind of
bidder belief - belief about the honesty of the seller. It is intuitively clear, that this new belief
impacts bidding strategy - the stronger the belief that a bidder faces a cheating seller, the
more probable it is to expect, at least in the all-pay auction, that the bidder will bid more
modestly and shade her bids. The motivation to give the seller an opportunity to place a
“false bid” might be found in recent literature development on fraudulent seller behavior as
well as in various online auction security measures (for example, Ebay’s double account poli-
cies). In the spirit of our research focus, we allow bidders to endogenously form their beliefs
about honesty and base their judgment on the seller’s choice of the auction format. Namely,
in game-theoretical terms, we add a signaling process analogous to the one introduced by
In-Koo Cho (1987). Once the bidders perceive the choice of auction, they are asked to place
a bid. Bidders can then use this information to directly shape their beliefs about the seller’s
type which ultimately influences their bidding behavior. The exact strength of the signaling
effect on bidders’ strategies as well as its influence on the seller’s auction choice at pure weak
Bayesian Nash equilibria are explored and characterized in the main findings of the chap-
ter. Unlike previous studies on similar set-ups with identically and independent distributed
private values and a possible seller’s fraudulent behavior (see Rothkopf and Harstad (1995)
and Porter and Shoham (2005)), once the bidders’ belief formation incorporates the signaling
effect, we obtain one more argument in favor of the wide use of the second-price auction,
especially to avoid seller’s abuse via a secret double account.
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Chapter 2

Non-Robustness of the
Crémer-McLean Auction

In this chapter we examine the consequences of introducing information uncertainty in a
well-defined optimal auction format. The importance of this approach lies in the fact that it
helps in identifying elements of the standard auction model that are vulnerable to a change of
information structure. In this particular case, we show the failure of participation constraints.
That is, once the seller has even a slightly inaccurate belief about the distribution of joint
values, the bidders will probably refuse to participate to the auction.

We are looking at the informational robustness of an optimal auction format in the case of
a finite and fixed-size valuation space and a single-unit object offered for sale. Crémer and
McLean (1988) have defined the optimal auction as one which guarantees the full extrac-
tion of the surplus. Given that the distribution of bidders’ valuations is common knowledge
among all participants and the cardinality of value space is fixed, they have shown that the
full surplus extraction (FSE) is generically possible. Once the assumptions on common prior
and fixed size of valuation space are relaxed, Heifetz and Neeman (2006) have shown the op-
posite result - the generic impossibility of FSE. In particular, they have considered a setting
where the seller is uncertain both about the common prior shared by bidders and the number
of possible valuations. Furthermore, Barelli (2009) has shown the impossibility of FSE in the
the case of a common prior without a fixed-size valuation space. We combine the last two
approaches and consider the set-up with a fixed-sized valuation space and the seller possi-
bly holding an inaccurate belief about the joint distribution of bidders’ private values. As a
consequence, the seller then has a different prior to the one the bidders consider. Namely,
the true distribution of values is close to the seller’s belief. Given this set-up, we show that
participation constraints failure occurs in a significant fraction of any “reasonable” neighbor-
hood of the seller’s belief. Finally, we also consider the case where bidders themselves do
not share a prior, but may have different estimates on the origin of private values. We show
that the failure of participation constraints occurs even more often in this case.

This chapter is organized as follows. The next section introduces the model. Sections 2.2 and
2.3 present the main results with, or without the common prior assumption respectively. We

7
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conclude this chapter with some final comments in Section 2.4. All proofs may be found in
Appendix 2.A. Appendix 2.B provides a deep analysis of the participation constraints for the
specific case of two private values with a common prior assumption.

2.1 The Set-Up

We consider the standard single-unit auction setting. There is a seller who sells his indivisible
good to N potential buyers (bidders). The bidders compete for the good by placing bids.
Without loss of generality, we assume that there are only two bidders. As usual, each bidder
has her own value, which she attaches to the good. We usually refer to these values as the
bidder’s “private values” and it is her private information. To simplify the notation, we
assume that the seller attaches the value 0 to the good and this fact is known to the bidders.
Regarding the space of private values, the setting identical to the one used in Crémer and
McLean (1988) is considered - that is, the space is finite. In particular, let bidder i’s private
value be denoted by the random variable Xi, which may take one of the following m values: 0
,∆, . . . , (m− 1)∆, with ∆ > 0 and m ≥ 2. In order to keep the argument as simple as possible,
we choose equidistant values and an identical set of values among bidders. The result may
easily be generalized for the case of any finite (potentially different) sets of values.

In line with the literature, the economic model for an auction corresponds to a game of
incomplete information introduced by Harsanyi (1967). That is, an auction is a game played
by the seller and bidders with the feature that the seller does not know the private valuations
of the bidders. Indeed, if the seller knew the private values of the bidders, he would sell his
good to the bidder with the highest valuation. Hence, there would not be room for strategic
decision making. Thus, the key secret to the model are the private values.

Consequently, participants hold beliefs about the distribution of values and act accordingly.
In addition, participants are assumed to have a risk-neutral attitude. The next subsections
are devoted to full descriptions of the beliefs and information structure involved in the game
and of the game itself.

2.1.1 Formation of Beliefs

Each participant forms beliefs conditional on all information they possess. For example,
a piece of information available to a bidder is her private value. The only other piece of
information available to both bidders and the seller is the joint probability distribution of the
bidders’ values.

Crémer and McLean (1988), in their model, assume that this distribution is common knowl-
edge, that is, each participant knows the distribution, knows that all other participants know
it, knows that the others know that they know it and so on, and that their knowledge is
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correct. Similarly, in our set-up we assume that each participant believes that the distribu-
tion is common knowledge and has no doubt about this belief. However, unlike the above
mentioned authors, we explore what happens once the seller holds a “slightly” inaccurate
belief about the joint distribution of values and is not aware of his possible error. Note that
the probability distribution of joint values is the only piece of information given to the seller
who derives all his beliefs based on this distribution.

Let us now express the above described beliefs through an appropriate mathematical appa-
ratus. We firstly depict the seller’s mind; i.e. his two types of beliefs: belief about the joint
distribution and his belief about bidders’ beliefs.

2.1.2 The Seller’s Perspective

The seller’s point of view, including his role and participation in the model, is the subject
of this subsection. The seller’s task is to set the auction game which will be used as the
mechanism to sell his object. In other words, the seller sets the rules of the game which will
be played by both himself and bidders. His obligations in the game are definition of the
auction game and commitment to complete execution of the promised game.

The seller defines the auction game in such a way that his expected revenue is maximized. In
order to be able to calculate the expected revenue, the seller needs to hold a belief about the
joint distribution of the private values of bidders. In addition, he has to hold a belief about
the bidding strategy played by any single type of each bidder. For this purpose, the seller
forms his belief about each bidder’s belief about the distribution of other bidders’ valuations.
Indeed, whenever a rational bidder places a bid, she has to take into account the probability
distribution of other bidders’ values in order to predict others’ bidding behavior and, thus,
optimize her own behavior.

Let us now express the above described beliefs by means of a suitable mathematical tools. The
seller believes that the joint distribution of private values (X1, X2) is given by the following
matrix P̄:

P̄ =



p̄00 p̄01 · · · p̄0 m−2 p̄0 m−1

p̄10 p̄11 · · · p̄1 m−2 p̄1 m−1
...

p̄m−2 0 p̄m−2 1 · · · p̄m−2 m−2 p̄m−2 m−1

p̄m−1 0 p̄m−1 1 · · · p̄m−1 m−2 p̄m−1 m−1


,

where p̄ij denotes the probability of the event that bidder 1’s private value is i∆ and bidder
2’s value is j∆, for any i, j ∈ {0, 1, . . . , m− 1}. Table 2.1 visualizes this belief for the case of
two bidders.
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Bidder 2

Values 0 ∆ · · · (m− 1)∆

Bidder 1

0 p̄00 p̄01 . . . p̄0 m−1

∆ p̄10 p̄11 . . . p̄1 m−1

...
. . .

(m− 1)∆ p̄(m−1)0 p̄(m−1) 1 . . . p̄m−1 m−1

Table 2.1: The seller’s belief about joint distribution of private values.

Thus, the marginal distributions of X1 and X2 are given by :

X1 :
0 ∆ · · · (m− 1)∆
p̄0 p̄1 · · · p̄m−1

and X2 :
0 ∆ · · · (m− 1)∆
p̄0 p̄1 · · · p̄m−1 ,

with p̄i =
m−1
∑

j=0
p̄ij and p̄j =

m−1
∑

i=0
p̄ij.

Let P̄i be beliefs of bidder i ∈ {1, 2} over the distribution of the other bidder’s value, given
her own value, i.e. let

P̄i =


P̄(Xj = 0|Xi = 0) P̄(Xj = ∆|Xi = 0) · · · P̄(Xj = (m− 1)∆|Xi = 0)
P̄(Xj = 0|Xi = ∆) P̄(Xj = ∆|Xi = ∆) · · · P̄(Xj = (m− 1)∆|Xi = ∆)

...
P̄(Xj = 0|Xi = (m− 1)∆) P̄(Xj = ∆|Xi = (m− 1)∆) · · · P̄(Xj = (m− 1)∆|Xi = (m− 1)∆)

 ,

for any i ∈ {1, 2} and j ∈ {1, 2} / {i}. Therefore, the kth row of the matrix P̄i denotes
the so called first-order belief held by bidder i with private value equal to (k − 1)∆ for
k ∈ {1, 2, . . . , m}. The first-order belief of a bidder is simply her belief about the distribution
of the other bidders’ values, given their own value. We stress that this is the way the seller
thinks and solely represents his point of view, not necessarily the bidders’ true beliefs.

The Optimal Auction Game: the Crémer-McLean Auction

Once we have defined beliefs, we are able to calculate the expected revenue obtained from any
auction and its associated equilibrium strategy profile. We shall consider the following two
auction formats: the second-price auction and the Crémer-McLean auction. The later auction
is introduced in Crémer and McLean (1988) and presents the optimal auction format, that is
it leads to the highest expected revenue for the seller among all possible selling mechanisms
given his personal beliefs. Thus, it will be the auction format chosen by the seller.
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However, we start our analysis by introducing the second-price auction, mainly because of
the following two reasons. Firstly, the auction represents the essential building block for
the optimal auction and other models explained in this thesis. It is therefore, of crucial
importance to understand its rules before the rules for the auction format, actually played by
participants are introduced. The second reason for consideration of the second-price auction
is its property of being one of the so-called “detailed-free” auction formats. In other words,
the second-price auction has its equilibrium in ex post (weakly) dominant strategies (which
are truth-telling strategies) and therefore is robust against fluctuations of participants’ beliefs.

In order to define an auction game it is sufficient and necessary to define the probability of
getting the object and the ex post (expected) payment made to the seller for each bidder and
each possible combination of bids. Thus, the second-price auction is identified with a pair of
mappings

(
QI I , MI I), where:

1. QI I : {0, ∆, . . . , (m− 1)∆}2 → [0, 1]2 with coordinate functions1 defined as follows:

QI I
i (bi, bj) =


1, bi > bj

0, bi < bj
1
2 , bi = bj

for all i, j ∈ {1, 2} and j 6= i.

QI I
i (bi, bj) is the probability that bidder i gets the object when she bids bi and her

opponent bids bj in the second-price auction. Therefore, in the auction the good is sold
to the bidder with the highest bid. This allocation rule is also known as the standard
auction rule.

2. MI I : {0, ∆, . . . , (m− 1)∆}2 → R2

MI I
i (bi, bj) =


bj, bi > bj

0, bi < bj
bi
2 , bi = bj

,

MI I
i (bi, bj) is the ex post (expected) payment that bidder i pays to the seller when she

bids bi and her opponent bids bj in the second-price auction. From the definition, one
may notice in the auction’s name, that the winner of the auction (the bidder whom the
good is sold to) pays the second-highest bid as the price for the good.

Given this definition, one can easily show that truth telling is the ex post weakly dominant
strategy2 and therefore, also the Bayesian Nash equilibrium of this game. Thus, under the
implicit rationality assumption, we shall assume that bidders use the truth-telling strategy
once they are called upon to participate in the second-price auction.

For the purpose of further analysis, it is useful to determine the ex post payoff and interim
expected payoff for each type of bidder at the equilibrium, which will be denoted as ΠI I and

1For any vector-valued function f : A → C with C ⊆ Rk its ith coordinate function,
1 ≤ i ≤ k, denoted by fi, is the mapping from set A to set Ci, with Ci = Pri (C) =
{c ∈ R |(∃a ∈ A) ( f (a) = (c1, c2, . . . , ck) and ci = c) }, which maps any a ∈ A into real number
Pri ( f (a)), where Pri (x) is the ith coordinate of the vector x ∈ Rk.

2For example, please check Vickrey (1961).
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ūI I
i , respectively. More precisely, we define ΠI I : {0, ∆, . . . , (m− 1)∆}2 → R2 as ΠI I

i (xi, xj) =

QI I
i (xi, xj)xi −MI I

i (xi, xj), that is, ΠI I
i (xi, xj) is the payoff of bidder i when her value is xi and

the opponent’s value is xj at the truth-telling equilibrium. However, we might sometimes
order the arguments of the function ΠI I

i , i.e. the bids, by bidder’s names and, in order to
avoid ambiguity, we shall use a right arrow whenever we mean ordered bids. For instance,
ΠI I

2 (k∆, `∆) is the payoff of bidder 2 when her value and bid are k∆ and the opponent’s
value and bid are `∆; whereas, ΠI I

2 (
−−−→
k∆, `∆) denotes the payoff of bidder 2 when bidder 1’s

value and bid are k∆ and bidder 2′s value and bid are `∆.

Using this notation, the expected (interim) payoffs for each type of bidder i in the second-
price auction, from seller’s point of view, is given by:

ūI I
i =


ūI I

i (0)
ūI I

i (∆)
...

ūI I
i ((m− 1)∆)

 , (2.1)

with

ūI I
i (k∆) =

m−1

∑
j=0

P̄(Xj = j∆|Xi = k∆)ΠI I
i (k∆, j∆), k ∈ {0, 1, . . . , m− 1}

= ∑
j<i

P̄(Xj = j∆|Xi = k∆)(i− j)∆, k ∈ {0, 1, . . . , m− 1} ,

for any i ∈ {1, 2}. Thus, ūI I
i (k∆) denotes the expected (interim) payoff of bidder i at the

truth-telling equilibrium when her own value is equal to k∆. Note that ūI I
i (k∆) depends on

P̄. This is the reason for overlining the notation of the expected (interim) payoffs. In this
text, we shall stick to this notional rule - each variable that depends on P̄ will be overlined.
This is important in order to get a clear insight into the part of the seller’s derivation, which
depends heavily on his belief about the joint distribution of private values.

Let us now introduce the auction game which is optimal from the seller’s point of view, that
therefore will be actually played: the so-called Crémer-McLean (CM) auction. The allocation
rule QCM : {0, ∆, . . . , (m− 1)∆}2 → [0, 1]2 and payment rule M̄CM : {0, ∆, . . . , (m− 1)∆} →
R2 of the auction are defined as follows:

1. QCM = QI I , that is, the CM auction uses the same allocation rule as the second-price
auction: the good is allocated to the bidder with the highest bid.
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2. M̄CM : {0, ∆, . . . , (m− 1)∆}2 → R2 with coordinate functions defined by

M̄CM
i (bi, bj) = MI I

i (bi, bj) + c̄i(bj), (2.2)

where vectors

c̄i =


c̄i(0)
c̄i(∆)

...
c̄i((m− 1)∆)


are such that they satisfy:

P̄i c̄i = ūI I
i , (2.3)

for any i ∈ {1, 2} and j ∈ {1, 2} \ {i}.

Let us have a closer look at the definition of the bidder’s payment rule and its building blocks.
From equation (2.2) we see that bidder i’s payment is made of two terms: MI I

i (bi, bj) and
c̄i(bj). The former term is the payment that the bidder would make if she participated in a
second-price auction. The later term depends solely on the bid placed by the opponent. Thus,
we may interpret the CM auction as a second-price auction with a lottery over opponents’
bids. Namely, each bidder, by participating in a CM auction, accepts to (i) compete over
a good being sold under second-price auction rules and (ii) bet on opponents’ bids. More
precisely, by definition of the payment rule, for each possible bid bj of the opponent, bidder i
will ex post pay ci(bj) to the seller (if ci(bj) > 0 ) or will be paid −ci(bj) (if ci(bj) < 0 ). Note
that the payments from the lottery are ex post executed by all bidders and not exclusively by
the winner. Therefore, each potential buyer, once invited to participate in the CM auction, is
actually invited to play in a second-price auction and to bet on each opponent’s bid, whose
payments may be illustrated by Table 2.2.

Opponent’s bid 0 ∆ · · · (m− 1)∆
Ex post payment from bidder i c̄i(0) c̄i(∆) · · · c̄i((m− 1)∆)

Table 2.2: The lottery in CM auction offered to a bidder.

The key to the optimality of the auction is the proper choice of the vectors c̄i, which is
made by solving the system of equations (2.3). First of all, note that in order to guarantee
existence of a solution to the system we must impose some further assumptions on matrices
P̄i. The sufficient and necessary condition for existence and uniqueness of vectors c̄i is that
the matrices P̄i are non-singular, i.e. that det P̄i 6= 0 for any i. Therefore, the following
assumption is imposed:

Assumption 2.1. (Existence and Uniqueness of the CM Auction) P̄i is a non-singular
matrix for each i ∈ {1, 2} or equivalently, the system of linear equations (2.3) has a unique solution,
for any i.
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Remark 2.1. Note that, due to the continuity of the det mapping,3 once we limit our attention
to the space of all m×m matrices, Assumption 2.1 is generically satisfied.4 This is one of the
most often stated argument in favor of the CM auction.

In order to understand the definition of c̄i, we shall first have a look at the bidding strategy
of the auction. For a moment, we shall take vectors c̄i as given and take into account only the
fact that c̄i(bj) depends only on the bid of i′s opponents and not on her own bid bi. Having
this fact in mind, we can immediately see that the bidding behavior of a bidder involved in
a CM auction will coincide with her behavior in the second-price auction - the truth-telling
strategy is also an equilibrium. More precisely, by (2.2), the difference of ex post (expected)
payoffs in the CM auction between any two bids b

′
i and bi coincides with the analogous

ex post difference in the second-price auction. Thus, the same analysis to the second-price
auction case shows that truth-telling is ex post (weakly) dominant in a CM auction and that
this bidding strategy will be played by a rational bidder in the CM auction as well.

Now that we have established that the truth-telling is the equilibrium played by bidders, we
may go back to the interpretation of the choice of vectors c̄i. The (k + 1)th equation of the
(2.3) is as follows:

m−1

∑
j=0

P̄(Xj = j∆|Xi = k∆)c̄i(j∆) = ūI I
i (k∆),

for any i ∈ {1, 2} and any k ∈ {0, 1, . . . m− 1}. Thus, the vector c̄i is chosen in a such a
way that, at the truth-telling weakly dominant equilibrium, the expected (interim) payoff of
the offered lottery (illustrated by Table 2.2) is equal to the expected (interim) payoffs in the
second-price auction for each type of bidder i. Loosely speaking, the CM auction is basically
a second-price auction with an additional (mandatory) bet over the opponents’ bids, such
that the expected payoff solely from the bet coincides with expected payoffs from the second-
price auction.

Finally, we show that the CM auction is the optimal selling mechanism for the seller. More-
over, we show that the full extraction of surplus from bidders is guaranteed at the equilib-
rium. Analogously to the second-price auction, we derive the ex post and interim expected
payoff for each type of bidder at the equilibrium, denoted as Π̄CM and ūCM

i , respectively. The
ex post (expected) payoff in a CM auction is given by:

Π̄CM
i (xi, xj) = QCM

i (xi, xj)xi − M̄CM
i (xi, xj)

= ΠI I
i (xi, xj)− c̄i(xj), (2.4)

3Under the det mapping we understand the function which assigns to each square matrix the value
of its determinant.

4This is because Assumption 2.1 rules out only set of singular matrices in the space of all m × m
matrices. The set of singular matrices is negligible compared to the whole space.
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for any pair of private values
(

xi, xj
)
∈ {0, ∆, . . . , (m− 1)∆}2.

The interim expected payoffs for bidders in the CM auction, from a seller’s point of view, is
therefore given by:

ūCM
i (xi) =

m−1

∑
j=0

P̄(Xj = j∆|Xi = xi)Π̄CM
i (xi, j∆),

for any i ∈ {1, 2} and xi ∈ {0, ∆, . . . , (m− 1)∆}.

Plugging the expression for Π̄CM
i (xi, xj), from (2.4), into the last equation, we obtain:

ūCM
i (xi) = ūI I

i (xi)−
m−1

∑
j=0

P̄(Xj = j∆|Xi = xi)c̄i(j∆).

In vector notation, we have just obtained that

ūCM
i = ūI I

i − P̄i · c̄i. (2.5)

From the definition of vectors c̄i given in (2.3), it follows:

ūCM
i = ūI I

i − P̄i · c̄i = ūI I
i − ūI I

i = 0. (2.6)

That is, the expected (interim) payoffs for bidders in the CM auction is equal to zero, i.e. we
have just derived the full surplus extraction property of the CM auction. Theoretically, given
Assumption 2.1, which is not restrictive, the full surplus extraction is generically possible.
However, the CM auction is rarely used in practice. There are many reasons not to use the
CM auction, some of which were stressed in the original paper Crémer and McLean (1988).
Among the listed reasons were potentially too high absolute bet payment values c̄i or the
assumption on risk-neutrality of the bidders, which might be far away from the “real world”.
The authors also mentioned the assumption of common knowledge as a potential danger of
the auction’s usage in practice. This is the direction our research path leads.

The focus of this chapter is on the vulnerability of the underlying information structure in the
optimal auction. Namely, the importance imposed on the correctness of the seller’s belief is
stressed. More precisely, all the calculations in this section depict the seller’s point of view as
in Crémer and McLean (1988) and there it is assumed that miscalculations by the participants
do not occur. However, in the next section we describe a typical bidder’s mind and allow
them to hold beliefs that are arbitrarily close to the seller’s belief. The consequences of this
allowance will be assessed in subsequent sections.
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2.1.3 The Bidders’ Perspective

Once the seller has set the rules of the auction game, which are described as the CM auction
in the previous section, we now have a look at the auction game from the perspective of a
bidder. Each bidder competes against other bidders for the good being sold by posting a bid.
The level of the bid is derived by the bidder given her private value. Therefore, the bidder’s
belief over possible opponents’ private values plays a key role in determining her bidding
strategy.

In line with the original work, Crémer and McLean (1988), all bidders are assumed to have a
common prior over the joint distribution of private values. More precisely, let us denote the
common prior by a m×m matrix P =

[
pij
]m−1

i,j=0 , where pij denotes the probability of the event
that bidder 1’s private value is i∆ and bidder 2’s value is j∆, for any i, j ∈ {0, 1, . . . , m− 1}
from bidders’ point of view. The bidders’ belief about the joint distribution of private values
is represented in Table 2.3.

Bidder 2

Values 0 ∆ · · · (m− 1)∆

Bidder 1

0 p00 p01 . . . p0 m−1

∆ p10 p11 . . . p1 m−1

...
. . .

(m− 1)∆ pm−1 0 pm−1 1 . . . pm−1 m−1

Table 2.3: The bidders’ belief about the joint distribution of private values.

Let Pi be the true beliefs of bidder i derived from P given her own private value. That is, let

Pi =


P(Xj = 0|Xi = 0) P(Xj = ∆|Xi = 0) · · · P(Xj = (m− 1)∆|Xi = 0)
P(Xj = 0|Xi = ∆) P(Xj = ∆|Xi = ∆) · · · P(Xj = (m− 1)∆|Xi = ∆)

...
P(Xj = 0|Xi = (m− 1)∆) P(Xj = ∆|Xi = (m− 1)∆) · · · P(Xj = (m− 1)∆|Xi = (m− 1)∆)

 (2.7)

be such that Pi is a row stochastic matrix5 and P(Xj = `∆|Xi = k∆) denotes the probability
that bidder i, whose private value is k4, attaches to the event that bidder j’s private value is
`∆.

In general, we allow that P 6= P̄. In particular, we are interested in the case where P is very
“close” to P̄, where the term of “closeness” will be defined later. This is the crucial difference

5A matrix M =
[
mij

]j=1,k

i=1,n
is a row stochastic matrix if and only if all its entries are non-negative and

for any i ∈ {1, 2, . . . , n} we have
k
∑

j=1
mij = 1.
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to the original paper. Namely, Crémer and McLean (1988) assume implicitly that P = P̄.
Thus, we depart from this assumption by allowing that the seller holds slightly different
belief to bidders. This is the place where we attack the common prior assumption. Doing so
requires us to depart from the usual modeling approach.

Let us now continue with the analysis of the situation from the bidders’ perspective. Given
the auction game

(
QCM, M̄CM), truth-telling remains to be an equilibrium in a weakly dom-

inant strategy even if P eventually differs from P̄. That is, even though the expected payoff
changes, the truth-telling stays ex post weakly dominant and therefore it is still an optimal
interim bidding choice, irrespective of bidders’ belief. This becomes straightforward once
one considers the fact that the ex post dominance concept does not depend on the interim
beliefs, which are in this case given by Pi.

The bidders’ true interim expected payoffs (at the truth-telling equilibrium) in the Crémer-
McLean mechanism are given by:

ūCMP
i (xi) =

m−1

∑
j=0

P(Xj = j∆|Xi = xi)Π̄CM
i (xi, j∆).

Plugging in the expression for Π̄CM
i (xi, xj) from (2.4), we obtain:

ūCMP
i (xi) =

m−1

∑
j=0

P(Xj = j∆|Xi = xi)
[
ΠI I

i (xi, j∆)− c̄i(j∆)
]

(2.8)

= uI IP
i (xi)−

m−1

∑
j=0

P(Xj = j∆|Xi = xi)c̄i(j∆), (2.9)

where uI IP
i (xi) is the expected payoff of bidder i in the second-price auction from her point

of view with the belief Pi. Note that the expected payoff also depends on the seller’s belief
about the joint distribution of private values P̄, through the vector c̄i.

In matrix notation, we have obtained that the vector of bidder i’s expected payoffs is given
by the following formula:

ūCMP
i = uI IP

i − Pi · c̄i. (2.10)

With the explicit derivation of the expected payoff in hand, we can now asses whether par-
ticipation constraints still hold: that is, whether the bidder will accept to play in the offered
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auction game. Participation constraints are defined as the requirement that the interim ex-
pected payoff of any bidder with any private value must be non-negative from the bidder’s
point of view. If the opposite is true, a bidder will refuse to participate in the auction game -
explaining the requirement’s name.

The justification for addressing the participation constraints might be seen from a comparison
between equations (2.5) and (2.10). Namely, once we consider the vectors c̄i as exogenously
given, we might obtain (2.10) from (2.5) by replacing P̄i with Pi. Therefore, it is natural to
suspect that the equality (2.6) does not hold anymore once we make the replacement. Possible
changes of signs of the expected payoffs, as well as determining whether these changes are
negligible or significant will be explored in subsequent sections. Moreover, we are interested
to quantify, in terms of geometry, the frequency that eventual participation constraint failure
occurs.

2.2 Non-Robustness with Common Prior Assumption

As stated in the previous section, we allow here that the seller’s belief over distribution of
private values may differ from the analogous belief of bidders; i.e. we allow P 6= P̄. Hereby,
we have implicitly assumed that the bidders share a common prior assumption P. Namely,
by the definition of bidders’ belief, given by (2.7), we have assumed that all matrices Pi are
derived from one common belief over joint distribution, denoted by P. This assumption will
be fixed throughout this section. Therefore, here the primitives are given by belief over the
vector of private values, which is in line with Crémer and McLean (1988). In the next section
we drop this constraint.

All in all, bidders and the seller might hold different beliefs, but bidders among themselves
do not differ in their belief of the joint distribution of private values. These two beliefs, P
and P̄, will be “very close”: we consider the case where P is in a neighborhood of P̄. The
following definitions should clarify what is meant by term “neighborhood of a belief”.

Definition 2.1. An ε-neighborhood of a belief matrix P̄ =
[
p̄ij
]m−1

i,j=0 , ε > 0, is the set of

matrices P =
[
pij
]m−1

i,j=0 such that ‖P− P̄‖2 ≤ ε and P is also a belief matrix (that is, pij ∈ [0, 1]

and
m−1
∑

i=0

m−1
∑

j=0
pij = 1), where ‖·‖2 is the standard Euclidean norm.6

Once we consider the set of all m × m belief matrices as the topological subspace of the
topological space

(
Rm2

, τ2

)
where the topology τ2 denotes topology induced by the standard

(Euclidean) norm, then an ε-neighborhood of a belief matrix P̄ =
[
p̄ij
]j=0,m−1

i=0,m−1
is nothing more

than a closed ball with its center at P̄ and radius ε in the subspace of belief matrices.

6The standard (Euclidean) norm on Rk is defined by ‖x‖2 =

√
k
∑

i=1
x2

i for any x = (x1, x2, . . . , xk) ∈

Rk.
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Definition 2.2. An ε-neighborhood of a belief matrix P̄ is said to be a bidirectional ε-

neighborhood if it contains two matrices P =
[
pij
]j=0,m−1

i=0,m−1
and P′ =

[
p′ij
]j=0,m−1

i=0,m−1
such that(

pij − p̄ij
)
·
(

p′ij − p̄ij

)
< 0 for all possible pairs of i and j.

Remark. There exists a bidirectional ε-neighborhood of a belief matrix P̄ , if and only if all
entries of P̄ are strictly positive.

Definition 2.3. An ε-neighborhood of a belief matrix P̄ is said to be a fair ε-neighborhood if
it is bidirectional ε-neighborhood; and if it contains a belief matrix P then it must also contain
the belief matrix P′ = P̄− D, with D being the m×m matrix given by D = P− P̄.

Remark. A bidirectional ε-neighborhood of a belief matrix P̄ is fair ε-neighborhood if and
only if 0 < ε ≤ min

({
p̄ij |i, j ∈ {0, 1, . . . , m− 1}

})
.

Finally, we define that P is very “close” to P̄ if there is an ε-neighborhood of P̄ that contains P
with ε being arbitrarily small. Thus, our aim is to analyze expected payoffs of bidders when
their belief of the joint distribution of private values lies in an ε-neighborhood of P̄. For some
results, we might also require the fairness property of the considered neighborhood.

2.2.1 Participation Constraints Failure

Now that our measure of the closeness is defined, we can address the analysis of the main
question, that is to characterize the set of all possible values that the expected payoffs of
bidders may take. The first step is to collect all expected payoffs in the form of a function
whose argument is the common prior belief of bidders. The image of this function is the
associated vector of expected payoffs for each bidder and each possible private value - firstly
ordered by bidder and then by private values. The function will be denoted by Ū and is
formally defined as follows.

Definition 2.4. Let Ū : Rm
2
→ R2m be the following mapping:

Ū(P̃) =



ūCMP
1 (0)

ūCMP
1 (∆)

...
ūCMP

1 ((m− 1)∆)
ūCMP

2 (0)
ūCMP

2 (∆)
...

ūCMP
2 ((m− 1)∆)


, (2.11)
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where P̃ = ( p̃0, p̃1, . . . , p̃m2−1) ∈ Rm
2

and ūCMP
i (xi) is the expected payoff in the Crémer-

McLean auction from Section 2.1, whose explicit form is given by (2.8). The matrix P is
derived from P̃ as follows:

P̃ = ( p̃0, p̃1, . . . , p̃m2−1) ∈ Rm
2
⇒ P =


p̃0 p̃1 · · · p̃m−1

p̃m p̃m+1 · · · p̃2m−1
...

p̃(m−1)·m p̃(m−1)·m+1 · · · p̃m2−1

.

Without loss of formality, we shall sometimes write P instead of P̃. Note that Ū crucially
depends on the chosen seller’s belief P̄.

Remark 2.2. Note that Ū(P̄) = [0]2m×1, since

Ū(P̄)
by definition of Ū

=
[

ūCM
i (j∆)

]
i=1,2; j=0,m−1

(2.6)
= [0]2m×1.

This is the case where both seller and bidders agree on the common prior being matrix P̄.
That is, it represents the scenario analyzed in Crémer and McLean (1988), where all beliefs
are aligned and correct.

Since we are essentially interested in values that mapping Ū takes in an Euclidean neigh-
borhood of matrix P̄, the natural tool to approximate these values is the Taylor expansion.
Therefore, the first degree Taylor polynomial is used to approximate the value of Ū near
point P̄. The following lemma and proposition are devoted to obtaining the explicit formula
of the polynomial.

Lemma 2.1. The Jacobian of the mapping Ū defined in (2.11) for a matrix

P =


p00 p01 · · · p0 m−1

p10 p11 · · · p1 m−1
...

pm−1 0 pm−1 1 · · · pm−1 m−1

 ,

is given by following formula

JŪ(P) =

[
JŪ1(P)
JŪ2(P)

]
2m×m2

.

JŪ1(P) is a matrix of format m×m2 whose element in (i + 1)th row and (j + 1)th column, denoted
by JŪ1(P)ij, is given by

JŪ1(P)ij =

0, j /∈ {im, im + 1, . . . , (i + 1)m− 1}
Π̄CM

1 (
−−−−−−−→
i∆,(j−im)∆)−ūCMP

1 (i∆)
pi

, otherwise
,
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for i = 0, m− 1 and j = 0, m2 − 1.

Similarly, JŪ2(P) is a matrix of format m×m2 whose element in (i + 1)th row and (j + 1)th column
is of the following form 7

JŪ2(P)ij =

0, j mod m 6= i
Π̄CM

2 (
−−−−−−→
(j%m)∆,i∆)−ūCMP

2 (i∆)
pi , otherwise

,

for i = 0, m− 1 and j = 0, m2 − 1.

Here pi denotes the sum of the elements in the (i + 1)th row of the matrix P whereas pi denotes the
sum of the elements belonging to its (i + 1)th column.

JŪk(P) is the matrix of partial derivatives where each ith row is the gradient of ūCMP
k (i∆)

once it is considered as a mapping of belief matrix P. In other words, the element of JŪk(P)

in (i + 1)th and (j + 1)th column is ∂ūCMP
k (i∆)

∂ p̃j
, that is, the element reflects how the expected

payoff of bidder k with private value i∆ changes with a change of the element p̃j.

Matrices JŪk(P) are sparse, because each particular ūCMP
k (i∆) depends solely on the (i + 1)th

row (when k = 1) or (i + 1)th column (when k = 2) of P, and is independent of all other
elements of P (see expression (2.8)). In order to make this claim clear, let us visualize these
two matrices where we denote by ∗ any potentially non-zero entry. Thus, the matrices take
the forms as illustrated by Figure 2.1.



first m entries︷ ︸︸ ︷
∗ ∗ · · · ∗
0 0 · · · 0

...
0 0 · · · 0

second m entries︷ ︸︸ ︷
0 0 · · · 0
∗ · · · ∗

0 0 · · · 0

. . .

third m entries︷ ︸︸ ︷
0 0 · · · 0
0 0 · · · 0

...
0 0 · · · 0

· · ·

last m entries︷ ︸︸ ︷
0 0 · · · 0
0 0 · · · 0

...
∗ · · · ∗


m×m2

first m entries︷ ︸︸ ︷
∗ 0 · · · 0
0 ∗ · · · 0

. . .
0 0 · · · ∗

second m entries︷ ︸︸ ︷
∗ 0 · · · 0
0 ∗ · · · 0

. . .
0 0 · · · ∗

· · ·

third m entries︷ ︸︸ ︷
∗ 0 · · · 0
0 ∗ · · · 0

. . .
0 0 · · · ∗

· · ·

last m entries︷ ︸︸ ︷
∗ 0 · · · 0
0 ∗ · · · 0

. . .
0 0 · · · ∗


m×m2

Figure 2.1: An illustration of Jacobian submatrices. JŪ1(P) (upper) and JŪ2(P) (lower).

7The operation mod is the modulo operation, i.e. it finds remainder of division. For example,
7 mod 3 = 1. The operation % is floored division, e.g. 7%3 = 2.
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The previous lemma gives expression for the Taylor expansion at any belief matrix P. Since
the bidders’ belief is in a neighborhood of the seller’s belief P̄, the following proposition
gives the explicit expression of the Taylor polynomial at exactly the matrix P̄.

Proposition 2.1. (The Taylor Expansion Matrix) The Taylor expansion of the mapping Ū defined
in (2.11) in the neighborhood of the matrix P̄ is given by following formula:

Ū(P) = JŪ(P̄) (P− P̄) + o
(
‖P− P̄‖2

)
,

where JŪ(P̄) is the Jacobian of the mapping Ū at the point P̄. Its explicit form is

JŪ(P̄) =

[
JŪ1(P̄)
JŪ2(P̄)

]
2m×m2

. (2.12)

JŪ1(P̄) is a matrix of format m×m2 whose element in (i + 1)th row and (j + 1)th column, denoted
by JŪ1( ¯P)ij, is defined as follows:

JŪ1(P̄)ij =

0, j /∈ {im + 1, im + 2, . . . (i + 1)m}
Π̄CM

1 (
−−−−−−−→
i∆,(j−im)∆)

p̄i
, otherwise

,

for any i, j ∈ {0, 1, . . . , m− 1}.

Similarly, JŪ2(P̄) is a matrix of format m×m2 whose element in (i + 1)th row and (j + 1)th column,
denoted by JŪ2( ¯P)ij, is given by the following formula:

JŪ2(P̄)ij =

0, j mod m 6= i
Π̄CM

2 (
−−−−−−→
(j%m)∆,i∆)

p̄i , otherwise
,

for any i, j ∈ {0, 1, . . . , m− 1}.

Proof. By the general Taylor expansion theorem, we have that

Ū(P) = Ū(P̄) + JŪ(P̄) (P− P̄) + o
(
‖P− P̄‖2

)
,

for all matrices P in some neighborhood O(P̄) of matrix P̄. By definition of Ū, we have that
Ū(P̄) = [0]2m×1 (see Remark 2.2 after the definition of the mapping Ū). Furthermore, using
the general formula for the Jacobian matrix JŪ(P), derived in Lemma 2.1, by setting P = P̄
and using the fact that ūCM

i (k∆) = 0 for any bidder i and any private value k∆, we obtained
the desired result.
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More precisely, for any i ∈ {0, 1, . . . , m− 1} , the (i + 1)th row of the matrix JŪ1(P̄) takes the
following form:

0 0 · · · 0︸ ︷︷ ︸
i·m times

Π̄CM
1 (
−−→
i∆,0)

p̄i

Π̄CM
1 (
−−→
i∆,∆)

p̄i
· · · Π̄CM

1 (
−−−−−−−→
i∆,(m−1)∆)

p̄i︸ ︷︷ ︸
m places

0 0 · · · 0︸ ︷︷ ︸ .

(m−i−1)·m times

Similarly, the (i + 1)th row of the matrix JŪ2(P̄) has the following form:

i times︷ ︸︸ ︷
0 · · · 0

Π̄CM
2 (
−−→
0,i∆)

p̄i 0 · · · 0︸ ︷︷ ︸
First m places

i times︷ ︸︸ ︷
0 · · · 0

Π̄CM
2 (
−−→
∆,i∆)

p̄i 0 · · · 0︸ ︷︷ ︸
Second m places

· · ·

· · ·
i times︷ ︸︸ ︷

0 · · · 0
Π̄CM

2 (
−−−−−−−→
(m−1)∆,i∆)

p̄i 0 · · · 0︸ ︷︷ ︸
Last m places

.

For the case where m = 2, the Jacobian submatrices JŪ1(P̄) and JŪ2(P̄) are given in Figure
2.2.

 Π̄CM
1 (
−→
0,0)

p̄0

Π̄CM
1 (
−→
0,∆)

p̄0
0 0

0 0 Π̄CM
1 (
−→
∆,0)

p̄1

Π̄CM
1 (
−→
∆,∆)

p̄1


 Π̄CM

2 (
−→
0,0)

p̄0 0 Π̄CM
2 (
−→
∆,0)

p̄0 0

0 Π̄CM
2 (
−→
0,∆)

p̄1 0 Π̄CM
2 (
−→
∆,∆)

p̄1



Figure 2.2: Jacobian submatrices for case m = 2. JŪ1(P̄) (upper) and JŪ2(P̄)(lower).

Overall, we have obtained a good linear approximation of the set of all expected payoff values
for all bidders, JŪ(P̄) (P− P̄), which is uniquely defined by matrix JŪ(P̄). Thus, the set of
all possible values that an expected payoff may take is approximated by the image space of
the linear mapping. Moreover, our research question may be now refined in the following
two subquestions:

1. How large is the image space?

2. How often the value of the expected payoff will be different to zero, or in the worst
case scenario less than zero?
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The following results give answers to these subquestions and represent our main results.

Proposition 2.2. (Rank of the Taylor Expansion Matrix) For any m×m belief matrix P̄ with
all non-zero entries and for which a Crémer-McLean auction exists, the rank of the associated matrix
JŪ(P̄), defined by (2.12), is at least 2m− 1.

The proof is derived by elementary transformations of the Jacobian matrix such that it will
be turned into a matrix of a row echelon form. Here is an example which shows that the full
rank does not hold in general:

Example 2.1. Let us consider the CM auction in the case of two bidders with two possible
private values: 0 or 1 (thus, m = 2 and ∆ = 1). Let us assume that the seller’s belief is given
by matrix

P̄ =

[
1/4 1/6

1/3 1/4

]
.

In this case we obtain that c̄T
1 =

[
−8 12

]
and c̄T

2 =
[
−8 6

]
.8 The associated Jacobian

matrix at P̄ turns out to take the following values:


12
5 · 8 12

5 · (−12) 0 0

0 0
12
7
· 9

12
7
(−12)

12
7 ·8 0 12

7 · (−6) 0
0 12

5 · 9 0 12
5 · (−6)

 =


96
5 − 144

5 0 0

0 0
108

7
−

144
7

96
7 0 − 72

7 0
0 108

5 0 − 72
5

 .

One can easily see that the last three rows of the last matrix are linearly independent, there-
fore, the rank is at least 3. However, the first row is the linear combination of the last three
rows (with linear coefficients equal to 14/15, 7/5 and −4/3, respectively). Therefore, the rank
is exactly equal to 3.

The previous result tells us that the set of all possible expected payoff values is at least (2m−
1)− dimensional subset in the 2m−dimensional space R2m. This makes a huge difference
compared to the standard setting of the original Crémer-McLean auction where this set was
singleton {0}. Namely, we have just shown the non-robustness of the auction once the seller
might hold a slightly different belief to the bidders. In particular, the full surplus extraction
is marginalized.

However, the question of the sign of the possible expected payoffs has not been addressed
so far. Are the bidders, most of the time, better off to participate in this new modified

8vT is the transpose of a vector v.
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set compared to the original surplus extracting auction (i.e. do they get positive expected
payoffs most of the time) or would they not want to participate in the auction at all? To
address this question we focus on the participation constraints of the new set-up and analyze
whether they still hold. The following result shows the participation constraints failure in
the modified setting.

Corollary 2.1. For any seller’s belief P̄ about the joint distribution of bidders’ values, for which the
Crémer-McLean auction exists and whose entries are positive, there exists another belief P in any
neighborhood of P̄, such that the Crémer-McLean auction related to P̄ and with bidders holding P as
their beliefs, will result in a negative expected payoff for at least one value of some bidder.

Therefore, we have just shown that the participation constraints do not hold anymore in
the new set-up. Thus, sometimes a bidder might expect a negative payoff and decide not to
participate, leading to the break down of the mechanism. We are interested in assessing what
fraction of any fair ε-neighborhood of a seller’s belief leads to the failure of the participation
constraints. This answer is given by the following proposition:

Proposition 2.3. (Participation Constraints Failure with Common Prior) For any seller’s
belief P̄ about the joint distribution of bidders’ values, for which the Crémer-McLean mechanism exists
and whose entries are positive, the set of matrices P that ensures the non-negative expected payoffs for
each possible value of any bidder, occupies up to half of any fair neighborhood of P̄.

The argument of the previous proposition is quite simple. Namely, one should firstly note
that a fair neighborhood of a belief is a

(
m2 − 1

)
-dimensional Euclidean ball that entirely lies

in the simplex of the same dimension. Let us, for a moment fix a bidder with an arbitrarily
chosen fixed value. Furthermore, let us concentrate on the hyperplane in Rm2

containing
the simplex and refer to this subspace as “simplex space”. According to the approximation
from Proposition 2.1, the set of the neighborhood that guarantees the bidder a zero expected
payoff is an intersection of a hyperplane in Rm2

and the neighborhood (and thus it is the
intersection of the hyperplane and the “simplex space”). As an intersection of non-parallel
hyperplanes has one dimension less than the hyperplanes, the set with zero-payoff property
for the chosen bidder with the chosen value is contained in a hyperplane of the “simplex
space” considered as initial space - the hyperplane will from now on be named “zero-payoff
hyperplane”. Thus, this proves that the set of matrices with full surplus extraction is a negli-
gible part of a neighborhood, as its dimension is less that the dimension of the neighborhood.
Note that P̄ belongs to the “zero-payoff hyperplane”, as the original CM auction has the full
surplus extraction property. Furthermore, since the neighborhood is an Euclidean ball whose
center P̄ lies on the “zero-payoff hyperplane”, it must be the case that the hyperplane sepa-
rates the ball into two equal parts. As the set where the expected payoff is non-negative is
characterized by belonging to exactly one of these two parts, the claim of the last proposition
follows.
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2.2.2 A Suggestion to Overcome the Participation Constraints Failure

Here, a way to overcome to the participation constraints failure will be proposed. Suppose
that the seller is aware that his belief might be wrong and that the true bidders’ belief matrices
are somewhere in an ε-neighborhood of P̄, which we shall denote by ε (P̄). According to
the considerations from the previous section, the seller is aware of the generic participation
failure and therefore should adjust the selling mechanism in order to make the mechanism
attractive to all bidders. The seller might for instance define rules for the situation when a
bidder does not appear or change the payment from the lotteries (the c̄is vectors). We are
interested into the later approach, that is, we assess how the seller should adjust vectors c̄is
in order to guarantee the participation constraints within the whole neighborhood.

Firstly, we shall suppose that ε is small enough, such that for any bidder’s belief ma-
trix P ∈ ε (P̄) we have det Pi 6= 0, i.e. we may construct the associated Crémer-McLean
auction. The continuity of the determinant as a function, with matrices entries as argu-
ments, guarantees the existence of such ε. Therefore, we consider ε (P̄) where ε (P̄) ={

P ∈ Rm2
∣∣∣P is a belief matrix and

∣∣∣pkj − p̄kj

∣∣∣ ≤ ε
}

and P ∈ ε (P̄)⇒ det Pi 6= 0.

Let us define the minimal vectors for second price auction

ūI Imin
i =


uI Imin

i (0)
uI Imin

i (∆)
...

uI Imin
i ((m− 1)∆)


for i ∈ {1, 2} , such that

ūI Imin
i (k∆) = min

P∈ε(P̄)
uI IP

i (k∆) , k ∈ {0, 1, . . . , m− 1} , i ∈ {1, 2} . (2.13)

In other words, ūI Imin
i (k∆) is the minimal expected payoff in the second-price auction that

bidder i, with value k∆, may obtain given that her belief matrix is an element in ε (P̄). Note
that ūI Imin

i are well-defined by the Weierstrass extreme value theorem.

Similarly, let us define the minimal c̄−vectors

c̄min
i =

[
c̄min

i (0) c̄min
i (∆) · · · c̄min

i ((m− 1)∆)
]T

for any i ∈ {1, 2} as follows. Firstly, for any P ∈ ε (P̄) and any bidder i, let cP
i =[

cP
i (0) cP

i (∆) · · · cP
i ((m− 1)∆)

]T
be the following vector

cP
i = (Pi)

−1 · ūI Imin
i .
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Further,9 let

c̄min
i (k∆) = min cP

i (k∆)
P∈ε(P̄)

, k ∈ {0, 1, . . . , m− 1} , i ∈ {1, 2} . (2.14)

Finally, in order to avoid participation constraints failure, the seller could set an analogy to
the Crémer-McLean auction with lottery payment vectors c̄min

i ; that is, he sets the mechanism(
QCMε , M̄CMε

)
with:

• QCMε = QI I (the allocation rule remains the same - it is the standard auction rule
where the bidder with the highest bid wins)

• M̄CMε
i

(
bi, bj

)
= MI I

i
(
bi, bj

)
+ c̄min

i
(
bj
)

In this new auction mechanism,10 the truth-telling is still an equilibrium and participation
constraints for this particular mechanism are satisfied everywhere in ε (P̄). Analogously to
the derivation of (2.4), the vector of the expected payoffs for bidder i with belief matrix P is

ūCMε
i (P) = uI IP

i − Pi · c̄min
i .

If P ∈ ε (P̄) then using definitions given in expressions (2.13) and (2.14) we have that uI IP
i ≥

ūI Imin
i and Pi · c̄min

i ≤ Pi · cP
i = ūI Imin

i and thus

ūCMε
i (P) ≥ ūI Imin

i − ūI Imin
i = 0.

Overall, we suggest a mechanism which has the same construction as the optimal mecha-
nism but with the payments in lotteries being adjusted in order to guarantee participation
constraints in a neighborhood of the seller’s belief.

The new proposed mechanism is a solution to the problem stated in last subsection but
lacks a lot of sound properties. First of all, it depends on the chosen neighborhood of the
seller belief (through selection of c̄min

i (k∆), which directly depends on ε). Secondly, how
restrictive the chosen c̄min

i is ( for example, the height of the bet compared to the value of the
good), might be an interesting question to tackle. Lastly, the expected payoffs are generically
positive and thus the full surplus extraction is not guaranteed.

9Note that cPi
i is not the c−vector associated with Crémer-McLean mechanism with belief matrix Pi,

because ūI Imin
i 6= ūI IP

i .
10Note that the payment rule is still defined as earlier introduced in “The Optimal Auction Game:

The Crémer-McLean Auction” of Subsection 2.1.2, but with replacement of c̄i by c̄min
i .
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2.3 Common Prior Assumption’s Relaxation

Here the common prior assumption is relaxed; that is, the bidders do not necessarily share
the same belief about the joint distribution of private values. Note that this does not es-
sentially change the analysis of Section 2.1. Indeed, all derivations in that section, where
perspectives of different participant types were considered and explored, stay valid. The
crucial assumption, which guarantees the existence of the Crémer - McLean auction, is a
premise on non-singularity of matrices Pi, and, as such, does not require that these matrices
are derived from the same prior, over the set of all combination of private values. Thus, all
introduced concepts in 2.1 also hold in non-common prior set-up.

In terms of modeling tools, in this section we suppose that the primitives of the setting are the
belief matrices Pis and P̄is themselves, rather than the joint distribution matrices P and P̄. In
other words, let us denote a participant’s (in particular, the seller’s or a bidder’s) belief over
the joint distribution of private values as his/her zero-order belief. Furthermore, we define as
a first-order belief a participant’s belief regarding what bidders believe about the distribution
of opponents’ private values conditional on their own value. Using this new terminology, in
the previous sections matrices P̄ and P were the seller’s and the bidders’ zero-order beliefs,
whereas P̄is and Pis were their first-order beliefs, respectively. Moreover, in the previous
text the main building blocks were zero-order beliefs. The first-order bidders’ beliefs were
assumed to be directly derived from the zero-order belief conditioning on their own private
values. However, here the building blocks will be the first-order beliefs themselves. These
matrices have identical interpretation to previous sections. Thus, P̄i collects bidder i ’s belief
over the opponent’s private value distribution,11 conditional on their own private value, from
the seller’s point of view. Furthermore, we assume that bidder i′s true belief matrix is given
by Pi. The only difference in the current section is that we do not require that the first-
order beliefs are derived from the same zero-order belief, that is, we abandon common prior
assumption over the joint distribution of the private values.

Further, note that the seller’s and bidders’ perspectives stay the same as in Section 2.1. More
precisely, the seller sets the same Crémer - McLean auction; that is, the auction with standard
allocation rules and payments given by (2.2) and (2.3). The truth-telling continues to be an
equilibrium in weakly dominant strategies and the full extraction property still holds true,
from the seller’s point of view. Therefore, the optimal auction derivation may be extended
from the standard set-up to the set-up without the common prior among bidders.

Once we consider the model without common prior, we will examine the robustness under
these new conditions. Namely, what happens here when the seller holds slightly inaccu-
rate beliefs about first-order beliefs of bidders? This is the topic tackled in the following
subsection.

11Note that also here, without loss of generality, we assume there are only two bidders.
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2.3.1 Failure of the Participation Constraints

In the spirit of the previous robustness check in Section 2.2, we analyze the set of possible
expected payoffs once the seller’s beliefs differ from those of the bidders, but “beliefs that
are close enough”. Because of the relaxation of the common prior assumption, it is clear
that this section needs a new definition of the term “being close”. Thus, we are going to
specify the term “neighborhood” by the following few definitions which are analogies of the
neighborhood terms in set-up with common prior.

Definition 2.5. An ε-neighborhood of a row stochastic non-negative matrix Q̄ =
[
q̄ij
]m−1

i,j=0

with ε > 0, is the set of matrices Q =
[
qij
]j=0,m−1

i,j=0 such that:

(i)
∣∣qij − q̄ij

∣∣ ≤ ε for all i, j ∈ {0, 1, . . . , m− 1} and

(ii) Q is also a row stochastic non-negative matrix.

The neighborhood will be usually denoted by ε (Q̄).

Remark. Note that an ε-neighborhood of a matrix Q̄ may be equivalently defined as the set of
all matrices Q such that Q = Q̄ + D where D is a matrix whose entries, denoted by δij:

(i) belong to the interval [−ε, ε],

(ii) sum up to 0 in each row and

(iii) qij = q̄ij + δij ∈ [0, 1] for all i, j ∈ {0, 1, . . . , m− 1}

Definition 2.6. An ε-neighborhood of a row stochastic non-negative matrix Q̄ =
[
q̄ij
]m−1

i,j=0 is
said to be symmetric if ε satisfies inequality 0 < ε ≤ min

i,j:q̄ij 6=0
q̄ij

Definition 2.7. An ε-neighborhood of a row stochastic non-negative matrix Q̄ =
[
q̄ij
]m−1

i,j=0 is

said to be bidirectional if it contains two matrices Q and Q′ such that
(
qij − q̄ij

)
·
(

q′ij − q̄ij

)
<

0 for all possible pairs of i and j.

Remark. There is a bidirectional ε-neighborhood of a row stochastic non-negative matrix Q̄ if
and only if all entries of the Q̄ are strictly positive (and, hence, less than 1).

Definition 2.8. An ε-neighborhood of a row stochastic non-negative matrix Q̄ is said to be
fair if it is bidirectional and if it contains matrix Q = Q̄ + D then it contains also matrix
Q′ = Q̄− D.

Fairness is different to symmetry. For example, if Q̄ =

[
1/2 1/2

0 1

]
then its 1

2 -

neighborhood is symmetric. However, Q = Q̄ +

[
δ −δ

1/4 −1/4

]
belongs to it, but Q′ =

Q̄−
[

δ −δ

1/4 −1/4

]
does not, for |δ| ≤ 1

2 .
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Remark. An ε-neighborhood of a row stochastic non-negative matrix Q̄ is fair if and only if
all entries of the Q̄ are strictly positive and 0 < ε ≤ min

i,j∈{0,1,...,m−1}
q̄ij, i.e. if and only if it is a

bidirectional and symmetric neighborhood.

Definition 2.9. An (fair) ε-neighborhood of a pair of matrices (P̄1, P̄2), denoted as ε (P̄1, P̄2),
is the set of all pairs of matrices (P1, P2) such that Pi is an element of the (fair) ε-neighborhood
of of the matrix P̄i for i ∈ {1, 2}.

Mathematically, ε (P̄1, P̄2) is defined as the Cartesian product of ε (P̄1) and ε (P̄2), that is
ε (P̄1, P̄2) = ε (P̄1) × ε (P̄2). This emphasizes the fact that the common prior assumption is
abandoned as the belief matrices in a neighborhood are chosen independently.

Finally, from now on, we assume that the seller believes that bidders’ belief matrices
are (P̄1, P̄2) and that true bidders’ belief matrices, denoted by (P1, P2) lie in some fair ε-
neighborhood of (P̄1, P̄2). We shall show that in any fair ε-neighborhood of seller’s belief
matrices (P̄1, P̄2), satisfying some mild assumptions, there is a substantial part of the neigh-
borhood where participation constraints fail.

2.3.2 Special Case of Two Possible Private Values

Let us first consider a special case in which there are only two possible private values: 0 and
∆. Keeping notation from Section 2.1, once more, we emphasize that, despite the identical
notation, the belief matrices P̄i may not be derived from the same common prior. In other
words, P̄i are independently and arbitrarily chosen from the set of all non-negative row
stochastic matrices. Under the usual assumption, that is, the non-singularity of matrices P̄i,
the seller is able to uniquely define the Crémer-McLean auction. In addition, we assume that
all entries of P̄i are positive for both bidders in order to be able to consider fair neighborhoods.
Given that there are only two private values, from (2.3) we can derive explicit formulas for
vectors c̄i. Namely, simple calculations led to the following expressions:

c̄i =

[
−∆P̄(X−i = ∆ |Xi = 0 )P̄(X−i = 0 |Xi = ∆ )/ det P̄i

∆P̄(X−i = 0 |Xi = 0 )P̄(X−i = 0 |Xi = ∆ )/ det P̄i

]

with P̄(X−i = j∆ |Xi = k∆ ) being the element of matrix P̄i in (k + 1)th row and (j + 1)th

column for any i ∈ {1, 2} and j ∈ {0, 1}.

Furthermore, the bidders’ true belief matrices are Pi, where Pi belongs to some fair ε-

neighborhood of P̄i. Equivalently, Pi = P̄i + Di, where Di =

[
δi

00 −δi
00

δi
∆0 −δi

∆0

]
is such that∣∣δi

00

∣∣ ≤ ε,
∣∣δi

∆0

∣∣ ≤ ε with ε not being greater than any entry of both matrices P̄i.
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Applying the last notation in equations (2.10), we obtain expected payoffs for bidders in
terms of elements of Di. Precisely, we find that

ū
CMP1,P2
i =

[
δi

00 (c̄i(∆)− c̄i(0))
δi

∆0 (∆ + c̄i(∆)− c̄i(0))

]
(2.15)

=

[
∆δi

00P̄(X−i = 0 |Xi = ∆ )/ det P̄i

∆δi
∆0 (1 + P̄(X−i = 0 |Xi = ∆ )) / det P̄i

]
.

The choice of the pair matrices (D1, D2) which leads to non-negative payoffs defined by
(2.15) will be analyzed in the following lines.

For this purpose, note that sgn (det P̄i) = sgn (1 + P̄(X−i = 0 |Xi = ∆ )/ det P̄i).12 Indeed, it
is clearly seen that, when det P̄i is positive, the expression 1 + P̄(X−i = 0 |Xi = ∆ )/ det P̄i is
also positive. Now supposing that det P̄i is negative, then

1 + P̄(X−i = 0 |Xi = ∆ )/ det P̄i < 0

⇔
P̄(X−i = 0 |Xi = ∆ ) > −det P̄i.

Finally, the last inequality might be written as

P̄ (X−i = 0 |Xi = 0 ) P̄ (X−i = ∆ |Xi = ∆ ) > P̄ (X−i = 0 |Xi = ∆ ) [P (X−i = ∆ |Xi = 0 )− 1] ,

where the equality between det P̄i and the expression P̄(X−i = 0 |Xi = 0 )P̄(X−i = ∆ |Xi = ∆ )

−P̄(X−i = ∆ |Xi = 0 )P̄(X−i = 0 |Xi = ∆ ) is used. Since all entries of P̄i lie in the open interval
(0, 1), the right-hand side of the last inequality is always negative whereas the left-hand side
of the inequality is always positive. Therefore, the initial inequality holds true for any matrix
P̄i with negative determinant. Finally, we have shown the equality between sgn (det P̄i) and
sgn (1 + P̄(X−i = 0 |Xi = ∆ )/ det P̄i).

From this feature, it follows immediately that any bidder with any value will get a non-
negative payoff if and only if sgn

(
δi

00
)

and sgn
(
δi

∆0
)

are elements of the set {0, sgn (det P̄i)},
for each i. This sufficient and necessary condition for participation constraints is quite strong.
In terms of geometry, this means that only 1/16 of the fair ε-neighborhood satisfies participa-
tion constraints.

Let us illustrate this claim. Firstly, note that Di uniquely defines the pair
(
δi

00, δi
∆0
)

in [−ε, ε]2

and vice versa. More precisely, by fairness of the neighborhood, any pair of two numbers
belonging to [−ε, ε]2 uniquely defines a matrix Di such that matrix Pi with Pi = P̄i + Di being
an element of the ε-neighborhood of the matrix P̄i. Consequently, the ε-neighborhood of the

12For any real number x, sgn (x) =


1, x > 0
−1, x < 0
0, x = 0

.



32 Non-Robustness of the Crémer-McLean Auction

matrix P̄i may be illustrated by a square in the Cartesian coordinate system, whose center
is at the origin of the system and an edge equal to 2ε. Note that the origin represents the
matrix P̄i. Since, the matrices Pis are also allowed to be chosen independently and within
the ε-neighborhood of the matrices P̄is, the set of all feasible pair matrices (P1, P2) may be
represented as pair of squares in R2 with center at the origin and edges equal to 2ε. Figure
2.3 illustrates this point, i.e. it depicts a fair neighborhood ε (P̄1, P̄2).

δ1
00

δ1
∆0

δ2
00

δ2
∆0

(−ε, ε)

(ε,−ε)

Set of all feasible P1s matrices

(−ε, ε)

(ε,−ε)

Set of all feasible P2s matrices

Figure 2.3: A fair neighborhood ε (P̄1, P̄2)- the set of all feasible matrices Pis.

Further, by the sufficient and necessary condition for non-negative payoffs, sgn
(
δi

00
)
,

sgn
(
δi

∆0
)
∈ {0, sgn (det P̄i)} for each i, we obtain that all Dis that guarantee non-negative

payoff for each value of bidder i lie in one quadrant of the square [−ε, ε]2 . This is either the
first or the third quadrant, depending on sgn (det P̄i). Thus, only 1/4 of each square satisfies
participation constraints. Given that D1 and D2 are chosen independently, it follows that
only 1/4 · 1/4 = 1/16 of all feasible pairs (P1, P2) guarantees a non-negative payoff for any type
of each bidder. Figure 2.4 shows the region where participation constraints hold true.

δ1
00

δ1
∆0

δ2
00

δ2
∆0

(−ε, ε)

(ε,−ε)

detP1 > 0

detP1 < 0

Set of all feasible P1s matrices

(−ε, ε)

(ε,−ε)

detP2 > 0

detP2 < 0

Set of all feasible P2s matrices

Figure 2.4: The fraction of feasible Pis that satisfies participation constraints. In each
square, the blue (green) area denote the quadrant where the expected payoff for the
corresponding bidder is non-negative given that det P̄i > 0 (det P̄i < 0). Hence,
for any combination of signs of the determinants, the overall fraction of all feasible
pairs of (P1, P2), where the payoffs are non-negative, is 1/4 · 1/4 = 1/16 of the whole

neighborhood.
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2.3.3 General Case with m Private Values

Here a generalization of the result from the previous subsection to the setting with an arbi-
trarily finite set of equidistant private values and the lowest value being 0 is derived.

We express the expected payoff as a function of matrices which are analogies of Di matrices
from the special case. This is summarized in the following lemma.

Lemma 2.2. Suppose that the seller’s belief about bidders’ belief matrices is (P̄1, P̄2) and they are two
non-singular matrices. Further, let the bidders’ true belief matrices be (P1, P2). Then the expected
payoff of bidder i with private value k∆ in the associated Crémer-McLean auction is given by:

ū
CMPi
i (k∆) =

〈
δk

i , Π̄CM
i (k∆)

〉
, (2.16)

where

• 〈·, ·〉 is the standard scalar product13 of vectors in Rm

• δk
i is the vector which denotes (k + 1)th row of the matrix Di = Pi − P̄i

• Π̄CM
i (k∆) is the vector of all possible actual payoffs of a bidder with value k∆ in the associated

Crémer-McLean auction; i.e. its `th entry is equal to the actual payoff of a bidder in the auction
when the bid is k∆ and the opponent’s bid is equal to (`− 1)∆.

Proof. The proof follows immediately from equations (2.6) and (2.8). Indeed,

ū
CMPi
i (k∆) =

m−1

∑
j=0

P(Xj = j∆|Xi = k∆)Π̄CM
i (k∆, j∆)

=
m−1

∑
j=0

[
P̄(Xj = j∆|Xi = k∆) + δij

]
Π̄CM

i (k∆, j∆)

=
m−1

∑
j=0

P̄(Xj = j∆|Xi = k∆)Π̄CM
i (k∆, j∆) +

m−1

∑
j=0

δijΠ̄CM
i (k∆, j∆)

= ūCM
i (k∆) +

〈
δk

i , Π̄CM
i (k∆)

〉
(2.6)
= 0 +

〈
δk

i , Π̄CM
i (k∆)

〉
=
〈

δk
i , Π̄CM

i (k∆)
〉

,

where Di = Pi − P̄i with a typical entry denoted by δij and its (k + 1)th row vector is denoted
by δk

i , for k ∈ {0, 1, ..., m− 1}.
13The standard scalar product of two vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) in Rm is

defined as 〈x, y〉 =
m
∑

i=1
xiyi .
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In the following proposition, the assessment of the fraction of a fair neighborhood, where
participation constraints fail to hold, is given.

Proposition 2.4. (Participation Constraints Failure without Common Prior) Suppose
that the seller’s belief about bidders’ belief matrices is (P̄1, P̄2) where each entry of any of these ma-
trices are positive and the matrices are non-singular. If we consider any fair ε-neighborhood of the
pair (P̄1, P̄2), then the set of pairs of bidders’ true belief matrices (P1, P2) in the neighborhood that
guarantees participation constraints to be satisfied, occupies maximally 1/22m of the ε-neighborhood,
where m is the number of possible values for each bidder.

The proof is based on the following two properties. Firstly, as Lemma 2.1 also shows, the
expected payoff of any bidder and any value is controlled by a single row of her belief
matrix (as is the case in the set-up with a common prior). Secondly, the common prior
relaxation leads to the fact that the neighborhood of the belief matrix is a Cartesian product
of neighborhoods of its rows (which is not the case in the set-up with the common prior).
Moreover, exactly half of each of these 2m fair row-neighborhoods lead to a non-negative
expected payoff to the associated bidder with the associated value. Lastly, the independence
in the choice of rows in the belief matrices, together with the previous considerations lead to
the result.

Overall, we have shown that in this modified setting without the common prior assumption,
the participation constraints fail to hold even more often than in the standard set-up.

Finally, we conclude this section on common prior relaxation by giving a suggestion on
overcoming participation constraints. Namely, a solution which is analogous to the solution
proposed in Subsection 2.2.2, is considered. We introduce vectors ūI Imin

i , c̄min
i in an identi-

cal way to before, with the difference that each appearance of ε (P̄) is literally replaced by
ε (P̄i). Without any other change, all conclusions from the subsection apply also in this new
environment. In particular, the proposed mechanism satisfies the participation constraints.

2.4 Concluding Remarks

In this chapter we examined the robustness of an optimal auction format once uncertainty
over the distribution of private values is imposed. Even though one can estimate the distri-
bution of private values from data (obtained from empirical records on auctions) by means
of statistical inference, there is no reason not to believe that the distribution might be slightly
different than the estimate. Once we allow this type of uncertainty, the selling mechanism
will break down, due to participation constraints failure. This particular result is not novel
in the literature. However, the level of the introduced uncertainty lies, in a way, between
existing models (see Chapter 1-“Introduction” for more details).

The main contribution to the existing models is the quantitative description of the partici-
pation failure - a quantitative assessment of how often the participation constraints will fail



§2.4 Concluding Remarks 35

is given. While other authors concentrated on the feature of full surplus extraction and on
showing that it is non-generic, we have in addition, assessed the frequency of participation
constraint failure. Furthermore, we have extended the analysis to a set-up without the com-
mon prior assumption among bidders and the same results turn out to hold true, even with
a stronger violation of the constraints.

Let us comment on a few of the imposed assumptions and methods used in current chapter.
Firstly, the results may be easily extended to more than two bidders as well as to a non
equal-distanced set of private values. Secondly, in Section 2.2, the Euclidean norm was used
as measure of “being closed”, whereas in Section 2.3, we used the Chebyshev norm14 for
the same purpose. We believe that the set-up without the common prior assumption from
Section 2.3 would lead to the exact the same results once we used the Euclidean norm.
The results there mostly rely on the fact that a neighborhood is a Cartesian product, and it
generalizes to the case where we use the Euclidean norm. However, one can not claim the
same for using the Chebyshev norm in Section 2.2. The results from this section are mostly
based on the special geometric feature of an Euclidean ball. Namely, we heavily used the
fact that the intersection of an Euclidean ball and a hyperplane containing its center that is
also an Euclidean ball, but with one dimension less. The Chebyshev ball does not have this
property and, therefore, the same argument could not be applied.

Lastly, let us comment on the result of Proposition 2.3. Namely, we originally believed that
the participation constraints fail more than half of the time (as the proposition states). The
argument for this belief lies in the fact that the region where the participation constraints for
any bidder and any value hold true lies in an orthant whose boundaries are 2m hyperplanes
in Rm2

, where each hyperplane comes from the surplus extraction condition of a certain value
of a bidder. The normal vectors of these hyperplanes are given by rows of the Jacobian matrix
and therefore, at least m of them are mutually orthogonal to each other. Let us consider the
first m rows of the matrix and concentrate on the orthant determined by these m hyperplanes
where the participation constraint for bidder 1 of any value hold true. Let us name the
orthant as “bidder 1’s orthant”. On the other side, let us call the set in a fair neighborhood
of matrix P̄1, where the participation constraint for bidder 1 always holds true (independent
of her value), as “bidder 1’s region”. Clearly, “bidder 1’s region” is the superset of the region
where participation constraints for any bidder and any value hold true. “Bidder 1’s orthant”
is an orthant between hyperplanes which are mutually orthogonal. If we would, theoretically,
for the moment , allow matrix P1 to come from an m2−dimensional “fair” Euclidean ball with
center at P̄1, then “bidder 1’s region” would be the intersection of “bidder 1’s orthant” and
the ball. Furthermore, “bidder 1’s region” would occupy 1/2m of the ball, as all hyperplanes
which form the region pass through its center P̄1, are orthogonal, and the neighborhood is
a symmetric and fair Euclidean ball. Let us name “bidder 1’s region” from this theoretical
exercise as “theoretical bidder 1’s region”. Thus, in this theoretical case, the participation
constraints would hold true only in 1/2m of any Euclidean ball. However, the result can not
be immediately applied to our setting. Namely, matrices P1 must be belief matrices and

14The Chebyshev norm on Rk is defined by ‖x‖∞ = max
1≤i≤k

|xi| for any x = (x1, x2, . . . , xk) ∈ Rk.
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therefore, matrix P1 can not be any matrix in an Euclidean ball around a belief matrix. In
particular, P1 is an element of the intersection of the m2−dimensional “fair” Euclidean ball
with center at P̄1 and the simplex. Thus, “bidder 1’s region” is actually the intersection of the
simplex and “theoretical bidder 1’s region”. As the simplex is not mutually orthogonal with
the hyperplanes forming the “bidder 1’s orthant”, we can not be sure that the participation
constraints hold true in at most 1/2m of any fair neighborhood. However, the case with
two private values was analyzed (for details, please see Appendix 2.B ) and it shows that
participation constraints hold true in up to 25% of any fair neighborhood. For the general
case, our best approximation remains to be given by Proposition 2.3.

2.A Proofs

2.A.1 Proof of Lemma 2.1

From the definition of Ū, it is clear that all rows of its Jacobian matrix are equal to the
gradients of ūCMP

i (xi). ūCMP
i (xi) is here considered as a function from Rm2

to R, which
assigns to any matrix P a value equal to the expected payoff ūCMP

i (xi), i ∈ {1, 2} and
xi ∈ {0, ∆, . . . , (m− 1)∆}. Moreover, we shall denote these coordinate functions of Ū by{

ūCM
1 (x1)

}(m−1)∆
x1=0 and

{
ūCM

2 (x2)
}(m−1)∆

x2=0 , whereas the value assigned to a matrix P by a typ-
ical coordinate function will be written as ūCM

i (xi)(P).

Let us obtain the explicit formula for the gradient ∇ūCM
i (`∆)(P), for any private value `∆

and matrix P. For this purpose, a matrix P ∈ Rm2
will be interpreted as a m×m matrix and

denoted by


p00 p01 · · · p0 m−1

p10 p11 · · · p1 m−1
...

pm−1 0 pm−1 1 · · · pm−1 m−1

 .

That is, P is understood to be a matrix whose typical element pij denotes probability that
X1 = i∆ and X2 = j∆. In future, we will denote by p` the sum of the elements in the (`+ 1)th

row of the matrix P and by p` the sum of the elements belonging to its (`+ 1)th column, for
` = 0, m− 1.

The explicit form of ūCM
i (`∆)(P) is obtained earlier and is equal to:

ūCM
i (`∆)(P) =

m−1

∑
k=0

P(Xj = k∆|Xi = `∆)Π̄CM
i (`∆, k∆).
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Note that terms Π̄CM
i (`∆, k∆)s do not depend on the argument P. The terms of the right-

hand side in the last equation, which depend on the argument P, are:

P(Xj = k∆|Xi = `∆) =
P(Xi = `∆, Xj = k∆)

m−1
∑

r=0
P
(
Xi = `∆, Xj = r∆

) , k = 0, m− 1.

Further, depending whether i = 1 or i = 2, P(Xj = k∆|Xi = `∆) depends only on the `th row
or the `th column of P, respectively. More precisely,

P(Xj = k∆|Xi = `∆) =


p`k

m−1
∑

r=0
p`r

, i = 1

pk`
m−1
∑

r=0
pr`

, i = 2
.

Firstly, suppose i = 1. Then, the partial derivative of ūCM
1 (`∆)(P) with respect to any vari-

able, which does not belong to the (`+ 1)th row of P, is equal to zero. This is because the

expression for ūCM
1 (`∆)(P) depends only on the (`+ 1)th row, thus, ∂ūCM

1 (`∆)(P)
∂prk

= 0 for any
r 6= `. Moreover, from the last formula we get

∂ūCM
1 (`∆)(P)

∂p`k
=

m−1
∑

r=0
p`r − p`k(

m−1
∑

r=0
p`r

)2 Π̄CM
1 (`∆, k∆)−

m−1

∑
r=0
r 6=k

p`r(
m−1
∑

q=0
p`q

)2 Π̄CM
1 (`∆, r∆)

=

m−1
∑

r=0
p`r(

m−1
∑

r=0
p`r

)2 Π̄CM
1 (`∆, k∆)−

m−1

∑
r=0

p`r(
m−1
∑

q=0
p`q

)2 Π̄CM
1 (`∆, r∆)

=
1

m−1
∑

r=0
p`r

Π̄CM
1 (`∆, k∆)

− 1
m−1
∑

q=0
p`q

m−1

∑
r=0

P(X2 = r∆|X1 = `∆)Π̄CM
1 (`∆, r∆)

=
1
p`

Π̄CM
1 (`∆, k∆)− 1

p`
ūCMP

1 (`∆).

Overall, we obtained that the gradient ∇ūCM
1 (`∆)(P) =

(
∂ūCM

1 (`4)(P)
∂prk

)m−1

r,k=0
takes the follow-

ing form:
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∂ūCM
1 (`∆)(P)

∂prk
=

0, r 6= `

1
p` Π̄CM

1 (`∆, k∆)− 1
p` ūCMP

1 (`∆), r = `
. (2.17)

Analogously, for i = 2 we can obtain that the gradient ∇ūCM
2 (`∆)(P) =

(
∂ūCM

2 (`∆)(P)
∂prk

)m−1

r,k=0
has the form:

∂ūCM
2 (`∆)(P)

∂prk
=

0, k 6= `

1
p`

Π̄CM
2 (k∆, `∆)− 1

p`
ūCMP

2 (`∆), k = `
. (2.18)

Thus, we have that the Jacobian of the mapping Ū at the matrix P, JŪ(P), may be denoted as

JŪ(P) =

[
JŪ1(P)
JŪ2(P)

]
2m×m2

,

where

JŪi(P) =


∇ūCM

i (0)(P)
∇ūCM

i (∆)(P)
...

∇ūCM
i ((m− 1)∆)(P)


m×m2

, i = 1, 2.

In the last equality the gradient ∇ūCM
i (`∆)(P) was considered as a row vector, whose ele-

ments, ∂ūCM
i (`∆)(P)

∂prk
, are sorted firstly by index r and then index k. That is, ∇ūCM

i (`∆)(P)
takes the following form:[

∂ūCM
i (`∆)(P)

∂p00

∂ūCM
i (`∆)(P)

∂p01
. . . ∂ūCM

i (`∆)(P)
∂p0 m−1

∂ūCM
i (`∆)(P)

∂p10

∂ūCM
i (`∆)(P)

∂p11
. . . ∂ūCM

i (`∆)(P)
∂p1 m−1

· · ·

∂ūCM
i (`∆)(P)
∂pm−1 0

∂ūCM
i (`∆)(P)
∂pm−1 1

. . . ∂ūCM
i (`∆)(P)

∂pm−1 m−1

]
.

Finally, plugging expressions from (2.17) and (2.18) into the Jacobian matrix, we obtain the
claim of the lemma.
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2.A.2 Proof of Proposition 2.2

As a reference, which supports the mathematical tools used here, we kindly recommend
Meyer (2000). In order to provide the proof, we establish the following lemma.

Lemma. Given assumptions in the Proposition 2.2, it follows that:

For any bidder i ∈ {1, 2}, there exists a value j∆ of the other bidder such that the payoff Π̄CM
i (k∆, j∆)

is non-zero, irrespective of the value k∆ of bidder i, i.e.

(∀i ∈ {1, 2}) (∃ j ∈ {0, 1, . . . , m− 1}) (∀k ∈ {0, 1, . . . , m− 1})
(
Π̄CM

i (k∆, j∆) 6= 0
)

.

Proof of the Lemma:

Suppose the opposite, that is

(∃i ∈ {1, 2}) (∀j ∈ {0, 1, . . . , m− 1}) (∃k ∈ {0, 1, . . . , m− 1})
(

Π̄CM
i (k∆, j∆) = 0

)
. (2.19)

Without loss of generality, we take i = 1. We will look at the matrix Π̄CM
1 whose entry in the

(i + 1)th row and the (j + 1)th column is equal to Π̄CM
1 (
−−−→
i∆, j∆), that is, the matrix is equal to:



−c̄1 (0) −c̄1 (∆) · · · −c̄1 ((m− 2)∆) −c̄1 ((m− 1)∆)
∆− c̄1 (0) −c̄1 (∆) · · · −c̄1 ((m− 2)∆) −c̄1 ((m− 1)∆)

...
(m− 2)∆− c̄1 (0) (m− 3)∆− c̄1 (∆) · · · −c̄1 ((m− 2)∆) −c̄1 ((m− 1)∆)
(m− 1)∆− c̄1 (0) (m− 2)∆− c̄1 (∆) · · · ∆− c̄1 ((m− 2)∆) −c̄1 ((m− 1)∆)


.

Therefore, the assumption (2.19) is equivalent to say that a row of the last matrix has all
elements equal to zero. Consequently, the claim (2.19) is equivalent to assuming the following
set of conditions:

(a0) c̄1 (0) ∈ {0, ∆, . . . , (m− 1)∆},

(a1) c̄1 (∆) ∈ {0, ∆, . . . , (m− 2)∆},

(a2) c̄1 (2∆) ∈ {0, ∆, . . . , (m− 3)∆},

...

(ak) c̄1 (k∆) ∈ {0, ∆, . . . , (m− k− 1)∆},
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...

(anm−2) c̄1 ((m− 2)∆) ∈ {0, ∆} and

(anm−2) c̄1 ((m− 1)∆) = 0.

This set of conditions implies that all components of the vector c̄1 are non-negative. In
addition, according to the first equation of the system P̄1 c̄1 = ūI I

1 and the assumption on the
non-vanishing entries of P̄, it must be that c̄1 (k∆) = 0 for all k. However, this is impossible,
because of the second equation in the system P̄1 c̄1 = ūI I

1 and the assumption that all entries
of P̄ are non-zero (which also implies that each entry of P̄1 are positive and ūI I

1 (∆) > 0).
Hence, we have obtained a contradiction. ♦

Proof of the Proposition:

By the previous lemma, we may suppose that i0 ∈ {0, 1, . . . , m− 1} is such that
Π̄CM

2 (
−−−−→
i0∆, j∆) 6= 0 for all js.

Further, we perform the following elementary transformations on the matrix JŪ(P̄):

1. Switch positions of the first m rows with the next m rows, i.e. exchange the position of
the submatrix JŪ1(P̄)m×m2 with the position of the submatrix JŪ2(P̄)m×m2 .

2. If i0 = 0, then skip this step. Otherwise, in case of i0 6= 0:

(a) switch the place of the first m columns of the matrix JŪ(P̄) with the place of the
m consecutive columns, starting from the (i0 + 1)th column and

(b) exchange the position of the (m + 1)st row with the position of the (m + i0 + 1)th

row (this means, in the transformed submatrix JŪ1(P̄)m×m2 , replace the position
of the first and the (i0 + 1)th row).

3. Reorder the (m + 1)th,(m + 2)th,. . . , (2m)th rows in the following way:

(a) put (m + 1)st row at the position of the (2m)th row and

(b) shift other rows for one place up, i.e. put the kth row at the position of the (k− 1)th

row, for all k ∈ {m + 2, m + 3, ...2m}.

In other words, shift circularly to the left the set made of the (m+ 1)st,(m+ 2)th,. . . and
the (2m)th rows.

In this way, we have transformed the matrix JŪ(P̄) into the following matrix:


JŪi0

2 (P̄)m×m2

J−i0Ū1(P̄)(m−1)×m2(
u

i0
1

)
1×m2


2m×m2

.
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The submatrix

[
JŪi0

2 (P̄)m×m2

J−i0Ū1(P̄)(m−1)×m2

]
(2m-1)×m2

has the following form:



∗ 0 · · · 0| ∗ 0 · · · 0| · · · · · · · · · |∗ 0 . . . 0
0 ∗ . . . 0| 0 ∗ . . . 0| · · · · · · |0 ∗ . . . 0

. . .
. . .

. . .

0 0 . . . ∗| 0 0 · · · ∗| · · · · · · · · · |0 0 . . . ∗
0 0 . . . 0| ∗ ∗ . . . ∗| 0 . . . 0 |0 0 . . . 0
0 0 . . . 0| 0 0 . . . 0| ∗ . . . ∗ |0 0 . . . 0

. . .

0 0 . . . 0| 0 0 . . . 0| 0 . . . 0 |∗ ∗ . . . ∗



.

According to the definition of the submatrix and the last lemma, the submatrix has a row
echelon form. Therefore, the rank of the submatrix is 2m− 1. Consequently, the rank of the
matrix JŪ(P̄) is at least 2m− 1.

2.A.3 Proof of Corollary 2.1

Let P̄ be a matrix of the joint distribution of the private values believed by the seller, which
satisfies the condition of the corollary. Let ε (P̄) be a neighborhood of P̄ in Rm2

as in Defini-
tion 2.1. By the Taylor expansion in Proposition 2.1, for any the bidders’ true belief matrix
P ∈ ε (P̄) that is close enough to the P̄, the vector of their expected payoffs can be well-
approximated by the vector JŪ(P̄) (P− P̄).

Let us consider the restriction of the linear mapping JŪ(P̄) to a hyperplane D ={
D ∈ Rm2

∣∣∣∣∣∑i ∑
j

dij = 0

}
. Note that D is a subspace in the space Rm2

. The kernel of the

restriction mapping is a subspace of the kernel of the original linear mapping. Thus, by
that fact, Proposition 2.2 and rank-nullity theorem for a linear mapping, we obtain that the
dimension of the kernel of the restriction is at most equal to m2 − 2m− 1, which is strictly
less than m2. Hence, there exists some D ∈ D such that JŪ(P̄)D 6= 0. If all components of
the vector JŪ(P̄)D would be positive we redefine the matrix D by assigning it the value of its
complement: −D. At the end, we have found a matrix D ∈ D such that the vector JŪ(P̄)D
has at least one negative component. Let P = P̄ + δD, where δ > 0 is small enough to satisfy
the following two conditions:

1. P is a belief matrix, i.e. its entries are non-negative and less than 1 and

2. P is close enough to the P̄, i.e. P ∈ ε (P̄).
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The parameter δ > 0 is possible to choose, because all entries of the P̄ belong to the open
interval (0, 1).

Thus, vector Ū(P) may be approximated by JŪ(P̄) (P− P̄), i.e.

Ū(P) ≈ JŪ(P̄) (P− P̄)

Ū(P) ≈ δ · JŪ(P̄)D.

Since δ is positive and there exists a negative entry of vector JŪ(P̄)D, Ū(P) is such vector
whose at least one components is negative. Overall, we have found a well-defined belief
matrix P close enough to P̄ such that it guarantees a negative payoff for at least one value of
some bidder, given that the true joint distribution of private values is according to P, whereas
the seller believes that the distribution is given by P̄.

2.A.4 Proof of Proposition 2.3

Let P̄ be a matrix satisfying the conditions of the proposition and let ε (P̄) be a fair neigh-
borhood of P̄ for some ε > 0. Furthermore, let B2(P̄, ε) be an Euclidean ball with center
at P̄ and a radius ε > 0 in Rm2

. Let H1 denote a hyperplane in Rm2
whose normal vec-

tor is equal to the vector 1 = (1, 1, . . . , 1). That is, H1 is the hyperplane which contains
the (m2 − 1)−dimensional simplex. Thus, by definition of a neighborhood, we have that
ε (P̄) = B2(P̄, ε) ∩ H1, i.e the neighborhood is an intersection of the Euclidean ball and the
hyperplane. Since the hyperplane contains the center of the ball, ε (P̄) is also an Euclidean
ball whose dimension is m2 − 1. Let us look at a subset of the neighborhood, which guaran-
tees bidders non-negative payoff.

We approximate the vector of the expected payoffs for the bidders by JŪ(P̄) (P− P̄), where
P ∈ ε (P̄) is the true joint distribution of private values. We want to prove that set X, defined
as

X = {P ∈ ε (P̄)|All entries of the vector Ū(P) are non-negative} ,

occupies maximally 1/2 of ε (P̄). According to the Taylor approximation, we approximate the
set X by a set X̃, where

X̃ = {P ∈ ε (P̄)|All entries of the vector JŪ(P̄) (P− P̄) are non-negative} .

Let the ith row of JŪ(P̄) be denoted by v1
i−1 ∈ Rm2

for i ≤ m and v2
i−m−1 ∈ Rm2

for i > m.

Using this notation, we obtain that

X̃ =
{

P ∈ ε (P̄)|
〈

vi
j, P− P̄

〉
≥ 0 for all i ∈ {1, 2} and j ∈ {0, 1, . . . , m− 1}

}
,
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with 〈·, ·〉 being Euclidean scalar product of vectors.

For all i ∈ {1, 2} and j ∈ {0, 1, . . . , m− 1} let us introduce the following sets:

B0
ij =

{
P ∈ ε (P̄)|

〈
vi

j, P− P̄
〉
= 0

}
,

B+
ij =

{
P ∈ ε (P̄)|

〈
vi

j, P− P̄
〉
> 0

}
,

B−ij =
{

P ∈ ε (P̄)|
〈

vi
j, P− P̄

〉
< 0

}
and

B≥0
ij =

{
P ∈ ε (P̄)|

〈
vi

j, P− P̄
〉
≥ 0

}
.

Therefore , we have that

X̃ = ∩
i∈{1,2},j∈{0,1,...,m−1}

B≥0
ij .

Hence, the fraction that X̃ occupies in the neighborhood ε (P̄) is less or equal to the fraction
that B≥0

ij occupies in the ε (P̄), for arbitrarily chosen i and j. Let us show that B≥0
ij occupies

maximally a half of the neighborhood. This follows trivially from the following property:
For any j ∈ {0, 1, . . . , m− 1}, B0

ij is an
(
m2 − 2

)
−dimensional subset in ε (P̄) that divides the

neighborhood into two congruent sets:15 B+
ij and B−ij . Indeed, B0

ij is a subset of an intersection

of two hyperplanes: H1 and Hvi
j
, where Hvi

j
is the hyperplane whose normal vector is vi

j.

Since vi
j and 1 are not collinear vectors, we have that H1 ∩ Hvi

j
is an

(
m2 − 2

)
−dimensional

set. Thus, B0
ij is also an

(
m2 − 2

)
−dimensional subset in ε (P̄), and, as such, it is negligible

(because its dimensionality is strictly less than dimensionality of the neighborhood). Fur-
thermore, H1 ∩ Hvi

j
is a hyperplane in H1, which contains P̄, therefore, H1 ∩ Hvi

j
splits H1

into two congruent halfspaces. Moreover, B0
ij splits ε (P̄) into two congruent sets: B+

ij and B−ij .
Indeed, in the space H1, ε (P̄) is a fair Euclidean ball with center at P̄. Furthermore, in that
space B0

ij is such that it belongs to a hyperplane containing the center of the ball. Therefore,
each B+

ij and B−ij occupies a half of the ε (P̄). Since B0
ij is a negligible part of ε (P̄), we may

say that B≥0
ij = B+

ij ∪ B0
ij occupies a half of ε (P̄).

Finally, as X̃ ⊆ B≥0
ij , the set X̃ occupies maximally a half of the neighborhood, P ∈ ε (P̄),

which was to be demonstrated.

15Two sets of points are called congruent if and only if one can be transformed into the other by an
isometry. In particular, translations, rotations or reflections are isometries.
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2.A.5 Proof of Proposition 2.4

Let each of two bidders have m possible private values: 0, ∆, 2∆, . . . , (m− 1)∆. Suppose that
the seller’s belief about the belief matrices is (P̄1, P̄2). Moreover, P̄1 and P̄2 are assumed to be
non-singular matrices and each entry of any of these matrices is positive. Let us consider an
arbitrary fair ε-neighborhood of the belief matrices (P̄1, P̄2). We wish to assess the fraction
of the neighborhood, that contains any pair of the bidders’ belief matrices, (P1, P2), which
guarantees a non-negative payoff for any bidder with any possible private value in the CM
auction associated to the pair (P̄1, P̄2).

Let (P1, P2) be a pair of the bidder’s belief matrices in the neighborhood. Let Di = Pi − P̄i

and δk
i ∈ Rm be the (k + 1)th row of the matrix Di, for any i ∈ {1, 2} and k ∈ {0, 1, . . . , m− 1}.

Firstly, we will consider bidder 1 with an arbitrarily chosen value k4. According to the
definition of the CM auction, we have that

ū
CMP1
1 (k∆) =

〈
pk

1, Π̄CM
i (k∆)

〉
, (2.20)

where pk
1 is the (k + 1)th row of the matrix P1.

For purpose of this section, we shall firstly establish the following properties.

Property 1.

(i) The vector Π̄CM
1 (k∆) =

(
Π̄CM

1 (k∆, j∆)
)m−1

j=0 is not a zero-vector, i.e.

Π̄CM
1 (k∆) 6= (0, 0, . . . , 0).

(ii) The vector Π̄CM
1 (k∆) =

(
Π̄CM

1 (k∆, j∆)
)m−1

j=0 has both negative and positive entries.

Proof for claims in Property 1:

(i) Suppose the opposite, there exists k0 ∈ {0, 1, . . . , m− 1} such that Π̄CM
1 (k0∆) =

(0, 0, . . . , 0). By definition of the actual payoff in CM auction (see equation (2.4)) this is
equivalent to saying that there exists k0 ∈ {0, 1, . . . , m− 1} such that c̄1 = ΠI I

1 (k0∆), where
ΠI I

1 (k0∆) is the vector of all possible actual payoffs for bidder 1 with value k0∆ in a second-

price auction. Mathematically, ΠI I
1 (k0∆) =

[
ΠI I

1 (k0∆, `∆)
]m−1
`=0 with a typical element

ΠI I
1 (k0∆, `∆) =

(k0 − `)∆, ` < k0

0, otherwise
,

for any ` ∈ {0, 1, . . . , m− 1}.

Furthermore, we have defined the vector c̄1 as a unique solution of the following system of
linear equations:
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P̄1 · c̄1 = uI I
1 .

Or, equivalently, in terms of the scalar product, it becomes:

〈
p̄`1, c̄1

〉
= ūI I

1 (`∆) , ` = 0, . . . , m− 1,

where p̄`1 denotes the (`+ 1)th row of the matrix P̄1. By the similar reasoning to the represen-
tation of the expected payoff in Crémer-McLean mechanism and by definition of the actual
payoff in the second-price auction , ΠI I , we obtain that the last system of equations may be
rewritten as:

〈
p̄`1, c̄1

〉
=
〈

p̄`1, ΠI I
1 (`∆)

〉
, ` = 0, . . . , m− 1

m〈
p̄`1, c̄1 −ΠI I

1 (`∆)
〉
= 0 , ` = 0, . . . , m− 1.

By the assumption on ΠI I
1 (k0∆), we have that c̄1 = ΠI I

1 (k0∆) and, hence, we have obtained
that the following system must be satisfied:

〈
p̄`1, ΠI I

1 (k0∆)−ΠI I
1 (`∆)

〉
= 0, ` = 0, . . . , m− 1.

However, if we take a closer look to the explicit form of the vector ΠI I
1 (k0∆)−ΠI I

1 (`∆), we
obtain that the above system can not be satisfied. Indeed, by definition of the actual payoff in
the second-price auction, we obtained that, if k0 > `, the vector ΠI I

1 (k0∆)−ΠI I
1 (`∆) is equal

to  ` times︷ ︸︸ ︷
(k0 − `)∆, (k0 − `)∆ . . . , (k0 − `)∆,

(k0−`) places︷ ︸︸ ︷
(k0 − `)∆, (k0 − `− 1)∆, . . . , ∆,

(m−k0) times︷ ︸︸ ︷
0, 0, . . . 0

 .

In the case where k0 < `, we have that
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ΠI I
1 (k0∆)−ΠI I

1 (`∆) = −
(
ΠI I

1 (`∆)−ΠI I
1 (k0∆)

)
.

Therefore, the vector ΠI I
1 (k0∆)−ΠI I

1 (`∆) has either all non-negative entries and at least one
positive entry (if k0 > `) or it has all non-positive entries and at least one negative entry (if
k0 > `).16 Together with the assumption that all entries of the matrix P1 are positive, we
obtained that

〈
p̄`1, ΠI I

1 (k0∆)−ΠI I
1 (`∆)

〉
≷ 0 (if ` ≶ k0) for all ` 6= k0. We have obtained a

contradiction. Therefore, it must be that Π̄CM
1 (k∆) 6= (0, 0, . . . 0) for any k.

(ii) This claim follows from the fact that the expected payoffs under Crémer-McLean mech-
anism where (P1, P2) = (P̄1, P̄2) (i.e. the seller has correct beliefs) are equal to 0 and the
assumption that P̄i has positive entries. Indeed, by the definition of the mechanism and the
expected payoff we obtain that

ūCM
1 (k∆) =

m−1

∑
k=0

P̄1(X2 = `∆|X1 = k∆)Π̄CM
1 (k∆, `∆)

=
〈

p̄k
1, Π̄CM

1 (k∆)
〉
= 0,

where p̄k
1 is the (k + 1)th row of the matrix P̄1. Given that the vector has only positive entries

it must be that either Π̄CM
1 (k∆) is a zero-vector (the vector with all entries equal to zero) or

it has both negative and positive entries (and perhaps contains some zeros). By (i) of this
property, the latter must be true, which proves the claim (ii). ♦
Property 2. In a fair ε-neighborhood of P̄1, the set of matrices P1 that guarantees non-negative payoff
to bidder 1 with value k∆, occupies at most a half of the neighborhood.

Proof of Property 2:

For this purpose, we introduce the following notation. Let the fair ε-neighborhood of P̄1 be
denoted by ε (P̄1). Since, in the current set-up without common prior assumption, we are
allowed to perturb each row of P̄1 independently, we may write ε (P̄1) as a Cartesian product
of neighborhoods of its row vectors. That is, we have that

ε (P̄1) =
m−1×
j=0

ε
(

p̄j
1

)
,

where

ε
(

p̄1
j
)
=

{
p = (p0, p1, . . . , pm−1) ∈ Rm|

m−1

∑
k=0

pk = 1 and
∣∣∣pk − p̄1

jk

∣∣∣ ≤ ε for any k

}

(p̄1
jk is the element in the (j + 1)th row and the (k + 1)th column of the matrix P̄1).

The neighborhood ε (P̄1) may be represented as a disjoint union of the following three sets:

16Note that, since m ≥ 2, there exists ` 6= k0.
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• ε+k (P̄1) =

{
P1 ∈ ε (P̄1)

∣∣∣ūCMP1
1 (k∆) =

〈
pk

1, Π̄CM
1 (k∆)

〉
> 0

}
,

• ε−k (P̄1) =

{
P1 ∈ ε (P̄1)

∣∣∣ūCMP1
1 (k∆) =

〈
pk

1, Π̄CM
1 (k∆)

〉
< 0

}
and

• ε0
k (P̄1) =

{
P1 ∈ ε (P̄1)

∣∣∣ūCMP1
1 (k∆) =

〈
pk

1, Π̄CM
1 (k∆)

〉
= 0

}
.

We want to assess the fraction that the set ε+k (P̄1) ∪ ε0
k (P̄1) occupies in ε (P̄1) and show that

it can not be greater than a half of the neighborhood.

Further, since the expected payoff for bidder 1 with value k4 depends solely on the (k + 1)th

row of P1 ∈ ε (P̄1), denoted as pk
1, we get:17

• ε+k (P̄1) =
k−1×
j=0

ε
(

p̄1
j)× ε+

(
p̄1

k
) m−1×

j=k+1
ε
(

p̄1
j),

• ε−k (P̄1) =
k−1×
j=0

ε
(

p̄1
j)× ε−

(
p̄1

k
) m−1×

j=k+1
ε
(

p̄1
j) and

• ε0
k (P̄1) =

k−1×
j=0

ε
(

p̄1
j)× ε0

(
p̄1

k
) m−1×

j=k+1
ε
(

p̄1
j),

where

• ε+
(

p̄1
k
)
=
{

p = (p0, p1, . . . , pm−1) ∈ Rm
∣∣∣p ∈ ε

(
p̄1

k
)

and
〈

p, Π̄CM
1 (k∆)

〉
> 0

}
,

• ε0
(

p̄1
k
)
=
{

p = (p0, p1, . . . , pm−1) ∈ Rm
∣∣∣p ∈ ε

(
p̄1

k
)

and
〈

p, Π̄CM
1 (k∆)

〉
= 0

}
and

• ε+
(

p̄1
k
)
=
{

p = (p0, p1, . . . , pm−1) ∈ Rm
∣∣∣p ∈ ε

(
p̄1

k
)

and
〈

p, Π̄CM
1 (k∆)

〉
< 0

}
.

Consequently, the fraction that εs
k (P̄1) occupies in ε (P̄1) is identical to the fraction that

εs
(

p̄1
k
)

occupies in the ε
(

p̄1
k
)

for any s ∈ {+,−, 0}. Therefore, we concentrate on the

fraction that the set ε+
(

p̄1
k
)
∪ ε0

(
p̄1

k
)

occupies in ε
(

p̄1
k
)

.

First of all, note that we may leave out the set ε0
(

p̄1
k
)

from consideration and neglect it.
Indeed,

ε0
(

p̄1
k
)
=
{

p = (p0, p1, . . . , pm−1) ∈ Rm
∣∣∣p ∈ ε

(
p̄1

k
)

and
〈

p, Π̄CM
1 (k∆)

〉
= 0

}
Therefore, p = (p0, p1, . . . , pm−1) ∈ ε0

(
p̄1

k
)

is an m−dimensional vector in the neighborhood

of p̄1
k which satisfies the following system of two linear equations:

17If k = 0 (k = m− 1), the set
k−1×
j=0

ε
(

p̄1
j
)

(
m−1×

j=k+1
ε
(

p̄1
j
)

) should be ignored from the equation.
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〈
p, Π̄CM

1 (k∆)
〉

= 0

〈p, 1〉 = 1,

where 1 =
[

1 1 . . . 1
]

1×m
. In other words, ε0

(
p̄1

k
)

is an intersection of two hyper-

planes (with normal vectors Π̄CM
1 (k∆) and 1) and the ε

(
p̄1

k
)

in the vector space Rm. Since

the normal vectors, Π̄CM
1 (k∆) and 1, are not collinear (from Property 1 (ii)), the intersection

of these two hyperplanes is an (m− 2)-dimensional set, therefore, the dimension of ε0
(

p̄1
k
)

is also m− 2. This means that ε0
(

p̄1
k
)

has one dimension less18 than ε
(

p̄1
k
)

, consequently,

it is a negligible part of ε
(

p̄1
k
)

.

Now, we will show that sets ε+
(

p̄1
k
)

and ε−
(

p̄1
k
)

are congruent sets. Indeed, let σ :

ε+
(

p̄1
k
)
→ ε−

(
p̄1

k
)

be defined as follows:

σ (p) = p̄1
k − δ,

where δ = p − p̄1
k, for any vector p ∈ ε+

(
p̄1

k
)

. From definition of σ, it is clear that the
mapping σ is a translation. It is left to show that σ is well-defined, that is, for each p ∈
ε+
(

p̄1
k
)

the vector σ (p) ∈ ε−
(

p̄1
k
)

.

Let p ∈ ε+
(

p̄1
k
)

be arbitrarily chosen. Since ε
(

p̄1
k
)

is also a fair neighborhood (see Defini-

tion 2.8), the vector σ (p) = p̄1
k − δ belongs to the ε

(
p̄1

k
)

. Moreover, we want to show that

σ (p) is an element in ε−
(

p̄1
k
)

. Note that, σ (p) = p̄1
k − δ = p̄1

k − (p− p̄1
k) = 2p̄1

k − p.

Therefore,

〈
σ (p) , Π̄CM

1 (k∆)
〉

=
〈

2p̄1
k − p, Π̄CM

1 (k∆)
〉

= 2
〈

p̄1
k, Π̄CM

1 (k∆)
〉
−
〈

p, Π̄CM
1 (k∆)

〉
.

Since
〈

p̄1
k, Π̄CM

i (k∆)
〉
= ūCM

1 (k∆) = 0 and p ∈ ε+
(

p̄1
k
)
⇒
〈

p, Π̄CM
1 (k∆)

〉
> 0 we get:

〈
σ (p) , Π̄CM

1 (k∆)
〉
= −

〈
p, Π̄CM

1 (k∆)
〉
< 0.

18 ε
(

p̄1
k
)

is an intersection of the simplex in Rm and a Chebyshev ball with center belonging to the
simplex, therefore, its dimension is m− 1.
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Overall, we have obtained that σ (p) ∈ ε−
(

p̄1
k
)

.

Hence, we have proved that there is a translation between the disjoint sets ε+
(

p̄1
k
)

and

ε−
(

p̄1
k
)

, which means that these sets are two congruent sets. Consequently, they occupy

identical fractions within the set ε
(

p̄1
k
)

. Furthermore, since ε
(

p̄1
k
)
≈ ε+

(
p̄1

k
)
∪ ε−

(
p̄1

k
)

,

we obtain that ε+
(

p̄1
k
)

occupies exactly a half of ε
(

p̄1
k
)

, which proves Property 2. ♦

Proof of the Proposition:

From the Property 2 and using notations from its proof, we obtained that the set of matrices
P1 that guarantees non-negative payoffs to bidder 1, irrespective of her value, is the set(

m−1∩
k=0

ε+k (P̄1)

)
∪
(

m−1∩
k=0

ε0
k (P̄1)

)
. Given the reasoning above, we may neglect the set

m−1∩
k=0

ε0
k (P̄1)

and concentrate to the set
m−1∩
k=0

ε+k (P̄1). Since ε+k (P̄1) =
k−1×
j=0

ε
(

p̄1
j)× ε+

(
p̄1

k
) m−1×

j=k+1
ε
(

p̄1
j), we

obtain:

m−1∩
k=0

ε+k (P̄1) =
m−1∩
k=0

[
k−1×
j=0

ε
(

p̄1
j
)
× ε+

(
p̄1

k
) m−1×

j=k+1
ε
(

p̄1
j
)]

=
m−1×
k=0

ε+
(

p̄1
k
)

.

We have shown that each set ε+
(

p̄1
k
)

occupies approximately 1/2 of the neighborhood

ε
(

p̄1
k
)

, hence,
m−1∩
k=0

ε+k (P̄1) occupies maximally

m times︷ ︸︸ ︷
1
2
· 1

2
· . . . · 1

2
= 1

2m of the neighborhood ε (P̄1).

Analogously, we may obtain that the set of matrices P2 in the ε-neighborhood of the matrix
P̄2 occupy maximally 1

2m of the neighborhood.

Overall, the set of all feasible pairs of matrices (P1, P2) belonging to ε-neighborhood of the
pair (P̄1, P̄2), which guarantee the non-negative payoffs to any possible type of any bidder,
occupies maximally 1

2m · 1
2m = 1

22m of the neighborhood. Q.E.D.

2.B Special Case: Two Private Values and Common Prior

In the following lines we provide a stronger result than one stated in Proposition 2.3, for a
special case of two private values. Namely, it will be shown that the participation constraints
hold true in maximally 25% of any fair neighborhood of a seller’s belief matrix.

The apparatus used here comes from linear algebra and vector space literature. Furthermore,
the further derivations rely heavily on the following two properties of our model. Firstly, the
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belief matrices belong to a hyperplane that contains the simplex (in this particular case of
m = 2, the hyperplane is 3-dimensional); let us name the hyperplane as “simplex hyper-
plane”. Secondly, the set where full surplus extraction for a bidder with certain value holds
true, is well-approximated by an intersection of the previously mentioned hyperplane and a
hyperplane, whose normal vector is a corresponding row of the associated Jacobian matrix
defined in Lemma 2.1.

Furthermore, as these hyperplanes are not parallel or identical, it is clear that the intersection
must be a hyperplane in “simplex hyperplane”, once “simplex hyperplane” is considered as
a space on its own. Let us name the intersections as “zero-expected-payoff hyperplanes”.
Therefore, for each bidder and each possible value, the associated “zero-expected-payoff
hyperplane” is a set that contains all belief matrices leading to the bidder’s expected payoff
equal to exactly zero. For each bidder and each possible value, we shall explicitly calculate
the normal vectors of “zero-payoff hyperplanes”. The normal vectors will be expressed in
terms of an orthonormal basis in “simplex hyperplane” space. Furthermore, let us fix a fair
neighborhood of a seller’s belief matrix. Note that the set, where participation constraints
hold true, is a subset of the neighborhood that belongs to a hyperorthant, whose borders are
“zero-expected-payoff hyperplanes”. By the fairness property of the neighborhood,the angles
between these hyperplanes completely reflect the share that the participation constraints
occupy in the neighborhood. Once we have calculated the normal vectors, we are able to
assess the angles between each of two of these hyperplanes (we have a hyperplane per a pair
(bidder, value)). It turned out that at least one of the angles is acute, and the result follows.

Let us formally derive the result. For the sake of simplicity, we leave out details of the
calculations and just give the final results of each derivation step. I am willing to make
details of the derivations available upon a request.

In general, we shall denote by Hv a hyperplane in R4 whose normal vector is given by
v = (v1, v2, v3, v4). In addition, we shall reserve notation Hs for a hyperplane which contains
the simplex ( “simplex hyperplane”); that is, Hs is the hyperplane whose normal vector is
s = 1 = (1, 1, 1, 1).

2.B.1 The Intersections of the Hyperplanes with The “Simplex Hyper-
plane” in R4

Let us fix a seller’s belief matrix P̄, such that all its entries are positive. We are interested
in determining sets Hs ∩ Hv where v is a row of the Jacobian matrix determined by (2.12).
Therefore, Hv is the hyperplane in R4 which contains “the point” P and whose normal vector
is some row of the Jacobian matrix. This set shall contain all belief matrices which give zero
expected payoff to the associated pair of the bidder and her value.

More generally, exploiting the special form of the row vectors of the Jacobian, we findHs ∩Hv

are such that v takes one of the following four general forms:
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v1 = (a, b, 0, 0) ,

v2 = (0, 0, c, d) ,

v3 = (e, 0, f , 0) and

v4 = (0, g, 0, h) ,

assuming that aceg 6= 0.

Solving four linear systems, each made of two equations with four unknown variables, we
obtained that

Hs ∩Hv1 = L
((
− b

a
, 1,− a− b

a
, 0
)

, (0, 0,−1, 1)
)
+ P̄,

Hs ∩Hv2 = L
(
(−1, 1, 0, 0) ,

(
− c− d

c
, 0,−d

c
, 1
))

+ P̄,

Hs ∩Hv3 = L
(
(0, 1, 0,−1) ,

(
− f

e
, 0, 1,− e− f

e

))
+ P̄ and

Hs ∩Hv4 = L
(
(1, 0,−1, 0) ,

(
0,− h

g
,− g− h

g
, 1
))

+ P̄,

where L (w1, w2, . . . , wk) is a subspace in R4 spanned by the vectors w`s (i.e. a set of all
possible linear combinations of the vectors w1, w2, . . . , wk). Note that Hs ∩ Hv are indeed
two-dimensional sets and, hence, they are hyperplanes in space Hs. All vector coordinates
here are expressed in terms of the standard Euclidean basis. In the following section we
switch coordinate notation in terms of a basis in the subspace Hs.

2.B.2 Defining an Orthonormal Basis in Hs

Here we shall find an orthonormal basis in the “simplex hyperplane”. As the departing
point, we choose two vectors of the basis using the previous calculations. Namely, we choose
the following vectors:

i =
1√
2
(0, 0,−1, 1) and

j =
1√
2
(−1, 1, 0, 0) .
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The choice of vectors i and j is due to the last equalities in the previous subsection. Namely,
these vectors belong to some of the intersections in which we are interested in. After few
mathematical steps, we extend the set made of these two vectors with a vector in such way,
that the obtained triple form an orthonormal basis in the space Hs. Thus, we obtained an
orthonormal basis {i, j, k}, where

k =
1
2
(1, 1,−1,−1) .

The vector k was found as a solution of the following equations:

1. 〈k, 1〉 = 0, (a condition that k ∈ Hs)

2. 〈k, i〉 = 0,

3. 〈k, j〉 = 0 and

4. 〈k, k〉 = 1 (k must be an unit vector).

2.B.3 The Intersections as Hyperplanes in the “Simplex Hyperplane”
Space

We shall here express each of the sets Hs ∩Hv in terms of the basis {i, j, k}. Moreover, we
shall find their normal vectors (also expressed in the basis from the previous subsection),
because Hs ∩Hv is a hyperplane in Hs. Therefore, from now on, we consider the set Hs as
our working vector space and the basis {i, j, k} will be the default basis. The results are, as
follows:

Hs ∩Hv1 = L
((

a− b√
2a

,
a + b√

2a
,

a− b
a

)
, (1, 0, 0)

)
+ P̄,

Hs ∩Hv2 = L
((

c + d√
2c

,
c− d√

2c
,− c− d

c

)
, (0, 1, 0)

)
+ P̄,

Hs ∩Hv3 = L
((
− 1√

2
,

1√
2

, 1
)

,
(
−
√

2 +
f√
2e

,
f√
2e

,− f
e

))
+ P̄,

Hs ∩Hv4 = L
((

1√
2

,− 1√
2

, 1
)

,

(√
2− h√

2g
,− h√

2g
,− h

g

))
+ P̄,

and the normal vectors are, respectively, given by:
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n1 =
1√

1 + 1
2

(
a+b
a−b

)2

(
0, 1,− a + b√

2 (a− b)

)
,

n2 =
1√

1 + 1
2

(
c+d
c−d

)2

(
1, 0,

c + d√
2 (c− d)

)
,

n3 =
1√

1 + 1
2

(
1− f

e

)2
+ f 2

e2

(
f
e

, 1,− e− f√
2e

)
and

n4 =
1√

1 + 1
2

(
1− h

g

)2
+ h2

g2

(
h
g

, 1,
g− h√

2g

)
.

2.B.4 The Angles between the Intersections

Here we would like to determine the angles between Hs ∩Hvi and Hs ∩Hvj for any i 6= j.
The angle is actually the supplementary angle to the angle between ni and nj, therefore,

cos^
(
Hs ∩Hvi ,Hs ∩Hvj

)
= −

〈
ni, nj

〉√
〈ni, ni〉

〈
nj, nj

〉
= −

〈
ni, nj

〉
,

where cos^
(
Hs ∩Hvi ,Hs ∩Hvj

)
is the cosine of the angle between involved hyperplanes.

Let us fix a fair neighborhood of a seller’s belief matrix P̄. The neighborhood is, actually (in
this special case), a three-dimensional ball within the simplex and with center at P̄, thus, it is
a ball inHs. The subset of the neighborhood, where participation constraints hold true, is ap-
proximated by a hyperorthant, whose boundary is determined by the four hyperplanes,that
we calculated in the previous subsection. Let us call this subset of the neighborhood as
“participation constraints region”. Note that P̄ belongs to each of these four hyperplanes.
Thus, the share that “participation constraints region” occupies in the neighborhood, is com-
pletely determined by the angles among the hyperplanes. For example, if the angle between
Hs ∩ Hv1 and Hs ∩ Hv2 is 60◦, the participation constraints can not hold true in more than
60◦ : 360◦= 1/6 of the whole neighborhood (ball).

Let us find these angles. After performing simple calculations from linear algebra, we obtain:

1. cos^ (Hs ∩Hv1 ,Hs ∩Hv2) =
λ1√

1+(λ1)
2 · λ2√

1+(λ2)
2 ,



54 Non-Robustness of the Crémer-McLean Auction

2. cos^ (Hs ∩Hv3 ,Hs ∩Hv4) = −
2−
√

2(λ3+λ4)+λ3λ4√
(2−2

√
2λ3+3(λ3)

2)(2−2
√

2λ4+3(λ4)
2)

,

3. cos^ (Hs ∩Hv1 ,Hs ∩Hv3) = − 1+λ1λ3√
(2−2

√
2λ3+3(λ3)

2)(1+(λ1)
2)

,

4. cos^ (Hs ∩Hv1 ,Hs ∩Hv4) = − 1−λ1λ4√
(2−2

√
2λ4+3(λ4)

2)(1+(λ1)
2)

,

5. cos^ (Hs ∩Hv2 ,Hs ∩Hv3) = − 1−
√

2λ3−λ2λ3√
(2−2

√
2λ3+3(λ3)

2)(1+(λ2)
2)

,

6. cos^ (Hs ∩Hv2 ,Hs ∩Hv4) = − 1−
√

2λ4+λ2λ4√
(2−2

√
2λ4+3(λ4)

2)(1+(λ2)
2)

,

with λ1 = a+b√
2(a−b)

, λ2 = c+d√
2(c−d)

, λ3 = e− f√
2e

, λ4 = g−h√
2g

.

If we add restrictions that a 6= b and c 6= d then we have that λ1, λ2 ∈ R \
{
− 1√

2

}
, because

λ1 =
2a− x√

2x

with x = a− b, a ∈ R\ {0}.

Note that the following statements:

1. cos^ (Hs ∩Hv1 ,Hs ∩Hv2) > 0⇔ sgn λ1 = sgn λ2,

2. cos^ (Hs ∩Hv1 ,Hs ∩Hv2) = 0⇔ (a = −b) or (c = −d),

3. If λi → λj, λj → ±∞ then cos^ (Hs ∩Hv1 ,Hs ∩Hv2)→ 1 and

4. If λi → −λj, λj → ±∞ then cos^ (Hs ∩Hv1 ,Hs ∩Hv2)→ −1

hold true.

2.B.5 The Possible Range of the Angles Using the Special Forms of the
Vectors vis

Here we characterize what values cos^
(
Hs ∩Hvi ,Hs ∩Hvj

)
may take, once we replace the

general numbers a, b, c, d, e, f by the corresponding values obtained from the rows of the
Jacobian matrix. In particular, we have that

a = − c̄1(0)
p̄0

; e = − c̄2(0)
p̄0

b = − c̄1(∆)
p̄0

; f = − c̄1(∆)
p̄0

c = ∆−c̄1(0)
p̄∆

; g = ∆−c̄1(0)
p̄∆

d = − c̄1(∆)
p̄∆

; h = − c̄2(∆)
p̄∆ .
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If we use the following notation:

p̄ = P̄(X2 = 0 |X1 = 0 ),

q̄ = P̄(X2 = ∆ |X1 = ∆ ),

p′ = P̄(X1 = 0 |X2 = 0 ) and

q′ = P̄(X1 = ∆ |X2 = ∆ ),

then we obtain the following equalities:

• a = ∆(1− p̄)(1−q̄)
p̄0( p̄+q̄−1) , b = − ∆ p̄(1−q̄)

p̄0( p̄+q̄−1) , c = ∆ p̄q̄
p̄∆( p̄+q̄−1) , d = − ∆ p̄(1−q̄)

p̄∆( p̄+q̄−1) ;

• e = ∆(1−p′)(1−q′)
p̄0(p′+q′−1) , f = − ∆p′(1−q′)

p̄o(p′+q′−1) , g = ∆p′q′

p̄∆(p′+q′−1) , h = − ∆p′(1−q′)
p̄∆(p′+q′−1) ;

• λ1 = 1−2p̄√
2

, λ2 = 2q̄−1√
2

, λ3 = 1√
2(1−p′)

, λ4 = 1√
2q′

.

Overall, we get that the following statements:

• cos^ (Hs ∩Hv1 ,Hs ∩Hv2) > 0⇔
(

1
2 − p̄

) (
q̄− 1

2

)
> 0,

• cos^ (Hs ∩Hv3 ,Hs ∩Hv4) > 0⇔ p′ + q′ − 2p′q′ < 1
2 ,

• cos^ (Hs ∩Hv1 ,Hs ∩Hv3) > 0⇔ p̄ + p′ > 3
2 ,

• cos^ (Hs ∩Hv1 ,Hs ∩Hv4) > 0⇔ p̄ + q′ < 1
2 ,

• cos^ (Hs ∩Hv2 ,Hs ∩Hv3) > 0⇔ p′ + q̄ > 1
2 and

• cos^ (Hs ∩Hv2 ,Hs ∩Hv4) > 0⇔ q̄ + q′ < 3
2

hold true.

Finally, we can derive the following claim: For any matrix P̄ and its fair neighborhood, the
“participation constraint region” does not occupy more than 25% of the neighborhood.

The claim follows from the fact that, for any matrix P̄, we have that q̄ > 1/2 or q ≤ 1/2. In
any of these two cases at least one of the above listed angles is acute (for example, please
look at ^ (Hs ∩Hv2 ,Hs ∩Hv3) and ^ (Hs ∩Hv2 ,Hs ∩Hv4), respectively). Consequently, the
“participation constraint region” occupies maximally 1/4 of the neighborhood.



56 Non-Robustness of the Crémer-McLean Auction



Chapter 3

Bayesian Updating on Origin of
Private Values

The starting point of modeling in this chapter is the origin of the distribution of the private
values. We assume that there is enough data collected (e.g. reports on winning prices from
Ebay or second-price auctions),1 so that one can observe the distribution of the values. How-
ever, in contrast to the practice in established literature, the observed distribution will be
assumed to take a special form: a convex combination of distributions. This particular form
of distribution is known as a mixture distribution. There are several reasons why we consider
this special form of private value distribution. First of all, it allows us to give participants
the opportunity to speculate on the the true distribution of values, as they assume that one
component of the observed mixture is the true source of the values. Thus, in this way we
introduce the information uncertainty and model the endogenous formation of participants’
beliefs about the involved distributions. Secondly, the chosen family of the mixture distribu-
tion is not too restrictive because approximations of a probability distribution by a mixture
distribution is widely used and well justified in the literature.2

Using this, we stay in the framework of independently and identically distributed (i.i.d.)
private values as well as assume common knowledge on a participant’s beliefs. However, the
special shape of the observed marginal distribution will give rise to several ways of modeling
the auction participant’s behavior. One way to deal with the situation is the classical approach
used in the literature (this will be referred to as the “classical model”), where participants do
not question the observed distribution and their belief are given and fixed.3

We introduce another model as an answer to the ambiguous origin of the marginal dis-
tribution - a model where bidders will update their knowledge about the origin of values
conditioning on their own value. We will call this the “Bayesian updaters model”. In this

1For example, one possible way to obtain a selling price from the past is to use the “Advanced
Search” function from Ebay’s website: http://www.ebay.com/sch/ebayadvsearch.

2For more details on the approximations and mixture distributions see Diaconis and Freedman
(1980), Escobar and West (1995) or Everitt and Hand (1981).

3Under classical models we understand models as the ones reviewed in Vickrey (1961) or Chapters
2 and 3 in Krishna (2010).
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set up, we allow participants to question the origin of, and endogenously form their beliefs
about auction information structure - a step on from the standard literature. Namely, given
the special mixture form of the observed distribution of private vales, the participants ques-
tion which distribution involved in the mixture generates the private values and form their
beliefs accordingly. For the belief formation process they use both common and private in-
formation. They are the observed data pattern and private value. We are interested in the
performance of first-price and second-price auctions as well as comparison of the Bayesian
updaters model’s components to the associated features of various relevant models.

It turns out that the revenue equivalence principle does not hold in the “Bayesian updaters
model” in such a way that the seller favors the second-price auction over the first-price auc-
tion. Comparison between the “classical model” and the “Bayesian updaters model” results
in no difference in bidding behavior in the second-price auction (truth telling remains the
optimal choice). However, there is either dominance order or a single-crossing property of
respective bidding strategy functions in the first-price auction. Mathematically, the result of
the revenue equivalence failure is not as surprising as it turns out that in terms of statistics,
the model is analogous to the model of interdependent private values introduced in Milgrom
and Weber (1982). However, the crucial difference lies in the semantics of a participant’s be-
lief structure, as Bayesian updaters assume that the values are i.i.d. and the belief formation
process makes it only mathematically similar to their model. Moreover, some assumptions,
which have been previously considered as technical assumptions, obtain a meaningful inter-
pretation in terms of beliefs (for example, refer to Lemma 3.1).

The chapter is organized as follows. Sections 3.1 - 3.3 are devoted to our new model with
Bayesian updaters providing insights into the model’s components. Section 3.1 explains the
information structure of the model. It presents the common premises for both the classical
and the new model as well as the new way of thinking about the origin of private values in
the new “Bayesian updater” model. The section explains relationships between the model’s
assumptions and involved participants’ beliefs. We then continue with Section 3.2 that gives
an answer to the question of how Bayesian updaters bid in the first-price and second-price
auction. Once we find the bidding strategies, we continue by taking the seller’s point of
view. Section 3.3 compares the seller’s expected revenue between first-price and second-
price auctions with the Bayesian updaters. Comparison of bidding behavior, as well as the
expected revenues of our model to other benchmark models and the classical one is provided
in Section 3.4. We sum up the results and give a short summary of this chapter in Section
3.5. Some proofs are omitted in the main body, but you can find them in Appendix 3.A.

3.1 The Bayesian Updaters Model

Before going into details on the core model, we shall here firstly describe the common build-
ing blocks for the two models, which are the focus of this chapter - previously defined as
the “classical model” and the “Bayesian updaters model”. At the same time, we introduce
notation necessary to understand the later parts of current chapter.
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3.1.1 The Common Ground of the Classical and Bayesian Updaters
Models

There is a seller who wants to sell an object to N ≥ 2 potential buyers - so-called bidders.
We denote by N = {1, 2, . . . , N} the set of bidders. Each bidder receives her private signal
xi which is a realization of a random variable Xi. As in the previous chapter, the private
signal, known also as private value, is the maximal willingness to pay; that is the value
that the corresponding bidder attaches to the object. For technical reasons, we suppose
that the seller’s value attached to the object is zero. The seller chooses an auction format
A ∈ A = {I, I I}, where if

• A = I: A first-price auction is chosen for the sale, and

• A = I I: A second-price auction is chosen as the selling mechanism.

We assume that the Xi are identically distributed, which makes the bidders symmetric and
anonymous. Based on observations of outcomes of previous auctions (i.e. using statistics
from past), the values appear to be distributed according to a cumulative distribution func-
tion (c.d.f.) F̃ over an interval [0, ω] with ω ≤ +∞. Furthermore, the distribution F̃ is known
both by bidders and the seller. Let F =

{
Fj |j ∈ J

}
be a given family of strictly increasing

cumulative distribution functions over the interval [0, ω]. Let us denote by f j the density
function (d.f.) associated to Fj. Note that f j takes strictly positive values everywhere. Specif-
ically, we assume that F̃ is a convex combination of the marginal distributions from set F .
In probability theory, F̃ is known as a mixture distribution. Our attention is restricted to the
case where J = {1, 2} and F̃ = 1

2 F1 +
1
2 F2.

Now we concentrate on the seller’s belief and bidders’ beliefs about the origin of the marginal
distribution of the values. We consider two possible types of participants: the “classical
model” and “Bayesian updaters model”.

In the “classical model” all participants, including the seller, believe that that all Xis are
identically identically distributed (i.i.d.) according to F̃; that is, we are in a standard private
value single-object auction set-up. As this is a well-known model, we shall when needed,
only state the known facts about the model.

The core of the chapter is devoted to the “Bayesian updaters model”. In this model, each
participant uses the fact that the observed distribution F̃ is a mixture distribution. More
precisely, each participant, including the seller, believes that private values are i.i.d. according
to either F1 or F2, with (a priori) equal probability of being either of these two options. As the
seller has no further information, his belief about the joint distribution remains unchanged:
that is, he believes that the joint distribution is either ∏

i∈N
F1 (xi) or ∏

i∈N
F2 (xi), with equal

chances. On the other side, at the interim, the bidders have their private information -
the private values. Accordingly, the bidders are assumed to update their belief about the
distribution of the signals; upon the receiving private signal x ∈ [0, ω], each bidder updates
her belief about the distribution of others’ private values according to the Bayes rule. This
model, as well as its features and components is the subject of our research that follows in
the next sections.
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3.1.2 Bayesian Updaters

Here, we have a closer look at the components of our model. As mentioned earlier, in this
model all participants believe that the observed distribution F̃ means that the private values
are i.i.d. realization of either F1 and F2, with equal chance.

The observed distribution is the only piece of information that the seller accesses. Therefore,
it is natural to assume that the seller does not change his initial belief. As the main interest of
the seller is to achieve the best price for the good, firstly, the seller must hold a belief about
the joint distribution of private values in order to calculate the expected revenue from an
auction. In order to be in line with the a priori belief and set-up, the seller believes that the
joint distribution of the signals is Φ̃(x1, x2, . . . , xN) =

1
2 ∏

i∈N
F1 (xi) +

1
2 ∏

i∈N
F2 (xi), which gives

rise to the observed marginal F̃. Moreover, in order to optimize their bidding behavior, all
involved participants hold a belief about the bidders’ bidding strategies. This belief formation
will be explained in the following paragraph.

Bidders in the model, in the course of time, depart from their initial common belief. Namely,
upon “receiving” her private signal - the private value - a bidder updates her belief accord-
ingly. Namely, if her private value is x, then the probability that “the Bayesian updater”
attaches to the event that private values are coming from F1 is α (x), where α : [0, ω] → [0, 1]
is a function defined as:

α (x) =
f1(x)

f1(x) + f2(x)
, x ∈ [0, ω]

This function will be known as the belief function. Based on the value of the function α, a
bidder forms a belief about the bidding behavior of the opponents. An estimate of the distri-
bution of the highest private value of the other bidders plays an important role in the belief
formation process. This is because the bidders participate in the standard auction formats -
auctions where the highest bid wins. The distribution of the highest value of the other bid-
ders will be denoted as Y1. Please note that this distribution does not depend on the identity
of the excluded bidder, as bidders are supposed to be symmetric (due to the “anonymity”
assumptions of the bidders). Furthermore, in order to optimally infer the opponents’ bid-
ding strategy, a bidder i will base her estimation on the distribution of the highest value
among opponents, conditional on her own private value, denoted by Y1 |Xi = x . From the
belief function, it naturally comes out that this conditional random variable has the following
c.d.f.:

Gx (y) = α (x) (F1 (y))
N−1 + (1− α (x)) (F2 (y))

N−1

We summarize the mathematical apparatus of the model and, at the same time, its notation
in Table 3.1:
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Random variable C.d.f. and d.f. Participant(s)

Xi F̃(xi) =
1
2 F1(xi) +

1
2 F2(xi), xi ∈ [0, ω] Seller

Private signal of bidder i f̃ (xi) =
1
2 f1(xi) +

1
2 f2(xi), xi ∈ [0, ω] A priori: Bidders

(X1, X2, . . . , XN) Φ̃(x1, x2, . . . , xN) =
1
2 ∏

i∈N
F1 (xi) +

1
2 ∏

i∈N
F2 (xi)

Seller
Joint random vector of signals φ̃(x1, x2, . . . , xN) =

1
2 ∏

i∈N
f1 (xi) +

1
2 ∏

i∈N
f2 (xi)

Y1 |Xi = x where Y1 = max
j 6=i

Xj
Gx (y) = α (x) (F1 (y))

N−1 + (1− α (x)) (F2 (y))
N−1

Interim: Bidder
gx (y) = (N − 1)

[
α (x) (F1 (y))

N−2 f1(y)
]

+ (N − 1)
[
(1− α (x)) (F2 (y))

N−2 f2 (y)
]

Table 3.1: The beliefs in the Bayesian updaters model.

Note that the right hand column of the table associates participant(s) whose belief is depicted
in the respective row. However, all beliefs are common knowledge; that is, the whole table is
known to all participants in the auction and they know that the others know it and so on ad
infinitum.

Now we look at the bidding behavior of the Bayesian updaters in the first-price and second-
price auctions. In order to be able to explicitly infer pattern of bids, we imposed some ad-
ditional assumptions such as: domination in terms of likelihood ratio4 or affiliation.5 These
assumptions are known in the auction literature and were already imposed as “technical”
assumptions. They were firstly imposed in Milgrom and Weber (1982) to make it convenient
to calculate optimal bidding strategies (see the appendices of Krishna (2010) for a brief intro-
duction of these assumptions). Indeed, the mathematical representation of our model given
by Table 3.1 resembles the model developed by Milgrom and Weber (1982). However, the
semantic interpretation and distribution forms are different. The uniqueness of our model is
that some of these assumptions also get a behavioral interpretation. Therefore, in the follow-
ing lines of this section we explore the link between these “technical” assumptions and the
participants’ behavior and beliefs.

3.1.3 Dominance in Terms of the Likelihood Ratio, Affiliation and Beliefs

The next lemma shows the link between dominance in terms of the likelihood ratio among
F1 and F2 and the belief function α. Namely, it turns out that the existence of dominance in

4A distribution F dominates some distribution G in terms of the likelihood ratio if for all t < x,

f (t)
g(t)

≤ f (x)
g(x)

.

5A joint signal distribution φ is affiliated if for all x′, x′′ φ(x′ ∨ x′′)φ(x′ ∧ x′′) ≥ φ(x′)φ(x′′), where
x′ ∨ x′′ is the component-wise maximum of x′ and x′′ and x′ ∧ x′′ the component-wise minimum of x′

and x′′.
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terms of the likelihood ratio between marginal distributions is equivalent to the statement
that the belief function is monotonic. Loosely speaking, for example, the property that higher
values are more likely to be generated by F1 is shown to be equivalent to the property of the
belief function, where the higher value means the higher belief on the event that the true
marginal distribution function is F1. More precisely,

Lemma 3.1. The following statements are equivalent:

(a) F1 and F2 can be ordered by dominance in terms of likelihood ratio, i.e. F1 dominates F2 in terms of
likelihood ratio or vice versa.

(b) Function α is a monotonic function, i.e. α is non-decreasing (if F1 dominates F2) or non-increasing
(if F2 dominates F1).

(c) For any x′ < x′′ we have that Gx′′ first-order6 stochastically dominates Gx′ .

Proof. Firstly we will prove that (a) is equivalent to (b). Suppose that α is non-decreasing,
which is identical to stating the following:

(∀t < x) (α (t) ≤ α (x))

m
(∀t < x)

(
f1(t)

f1(t)+ f2(t)
≤ f1(x)

f1(x)+ f2(x)

)
m

(∀t < x) ( f1(t) f2(x) ≤ f1(x) f2(t))

m
(∀t < x)

(
f1(t)
f2(t)
≤ f1(x)

f2(x)

)
.

The last expression is equivalent to the statement that F1 dominates F2 in terms of likelihood
ratio.

Similarly, one may prove that α is non-increasing, if and only if F2 dominates F1 in terms of
likelihood ratio. Thus, we have just shown the equivalence between expressions (a) and (b).

We continue proving that (c) is equivalent to (b). By definition of the first-order stochastic
dominance we derive that statement (c) is equivalent to the following:

6A distribution F first-order stochastically dominates some distribution G on [0, ω] if and only if
F (z) ≤ G (z) for any z ∈ [0, ω].
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(
Gx′′ (y) ≤ Gx′ (y)

)
m

α (x′′) (F1 (y))
N−1 + (1− α (x′′)) (F2 (y))

N−1 ≤
α (x′) (F1 (y))

N−1 + (1− α (x′)) (F2 (y))
N−1

m
(α (x′′)− α (x′))

(
(F1 (y))

N−1 − (F2 (y))
N−1

)
≤ 0.

Consequently, we obtain that statement (c) is equivalent to saying that either α is non-
decreasing and F1 first-order stochastically dominates F2 or the reverse - α is non-increasing
and F2 first-order dominates F1. Furthermore, it is known that dominance in terms of likeli-
hood ratio implies first-order stochastic dominance (for example, see Appendix B in Krishna
(2010)). Thus, as we have just proved that (b) implies the dominance in the terms of the
likelihood ratio, we may conclude that (b) is a necessary and sufficient condition for (c).
Q.E.D.

The implication “(a)⇒ (b)” from the last lemma explicitly shows the usual interpretation of
the monotone likelihood ratio property: if a bidder has a higher value, then she believes that
the private values comes from the distribution which dominates the other. However, in this
particular set-up the opposite is also true: if the bidder believes that higher private values
always come from a particular distribution, then the distribution must be a dominant one
in terms of likelihood ratio. Moreover, according to part (c), the same positive correlation
between private value and estimated distribution of the highest opponent’s value given her
own private value holds true.

Given the equivalence of the conditions, in our particular model we may introduce the fol-
lowing (re)definitions:

Definition 3.1. We say that F1 dominates (strictly dominates) F2 in terms of likelihood
ratio if the belief function α is non-decreasing (strictly increasing). Equivalently, we say that
F2 dominates (strictly dominates) F1 in terms of likelihood ratio if the belief function α is
non-increasing (strictly decreasing).

The following lemma shows that likelihood ratio dominance is a sufficient condition for so-
called affiliated private values. The term affiliation was introduced in Milgrom and Weber
(1982). Affiliation stands for a form of strong positive dependence. If private values are
affiliated, then a high value of one’s private value implies high probability that others’ private
values are also high.

Lemma 3.2. Suppose that F1 and F2 can be ordered by domination in terms of likelihood ratio, i.e. F1

dominates F2 in terms of likelihood ratio or vice versa. φ̃ (x1, x2, . . . , xN) is then affiliated.
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Proof. The joint signal distribution φ̃ is affiliated if, for all vectors x′, x′′ ∈ [0, ω]N ,

φ̃(x′ ∨ x′′)φ̃(x′ ∧ x′′) ≥ φ̃(x′)φ̃(x′′), (3.1)

where x′ ∨ x′′ is the component-wise maximum and x′ ∧ x′′ is the component-wise minimum
of x′ and x′′.

Let x′ = (x′1, x′2, . . . , x′N) ∈ [0, ω]N and x′′ = (x′′1 , x′′2 , · · · , x′′N) ∈ [0, ω]N be arbitrary. Let us
denote

x̌i = max
{

x′i , x′′i
}

, x̂i = min
{

x′i , x′′i
}

,

for all i ∈ N .

Thus, inequality (3.1) is equivalent to

φ̃ (x̌1, x̌2, . . . , x̌N) · φ̃ (x̂1, x̂2, . . . , x̂N) ≥
φ̃(x′1, x′2, . . . , x′N) · φ̃(x′′1 , x′′2 , . . . , x′′N).

Plugging the definition of φ̃ (see Table 3.1) into the last inequality, we obtain that

[
∏
i∈N

f1 (x̌i) + ∏
i∈N

f2 (x̌i)

]
·
[

∏
i∈N

f1 (x̂i) + ∏
i∈N

f2 (x̂i)

]
≥[

∏
i∈N

f1
(

x′i
)
+ ∏

i∈N
f2
(

x′i
)]
·
[

∏
i∈N

f1
(

x′′i
)
+ ∏

i∈N
f2
(

x′′i
)]

.

Equivalently,

∏
i∈N

f1 (x̌i) f1 (x̂i) + ∏
i∈N

f1 (x̌i) f2 (x̂i) + ∏
i∈N

f2 (x̌i) f1 (x̂i) + ∏
i∈N

f2 (x̌i) f2 (x̂i) ≥

∏
i∈N

f1
(

x′i
)

f1
(

x′′i
)
+ ∏

i∈N
f1
(

x′i
)

f2
(

x′′i
)
+ ∏

i∈N
f2
(
x′i
)

f1
(
x′′i
)
+ ∏

i∈N
f2
(
x′i
)

f2
(
x′′i
)

.

Since f j (x̌i) f j (x̂i) = f j
(

x′i
)

f j
(

x′′i
)

, j ∈ {1, 2} , i ∈ N , a few terms in the last inequality
cancel out and we get:

∏
i∈N

f1 (x̌i) f2 (x̂i) + ∏
i∈N

f2 (x̌i) f1 (x̂i)

≥
∏
i∈N

f1
(

x′i
)

f2
(

x′′i
)

+ ∏
i∈N

f2
(
x′i
)

f1
(
x′′i
)

. (3.2)
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Let us define:

N ′ =
{

i ∈ N : x̌i = x′i
}

and N ′′ =
{

i ∈ N : x̌i = x′′i and x′′i 6= x′i
}

.

Hence, {N ′,N ′′} forms a partition of N , and (3.2) becomes:

∏
i∈N

f1 (x̌i) f2 (x̂i) + ∏
i∈N

f2 (x̌i) f1 (x̂i) ≥ ∏
i∈N ′

f1 (x̌i) f2 (x̂i) ∏
i∈N ′′

f1 (x̂i) f2 (x̌i)

+ ∏
i∈N ′

f1 (x̂i) f2 (x̌i) ∏
i∈N ′′

f1 (x̌i) f2 (x̂i) .

Reordering and factoring the last polynomial expression, we get[
∏

i∈N ′
f1 (x̌i) f2 (x̂i)− ∏

i∈N ′
f1 (x̂i) f2 (x̌i)

]
·
[

∏
i∈N ′′

f1 (x̌i) f2 (x̂i)− ∏
i∈N ′′

f1 (x̂i) f2 (x̌i)

]
≥ 0.

This inequality is satisfied if and only if both of its terms are either non-negative or non-
positive.

Consequently, in order that the inequality is satisfied, it suffices that

f2(x̂i)

f2(x̌i)
− f1(x̂i)

f1(x̌i)
≤ 0 (3.3)

or

f2(x̂i)

f2(x̌i)
− f1(x̂i)

f1(x̌i)
≥ 0, (3.4)

for all i ∈ N .

Finally, assuming (3.3) or (3.4), is nothing more than saying that F1 dominates F2 or vice
versa. Hence, as the assumption of the lemma is equivalent to supposing that (3.3) or (3.4)
holds true, we have just shown that it is a sufficient condition for affiliation of the φ̃, thus
proving the lemma.

Now that we have established the main components of the model and some links between
the assumptions and participants’ beliefs, in the next section we continue by derivation of
the optimal bidders’ behavior.
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3.2 Bidding Behavior of Bayesian Updaters

In this section, we explore the pattern of optimal bids for the Bayesian updaters. The bid-
ders might be invited to participate in either a first-price or second-price auction. Thus, we
consider their behavior separately in each of these two auction formats. Since assumptions
include anonymity and symmetry of the bidders, our focus is set on symmetric bidding
strategy profiles. Let us denote by β̃A : [0, ω] → R the optimal bidding strategy of a bidder
participating in auction A ∈ {I, I I}; that is, a Bayesian updater with private value x bids
exactly β̃A(x) in auction A. We proceed by finding the explicit expressions of the strategies
in second-price and first-price auctions, respectively.

The mathematical apparatus used here is analogous to one used in the symmetric model
with interdependent values and affiliated signals introduced in Milgrom and Weber (1982)
and elaborated in Chapter 6 of Krishna (2010).

3.2.1 Second-Price Auction

Once a Bayesian updater is invited to participate in a second-price auction, she will bid
truthfully, that is, she bids her private value. Thus, introduction of our special form of
uncertainty about the origin of the private values does not influence the bidding behavior of
the bidders in the second-price auction: they behave identically as they do in the classical
set-up. Namely, the argument for the truthful bidding strategy is identical to the one used in
standard literature: truth telling is ex post weakly dominant (see Vickrey (1961)).

Henceforth, we have that

β̃I I(x) = x. (3.5)

This truth telling behavior is not a surprise once one takes into account that the second-
price auction is a so-called detail-free mechanism (see literature on robust mechanism design
such as Bergemann and Morris (2005)). In a detail-free mechanism, the bidders’ behavior is
independent of the assumptions imposed on the information structure. Hence, our trans-
formation of the deterministic information structure into an uncertain one does not effect
bidders in the second-price auction.

3.2.2 First-Price Auction

Here we derive the optimal behavior of a Bayesian updater participating in a first-price auc-
tion. Mathematically, we use the heuristic method in order to obtain the explicit formula
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of the bidding strategy. We derive the bidding behavior in a standard manner, similar to
Milgrom and Weber (1982). Thus, in a mathematical sense, this subsection is a special case
of the existing derivation methods. Using the special form of our assumptions on the model
in the following lines we present the derivation of the bidding strategy.

Let us first establish the following two lemmas that have technical use in our model. They
represent a sufficient argument for explicit derivation of the Bayesian updater’s bidding
strategy in the first-price auction.

Lemma 3.3. Suppose that F1 and F2 can be ordered by domination in terms of likelihood ratio, i.e. F1

dominates F2 in terms of likelihood ratio or vice versa; then, for any t, x ∈ (0, ω] such that t < x , the
following inequality holds true:

gt (t)
Gt (t)

≤ gx (t)
Gx (t)

. (3.6)

Proof. Let t, x ∈ [0, ω] be such that t < x. By definition of conditional distributions (see Table
3.1), we may rewrite (3.6) as follows:

gt (t) Gx (t) ≤ gx (t) Gt (t)

m
αtαxF2N−3

1 (t) f1(t) + αt(1− αx)FN−2
1 (t)FN−1

2 (t) f1(t)

+ αx(1− αt)FN−1
1 (t)FN−2

2 (t) f2(t) + (1− αx)(1− αt)F2N−3
2 (t) f2(t)

≤
αtαxF2N−3

1 (t) f1(t) + αt(1− αx)FN−1
1 (t)FN−2

2 (t) f2(t)

αx(1− αt)FN−2
1 (t)FN−1

2 (t) f1(t) + (1− αx)(1− αt)F2N−3
2 (t) f2(t)

m
αt(1− αx)FN−2

1 (t)FN−2
2 (t) (F2(t) f1(t)− F1(t) f2(t))

≤
αx(1− αt)FN−2

1 (t)FN−2
2 (t) (F2(t) f1(t)− F1(t) f2(t))

m
FN−2

1 (t)FN−2
2 (t) [ f1(t)F2(t)− F1(t) f2(t)] [αt − αx] ≤ 0, (3.7)

where αt = α (t) and αx = α (x).

Under the assumption of ordering in terms of likelihood ratio dominance, (3.7) holds true,
because [ f1(t)F2(t)− F1(t) f2(t)][αt − αx] ≤ 0. Indeed, suppose that, for example, F1 domi-
nates F2 in terms of likelihood ratio. Since likelihood ratio dominance implies reverse hazard
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rate dominance7 (as stated in Appendix B in Krishna (2010)), then f1(t)F2(t)− F1(t) f2(t) is
non-negative. On the other side, the fact that F1 dominates F2 in terms of likelihood ratio is
equivalent to saying that function α is a non-decreasing function (See proof of Lemma 3.1)
and, hence, αt ≤ αx, which, in turn, implies (3.7).

Remark 3.1. If α is strictly monotonic and F1(x)F2(x) 6= 0, then (3.6) holds true with strict
inequality.

A sufficient condition for (3.6) is also affiliation of signals. This implies that we may establish
a more general statement, which says that the domination in terms of likelihood between F1

and F2 is a sufficient condition so that Y1 |Xi = x dominates Y1 |Xi = t in terms of the reverse
hazard rate, for t < x. Therefore:

Lemma 3.4. Suppose that F1 and F2 can be ordered by domination in terms of likelihood ratio; i.e. F1

dominates F2 in terms of likelihood ratio or vice versa. Then, for any z, x ∈ [0, ω] such that z < x, we
have that

gz (y)
Gz (y)

≤ gx (y)
Gx (y)

, (3.8)

for any y ∈ (0, ω].

Proof. Using Lemma 3.2, it follows that signals are affiliated, which immediately implies
the claim of the proposition by applying the same argument as in Krishna (2010) on pages
87-88. Alternatively, one can deduce the proof in an analogous manner as in the previous
lemma.

Heuristics

Let us suppose that β : [0, ω] → [0, ω] is a symmetric bidding strategy in the first-price
auction. For a moment, suppose that all bidders except bidder 1 follow the strategy β, such
that:

• β (0) = 0 and

• β is a strictly increasing and differentiable function.

7A distribution F dominates some distribution G in terms of the reverse hazard rate if for all z ∈
[0, ω],

f (z)
F(z)

≥ g(z)
G(z)

.
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We look at the optimization problem that bidder 1 has to solve in order to determine her
optimal bid. It is clear that the bidder has to optimize her expected payoff, which depends
on her private value x and chosen bid b. Let ΠI (b, x) be bidder 1′s expected payoff when her
private value is x and the bid amount is b. Thus, the bidder is searching for bid b∗, which
is the solution of the optimization problem max

b≥0
ΠI (b, x). First of all, note that once bidder

1 assumes that other bidders bid according to the rule β, her bid b will not exceed β (ω).
Hence, bidder 1 is maximizing ΠI (b, x) on the set of bids b ∈

[
0, β−1 (ω)

]
.

Let us find explicit formula for ΠI (b, x). By definition, we get

ΠI (b, x) =
ω∫
0

π (b, x) gx (y) dy,

where π I (b, x) is the actual payoff and gx (y) is d.f. of the Y1 |Xi = x (see Table 3.1). This
means that

π I (b, x) =

x− b, b > β (y1)

0, b < β (y1)
,

where y1 = max
j 6=1

xj (the highest private value of the other bidders).

Since β is strictly increasing, we obtain b > β (y1)⇔ y1 < (β)−1 (b) and

ΠI (b, x) =

(β)−1(b)∫
0

(x− b) gx (y) dy = (x− b) Gx

(
(β)−1 (b)

)
. (3.9)

The first order condition for the problem max
b∈[0,β−1(ω)]

ΠI (b, x) gives:

∂

∂b
ΠI (b, x) = 0

(x− b) gx

(
(β)−1 (b)

) 1

β′
(
(β)−1 (b)

) − Gx

(
(β)−1 (b)

)
= 0. (3.10)

At the symmetric equilibrium, we have that (β)−1 (b) = x; thus, we obtain the following
ordinary differential equation:

β′ (x) = (x− β (x))
gx (x)
Gx (x)

. (3.11)
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In order to determine the symmetric equilibrium explicitly, we need to solve the last ordinary
differential equation (ODE) and show that the solution has the features we assumed at the
beginning of the heuristics. Using the usual mathematical apparatus for first-price auction
derivation and the solution for the ODE, we get the expression of the bidding strategy. The
expression and sufficient conditions are given in the following proposition:

Proposition 3.1. (First-Price Auction Bid) F1 and F2 can be ordered by dominance in terms of
likelihood ratio. Symmetric equilibrium strategies8 in the first-price auction with Bayesian updaters
are given by

β̃I(x) =

x∫
0

ydL (y |x ) = x−
x∫
0

L (y |x ) dy, (3.12)

where

L (y |x ) = e
−

x∫
y

gt(t)
Gt(t)

dt
. (3.13)

Proof. Firstly, we examine some properties of the function L defined in (3.13).

Property 1. For any x ∈ [0, ω] , L (· |x ) is a cumulative distribution function over [0, x].

Indeed, L (· |x ) is a right continuous and non-decreasing function by its definition. Further-
more, L (x |x ) = 1. In order to show that lim

y→0
L (y |x ) = 0, note that from Lemma 3.4 it follows

that, for any t > 0

gt(t)
Gt(t)

≥ g0(t)
G0(t)

and thus,

−
x∫
y

gt (t)
Gt (t)

dt ≤ −
x∫
y

g0 (t)
G0 (t)

dt

= −
x∫
y

d
dt

(ln G0 (t)) dt

= ln G0 (y)− ln G0 (x) .

8Expression (3.12) is the solution of ODE (3.11) with initial condition β (0) = 0.
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Letting that y tends to 0, we obtain that lim
y→0

[ln G0 (y)− ln G0 (x)] = −∞ and, hence,

lim
y→0

(
−

x∫
y

gt(t)
Gt(t)

dt

)
= −∞. Consequently,

lim
y→0

L (y |x ) = e
lim
y→0

(
−

x∫
y

gt(t)
Gt(t)

dt

)
= 0.

Property 2. Distribution L (· |x′ ) first-order stochastically dominates the distribution L (· |x ) on the
interval [0, x] for x′ > x.

Property 2 follows straightforwardly from the definition of the function L(· |· ).

Now, we return to the proof of the proposition. The first step is to show that the function
defined in this proposition satisfies the preconditions assumed in the heuristic properties
assumed at the beginning of this section. Afterwards, we prove that for each private value
x, the function β̃I(x) indeed maximizes the expected payoff of a bidder. Let us start with
showing that the preconditions hold true.

Firstly, note that β̃I(0) = 0 (by its definition given in (3.12)). Secondly, function β̃I is a
strictly increasing function because of Properties 1 and 2.9 Thirdly, it satisfies the ordinary
differential equation (3.11), because it is defined as the solution of the equation. Indeed, using
standard calculus rules (such as the general Leibniz rule for differentiation under the integral
sign) one can show that the bidding function satisfies the ODE given by (3.11). Overall, we
have shown that the function satisfies all preconditions required in the heuristics. Therefore,
β̃I (x) is at least a local extremum of the expected payoff to a bidder, when her private value
is equal to x.

In order to prove that the function value is the global maximum of the expected payoff, we
look at the first derivative of the expected payoff within a neighborhood of the β̃I (x). It is
sufficient to show that the expected payoff, ΠI (b, x), increases once we approach β̃I (x) from
the left side (by showing that the left derivative of ΠI (b, x) at point b = β̃I (x) is positive),
and that the payoff decreases once we go away from β̃I (x) (by showing that the associated
right derivative is negative). Thus, let us look at the first derivative of the expected payoff,
∂
∂b ΠI (b, x), when the received signal is x and the bidder submits bid b, where b is in a
neighborhood of β̃I (x). The derivative is given by (3.10) and is equal to:

∂

∂b
ΠI (b, x) = (x− b) gx

((
β̃I
)−1

(b)
)

1(
β̃I
)′ ((

β̃I
)−1

(b)
) − Gx

((
β̃I
)−1

(b)
)

.

9Note that the difference is given by:

β̃I (x′)− β̃I (x) =

[
(x′ − x)−

x′∫
x

L (y |x′ ) dy

]
+

x∫
0
(L (y |x )− L (y |x′ )) dy.
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Let z =
(

β̃I)−1
(b). Then,

∂

∂b
ΠI (b, x) =

(
x− β̃I (z)

)
gx (z)

1(
β̃I
)′
(z)
− Gx (z)

= Gx(z)

(β̃I)
′
(z)

[(
x− β̃I (z)

) gx (z)
Gx (z)

−
(

β̃I
)′

(z)
]

.

Since β̃I is an increasing function, we have Gx(z)

(β̃I)
′
(z)
≥ 0. Moreover, by Lemma 3.3 it follows:

(a) If z < x then gx(z)
Gx(z)

≥ gz(z)
Gz(z)

and, hence,

∂
∂b ΠI (b, x) > Gx(z)

(β̃I)
′
(z)

[(
z− β̃I (z)

) gz(z)
Gz(z)

−
(

β̃I)′ (z)] = 0

(since β̃I satisfies the ordinary differential equation).

(b) In the case where z > x then gx(z)
Gx(z)

≤ gz(z)
Gz(z)

and thus,

∂
∂b ΠI (b, x) < Gx(z)

(β̃I)
′
(z)

[(
z− β̃I (z)

) gz(z)
Gz(z)

−
(

β̃I)′ (z)] = 0

(since β̃I satisfies the ordinary differential equation).

Overall, we have shown that β̃I is indeed the symmetric equilibrium in the first-price auction.

We have just derived the optimal behavior for the Bayesian updaters, once they are asked to
participate in a second-price or first-price auction. The next step is to analyze the choice the
seller has to make in order to optimize his expected revenue. For this purpose, in the rest of
current chapter we assume that the sufficient condition from Proposition 3.1 is satisfied; that
is we assume monotonicity of belief function α.

3.3 The Seller’s Choice Facing Bayesian Updaters

Suppose that the seller has chosen auction format A ∈ A. Remember that here we consider
the Bayesian updaters model; that is we assume that the seller believes he is facing Bayesian
updaters, as described in Section 3.1. Ex ante, the expected revenue to the seller in the chosen
auction A, denoted by E

[
R̃A], is given by the following derivation:
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E
[

R̃A
]

=
∫

[0, ω]N

(
∑

i∈N
MA

i (x1, x2, . . . , xN)

)
φ̃(x1, x2, . . . , xN)dx1dx2 . . . dxN (3.14)

= ∑
i∈N

∫
[0, ω]N

MA
i (x1, x2, . . . , xN) φ̃(x1, x2, . . . , xN)dx1dx2 . . . dxN

= ∑
i∈N

ω∫
0

 ∫
[0, ω]N−1

MA
i (x1, x2, . . . , xN) φ̃(x1, x2, . . . , xN)dx1dx2 . . . dxi−1dxi+1dxN

 dxi

= ∑
i∈N

ω∫
0

 ∫
[0, ω]N−1

MA
i (x1, x2, . . . , xN) φ̃−i(x−i |xi ) f̃ (xi)dx−i

 dxi

= ∑
i∈N

ω∫
0

 ∫
[0, ω]N−1

MA
i (x1, x2, . . . , xN) φ̃−i(x−i |xi )dx−i

 f̃ (xi)dxi

= ∑
i∈N

ω∫
0

mA
i (xi) f̃ (xi)dxi = N

ω∫
0

mA
i (xi) f̃ (xi)dxi,

where MA
i (x1, x2, . . . , xN) and mA

i (xi) denote the actual and the expected payment of bidder
i with private value xi in auction format A. Thus,

mA
i (xi) =

∫
[0, ω]N−1

MA
i (x1, x2, . . . , xN) φ̃−i(x−i |xi )dx−i

=

ω∫
0

MA
i (xi, y) gxi (y) dy. (3.15)

In the case of the first-price auction (A = I), we obtain

mI
i (xi) =

ω∫
0

MI
i (xi, y) gxi (y) dy =

xi∫
0

β̃I(xi)gxi (y) dy

= β̃I(xi)

xi∫
0

gxi (y) dy = β̃I(xi)Gxi (xi) ,

whereas in the case of the second-price auction (A = I I) it is the case that

mI I
i (xi) =

ω∫
0

MI I
i (xi, y) gxi (y) dy =

xi∫
0

β̃I I(y)gxi (y) dy =
xi∫
0

ygxi (y) dy.
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Hence, we are now able to explicitly calculate the expected revenue to the seller and may
analyze his preference of auction format. Note that in the classical model (with i.i.d. private
values), the revenue equivalence principle, established by Myerson (1981) and Riley and
Samuelson (1981), holds true. Under classical assumptions, the seller gets the same expected
revenue from the first-price or second-price auction. The following proposition shows that
in our model, once we have strict order by dominance in terms of likelihood ratio, the seller
is no longer indifferent and prefers the second-price auction over the first-price auction.

Proposition 3.2. (Revenue Equivalence Failure) If α is strictly monotonic, then

E
[

R̃I I
]
> E

[
R̃I
]

. (3.16)

Before proceeding to the proof of the last proposition, we must formulate a lemma needed
for the proof.10

Lemma. Let random variables X and Y be distributed according to F and G respectively, where F
first-order stochastically dominates G. Now suppose γ : [0, ω] → R is a strictly increasing and
differentiable function. Then

E [γ(X)]−E [γ(Y)] ≥ 0.

Let us now proceed with the proof of the proposition.

Proof. Since the assumption on the monotonicity of α is the sufficient condition for Propo-
sition 3.1, it follows that β̃I describes bidding behavior in the first-price auction. Note that
in order to prove inequality (3.16), it suffices to show that mI

i (xi) < mI I
i (xi), for any i and

any xi ∈ (0, ω], as it would imply E
[
R̃I I]−E

[
R̃I] = ∑

i∈N

ω∫
0

(
mI I

i (xi)−mI
i (xi)

)
f̃ (xi)dxi > 0.

Therefore, our next step is to prove that mI
i (xi) < mI I

i (xi), or equivalently that

β̃I(xi) <
1

Gxi (xi)

xi∫
0

ygxi (y) dy, xi ∈ (0, ω] . (3.17)

The right-hand side of the last inequality may be written as
xi∫
0

ydK (y |xi ) with K (y |xi ) =

Gxi (y)
Gxi (xi)

. On the other side, from (3.12) we have that the left-side of the inequality is equal to

xi∫
0

ydL (y |xi ) with L (y |xi ) = e
−

xi∫
y

gt(t)
Gt(t)

dt
. Hence, showing that (3.17) holds true is equivalent to

showing that

10The proof of lemma is straightforward and may be found, for example, as last claim and its deriva-
tion in Krishna (2010) p. 275.
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x∫
0

yd [K (y |x )− L (y |x )] > 0, x ∈ (0, ω] . (3.18)

Note that both L (· |x ) and K (· |x ) are cumulative distribution functions over interval [0, x]
(see Property 1 stated in the proof of Proposition 3.1).

According to the previous lemma, in order to establish inequality (3.18), it suffices to show
that L (y |x ) > K (y |x ) for any 0 < y < x ≤ ω. The last claim follows from Lemma 3.3,
Remark 3.1 and the assumption of the proposition. Indeed, the lemma and the remark imply
that for any t < x, t, x ∈ (0, ω]

gt (t)
Gt (t)

<
gx (t)
Gx (t)

,

and, thus,

−
x∫
y

gt (t)
Gt (t)

dt > −
x∫
y

gx (t)
Gx (t)

dt

= −
x∫
y

d
dt

(ln Gx (t)) dt

= ln Gx (y)− ln Gx (x)

= ln
Gx (y)
Gx (x)

.

Applying the exponential function to both sides, we obtain that for all y < x, L (y |x ) >

K (y |x ) and this completes the proof.

Remark 3.2. Note that the last proposition is equivalent to proving the failure of the rev-
enue equivalence principle between the first-price and second-price auctions in our model
once ordering by dominance in terms of likelihood ratio is present. Therefore, under these
circumstances, a seller facing Bayesian updaters will choose the second-price auction rather
than the first-price auction.

In the previous two sections we have analyzed both bidders’ and seller’s behavior under the
conditions of our model. In the following section we compare behavioral patterns among our
model with respective behavior in other relevant standard models. The comparison gives us
a better insight and understanding of our model’s features.
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3.4 Comparison to Other Models

Here we compare our model to the other well-known models in literature. For sake of short
notation, we will denote our model by M̃. The necessary conditions from Proposition 3.1
are assumed throughout the rest of the section. In particular, we assume that F1 and F2

can be ordered in terms of likelihood ratio dominance (for equivalent formulations of the
assumption, please refer to Lemma 3.1).

3.4.1 Relevant Non-Updating Models

The following three models represent classical models in the related literature. The common
feature of these models is that the distribution of the private signals, known a priori by
all participants in auction, is also used ad interim; i.e. bidders do not update. Namely, we
suppose that bidders’ private signals are identically distributed according to some cumulative
distribution function H and each bidder uses this c.d.f. as given during all her calculations
and actions. We set H = F1, F2 or H = F̃ = 1/2F1 + 1/2F2, which gives rise to three different
models. Technically, these models differ from the Bayesian updaters model by adding the
assumption that private signals are stochastically independent and eventually changing the
explicit formula for the c.d.f. of private signals. We analyze how these changes effect the
behavior of bidders and the seller by comparing both bidding strategies and the expected
revenues across different models. For this purpose, let us summarize the general pattern of
each of these models in Table 3.2 :

Seller and Bidders
Xi H(x1), xi ∈ [0, ω]

Private signal of bidder i h(xi), xi ∈ [0, ω]
(X1, X2, . . . , XN) Φ(x1, x2, . . . , xN) = ∏

i∈N
H (xi)

Joint random vector of signals φ(x1, x2, . . . , xN) = ∏
i∈N

h (xi)

YH
1 |Xi = x , GH (y) = (H (y))N−1

YH
1 = max

j 6=i
Xj gH (y) = (N − 1) (H (y))N−2 h(y)

Table 3.2: “Classical” and benchmark models: The seller’s and bidders’ perspective.

As stated above, we assume H ∈
{

F1, F2, F̃
}

. When H = Fi, i ∈ {1, 2} we shall refer to the
associated model as model Mi, whereas M will be the model in the case where H = F̃.
Bidding strategies at a symmetric equilibrium of model Mi in auction format A ∈ A is
denoted by βA

i (·), whereas the corresponding expected revenue will be denoted by E
[
RA

i
]
. In

the modelM, the bidding strategies at the symmetric equilibrium and the expected revenue
in auction format A ∈ A will be denoted by β̄A(·) and E

[
R̄A], respectively. Moreover, we
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denote by Yi
1 ( Ȳ1), the random variable max

j 6=i
Xj in the modelMi (M) with c.d.f. Gi (Ḡ) and

d.f. gi (ḡ). Hence, these functions take the following forms:

Gi(y) = (Fi(y))
N-1 , gi(y) = (N − 1) (Fi(y))

N-2 fi(y),

G(y) =
(

F̃(y)
)N-1 , ḡ(y) = (N − 1)

(
F̃(y)

)N-2 f̃ (y).

Using this notation, from the literature (see Vickrey (1961) and Riley and Samuelson (1981))
it is known that:

βI I
1 (x) = βI I

2 (x) = β̄I I(x) = x, (3.19)

βI
i (x) = E

[
Yi

1

∣∣∣Yi
1 < x

]
and

β̄I(x) = E
[
Ȳ1
∣∣Ȳ1 < x

]
.

More precisely, the symmetric equilibria in first-price auctions might be rewritten as

βI
i (x) =

1
Gi(x)

x∫
0

ygi(y)dy and (3.20)

β̄I(x) =
1

Ḡ(x)

x∫
0

yḡ(y)dy.

Let us examine the relevance of these three models for our set up. The modelM represents
the “classical” model described in Section 3.1. Namely, that is the model when bidders do
not update on underlying information structure of the set-up. In particular, in framework
M , the seller has the belief that Φ(x1, x2, . . . , xN) = ∏

i∈N
F̃ (xi) is the distribution of the joint

private signals and that the bidders are classical bidders.

Here, modelsMi serve as benchmark models. Namely, the Bayesian updaters behave in the
way that they believe that their private signal is generated either by F1 or F2. Ad interim,
they use their private signal to update their belief about the origin of their signals (the belief
was given by function α). Hence, it seems appealing to compare the behavior of the Bayesian
updaters to the case where bidders know the true distribution. That is why Mi are labeled
as “non-updating models”, as their bidders hold fixed, constant beliefs that their signals are
i.i.d. distributed with marginal distribution Fi.

We proceed by comparing bidders’ performance in each of these models. As the “non-
updating models” are known and well-studied in the literature, we consider their features
and characteristics as given and state a literature reference when needed.
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3.4.2 Comparison of Bidders’ Behavior in the First-Price Auction

Note that bidders, independent of the model choice, in the second-price auction, always bid
truthfully. However, their behavior differs in the first-price auction. This section is actually
devoted to the comparison of their behavior in the first-price auction across models that
are the subject of our research. For this purpose, we assume the sufficient condition from
Proposition 3.1; that is, we assume that F1 and F2 can be ordered by dominance in terms of
likelihood ratio. Without loss of generality, we will consider the case where F1 dominates F2

in terms of likelihood ratio.

The following proposition compares Bayesian updaters and the classical model to the bench-
mark models.

Proposition 3.3. (First-Price Auction Bids: Comparison to Benchmarks) Suppose that F1

dominates F2 in terms of likelihood ratio. Then

βI
2(x) ≤ β̃I(x) ≤ βI

1(x), (3.21)

βI
2(x) ≤ β̄I(x) ≤ βI

1(x), (3.22)

for all x ∈ [0, ω].

Proof. According to the explicit formula for symmetric bidding equilibria, we have

βI
i (x)=

1
Gi(x)

x∫
y

0

gi(y)dy =

x∫
0

y d
(

Gi(y)
Gi(x)

)
for i ∈ {1, 2}. Furthermore, the bidding strategy of the Bayesian updaters in the first-price
auction might be written as

β̃I(x)=
x∫
0

y dL(y |x ), (3.23)

with

L(y |x ) = e
−

x∫
y

σL(t)dt

and

σL(t) =
gt(t)
Gt(t)

=
(N − 1)

[
α (t) (F1 (t))

N−2 f1(t) + (1− α (t)) (F2 (t))
N−2 f2 (t)

]
α (t) (F1 (t))

N−1 + (1− α (t)) (F2 (t))
N−1 .
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In general, for a random variable with c.d.f. F and d.f. f , the function σF(t) =
f (t)
F(t) is known

as the reverse hazard rate. Moreover, as stated earlier in this chapter (see also Appendix B in
Krishna (2010)), the dominance of the likelihood ratio implies the dominance in terms of the
reverse hazard rate. Hence, by the assumption of the proposition, it follows that

σF1(t) ≥ σF2(t)⇔
f1(t)
F1(t)

≥ f2(t)
F2(t)

. (3.24)

Furthermore, we may rewrite βI
i (x), for any i ∈ {1, 2}, as follows:

βI
i (x) =

x∫
0

y dLi(y |x ), (3.25)

where

Li(y |x ) = e
−

x∫
y

σGi
(t)dt

=
Gi(y)
Gi(x)

and

σGi (t) =
gi(t)
Gi(t)

.

Integration by parts in equations (3.23) and (3.25), leads to the next expressions:

β̃I(x)=
x∫
0

y dL(y |x ) = x−
x∫
0

L(y |x )dy

and

βI
i (x) =

x∫
0

y dLi(y |x ) = x−
x∫
0

Li(y |x )dy

for i ∈ {1, 2}. Thus, in order to prove the claim (3.21), it is sufficient11 to prove that for any
x ∈ [0, ω] and y ≤ x,

L1(y |x ) ≤ L(y |x ) ≤ L2(y |x )
m

x∫
y

σG2(t)dt ≤
x∫
y

σL(t)dt ≤
x∫
y

σG1(t)dt.

11Note that functions Li and L are non-negative functions.
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It turns out that the domination in terms of reverse hazard rate, given by (3.24), is equivalent
to σG2(t) ≤ σL(t) ≤ σG1(t) for any t ∈ [0, ω], that implies the last set of inequalities. Indeed,

σG2(t) ≤ σL(t)

m

(N − 1) (F2(t))
N−2 f2(t)

(F2(t))
N−1 ≤

(N − 1)
[
α (t) (F1 (t))

N−2 f1(t) + (1− α (t)) (F2 (t))
N−2 f2 (t)

]
α (t) (F1 (t))

N−1 + (1− α (t)) (F2 (t))
N−1

m
α (t) F1(t) f2(t) ≤ α (t) F2(t) f1(t)

m
f2(t)
F2(t)

≤ f1(t)
F1(t)

.

Similarly,

σG1(t) ≥ σL(t)

m
f1(t)
F1(t)

≥ α (t) (F1 (t))
N−2 f1(t) + (1− α (t)) (F2 (t))

N−2 f2 (t)

α (t) (F1 (t))
N−1 + (1− α (t)) (F2 (t))

N−1

m
(1− α (t)) (F2 (t))

N−1 f1(t) ≥ (1− α (t)) (F2 (t))
N−2 F1(t) f2(t)

m
f1(t)
F1(t)

≥ f2(t)
F2(t)

.

Thus, the statement σG2(t) ≤ σL(t) ≤ σG1(t) for any t ∈ [0, 1] is equivalent to the assumption
that F1 dominates F2 in terms of the reverse hazard rate, which turned out to be a sufficient
condition for the statement expressed by (3.21).

In an analogous way, we may show that for (3.22) it suffices to show that

σG2(t) ≤ σL̄(t) ≤ σG1(t)

with

σL̄(t) =
ḡ(y)

Ḡi(x)
.



§3.4 Comparison to Other Models 81

Thus, in a similar manner we obtain that

σG2(t) ≤ σL̄(t)

m
(N − 1) (F2(t))

N−2 f2(t)

(F2(t))
N−1 ≤ (N − 1)

(
F̃(y)

)N-2 f̃ (y)(
F̃(y)

)N-1

m
F̃(y) f2(t) ≤ F2(t) f̃ (y)

m
1
2
(F1(t) + F2(t)) f2(t) ≤ 1

2
F2(t) ( f1(t) + f2(t))

m
F1(t) f2(t) +F2(t) f2(t) ≤ F2(t) f1(t) + F2(t) f2(t)

m
F1(t) f2(t) ≤ F2(t) f1(t).

It turned out, as before, that the last claim is equivalent to (3.24), which is implied by
the assumption. The same argument applies for the second inequality in expression (3.22).
Q.E.D.

The last proposition gives a feeling for the difference in the bidding behavior between the
benchmark models and the models that are considered as possible scenarios for the informa-
tion structure proposed in this chapter. The higher belief is that the values are generated by
the distribution that is dominant and favors higher values (in the case of the assumption of
the lemma, it is the distribution F1), the bidders will bid higher in the first-price auction.

However, so far, we did not compare the “classical” model to the model with Bayesian up-
daters. This is the goal of the rest of this section. We compare the bidding behavior of
Bayesian updaters and bidders in the classical model, as these two models are the models
that are considered as the only possible scenarios in our model. In other words, we aim to
analyze relationship between β̃I(x) and β̄I(x).

Classical Bidder versus Bayesian Updater

Here we look at the difference in bidding behavior between the classical and Bayesian updater
types of bidder. In particular, we are interested in the sign of the difference β̄I − β̃I . Our
starting point is the fact, that the strategies are given by the next two expressions (see the
definitions given in (3.12) and (3.20) and the proof of the last proposition):
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β̃I(x) = x−
x∫
0

L (y |x ) dy,

β̄I(x) = x−
x∫
0

L̄(y |x )dy

with

L (y |x ) = e
−

x∫
y

gt(t)
Gt(t)

dt

L̄ (y |x ) = e
−

x∫
y

ḡ(t)
Ḡ(t) dt

.

Therefore, we have that

β̄I(x)− β̃I(x) =

x∫
0

[L (y |x )− L̄(y |x )] dy.

Moreover, the ratio of the functions participating in the last integral takes the following form:

L (y |x )
L̄ (y |x ) = e

x∫
y

[
ḡ(t)
Ḡ(t)

− gt(t)
Gt(t)

]
dt

.

Given the equations above, we start our analysis looking at the difference ḡ(x)
Ḡ(x) −

gx(x)
Gx(x) . The

following lemma establishes the decomposition of this difference. The decomposition helps
us to identify functions which are crucial in determining the sign of the difference in bidding
behavior.

Lemma 3.5. Given notation from this chapter, for any x ∈ (0, ω] it holds true:

ḡ (x)
Ḡ (x)

− gx (x)
Gx (x)

=

(N − 1) ( f1 (x) F2 (x)− f2 (x) F1 (x))

2F̃ (x)
(

α (x) FN−1
1 (x) + (1− α (x)) FN−1

2 (x)
) ·

[
(1− α (x)) FN−2

2 (x)− α (x) FN−2
1 (x)

]
.
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Proof of the lemma can be found in the Appendix 3.A.1.

Our core assumption is that F1 dominates F2 in terms of the likelihood ratio or vice versa. In
the case of the former dominance, we have that the first part of the right hand-side of the last
equality (i.e. the expression between the equality and multiplication signs) is non-negative,
whereas in the case of the later dominance, the part is non-positive. In other words, under
our assumption on likelihood ratio dominance, the sign of ḡ(x)

Ḡ(x) −
gx(x)
Gx(x) is determined by the

sign of the term (1− α (x)) FN−2
2 (x)− α (x) FN−2

1 (x), for any value x. Thus, for the purpose
of the current analysis, we shall denote by δ : (0, ω]→ (0, ω] the following function

δ (x) =
FN−2

2 (x)
FN−2

1 (x) + FN−2
2 (x)

.

Using the notation for function δ, the right hand side of the claim in the last lemma might be
transformed to:

(N − 1) ( f1 (x) F2 (x)− f2 (x) F1 (x))

2F̃ (x)
(

α (x) FN−1
1 (x) + (1− α (x)) FN−1

2 (x)
) (FN−2

2 (x) + FN−2
1 (x)

)
︸ ︷︷ ︸

≥0

· [δ (x)− α (x)] .

Henceforth, we may conclude that the sign of ḡ(x)
Ḡ(x) −

gx(x)
Gx(x) depends directly on the sign of

the difference between functions δ and α (given the likelihood dominance order).

The further steps of our analysis established the claims given by the next lemma. The lemma
gives further insight into some properties and interplay between the functions and brings us
one step closer to the final result on the difference of the bidding behaviors.

Lemma 3.6. Let us suppose that F1 (strictly) dominates F2 in terms of the likelihood ratio. Then, for
any private value x ∈ (0, ω), the following statements are true:

(i) The belief function α is (strictly increasing) non-decreasing, whereas δ is a non-increasing function
of x. Thus, the function δ− α is (strictly decreasing) a non-increasing function on interval (0, ω)and

(ii) lim
x→0

(δ (x)− α (x)) ≥ 0.

The steps of the proof can be found in Appendix 3.A.2.

Remark. If we consider δ− α as a function, we may conclude that the function takes a zero
value nowhere, or if it does so, it takes a zero value only at some connected interval [x∗, x∗∗] ⊆
[0, ω], with x∗ = x∗∗, when strict domination in terms of the likelihood ratio is assumed. This
indirectly gives rise to the possibility of the single-crossing property between considered
bidding strategies. This is stated as the last statement of the next proposition. Moreover,
with the help of the last two lemmas we may establish the following claims about the bidding
behavior of different bidder types:
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Proposition 3.4. (Weak Dominance or Single-Crossing Property of the Bids) Let us sup-
pose that F1 dominates F2 in terms of the likelihood ratio. Then, for the bidding strategies in the
first-price auction, exactly one of the following two scenarios must be true.

(i) (Weak dominance) A Bayesian bidder always bids weakly lower / weakly higher than the classical
bidder. That is,

(∀x ∈ (0, ω))
(

β̃I(x) ≤ β̄I(x)
)

or (∀x ∈ (0, ω))
(

β̃I(x) ≥ β̄I (x)
)

.

Or,

(ii) (Single-crossing property) There is a unique private value x̂ ∈ (0, ω), such that for any value
smaller than x̂, the Bayesian bidder does not bid higher than the classical bidder. For values higher
than x̂, the Bayesian bidder bids strictly higher. Mathematically,

(∃!x̂ ∈ (0, ω))
(

x ≤ x̂ ⇒ β̃I(x) ≤ β̄I (x) and x > x̂ ⇒ β̃I(x) > β̄I (x)
)

.

We define the situation described in part (i) as weak dominance between bidding strategies,
where the name is self-explanatory. The situation described in part (ii) of the last proposition
is known as “single-crossing property”. The term “single-crossing” comes from the fact that
bidding strategies cross each other only once on the open interval (0, ω) (and at value x̂). In
the case of statement (ii), we say that “β̃I(x) crosses β̄I (x) from below” or “β̄I (x) crosses
β̃I(x) from above”.

Remark. If the opposite likelihood ratio dominance is assumed; that is, if F2 dominates F1,
one may show same results. In this case, Lemma 3.6 holds true with reverted inequalities
and opposite monotonicity trends. Regarding the last proposition, both parts remain to hold
true.

Finally, we may summarize the comparison of the classical and Bayesian updater in the first-
price auction by the following final corollary:

Corollary 3.1. Let us suppose that F1 and F2 can be ordered by dominance in terms of the likelihood
ratio. Then, bidding strategies of classical and Bayesian updaters in the first-price auction, β̄I and β̃I ,
satisfy exactly one of the following three claims :

(i) A Bayesian updater always bids weakly lower than the classical type of bidder (with identical private
values).

(ii) Given a private value, a Bayesian updater always bids weakly higher than the classical bidder.

(iii) The bidding strategies exhibit a “single-crossing” property; that is, the bidding functions cross
themselves only once and β̃I(x) crosses β̄I (x) from below.
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We conclude the current subsection with an example of the bidding strategies. A simple
example with N = 2, F1(x) = x and F2(x) = x2 for x ∈ [0, 1] is considered. Figure 3.1
illustrates the two bidding strategies (see the plot at the left-hand side of the figure) and their
difference as a function (illustrated by the right-hand plot in the figure).
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Figure 3.1: Bidding strategies in the first-price auction - a simple example. The private
value is plotted on the horizontal axis of both plots, whereas the vertical axis repre-
sents either bids (left) or difference of the bids (right). The blue line represents the
Bayesian updater’s behavior whereas the red line represents the classical bidder’s be-
havior (left). The difference between the Bayesian and “classical” bidder is illustrated

as a function of the private value (right).

3.4.3 The Expected Revenue Puzzle For the Seller

We have compared the performance of the first-price auction and the second-price auction
separately in each relevant model, where performance is identified with the expected revenue
of the seller. We now make our assumption on the likelihood ratio stricter in the sense that
we assume strict dominance in terms of the likelihood ratio. From the obtained revenue com-
parison in Section 3.3 and the revenue equivalence principle we summarize the comparison
in Table 3.3:
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Model First-price auction Second-price auction

M1 E
[
RI

1

]
= E

[
RI I

1

]
M2 E

[
RI

2
]
= E

[
RI I

2
]

M E
[
R̄I] = E

[
R̄I I]

M̃ E
[
R̃I] < E

[
R̃I I]

Table 3.3: Expected revenue of first-price against second-price auction (under strict domi-
nance in terms of likelihood ratio).

One may conclude that if the seller is uncertain which of the above listed scenarios occurs
and wants to be on the safe side, then he should prefer the second-price auction over the first-
price auction. Therefore, let us assume that the seller does so and chooses to run a second-
price auction. We shall now focus only on models M̃ and M, because in our set-up these
two models are the only possible ones. In the following lines, we compare the performance
of the second-price auction across these two models. More precisely, we are interested in
the difference E

[
R̄I I] − E

[
R̃I I]. Note that even though the bidders’ beliefs change across

models, their bids are identical in the second-price auction - they bid truthfully. Hence, the
difference in the expected revenue then comes from the difference in the seller’s beliefs. In
the following lines we shall provide our analysis in the form of remarks which might be
helpful for the further research of the topic. Proofs of the remarks can be found in appendix.

Firstly, we obtain the general formula for the difference in the expected revenue that second-
price auctions deliver in considered models, presented in the following remark.

Remark 3.3. E
[
R̃I I]−E

[
R̄I I] = N

ω∫
0

[
x∫
0

y (gx(y)− ḡ(y)) dy

]
f̃ (x) dx.

Secondly, from the general number of bidders, we restricted our research in the special case
of two bidders (i.e. we assumed N = 2). This simplification leads to the conclusion that
in this special case, the second-price performs better in the case of the Bayesian updaters
than in the classical model. Therefore, the seller who interprets the special mixture form
of the observed distribution as uncertainty is, in a certain sense, subjectively better off than
the “ignorant” seller of the classical model once the second-price auction is chosen for sale.
Thus, we conclude this subsection with a remark stating this last fact:

Remark 3.4. In the case of two bidders, E
[
R̃I I]−E

[
R̄I I] ≥ 0 .

Details and derivations behind the previous two remarks can be found in Appendices 3.A.4
and 3.A.5.
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3.5 Wrapping Up and Final Comments

We offered an alternative way of modeling the information structure involved in auctions
where we departed from the usual assumption that the distribution of private values is
simply given. Namely, we have allowed a mild ambiguity regarding the origin of private
value. Participants were supposed to deal with ambiguity ad interim in the Bayesian way
of thinking - the bidders update their belief about the origin according to Bayes’ rule using
their private information or private value. The seller, on the other side, can not update (as he
has no further private information) but takes into account the mixture form of the observed
distribution by his belief formation process.

We analyzed bidders’ behavior and the seller’s revenue in the first-price and second-price
auctions in the set-up and compared the results to the classical set-up. In the second-price
auction, bidders’ behavior does not change (in comparison to the classical model where the
distribution is given and not questioned) - they still bid truthfully. However, in the first-price
auction, the behavior of bidders is influenced by updating. It turns out that one can establish
either a weak dominance between the classical bidder’s and the Bayesian updater’s bidding
pattern or that the patterns exhibit single-crossing property.

Moreover, questioning on the origin of private values leads to revenue equivalence failure in
favor of the second-price auction. Namely, when facing Bayesian updaters, the seller would
prefer to run a second-price auction instead of a first-price auction. Furthermore, given that
the sellers choose the second-price auction and that there are only two potential buyers, the
seller from the Bayesian model is better off than the one from the classical model. This is
not due to bidders’ behavior but due to the difference in the sellers’ beliefs about the joint
distribution of private values.

Several assumptions were used in the presented results. Here we discuss how they might be
lifted to widen the scope of the presented research. Firstly, we assumed that the observed
distribution of the private value is a mixture distribution, i.e. a convex combination of several
distributions. This was the approach used to introduce the doubt about the origin of private
values, making it possible to question: Which one of the involved distributions is the one
which generates the private values? For this purpose, it was enough to consider only two
distributions as candidates. Moreover, we assumed a priori, that both distribution were
equally likely to be the origin of the values. The equal weights for both candidates were only
for the sake of simplicity - the same claims were true if the common prior was an arbitrary
choice of convex combination between the two candidates. However, whether or not the same
result would hold if more than two distributions are involved is a topic for further research.
The introduction of more distributions would definitely make the notation and mathematical
apparatus more complicated. Additionally, instead of dominance in terms of the likelihood
ratio between two distributions, one would have to consider a finite family of distributions
satisfying a monotone likelihood ratio (MLR). An MLR family is a family of distributions,
which can be completely ordered by dominance in terms of likelihood ratio. As this type of
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family generalizes many of the properties used in this chapter (such as first-order dominance,
dominance in terms of reverse hazard rate etc.; see Shao (2003)), our conjecture is that the
results of the chapter might be extended to MLR families of distributions.

In sum, the introduction of mild ambiguity in standard auction models with the usual prob-
ability set-up had led to a failure of the essential revenue equivalence principle. This should
be reason enough for a new direction of modeling in auction theory, in such a way that it
will allow endogenous belief formation about the distribution of private signals itself.

3.A Proofs

3.A.1 Proof of Lemma 3.5

The equality is shown by replacing the involved functions by expressions from their defi-
nitions. As the argument of all functions is identical (that is, the argument is x), for better
readability, we will omit the argument, wherever it is unambiguous. Using this notation,
hence, we get:

ḡ (x)
Ḡ (x)

− gx (x)
Gx (x)

=
(N − 1)F̃N-2 f̃

F̃N-1 −
(N − 1)

[
αFN−2

1 f1 + (1− α) FN−2
2 f2

]
αFN−1

1 + (1− α) FN−1
2

= (N − 1)
αFN−1

1 f̃ + (1− α) FN−1
2 f̃ − αFN−2

1 F̃ f1 − (1− α) FN−2
2 F̃ f2

F̃
(

αFN−1
1 + (1− α) FN−1

2

)
= (N − 1)

αFN−1
1 ( f1 + f2) + (1− α) FN−1

2 ( f1 + f2)− αFN−2
1 (F1 + F2) f1 − (1− α) FN−2

2 (F1 + F2) f2

2F̃
(

αFN−1
1 + (1− α) FN−1

2

)
= (N − 1)

αFN−1
1 f1 + αFN−1

1 f2 + (1− α) FN−1
2 f1 + (1− α) FN−1

2 f2 − αFN−1
1 f1 − αFN−2

1 F2 f1

2F̃
(

αFN−1
1 + (1− α) FN−1

2

)
−(N − 1)

(1− α) FN−1
2 f2 + (1− α) FN−2

2 F1 f2

2F̃
(

αFN−1
1 + (1− α) FN−1

2

)
= (N − 1)

αFN−1
1 f2 + (1− α) FN−1

2 f1 − αFN−2
1 F2 f1 − (1− α) FN−2

2 F1 f2

2F̃
(

αFN−1
1 + (1− α) FN−1

2

)
= (N − 1)

(1− α) FN−2
2 (F2 f1 − F1 f2)− αFN−2

1 (F2 f1 − F1 f2)

2F̃
(

αFN−1
1 + (1− α) FN−1

2

)
= (N − 1)

(1− α) FN−2
2 (F2 f1 − F1 f2)− αFN−2

1 (F2 f1 − F1 f2)

2F̃
(

αFN−1
1 + (1− α) FN−1

2

)
=

(N − 1) ( f1 (x) F2 (x)− f2 (x) F1 (x))

2F̃ (x)
(

α (x) FN−1
1 (x) + (1− α (x)) FN−1

2 (x)
) · [(1− α (x)) FN−2

2 (x)− α (x) FN−2
1 (x)

]
,

which was asked to be shown.

3.A.2 Proof of Lemma 3.6

Part (i) From the assumption on likelihood ratio dominance and Lemma 3.1 it follows that
the function α is a non-decreasing (strictly increasing) function. It is left to show that δ is
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a non-increasing function. For this purpose, we calculate the first derivative of the function
and show that the derivative is non-positive. Thus,

δ′ (x) =

(
FN−2

2 (x)
FN−2

1 (x) + FN−2
2 (x)

)′

= (N − 2)
FN−3

2 (x)
(

FN−2
1 (x) + FN−2

2 (x)
)

f2 (x)(
FN−2

1 (x) + FN−2
2 (x)

)2

− (N − 2)
FN−2

2 (x)
(

FN−3
1 (x) f1 (x) + FN−3

2 (x) f2 (x)
)

(
FN−2

1 (x) + FN−2
2 (x)

)2

= (N − 2)
FN−3

1 (x) FN−3
2 (F1 (x) f2 (x)− F2 (x) f1 (x))(
FN−2

1 (x) + FN−2
2 (x)

)2 .

Given that the reverse hazard ratio dominance is implied by the domination in terms of the
likelihood ratio, from the last equality it follows that the derivative is non-positive, which
proves the claim.

Part (ii) We calculate the limit value and obtain:

lim
x→0

(δ (x)− α (x)) = lim
x→0

FN−2
2 (x)

FN−2
1 (x) + FN−2

2 (x)
− lim

x→0

f1(x)
f1(x) + f2(x)

= lim
x→0

1(
F1(x)
F2(x)

)N−2
+ 1
− f1(0)

f1(0) + f2(0)

≥ 1
1 + 1

− f1(0)
f1(0) + f2(0)

=
f2(0)− f1(0)

2 ( f1(0) + f2(0))
.

The last inequality follows from the fact that F1 first-order stochastically dominates F2; which
is a consequence of the assumption of the lemma. Because of the same reason (that is, the
implied first-order stochastic dominance) we have that f1(0) ≤ f2 (0) (as F1 (0) = F2 (0)
and F1 (ε) ≤ F2 (ε) for any ε ∈ (0, ω)). Thus, the right-hand side of the last inequality is
non-negative, which proves the claim.

3.A.3 Proof of Proposition 3.4

From Lemma 3.6 it follows that there are only three possibilities regarding the sign of the
function δ − α on the interval (0, ω). Let us consider each of these possibilities separately
and analyze implications on the relation between the bidding strategies.
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• Possibility 1: Assume that (δ (t)− α (t)) < 0 for all t ∈ (0, ω) .

According to Lemma 3.5 we obtain that ḡ(t)
Ḡ(t) −

gt(t)
Gt(t)

≤ 0 for any t ∈ (0, ω). Further-
more, this leads to

L (y |x )
L̄ (y |x ) = e

x∫
y

[
ḡ(t)
Ḡ(t)

− gt(t)
Gt(t)

]
dt

≤ 1,

or, L (y |x ) ≤ L̄ (y |x ) , for any y < x. Therefore, under this scenario, we obtain that

β̄I(x)− β̃I(x) =
x∫
0

[L (y |x )− L̄(y |x )] dy ≤ 0,

for any x.

• Possibility 2: Here we suppose that (δ (t)− α (t)) > 0 for all t ∈ (0, ω). Analogously
to the previous possibility (only reverting all inequalities), one may show that, in this
case, we have that

β̄I(x)− β̃I(x) =
x∫
0

[L (y |x )− L̄(y |x )] dy ≥ 0,

for any x.

• Possibility 3: There is an interval [x∗, x∗∗] ⊆ (0, ω) such that δ (t)− α (t) = 0 if and only
if t ∈ [x∗, x∗∗] (possibly x∗ = x∗∗). Because of the last lemma (both part (i) and part
(ii)), it follows that δ (t)− α (t) > 0 for t ∈ (0, x∗) and δ (t)− α (t) < 0 for t ∈ (x∗∗, ω).
Thus, we may conclude the following:

ḡ(t)
Ḡ(t) −

gt(t)
Gt(t)

=


≥ 0, t ∈ (0, x∗)

= 0, t ∈ [x∗, x∗∗] .

≤ 0, t ∈ (x∗∗, ω)

Consequently, our further analysis leads to the establishment of the following inequal-
ities:

L (y |x )
L̄ (y |x ) = e

x∫
y

[
ḡ(t)
Ḡ(t)

− gt(t)
Gt(t)

]
dt

=


≥ 1, y < x ≤ x∗∗

≤ 1 x∗∗ ≤ y < x

?, y < x∗ ≤ x∗∗ < x

,

where “?” expresses uncertainty about the sign of the fraction under consideration.
That is, in that specific case we have no certain knowledge about the sign. Equivalently,
we may observe

L (y |x )− L̄ (y |x ) =


≥ 0, y < x ≤ x∗∗

≤ 0, x∗∗ ≤ y < x

?, y < x∗ ≤ x∗∗ < x

.
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In the same manner, for any y ≤ x1 < x2 we obtain:

L(y|x2 )
L̄(y|x2 )

/ L(y|x1 )
L̄(y|x1 )

= e

x2∫
y

[
ḡ(t)
Ḡ(t)

− gt(t)
Gt(t)

]
dt−

x1∫
y

[
ḡ(t)
Ḡ(t)

− gt(t)
Gt(t)

]
dt

,

= e

x2∫
x1

[
ḡ(t)
Ḡ(t)

− gt(t)
Gt(t)

]
dt

=


≥ 1, x1 < x2 ≤ x∗∗

≤ 1 x∗∗ ≤ x1 < x2

?, x1 < x∗ ≤ x∗∗ < x2

.

The last two steps make it possible to partially assess the sign of the difference between
the bidding strategies as following:

β̄I(x)− β̃I(x) =
x∫
0

[L (y |x )− L̄(y |x )] dy =

≥ 0, x ≤ x∗∗

?, x > x∗∗
.

Additionally, for any x∗∗ < x1 < x2 we have that β̄I(x2)− β̃I(x2) < β̄I(x1)− β̃I(x1),
that is, β̄I − β̃I is decreasing on (x∗∗, ω). Indeed,

[
β̄I(x2)− β̃I(x2)

]
−
[

β̄I(x1)− β̃I(x1)
]

=

x1∫
0

{[L (y |x2 )− L̄(y |x2 )]− [L (y |x1 )− L̄(y |x1 )]} dy

+

x2∫
x1

[L (y |x2 )− L̄(y |x2 )] dy

︸ ︷︷ ︸
≤0

≤
x1∫
0

{
L̄(y |x2 )

[
L (y |x2 )

L̄ (y |x2 )
− 1
]
− L̄(y |x1 )

[
L (y |x1 )

L̄ (y |x1 )
− 1
]}

dy

<

x1∫
0

L̄(y |x1 )

{[
L (y |x2 )

L̄ (y |x2 )
− L (y |x1 )

L̄ (y |x1 )

]}
dy

≤ 0 .

The strict inequality in the last expression comes from the fact that L̄(y |x2 ) first-order
strictly dominates L̄(y |x1 ). Indeed, we have that

L̄ (y |x2 )

L̄ (y |x1 )
= e
−

x2∫
x1

ḡ(t)
Ḡ(t) dt

< 1.

Therefore, finally, we may conclude that in the currently considered scenario, we have

either β̄I(x)− β̃I(x) =
x∫
0
[L (y |x )− L̄(y |x )] dy ≥ 0 for any x (if β̄I(ω)− β̃I(ω) ≥ 0) or

“single-crossing” where β̃I crosses β̄I from below at some point x̂ > x∗∗.
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All in all, summarizing results over all possibilities, we have obtained that exactly one of the
following three situations must always hold true:

1. β̄I(x)− β̃I(x) ≤ 0 for any private value x,

2. β̄I(x)− β̃I(x) ≥ 0 for any private value x, or

3. There is some x̂ ∈ (0, ω) such that β̄I(x)− β̃I(x) ≥ (≤)0 if and only if x ≤ x̂ (x ≥ x̂)
. In other words, we say that the strategies have “single-crossing” where β̃I(x) crosses
β̄I(x) from below at x̂,

which proves the claim of the proposition.

3.A.4 Details behind Remark 3.3

According to general formula for the expected revenue (please check equation (3.14)), we
have that

E
[

R̃I I
]
−E

[
R̄I I
]
= N

ω∫
0

(
m̃I I (x)− m̄I I (x)

)
f̃ (x)dx.

Let us now calculate m̃I I (x) and m̄I I (x). According to their definitions (for example, see
(3.15)), we obtain

m̃I I(x) =
ω∫
0

MI I (x, y) gx (y) dy

and

m̄I I(x) =
ω∫
0

MI I (x, y) ḡ (y) dy.

Since MI I (x, y) =

0, x ≤ y

y, x > y
at the truth telling equilibrium, we obtain

m̃I I(x) =
x∫
0

ygx (y) dy

and

m̄I I(x) =
x∫
0

yḡ (y) dy.

Therefore,

E
[
R̃I I]−E

[
R̄I I] = N

ω∫
0

[
x∫
0

y (gx(y)− ḡ(y)) dy

]
f̃ (x) dx. Q.E.D.
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3.A.5 Details behind Remark 3.4

From Remark 3.3, for N = 2 , the difference takes the following form:

E
[

R̃I I
]
−E

[
R̄I I
]
= 2

ω∫
0

 x∫
0

y (gx(y)− ḡ(y)) dy

 f̃ (x) dx.

Moreover, if N = 2, the relevant density functions are given as following:

gx(y) = α (x) f1(y) + (1− α (x)) f2 (y) ,

ḡ(y) = f̃ (y) =
1
2

f1 (y) +
1
2

f2 (y) ,

Plugging these equalities into the above calculated expression for the difference of the ex-
pected revenues, we obtain the following equality:

E
[

R̃I I
]
−E

[
R̄I I
]

= 2
ω∫
0

 x∫
0

y
[

α (x) f1(y) + (1− α (x)) f2 (y)−
1
2

f1 (y)−
1
2

f2 (y)
]

dy

 f̃ (x) dx

= 2
ω∫
0

 x∫
0

y
[(

α (x)− 1
2

)
f1(y) +

(
1− α (x)− 1

2

)
f2 (y)

]
dy

 f̃ (x) dx

= 2
ω∫
0

 x∫
0

y
(

α (x)− 1
2

)
( f1(y)− f2 (y)) dy

 1
2
( f1 (x) + f2 (x)) dx

=

ω∫
0

 x∫
0

y ( f1(y)− f2(y)) dy

(α (x)− 1
2

)
( f1(x) + f2(x)) dx

We further simplify the last expression. For this purpose, note that

(
α (x)− 1

2

)
( f1(x) + f2(x)) = α (x) ( f1(x) + f2(x))− 1

2
( f1(x) + f2(x))

= f1(x)− 1
2

f1(x)− 1
2

f2(x)

=
1
2
( f1(x)− f2(x))

Hence, overall the difference of the expected revenues is given as:

E
[

R̃I I
]
−E

[
R̄I I
]
=

1
2

ω∫
0

 x∫
0

y ( f1(y)− f2(y)) dy

 ( f1(x)− f2(x)) dx.
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Our further step is to show that the right-hand side of the last expression is non-negative.
For this goal, let us denote with Θ = Θ (y) the anti derivative of the definite integral
x∫
0

y ( f1(y)− f2(y)) dy. With this notation, we have that d
dy Θ (y) = y ( f1(y)− f2(y)) and

x∫
0

y ( f1(y)− f2(y)) dy = Θ (x)−Θ (0). Integrating by parts twice, we show that the expres-

sion is actually non-negative. Indeed, we may rewrite the difference between the expected
revenues as following:

E
[

R̃I I
]
−E

[
R̄I I
]

=
1
2

ω∫
0

 x∫
0

y ( f1(y)− f2(y)) dy

 ( f1(x)− f2(x)) dx

=
1
2

ω∫
0

(Θ (x)−Θ (0)) ( f1(x)− f2(x)) dx

=
1
2
(Θ (x)−Θ (x)) (F1 (x)− F2 (x)) |ω0

−1
2

ω∫
0

x ( f1(x)− f2(x)) (F1(x)− F2(x)) dx

= − 1
2

ω∫
0

x ( f1(x)− f2(x)) (F1(x)− F2(x)) dx

= −1
2

x · 1
2
(F1(x)− F2(x))2 |ω0 −

1
2

ω∫
0

(F1(x)− F2(x))2 dx


=

1
4

ω∫
0

(F1(x)− F2(x))2 dx ≥ 0. Q.E.D.



Chapter 4

Endogenous Auction Choice under
Possible Seller’s Manipulation
All-pay and Second-price Auction

So far we have considered models where bidders were the only participants with private
information - their private values. The uniqueness of this chapter (compared to the previous
ones) is that we include the possibility of a private piece of information also on the other
side of the trade - that is, on the seller’s side. This new feature of the model is introduced
by giving the seller the possibility of manipulating the auction game. The seller’s eventual
manipulation of auctions has been a hot topic for some time, and especially popular since
Internet auctions became prevalent on the market. There are different kinds of the manip-
ulation that, among other factors, depend on the auction’s form. Shill bidding (also known
as “phantom bidding” or “false-name bids”) is one of the earliest discussed forms of seller’s
manipulation. Even in early work such as in Vickrey (1961), where the second-price sealed
bid was introduced, the possibility of “shill” was considered (see, for example, lines on page
22 of the article). Afterwards, Cassady (1967) was one of the first to formally recognize and
consider this fraudulent seller’s behavior - though, in the book it is denoted as “trotting”
or “running” (for more details, please refer to the page 166 of the book). Shill bidding is a
situation where the seller places a bid (or has someone to place a fake bid on seller’s behalf)
in his own (open English or second-price) auction, in order to push the selling price up. More
precisely, in an English (ascending) auction, once there is only one (genuine) bidder left who
is interested in buying the good, the seller may make a “phantom bid” in order to make the
interested buyer bid higher and continue bidding. In this way, either the seller gets to sell his
good for the price equal to (or close to) the bidder’s highest private value (once truth-telling
is assumed) or the good stays unsold (once the “phantom bid” wins the auction). Under
the assumption of truth telling and being able to offer the good for sale again, the seller’s
shill bidding is always beneficial for him. Recent wide practical employment of the English
auction on online platforms (such as Ebay or similar ones) made seller’s manipulation even
easier (through multiple accounts) and at the same time rose awareness of this type of fraud
among potential buyers. This perception of a seller’s potential phantom bid causes bidders

95
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to counteract: bidders tend not to bid truthfully but choose to shade their bids. The interplay
of a seller’s shill bidding and a bidder shading bids was explored in numerous theoretical
and experimental studies. It led to a long debate on its economical consequences (e.g. so-
cial welfare or consumer surplus), adequate normative and security measures against the
fraudulent behavior, shill-proof bidding strategies and so on.1 Relevant to this chapter is the
link between shill bidding and the existence of a secret reserve price. These two terms were
treated as equivalent in Graham et al. (1990), where shill bidding was nothing more than
secretly setting a reserve price (in the paper, a so-called “non-constant reserve price”). The
price was revealed by the seller as a regular bid and the revelation comes about just before
the “non-manipulated” auction would close. Later, Bag et al. (2000) named the manipulation
as “flexible reserve price” as opposite to “fixed reserve price”, where latter case refers to the
regular public announcement of the reserve price and prior to the start of the bidding pro-
cess. The “flexible reserve price” is exactly the kind of manipulation we allow in the model
we develop in the following sections. Furthermore, instead of an English auction format, we
shall consider the second-price sealed-bid auction.

In the second-price auction, shill bidding is the situation when the seller, after learning the
winner’s bid and the price (that is, after observing the submitted bids), places a “false-bid”
which is just a bit below the winner’s bid. In this way, the seller maximizes the price of the
good without changing the winner of the auction. Note that, unlike the English auction, the
“phantom bid” certainly does not win the auction and the seller will never keep the object.
Thus, the “flexible reserve price” surely rises the selling price in the second-price sealed bid
without changing the winner. The collection of seminal works on shill bidding in sealed-bid
auctions, among others, include Rothkopf and Harstad (1995), Porter and Shoham (2005)
and Watanabe and Yamato (2008). The common elements of these three works are: (i) the
possible selling mechanism is either a second-price or first-price auction without a reserve
price, (ii) there are two types of seller: cheating and honest (non-cheating) seller, where
the distinction depends on having an opportunity to place a “flexible reserve price” - shill
bidding and (iii) the exact timeline of shill bidding is as follows: bidders submit sealed-
bids in the second-price auction → the seller observes all bids → the cheating seller has the
opportunity to place a phantom bid just bellow the highest bid (shill bidding) → the seller
reveals all submitted bids, the sale takes place and the auction closes. In an environment
where bidders have identically and independently distributed (i.i.d.) values, irrespective
of whether the possibility of there being a cheating seller is endogenous or exogenous (for
more details, please refer to Rothkopf and Harstad (1995) and Porter and Shoham (2005)),
the studies show that the non-cheating sellers should always favor the first-price auction over
the second-price auction.2 In other words, the studies supported the critique and arguments
against use of the second-price auction.3 On the other side, in the model of interdependent

1The collection of such studies include, for example, Graham et al. (1990), Bag et al. (2000), Sinha
and Greenleaf (2000) and Chakraborty and Kosmopoulou (2004).

2Porter and Shoham (2005) allow cheating also on the bidders’ side in the first-price auction by being
able to spy and observe the highest competing bid and,thus, optimally shade own bid.

3Arguments and critique on applicability of the second-price auction may be found in Rothkopf
et al. (1990) or Rothkopf (2007), for instance.



97

private values developed in Watanabe and Yamato (2008), there exists an equilibrium where
both types of seller choose to sell simultaneously via the second-price auction (when the
probability of the cheating is relatively small), and the pooling is shown to be robust in a
certain sense.

In the model that follows, we consider the case of the i.i.d. private values. There also exists
two types of sellers: manipulative (cheating) and honest. The only difference between these
two types is that the cheating seller has an opportunity to manipulate the auction in the way
previously described under the term “flexible reserve price”. More precisely, in this case, the
cheating seller has the chance to send a selfless agent who bids a fixed amount on the seller’s
behalf and the value of agent’s bid is defined by the seller. Unlike the literature, the timing
of the manipulation in our model is different. In our framework, the seller neither can have
early access to the submitted bids nor can take secret action after learning the bids. Similarly,
as discussed in Vickrey (1961), we assume that there is a trustful platform or an auction
house, independent of seller and bidders that collects submitted bids and reveals them to all
participants only at the closing of the auction. Therefore, the manipulative seller’s agent may
only submit the bid at the same time the other regular bidders do. In this way, the cheating
seller will probably not boost the selling price to the bidders’ highest value, but according
to Myerson (1981), with the optimal choice of the agent’s bid, the seller could get the same
expected revenue as in the optimal auction, once the range of standard auction formats4 are
available to the seller. Moreover, according to the revenue equivalence theorem, the optimal
outcome may be achieved via any standard auction - the seller has to optimally adjust the
phantom bid to fit the chosen format. The set of allowed auction formats are only standard
ones, in particular only the following two: the second-price auction and the all-pay auction.
There are many reasons why we chose the second-price auction as the available format in
our model: its theoretical importance, its ex post dominant strategy, the wide practical use
of theoretically equivalent auction forms and so on. The all-pay auction is considered as a
possible selling mechanism because we believe, at first glance, that the cheating seller may
exploit the auction format more than any other standard auction. Namely, in the all-pay
auction, all bidders pay their bids (irrespective if they win or not) and the bidder with the
highest bid wins the good. Thus, we may imagine that the cheating seller can choose the
all-pay auction and send an agent who bids very high, such that the good stays unsold (as
the fake bid wins) and the seller collects the bids from all bidders. One of our goals is to
find out if the cheating seller is indeed better off with an all-pay auction (where the agent’s
bid is very high) than with the second-price auction with the optimal (hidden) reserve price.
Moreover, it is interesting to see whether the honest seller will still be indifferent between
these two standard auctions (as should be the case according to the revenue equivalence
principle). Unlike related work, in our framework, the cheating seller can successfully cheat
in all available auction formats.5 The recent literature, as mentioned above, suggested that
in the case of i.i.d. private values, the honest seller should prefer the “non-manipulative”

4The standard auctions are the auctions where the good is won by the bidder with the highest bid.
5The cheating seller in Rothkopf and Harstad (1995), Porter and Shoham (2005) and Watanabe and

Yamato (2008) can not influence the outcome of the first-price auction by manipulation at all, thus, the
manipulation is effective only in the second-price auction.
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first-price auction over the “manipulative second-price auction”. With our set-up, we explore
the honest seller’s choice between an all-pay auction and a second-price auction, both of a
“manipulative” nature. Similar to Watanabe and Yamato (2008), the auction game takes the
form of a signaling game, where nature chooses the seller’s type and the seller sends a signal
to bidders by choosing the auction format. Therefore, this signaling effect (for example, the
choice of an all-pay auction might be interpreted as a signal sent only by a cheating seller)
and its influence on bidders’ behavior must be investigated. At first glance, it is reasonable to
assume that once the bidders doubt that the seller is a manipulative one and they are asked to
play in an all-pay auction, they will probably bid lower than in the usual standard set-up (or
maybe, even refuse to bid). Indeed, our analysis of the model confirmed the existence of this
bidding shade effect and determined its magnitude. Moreover, the final results show that the
bid shading of bidders has a stronger influence on the equilibrium outcomes than the seller’s
possible manipulation gain. Assuming that the participants use pure strategies, we obtain
that it is in the seller’s best interest to choose a second-price auction, irrespective of his type.
Moreover, there are very rare circumstances when the honest seller may choose the all-pay
auction and the manipulative seller runs the second-price auction. However, this equilibrium
outcome is very unstable and not robust against the smallest change of bidders’ belief on
seller’s type. Unlike the related frameworks with i.i.d. values and seller’s fraudulent action
developed in Rothkopf and Harstad (1995) and Porter and Shoham (2005), our model argues
and supports the use of the second-price auction and shows its robustness in a case of the
eventual seller’s shill bidding.

The rest of the chapter is organized as follows. Section 4.1 introduces the model and gives
the first insights into its components. In Section 4.2, we look at the signaling game’s weak
Bayesian Nash equilibria in pure strategies and characterizes them for the case of our model.
We show that the only robust equilibrium is pooling on the second-price auction. Our final
comments are provided in Section 4.3, whereas all proofs are contained in Appendix 4.A.

4.1 The Model

Similar to the models from previous chapters, participants in our model are: one seller with
an indivisible good for sale and N potential buyers, so-called bidders. As before, the bidders
have private values which are realizations of random variables Xis. We assume that Xis are
independently and identically distributed (i.i.d.) on the final interval [0, ω] with respect to
a continuous cumulative distribution function (c.d.f.) F with density function (d.f.) f . We
assume that the hazard rate of F is an increasing function. In addition, F is assumed to
be strictly increasing and continuous. These are assumptions also used in Myerson (1981),
which ensures the existence of the optimal standard auction (with reserve price). This time,
we assume that the seller attaches the value x0 ∈ [0, ω] , ω ∈ R++ to the object. That is,
unlike in the previous chapters, the seller’s value x0 is not necessary equal to zero. There
are two types of seller: an honest (non-cheating) and manipulative (cheating) seller. The
type of the seller is known only to the seller, though we assume there is some bidders’ (a
priori) common prior about the seller’s type. Namely, with probability p ∈ (0, 1), the seller
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is believed to be manipulative. What makes the seller manipulative, is the fact that the seller
may send an agent to the auction to bid a fixed amount a. The agent himself has no personal
interest - we may think of an agent as a seller’s double account on some online auction
platform.

Independent of type, the seller may choose either a second-price auction or an all-pay auction
for the sale, or to give up on the sale before the bidding starts. We chose to include the
second-price auction in our current model, because of its theoretical and practical importance.
The choice of the an all-pay auction was due to the fact that each bidder has to pay their own
bid and, thus, we believe that the agent might bring the most profit to the cheating seller
in an all-pay auction compared to other standard auctions. In order to be in line with the
assumption that bidders do not know the seller’s type or, equivalently, they are not supposed
to be able to recognize the agent, we assume anonymity and physical barriers among bidders.
In other words, we assume that bidders are not able to observe other participants in the
auction (one sufficient condition could also be that N is large enough), so that they can not
anticipate with full certainty whether there is an agent or not.

4.1.1 Feasible Bids

Theoretically, we could consider any function of private value as the possible bidding strat-
egy of a bidder. Furthermore, bidders might have different strategies. However, due to
anonymity and i.i.d of private values, we assume that all bidders follow the same bidding
pattern; that is, we are searching for symmetric equilibria. Based on practical observations
we impose some further assumptions on the characteristics of the bidding behavior. For this
purpose, let σB =

(
βI I (·) , βAll (·)

)
be a typical feasible bidding behavior of a typical bid-

der, where βI I (·) is her bid function once she is participating in a second-price auction and
βAll (·) is the bidder’s bid function in an all-pay auction. For further analysis we assume
that, for any A ∈ A = {I I, All} it holds true:

• βA (0) = 0,

• βA (x) ≤ x for x ∈ [0, ω],

• βA is non-decreasing and

• βA is differentiable almost everywhere.

Note that βA (x) = 0 for any x is a feasible strategy and it describes the situation when
bidders reserve the right not to participate in the auction. According to the existing literature,
these assumptions are not too restrictive and in line with our intuition on bidding behavior.
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4.1.2 Beliefs

As the type of the seller and the agent’s bid are unknown to a bidder and are crucial for the
bidder’s behavior, it rises naturally that there is a need to model the bidder’s beliefs about
the honesty of the seller and the agent’s bid. We denote µ =

((
µI I , BI I) ,

(
µAll , BAll

))
as a

belief system of bidders, where, for any auction format A the following hold true:

• µA is the probability that the seller is believed to be manipulative once he chose the
auction A; thus, 1− µA is the probability that a bidder attaches to the event that the
seller is honest in the auction A, and

• BA (a) is c.d.f. over [0, ω], which represents a bidder’s belief over the agent’s bid a in
the auction format A, conditional on the event that the seller is cheating.

As feasible beliefs we take any tuple µ, with µI I , µAll ∈ [0, 1] and BA being a deterministic
distribution. Mathematically, we consider only BA (·) that are degenerate distributions; that
is, the bidders believe that only one certain particular value must be the agent’s bid. In the
case where BA (·) puts all probability mass on the agent’s bid a ∈ [0, ω], we shall introduce a
simplified notation BA ≡ a, hopefully without risking any ambiguities in notation. It seems
that the deterministic beliefs are the most natural and appealing as we assume that the seller
is allowed to choose only pure strategies. The seller’s exact feasible choices are contained in
the following lines.

4.1.3 Seller’s Options

Let us denote by σS = (AH , (AM, a)) any seller’s pure strategy profile, where AH denote the
honest seller’s choice of auction format and (AM, a) denotes the manipulative seller’s choice
of auction format, and the agent’s bid respectively. So, if AS = I I, we assume that the seller
chooses the second-price auction, whereas AS = All means that the seller chooses an all-pay
auction format (for any seller’s type S). We assume that the seller exclusively uses the pure
strategies σS with a ∈ [0, ω]. In addition, we implicitly assume that a seller always has the
right to choose not to sell the good, which must be announced prior to bidders being called
to place bids.

Lastly, it is clear that our model may be seen in the spirit of the signaling game introduced
by In-Koo Cho (1987). The game tree, associated to our model, is illustrated in Figure 4.1.
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Nature
Manipulative

Seller

No Sale

[µI I , BI I ]

βI I

(I I, a)

[µAll , BAll ]

βAll

(All, a)

[p]Honest
Seller

No Sale

[1− µI I ]

βI I

I I

[1− µAll ]

βAll

All

[1− p]

Bidders

Bidders

Figure 4.1: The game tree of the model (with beliefs).

Note that we have depicted only one bidder as we assume anonymity and symmetry among
them. Thus, it suffices to represent one typical bidder. Let us continue with analyzing the
optimal behavior and equilibrium outcomes in this particular set-up.

4.2 Equilibrium Behavior

In this section we shall characterize and discuss the equilibrium behavior of the participants.
As our model is a kind of signaling game with pure strategy profiles, we consider pure
weak Bayesian Nash equilibria. Moreover, we are interested when both types of seller do not
choose to exit the auction process, but rather choose to offer the good for sale. As there are
only two formats of auction involved, there are four potential candidates for equilibria. It is
interesting to discover which type of equilibrium arises: pooling (when both types of sellers
choose to run the same auction format) or separating (where different types of seller choose
different auctions). Due to the existence of the manipulation, it seems that the cheating seller
will go for an all-pay auction, whereas the honest seller might be indifferent between the two
auctions. However, we should take the signaling effect into consideration. It is natural to
expect that bidders will act more cautiously in the all-pay auction and believe that it is more
probable that they face a cheating seller in the auction. Consequently, we should expect that
bidders will decrease their bids. Therefore, at first glance, one could speculate that the honest
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seller will prefer a second-price auction over an all-pay, due to negative effect of signaling on
the bids. The equilibrium choice of the manipulative seller remains unclear because of the
two opposite effects that the agent’s bid and the choice of auction format have. Thus, let us
analyze the equilibrium patterns and characterize them.

For this goal, we shall firstly provide the definition of a pure weak Bayesian Nash equilibrium
(further denote as PWBNE). We just translate the general defining properties of the concept
(given, for example, as Definition 9.C.3 on page 285 in Mas-Colell et al. (1995) ) in to the
language of our set-up.

Definition 4.1. A pair of feasible seller’s and bidders’ strategies
(
σ∗S , σ∗B

)
with feasible belief

system µ∗ =
((

µI I∗ , BI I∗
)

,
(

µAll∗ , BAll∗
))

is a pure weak perfect Bayesian Nash equilib-
rium (PWBNE) if:

(i) σ∗B =
(

βI I∗ , βAll∗
)

are the bidders’ sequentially rational responses to σ∗S with belief µ∗,

(ii) σ∗S = (AH∗ , (AM∗ , a∗)) are the seller’s sequentially rational responses to σ∗B and

(iii) µ∗ is derived according to Bayes’ rule, whenever possible (that is, along the equilibrium
path).

In order to determine the equilibria we shall start by analyzing the consequences of the
participants’ sequential rationality. Let us start with the bidders’ perspective. More precisely,
in the following lines we derive the optimal response of the bidders to any given seller’s
strategy and given any feasible belief system.

4.2.1 Bidders’ Sequentially Rational Bids

Here we solve the problem that is being considered by a buyer once asked to place a bid.
Thus, we assume that the seller’s choice of auction format and the buyer’s belief about
the honesty of the seller are given. In other words, we determine the best response of a
bidder given that all other parameters are fixed. Moreover, we shall only consider symmetric
equilibria, due to anonymity and the i.i.d. assumption on bidders and their private values.
As there are two possible auction formats (and hence, two information sets of a bidder - see
the game tree in Figure 4.1) which might take place, we analyze a buyer’s best response at
each information set, separately. The following lemma summarizes the results of the analysis.

Before giving the formulation of the lemma, let us introduce some notation. Let G and g
denote the c.d.f. and the d.f for the second highest private values among any N − 1−tuple
of private values. Let us denote this random variable as Y1 , that is, let Y1 = max

j 6=1
Xj. More

precisely, since values are i.i.d., we define the functions as follows:

G(y) = FN−1(y)

g(y) = (N − 1)FN−2(y) f (y) ,
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for any y ∈ [0, ω]. As we have seen in previous chapters, the second-highest private value
among opponents Y1, plays an important role in shaping a bidder’s own bid - also the case
within this chapter.

Lemma 4.1. A bidder’s pure best sequentially rational response to any seller’s choice σS =
(

AH ,

(AM, a)
)

with belief system µ =
((

µI I , BI I) ,
(

µAll , BAll
))

is given by σB =
(

β̃I I (·) , β̃All (·)
)

,

where β̃I I (x) is truth-telling and β̃All is characterized in the following lines.

If BAll ≡ a; that is, in the case the bidder believes that the manipulative seller’s agent certainly bids
a, then the bidder behaves as follows. If there exists a private value x̃ ∈ [0, ω] which satisfies the
following equality

(1− µAll)

x̃∫
t

0

g (t) dt + µAll x̃G (x̃) = a (4.1)

then the optimal bidding strategy in the all-pay auction is given by

β̃All (x) =


(1− µAll)

x∫
0

tg (t) dt, x < x̃

a +
x∫̃
x

tg (t) dt, x ≥ x̃
. (4.2)

Otherwise, if there is no such private value x̃, then the bids take the following pattern:

β̃All (x) = (1− µAll)

x∫
0

tg (t) dt, x ∈ [0, ω] . (4.3)

Remark 4.1. For any fixed µAll < 1, equation (4.1) has no solution in the interval [0, ω], if and

only if a > (1− µAll)
ω∫

t
0

g (t) dt + µAllω. Moreover, note that for µAll = 0 and any feasible

belief BAll , the bidders bid according to β̃All (x) =
x∫
0

tg (t) dt, which is the bidding behavior

that occurs in the standard all-pay auction.

For the case of being invited to place a bid in the all-pay auction, the proof of the lemma
is similar to the heuristic approach we used in Section 3.2, when we derived the bidding
strategies in the first-price auction. The only difference is that once calculating the bidder’s
payoff from a bid, we have to take into account beliefs µAll and BAll and replace the rules of
the first-price auction by the respective rules of the all-pay auction. All steps of the analysis
can be found in Section 4.A.1 of the chapter’s appendix.
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Note that the analysis resulted in stating that the bidders will bid truthfully in the second-
price auction, irrespective of their beliefs. The intuition behind the truth telling is as follows.
If the bidder faces an honest seller, then we are back to the standard second-price model
where truth-telling is the ex post weakly dominant strategy. In the case of encountering
the manipulative seller who is believed to send an agent to bid a, the bidder perceives the
situation as the second-price auction with a reserve price, where truth-telling also turns out
to be weakly dominant. So for any belief a bidder holds, once asked to participate in the
second-price auction, her best choice is to bid her own private value.

However, the beliefs matter once the bidder bids in the all-pay auction. Indeed, in the case
where bidders believe that the agent’s bid a is very high (meaning that equation (4.1) has no
solution in the interval of private values, or x̃ = ω), the bidding pattern takes the form of a
scaled version of the bidding strategy that they would use in the scenario with the standard
all-pay auction. More precisely, equation (4.3) is nothing more than saying that the bidders

bid β̃All (x) = (1− µAll)β̄All (x), where β̄All (x) =
x∫
0

tg (t) dt is the bidding strategy in the

standard all-pay auction.6 Therefore, once the bidders believe that the cheating seller sends
an agent who bids high enough, the bidders will behave cautiously and shade their bids.
How much they shade their bid, depends on their belief µAll about honesty of the seller they
face. For example, in the extreme cases of the belief µAll : either they behave “normally”,
once they exclude the possibility that the seller is a manipulator (µAll = 0) or they do not
participate at all, once they believe that the seller must be a manipulative one (µAll = 1).
Therefore, here we capture the negative effect that signaling the seller’s type via the all-pay
auction has on bids.

Let us consider the other case, when bidders believe that the agent’s bid is low enough.
The last lemma states that the optimal bidding pattern has a cut-off shape specified by (4.2).
Bidders with private values lower than the cutoff value x̃ still behave as in the previous case;
that is, they shade the bids they would place in the standard all-pay auction. However, the
bidders with higher values bid more aggressively than otherwise and bid at least as high as
the believed agent’s bid. It is interesting to compare this behavior to the one that occurs at
the equilibrium in an all-pay auction with a reserve payment equal to a. In the case of the
all-pay auction with the reserve payment equal to a, the bidding strategy is β̄a

All where

β̄a
All

(x) =


0, x < x̄a

a +
x∫̄
xa

yg(y)dy, x ≥ x̄a
,

and x̄a is the solution of the next equation:

6A derivation of the bidding strategy in the standard all-pay auction might be found in Krishna and
Morgan (1997).
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G(x)x = a.

At first glance, we can see that the bidders with higher private values behave as if they are
taking part in an all-pay auction with reserve payment a. However, the cutoff values differ. A
closer look at the defining equations for cutoffs x̃ and x̄a tells us that the cutoff in our model
is greater than the cutoff value in the regular all-pay auction with reserve payment a. Thus,
the bidders with values between x̄a and x̃ are more cautious in our set-up than they would
be in the regular model. On the other hand, the bids of the bidders with lower private values
seem to be higher in our model. Indeed, whereas in the standard all-pay auction with reserve
payment a, the low private value bidders refuse to participate; in our model they eventually
do participate, depending on their belief on the honesty of the seller. If there is the smallest
hope that the seller is an honest one (µAll < 1), those bidders are going to bid positive
amounts in the all-pay auction. Therefore, even though the bidders with “medium values”
shade their bids, the bidders with lower values are willing to bid in the all-pay auction once
they believe there is a chance to deal with the honest seller. In this way, we have captured
both the manipulation’s positive and negative effect on the bids from the seller’s point of
view. Which of these two opposite effects prevails and drives the expected revenue is left to
be checked in the following lines.

4.2.2 The Seller’s Perspective

Now we consider the seller’s perspective, i.e. we determine his best response to bidders’
bids. As we assume that the game is common knowledge, we allow the seller to antic-
ipate the claims from Lemma 4.1 and assume that the bidders will use strategy profile
σ̃B =

(
β̃I I (·) , β̃All (·)

)
, as defined in the lemma given by belief system µ. The final goal

of this section is to determine situations when a seller prefers a second-price auction over an
all-pay or vice versa. As there are two types of seller, we consider each type separately.

The Honest Seller

Here we look at a best response of the honest seller given only feasible (pure) strategies.
This seller type has the choice between two auction formats: the second-price or the all-pay
auction. Let us denote with uH(I I |σ̃B ), his expected revenue from running the second-price
auction. If the seller chooses the second-price auction, according to Lemma 4.1, he expects
truthful bids. Thus, the seller’s expected revenue coincides with the expected revenue in the
standard second-price auction, which we denote as ERI I . Consequently, it is not hard to
conclude that the expected revenue to the honest seller from truth-telling in the second-price
auction is equal to the expected value of the second-highest private value whose c.d.f. and
d.f. are respectively given by
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H(y) = FN(y) + NFN−1(y) (1− F(y)) = NFN−1(y)− (N − 1) FN (y) (4.4)

h(y) = N(N − 1)FN−2(y) f (y) (1− F (y)) . (4.5)

for any y ∈ [0, ω]. So, we have just shown that

uH(I I |σ̃B ) = ERI I (4.6)

= N
ω∫

0

 x∫
0

yg(y)dy

 f (x)dx

=

ω∫
0

yh (y) dy.

Let us now consider the seller’s expected payoff from the all-pay auction, denoted as
uH(All |σ̃B ). In the case of the non-existence of the cutoff value x̃ on the open interval
(0, ω), for strategy β̃All (·) (that is, in the case where µAll = 1, or, the agent is believed to

bid a > (1− µAll)
ω∫

t
0

g (t) dt + µAllω ) we have that β̃All =
(

1− µAll
)

β̄All , where β̄All is the

bidding pattern from the standard all-pay auction. Using the revenue equivalence principle
in this particular case, it follows that the honest seller, by running the all-pay auction, expects
to obtain

uH(All |σ̃B ) =
(

1− µAll
)

ERI I ,

which is definitely less than the expected payoff in the second-price auction.

Finally, let us look at the case where β̃All has a cutoff shape. Then, the best assessment we
obtain for the expected revenue to the seller is given by the following expression:

uH(All |σ̃B ) = N
ω∫
0

β̃All (x) f (x)dx (4.7)

with β̃All being defined by (4.2).

In addition, note that the seller might always decide to keep his object and not sell, in which
case his gain will be x0. Since we explored all options and scenarios that the honest seller
might be involved in, we may straightforwardly determine the optimal choice of the seller.
The findings are given in the following lemma:
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Lemma 4.2. Let us assume that bidders bid according to σ̃B =
(

β̃I I , β̃All
)

. The following claims
hold true.

(i) If β̃All is given by (4.3) and x0 ≤ ERI I , then the honest seller chooses to sell via second-price
auction and his expected revenue is

uH(I I |σ̃B ) = ERI I .

(ii) If β̃All is defined by (4.3) and x0 > ERI I , then the honest seller decides to keep the object. The
object is kept by either not running any auction or, if µAll = 1, by choosing the all-pay auction. In
this case, his expected revenue is equal to his valuation of the object, that is x0.

(iii) If β̃All takes the form as in (4.2), then the honest seller strictly prefers the second-price auction
over the all-pay auction if and only if

ω∫
0

 x∫
0

yg(y)dy− β̃All (x)

 f (x)dx > 0.

If we have = instead of > in the last expression, then the honest seller is indifferent between the
second-price and all-pay auctions. His expected revenues from the second-price auction and all-pay
auction are given by (4.6) and (4.7), respectively. In the case where the seller’s value attached to the
object x0 is lower than maximum of the expected revenues, he will decide to retain the object and no
sale takes place. Otherwise, the seller chooses the (strictly) preferred auction.

The proof trivially follows from the considerations prior to the lemma. Thus, we have just
provided the full characterization of the decision making process that takes part in the honest
seller’s mind, once he holds certain beliefs about bidder’s behavior. Even though the case
(iii) still has vague characterization, as we shall see later, deeper insights are not needed for
the purpose of analyzing the equilibria from Definition 4.1. Let us now look at the analogous
problem of the manipulative seller.

The Manipulative Seller

The best response of the manipulative seller is the topic in this part of the chapter. We
consider the case where the seller predicts that bidding strategies are given by σ̃B =(

β̃I I (·) , β̃All (·)
)

. Unlike the honest seller, the manipulative seller has one additional ac-
tion: sending the agent to bid certain amount. Thus, in order to calculate the expected
revenue of the cheating seller, we have to determine the optimal agent’s bid in each available
auction format. By considering the expressions of the expected revenues and solving the
raised optimization problems, we obtain the following claims regarding the agent’s bid and
the expected revenue:
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Lemma 4.3. Let us consider the choice made by the cheating type of the seller.

(i) If the manipulative seller chooses the second-price auction, then the agent’s role is identical to the
reserve price in the regular second-price auction. Thus, the agent bids amount ãI I , that is the optimal
reserve price in the second-price auction and hence is the solution of the equation

ãI I = x0 +
1− F(ãI I)

f (ãI I)
. (4.8)

Furthermore, the seller’s expected revenue with this choice will be

uM(I I, ãI I |σ̃B) = ERI I + ψ̃
(

x0, ãI I
)

with the function ψ̃ defined as

ψ̃ (x0, a) =
a∫
0

H (y) dy− FN (a) (a− x0) , (4.9)

for any pair (x0, a).

(ii) In the case where the manipulative seller chooses an all-pay auction, his agent bids ãAll with

ãAll = ω.

In this case, the expected payoff to the seller is given by

uM(All, ãAll |σ̃B) = x0 + N
ω∫
0

β̃All (x) f (x) dx.

The intuition behind the last lemma is simple. Since we have already inferred that the bidders
will bid truthfully in the second-price auction, the manipulation through an agent in this
auction has the same impact a regular reserve price has. Therefore, it is clear that the agent
will be instructed to bid the optimal reserve price. However, the manipulation in the all-pay
auction is different to just setting the reserve payment. This is because in the regular set-
up, once a seller publicly announces a reserve payment, the seller will not obtain the bids
lower than the reservation payment. However, in our model, the cheating seller gets paid all
payments, irrespective of agent’s bid. Thus, in our model we have that (i) the seller always
gets paid all bids and (ii) he sometimes sells the good, depending on whether the highest
bidders’ bid outbids the agent’s bid. Consequently, it is clear that the best outcome for the



§4.2 Equilibrium Behavior 109

manipulative seller in the all-pay auction is to both collect all bids and keep the object. Hence,
the seller will send an agent who will definitely outbid all bids. This outcome is almost
surely achieved if the agent bids the highest possible private bid - that is, ω. Therefore, if
the manipulative seller chooses to run an all-pay auction he will “fake” the sale, in the sense
that, no real sale will take place (as his agent will always win the auction) and he will gather
all bids. The complete proof of the last lemma can be found in Appendix 4.A.2.

Remark 4.2. Note that, unlike the honest seller, the manipulative seller will never use the
outside option - the option not to sell via an auction. Indeed, running the all-pay auction
with an agent bidding the value ω makes the seller keep the object and eventually get positive
bids. Moreover, the second-price auction with an agent bidding the optimal price ãI I will give
him expected revenue at least as high as x0. Namely, if it is optimal that the agent bids ãI I ,
it must be that the seller obtains expected revenue at least as high as in the case where the
agent would bid ω in the second-price auction. In the case in which the agent bids ω in the
second-price auction, the sale will not take place and the seller will keep the object, meaning
his expected revenue is exactly x0. A close inspection of the proof of the last lemma says that
uM(I I, ãI I |σ̃B) > x0 for x0 < ω and uM(I I, ãI I |σ̃B) = x0 for x0 = ω.

Considering each participant in this model separately, in the previous part of this section we
have analyzed their optimal behavior. In particular, we have analyzed the behavior of the
participants that satisfies the requirements of the sequential rationality - the requests (i) and
(ii) from Definition 4.1. Let us now consider the last requirement of the equilibrium - the
consistency of the belief system and therefore, fully determine the set of the equilibria.

4.2.3 Equilibria: No Manipulation via All-Pay Auction

In the following lines we capture the main findings of the analysis in our model. The follow-
ing proposition characterizes all PWBNE of the model, where the sellers do not go for the
outside option but choose to sell via an auction. Rather than using the language of set theory
in order to express the set of all equilibria (which, by the way, can be directly derived from the
proposition’s proof), we provide the full characterization in the terms of economics. Namely,
it turns out that the signaling effect (and, hence bid shading) is stronger than the manipu-
lation effect, which leads to no equilibria when the manipulative seller cheats in the all-pay
auction. The best outcome the manipulative seller in our model gets is the one obtained
by running the second-price auction with the optimal price. The honest seller also (almost
surely) prefers the second-price auction over the all-pay auction, due to the bid shading that
may occur in the all-pay auction. Here is a summary of the findings:

Proposition 4.1. (Characterization of the Pure Weak Perfect Bayesian Nash Equilib-
ria) Let us look at the set of all pure weak perfect Bayesian Nash equlibria such that both seller types
decide to run an auction format. The following statements give full characterization of the involved
seller’s actions at the equilibria:

(i) (Non-possibility of manipulation via an all-pay auction) There is no such equilibrium where
both seller types run an auction and the manipulative seller chooses an all-pay auction.
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(ii) (Preference for trade via a second-price action) If the bidders doubt they might face the ma-
nipulative seller in an all-pay auction (that is if the belief µAll

∗
> 0), the honest seller strictly prefers

the second-price auction. In the case of no doubt about the honesty of the seller, the honest seller is
indifferent between the second-price and all-pay auctions.

For the goal of proving the above claims, we shall firstly give a lemma that explores the
properties of the function ψ̃ defined in (4.9). Remember that the function measures the
benefit that the manipulative seller gets from the agent’s shill bidding in the second-price
auction. The next lemma, in particular, explores how the benefit compares to the good’s
worth (which from the seller’s point of view is equal to x0), once the agent bids the optimal
reserve price. Let us look at the claims:

Lemma 4.4. For any N ≥ 2 there exists x̄0 such that :

• x0 < x̄0 if and only if ψ̃
(

x0, ãI I (x0)
)
> x0,

• x0 = x̄0 if and only if ψ̃
(

x0, ãI I (x0)
)
= x0,

• x0 > x̄0 if and only if ψ̃
(

x0, ãI I (x0)
)
< x0 and

• ψ̃
(

x0, ãI I (x0)
)
− x0 decreases with x0,

where ψ̃ and ãI I are defined in Lemma 4.3.

The details of the lemma’s proof might be found in Appendix 4.A.3. We proceed by proving
the statements of the last proposition.

Proof. Let us firstly identify elements of the set of equilibria considered in the proposition.
As we consider only those PWBNE where each seller type chooses an auction format, there
are four possible candidates: two pooling equilibria and two separating equilibria. In the
following lines we check whether each of these candidates can be a part of a PWBNE.

1. Pooling on the all-pay auction

Here we check if there is a PWBNE such that the seller’s strategies are σ∗S = (All,(
All, aAll∗

))
. For a moment, suppose that such a PWBNE exists. Let µ∗ =((

µI I∗ , BI I∗
)

,
(

µAll∗ , BAll∗
))

be an arbitrary belief system associated with the equi-

librium. According to Lemma 4.3, it must be aAll∗ = ω. Furthermore, from Bayes’ rule,
it follows that µAll∗ = p ∈ (0, 1) and BAll ≡ ω. Consequently, according to Lemma 4.1,
σ∗B =

(
βI I
∗
, βAll∗

)
is such that βAll∗ takes the form (4.3). However, due to Lemma 4.2,

it is not optimal for the honest seller to choose the all-pay auction, contradicting the
assumption. Thus, there is no equilibrium with pooling on the all-pay auction.
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2. Pooling on the second-price auction

It is easy to check that for any value x0 ≤ ERI I , the strategy profiles σ∗S =(
I I,
(

I I, aI I
∗))

and σ∗B =
(

βI I
∗
, βAll∗

)
with aI I

∗
= ãI I , βAll∗ (x) = 0, β (x) = x and any

belief system µ∗ such that µAll∗ = 1 and BAll∗ ≡ ω is a PWBNE. Indeed, by deviating
to the all-pay auction, both sellers would get an expected revenue of x0, which is less
than or equal to the one they get with the sale via a second-price auction. In particular,
Remark 4.2 argues that the manipulative seller has no incentive to change the auction
format.

3. Separating candidate: Honest seller runs a second-price auction and manipulative
seller chooses an all-pay auction

Here we check if there is a PWBNE such that the seller’s strategies are σ∗S = (I I,(
All, aAll∗

))
. Let us assume that such a PWBNE exists. As above, we may conclude

that aAll∗ = ω. Let µ∗ =
((

µI I∗ , BI I∗
)

,
(

µAll∗ , BAll∗
))

be the arbitrary belief system

associated with the equilibrium. Bayes’ rule implies that it must be µI I∗ = 0, µAll∗ = 1
and BAll ≡ ω. According to Lemma 4.1, σ∗B =

(
βI I
∗
, βAll∗

)
is such that βAll∗ (x) = 0

and βI I
∗
(x) = x, for any private value x. However, this is in contradiction to the

sequential rationality of the manipulative seller because at this equilibrium the seller
gets x0, whereas deviating to the second-price auction would give at least x0. Only
in the case where x0 = ω would the manipulative seller choose an all-pay auction
for the sale. However, for x0 = ω, the honest-seller would keep his object and thus
deviate from running the second-price auction to the all-pay auction or to no sale (as
ERI I < ω). Hence, there is no such equilibrium where the honest seller runs the
second-price and the manipulative seller chooses an all-pay auction.

4. Separating candidate: Manipulative seller chooses a second-price auction and the
honest seller runs an all-pay auction

Let us assume that there is a PWBNE such that σ∗S =
(

All,
(

I I, aI I
∗))

is a part of

it. According to Lemma 4.3, it must be aI I
∗
= ãI I . From Bayes’ rule for the belief

system, applied along the equilibrium path, it follows that µI I∗ = 1 and µAll∗ = 0.
Accordingly, it follows that the bidders behave as if they are in standard auctions:

truth-telling in the second-price and βAll∗ (x) =
x∫
0

tg (t) dt (see Lemma 4.1 and remarks

below it). In this particular case of the belief system, it turns out that the honest seller
is indifferent between the two auction formats, and thus, sequential rationality of the
seller is satisfied (unless x0 > ERI I , when the seller keeps object). It is left to check the
sequential rationality of the manipulative seller. The choice of the second-price auction
for the manipulative seller will be sequentially rational if and only if:
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uM(I I, aI I
∗
|σ∗B ) ≥ uM(All, ω |σ∗B )

m
ERI I + ψ̃

(
x0, ãI I

)
≥

(
1− µAll∗

)
ERI I + x0

m
ERI I + ψ̃

(
x0, ãI I

)
≥ ERI I + x0

m
ψ̃
(

x0, rI I
)
≥ x0.

As Lemma 4.4 shows, the last inequality is satisfied for x0 ≤ x̄0. Consequently, we may
conclude that σ̃S =

(
All,

(
I I, aI I

∗))
is a PWBNE, if and only if x0 is low enough, or in

particular if x0 ≤ min
{

x̄0, ERI I}.

Overall, once we consider any PWBNE in the set of such equilibria where both sellers are
to sell their object, we conclude that either σ∗S =

(
I I,
(

I I, aI I
∗))

or σ∗S =
(

All,
(

I I, aI I
∗))

.
Moreover, at any of these equilibria, the honest seller either strictly prefers the second-price
auction or is indifferent between the all-pay and second-price auctions and that indifference
happens if and only if µAll∗ = 0. These concluding remarks are the exact claims of the
proposition.

According to the statements of the proposition, pooling on the second-price is the most
frequent and robust outcome in our model and chosen by all types of seller. There is a
possible equilibrium outcome where the honest seller would run an all-pay auction, but as it
turns out, the equilibrium is non-robust against the minimal belief fluctuation of the bidders.

4.3 Summary

We tested the second-price auction against the all-pay auction once the seller has a possibility
to cheat by sending an agent to place a bid on his behalf. In addition, we analyzed the choice
an honest seller has to make once the participants are aware of the possible manipulation.
Examining the concept of the pure weak perfect Bayesian Nash equilibrium we obtain two
types of equilibria: pooling on the second-price auction or the separating equilibrium where
the honest seller will choose the all-pay auction. In any case, at all equilibria, the honest seller
at least weakly prefers the second-price auction. Moreover, we have seen that the bidders still
bid truthfully in the second-price auction, whereas they shade their bids in the case of all-pay
auction. Hence, our model gives one more argument in favor of the second-price auction and
supports its growing use in practice. Namely, even in the environment of i.i.d. private values
and a special form of manipulation, the second-price auction will be chosen as the selling
mechanism by both cheating and non-cheating sellers.
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4.A Proofs

4.A.1 Proof of Lemma 4.1

Regarding the optimal bid in a second-price auction, it is trivial to show that the truth telling
is ex post weakly dominant and, thus, the optimal choice of the bidders.

Let us now consider the case where a bidder is called to place a bid in an all-pay auction. We
assume that the bidders hold the following belief: if there is an agent then the agent bids an
amount a, where a is any fixed value between 0 and ω. According to the notation introduce
earlier, it means that we assume that BAll ≡ a. Let us denote by β̃All the optimal bidding
strategy of the bidders. We aim to derive β̃All .

Furthermore, in the case where µAll = 1 (that is the bidders are sure that the seller is ma-
nipulative), by description of the model, it follows that the bidders will behave as if they
participate in an all-pay auction with a reserve payment equal to the agent’s believed bid a.
Consequently, β̃All takes the following form:

β̃All (x) =


0, x < x̃

a +
x∫̃
x

yg(y)dy, x ≥ x̃
, (4.10)

where x̃ is the solution of the following equation:

G(x)x = a.

Note that such x̃ always exists, because G(x)x is a strictly increasing continuous function of
x on the interval [0, ω] and a is assumed to belong to this interval.

Let us now suppose that µAll < 1, that is, the bidders believe there is some chance that
they encounter the honest seller. Suppose that all buyers except buyer 1 are using a feasible
strategy β̃All 6= 0, but instead of being non-decreasing we assume that the strategy is strictly
increasing. The strict monotonicity allows us to define the “quasi-inverse” function of the

bidding strategy, denoted by
(

β̃All
)−1

, in the following way: for any b ∈ [0, β (ω)], let(
β̃All

)−1
(b) = inf

{
x ∈ [0, ω]| β̃All (x) ≥ b

}
. Specifically, let x̃ =

(
β̃All

)−1
(a) if β̃All (ω) ≥

a; otherwise, we set x̃ = ω. Let us look at the optimization problem of buyer 1. Suppose
that her private value is x. Let us calculate her expected payoff if she bids b, which we
denote by ΠAll (b, x). Note that b must be chosen such that β̃All (ω) ≥ b ≥ 0, that is,(

β̃All
)−1

(b) ∈ [0, ω]. Given that the other buyers use β̃All and the agent is believed to bid a,

ΠAll (b, x) is equal to:
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ΠAll (b, x) = (1− µAll) ·
[
−b + x · Prob

(
max

2≤j≤N
β̃All (xj

)
≤ b

)]
+ µAll ·

[
−b + x · Prob

(
max

2≤j≤N
β̃All (xj

)
≤ b

)
· 1{a≤b}

]

ΠAll (b, x) = −b + xG
((

β̃All
)−1

(b)
) [

(1− µAll) + µAll · 1{a≤b}
]

,

where G (·) is the cumulative distribution function of the random variable max
2≤j≤N

Xj. Due to

the strict monotonicity of the bidding strategy, we have that max
2≤j≤N

β̃All (xj
)
≤ b if and only if

max
2≤j≤N

xj ≤
(

β̃All
)−1

(b) , which led to the last equality.

Let us interpret terms on the right-hand side of the last equality. The term −b stands for the
payment rule of an all-pay auction: a buyer will certainly pay her bid. Once facing the honest
seller (an event with 1− µAll probability) she will get the object (whose value is x) if her bid

is the highest (that happens with chance equal to G
((

β̃All
)−1

(b)
)

) . If bidder 1 faces the

manipulative seller (an event with µAll chance to happen) , in order to win the object, it is

not sufficient that her bid is the highest among others’ bids (G
((

β̃All
)−1

(b)
)

), but her bid

has to be higher than the agent’s bid a (the indicator function1{a≤b}).

Thus, the optimization problem for the buyer 1 is the following:

max
0≤b≤β̃All(ω)

{
−b + x

[
(1− µAll)G

((
β̃All

)−1
(b)
)
+ µAllG

((
β̃All

)−1
(b)
)
· 1{a≤b}

]}
.

(4.11)

In order to solve the problem there are two cases to be considered; bid b is less than believed
agent’s bid a and the opposite case.

In the case where b < a, the first order condition for the last equation gives rise to the
following equation:

d
db

{
−b∗ + x

[
(1− µAll)G

((
β̃All

)−1
(b∗)

)]}
= 0

(1− µAll)xg
((

β̃All
)−1

(b∗)
)

1(
β̃All

)′ ((
β̃All

)−1
(b∗)

) = 1.
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Due to the symmetry of bidders, we have that
(

β̃All
)−1

(b∗) = x, thus, we obtain the follow-
ing ordinary differential equation (ODE):

(
β̃All

)′
(t) = (1− µAll) tg (t) . (4.12)

Integrating the last equation with respect to t on the interval [0, x] and plugging in the initial
condition β̃All (0) = 0 we obtain

β̃All (x)− β̃All (0) = (1− µAll)

x∫
0

tg (t) dt

β̃All (x) = (1− µAll)

x∫
t

0

g (t) dt. (4.13)

Because we assumed that b∗ < a, it must be that (4.13) is the expression for the bidding
strategy in the case of x < x̃. Thus, let us define

βle f t (x) = (1− µAll)

x∫
t

0

g (t) dt.

If β̃All (ω) < a then we have derived the optimal strategy, i.e. β̃All = βle f t.

We continue the derivation for the case where β̃All (ω) ≥ a. In this case, it is left to see how
buyer 1 bids when her value is greater than x̃. Thus, for b ≥ a the first order condition for
the optimization problem (4.11) leads to the following equation:

d
db

{
−b∗ + xG

((
β̃All

)−1
(b∗)

)}
= 0

xg
((

β̃All
)−1

(b∗)
)

1(
β̃All

)′ ((
β̃All

)−1
(b∗)

) = 1. (4.14)

Similarly to process of solving the earlier ODE, we obtain that

βright (x) =
x∫

t
x̃

g (t) dt + a

solves the last ODE with initial condition β̃All (x̃) = a, for any x ≥ x̃.
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Finally, we obtained that for the values lower than x̃, bidder 1 will bid according to βle f t

and, otherwise, the bidder will follow βright. Thus, β̃All has a cutoff shape with x̃ being the
cutoff value. In order to complete the explicit formula for the bidding strategy, it is left to
determine the cutoff value. For this purpose, we use the expected payoff equivalence at the
cutoff point x = x̃:

−βle f t (x̃) + (1− µAll)x̃G (x̃) = −βright (x̃) + x̃G (x̃)

−(1− µAll)

x̃∫
t

0

g (t) dt + (1− µAll)x̃G (x̃) = −a + x̃G (x̃)

(1− µAll)

x̃∫
t

0

g (t) dt + µAll x̃G (x̃) = a.

Overall, we may summarize the derived bidding pattern. Let us consider the following
equation (where the unknown variable is x) :

(1− µAll)

x∫
t

0

g (t) dt + µAll xG (x) = a. (4.15)

If there exists x̃ ∈ [0, ω] which solves the last equation, then the optimal symmetric best reply
in an all-pay auction, given the belief that the manipulative seller sends an agent who bids a,
is given by

β̃All (x) =


(1− µAll)

x∫
0

tg (t) dt, x < x̃

a +
x∫̃
x

tg (t) dt, x ≥ x̃
. (4.16)

Otherwise, that is, if there is no private value satisfying equation (4.15), then the best sym-
metric bidding strategy in an all-pay auction, given the belief BAll ≡ a , is

β̃All (x) = (1− µAll)

x∫
0

tg (t) dt, x ∈ [0, ω] .

This is exactly the bidding strategy proposed in the lemma. Note the last formula may be
extended for the case µAll = 1 , once we relaxed the requirement that the bidding strategy is
strictly increasing.

In order to prove that the above heuristics is correct, it is left to prove that β̃All (x) is feasible,
satisfies the assumptions imposed at the beginning of its derivation and that it is, indeed,
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the optimal choice of a bidder. Whether it has the cutoff shape (in the case of the existence
of x̃) or not, it follows straightforwardly that β̃All (0) = 0 and β̃All is differentiable almost
everywhere. The requirement of being non-decreasing (from feasibility definition) follows
trivially from the assumption on F being strictly increasing. Note that the same argument
guarantees the β̃All is strictly increasing in the case where µAll < 1, which was a requirement
from heuristics. The fact that β̃All (x) ≤ x for any private value x, if there is no cutoff value
x̃ or for values x < x̃, is satisfied, because:

β̃All (x) = (1− µAll)

x∫
0

tg (t) dt

≤
x∫
0

tg (t) dt

≤ x
x∫
0

g (t) dt

= xG (x)

≤ x.

Let us establish the inequality in the case where x̃ exists and x ≥ x̃. In this particular case,
we have that

β̃All (x) = a +
x∫
x̃

tg (t) dt

= (1− µAll)

x̃∫
t

0

g (t) dt + µAll x̃G (x̃) +
x∫
x̃

tg (t) dt

≤ x̃G (x̃) + x (G (x)− G (x̃))

= xG (x)− G (x̃) (x− x̃)

≤ xG (x)

≤ x.

The second equality comes from the equation which defines the cutoff value x̃ of the bidding
strategy (see equation (4.15)).

Thus, we have just shown that the function is feasible and satisfies the assumptions imposed
at the beginning of this section. It is left to show that β̃All is indeed optimal. For the case
where µAll = 1, we use the fact that the bidding strategy and our model coincide with the
framework of an all-pay auction with a reserve payment a and from literature we know
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that β̃All is optimal. Thus, we concentrate on the case where µAll < 1. It is sufficient to
prove thatβ̃All (x) is a global maximum of the payoff function, for any value x. Let us fix
an arbitrarily chosen private value x. We shall consider the expected payoff ΠAll (b, x) as a
function of the bid value b in a neighborhood of the point bx = β̃All (x). For our goal, it
suffices to show that ΠAll (b, x) increases as b → b−x (that is, as b approaches bx from the
left side on the real line) and decreases as b increases and goes away from bx. From above
exposed derivations, we have that the first derivative of the function ΠAll (b, x), with respect
to b, has the following form:

∂

∂b
ΠAll (b, x) =


−1 + (1− µAll) xg(z)

(β̃All)
′
(z)

, b < β̃All (x̃)

−1 + xg(z)

(β̃All)
′
(z)

, b ≥ β̃All (x̃)
,

where z =
(

β̃All
)−1

(b). From definition of the β̃All as the solution of ODEs (4.12) and (4.14),
we have that

(
β̃All

)′
(z) =


(

1− µAll
)

zg (z) , z < x̃

zg (z) , z ≥ x̃
.

Therefore, let us assume that z < x. Irrespective of comparison between z and the cutoff
value x̃ and even, in the case of the non-existence of the cutoff value, we have that

∂

∂b
ΠAll (b, x) = −1 +

x
z

> −1 + 1 = 0.

Thus, for z < x ⇔ b < β̃All (x) we have that ∂
∂b ΠAll (b, x) > 0. In a similar manner, one can

show that ∂
∂b ΠAll (b, x) < 0 for b > bx which proves the required claim.

4.A.2 Proof of Lemma 4.3

Let us suppose that the manipulative seller chooses to sell the good via a second-price auc-
tion. We aim to find the optimal agent’s bid in this case, that is, the bid that maximizes the
expected payoff to the seller. For this purpose, let us look at the expected payoff of the ma-
nipulative seller once he announces the second-price auction and sends an agent who bids
a ∈ [0, ω]. We shall denote the seller’s expected payoff as uM(I I, a |σ̃B) . It is important to
note that we assume that the bidders bid truthfully (since it is the optimal choice, as Lemma
4.1 shows). Due to the truth telling, note that if the highest of the bid is less than the agent’s
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bid a then the seller will keep the object. Otherwise, a regular second-price auction takes
place. Hence, the expected payoff has the following form:

uM(I I, a |σ̃B) = x0 × FN (a)︸ ︷︷ ︸
"Fake sale" (the seller keeps the good due to the agent’s bid)

+ N
ω∫
a

mI I
M (x) f (x) dx

︸ ︷︷ ︸
Sale

= x0FN (a) + N
ω∫
a

aG(a) +
x∫
a

yg(y)dy

 f (x) dx

= x0FN (a) + N
ω∫
a

aG(a) f (x) dx + N
ω∫
a

 x∫
a

yg(y)dy

 f (x) dx

= x0FN (a) + NaG(a) (1− F(a)) + N
ω∫
a

 x∫
a

yg(y)dy

 f (x) dx, (4.17)

where mI I
M (x) is the expected payment from a bidder with private value higher than a. Let

us consider a bidder with such private value x ≥ a. The bidder makes positive payment
to the seller if she wins the auction. She is the winner if and only if the bids of the other
bidders are lower than her own bid. Since the bidders bid truthfully, the bidder is the winner
if and only if her value is the highest. Given that the bidder is the winner, the price she pays
to the seller depends whether the highest others’ bid is lower or higher than a, as the agent
will certainly bid a. In the former case, the winner pays always a, whereas in the latter case
the price is equal to the highest bid of the others. This is exactly the reasoning, which was
behind the equation:

mI I
M (x) = aG(a)︸ ︷︷ ︸

Others’ highest bid is lower than a

+

x∫
a

yg(y)dy

︸ ︷︷ ︸
.

"Real" sale

Reordering the terms and using the expression for the expected revenue in a standard second-
price auction, we may rewrite uM(I I, a |σ̃B) as follows:
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uM(I I, a |σ̃B) = x0FN (a) + NaG(a) (1− F(a)) + N
ω∫
a

 x∫
a

yg(y)dy

 f (x) dx

= x0FN (a) + a
(

NFN−1(a)− NFN (a)
)
+ N

ω∫
a

 x∫
0

yg(y)dy−
a∫
0

yg(y)dy

 f (x) dx

= x0FN (a) + a
(

H (a)− FN (a)
)
+ N

ω∫
a

 x∫
0

yg(y)dy

 f (x) dx

−N
ω∫
a

 a∫
0

yg(y)dy

 f (x) dx

= x0FN (a) + aH (a)− aFN (a) + N


ω∫
0

 x∫
0

yg(y)dy

 f (x) dx−
a∫
0

 x∫
0

yg(y)dy

 f (x) dx


−N

 a∫
0

yg(y)dy

 [1− F (a)]

= aH (a)− FN (a) (a− x0) + ERI I − N
a∫
0

 a∫
y

f (x) dx

 yg(y)dy− N

 a∫
0

yg(y)dy

 [1− F (a)]

= ERI I + aH (a)− FN (a) (a− x0)− N
a∫
0

(F (a)− F (y) + 1− F (a)) yg(y)dy

= ERI I + aH (a)− FN (a) (a− x0)−
a∫
0

N (1− F (y)) yg(y)dy

= ERI I + aH (a)− FN (a) (a− x0)−
a∫
0

yh (y) dy.

Or, equivalently,

uM(I I, a |σ̃B) = ERI I + ψ̃ (x0, a)

with

ψ̃ (x0, a) = aH (a)−
a∫
0

yh (y) dy− FN (a) (a− x0)

=

a∫
0

H (y) dy− FN (a) (a− x0) .
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Remember that H and h are the c.d.f. and d.f., respectively, of the second-highest value
given by (4.4) and (4.5). Therefore, the whole benefit of the manipulation in the second-price
auction is expressed by the function ψ̃ (x0, a). We are interested in the optimal behavior of the
seller and accordingly shall proceed with determining the optimal choice of the agent’s bid a
- in the further text denoted as ãI I . Hence, we are heading to solve the following optimization
problem:

max
a∈[0,ω]

uM(I I, a |σ̃B)

m
max

a∈[0,ω]

{
ERI I + ψ̃ (x0, a)

}
m

ERI I + max
a∈[0,ω]

ψ̃ (x0, a) .

Since ERI I does not depend on a, it is left to find global maximum of the function ψ̃ (x0, a).
The necessary first order condition (F.O.C.) might be written as:

∂

∂a
ψ̃ (x0, a) = 0

m

∂

∂a


a∫
0

H (y) dy− FN (a) (a− x0)

 = 0

m
H (a)− FN (a)− NFN−1 (a) f (a) (a− x0) = 0

m
NFN−1(a)− (N − 1)FN (a)− FN (a)− NFN−1 (a) f (a) (a− x0) = 0

m
NFN−1(a)− NFN (a)− NFN−1 (a) f (a) (a− x0) = 0

m
NFN−1 (a) [1− F (a)− f (a) (a− x0)] = 0.

Thus, they are two stationary points or candidates for the optimal choice ãI I . Either

FN−1(ãI I) = 0⇔ ãI I = 0,

or ãI I is the solution of the following equation:



122 Endogenous Auction Choice under Possible Seller’s Manipulation

ãI I = x0+
1− F

(
ãI I)

f (ãI I)
. (4.18)

It is clear that ãI I = 0 is a local minimum because, for all a ≤ x0, we have that

∂

∂a
uM(I I, a |σB) = NFN−1 (a) [1− F (a)− f (a) (a− x0)]

= NG (xa) [1− F (a) + f (xa) (x0 − a)]

≥ 0.

Let us take a closer look at the second candidate - the solution of equation (4.18). Actually
from Myerson (1981), one can see that this candidate is indeed the optimal reserve price in a
regular second-price auction. Thus, as F is supposed to have strictly increasing hazard rate,
ãI I is well-defined and is the optimal agent’s bid, which proves the claim of the lemma.

Let us now determine the optimal agent’s bid once the manipulative seller runs an all-pay
auction and sends an agent to bid a. His expected payoff, denoted by uM(All, a |σ̃B) , is equal
to:

uM(All, a |σ̃B) = x0 × FN (xa)︸ ︷︷ ︸
"Fake sale" (sellers keeps the good due to agent)

+ N
ω∫
0

m̃All (x) f (x) dx

︸ ︷︷ ︸
Sale

= x0FN (xa) + N
ω∫
0

β̃All (x) f (x) dx,

where xa is the maximal “no-sale” private value, that is, xa = max
{

x
∣∣∣β̃All (x) ≤ a

}
. Thus,

the manipulative seller here always collects money from all bidders and, in addition, with
probability FN (xa) , he keeps the object. Consequently, it is clear that the seller will send an
agent, who will bid higher that all other bids, that is, the optimal agent’s bid is ω - because,

in this case, the seller keeps always the object and gets N
ω∫
0

β̃All (x) f (x) dx, on average.

4.A.3 Proof of Lemma 4.4

In order to prove the claim of the lemma let us define several functions. First of all, let γ be
a function that associates to any x0 the optimal price ãI I in the second-price auction, that is,
γ (x0) = ãI I . According to equation (4.8), its inverse function is defined as:
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(γ)−1
(

ãI I
)
= ãI I − 1− F

(
ãI I)

f (ãI I)

Note that from the assumption that F has a strictly increasing hazard rate, it follows that
(γ)−1 is strictly increasing, and, hence, γ itself is a strictly increasing function.

Furthermore, let us define Λ as a function of the seller’s value x0 in the following way:

Λ (x0) = ψ̃ (x0, γ (x0))− x0

m

Λ (x0) =

γ(x0)∫
0

H (y) dy− FN (γ (x0)) (γ (x0)− x0)− x0.

Moreover, note that for any x0, by definition of the function ψ̃ (see the proof of Lemma 4.3)
we have that

ψ̃ (x0, γ (x0)) = max
a∈[0,ω]

ψ̃ (x0, a) .

The claims of the lemma are easily expressed in terms of the function Λ. In order to prove the
claims, it is sufficient to show that the function Λ changes sign at the endpoints of its domain,
is a continuous and strictly decreasing function on [0, ω]. From its definition, it is clear that
the function is continuous. Let us look at the sign that the function takes at the endpoints of
its domain: 0 and ω. Let us denote with a0 = γ (0) , that is, a0 is the optimal price in the
second price auction once x0 = 0. First of all, note that a0 6= 0. Indeed, (γ)−1 (0) = − 1

f (0) < 0

, (γ)−1 (a0) = 0 and the strict monotonicity of the function γ−1 imply that a0 6= 0.7 Overall,
we have that

Λ (0) = ψ̃ (0, a0)− 0

= ψ̃ (0, a0)

= max
a∈[0,ω]

ψ̃ (0, a)

> ψ̃ (0, 0)

=

0∫
0

H (y) dy− FN (0) (0− x0)

= 0.
7Here we actually use the extension of (γ)−1 on the whole interval [0, ω] and not only on the image

set γ ([0, ω]).
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Let us now look at the value of the function at the other endpoint, that is, at ω. Note that
γ (ω) = ω (since (γ)−1 (ω) = ω). Thus, we have that:

Λ (ω) =

ω∫
0

H (y) dy− FN (ω) (ω−ω)−ω

=

ω∫
0

H (y) dy−ω

= −ERI I

< 0.

The last equality in the previous calculation is obtained from the fact that ERI I =
ω∫
0

yh (y) dy.

Integrating by parts, we obtain ERI I = ω−
ω∫
0

H (y) dy . Thus, by continuity of the function Λ

and the intermediate value theorem, we can conclude that there exists x̄0 such that Λ (x̄0) = 0.
The sufficient condition for the rest of the claim in the lemma (the uniqueness of x̄0 and the
strict monotonicity of Λ) is a proof that Λ is a strictly decreasing function. Thus, we aim to
prove that

Λ
′
(x0) =

d
dx0

(ψ̃ (x0, γ (x0))− x0) < 0

for any x0.

Let x0 be arbitrarily chosen and fixed. Let us have a closer look at Λ
′
(x0).

Λ
′
(x0) =

d
dx0

(ψ̃ (x0, γ (x0))− x0)

=
∂

∂x0
ψ̃ (x0, γ (x0)) +

∂

∂a
ψ̃ (x0, γ (x0)) γ′ (x0)− 1

=
∂

∂x0
ψ̃ (x0, γ (x0)) + 0 · γ′ (x0)− 1

=
∂

∂x0
ψ̃ (x0, γ (x0))− 1.

Note that we considered ψ̃ as a function of two variables, x0 and a, as defined in (4.9).
Since we have that γ (x0) = max

a∈[0,ω]
ψ̃ (x0, a),the necessary first order conditions imply

∂
∂a ψ̃ (x0, γ (x0)) = 0. So, it is left to calculate ∂

∂x0
ψ̃ (x0, γ (x0)). Using the definition of ψ̃,

we obtain that
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∂

∂x0
ψ̃ (x0, γ (x0)) = FN (γ (x0)) .

Finally, we get:

Λ
′
(x0) =

∂

∂x0
ψ̃ (x0, γ (x0))− 1

= FN (γ (x0))− 1.

Thus, Λ
′
(x0) < 0 for x0 < ω and Λ

′
(x0) = 0 for x0 = ω. Consequently, the claims of the

lemma hold true.
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