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Chapter 1

General Introduction

Strategic feedback and uncertainty are the main ingredients in the decision-making

process. As of this writing, in China, the annual National College Entrance Exam-

ination (NCEE) finished last week. Immediately after completing the examination,

all students have to rank their three most-preferred colleges while accounting

for their expectation of the results of their exams. Not all of the students can

attend their preferred colleges because there are hundreds of millions of students

competing for places. Therefore, students have to make decisions under uncertainty

before they know their actual scores and the admission scores of different colleges.

They may over-estimate or under-estimate their scores, and they also need to take

into account the decisions of other students because the admission score could be

higher or lower than the reference value depending on how many students chose

this college.

Such examples are even more widespread in economics. When a firm is consider-

ing whether to enter a market, relative to incumbents, it may have less information

regarding market demand, costs or other factors that could affect its future profits;

moreover, it has to take into account the reactions of the incumbents. By contrast,

while an incumbent may better know the market, it must be aware of the possible

threat from potential entrants. The focus of game theory research is on how groups

of people interact. In particular, information asymmetries are omnipresent in games

because various types of uncertainty can affect the players, including the examples

mentioned above. Further examples include asset trading between institutional

investors and individual investors in financial markets; the relationships between

banks and borrowers in capital markets; and contract setting between agents and
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1. GENERAL INTRODUCTION

principals in labor markets.

The present thesis introduces asymmetric information into two classes of games

that are widely analysed and utilized in a variety of economic problems: zero-

sum games1 and signalling games. In chapter 2, we seek to analyse the price

dynamics of a risky asset in a financial market through a zero-sum repeated trading

game involving a more informed sector and a less informed sector. Here, the

information asymmetry involved in the trading between the two sectors is referred

to as incomplete information on one-and-a-half sides.

In chapter 3, we study the belief updating and equilibrium refinement problem

in classical signalling games, in which an informed player moves first and conveys

private information to an uninformed player through messages; the uninformed

player attempts to make inferences about hidden information and takes an action

that can influence both players’ payoffs. Here, measurable uncertainty exists only

on the second-mover side, while the first mover knows the true state of nature.

In chapter 4, the information asymmetries are extended in a broader sense,

whereby one of the players has multi-priors on the state of nature. This concept

of uncertainty is called Knightian Uncertainty or Ambiguity in the literature.

We introduce ambiguity into entry deterrence games and discuss the impact of

ambiguity in two cases of asymmetric information structures. In both cases, the

entrant faces ambiguity regarding the state of the market, but the incumbent is

either fully informed or faces classical measurable uncertainty.

1.1 Price dynamics in financial markets with asym-

metric information

In financial markets, one of the most relevant problems is to accurately identify

stock price dynamics, which not only influence trading in stock markets but also

determine the price formulae for derivatives. Price dynamics are often exogenously

modelled in terms of Brownian motion in the financial analysis literature, for

example, using Bachelier dynamics, Black and Scholes dynamics, diffusion models,

stochastic volatility models, and GARCH models. Information asymmetries are

well known in financial markets. The institutional sector have better access to

1See Sorin (2002), Aumann and Maschler (1995), Milgrom and Stokey(1982), De Meyer and
Marino (2005), Von Neumann and Morgenstern (2007),etc. for example

2



1.1 Price dynamics in financial markets with asymmetric information

information than does the individual sector. The daily, repeated trades between

the two sets of actors influence the price of stocks. For information on the series

of models based on repeated exchange games between an informed sector and an

uninformed sector to endogenously determine price dynamics, see De Meyer and

Saley (2003), De Meyer (2010), and De Meyer and Fournier (2015).

In De Meyer and Saley (2003), a zero-sum repeated game between two market

makers with incomplete information on one side is analysed. In a risk-neutral

environment, under a particular trading mechanism, this paper proves that the

price process converges to a continuous martingale involving a Brownian motion.

De Meyer (2010) generalizes this idea to a broader setting and proves that the

price dynamics must be a so-called “Continuous martingale of maximal variational”

(CMMV); see the explanation in section 2.1. This property does not rely on the

trading mechanism. De Meyer and Fournier (2015) generalize this analysis to the

case of a risk-averse market. They show that the price process is still a CMMV

under a martingale equivalent measure.

In all of these three models, the informed player is fully informed of the state

(the value of the risky asset) and has full knowledge of the beliefs of the uninformed

player. In the first chapter of this thesis, we attempt to characterize a financial

model out of this scenario. In this setting, the more informed player has private

information about the value of the risky asset, but the less informed player is

informed of some private message associated with the value. Therefore, the more

informed player is uncertain about the beliefs of his trading partner. An N-period

repeated exchange of this risky asset using the numéraire between these two players

under this information structure is modelled by a repeated zero-sum game with

incomplete information on one-and-a-half sides, as introduced by Sorin and Zamir

(1985). We show that completely different price dynamics from those in De Meyer’s

(2010) results can be obtained by simply slightly disturbing the information of the

uninformed player.

3



1. GENERAL INTRODUCTION

1.2 Belief updating and equilibrium refinements

in signalling games

In a dynamic decision-making process, people update their beliefs constantly as

new information arrives. Bayes’ Rule is a common assumption on belief updating

in learning theory. However, it has two limitations: first, it does not predict how

agents should react to information to which they assigned probability zero; second,

a series of psychological experiments suggest that people’s behaviour may deviate

from Bayes’ rule2. In addition, the Bayesian approach requires that we be able to

quantify this uncertainty using a single prior, which is also an imperfect method.

For example, imagine that we are considering spending a one-week holiday in some

beachfront city abroad this summer. If we make the decision earlier, we can spend

less on the hotel and flights but we are more uncertain about the weather. Can

we really assign one number to the probability of good weather conditional on the

information that we know? These findings spurred increased interest in research

on non-Bayesian learning3.

Signalling games are a widely utilized class of games in economics, as reviewed

in Riley (2001) and Sobel (2007). A signalling game typically admits multiple

sequential Nash equilibria because the second mover’s belief is not well defined by

Bayes’ rule when zero-probability messages sent by the first mover are observed.

Multi-equilibria cannot provide a precise prediction, and therefore, refinements

were developed incrementally. Some refinements rely on ad hoc criteria, while some

studies attempt to define a new concept of equilibrium; see the literature review in

section 2.1, for example.

We are interested in nesting an alternative updating rule of the Hypothesis

Testing model axiomatically characterized by Ortoleva (2012) into a class of general

signalling games and thereby providing a new equilibrium refinement method in

signalling games. Here, we present an example to briefly illustrate how the non-

Bayesian updating rule proceeds. Imagine that our agent is uncertain about a

2See the psychological experiments in Kahneman and Tversky (1974), surveys by Camerer
(1995) and Rabin (1998), and the arguments in Epstein et al. (2010) and Ortoleva (2012), among
others.

3For example, Gul and Pesendorfer (2001, 2004), Epstein (2006, 2008, 2010), Golub and
Jackson (2010), Jadbabaie et al., (2012), Gilboa et al, (2008, 2009, 2012),Teng (2014), and
Ortoleva (2012).
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1.2 Belief updating and equilibrium refinements in signalling games

state of nature; the state space is finite Ω = {ω1, ..., ωN}. The set of all of the

subsets of Ω is Σ = 2Ω. She does not have the confidence to assign one unique

probability distribution on the state space; let us say that she has two priors: π1

and π2. Based on her current information and knowledge, she believes that π1

is more likely than π2. In brief, assume that she has a prior ρ over the set of

priors, with ρ(π1) > ρ(π2) > 0. She has π1 as her original prior before any new

information arrives. She has a subjective threshold for deciding whether an event

is a low-probability event, for example ε = 5%. After some event A ∈ Σ is observed

(new information arrives), she computes the probability of A as π1(A). She retains

π1 if π1(A) > ε and proceeds with Bayesian updating on π1 using A; otherwise,

if π1(A) ≤ ε, she rejects π1, and compares the posterior probability of π1 and π2

conditional on A:

πi(A)ρ(πi)

π1(A)ρ(π1) + π2(A)ρ(π2)
, i ∈ {1, 2}.

She selects the prior from {π1, π2} that maximizes the posterior probability above.

For example, assume that π2 is selected. Then, she proceeds with Bayesian updating

on π2 using A. She makes her decision as subjective expectation maximizer using

the updated probability distribution. We can see that this updating rule is non-

Bayesian if ε > 0, and dynamic consistency is violated but only up to ε. If

ε = 0, then it is dynamic consistent, and the update rule is also well defined after

zero-probability events.

In the main chapter of this thesis, we formulate signalling games nested by the

updating rule of Ortoleva (2012) and define a new equilibrium concept, Hypothesis

Testing Equilibrium (HTE). When ε = 0, an HTE is a refinement of sequential

Nash equilibria. In general signalling games, HTE survives the Intuitive Criterion.

When ε > 0, this is a game with non-Bayesian players. In signalling games, this

implies the uninformed player is a non-Bayesian player, the informed player knows

that the uninformed player is non-Baysian, and so forth. In this situation, an

HTE can differ from a sequential Nash equilibrium. For a broad class of signalling

games, we provide the existence and uniqueness theorems.

5



1. GENERAL INTRODUCTION

1.3 Risk, ambiguity, and limit pricing

As in the example above regarding an attempt to anticipate the weather in a city

in another country, there are many situations for which we cannot assign a unique

prior to the uncertainty. Consider further examples. We are unable to know the

precise probability of an employee’s performance in a job for which she has no

experience before she starts to work in this position. We are also unable to assign

a unique probability to the future returns or volatilities of an IPO. However, there

also exist the situations in which we are able to precisely quantify the uncertainty

in a situation by a probability; for example, when tossing a fair coin once, we

believe that “heads” will appear with probability 1
2
; a pregnant woman will give

birth to a girl with probability 1
2
; and there are other examples for which our

subjective beliefs are determined by objective events.

Knight (1921) distinguished two types of uncertainty. Situations in which the

uncertainty can be governed by a unique probability measure are called “measurable

uncertainty” or “risk”. In contrast, we use “Knightian uncertainty” or “ambiguity”

to refer to situations in which individuals cannot or do not assign subjective

probabilities to uncertain events. The Ellsberg Paradox (Ellsberg, 1963) shows

that this distinction is behaviourally meaningful since people treat ambiguous bets

differently from risky bets. Importantly, the lack of confidence reflected by choices

in the Ellsberg Paradox cannot be rationalized by any probabilistic belief.

Many theoretical models of individuals’ preferences in decisions under ambiguity

have been proposed, including Maxmin Expected Utility (MEU) (Gilboa and

Schmeidler, 1989), smooth ambiguity preference (Klibanoff et al., 2005), and

variational representation of preferences (Maccheroni, et al., 2006). All of these

utilities can capture ambiguity aversion, but they are rarely related to one another

and are often expressed in drastically different formal languages (Epstein and

Schneider, 2010). There are still difficulties in applying these theories to dynamic

decision theory because most of the models do not satisfy the dynamic consistency

property; see the arguments in Epstein et al, (2007), Eichberger et al, (2009) and

Hanany, Klibanoff, and Mukerji (2015).

The issue of whether low prices can, in theory, deter entry is critical in com-

petition policy. A vast literature studies the theory of limit pricing and can be

dated back to Bain (1949). The seminal work by Milgrom and Roberts (1982)

6



1.3 Risk, ambiguity, and limit pricing

studies limit pricing theory in a two-period entry deterrence game with asymmetric

information in which both the incumbent and the entrant have private information

on their own costs but are uncertain about their opponent’s costs. Other studies of

the limit pricing theory for Oligopoly see Bagwell and Ramey (1991), limit pricing

theory for Bertrand equilibrium by Chowdhury (2002), and signalling and learning

in limit pricing game by Cooper et. al (1997). In the final part of this thesis, we

introduce ambiguity into an asymmetric information framework using a simplified

version of Milgrom and Roberts’ limit pricing model. We discuss the impact of

ambiguity in two cases of information asymmetry: in the first case, the incumbent

is fully informed of the true state of the market; in contrast, the potential entrant

is ambiguous about the state. In the second case, both players are uncertain about

the state, but the incumbent is deciding under risk while the entrant is deciding

under ambiguity. Because of information asymmetries, liit pricing appears under

some conditions. Under ambiguity, the entrant behaves more cautiously than in

the case under risk. Therefore, ambiguity decreases the probability of entry under

certain conditions.

7





Chapter 2

Two-player Trading Games in A

Stock Market with Incomplete

Information on One-and-a-half

Sides1

Abstract

Information asymmetries are well known in the financial markets. In this chapter,

we formulate two-player trading games with incomplete information on one-and-a-

half sides. Under this information structure, player 1 is informed of the true state

of the nature (the value of the risky asset) but is uncertain about player 2’s belief

about the state because player 2 is privately informed through a message related

to the state. In the N-stage repeated zero-sum game in a 2× 2 framework, player

1 does not benefit from his informational advantage unless the message M known

by player 2 and the true value L are independent. Therefore, the price dynamics

are completely different from those in De Meyer’s (2010) result by simply slightly

disturbing the information of the uninformed player. In a non-zero-sum game in

which player 2 is risk averse, player 1 can benefit from his informational advantage

under more relaxed conditions on the joint distribution of L and M .

1This chapter is joint work with Bernard De Meyer.
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2. TWO-PLAYER TRADING GAMES IN A STOCK MARKET
WITH INCOMPLETE INFORMATION ON ONE-AND-A-HALF

SIDES

2.1 Introduction

In financial markets, it is well known that the institutional investors have better

access to market-relevant information than do private investors: the former are

better skilled at analysing the flow of information and in some cases are even

members of the board of directors of the firms of which they are trading shares. De

Meyer (2010) analysed the effects of information asymmetries on price dynamics.

Specifically, the market is represented by a repeated exchange game between an

informed sector (player 1) and an uninformed sector (player 2). In his model, both

players are exchanging one risky asset (R) using the numéraire (N). An exogenous

random event determines the liquidation value L of the risky asset. L is thus a

random variable, and the players are assumed to have a common prior distribution

µ on L. Player 1 is assumed to be initially informed about L while player 2 is not.

During n consecutive periods, both players will exchange R for N using a “trading

mechanism” T : at stage q, the two players select an action, iq and jq, respectively,

and the resulting trade Tiq ,jq is performed. The aim of player 1 is to maximize the

expected liquidation value of his final portfolio. To represent a real-life exchange,

the trading mechanism has to satisfy certain axioms. In this case, the mechanism

is called a “natural exchange mechanism”. If the mechanism is natural, then,

asymptotically, as N goes to ∞, the price process will follow particular dynamics:

It will be a Continuous Martingale of Maximal Variation, (i.e., a martingale Pt

that can be written as Pt = f(Bt, t), where B is a Brownian motion, f is increasing

in B at a fixed t, and t = q
N

). The asymptotic price process is independent of the

“natural trading mechanism” used in each round.

De Meyer and Saley (2003) and De Meyer and Fournier (2015) are two additional

models with ideas similar to that of De Meyer (2010). One criticism of these previous

models is the information structure, whereby the informed player has full knowledge

of the beliefs of the uninformed player. This chapter represents the first attempt

to characterize a financial model out of this scenario. In our setting, player 1 is

informed of the value L of the risky asset, and player 2 is informed of some private

message M associated with L. Therefore, player 1 is uncertain about player 2’s

belief regarding the state of L. We have a game with incomplete information on

one-and-a-half sides, as introduced by Sorin and Zamir (1985).

In section 2.2, we introduce a 2× 2 benchmark model in which both L and M

10



2.1 Introduction

take two possible values. If both players are risk neutral, the N-stage repeated

zero-sum trading game between the two players proceeds as follows: In each stage,

player 1 decides to sell or buy one share of the risky asset at a price that is

simultaneously proposed by player 2. The choices are simultaneous, which at first

glance, seems surprising. Indeed, one usually assumes that the trader will buy or

sell after observing the market maker’s price. However, following the argument

in De Meyer and Fournier (2015), a sequential model in which player 1 reacts to

the price posted by player 2 is equivalent to our model. In the zero-sum in the

simultaneous game considered here, player 1’s payoff is linear in player 2’s choice

of price, therefore, the equilibrium strategy of player 2 is a pure strategy. Player

2’s move pq thus can be completely anticipated by player 1 in period q. Player 1

would obtain no benefit from observing pq before selecting uq, namely deciding

whether to buy or sell. In the non zero-sum game where player 2 is risk averse, due

to Jensen’s inequality, the equilibrium strategy of player 2 is also a pure strategy.

In section 2.3, we analyse two cases, and we obtain all of the results for the

2× 2 benchmark model. The first result is quite intuitive: if the message M and

the value L are independent, then player 2 clearly cannot induce any information

on the state L; therefore, player 1 can ignore the message of player 2. We are back

to the game with incomplete information on one side analysed by De Meyer (2010).

We know that in this case the value vN of the game is strictly positive except when

L is deterministic. Player 1 can benefit from his private information on the value

of the risky asset.

In the second case, M and L are not independent. Here, we surprisingly prove

that the value vN of the game is zero and there is no revelation by player 1. As a

function of a probability vector defined on the unit simplex ∆3, the value of the

game is not continuous. It is zero everywhere except on the manifold where L and

M are independent. For the N -stage repeated game, there is no optimal strategy

for player 2, but we can identify the ε−optimal strategy of player 2. In fact, in

each stage, player 2 plays optimally, but just introducing ε−perturbation such that

the posteriors of L and M are not independent. Since ε is small enough, player 2

can guarantee a payoff of zero. Therefore, in the non-independent case, the value

of the game vN is zero, which means that player 1 does not benefit from his private

information. We can see that by just slightly disturbing the information of the

uninformed player, the posterior belief of player 2 is not known to player 1, the

11



2. TWO-PLAYER TRADING GAMES IN A STOCK MARKET
WITH INCOMPLETE INFORMATION ON ONE-AND-A-HALF

SIDES

price dynamics are nearly constant. This result is completely different from De

Meyer’s (2010).

In the N−stage repeated zero-sum game, in each stage, player 2 makes a lottery

involving two prices such that the conditional expectation of the price equals

the value L. Playing in this way entails a negative price, which is not a natural

interpretation in economics. However, we cannot impose a restriction requiring

a positive price because this would violate the invariance axiom of the natural

trading mechanism. That is, the value of the game must remain unchanged if one

shifts the liquidation value L by a constant amount. This result might be improved

in the event that player 2 is risk averse. Therefore, in section 2.4, we discuss a

non-zero-sum one-shot game in which player 2 is risk averse. In this setting, we

show that the value of the game is positive under more relaxed conditions on the

joint distribution of M and L. We conjecture that in a repeated game, player 2

cannot guarantee the value of the game to be zero by slightly modifying his optimal

strategy in each stage. Given the complexity of analysing the repeated game and

characterizing the price dynamics in this setting, we leave such work to further

research.

This chapter proceeds as follows. Section 2.2 introduces a 2 × 2 benchmark

model, in which the value L of the risky asset and the message M only take two

possible values. In section 2.3, we discuss the value of the one-stage game and

the N−stage repeated zero-sum game. Section 2.4 discusses one-stage games with

more general random variables representing M and L and a one-stage 2× 2 game

in which player 2 is risk averse. Section 2.5 provides the conclusion.

2.2 Description of the 2× 2 zero-sum game

In the game we consider, player 1 initially receives some private information

about the risky asset and player 2 receives some message M associated with this

information. This information will be publicly disclosed at a future date. At that

date, the value L of the risky asset will depend solely on the information initially

received by player 1. In the 2×2 framework, L ∈ {0, 1}, and M ∈ {a, b}. We denote

Prob(L = l ∩M = m) = µlm, Prob(M = m) = µm, for m ∈ {a, b}, Prob(L = l) =

µl, for l ∈ {0, 1}, and Prob(L = l|M = m) = µl|m, µ = (µ0|a, µ0|b, µa). We use

the method of Sorin and Zamir (1985) to define GN(µ), N ≥ 1 as the N−stage

12
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repeated zero-sum game in which the two players exchange the risky asset for a

numéraire in each stage. For each µ0|a, µ0|b, µa ∈ [0, 1]3, the game is proceeded as

follows:

Step 00. Nature selects m ∈ {a, b} with Prob(m = a) = µa and this choice is

told to player 2 only.

Step 0. Nature selects l ∈ {0, 1} with Prob(l = 0) = µ0|m and this choice is

told to player 1 only.

Step 1. Player 1 decides to buy (u1 = 1) or sell (u1 = −1) one unit of the risky

asset. Then the action set of player 1 is uq ∈ {1,−1}. Simultaneously, player 2

selects a price p1 ∈ R for the transaction. Then this choice (u1, p1) is announced

to both players and the trade performed with this price.

Step q ∈ {2, ..., N} . In addition to their private information, both players

knowing the history of actions prior to round q, that is hq = (u1, p1; ...;uq, pq) ,

select some move and this pair (uq, pq) is announced to both players.

In this game, observing m, player 2 has a prior that L = 0 with probability

µ0|m. However, because player 1 can not observe m, player 1 does not observe the

prior of player 2 on the state L and is just aware of the probability distribution

of player 2’s prior. Let hq denote the history of actions prior to round q, that is

hq = (u1, p1; ...;uq, pq) with h0 = ∅, and Hq denote the set of all possible histories

until round q. A behavioural strategy of player 1 in this game is σ = (σ1, ...σN ) with

σq : (L, hq−1)→ ∆({1,−1}). A behavioural strategy of player 2 is τ = (τ1, ...τN)

with τq : (M,hq−1)→ ∆(R). Then, a triple (µ, σ, τ) induces a unique probability

distribution on (L,M,HN). When X is a random variable, we denote Eµ,σ,τ [X]

as the expectation of X with respect to this probability. We assume that both

players are risk neutral; then, the payoff of player 1 in this game is the expected

value of his final portfolio:

gN(µ, σ, τ) = Eµ,σ,τ

[
N∑
q=1

uq(L− pq)

]
. (2.1)

The payoff of player 2 is −gN (µ, σ.τ). To simplify notation, we denote the expecta-

tion Eµ,σ,τ by E.

13
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2.3 Main Results

2.3.1 One-shot game

To characterize the value vN of the N−stage repeated zero-sum game, we first

analyse the one-shot game. In the one-shot game, q = 1, the payoff function (2.1)

is simply the following:

g1(µ, σ.τ) = E[u(L− p)]

= Eµ[(2σ(L)− 1)(L− EτM (p))],

where σ(l) is the probability with which player 1 chooses u = 1 if L = l, for all

l ∈ {0, 1}. This equation shows that the pure strategy of player 2, p = (pa, pb),

where pm = Eτm(p), ∀m ∈ {a, b}, yields the same payoff as the mixed strategy τ

given player 1’s strategy σ. Player 1’s payoff function is linear in player 2’s choice

of price, and therefore player 1 cares about any random price choice by player 2

only through the mean price. Therefore, player 2 does not need to play mixed

strategies. Player 2 plays pa (resp. pb) with probability 1 if he is type M = a (resp.

M = b). Then we can rewrite the payoff function as follows:

g1(µ, σ.τ) = Eµ[(2σ(L)− 1)(L− EτM (p))]

= EE[(2σ(L)− 1)(L− pM)|L]

= E[(2σ(L)− 1)(L− E[pM |L])].

This payoff function involves the expectation of pM conditional on L, and thus, we

can analyse the equilibrium in two cases:

Case (i): L and M are independent.

If L and M are independent, then

g1(µ, σ.τ) = E[(2σ(L)− 1)(L− E[pM |L])]

= E[(2σ(L)− 1)(L− E[pM ])

= µ0P [1− 2σ(0)] + µ1(P − 1)[1− 2σ(1)],

where P = µapa + µbpb. The best response, σ∗ = (σ(0)∗, σ(1)∗), of player 1 to a

14
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given strategy P ∗ of player 2 is

(σ(0)∗, σ(1)∗) =


(1, 1) if P ∗ < 0,

(0, 1) if 0 ≤ P ∗ < 1,

(0, 0) if P ∗ ≥ 1.

That is,

σ(l)∗ = 1{P ∗<l} + s1{P ∗=l} ∀s ∈ [0, 1], ∀l ∈ {0, 1}. (2.2)

Given the best response of player 1, the payoff function becomes

g1(µ, σ∗, P ) =
∑
l∈{0,1}

µl(P − l)[1− 2(1{P ∗<l} + s1{P ∗=l})]

=
∑
l∈{0,1}

µl[1− 2(1{P ∗<l} + s1{P ∗=l})]P −
∑
l∈{0,1}

Lµl[1− 2(1{P ∗<l} + s1{P ∗=l})]

=
∑
l∈{0,1}

µl[1− 2(1{P ∗<l} + s1{P ∗=l})]P + µ1[2(1{P ∗<1} + s1{P ∗=1})− 1].

In equilibrium, we have the following condition:∑
l∈{0,1}

µl[1− 2(1{P ∗<l} + s1{P ∗=l})] = 0,

⇒E[1{P ∗<L}] + sE[1{P ∗=L})] =
1

2
.

(2.3)

Equation (2.3) implies that the equilibrium price P ∗ ≤ median(L). If L is not

degenerated to 1, then P ∗ < 1. Otherwise, if P ∗ = 1, we can always choose

s ∈ (1
2
, 1] such that 2s1{P ∗=1} − 1 > 0. Immediately, we can deduce that the value

of the game is positive, that is:

g1(σ∗, P ∗) = µ1[2(1{P ∗<1} + s1{P ∗=1})− 1] > 0. (2.4)

Now, we can summarize this result in the following proposition:

Proposition 2.1. In the one-shot zero-sum game in the 2 × 2 framework, if L

and M are independent, then in equilibrium, the optimal strategy of player 1 is

given in equation (2.2), the optimal strategy of player 2 is given in equation (2.3),

and the value of the game is positive and given in (2.4).

Case (ii): L and M are not independent.

15
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We can easily show that player 1 can guarantee a payoff of zero by choosing

σ(l) = 1
2
, for all l ∈ {0, 1}. However, as

g1(µ, σ.τ) = E[(2σ(L)− 1)(L− E[pM |L])]

≤ E[|L− E[pM |L]|],

if player 2 can choose p∗ = (p∗a, p
∗
b), such that

E[p∗M |L] = L,

then player 2 also can guarantee a payoff of zero. In fact, if L and M are not

independent, then det(µ) 6= 0, and there exists an equilibrium price p∗ = (p∗a, p
∗
b)

satisfying the following conditions:

µ0ap
∗
a + µ0bp

∗
b = 0

µ1ap
∗
a + µ1bp

∗
b = µ1.

Solving these equations, we obtain

p∗a = − µ1µ0b

det(µ)
, and p∗b =

µ1µ0a

det(µ)
. (2.5)

In this case, the value of the game is zero. The informed player 1 does not benefit

from his private information on the value of the asset.

Proposition 2.2. In the one-shot zero-sum game in the 2× 2 framework, if L and

M are not independent, then given a joint distribution µ, there exists an equilibrium

strategy pµ = (p∗µ(a), p∗µ(b)) of player 2 given by equation (2.5), and the value of

the game is zero.

2.3.2 N−stage repeated zero-sum game

With the preliminary results from the one-shot game, we proceed to analyse the

N−stage repeated game. In the one-shot game, the value of the game can be

explicitly written in the form

v1 = f(µ0a, µ0b, µ1a, µ1b),

16
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where ∑
l∈{0,1},m∈{a,b}

µlm = 1, µ = (µ0a, µ0b, µ1a, µ1b);

then, as a function of a probability vector µ defined in a unit simplex ∆3, the value

v1(µ) of the game is not continuous. It is zero everywhere except on the manifold

where det(µ) = 0. To obtain this result for the N−stage repeated zero-sum game,

we again consider two cases: (i). L and M are independent, and (ii). L and M are

not independent.

Case (i). L and M are independent.

We assume that µ1(h0) = µ; then, at each stage q ∈ {1, ..., N − 1}, a triple

(µ, σ, τ) induces a unique posterior joint distribution of (L,M). That is, at the end

of stage q, a history hq = (u1, p1; ...;uq, pq) is observed; then, in stage q + 1, the

joint posterior probability distribution of (L = l,M = m) given this history can be

computed recursively as follows:

µq+1
lm (hq) = P(L = l,M = m|uq, pq, hq−1)

=
P(L = l,M = m,uq, pq|hq−1)P(hq−1)

P(hq)

=
P(hq−1)

P(hq)
P(uq|L = l, hq−1)P(pq|M = m,hq−1)P(L = l,M = m|hq−1)

=
P(hq−1)

P(hq)
σq(l, hq−1)(uq) · τq(m,hq−1)(pq) · µqlm(hq−1),

for all l ∈ {0, 1},m ∈ {a, b}. The third equality holds because uq and pq are

selected simultaneously by player 1 and player 2 in stage q. In the last equation,

the notations denote that, in stage q, conditional on the history path hq−1, type

l of player 1 chooses uq with probability σq(l, hq−1)(uq) , and type m of player

2 chooses price pq with probability τq(m,hq−1)(pq). Then, we have the following

property:

Proposition 2.3. Let µ1(h0) = µ; at the end of stage q, where q ∈ {1, ...N − 1},
a history hq = (u1, p1; ...;uq, pq) is observed. Then the posterior of the joint
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distribution µq+1(hq) can be computed recursively as follows:

µq+1(hq) =
P(hq−1)

P(hq)

(
σq(0, hq−1)(uq) 0

0 σq(1, hq−1)(uq)

)
µq

(
τ q(a, hq−1)(pq) 0

0 τ q(b, hq−1)(pq)

)
(2.6)

Proposition 2.4. In this 2× 2 framework, if L and M are independent, then for

all q ∈ {1, ...N}, the posteriors are also independent.

Proof. From proposition 2.3, we know that for all q ∈ {1, ..., N − 1},

det(µq+1) =
[P(hq−1)]2 det(µq)

[P(hq)]2

∏
l∈{0,1}

σq(l, hq−1)(uq)
∏

m∈{a,b}

τ q(m,hq−1)(pq).

Since both L and M only take two values, the independence assumption between L

and M is equivalent to det(µ1) = 0. The equation above implies that det(µq) = 0,

for all q ∈ {1, ..., N}. That is, all the posteriors of L and M are independent. �

In this case, the N-stage repeated zero-sum game with incomplete information

on one-and-a-half sides coincides with the repeated zero-sum game with incomplete

information on one side discussed in De Meyer (2010).

Case (ii). L and M are not independent.

First, we claim that player 1 can guarantee a zero payoff.

Lemma 2.1. In the N-stage repeated zero-sum game in the 2× 2 framework, if L

and M are not independent, then vN ≥ 0.

Proof. Consider the following strategy of player 1:

σ̃ = (σ̃1, ..., σ̃N), where σ̃q(l) =
1

2
, ∀l ∈ {0, 1}, ∀q ∈ {1, ..., N}.

Using σ̃, the payoff g1(µ, σ̃, τ) of player 1 is zero regardless of the strategy of player

2. Therefore,

vN = max
σ

min
τ
g1(σ, τ) ≥ min

τ
g1(σ̃, τ) = 0.

�

Second, let us prove that player 2 can guarantee a payoff of zero, that is

vN ≤ 0. To obtain this result, we need the following preliminary knowledge. From
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the posterior joint distribution of (L,M) given by equation (2.6), at stage q + 1,

q ∈ {1, ..., N − 1}, we compute the conditional distribution of M given L and the

past path hq as follows:

P(M = m|L = l, hq) =
P(M = m,L = l, hq)∑

m′∈{a,b}
P(M = m′, L = l, hq)

=
P(hq|M = m,L = l)µlm∑

m′∈{a,b}
P(hq|M = m′, L = l)µlm′

=

q∏
k=1

σk(l, hk−1)(uk)
q∏

k=1

τ k(m,hk−1)(pk)µlm∑
m′∈{a,b}

q∏
k=1

σk(l, hk−1)(uk)
q∏

k=1

τ k(m′, hk−1)(pk)µlm′

=

q∏
k=1

τ k(m,hk−1)(pk)µlm∑
m′∈{a,b}

q∏
k=1

τ k(m′hk−1)(pk)µlm′
.

(2.7)

Again, the third equality holds because, in each stage, player 1 and player 2 make

moves simultaneously. This equation means that the posterior of M conditional

on (L, hq) does not depend on the behavioural strategy σ of player 1. This implies

that in each stage, player 1’s past strategies do not influence his current strategy.

As in the one shot-game, we analogously rewrite the payoff of player 1 as

follows:

gN(µ, σ, τ) = Eµ,σ,τ

[
N∑
q=1

uq(L− pq)

]

=
N∑
q=1

E [E [uq(L− pq)|L, hq−1]]

=
N∑
q=1

E[E[uq|L, hq−1](L− E[pq|L, hq−1])]

=
N∑
q=1

E[(2σq(L, hq−1)(1)− 1)(L− E[pq|L, hq−1])]

≤
N∑
q=1

E|L− E[pq|L, hq−1]|.
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If there exists price (p∗q(a), p∗q(b)) for each q ∈ {1, ..., N}, such that

E[p∗q|L, hq−1] = L,

that is, for each q, (p∗q(a), p∗q(b)) solves the equations

p∗q(a)P(M = a|L = 0, hq−1) + p∗q(b)P(M = b|L = 0, hq−1) = 0,

p∗q(a)P(M = a|L = 1, hq−1) + p∗q(b)P(M = b|L = 1, hq−1) = 1,
(2.8)

then the payoff of player 1 is equal to or less than zero. Since we have shown that

the posterior of M conditional on (L, hq−1) does not depend on the behavioural

strategy σ of player 1, the solution p∗q(a) and p∗q(b) of (2.8) does not depend on σ.

Now we are prepared to prove the following lemma:

Lemma 2.2. In the 2× 2 N-stage repeated zero-sum game, if L and M are not

independent, then vN ≤ 0.

Proof. To prove this lemma, recall that in the one-shot 2×2 zero-sum game, player

2 plays a pure strategy p∗µ as given in proposition 2.2. For a given µ, let us define a

perturbed strategy γµ,η = (γµ,ηa , γµ,ηb ) of player 2 as follows: For a given η > 0, for

some ε strictly positive to be defined later, this strategy consists in playing p∗µ(a)

with probability 1− ε and p∗µ(b) with probability ε when he is type a; otherwise, it

consists in playing p∗µ(b) with probability 1− ε and p∗µ(a) with probability ε when

he is type b, that is

γµ,ηa (p∗µ(a)) = 1− ε, γµ,ηa (p∗µ(b)) = ε,

γµ,ηb (p∗µ(b)) = 1− ε, γµ,ηb (p∗µ(a)) = ε.

In the one-shot game, this strategy guarantees that player 1’s payoff is very

small, regardless of his strategy σ, and we obtain

g1(µ, σ, γµ,η) = g1(σ, p∗µ) + εK(µ),

= εK(µ),

where

K(µ) =
µ0µ1

det(µ)

∑
l∈{0,1}

[1− 2σ(l)][µla − µlb].
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Note that K(µ) ≤
∣∣∣ 2µ0µ1

det(µ)

∣∣∣ . We then define ε = η

| 2µ0µ1det(µ) |
. Therefore, this perturbed

strategy γµ,η of player 2 can guarantee that g1(µ, σ, γ
µ,η) ≤ η regardless of the

strategy of player 1.

With this definition of strategy γµ,η in mind, we are prepared to prove this

lemma. Since L and M are not independent, det(µ) 6= 0. Let us consider the

following strategy τ of player 2: In stage 1, he plays γµ,η, and for the following

stages, q ∈ {2, ..., N}, he first computes the conditional posterior µq(M |L, hq−1) of

M conditional on (L, hq−1) as given in (2.7), which does not depend on the strategy

of player 1, as we discussed above. When det(µq) 6= 0, he plays γµ
q ,η. However, if

det(µq) = 0, let us consider the first-stage q0 ≥ 2 such that at this stage,

det(µq0) =
[P(hq0−2)]2 det(µq0−1)

[P(hq0−1)]2

∏
l∈{0,1}

σq0(l, hq0−1)(uq0)
∏

m∈{a,b}

τ q0(m,hq0−1)(pq0) = 0.

Since in stage q0, player 2 plays τq0 6= 0, the only possibility is that

σq(l, hq0−1)(uq0) = 0, for some l ∈ {0, 1}.

In other words, in this stage, observing uq0 , player 2 can deduce the state of L.

Since he knows the value of L, he plays L until the end of the game. Clearly, this

strategy yields the following payoff to player 1:

gN(µ, σ, γη) =
N∑
q=1

g1(µq, σq, τ) ≤ Nη

Since η is arbitrary small, there is no strategy of player 1 that can guarantee

a strictly positive payoff. In each stage q ≥ 2, player 2 simply introduces an

ε−perturbation of his optimal strategy p∗q(a) and p∗q(b), which is the solution of Eq.

(2.8), such that M and L are not independent, and the choices of p∗q(a) and p∗q(b)

for all q ∈ {2, ..., N} do not depend on the strategy σ of player 1, this strategy of

player 2 can guarantee a payoff of zero. �

Combining Lemma 2.1 and Lemma 2.2 implies the following theorem:

Theorem 2.1. In the 2× 2 N-stage repeated zero-sum game, if L and M are not

independent, then the value vN of the game is zero.
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2.4 Discussion

2.4.1 A general one-shot zero-sum game

In the previous sections, we analysed a simple 2 × 2 benchmark model, and we

showed that, in the N -period repeated zero-sum trading game, the more informed

player cannot exploit his private information unless the message M and the value

L are independent. A natural extension of this model is to examine the case in

which both L and M can take more possible values on R. With the same argument

as for the one-shot game in the 2× 2 framework, when L and M are independent,

the value v1 of the game is still positive in the general framework. However, for

the case in which L and M are not independent, the condition,

L = E[p∗(M)|L)] a.s . (2.9)

to guarantee a zero payoff for player 2 may not always hold. If there exists

p∗(M) such that condition (2.9) holds true, then the value v1 of the game is zero.

Otherwise, v1 is strictly positive. Therefore condition (2.9) is critical to guarantee

a zero payoff.

Example 1. Assume that M is a mean-preserving spread of L, i.e., M = L+ ε,

where ε ∼ N(0, σ2), ε and L are independent. It is easy to show that the price

p∗(M) = M can satisfy condition (2.9).

Example 2. Assume the joint density function of (L,M) is

f(l,m) =

{
2, if 0 ≤ l ≤ 1, l ≤ m ≤ 1

0, otherwise.

By solving the condition (2.9) as∫ 1

l

p(m)

1− l
dm = l,

⇒
∫ 1

l

p(m)dm = l(1− l).
(2.10)

we can obtain the equilibrium price p∗(M) = 2M − 1. In these two examples, L

and M are not independent, and the value of the game is zero in both examples.

However, condition (2.9) does not hold true under the following conditions:
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(i). If both L and M are continuous variables, then the value of M is known

whenever L is known but not vice versa, for example M = L2.

(ii). If both L and M are discrete variables with a joint distribution µ, then

rank(µ) < #(L), where #(L) is the cardinality of the set of alternatives of L.

Example 3. Let us consider the following example in which the joint distribution

µ of L and M is as given in table 2.2. In this example, there clearly is no p = (pa, pb)

Table 2.1: Joint distribution µ of (L, M)

M=a M= b
L = 0 1

6
1
6

L = 1 1
6

1
6

L = 2 0 1
3

such that

E(p(M |L = 0)) =
pa + pb

2
= 0,

E(p(M |L = 1)) =
pa + pb

2
= 1,

E(p(M |L = 2)) = 2− pb = 2.

We can compute that the optimal strategy of player 1 is

σ∗ = (σ∗(0), σ∗(1), σ∗(2)) = (0, 1,
1

2
),

and the optimal strategy of player 2 is

p∗ = (p∗a, p
∗
b) = (−2, 2).

The value of the game is v = 1
3
> 0.

To summarize the argument above, we conclude that in the general one-shot

zero-sum game, if L and M are independent, then the value of the game v1 > 0. If

L and M are not independent and there exists p∗ satisfying condition (2.9), then

the value of the game v1 = 0; otherwise, v1 > 0.

23



2. TWO-PLAYER TRADING GAMES IN A STOCK MARKET
WITH INCOMPLETE INFORMATION ON ONE-AND-A-HALF

SIDES

2.4.2 One-shot non zero-sum game

The value of the game is discontinuous in the models discussed in the 2×2 framework

under the assumption that player 2 is risk neutral. Under this assumption, player

2 is indifferent between zero and a lottery with zero expectation. Therefore, he

can bear very high risk to drag the value down to zero. In the N−stage repeated

zero-sum game, in each stage, player 2 constructs a lottery between two prices

such that the conditional expectation of the price equals the value of L. Playing in

this way allows a negative price, which is not a natural interpretation in economics.

However, we cannot impose the restriction of a positive price because doing so

would violate the invariance axiom of the natural trading mechanism. That is, the

value of the game must remain unchanged if one shifts the liquidation value L by

a constant amount. This result might be improved upon if player 2 is risk averse.

To obtain an intuitive explanation, we consider a non-zero-sum one shot game in

which player 2 is risk averse.

In this setting, player 2’s risk-aversion preference is represented by a von

Neumann-Morgenstern utility function, E[H(x)], where H is concave and increasing.

We denote the expected payoff of player i as gi(µ, σ, τ), i ∈ {1, 2}. Since player 1

is risk neutral, g1(µ, σ, τ) has the same expression as we discussed in the previous

sections. The expected payoff of player 2, g2(µ, σ, τ), becomes

g2(µ, σ, τ) = E[H(u(L− p))]

= E[σ(L)Eτm [H(p− L)] + (1− σ(L))Eτm [H(L− p)]].

Since H is a concave function, Jensen’s inequality implies that

g2(µ, σ, τ) ≤ E[σ(L)H(Eτm [p]− L) + (1− σ(L))H(L− Eτm [p])].

Therefore, the pure strategy p = (pa, pb) yields a payoff for player 2 that is at least

as the same as a mixed strategy, where pa = Eτa(p) and pb = Eτb(p). Therefore,

the optimal strategies of player 2 are pure strategies, and the payoff given a pure

strategy p = (pa, pb) is

g2
µ(σ, p) = Eµ[σ(L)H(E[p(M)]− L) + (1− σ(L))H(L− E[p(M)])]. (2.11)
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To analyse the equilibrium of the game, we assume that

H(x) = x− e−x, x ∈ R; (2.12)

then,

H ′(x) = 1 + e−x > 0, lim
x→+∞

H(x) = +∞,

H ′′(x) = −e−x < 0, lim
x→−∞

H(x) = −∞.

Without loss of generality, we assume that µ0 = µ1 = 1
2

in the 2× 2 framework.

First, we attempt to identify the conditions such that, in equilibrium, player 1

completely reveals his information; that is, he sells the risky asset when L = 0 and

buys when L = 1. In such an equilibrium, the value v1 of the game is positive.

Definition 2.1. A Nash equilibrium (σ∗, p∗) is called a revealing equilibrium

if (σ(0)∗, σ(1)∗) = (0, 1).

In this case, the expected payoff of player 2 is

g2(µ, (0, 1), (pa, pb)) = µ0aH(−pa) + µ0bH(−pb) + µ1aH(pa − 1) + µ1bH(pb − 1).

The strategy of player 2, (p∗a, p
∗
b), maximizing g2(µ, (0, 1), (pa, pb)) solves the fol-

lowing first-order conditions:

∂g2
µ

∂pa
= −µ0aH

′(−pa) + µ1aH
′(pa − 1) = 0,

∂g2
µ

∂pb
= −µ0bH

′(−pb) + µ1bH
′(pb − 1) = 0.

(2.13)

By substituting H ′(x) = 1 + e−x into Eq. (2.13), we obtain p∗a = p∗a(π0, π1), p
∗
b =

p∗b(π0, π1), where π0 = P(M = a|L = 0), and π1 = P(M = a|L = 1). In a

revealing equilibrium, (σ(0)∗, σ(1)∗) = (0, 1) is also the best reply by player 1 to

the strategy (p∗a, p
∗
b) of player 2. The payoff function of player 1 does not change;

therefore, if (σ(0)∗, σ(1)∗) = (0, 1) is the best response of player 1 to a given

strategy p∗ = (p∗a, p
∗
b) of player 2, and the following conditions hold:

E[p∗(M)|L = 0] = π0p
∗
a + (1− π0)p∗b > 0,

E[p∗(M)|L = 1] = π1p
∗
a + (1− π1)p∗b < 1.

(2.14)
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2. TWO-PLAYER TRADING GAMES IN A STOCK MARKET
WITH INCOMPLETE INFORMATION ON ONE-AND-A-HALF

SIDES

Jointly solving inequalities (2.14) and (2.13),we find the area on the space of (π0, π1)

where the revealing equilibrium ((σ(0)∗, σ(1)∗), (p∗a, p
∗
b)) = ((0, 1), (p∗a(π0, π1), p∗b(π0, π1)))

exists (the middle-area in fig 1. (a)). It is easy to verify that the expected payoff

of player 1 is strictly positive in a revealing equilibrium.

Definition 2.2. A Nash equilibrium (σ∗, p∗) is called an equalizing equilibrium if

σ(l)∗ = s ∈ [0, 1] for l ∈ {0, 1}.

In an equalizing equilibrium, both types of player 1 are indifferent between

revealing and not revealing information. In this case, the optimal strategy of player

1 is any value between 0 and 1. An equalizing equilibrium, ((σ(0)∗, σ(1)∗), (p∗a, p
∗
b)),

satisfies the following conditions:

g2
µ((σ(0)∗, σ(1)∗), (p∗a, p

∗
b)) ≥ g2

µ((σ(0)∗, σ(1)∗), (pa, pb)), ∀pa, pb ∈ R,

E[p∗(M)|L] = L.

Then, (σ(0)∗, σ(1)∗, (p∗a, p
∗
b)) solves the following system of equations:

π0σ(0)∗(1 + e−p
∗
a)− π0(1− σ(0)∗)(1 + ep

∗
a) + π1σ(1)∗(1 + e1−p∗a)−

π1(1− σ(1)∗)(1 + ep
∗
a−1) = 0,

(1− π0)σ(0)∗(1 + e−p
∗
b )− (1− π0)(1− σ(0)∗)(1 + ep

∗
b )+

(1− π1)σ(1)∗(1 + e1−p∗b )− (1− π1)(1− σ(1)∗)(1 + ep
∗
b−1) = 0,

π0p
∗
a + (1− π0)p∗b = 0,

π1p
∗
a + (1− π1)p∗b = 1.

(2.15)

The first two equations are the first-order conditions for maximizing player 2’s

expected payoff. The last two equations satisfy condition (2.9). Solving this system

with constraints σ(0)∗ ∈ [0, 1], and σ(1)∗ ∈ [0, 1], we can find the area on the space

of (π0, π1) where the equalizing equilibrium exists (the two edge areas in fig 1. (b)).

The expected payoff of player 1 is zero in the equalizing equilibrium. From the

picture, we can see that player 1 can exploit his private information under a more

relaxed condition on the joint distribution relative to the risk-neutral environment.

In that case, the value of the game is positive only if π0 = π1. Player 2 cannot

guarantee a zero payoff to player 1 by simply slightly perturbing his optimal choice,

as is true in risk-neutral case. Therefore, we cannot use the same argument to

characterize the price dynamics in an N−stage repeated game. The price dynamics
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may be different.

2.5 Conclusion

In this chapter, we present two-player trading games with incomplete information

on one-and-a-half sides. For risk-neutral players, the more informed player can

only exploit his informational advantage when the value of the risky asset and

the message known by his trading partner are independent. By contrast, he can

benefit from his informational advantage under more relaxed conditions on the

joint distribution when his trading partner is risk averse. However, we obtain these

conclusions for finite-stage trading games based on a special trading mechanism;

that is, both players are forced to trade by buying or selling one share of the risky

asset. Further studies of trading behaviour and asymptotic price dynamics in a

general natural trading mechanism are encouraged.
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(a)

(b)

Figure 2.1
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Chapter 3

Hypothesis Testing Equilibrium

in Signalling Games1

Abstract

In this chapter, we propose a definition of Hypothesis Testing Equilibrium

(HTE) for general signalling games with non-Bayesian players nested by an updating

rule according to the Hypothesis Testing model characterized by Ortoleva (2012).

An HTE may differ from a sequential Nash equilibrium because of dynamic

inconsistency. However, in the case in which player 2 only treats a zero-probability

message as an unexpected news, an HTE is a refinement of sequential Nash

equilibrium and survives the Intuitive Criterion in general signalling games but not

vice versa. We provide an existence theorem covering a broad class of signalling

games often studied in economics, and the completely separating constrained

HTE is unique in such signalling games. We also present the results according to

Milgrom-Roberts’ (1982) model of limit pricing and obtain a unique HTE for each

interesting case.

Keywords: Signalling Games, Hypothesis Testing Equilibrium, Equilibrium

Refinement.

1Part of this chapter was published in IMW working papers series
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3. HYPOTHESIS TESTING EQUILIBRIUM IN SIGNALING
GAMES

3.1 Introduction

Ortoleva (2012) models an agent who does not update according to Bayes’ rule

but instead “rationally” chooses a new prior among a set of priors when her

original prior assigns a small probability to a realized event. He provides axiomatic

foundations for his model in the form of a Hypothesis Testing representation

theorem for suitably defined preferences. Both the testing threshold and the set of

priors are subjective; therefore, an agent who follows this updating rule is aware of

and can anticipate her updating behaviour when formulating plans.

Specifically, we consider the preferences of an agent over acts F that are

functions from state space Ω to a set of consequences X. If the preference relation is

characterized by Dynamic Coherence in conjunction with other standard postulates,

then the agent’s behaviour can be represented by a Hypothesis Testing model

(u, ρ, ε). According to this representation, the agent has a utility function u over

consequences; a prior over priors ρ; and a threshold ε ∈ [0, 1). She then acts as

follows: Before any information arrives, she has a set of priors Π with probability

assessment ρ over Π. She chooses πΩ as her original prior, which is assigned the

highest probability by ρ among all π ∈ supp(ρ). Then, she forms her preference

as the standard expected utility maximizer. As new information (an event) A

is revealed, the agent evaluates the probability of the occurrence of the event as

πΩ(A). She retains her original prior πΩ and proceeds with Bayesian updating on

πΩ using A if the event A is anticipated, i.e., πΩ(A) > ε. However, if πΩ(A) ≤ ε, she

rejects her original prior πΩ and searches for a new prior π∗ among supp(ρ) such

that π∗ is the most likely one conditional on event A, that is, π∗ = argmax
π∈supp(ρ)

P(π|A),

where

P(π|A) =
P(A|π)P(π)∫

π′∈supp(ρ)
P(A|π′)P(π′)dπ′

=
π(A)ρ(π)∫

π′∈supp(ρ)
π′(A)ρ(π′)dπ′

.

(3.1)

Using this π∗, she proceeds with Bayesian updating and forms her preference by

maximizing expected utility.

Ortoleva (2012) applied his model in the “Beer-Quiche” game and defined a

Hypothesis Testing Equilibrium (HTE) when ε = 0 for this specific game. In this
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3.1 Introduction

game, there exists a unique HTE that coincides with the selection of the Intuitive

Criterion of Cho and Kreps (1987). This chapter develops the idea of nesting this

updating model in general signalling games with finite states and proposes a general

concept of HTE. In the general definition of HTE, we allow the testing threshold

ε ≥ 0. If player 2 has a testing threshold ε > 0, then she changes her original belief

when a small (but non-zero) probability event occurs. This dynamic inconsistency

leads to the result that an HTE may deviate from sequential Nash equilibrium.

However, we show that when ε = 0, an HTE is a refinement of sequential Nash

equilibria. In this case, player 2 only considers the zero-probability event as an

unexpected event. To compare our approach with other refinement criteria, we

focus primarily on the properties of this class of HTE. We have three main findings:

(a). As a method of refinement, an HTE survives the Intuitive Criterion in general

signalling games, but not vice versa. (b). A general HTE exists in a broad class

of signalling games that is widely utilized in economics and satisfies the Single

Crossing Property together with other standard assumptions. (c). We propose a

concept of constrained HTE in which the set of alternative beliefs of player 2 is

restricted to be around her original belief. We show that the constrained HTE is

unique if only completely separating equilibria exist. As an example, we present

these results in Milgrom-Roberts’ limit pricing model and obtain a unique HTE

for each interesting case.

This chapter focuses on signalling games, a class of games in which an informed

player (player 1) conveys private information to an uninformed player (player

2) through messages, and player 2 attempts to make inferences about hidden

information and takes an action that can influence both players’ payoffs. There

is an enormous literature that analyses and utilizes signalling games in a wide

range of economic problems, as reviewed in Riley (2001) and Sobel (2007); see

also Spence’s model of the labor market (Spence, 1974), Milgrom-Roberts’ model

of limit pricing (Milgrom and Roberts, 1982), bargaining models (Fudenberg and

Tirole, 1983 ), and models in finance (Brealey, et. al, 1977), for example. Typically,

a signalling game gives rise to many sequential Nash equilibria (Kreps and Wilson,

1982) because, under the assumption of Bayesian updating, in equilibrium, there

are no other restrictions on the message m that is sent with zero probability by

player 1 except that player 2’s responses to m can be rationalized by some belief

held by player 2. Therefore, the natural approach to refining sequential Nash
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equilibria is to impose additional restrictions on the out-of-equilibrium beliefs, as

we can see in the literature reviewed in Govindan and Wilson (2008, 2009), Hillas

and Kohlberg (2002), Kohlberg (1990), and van Damme (2002).

One branch of the refinement criteria, which has been widely applied in signalling

games, is motivated by the concept of strategic stability for finite games addressed

by Kohlberg and Mertens (1986). The Intuitive Criterion, D1 and D2 Criteria (Cho

and Kreps, 1987), and Divinity (Banks and Sobel, 1987), for example, are all weaker

versions of strategic stability that are defined more easily for signalling games. These

refinements interpret the meaning of the out-of-equilibrium messages depending

on the current equilibrium, meaning that, in a reasonable equilibrium, sending an

out-of-equilibrium message is costly and unattractive to player 1. There is also a

branch of refinements that are intended to define a new concept of equilibrium, for

example, the perfect sequential equilibria proposed by Grossman and Perry (1986),

different versions of perfect Bayesian equilibrium (PBE) discussed by Fudenburg

and Tirole (1991), and forward induction equilibrium defined by Govindan and

Wilsons (2009) and modified by Man (2012), the consistent forward induction

equilibrium path proposed by Umbauer (1991), the undefeated equilibrium of

Mailath, et. al, (1993), and some methods of equilibrium selection in cheap talk

game by Matthews et. al (1991) and de Groot Ruiz and Offerman (2012).There

is no consensus in the literature that one refinement is better than another. One

refinement can be favourable in certain settings but unfavourable in other settings.

All of the refinements mentioned above concern signalling games with Bayesian

players. However, behaviour deviating from Bayesian updating has been observed

by psychologists,2 and these experiments have motivated increasing interest in

studies on non-Bayesian updating; see, for example, the model of temptation

and self-control proposed by Gul and Pesendorfer (2001, 2004) characterized

axiomatically by Epstein (2006) and extended by Epstein et al., (2008, 2010),

models of learning in social networks developed by Golub and Jackson (2010)

and Jadbabaie et al., (2012), the arguments from rational beliefs advanced by

Gilboa et. al, (2008, 2009, 2012) and Teng (2014), and the Hypothesis Testing

model of Ortoleva (2012). In signalling games with non-Bayesian players, this

chapter proposes a concept of HTE and provides a refinement based on the idea of

2For example, see Tversky and Kahneman (1974), Camerer (1995), Rabin (1998, 2002), and
Mullainathan (2000).
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non-Bayesian reactions to low-probability messages according to the Hypothesis

Testing model.

The non-Bayesian updating rule is nested in signalling games as follows: Before

player 1 moves, player 2 has a prior over a (finite) set of strategies that player 1

may use, and she determines the strategy that she believes player 1 will use most

likely, which induces her original belief. After she observes a message sent by player

1, she evaluates the probability of the observed message using her original belief.

She retains her original belief and uses it to proceed with Bayesian updating if

the probability of the message she observed is greater than her testing threshold.

However, if the probability is less than or equal to her threshold, she discards her

original belief (she believes that player 1 may use a strategy other than her original

conjecture). She then searches for a new belief that can be induced by another

“rational” strategy by player 1 such that it is the most likely strategy conditional

on the observed message. In a Hypothesis Testing equilibrium, the strategy of

player 1 that induces player 2’s original belief coincides with the strategy that

player 1 actually uses. The difficulty concerns how to construct the set of player

2’s beliefs and how to assign a prior over the set of possible strategies. We first

follow the idea of Ortoleva (2012) and allow all beliefs that can be “rationalized”

by at least one strategy of player 2, which is a weak restriction on the beliefs

available to player 2. Then, we propose the constrained HTE in which only those

beliefs around her original belief are under consideration. When player 2 observes

a zero-probability message under her original belief, she looks for the most likely

types who are willing to send this message, and she modifies her belief only by

revising her original belief according to this message.

This chapter is organized as follows. In the next section, we briefly recall the

basic concepts and definitions from Ortoleva (2012) on the updating rule of the

Hypothesis Testing model and the framework of general signalling games. Section

3.3 defines the general HTE and discusses its main properties. Section 3.4 proves

the existence and uniqueness theorems. Section 3.5 compares the refinements

of the constrained HTE and Intuitive Criterion. Section 3.5 analyses the HTE

of Milgrom-Roberts’ limit pricing model in a finite framework, and section 3.7

provides the conclusion and some remarks.
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3.2 Formulations and preliminaries

3.2.1 The updating rule of Hypothesis Testing Model

First, we recall the basic concepts, definitions and main results of the Hypothesis

Testing model in general decision theory. Adopting the notations in Ortoleva

(2012), consider a probability space (Ω,Σ,∆(Ω)), where Ω is a finite (nonempty)

state space, Σ is set of all subsets of Ω, and ∆(Ω) is the set of all probability

measures (beliefs) on Ω. Write ∆(∆(Ω)) as the set of all beliefs over beliefs. Let

BU(π,A)(B) =
π(A ∩B)

π(A)

denote the Bayesian update of π ∈ ∆(Ω) using A ∈ Σ if π(A) > 0. As discussed in

the introduction, equation (3.1) provides the Bayesian update of the second-order

prior ρ ∈ ∆(∆(Ω)) using A ∈ Σ if π(A) > 0 for some π ∈ supp(ρ). We denote it

as follows:

BU(ρ,A)(π) :=
π(A)ρ(π)∫

∆(Ω)

π′(A)ρ(π′)dπ′
.

Let us consider the preferences of an agent over acts F, which are functions from

state space Ω to a set of consequences X. For example, X could be a set of possible

prizes that depend on the realizations of the state.

Definition 3.1. (Ortoleva, 2012) A class of preference relations {�A}A∈Σ admits

a Hypothesis Testing representation if there exists a nonconstant affine function

u : X → R, a prior over priors ρ ∈ ∆(∆(Ω)) with finite support, and ε ∈ [0, 1)

such that, for any A ∈ Σ, there exists πA ∈ ∆(Ω) such that

(i) for any f, g ∈ F

f �A g ⇔
∑
ω∈Ω

πA(ω)u(f(ω)) ≥
∑
ω∈Ω

πA(ω)u(g(ω))

(ii) {πΩ} = argmax
π∈∆(Ω)

ρ(π)

(iii)

πA =

BU(πΩ, A) πΩ(A) > ε

BU(π∗A, A) otherwise,
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where {π∗A} = argmax
π∈∆(Ω)

BU(ρ,A)(π).

Under this definition, if a decision maker’s preference is represented by the

updating rule according to the Hypothesis Testing model, then she proceeds with

updating according to the following procedure:

Step 0. The agent is uncertain about some important state of the nature. Instead

of a single subjective probability distribution over the alternative possibilities, she

has a set of probability distributions (priors) Π and a probability distribution

(second-order prior) ρ on Π, and supp(ρ) 6= ∅. The agent has a subjective threshold

ε for hypothesis testing.

Step 1. Before any new information is revealed, the agent chooses a prior

πΩ ∈ supp(ρ) that is the most likely prior according to her belief ρ. In this

hypothesis test, πΩ serves as a null hypothesis and all the other priors π ∈ supp(ρ)

serve as alternative hypotheses.

Step 2. As new information (an event) A is revealed, the agent evaluates the

probability of the occurrence of A as πΩ(A). The null hypothesis will not be

rejected if πΩ(A) > ε, and the agent can proceed to apply Bayes’ rule to the prior

πΩ. However, the null hypothesis will be rejected if πΩ(A) ≤ ε. The agent doubts

her original prior πΩ because an unexpected event occurred. The agent will choose

an alternative prior π∗ ∈ supp(ρ) that is the most likely prior conditional on the

event A. Then she proceeds with Bayes’ rule on the prior π∗. When ε > 0, we have

non-Bayesian updating and dynamic consistency is violated up to ε. When ε = 0,

the dynamic consistency condition holds and the posteriors are also well defined

after zero-probability events.

The aim of this chapter is to nest the non-Bayesian updating rule according

to the Hypothesis Testing model in signalling games; therefore, we now briefly

introduce the general framework of signalling games with Bayesian players.

3.2.2 Signalling games

Nature selects the type of player 1 according to some probability distribution µ

over a finite set T with supp(µ) 6= ∅ (for simplicity, we take T = supp(µ)). Player

1 is informed of his type t ∈ T , but player 2 is not. After player 1 has learnt his

type, he chooses to send a message m from a finite set M . Observing the message

m, player 2 updates his belief on the types of player 1 and selects a response
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r in a finite action set R. The game ends with this response, and payoffs are

made to the two players. The payoff to player i, i = 1, 2, is given by a function

ui : T ×M × R → R. The distribution µ and the description of the game are

common knowledge.

A behavioural strategy of player 1 is a function σ : T → ∆(M) such that∑
m∈M σ(m; t) = 1 for all t ∈ T . Type t of player 1 chooses to send message m

with probability σ(m; t) for all t ∈ T . A behavioural strategy of player 2 is a

function τ : M → ∆(R) such that
∑

r∈R τ(r;m) = 1 for all m ∈M . Player 2 plays

a response r to the message m with probability τ(r;m). We adopt the notations in

Cho and Kreps (1978) and write BR(m,µ) for the set of best responses of player 2

after observing m if she has posterior belief µ(·|m).

BR(m,µ) = argmax
r∈R

∑
t∈T

u2(t,m, r)µ(t|m).

If T ′ ⊆ T , let BR(T ′,m) denote the set of best responses of player 2 to posteriors

concentrated on the set T ′. That is,

BR(T ′,m) =
⋃

{µ:µ(T ′|m)=1}

BR(m,µ).

Let BR(T ′,m, µ) be the set of best responses of player 2 to the observed message

m if she has posterior belief µ(·|m) concentrated on the subset T ′, and let MBR

denote the set of mixed best responses of player 2. Since we concentrate on the

finite sets of T , M , and R, the sequential Nash equilibrium can be straightforwardly

defined.

Proposition 3.1. A profile of players’ behavioural strategies (σ∗, τ ∗) forms a

sequential Nash equilibrium (SNE) in a finite signalling game if it satisfies the

following conditions:

(i) Given player 2’s strategy τ ∗, each type t evaluates the expected utility from

sending message m as
∑

r∈R u1(t,m, r)τ ∗(r;m) and σ∗(·; t) assigns a weight to m

only if it is among the maximizing ms in this expected utility.

(ii) Given player 1’s strategy σ∗, for all m that are sent by some type t with

positive probability µ(t|m) > 0 , every response r ∈ R such that τ ∗(r;m) > 0 must
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be a best response to m given belief µ(t|m); that is,

τ ∗(·;m) ∈ MBR(m,µ(·|m)), (3.2)

where µ(t|m) = σ∗(m;t)µ(t)∑
t′∈T σ

∗(m;t′)µ(t′)
.

(iii) For every message m that is sent with zero probability by player 1 (for

all m such that
∑

t σ
∗(m; t)µ(t) = 0), there must be some probability distribution

µ(·|m) over types T such that (3.2) holds.

In an SNE, given the strategy of player 1, player 2 proceeds in three steps: she

computes the probability of an observed message m as P(m) =
∑

t∈T σ
∗(m; t)µ(t).

If P(m) > 0, that is, there exists some t ∈ T , such that σ∗(m; t) > 0, then she uses

Bayes’ rule to compute the posterior assessment µ(·|m), and she then chooses her

best response to m compatible with her belief µ(·|m). If P(m) = 0, then the only

requirement is that there exists some belief µ(·|m) such that her response to the

out-of-equilibrium message is rational.

What happens if player 2’s reactions to a low-probability events deviate from

Bayes’ rule? In the next section, our aim is to define an alternative equilibrium

in such signalling games when player 2 uses the updating rule according to the

Hypothesis Testing model.

3.3 Hypothesis Testing Equilibrium

3.3.1 Definition of HTE in general signalling games

In a signalling game, player 2 cannot observe player 1’s strategies but can observe

the messages sent by player 1; therefore, it is helpful to understand an SNE in the

following way: imagine that player 2 has a conjecture, σ̂(·; t),∀t ∈ T , about player

1’s behaviour before player 1 moves. She attempts to formulate a best response

using her conjecture. Similarly, player 1 also has a conjecture, τ̂ , about player 2’s

behaviour. In equilibrium, the conjecture profile (σ̂, τ̂) coincides with the strategy

profile (σ∗, τ ∗) that players actually use. Each conjecture σ̂ available to player 2

about player 1’s behaviour induces a prior (belief) π on the state space Ω = T ×M
if the marginal distribution

∑
m∈M π(t,m) coincides with the initial distribution µ.

For every realization (t,m), π(t,m) is a joint probability of type t and message m,
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which is

π(t,m) = σ̂(m; t)µ(t), and
∑
t∈T

∑
m∈M

π(t,m) =
∑
t

µ(t) = 1.

If player 2 follows an updating rule according to the Hypothesis Testing model,

then player 2 has a set of “rational” conjectures (priors), and she has a probability

distribution ρ on the set of conjectures (priors). First, we address some requirements

for the second-order prior ρ.

Definition 3.2. Consider a finite signalling game Γ(µ) in which player 2’s pref-

erence admits a Hypothesis Testing model (ρ, ε). ρ is consistent if it satisfies the

following requirements:

(i). ∀π ∈ supp(ρ), π is compatible with the initial information of the game, that

is,
∑

m∈M π(t,m) = µ(t).

(ii). ∀π ∈ supp(ρ), π can be rationalized by at least one possible strategy of

player 2. That is, there exists some strategy τ : M → ∆(R) of player 2 such that

π(t,m) = 0,∀t ∈ T,∀m ∈M , if the type-message pair (t,m) is not a best response

to τ .

As addressed in Ortoleva (2012), this requirement for rationality is a weak

condition in the sense that player 2 can take any conjecture into consideration as

long as it is compatible with player 1’s best response to some possible strategy τ

of player 2. Now, we are prepared to define HTE in signalling games.

Definition 3.3. In a finite signalling game Γ(µ), a profile of behavioural strategies

(σ∗, τ ∗) is an HTE based on a Hypothesis Testing model (ρ, ε) if

(i). ρ is consistent.

(ii). The support of ρ contains πΩ induced by σ∗, and

πΩ = argmax
π∈supp(ρ)

ρ(π).

Let

ME = {m ∈M :
∑
t∈T

πΩ(m|t)µ(t) > ε},
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then for any m ∈M\ME, there exists some πm ∈ supp(ρ), such that

πm = argmax
π∈supp(ρ)

BU(ρ,m)(π).

(iii).For all t ∈ T , σ∗(m; t) > 0 implies that m maximizes the expected utility

of player 1, and

τ ∗(·;m) ∈ MBR(m,µ(·|m)),

where

µ(t|m) =

πΩ(t|m) = σ∗(m;t)µ(t)∑
t′ σ
∗(m;t′)µ(t′)

if m ∈ME

πm(t|m) = πm(m|t)µ(t)∑
t′ πm(m|t′)µ(t′)

, otherwise.

The idea behind this definition is similar to that of Nash equilibrium except

that we allow non-Bayesian reactions for out-of-equilibrium messages when ε > 0.

Therefore, dynamic consistency is violated but only up to ε. However, dynamic

consistency holds when ε = 0, and the updating rule is also well defined after

zero-probability messages. According to the definition, for a given ε, to prove that

a profile of strategies is an HTE based on (ρ, ε), we simply need to find a proper ρ

to support the equilibrium.

Example 1. As an illustration, we apply this definition to the simple game

depicted in Figure 1.

Figure 1

In this game, it is very easy to verify that there is one separating SNE: type t1 of

player 1 chooses message m1, and type t2 chooses message m2; player 2, regardless

of which message is observed, chooses r1. If player 2 has a threshold ε = 5%, then
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this equilibrium is an HTE supported by a Hypothesis Testing model (ρ, ε), where

supp(ρ) only contains one element π induced by the strategy of player 1. That is,

π satisfies the following conditions:

π(t1,m1) + π(t1,m2) = 0.05, π(t2,m1) + π(t2,m2) = 0.95;

π(m1|t1) = 1, π(m2|t2) = 1.

This prior (belief) π can be rationalized by a strategy of player 2, which is choosing

r1 regardless of which message is observed.

In this example, there also exists an HTE that is not an SNE:

σ∗(m1; t1) = 1, σ∗(m2; t2) = 1;

τ ∗(r2;m1) = 1, τ ∗(r1;m2) = 1.

The support of ρ contains two elements π and π̂ such that 0 < ρ(π̂) < ρ(π) < 0.9524,

and

π(t1) = 0.05, π(t2) = 0.95, π(m1|t1) = 1, π(m2|t2) = 1;

π̂(t1) = 0.05, π̂(t2) = 0.95, π̂(m1|t1) = 1, π̂(m1|t2) = 1.

π can be rationalized by the strategy τ ∗, and π̂ can be rationalized by choosing

r2 regardless of the message observed. Now let us verify that (σ∗, τ ∗) is an HTE

supported by (ρ, ε). Given τ ∗,

u1(t1,m1, τ
∗) = 3 > u1(t1,m2, τ

∗) = 0;

u1(t2,m2, τ
∗) = 3 > u1(t2,m1, τ

∗) = 2;

therefore, σ∗ maximizes player 1’s expected payoff for both types. Given σ∗, player

2 starts with belief π since ρ(π) > ρ(π̂) and retains π if she observes m2 since

π(m2) = π(m2|t1)π(t1) + π(m2|t2)π(t2) = 0.95 > ε.

With the posterior belief π(·|m2), observing m2, player 2’s best response is r1. She

switches to belief π̂ if she observes m1 since

π(m1) = π(m1|t1)π(t1) + π(m1|t2)π(t2) = 0.05 ≤ ε,
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and

BU(ρ,m1)(π̂) > BU(ρ,m1)(π).

Therefore, observing m1, player 2 has the posterior assessment of π̂(t1|m1) = 0.05

and π̂(t2|m1) = 0.95. With this posterior belief, player 2 computes her expected

payoffs as follows:

u2(r1;m1, σ
∗) = π̂(t1|m1)× 1 + π̂(t2|m1)× 0 = 0.05;

u2(r2;m1, σ
∗) = π̂(t1|m1)× 0 + π̂(t2|m1)× 1 = 0.95,

which implies that r2 is the best response to m1. Therefore, (σ∗, τ ∗) is an HTE but

not a Nash Equilibrium, as r2 is not a best response of player 2 to the message m1

if she only has one belief π.

3.3.2 Properties of Hypothesis Testing Equilibrium

From the previous example, we can immediately obtain the following property:

Proposition 3.2. In a finite signalling game Γ(µ), if a profile of behavioural

strategies (σ, τ) is an HTE supported by a Hypothesis Testing model (ρ, 0), then it

is also an HTE supported by a Hypothesis Testing model (ρε, ε), for all ε > 0.

Proof. Let ME
0 and ME

ε denote the sets of messages that are sent by player 1

with probability zero or a probability less than or equal to ε, respectively. Then,

ME
ε ⊆ME

0 . We can simply take

ρε = ρ = {πΩ, πm,m ∈M\ME}.

Player 2 starts with πΩ = argmaxπ∈supp(ρ) ρ(π), she retains πΩ and proceeds with

Bayesian updating if she observes m ∈ME
ε . If m ∈ME

0 \ME
ε , there exists πm = πΩ

such that σ and τ are sequentially rational. If m /∈ ME
0 , there exists π′m that is

identical to πm such that σ and τ are sequentially rational. �

As we can see from the previous example, if ε > 0, then any message sent with

probability less than or equal to ε is an out-of-equilibrium message. Because of

dynamic inconsistency, an HTE may deviate from an SNE. However, when ε = 0,

only the messages sent with zero probability are off-the-equilibrium path; therefore,
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it is not surprising that there is a close relationship between this special class of

HTE and SNE.

Proposition 3.3. In a finite signalling game Γ(µ), an HTE supported by a Hy-

pothesis Testing model (ρ, 0) is a refinement of SNE.

This requires no proof, as it relies solely on the definitions of HTE and SNE. If

a profile of strategies (σ∗, τ ∗) is an HTE supported by (ρ, 0), then for any message

sent by player 1 such that σ∗(m; t) > 0 for some t ∈ T , player 2’s posterior belief

derived by Bayesian updating using σ∗. For any message sent with zero probability,

that is, σ∗(m; t) = 0 for all t ∈ T , there exists some belief on the side of player 2 to

rationalize her behaviour. In addition, (σ∗, τ ∗) is sequentially rational. Therefore,

(σ∗, τ ∗) is an SNE. Moreover, according to definition 3.2, we require that any belief

in the support of ρ must can be “rationalized” by at least one strategy of player 2,

which means, in addition to the requirement of equation (3.2), that we actually

impose a further restriction on the out-of-equilibrium beliefs of player 2. Therefore,

it is not surprising that an SNE may not be an HTE supported by some (ρ, 0),

as in the example of the “Quiche-Beer” game in Ortoleva (2012). Here, we also

provide a simple example3 to demonstrate this property.200 QUARTERLY JOURNAL OF ECONOMICS 

0~~~ 1.1 1 r2 (r) 
m t2 ~ ,M( 

(o) { ~~1 } r2 (-) 

FIGURE III 

the m' information set must put weight 0.5 or more on A being type 
t2. But for type t2, m dominates m'. So, by any of the tests 
constructed from the dominance criterion above, we can prune the 
type-message pair (t2,m') from the game. In the game that is left, B 
must respond to m' with r2. This causes the equilibrium outcome to 
fail the test, using either Step 2 or 2A, since this response causes t1 
to defect. 

The game in normal form is given in Table I. (Note that the 
prior enters into the expected payoff calculations.) We leave to the 
reader the simple task of verifying that the equilibrium in which A 
chooses m regardless of type and B responds to m' with r1 is indeed 
proper. (Moreover, it is easily shown to be perfect in the agent 
normal form.) 

This example can be used to make another point, concerning 
properness for signaling games. (The material in this paragraph is a 
bit esoteric, and it may be skipped without loss of comprehension of 
most of the rest of the paper.) Consider changing the prior on A's 
type, from 0.9 that A is t1 to 0.9 that A is t2. Since, to support the m 
equilibrium outcome, it is necessary that B "assess" high posterior 

TABLE I 
GAME OF FIGURE III IN NORMAL FORM 
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ri r2 
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tl t2 

m m 0,0 0,0 
m m -0.1, 0.1 -0.1, 0 
m' m -0.9,0 0.9, 0.9 
m' m' -1, 0.1 0.8,0.9 
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Figure 2

In the game depicted in Figure. 2, (t1,m), (t2,m) is an SNE supported by a

belief of player 2 such that µ(t1|m) = 0.9 and µ(t2|m′) ≥ 0.5. However, this is not

an HTE supported by (ρ, 0) because there does not exist a ρ such that supp(ρ)

3This example is from Cho and Kreps (1987)
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contains a “rationalized” belief πm′ regarding the out-of-equilibrium message m′.

By contradiction, assume that there exists πm′ such that πm′(t2|m′) ≥ 0.5 and

πm′ can be rationalized by some strategy of player 2. If πm′(t2|m′) ≥ 0.5, then

πm′(t2,m
′) > 0, which implies that for any strategy τ that is rationalized πm′ , m

′

must be a best response of t2 to strategy τ . However, for type t2, m
′ is strictly

dominated by m, which implies that there is no such strategy τ such that m′ is a

best response to t2. This is contrary to condition (ii) in consistency definition 3.2.

3.4 Existence of HTE

3.4.1 Definition, notations, and assumptions

Proposition 3.1 indicates that, in a signalling game, an HTE supported by (ρ, ε)

exists if an HTE supported by (ρ, 0) exists. Moreover, an HTE supported by (ρ, 0)

is a refinement of SNE, which interests us because it allows us to compare our

definition of HTE with other refinement criteria. Therefore, in the analysis to

follow, we simply need to restrict our attention to this class of HTE by imposing

ε = 0. Since mixed strategies are not needed to prove existence, we only consider

the Pure Sequential Nash Equilibrium (PSNE). A pure strategy of player 1 is

a mapping s1 : T → M , and a pure strategy of player 2 is a response function

s2;M → R.

Definition 3.4. In a finite signalling game Γ(µ), a profile of strategies (s∗1, s
∗
2)

forms a PSNE if there exists βm ∈ ∆(T ), ∀ m /∈ME, such that:

(i). Given s∗2,

u1(t, s∗1(t), s∗2(s∗1(t))) ≥ u1(t,m, s∗2(m)), ∀m ∈M, ∀t ∈ T.

(ii).Given s∗1, for any m ∈M , s∗2(m) ∈ BR(m,µ2(·|m)), where

µ2(t|m) =

β(t|m) if m ∈ME

βm(t|m) otherwise,
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and

β(t|m) =


µ(t)∑

t′∈Tm,s∗1
µ(t′)

if t ∈ Tm,s∗1

0, otherwise,

where Tm,s∗1 = {t ∈ T : s∗1(t) = m}.

Before we prove the existence theorem, we provide some notations that we may

use in the statements.

Tm,s1 : the subset of types of player 1 who send message m under strategy s1, that

is,

Tm,s1 = {t ∈ T : s1(t) = m}.

ME
(s1,s2): the set of on-the-equilibrium messages if (s1, s2) ∈ PSNE(Γ(µ)), that is,

ME
(s1,s2) = {m ∈M : ∃t ∈ T, s. t. s1(t) = m}.

u1(t; s1, s2): the payoff of type t under strategy (s1, s2), that is,

u1(t; s1, s2) = u1(t, s1(t), s2(s1(t))).

βTm ∈ ∆(T ): the probability assessment concentrating on types t ∈ Tm, that is,

βTm(t) =


µ(t)∑

t′∈Tm µ(t′)
if t ∈ Tm

0 otherwise.

βt ∈ ∆(T ): the probability assessment concentrating on type t, that is,

βt(t
′) =

1 if t′ = t

0 otherwise.

We cannot be confident that there exists an HTE for a game that is randomly

selected from the space of signalling games with finite states; instead, we prove

the existence theorem in a class of signalling games that satisfy the following

assumptions.

Assumption 3.1. T , M , and R are finite. The type of player 1 has a probability

distribution, µ ∈ ∆(T ), with full support. Further, ui(t, s1, s2) , i ∈ {1, 2}, exists
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and is finite for all t ∈ T and all nondecreasing functions s1 : T → M and

s2 : M → R.

Assumption 3.2. For any t ∈ T , for any fixed r ∈ R, if we connect the points

{u1(t,m, r) : m ∈M} in order by a smooth line, then u1(t) is strictly concave in

m, and u2 is strictly concave in r.

Assumption 3.3. First-order stochastic dominance: ∀t ∈ T , ∀m ∈ M , ∀β, β′ ∈
∆(T ), whenever β stochastically dominants β′, that is,∑

t′≤t

β′(t′) ≥
∑
t′≤t

β(t′), ∀t ∈ T,

and strict inequality holds for some t ∈ T , then

u1(t,m,BR(m,β)) > u1(t,m,BR(m,β′)).

Assumption 3.4. Single Crossing Property:

(i). For all m > m′, and all t′ > t,∀r, r′ ∈ R,

u1(t,m, r) ≥ (>)u1(t,m′, r′), implies

u1(t′,m, r) ≥ (>)u1(t′,m′, r′).

(ii). For all r̂ > r, and all m̂ > m, ∀ t ∈ T ,

u2(t,m, r̂) ≥ (>)u2(t,m, r), implies

u2(t, m̂, r̂) ≥ (>)u2(t, m̂, r).

Assumption 3.1 is primarily a technical assumption to fit our definition of

HTE. Assumption 3.2 insures that only pure strategies are considered by both

players. Assumption 3.3 states that all types of player 1 prefer the best response of

player 2 when player 2 believes that player 1 is more likely to be of a higher type.

The fourth assumption is the Milgrom-Shannon Single Crossing Property (SCP)

(Milgrom and Shannon, 1994) for both players, which is a widely used assumption

in signalling games to model many economic problems. It states that if type t

prefers a higher message-response pair (m, r) to a lower message-response pair

(m′, r′), then any higher type t′ > t also prefers the higher message-response pair

(m, r). This captures the idea that higher messages are more easily sent by a higher
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type. The utility of player 2 also satisfies the SCP: If a higher response r̂ is a better

response to a message m sent by type t than r, then it is also a better response to

a higher message m̂ sent by t than r. Athey (2001) characterizes the single crossing

condition in several classes of incomplete information games, such as all types of

games with supermodular and log-supermodular payoffs, limit pricing games, and

auctions.

Before we proceed to the existence theorem, let us review the concept of

lexicographical dominance introduced by Mailath et al., (1993).

Definition 3.5. In a signalling game Γ(µ), a strategy profile (s∗1, s
∗
2) ∈ PSNE(Γ(µ))

lexicographically dominates (l-dominates) another strategy profile (s1, s2) ∈ PSNE(Γ(µ))

if there exists j ∈ T , such that

u1(t; s∗1, s
∗
2) > u1(t; s1, s2) if t = j

u1(t; s∗1, s
∗
2) ≥ u1(t; s1, s2) if t ≥ j + 1.

A strategy profile (s∗1, s
∗
2) ∈ PSNE(Γ(µ)) is a lexicographically maximum sequential

equilibrium (LMSE) if there is no (s1, s2) ∈ PSNE(Γ(µ)) l-dominates (s∗1, s
∗
2).

If we restrict player 1’s types to a subset of T , we can define a truncated game

from G. Formally, for any j ∈ T , let

T j = {1, ..., j}, µj(t) = βT j .

A truncated game Gj is defined by substituting T j for T and the T j−conditional

prior µj for the prior µ in original game. Then, we can obtain the following

properties:

Proposition 3.4. Assume that (s1, s2) ∈ PSNE(Γ(µ)), ∀ j ∈ T , if s1(t) 6= s1(j),

∀t > j, then (sj1, s
j
2) ∈ PSNE(Γj(µj)), where sj1(t) = s1(t), ∀ t ≤ j, and sj2(m) =

s2(m) ∀ m ∈M .

The following lemma derived in Mailath et al. (1993) is very important for our

proof. The reader is urged to read their paper to obtain a detailed analysis of this

result.

Proposition 3.5. Mailath et al. (1993): Under A3.1-A3.4, suppose that (s1, s2) ∈
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PSNE(Γ(µ)), (ŝ1, ŝ2) ∈ PSNE(Γj(µj)), and for some j ∈ T ,

u1(j; ŝ1, ŝ2) > u1(j; s1, s2),

then there exists (s∗1, s
∗
2) ∈ PSNE(Γ(µ)), such that

u1(t; s∗1, s
∗
2) ≥ u1(t; ŝ1, ŝ2) for all t ≤ j and

u1(t; s∗1, s
∗
2) ≥ u1(t; s1, s2) for all t > j.

That is, (s∗1, s
∗
2) l-dominates (s1, s2).

3.4.2 Existence of HTE supported by a Hypothesis Testing

model (ρ, 0)

Theorem 3.1. Under A3.1− A3.4, an LMSE is an HTE.

To prove the theorem, we need the following critical results:

Lemma 3.1. (Athey, 2001): Under A3.1 and A3.4, there exists a PSNE in Γ(µ).

Therefore, an LMSE exists. Moreover, both players play nondecreasing strate-

gies:

Lemma 3.2. Under A3.1 and A3.4, ∀ (s∗1, s
∗
2) ∈ PSNE(Γ(µ)), s∗1(t) ≤ s∗1(t

′) if

t < t′.

Proof. In equilibrium (s∗1, s
∗
2) , ∀t, t′ ∈ T ,

u1(t; s∗1, s
∗
2) ≥ u1(t, s∗1(t′), s∗2(s∗1(t′))).

Suppose that s∗1(t) > s∗1(t′) , and t′ > t, by assumption of the SCP,

u1(t′; s∗1, s
∗
2) > u1(t′; s∗1(t′), s∗2(s∗1(t′))) = u∗1(t′; s∗1, s

∗
2),

which upsets the equilibrium. �

Lemma 3.3. Under A3.1 and A3.4, ∀ (s∗1, s
∗
2) ∈ PSNE(Γ(µ)), s∗2(m) ≤ s∗2(m′) if

m < m′.
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Proof. In equilibrium (s∗1, s
∗
2) , ∀m′ > m ∈ M , since s∗2(m) is a best response to

message m for any t,

u2(t′,m, s∗2(m)) ≥ u2(t′,m, s∗2(m′)).

Suppose that s∗2(m) > s∗2(m′), from assumption A3.4

u2(t′,m′, s∗2(m)) ≥ u2(t′,m′, s∗2(m′)),

which is contrary to the fact that s∗2(m′) is a best response to m′. �

Lemma 3.4. For an (s∗1, s
∗
2) ∈ PSNE(Γ(µ)), let

T (r) = {t ∈ T : u1(t,m, r) > u1(t; s∗1, s
∗
2)}, (3.3)

then under A3.1 and A3.4, T (r) is convex.

Proof. For all t′, t′′ ∈ T (r), t′ < t′′, suppose that there ∃ t ∈ [t′, t′′], such that

u1(t,m, r) ≤ u1(t; s∗1, s
∗
2).

If m > s∗2(t), as t′ < t, by A4, we obtain

u1(t′,m, r) ≤ u1(t′, s∗1(t), s∗2(s∗1(t))).

In equilibrium,

u1(t′, s∗1(t), s∗2(s∗1(t))) ≤ u1(t′; s∗1, s
∗
2);

therefore,

u1(t′,m, r) ≤ u1(t′; s∗1, s
∗
2),

which is contrary to the assumption that t′ ∈ T (r). We can analogously prove the

other case in which m < s∗2(t) to obtain a contradiction with t′′ ∈ T (r). Therefore,

∀ t ∈ [t′, t′′], t ∈ T (r), which implies that T (r) is convex. �

Given a response r of player 2 to message m, T (r) is the set of types who are

willing to deviate from the equilibrium strategy.

Lemma 3.5. If r < r′, then T (r) ⊆ T (r′).
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Proof. ∀ t ∈ T (r),

u1(t,m, r) < u1(t,m, r′)

u1(t,m, r) > u1(t; s∗1, s
∗
2).

The first inequality holds because of A3.3. Therefore,

u1(t; s∗1, s
∗
2) < u1(t,m, r′),

which implies that t ∈ T (r′). �

This lemma implies that a higher response to message m induces more types of

player 1 to deviate from the equilibrium strategy to m.

For each message m ∈ M , we can form a set of responses of player 2 under

which at least one type of player 1 is willing to deviate from the equilibrium

strategy to m. Let

Rm = {r ∈ R : ∃t ∈ T, s. t. u1(t,m, r) > u1(t; s1, s2)}. (3.4)

Case (i). Rm = ∅. In this case, no type would deviate to m from his equilibrium

strategy given any response by player 2, that is, β(t|m) = 0, ∀ t ∈ T .

Case (ii). If Rm 6= ∅, then let rm = minRm. Then, T (rm) is the set of types who

are willing to deviate to m driven by the smallest trigger response by player 2.

The main idea of the proof of the existence theorem as follows: For each

out-of-equilibrium message m, there is a posterior belief supporting the LMSE

that can be rationalized by one strategy of player 2. We find such a strategy of

player 2: She plays a response rm to m and retains her equilibrium responses to

any other message. Now, let us prove Theorem 3.1.

Proof of Theorem 3.1. Let (s1, s2) be an LMSE in Γ(µ). To prove that (s1, s2)

is an HTE, we simply need to prove that for any out-of-equilibrium message m,

there exists a belief β(·|m) ∈ ∆(T ), such that s2(m) = BR(m,β(·|m)), can be ra-

tionalized by some strategy s̃2,m : M → R. Then, we can construct the Hypothesis

Testing model (ρ, 0) in which the support of ρ contains priors derived from beliefs

of on-the-equilibrium messages and out-of-equilibrium messages. Suppose that

m is an out-of-equilibrium message. Consider an out-of-equilibrium message m;

if Rm = ∅, then any β(·|m) ∈ ∆(T ), such that s2(m) = BR(m,β(·|m)), can be
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rationalized by s2. If Rm 6= ∅, we aim to find a strategy for player 2 to rationalize

β(·|m). According to Lemma 3.4, we can denote T (rm) = [i, j] (in our finite setting,

in fact, T (rm) is the set of types located between i and j.), where

i = min{t ∈ T : u1(t,m, rm) > u1(t; s1, s2)}

j = max{t ∈ T : u1(t,m, rm) > u1(t; s1, s2)}.

We denote mj = s1(j) and k = max{t ∈ T : s1(t) = s1(j)}. If m > mj , then k = j

by assumption A4. If m < mj, then u(t,mj, rm) > u(t,m, rm), for all t ∈ [j, k],

because of the concavity assumption A2. Now let us consider the k-truncated game

Γk(µk). We claim that there is no profile of strategies (ŝk1, ŝ
k
2) ∈ PSNE(Γk(µk))

such that ŝk1(t) = m and ŝk2(m) = rm for any t ∈ [i, j]. Suppose, contrary to

the assertion, that there exists such an equilibrium (ŝk1, ŝ
k
2), and in equilibrium,

∃j0 ∈ [i, j],

ŝk1(j0) = m, and

ŝk2(m) = rm.

We denote

h = max{t ∈ [i, k], ŝk1(t) = ŝk1(j0)};

then, h < j because either j = k or ŝk1(t) > m, ∀t ∈ [j, k]. Proposition. 3.4 implies

that (ŝk1, ŝ
k
2) is a PSNE in the h-truncated game Γh(µh) by simply dropping the

strategies of types higher than h, and

u1(h; ŝk1, ŝ
k
2) > u1(h; s1, s2).

Therefore, Prop. 3.5 implies that there exists (s∗1, s
∗
2) that l -dominates (s1, s2),

which is contrary to the assumption that (s1, s2) is an LMSE. This analysis

means that for any (ŝk1, ŝ
k
2) ∈ PSNE(Γk(µk)), BR(m,β[i,j]) < rm. In particular,

(s1, s2) is a PSNE of Γk(µk) by simply deleting the strategies of the types higher

than k; therefore, s2(m) < rm. To summarize the argument above, for any

out-of-equilibrium message m, there exists a belief β(·|m) ∈ ∆(T ), such that
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s2(m) = BR(m,β(·|m)), can be rationalized by the strategy s̃2 of player 2:

s̃2(m) = rm,

s̃2(m′) = s2(m′), ∀m′ 6= m.

For all t ∈ T (rm),

u1(t,m, s̃2(m)) = u1(t,m, rm)

> u1(t; s1, s2)

≥ u1(t,m′, s2(m′)) ∀m′ ∈M

= u1(t,m′, s̃2(m′)) ∀m′ ∈M,

and for all t /∈ T (rm), ∃ s1(t) 6= m, such that u1(t,m, s̃2(m)) ≤ u1(t; s1, s2).

Therefore, given s̃,

β(m|t) = 1, ∀t ∈ T (rm),

β(m|t) = 0, ∀t /∈ T (rm).

We can construct a Hypothesis Testing model (ρ, 0) in which

supp(ρ) = {πΩ, {πm : ∀m /∈ME
(s1,s2)}},

where

πΩ(·|m) = βTm,s1 , ∀m ∈ME
(s1,s2)

πm(t|m) = β(t|m) = βT (rm), ∀t ∈ T, ∀m /∈ME
(s1,s2),

with

ρ(πm) = 0, if Rm = ∅,

otherwise, 0 < ρ(πm) = ρ(π′m) < ρ(πΩ) if m,m′ /∈ME
(s1,s2), Rm, R

′
m 6= ∅,

and
∑

m∈M\ME
(s1,s2)

ρ(πm) + ρ(πΩ) = 1.

By construction, (s1, s2) is an HTE supported by (ρ, 0). Q.E.D
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3.4.3 Uniqueness of constrained HTE

As noted above, under condition (ii) on the requirements for the consistency of ρ,

player 2 is allowed to consider any strategy of player 1 as long as the strategy is

compatible with a best response to a strategy of player 2, which enlarges the set of

alternative beliefs of player 2. However, it is natural for us to restrict the strategies

of player 1 such that player 2’s alternative beliefs are around her original belief.

Definition 3.6. An HTE (s1, s2) ∈ PSNE(Γ(µ)) is a constrained HTE if, for

any out-of-equilibrium message m, there exists a posterior belief conditional on m

supporting the equilibrium that can be rationalized by

s̃2(m) = rm

s̃2(m′) = s2(m′) ∀m′ 6= m.
(3.5)

Remark. In a constrained HTE, any belief of an out-of-equilibrium message

supporting the equilibrium can be rationalized by a strategy of player 2 that is

not far from her equilibrium strategy. This idea is quite intuitive; when player 2

observes a message that deviates from her original belief, she searches for the most

likely types who have a potential incentive to send this message and forms her new

belief by simply perturbing her original belief regarding this message.

Remark. In an HTE, it is required that there exists πm ∈ supp(ρ), such that

πm is compatible with s̃2. If πm can be deduced by player 1’s strategy s̃1, then s̃2

may not be a best response to s̃1; only s̃1 is required to be a best response to s̃2.

If (s̃1, s̃2) forms an equilibrium, then in this equilibrium, u1(t,m, s̃2) ≤ u1(t; s1, s2),

∀ t ∈ T . This case coincides with the Undefeated Equilibrium proposed by Mailath

et al. (1993).

Look through the proof of the existence theorem, we can immediately obtain

the following proposition.

Proposition 3.6. Under A3.1- A3.4, an LMSE is a constrained HTE.

Now, we seek to prove the uniqueness of a constrained HTE if an LMSE is

unique.

Proposition 3.7. Under A3.1-A3.4, an LMSE is unique.
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Proof. Suppose that both (s∗1, s
∗
2) and (s1, s2) are LMSE, as (s∗1, s

∗
2) is not l -

dominating (s1, s2), for any t0 ∈ T , such that:

u1(t0; s∗1, s
∗
2) > u1(t0; s1, s2),

∃t1 > t0, such that

u1(t1; s∗1, s
∗
2) < u1(t1; s1, s2).

We have the same expression for (s1, s2), and T is finite; therefore, (s∗1, s
∗
2) and

(s1, s2) are identical. �

Clearly, all other strategy profiles (s1, s2) ∈ PSNE(Γ(µ)) must be l -dominated

by the unique LMSE. Let us denote the unique LMSE as (sLM1 , sLM2 ).

Theorem 3.2. Under A3.1-A3.4, if the unique LMSE is completely separating,

and M is rich enough, then the outcome of a constrained HTE supported by (ρ, 0)

is unique.

Lemma 3.6. Under A3.1-A3.4, if (s1, s2) ∈ PSNE(Γ(µ)) is a completely separating

equilibrium, let j = min{t ∈ T : u1(t; s
LM
1 , sLM2 ) > u1(t; s1, s2)}, and ∀ t ∈ T ,

s1(t) 6= sLM1 (j), then (s1, s2) is not a constrained HTE.

Proof. If j = min{t ∈ T : u1(t; sLM1 , sLM2 ) > u1(t; s1, s2)}, we denote

sLM1 (j) = m, sLM2 (m) = r∗j ,

s1(j) = mj, s2(mj) = rj.

We assume that β(·|m) ∈ ∆(T ) is a posterior belief supporting the equilibrium

(s1, s2); then, R(m) 6= ∅ since u1(j,m, r
∗
j ) > u1(j; s1, s2). Let rm = minRm; then,

r∗j ≥ rm. Further, we can show that rm = r∗j . This is true because of the following

argument. By assumption, we have the following conditions:

u1(j,m, r∗j ) > u1(j,mj, rj) and

u1(j,mj, rj) > u1(j,m, s2(m)),

⇒u1(j,m, r∗j ) > u1(j,m, s2(m))

⇒s2(m) < r∗j

⇒BR(m,β(·|m)) < BR(m,βj),
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the last condition holds because (sLM1 , sLM2 ) is a completely separating equilibrium.

Therefore, by the SCP of the utility function of player 2, we have∑
t∈T

β(t|m) < µ(j), and ∃t0 < j, β(t0|m) > 0.

Let

T (rm) = {t ∈ T : u1(t,m, rm) > u1(t, s1, s2)}.

By contradiction, suppose that (s1, s2) is a constrained HTE ; then β(·|m) can be

rationalized by s̃2 given in Equ. (3.5). Moreover β(t0|m) > 0 implies that m is a

best response of t0 to s̃2, that is, u1(t0,m, s̃2(m)) > u1(t0,m
′, s̃2(m

′)), ∀ m′ ∈ M .

Therefore, t0 ∈ T (rm). However,

u1(t; sLM1 , sLM2 ) ≤ u1(t; s1, s2) ∀t < j,

and together with the following condition

u1(t; sLM1 , sLM2 ) ≥ u1(t;m, r∗j ),

implies that

u1(t,m, r∗j ) < u1(t; s1, s2) ∀t < j.

Therefore, ∀ r < r∗j ,

u1(t0,m, r) ≤ u1(t0;m, r∗j ) < u1(t0; s1, s2).

Therefore, rm ≥ r∗j , which induces rm = r∗j . However, with this strategy s̃2,

u1(j,m, s̃2) = u1(j,m, r∗j ) > u1(j; s1, s2) ≥ u1(j,m′, s̃2(m′)), ∀m′ ∈M,

which implies that j ∈ T (rm). Therefore, β(j|m) = µ(j)∑
t∈T (rm) µ(t)

≥ µ(j). We have

a contradiction with
∑

t∈T β(t|m) < µ(j). �

Now let us prove Theorem 3.2.

Proof of Theorem 3.2. We simply need to show that any (s1, s2) ∈ PSNE(Γ(µ))

that is l -dominated by (sLM1 , sLM2 ) is not a constrained HTE. For any (s1, s2) ∈
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PSNE(Γ(µ)), let

j = min{t ∈ T : u1(t; sLM1 , sLM2 ) > u1(t; s1, s2)},

and sLM1 (j) = mj . If mj is an out-of-equilibrium message under (s1, s2), by Lemma

3.6, we can immediately obtain the conclusion. However, if mj ∈ME
(s1,s2), according

to our assumption, if M is rich enough, we can select an m slightly greater than mj

but less than sLM1 (j + 1) such that m /∈ME
(s1,s2) and form a new PSNE (s∗1, s

∗
2) by

simply perturbing (sLM1 , sLM2 ) at j. Then, (s∗1, s
∗
2) still l -dominates (s1, s2). This can

be done because (sLM1 , sLM2 ) is a completely separating equilibrium. Again, Lemma

3.6 implies that (s1, s2) is not a constrained HTE. Q.E.D

Corollary 3.1. Under A3.1- A3.4, if there only exist completely separating equi-

libria, then a “Pareto-dominant equilibrium” or “Riley equilibrium” is the unique

constrained HTE.

Proof. A “Riley equilibrium” maximizes the payoffs of all types in the set of

completely separating equilibria, which means that it is the unique LMSE ; therefore,

it is the unique constrained HTE. �

This proposition ensures that our HTE concept can capture the well-known

“Pareto-dominant separating equilibrium” or “Riley outcome” that is often selected

in economic applications.

3.5 Comparison with Intuitive Criterion

Intuitive Criterion: (Cho and Kreps, 1987) Fix a sequential equilibrium outcome

and let u∗1(t) be the payoff of a type t of player 1 in this equilibrium. For each

out-of-equilibrium message m, form the set

S(m) = {t ∈ T : u∗1(t) > max
r∈BR(T (m),m)

u1(t,m, r)}. (3.6)

If, for some out-of-equilibrium message m there exists a type t′ ∈ T such that

u∗1(t′) < min
r∈BR(T\S(m),m)

u1(t′,m, r), (3.7)
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then the equilibrium outcome fails the Intuitive Criterion. Here T (m) denotes the

set of types of player 1 who have options to send the message m.

Proposition 3.8. In a finite signalling game Γ(µ), if (σ1, σ2) ∈ SNE(Γ(µ)) fails

the Intuitive Criterion, then it is also not a Constrained HTE supported by a

Hypothesis Testing model (ρ, 0).

Proof. If (σ1, σ2) ∈ SNE(Γ(µ)) fails the Intuitive Criterion, then for some m /∈
ME

(σ1,σ2), ∃ t′ ∈ T , such that condition (3.7) holds. We prove that for this m, any

belief πm ∈ ∆(T ×M), such that

u1(t; s1, s2) ≥ u1(t,m,BR(m,πm(·|m))), ∀t ∈ T, (3.8)

cannot be rationalized by the strategy of player 2 given in (3.5). By contradiction,

suppose that there exists s̃2 : M → R that rationalizes πm(·|m). T and M are

finite; for this m ∈M , there exists a posterior distribution µ2(·|m) ∈ ∆(T ) such

that s̃2(m) = BR(T (m),m, µ2(·|m)). By the definition of S(m),

u∗1(t) > max
r∈BR(T (m),m)

u1(t,m, r) > u1(t,m, s̃2(m)),

which implies that the types in S(m) would never deviate from their equilibrium

strategy to m. Therefore,

πm(t,m) = 0, ∀t ∈ S(m),

which implies that BR(πm, T\S,m) = BR(πm, T,m). Since there exists t′ ∈ T ,

u∗1(t′) < min
r∈BR(T (m)\S(m),m)

u1(t′,m, r)

≤ u1(t′,m, r), r ∈ BR(πm, T (m)\S(m),m)

≤ u1(t′,m, r), r ∈ BR(πm, T (m),m).

Therefore, type t′ could achieve a payoff strictly higher than his expected equilibrium

payoff by sending the message m. This is contrary to condition (3.8).

�

Remark. We do not need to impose assumptions to obtain this property. In

addition, we do not need to restrict to pure strategies in this property. This result
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is illustrated in the following simple example.

Example 2. The simple game depicted in Figure 3 provides an example to

illustrate the result in Prop. 3.8. There are two PSNE in this game. In the first,

Figure 3

the strategies of player 1 and player 2 are given by

σ∗(m1; t1) = 1, σ∗(m1; t2) = 1;

τ ∗(r1;m1) = 1,
(3.9)

This is a PSNE supported by any belief of player 2 regarding out-of-equilibrium

message m2. We can easily verify that this equilibrium can satisfy the Intuitive

Criterion and is also an HTE. The second equilibrium is as follows:

σ∗(m2; t1) = 1, σ∗(m2; t2) = 1;

τ ∗(r1;m2) = 1.
(3.10)

This is supported by a belief such that µ2(t1|m1) < 0.5. First, we verify that this

PSNE can survive the Intuitive Criterion. For the out-of-equilibrium message m1,

we form the set

S(m1) = {t ∈ T : u∗1(t) > max
r∈BR(T,m1)

u1(t,m1, r)}.

Since

u∗1(t1) = 2 < max
r∈BR(T,m1)

u1(t1,m1, r) = u1(t1,m1, r1) = 3,
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and

u∗1(t2) = 0 < max
r∈BR(T,m1)

u1(t2,m1, r) = u1(t1,m1, r1) = 1,

we have S(m1) = ∅. Therefore, there is no type t′ such that

u∗1(t′) < min
r∈BR(T\S(m1),m1)

u1(t′,m1, r).

Second, we can show that this PSNE is not an HTE. By contradiction, if it is an

HTE, then for the out-of-equilibrium message m1, there must exist a belief π′ such

that π′(t1|m1) < 0.5 can be rationalized by a strategy of player 2. π′(t1|m1) < 0.5

implies that π′(t2,m1) > 0. Then, according to the condition (ii) of consistency

definition 3.2 , any strategy of player 2 that rationalizes π′ must be such that

m1 is a best response for type t2. If we write such a strategy of player 2 as

φ(r1;m1) = x ∈ [0, 1] and φ(r1;m2) = y ∈ [0, 1], then x and y must satisfy the

following condition:

u1(t2,m1, φ) ≥ u1(t2,m2, φ)

⇒ 1 · x+ (−1) · (1− x) ≥ 0 · y + (−2) · (1− y)

⇒ 2x− 2y + 1 ≥ 0.

Given such a strategy, the payoffs of type t1 are

u1(t1,m1, φ) = 3 · x+ 1.5 · (1− x) = 2.5x+ 1.5,

u1(t1,m2, φ) = 2 · y + 0 · (1− y) = 2y.

Since 2x− 2y + 1 ≥ 0

x ∈ [0, 1], y ∈ [0, 1]
⇒ 2.5x+ 1.5 > 2y,

which means that m1 is the unique best response for type t1. That is, π′(m1|t1) = 1.

Therefore,

π′(t1|m1) ≥ π′(m1|t1)π′(t1) = 0.6,

which is contrary to π′(t1|m1) < 0.5.
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3.6 HTE of the Milgrom-Roberts model

In this section, we present an example of simplified version of the Milgrom and

Roberts (1982) limit pricing entry model to illustrate how to find an HTE. In this

example, there are two periods and two firms. Firm 1, the incumbent, has private

information concerning his unit cost. Firm 1 chooses a first-period quantity Q1. In

the second period, firm 2, the entrant, observes the quantity and decides whether

to enter the market. It pays a fixed cost K > 0 if it enters. Then, the private

information is revealed and last stage of the game is played, either by both firms

competing in a Cournot duopoly or by only the incumbent acting as a monopolist4.

Suppose that there are two possible costs for firm 1, (cL, cH). The common prior

is µ(c1 = cL) = 1− µ(c1 = cH) = x. Firm 2’s cost c2 > 0 is common knowledge.

We assume that the inverse market demand is given by P (Q) = a− bQ, a, b > 0.

Let Πt
1(Q1) denote a firm 1 of type t’s monopoly profit in the first period if its

production quantity is Q1, that is

Πt
1(Q1) = (a− bQ1 − ct)Q1 t ∈ {L,H},

then it is easily to see that Πt
1(Q1) is strictly concave in Q1. Let QL

M and QH
M

denote firm 1’s monopoly quantities that maximize its short-run profit when its

cost is low or high, respectively. With our linear demand function, we obtain

QL
M =

a− cL
2b

and QH
M =

a− cH
2b

.

Let ΠL
M and ΠH

M denote the monopoly profits under low and high cost, respectively,

that is

ΠL
M = ΠL

1 (QL
M) =

(a− cL)2

4b
and ΠH

M = ΠH
1 (QH

M) =
(a− cH)2

4b
.

Since we assume (as do Milgrom and Roberts, 1982) that firm 2 learns firm 1’s

cost immediately if firm 2 decides to enter the market; we can explicitly compute

the two firms’ Cournot duopoly profits with complete information.

Πt
1C =

(a− 2ct + c2)2

9b
, and Πt

2C =
(a− 2c2 + ct)

2

9b
−K,

4J. Tirole (1988) analysed a similar model in which the two firms compete via a Bertrand
competition game if entry occurs
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where t ∈ {L,H}. We assume the discount factors δ1 = δ2 = δ. To make things

interesting, we assume that ΠH
2C > 0 > ΠL

2C , which implies that, under complete

information, firm 2 enters the market if and only if firm 1 is of the high-cost type.

Furthermore, Ex(Π2C) < 0, which implies that firm 2 will not enter the market if

it only has the prior information.

To fit our HTE concept, we assume that firm 1 only has four choices of Q1,

that is, Q1 ∈ {QL
M , Q

H
M , Q

L
1 , Q

H
1 }, where Qt

1 > Qt
M , ∀ t ∈ {L,H} that satisfy the

following conditions:

ΠL
1 (Qt

1) + δΠt
M > Πt

M + δΠt
1C , ∀t ∈ {L,H}.

This condition implies that the low-cost (high-cost) type of firm 1 prefers to deter

the entrant by choosing a higher quantity QL
1 (QH

1 ) if the monopoly quantity QL
M

(QH
M) induces entry. Let Q̃t

1 for t ∈ {L,H} denote the quantity at which level a

type t of firm 1 is indifferent between deterring and not deterring entry. That is,

Πt
1(Q̃t

1) + δΠt
M = Πt

M + δΠt
1C , for t ∈ {L,H}.

Due to the strict concavity of Πt
1(Qt

1), we have Q̃t
1 < Qt

1. Now, there are only three

interesting cases left to us to analyse the equilibria:

(i). Q̃L
1 > QL

1 > QL
M > Q̃H

1 > QH
1 > QH

M ,

(ii). Q̃L
1 > QL

1 > Q̃H
1 > QH

1 > QL
M > QH

M ,

(iii). Q̃L
1 > QL

1 > Q̃H
1 > QL

M > QH
1 > QH

M .

In this example, we only consider the pure strategies of the firms; let

s : {L,H} → {QL
M , Q

H
M , Q

L
1 , Q

H
1 }

and

t : {QL
M , Q

H
M , Q

L
1 , Q

H
1 } → {0, 1}

be the strategies of firm 1 and firm 2, respectively. We can verify that, in this

game, assumptions A3.1-A3.4 are satisfied, and therefore, an HTE exists.
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Proposition 3.9. In case (i), there exist two separating PSNE:

s(L) = QL
M , and s(H) = QH

M

t(Q1) =

 0 if Q1 ≥ QL
M (PSNE 3.9.1)

1 otherwise

and

s(L) = QL
1 , and s(H) = QH

M

t(Q1) =

 0 if Q1 ≥ QL
1 (PSNE 3.9.2)

1 otherwise

Proposition 3.10. In case (i), both of the equilibria can survive the Intuitive

Criteria, but only the efficient separating equilibrium (PSNE 3.9.1) is an HTE.

The proof is in appendix A.

Proposition 3.11. In case (ii), there exist two pooling PSNE and one separating

PSNE:

s(L) = s(H) = QL
M

t(Q1) =

 0 if Q1 ≥ QL
M (PSNE 3.11.1)

1 otherwise,

s(L) = s(H) = QH
1

t(Q1) =

 0 if Q1 ≥ QH
1 (PSNE 3.11.2)

1 otherwise,

and

s(L) = QL
1 , and s(H) = QH

M

t(Q1) =

 0 if Q1 ≥ QL
1 (PSNE 3.11.3)

1 otherwise

Proposition 3.12. In case (ii), all three PSNE can survive the Intuitive Criterion,
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but only the efficient equilibrium (PSNE 3.11.1) is an HTE.

The proof is given in Appendix B.

Proposition 3.13. In case (iii), there exist one separating PSNE and one pooling

PSNE:

s(L) = s(H) = QL
M

t(Q1) =

 0 if Q1 ≥ QL
M (PSNE 3.13.1)

1 otherwise

and

s(L) = QL
1 , and s(H) = QH

M

t(Q1) =

 0 if Q1 ≥ QL
1 (PSNE 3.13.2)

1 otherwise

Proposition 3.14. In case (iii), both of the PSNE can survive the Intuitive

Criterion, but only the efficient pooling equilibrium (PSNE 3.13.1) is an HTE.

We can prove this proposition using almost the same argument as in the proof

of Prop. 3.12. Thus, we omit the proof here.

To summarize this analysis of the limit pricing entry deterrence model, in each

case, there exists a unique HTE. In the HTE, the high-cost type of firm 1 either

chooses its monopoly quantity and allows entry or engages in pooling with the

low-cost type and deters entry depending on the cost of pooling. The low-cost type

choose its monopoly quantity and entry does not occur. By contrast, in each case,

there exist multi-equilibria that can survive the Intuitive Criterion. In separating

equilibria such as (PSNE 3.9.2), (PSNE 3.11.3), and (PSNE 3.12.2), although it

is costly for the high-cost type to pool with the low-cost type, the low-cost type of

firm 1 still needs to sacrifice its short-run profit and engages in limit pricing to

distinguish himself from the high-cost type. We argue that this type of equilibrium

cannot be an HTE because there is no a rational belief system to support the

equilibrium when an out-of-equilibrium message QL
M is observed.

62



3.7 Conclusions

3.7 Conclusions

In this chapter, we propose a general definition of Hypothesis Testing Equilibrium

(HTE) in a framework of general signalling games with non-Bayesian players. We

focus on the analysis of a special class of HTE with the threshold ε = 0 as a means

of equilibrium refinement that can survive the Intuitive Criterion. For a broad class

of signalling games, a Lexicographically Maximum Nash sequential equilibrium

(LMSE ) is an HTE, and if the LMSE is completely separating, then the constrained

HTE is unique. In the example of an entry deterrence game, we show that there

exists a unique HTE in each interesting case. However, there are aspects of HTE

that we have not considered, in particular, the existence and uniqueness in more

general signalling games. Natural extensions are to apply the concept of HTE in

signalling games in which the state space is infinite or to consider general dynamic

games. When ε > 0, the dynamic consistency condition is violated, and there

will be some difficulties in making these extensions. Nevertheless, when ε = 0,

dynamic consistency holds, and in that case further research to apply the idea of

HTE to dynamic games, even more general games, for equilibrium refinement is

encouraged.
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Chapter 4

Entry Deterrence Games under

Ambiguity

Abstract

In this chapter, we introduce ambiguity into an entry deterrence game in which

the potential entrant has multiple priors on the true state of aggregate demand.

We formulate two models with respect to the information asymmetries between

the established firm and the potential entrant. In the first model, the established

firm is fully informed of the true state, and in the second, the established firm is

also uncertain about the state but is informed of the distribution of the state. In

both models, we characterize the conditions under which limit pricing emerges in

equilibria, and thus ambiguity decreases the probability of entry. Welfare analysis

shows that limit pricing is more harmful in a market with higher expected demand

than in a market with lower expected demand.

Keywords: Entry Deterrence Game, Asymmetric Information, Ambiguity,

Message-Monotone Equilibrium.
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4. ENTRY DETERRENCE GAMES UNDER AMBIGUITY

4.1 Introduction

Games with incomplete information typically involve the situation in which the

players are uncertain about some important parameters of the game, such as the

payoff functions, the strategies available to various players, or the information that

other players have about the game. The normal form of such games is well studied (

Harsanyi, 1967, 1968a, 1968b). Extensive-form games with incomplete information

in which one informed player, who possesses private information, sends a signal to

a second party, who thereupon takes an action have been also widely considered as

signalling games (Spence, 1972, Cho & Kreps, 1987, Fudenberg & Tirole, 1991, etc.).

However, in most of the literature, it is assumed that the probability distributions

entertained by the different players are mutually ”consistent”, in the sense that

they can be regarded as conditional probability distributions derived from a certain

“basic probability distribution” or “common prior” over the parameters unknown

to the various players.

In this chapter, we introduce a different concept of the asymmetric information

structure in an entry deterrence game between one more informed player and

one less informed player. The established firm is more informed since it has

already made investment commitment. Either it has knowledge of the true state

of the market (the aggregate demand, costs, for example), or at least, it has

confidence in the probability distribution of the state. While the potential entrant

has little information and hence little confidence regarding to the true state

of the market, it may have a set of probability measures over the state space.

These two different situations with respect to uncertainty are distinguished by

Knight (1921). The situation in which the uncertainty can be governed by a

unique probability measure is called “measurable uncertainty” or “risk”. In

contrast, we use “Knightian uncertainty” or“ambiguity” to refer to situations in

which individuals cannot or do not assign subjective probabilities to uncertain

events. The Ellsberg Paradox (Ellsberg, 1963) has shown that this distinction

is behaviourally meaningful since people treat ambiguous bets differently from

risky bets. Importantly, the lack of confidence reflected by choices in the Ellsberg

Paradox cannot be rationalized by any probabilistic belief; see Ellsberg (1963).

In the literature, theoretical models of individual preferences for decisions under

ambiguity include Maxmin Expected Utility (MEU) (Gilboa and Schmeidler, 1989),
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smooth ambiguity preference (Klibanoff et al., 2005), and variational representation

of preferences (Maccheroni, et al., 2006).

In a seminal study of limiting pricing and entry deterrence models with incom-

plete information, Milgrom and Roberts (1982) formulated a two-period two-firm

model in which the firms know the realizations of their own unit costs but those

of their opponent. However, the joint distribution of the costs is common knowl-

edge. In their setting, both firms face “measurable uncertainty” regarding their

opponent’s costs. They studied the impact of the information asymmetries on the

entry probability compared with the complete information case. We introduce

“Knightian uncertainty” in a simplified version of the Milgrom-Roberts model and

discuss two cases of information asymmetry between the established firm and the

potential entrant.

We formulate a two-period game in which the payoffs of the two players depend

on an aggregate demand function with two possible alternatives. In the first model,

the established firm (firm 1) is fully informed of the true state, while the potential

entrant (firm 2) lacks sufficiently precise information to assign a unique probability

measure governing the uncertainty and instead has a set of priors on the state. We

identify the conditions under which limit pricing emerges in equilibrium and discuss

the impact of ambiguity on the probability of entry. We compare our results with

other two situations: the situation in which firm 2 is also informed of the true

state and the situation in which firm 2 faces measurable uncertainty.

However, the established firm may not know the realization of demand but only

expected demand before it begins to produce and enters the market. Therefore,

we formulate a second model in which both of the firms face uncertainty, but firm

1 is under risk, while firm 2 is under ambiguity. Since we employ a linear demand

function, choosing quantity as firm 1’s strategy in the first period is equivalent to

choosing price. In this model, firm 1 chooses a price to charge in the first period,

and it will learn the realization of the uncertain demand in the first period. Firm

2 updates its set of priors after observing the price charged by firm 1 in the first

period and decides whether to enter the market. If firm 2 enters, it also makes an

investment commitment and learns the real prior immediately; then the two firms

engage in Cournot competition. Otherwise, firm 1 remains its monopoly. From

the information structure, we can see that firm 1 has an informational advantage

in both pre- and post-entry markets.
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4. ENTRY DETERRENCE GAMES UNDER AMBIGUITY

We focus on the second model and characterize a message-monotone equilibrium

in which firm 1’s strategy (price charged in the first period) is weakly increasing

in the probability of high aggregate demand. One of the main findings is that,

in this equilibrium, the limit pricing strategy emerges when the probability of

high demand is between two thresholds and the entrant is deterred by the limit

pricing. The lower threshold is the point at which firm 2 is indifferent between

entering the market and staying out the market. The upper threshold is the point

at which firm 1 is indifferent between engaging in limit pricing to successfully deter

the entrant and charging the monopoly price to induce entry. We use Maxmin

Expected Utility (MEU) to represent firm 2’s preferences with respect to ambiguity

aversion. Compared with the symmetric information case in which firm 2 also knows

the distribution of the unknown parameter, the entrant behaves more cautiously

when there is ambiguity. The probability that entry actually occurs in such an

equilibrium is equal to or less than that in a symmetric information case. However,

the entry probability decreases only when the degree of ambiguity is large enough

that the indifference point of firm 2 is located in the set of its priors. A welfare

analysis reveals that the changes in expected consumer surplus due to limit pricing

are increasing in the expected aggregate demand under certain standard conditions.

However, limit pricing decreases the expected industry surplus and total welfare.

Further, it is more harmful in a market with higher expected demand than in a

market with lower expected demand.

The remainder of this chapter is organized as follows. Section 4.2 briefly

discusses a model in which the established firm is completely informed of the

demand function but the entrant is not informed and instead has multi-priors on

the unknown parameter in the demand function. Section 4.3 is the main part of

this chapter. In this section, we describe a model in which both firms are uncertain

about the demand function, but there is asymmetric information with respect to

uncertainty. The established firm is under risk, but the entrant is under ambiguity.

In this section, we characterize one message-monotone equilibrium and discuss the

impact of ambiguity. Section 4.4 discusses the impact of information asymmetry

on welfare. Finally, section 4.5 presents the conclusions.
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4.2 Entry deterrence game under uncertainty on one side

4.2 Entry deterrence game under uncertainty on

one side

4.2.1 Description of the game

Consider the market for a homogeneous good in which there are an established

firm, denoted firm 1, and a potential entrant, denoted firm 2. The inverse demand

function for the industry output is P = a − bQ. The parameter a is assumed

to be one of the two possible values aH and aL, with 0 < aL < aH . Thus

a = aH reflects a higher aggregate demand state than a = aL. A two-period

model of entry deterrence and entry under incomplete information proceeds as

follows: At stage 0, nature selects the value of a according to a distribution

P(a = aH) = 1 − P(a = aL) = x ∈ [0, 1] and fixes a through the next two

periods. Firm 1 is informed the value of a. But firm 2 only has knowledge that

x ∈ [x, x] ⊆ [0, 1].

At stage 1, firm 1 has to choose a price to charge for the production. Observing

the price charged by firm 1, firm 2 decides to enter the market or not.

At stage 2, if firm 2 decides to enter the market and makes commitment on the

investment with a fixed cost K, it also can learn the value of a and the two firms

proceed Cournot competition in this stage. Otherwise, if firm 2 doesn’t enter, firm

1 will enjoy the monopoly profit.

We assume that the firms are risk neutral and ambiguity averse. The unit costs,

ci, i = 1, 2, which are constants, and the description of the game are common

knowledge.

4.2.2 Strategies and payoffs

The price selected by firm 1 in the first period influences the choice of firm 2, which

will affect the total profit of firm 1 in the whole two periods. Therefore, if we

restrict attention to the pure strategy, a strategy of firm 1 is a mapping:

s : {aL, aH} → R+,
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4. ENTRY DETERRENCE GAMES UNDER AMBIGUITY

where s(a) is the price chosen by firm 1 in the first period conditional on a,

a ∈ {aL, aH}. A pure strategy of firm 2 is a mapping:

t : R+ → {0, 1}.

Then t(s) = 0 means that firm 2 decides to stay out of the market observing price

s, and t(s) = 1 implies that firm 2 decides to enter the market observing price s.

In order to derive the total payoffs of the two firms, let us analyze the post-entry

Cournot duopoly market first. If firm 2 decides to enter the market, it also learns

the value of a, this is a typical one shot game with complete information. In this

sub-game, the profit of firm i, i, j = 1, 2 conditional on a is given by

Πi
C =

(a− 2ci + cj)
2

9b
.

Given the strategy t of firm 2, a strategy s gives a total payoff to firm 1:

Π1 = Π1
1 + δ1Π1

2

=
(s− c1)(a− s)

b
+ δ[t(s)Π1

C + (1− t(s))Π1
M ],

where Π1
M is the monopoly profit if firm 2 doesn’t enter the market, and

Π1
M =

(a− c1)2

4b
.

Therefore, the total profit of firm 1 is

Π1 =
(s− c1)(a− s)

b
+ δ

[
t(s)

(a− 2c1 + c2)2

9b
+ (1− t(s))(a− c1)2

4b

]
. (4.1)

To derive the expected profit of firm 2 is a bit complicate since firm 2 thinks in

terms of a set of probability laws of the unknown parameter a, that is, it assigns an

interval [x, x] to the probability of a = aH . Here we adopt the Maxmin Expected

Utility (MEU) in Gilboa & Schmeidler(1989) to represent firm 2’s ambiguity

aversion. Formally and generally, the multiple-prior model postulates the following
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4.2 Entry deterrence game under uncertainty on one side

utility function on the set of AA acts:

UMP (h) = min
p∈C

∫
Ω

u(h)dp.

Here, u : ∆(C)→ R is a vNM functional on lotteries that is affine. Conditional on

any observed s ∈ R+, firm 2 assigns probabilities to s having been the choice of

each type of firm 1, then firm 2 updates its set of priors first. Denote the updated

set of priors as [x′, x′]. For each s, the expected payoff of firm 2 with a strategy

t(s) is:

Π2 = min
x∈[x′,x′]

E[t(s)(Π2
C(a)−K)]. (4.2)

4.2.3 Equilibrium Analysis

A pair of strategies profile (s∗, t∗) forms a Nash equilibrium if, s∗ maximizes firm

1’s total payoff (4.1) given t∗, and t∗ is a best response for any observed s given s∗,

that is, t∗ maximizes (4.2) for each s. Since there are only two possible alternatives

of a, firm 1 has only two types. Therefore, in equilibrium, the only values of s

which could be observed are s∗(aL) and s∗(aH). Now in this set-up there only exist

either pooling equilibria, that is, s∗(aL) = s∗(aH), or separating equilibria, that is,

s∗(aL) 6= s∗(aH). We will discuss the conditions of the Nash equilibrium under the

following assumptions:

Assumption 4.1.

(i). Π2
C(aL)−K < 0 and Π2

C(aH)−K > 0.

(ii). aL − 2c2 + c1 > 0.

Assumption 4.2. Firm 2’s optimal choice is staying out of the market under it’s

original information.

Assumption 4.1(i) just simply means that firm 2 won’t enter the market if it is

informed that a = aL and it will enter the market if a = aH . Assumption 4.1(2)

implies that if firm 2 enters the market, then it produces positive quantity in the

Cournot market even at the low state of demand. Under Maxmin Expected utility,

71



4. ENTRY DETERRENCE GAMES UNDER AMBIGUITY

Assumption 4.2 can be explicitly expressed as:

min
x∈[x,x]

E[(Π2
C(a)−K)]

= min
x∈[x,x]

(ae(x)− 2c2 + c1)2

9b
−K

=
(ae(x)− 2c2 + c1)2

9b
−K < 0,

where ae(x) = xaH + (1 − x)aL is the expectation of a under the law of a,

P(aH) = x. The last equality holds because of A4.2(ii). Let f(x) = (ae(x)−2c2+c1)2

9b
,

then f ′(x) > 0, ∀ x ∈ [0, 1], and f ′(0) > 0.

In a pooling equilibrium (s∗, t∗), s∗(aH) = s∗(aL) = s. Given the strategy of

firm 1, firm 2 can’t learn any information observing s. Therefore, firm 2 still has the

set of multiple priors [x, x]. Assumption 4.2 implies that the best response of firm

2 conditional on s is t∗(s) = 0. If firm 1 uses separating strategy, firm 2 can learn

the true value of a, therefore, the ambiguity is resolved. Then we are back to the

model with complete information. Clearly, there exist multiple equilibria, however,

we’re interested in the “efficient equilibrium” where the competition between types

of firm 1 won’t be unnecessarily wasteful. The following proposition provides the

conditions under which a pooling equilibrium or a separating equilibrium exists.

Proposition 4.1. A pooling equilibrium,s

s∗(aH) = s∗(aL) = sM(aH)

t∗(s) =

 0 if s ≤ sM(aH)

1 otherwise

exists if

Π1
1(sM(aH)) + δΠ1

M(aL) > Π1
M(aL) + δΠ1

C(aL). (4.3)
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4.2 Entry deterrence game under uncertainty on one side

Otherwise, if (4.3) doesn’t hold, there exists a separating equilibrium:

s∗(aH) = sM(aH); s∗(aL) = sM(aL)

t∗(s) =

 0 if s < sM(aH)

1 if s ≥ sM(aH).

Where sM(at) is the monopoly price of type t, and sM(at) = a+ct

2
, for t ∈ {L,H}.

As long as we clarify the updated set of priors of firm 2, the proof is quite

straightforward, we omit the proof here. Since sM (aL) < sM (aH), the limit pricing

emerges when condition (4.3) holds.

4.2.4 Discussion of the impact of ambiguity

We can discuss the impact of the ambiguity by comparing with other two situations:

firm 2 is also informed the value of a, and firm 2 is informed the true distribution

of a.

Situation 1: firm 2 is also completely informed. In this case, there doesn’t exist

pooling equilibrium, that is, limit pricing doesn’t emerge. Therefore, ambiguity

decreases the probability of entry comparing with regime with complete information

if condition (4.3) holds. Otherwise, if (4.3) doesn’t hold, ambiguity has no influence

on the probability of entry.

Situation 2: firm 2 is informed of the true distribution of a. In this case, firm 2

is under “measurable uncertainty” or “risk”. We denote the true distribution as

P(a = aH) = 1− P(a = aL) = x0. In order to discuss the impact of ambiguity, we

need to address different cases combining the condition (4.3) and the following one:

(ae(x0)− 2c2 + c1)2

9b
−K < 0. (4.4)

If both (4.3) and (4.4) hold, limit pricing emerges just as the ambiguity situation.

In this case, ambiguity doesn’t influence the probability of entry. If (4.4) doesn’t

hold, limit pricing doesn’t emerge. Then ambiguity decreases the probability of

entry if (4.3) also holds.
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4.3 Entry deterrence game with asymmetric in-

formation on uncertainty

4.3.1 Description of the asymmetric information structure

In the previous model, the established firm has knowledge of the true state of the

demand before it makes move in the first period, and firm 2 is even unaware of

the distribution of the state. However, even though firm 1 has committed the

investment (for example, set up the plants, did some market research, etc.), it is

still difficult to know the true state before it sets a price and sells the production in

the market. In this section, we modify the structure of the information asymmetries

in the entry deterrence game as both the firms are uncertain on the true state

of the demand. Since the established firm has committed the investment, it has

collected more precise information of the market. In this setting, firm 1 knows

the true distribution of a, that is, it knows that x = x0. Firm 2 is in the same

situation as the previous model, it has multiple priors on a, x ∈ [x, x] ⊆ [0, 1]. We

assume that x0 ∈ [x, x] for consistency. The asymmetric information situation is

common knowledge but not the information itself. The rest of the description of

the game is the same as the model in section 4.2. The production unit cost ci

of firm i (i = 1, 2) is constant and known to both firms. Firms are risk-neutral

and ambiguity averse, and firms 2’s ambiguity aversion is represented by Maxmin

Expected Utility.

4.3.2 Strategies and payoffs

In order to simplify the the payoff functions, we take the method given by Milgrom

and Roberts (1982) to normalize the profit to firm 1 in the second period to be

zero if entry occurs. Otherwise firm 1 gets a reward which equals to the difference

between the monopoly profit and the Cournot profit if entry doesn’t occur. We

assume that firm 2 can learn the distribution of a immediately as soon as it decides

to enter the market and makes investment commitment with a fixed cost K. Firm

1 learnt the true state of a by observing its demand in the first period. Under this

framework, firm 1 has information advantage both in the pre-entry market and in

the post-entry market.
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We analyze the post-entry Cournot duopoly market first, which is a typical

one shot game with incomplete information on one side. In this sub-game, firm 1’s

pure strategy is to choose an output level conditional on a, Q1(·) : {aH , aL} → R+,

to maximize it’s profit:

max
Q1

[a− b(Q1 +Q2)− c1]Q1.

Given the quantity of production of firm 2, Q2, the reaction curve of firm 1 is:

Q1(Q2; a) =
a− bQ2 − c1

2b
. (4.5)

Firm 2’s pure strategy is to choose an output level Q2 conditional on x, Q2(·) :

[0, 1]→ R+, to maximize its expected profit:

max
Q2

Ea[a− b(Q1(a) +Q2)− c2]Q2

= max
Q2

[ae(x)− b(Qe
1(x) +Q2)− c2]Q2,

where ae(x) = xaH + (1− x)aL and Qe
1(x) = xQ1(aH) + (1− x)Q1(aL). Then the

reaction curve of firm 2 is:

Q2(Q1;x) =
ae(x)− bQe

1(x)− c2

2b
. (4.6)

We can get the Equilibrium Cournot quantities from equation (4.5) and (4.6):

Q2(x) =
ae(x) + c1 − 2c2

3b
,

Q1(a) =
3a− ae(x)− 4c1 + 2c2

6b
, for a ∈ {aH , aL}.

According to the aggregate demand function, we can obtain the ex post equilibrium

price which firm 1 can anticipate ex ante:

P (a) =
3a− ae(x) + 2c1 + 2c2

6
, for a ∈ {aH , aL}.
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Now we can compute the Cournot profit of firm 1 conditional on a:

Π1C(a, x) = [P (a)− c1]Q1(a)

=
(3a− ae(x)− 4c1 + 2c2)2

36b
,

and the expected Cournot profit of firm 2:

Πe
2C(x) = Ea[P (a)− c2]Q2(x)

=
(ae(x) + c1 − 2c2)2

9b
.

As long as we pin down the Cournot competition game in the second period, we

can analyze the strategies and payoffs of the two firms in the two periods. As we

illustrated in the game description, firm 1’s strategy in the first period influences

its total payoff, and it also serves as a signal transferred to firm 2 to influence firm

2’s decision in the second period. We restrict attention to pure strategy equilibria.

Denote the pure strategy of firm 1 as:

s : [0, 1]→ R+,

then s(x) is the price chosen by firm 1 in the first period conditional on the

probability distribution of a. Denote the pure strategy of firm 2 as:

t : R+ → {0, 1}.

If firm 2 decides to stay out of the market observing s, then t(s) = 0. Otherwise,

if firm 2 decides to enter the market, then t(s) = 1. Given these strategies, we

can write down the total expected payoffs of the two firms. Let Πe
1(s;x, t) and

Πe
2(t;x, s) be the total expected profits of firm 1 and firm 2 respectively. Then

Πe
1(s;x, t) = Π0e

1 (s;x) + δ1R
e(x)(1− t)

= Π0e
1 (s;x) + δ1Ex[ΠM(a)− Π1C(a, x)](1− t),

and

Πe
2(t;x, s) = δ2t(s)[Π

e
2C(x)−K],
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where δi is the discount factor of firm i, i = 1, 2, Π0e
1 (s;x) is firm 1’s expected profit

in the first period if it chooses price s, and Re(x) is firm 1’s expected reward profit

if it succeeds in deterring firm 2 which is equal to the expected monopoly profit

Ea[ΠM(a)] minus the expected Cournot profit Ea[Π1C(a, x)]. If firm 1 decides to

reveal itself in the first period, then knowing the probability distribution of a, firm

1 chooses a monopoly price to maximize its expected profit:

max
s
E

[
(s− c1)(a− s)

b

]
.

Solving this optimization problem,

seM(x) =
ae(x) + c1

2
,

then we can get the expected monopoly profit.

Ea[ΠM(a)] = Πe
1M(x) =

[ae(x)− c1]2

4b
.

To make things interesting, we assume that firm 1’s expected monopoly profit is

greater than its expected Cournot profit, that is, Πe
1M(x) > Πe

1C(x).

4.3.3 Equilibrium analysis

Again, we adopt the Maxmin Expected Utility to represent the ambiguity aversion of

firm 2 with multiple priors . Assume that firm 1 plays some strategy s : [0, 1]→ R+,

then any P (price) in the range of s, firm 2 updates its set of priors by x ∈ s−1(P ).

Firm 2’s best response is “enter” if and only if the minimum expected value of

the post-entry profit, infx∈s−1(P )(Π
e
2C(x)−K), is positive. Formally, we give the

definition of Nash equilibrium as follows:

Definition 4.1. A strategy profile (s∗, t∗) is a Nash equilibrium of the entry

deterrence game if it satisfies the following conditions:
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(i) for any x ∈ [0, 1] and any s : [0, 1]→ R+

Π0e
1 (s∗;x)+δ1R

e(x)(1− t∗(s∗)) ≥

Π0e
1 (s;x) + δ1R

e(x)(1− t∗(s)).

(ii) for any t : R+ → {0, 1}, for all P ∈ R+, such that ∃x ∈ [0, 1], s∗(x) = P ,

inf
x∈{x:s∗(x)=P}

t∗(P )(Πe
2C(x)−K) ≥ inf

x∈{x:s∗(x)=P}
t(P )(Πe

2C(x)−K).

For simplicity, we analyze the equilibrium under an additional assumption:

Assumption 4.3. [x, x] = [0, 1], c2 ≥ c1 and δ1 = 1.

In the equilibrium analysis, we focus on message-monotone equilibrium (Y.

Chen, 2011).

Definition 4.2. In a message-monotone equilibrium in the entry deterrence game,

the strategy of firm 1, s(x), is weakly increasing in x.

The continuity of the duopoly Cournot payoff function together with assumption

4.1 imply that there exists a belief x̂ ∈ (0, 1) such that firm 2 is indifferent between

“enter” and “not enter”. With a simple calculation, we can get the indifferent point

which is:

x̂ =

√
9bK − (aL + c1 − 2c2)

aH − aL
.

Since we assume that Πe
M (x) > Πe

1C(a, x) for all x ∈ [0, 1], which implies that firm

1 has incentive to deter the entrant by sacrificing the profit in the first period

due to charging a lower price. And it’s getting more and more costly to deter the

entrant as x increases. Under assumption δ1 = 1, the indifference point of firm 1,

x̃ , satisfies the following condition (see Appendix A for details):

(ae(x̂)− c1)2

4
=

(ae(x̃)− 2c1 + c2)2

9
.

Given these two critical points x̂ and x̃ together with assumptions A4.1-A4.3, we

can get the following property of a Nash equilibrium:
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Proposition 4.2. In this entry deterrence model, under A4.1-A4.4, a Nash equi-

librium (s∗, t∗) is a message-monotone equilibrium.

The proof is given in Appendix B.

An increasing x indicates a higher expected aggregate demand. With message-

monotone strategies, firm 1 sends a more attractive message to firm 2 by choosing a

non-decreasing price when the expected aggregate demand increases. On the other

hand, observing a higher price, firm 2 can induce a higher expected demand. There-

fore, firm 2’s strategy is also non-decreasing with respect to the price it observed.

The following theorem characterizes such a message-monotone equilibrium.

Theorem 4.1. Under the assumptions A4.1-A4.3, there exists a message-monotone

equilibrium (s∗, t∗) in the entry deterrence game in two different cases:

(i) if x̃ ≤ x̂, then there exists a separating equilibrium (s∗, t∗):

s∗(x) = seM(x) ∀x ∈ [0, 1],

t∗(s) =

0, if s ≤ seM(x̂)

1, otherwise

(ii) if x̃ ≥ x̂, then there exists a semi-separating equilibrium (s∗, t∗):

s∗(x) =

s
e
M(x) if x ∈ [0, x̂) ∪ (min{x̃, 1}, 1]

seM(x̂) if x ∈ [x̂,min{x̃, 1}],

t∗(s) =

0, if s ≤ seM(x̂)

1, otherwise

Proof (see the appendix C)

Remark In the first case, for any level of expected demand, it is so costly to deter

the entrant that the reward is not large enough to compensate the lost if firm 1

conducts limit pricing in the first period, therefore, limit pricing doesn’t emerge

in this situation. In the second case, in contrast, when the expected demand is

low enough such that the entrant is not interested in entering the market, firm 1

79



4. ENTRY DETERRENCE GAMES UNDER AMBIGUITY

doesn’t need to conduct limit pricing. Or the expected demand is high enough that

the signal sent by firm 1 is also high such that the entrant will enter the market

observing the signal, then it is unnecessary for firm 1 to conduct limit pricing. But

when the expected demand is between the two thresholds, limit pricing emerges.

4.4 Welfare Analysis

4.4.1 The impact of ambiguity on expected welfares

In this sector, we discuss the impact of ambiguity by comparing our results with

the situation where firm 2 is also informed the probability distribution of a. If there

doesn’t exist information asymmetries between firm 1 and firm 2, then firm 1 cannot

deter firm 2 by conducting limit pricing because firm 2 doesn’t need to induce any

information from the behavior of firm 1 in the first period. Firm 2 will choose

to enter the market when x > x̂ and stay out the market otherwise. Therefore,

limit pricing doesn’t emerge and firm 1 just charges the expected monopoly price

in the first period for any x ∈ [0, 1]. In order to discuss the impact of ambiguity

on expected welfare, we just need to analyze the impact of limit pricing on the

expected welfares.

To focus on the impact of limit pricing, we assume that x̂ < x̃ ≤ 1.

Consumer’s surplus: In the previous section, we have shown that the price

decreases from the expected monopoly price PM(x) = seM(x) to the limit price

PM(x̂) = seM(x̂) when x ∈ [x̂, x̃] in the first period, and

PM(x̂)− PM(x) =
ae(x̂)− ae(x)

2
< 0.

Due to limit pricing, the entrant is deterred in the second period, the monopoly

price is greater than the Cournot price:

PM(a)− PC(a) =
a+ c1

2
− 3a− ae(x) + 2c1 + 2c2

6

=
ae(x) + c1 − 2c2

6
> 0.

Therefore, the consumer’s surplus increases in the first period and decreases in the
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second period. The change of total consumer’s surplus is ambiguous. However, we

still can analyze the changes of consumer’s surplus with respect to the state of the

market. We can clearly see that the price decreases in the first period faster than

it increases in the second period as x increases, i.e.∣∣∣∣∂(PM(x̂)− PM(x))

∂x

∣∣∣∣ > ∂(PM(a)− PC(a))

∂x
.

Therefore, we expect that the consumer’s surplus increases in x. Formally, The

net consumer’s surplus from without limit pricing to limit pricing is:

∆SC = −
∫ PM (x̂)

PM (x)

a− p
b

dp−
∫ PM (a)

PC(a)

a− p
b

dp

∂∆E(SC)

∂x
=
aH − aL

2

[
E

[
a− PM(x)

b

]
− 1

3
E

[
a− PC(a)

b

]]
=
aH − aL

2
(Ex[QM ]− 1

3
Ex[QC ])

=
aH − aL

2
(Qe

M(x)− 1

3
Qe
C(x))

We can see that the expected consumer’s surplus is increasing in x as long as the

expected aggregate monopoly production Ex[QM ] at x is greater than one third of

the expected aggregate Cournot production Ex[QC ].

Firm’s surplus : Firm’s surplus is equal to firm’s profit. The net firm’s surplus

from without limit pricing to limit pricing is:

E[∆SF ] = Πe
1M(x̂) + Πe

1M(a)− (Πe
1M(x) + Π1C(a) + Πe

2C(x))

= {(PM(x̂)− c1)QM(x̂)) + (PM(a)− c1)QM(a)}

− {(PM(x)− c1)QM(x) + (PC(a)− c1)Q1C + (PC(a)− c2)Q2C}

=
(PM(x̂)− c1)2

4b
+

(PM(a)− c1)2

4b

−
{

(PM(x)− c1)2

4b
+

(PC(a)− c1)2

b
+

(PC(a)− c2)(ae(x) + c1 − 2c2)

3b

}
=

(ae(x̂)− c1)2

4b
−
(

(ae(x)− 2c1 + c2)2

9b
+

(ae(x)− 2c2 + c1)2

9b

)
.

The net industry’ surplus equals to the difference between the expected monopoly
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profit at x̂ and the total expected Cournot profits at x. Since x > x̂, the net

industry’s surplus is negative if c2 is not very large. We conclude that deterring an

moderate cost entrant by limit pricing harms the industry. Moreover,

∂E[∆SF ]

∂x
= −2(aH − aL)(ae(x)− c1 − c2)

9b

= −2(aH − aL)Qe
C(x)

3
< 0,

where Qe
C(x) is the expected total Cournot production at x if firm 2 enters the

market in the second period. This result shows that the limit pricing harms the

industry more in a market with higher expected demand than a lower one.

Total welfare: The total welfare is the sum of the consumer’s surplus and the

firm’s surplus. Therefore,

∆TW = ∆SC + ∆SF ,

and

∂E[∆TW ]

∂x
= −(aH − aL)

6
(3Qe

M(x)− 5Qe
C(x))< 0 if 3Qe

M(x)− 5Qe
C(x) < 0

> 0 if 3Qe
M(x)− 5Qe

C(x) > 0.

Limit pricing decreases the total social welfare more in a higher expected demand

market than in a lower one when the expected monopoly output is less than 60%

of the expected Cournot output.

In a general framework, if firm 2 has a set of priors x ∈ [x, x], the impact of

ambiguity on expected welfare occurs only when an increase of ambiguity changes

the strategy of firm 1 from non-limit pricing to limit pricing, or vice versa . As

we can see from the equilibrium analysis, limit pricing doesn’t occur as long as

the realization of x is in the region [x, x̂] ∪ [x̃, x]. Therefore, the ambiguity doesn’t

influence the strategy of firm 1 or the welfare when x ∈ [x, x̂] ∪ [x̃, x]. Ambiguity

decreases the total expected welfare when x ∈ [x̂, x̃] comparing with symmetric

information situation. However, the change of the degree of ambiguity influences

the welfare only when firm 2’s set of priors changes such that x moves from one
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side of x̂ to the other. We present an example in the next section to illustrate the

results.

4.4.2 An example

In this section, we provide a numerical example to compute the equilibrium

strategies in the entry deterrence game with asymmetric information on uncertainty.

Suppose that aH = 10, aL = 5, b = 1, δ1 = δ2 = 1, c1 = c2 = 1, K = 3.5. The

probability distribution of a is P(a = aH) = 1− P(a = aL) = x. The set of priors

of firm 2 on the distribution of a is [0, 1]. One can compute that the indifferent

point of firm 2 is x̂ = 0.322, and the indifferent point of firm 1 is x̃ = 0.884. The

expected monopoly price charged by firm 1 at x = x̂ is: seM(x̂) = ae(x̂)+c1
2

= 3.805.

At equilibrium, the message-monotone strategy of firm 1 is:

s∗(x) =

3.805 if x ∈ [0.322, 0.884)

5x+6
2

if x ∈ [0, 0.322) ∪ [0.884, 1],

and the strategy of firm 2 is

t∗(s) =

0 if s ≤ 3.805

1 if s > 3.805.

In this example firm 1 can take the advantage of the information asymmetries by

using pooling strategy to deter the entrant if the probability of the higher aggregate

demand is not too low or too high. In this example, we can see (Figure 2) that

both the expected consumer’s surplus and the expected industry’s surplus decrease

due to the limit pricing, and limit pricing also decreases the expected total welfare.

The expected net consumer’s surplus is increasing in x but the expected total

welfare is decreasing in x, which means that the established firm has to sacrifice

more profits in the first period in order to deter the entrant in a market with higher

expected demand. This result suggests that an antitrust policy is more important

in a market with higher expected demand.
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Figure 4.1: The response functions in the Cournot competion game

Figure 4.2: The changes of welfare due to limit pricing
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4.5 Conclusions

In this chapter we re-examine the entry deterrence game in which two firms have

asymmetric information (Milgrom & Roberts, 1982) but under different information

structures. We formulate two models with asymmetric information. In both models,

the entrant faces ambiguity about the true state, in the sense that it has multiple

priors on the true state. In the first model, the established firm is fully informed

of the true state, and in the second model, the established firm is only informed

of the distribution of the true state. The informational advantage encourages

the established firm to send an unattractive signal to the entrant by engaging in

limit pricing in the first period and deters the entrant under certain circumstances.

Compared with symmetric information, ambiguity decreases the probability of

entry under certain conditions, but it is also possible for it to have no influence

on the probability of entry. A numerical example reveals that both the expected

consumer surplus and the expected industry surplus are decreased due to limit

pricing, and thus total welfare is decreased. Deterring a moderate-cost entrant

harms social welfare to a greater extent in a market with higher expected demand

than in one with lower expected demand. However, in our analysis, we assume, for

simplicity, that firm 1 is also informed of firm 2’s set of priors. An extension of

the analysis in which firm 2 also has private information on its set of priors is not

trivial and the results would be different.
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APPENDIX

A. The indifferent point x̃ of firm 1

If firm 1 knows that P(a = aH) = x > x̂, it can choose to reveal this information

to firm 2 by separating strategy or to conceal the information by pooling strategy.

Assume that at x̃, firm 1 is indifferent between separating and pooling. If firm 1

reveals x̃ to firm 2, it chooses the monopoly price in the first period sm(x̃) = ae(x̃)+c1
2

and it allows firm 2 to enter the market. The total expected profit of firm 1 is the

expected monopoly profit in the first period:

Πe
1M(x̃) =

(ae(x̃)− c1)2

4b
.

But if firm 1 chooses to conceal the information and successfully deters the entrant,

the optimal price it can choose is

s(x̃) = sm(x̂) =
ae(x̂) + c1

2

and it will get a total expected profit:

Πe
1(x̂, x̃) = Πe

1M(x̂) + δ1R
e(x̃)

=
(ae(x̂)− c1)2

4b
+ δ1Ea[

(a− c1)2

4b
− (3a− ae(x̃)− 4c1 + 2c2)2

36b
]

=
(ae(x̂)− c1)2

4b
+ δ1[

V ar(a) + (ae(x̃)− c1)2

4b
− 9V ar(a) + (2ae(x̃)− 4c1 + 2c2)2

36b
]

=
(ae(x̂)− c1)2

4b
+ δ1[

(ae(x̃)− c1)2

4b
− (ae(x̃)− 2c1 + c2)2

9b
]

Let Πe
1M(x̃) = Πe

1(x̂, x̃), we can get that the indifferent point x̃ satisfies:

(ae(x̂)− c1)2

4
= (1− δ1)

(ae(x̃)− c1)2

4
+ δ1

(ae(x̃)− 2c1 + c2)2

9
.

If we take δ1 = 1, then we have

(ae(x̂)− c1)2

4
=

(ae(x̃)− 2c1 + c2)2

9
.
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B. Proof of Proposition 4.2

Proof. In this proposition, we intent to prove that at equilibrium, for ∀x1, x2 ∈ [0, 1],

if x1 < x2, then s∗1 = s∗(x1) ≤ s∗(x2) = s∗2. For the case that x̂ < x̃, there are four

possibilities that can occur at equilibrium:

(i). t∗(s∗1) = t∗(s∗2) = 0;

(ii). t∗(s∗1) = 0, and t∗(s∗2) = 1;

(iii). t∗(s∗1) = 1, and t∗(s∗2) = 1.

(iv). t∗(s∗1) = 1, and t∗(s∗2) = 0;

In each case, we can show that a violation of the monotonicity leads to a deviation

from the equilibrium. Let A1 = {x : s∗(x) = s∗1} and A2 = {x : s∗(x) = s∗2} be

the strategies of firm 1 at the particular equilibrium. By contradiction, we assume

that s∗1 > s∗2.

For case (i), let x∗1 = inf{x : s∗(x) = s∗1} and x∗2 = inf{x : s∗(x) = s∗2}. Due to

the strictly increasing of Πe
2C(x) in x, firm 2 takes x∗1 and x∗2 as the worst case by

MaxMin utility. If firm 2 doesn’t enter the market at x∗1 and x∗2, then the optimal

response of firm 1 will be

s∗1 =
ae(x∗1) + c1

2b
, and s∗2 =

ae(x∗2) + c1

2b
.

If s∗1 > s∗2, then x∗2 < x∗1 ≤ x1 < x2. Then the type x2 of firm 1 would deviate to s∗1.

By deviation, x2 ∈ A1, and still we have x∗1 = inf A1, which doesn’t influence the

decision of firm 2. The x2 type of firm 1 can get higher profit in the first period

and the same monopoly profit in the second period.

For case (ii), we have similar argument. If s∗1 > s∗2, and firm 2 enters the market

observing s∗2, then type x2 of firm 1 would deviate to get higher profit in the first

period and deter the entry by choosing s∗1.

For case (iii), since both s∗1 and s∗2 can’t deter the entry, type x2 of firm 1 would

deviate to get higher profit in the first period by choosing s∗1.
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For case (iv), Firstly, we show x∗1 = x1. If x∗1 < x1, then s∗1 <
ae(x1)+c1

2b
. Since

s∗1 induces entry, x1 type of firm 1’s profit is Πe
1M (x∗1). However, the worst case by

choosing s1 is inducing entry and the profit is Πe
1M(x1), and Πe

1M(x∗1) < Πe
1M(x1).

The x1 type of firm 1 would deviate to s1 = ae(x1)+c1
2b

. So x∗1 = x1. Now let’s show

that if s∗1 > s∗2, one type of firm 1 would deviate. At equilibrium, x∗2 < x1 < x2

and the profits of firm 1 given by:

Πe
1(s∗1;x1) = Πe

M(x1)

Πe
1(s∗2;x2) = Πe

M(x∗2) +Re(x2)

If Πe
1(s∗1;x1) > Πe

1(s∗2;x2), then x2 type of firm 1 would deviate. Choosing a higher

price s∗1 induces entry but it can get higher profit.

If Πe
1(s∗1;x1) < Πe

1(s∗2;x2), Equation (3) implies that

Πe
M(x∗2) +Re(x2)− Πe

1(x2) < Πe
M(x∗2) +Re(x1)− Πe

1(x1). (4.7)

Since s∗2 is the optimal choice for x2 type of firm 1,

Πe
M(x∗2) +Re(x2)− Πe

1(x2) ≥ 0. (4.8)

From Equation (4) and (5), we obtain

Πe
M(x∗2) +Re(x1)− Πe

1(x1) > 0,

which implies that x1 type of firm 1 would deviate to get higher payoff by choosing

a lower price s∗2 . �

C. Proof of Theorem 4.1

Proof. To prove this theorem, we just follow the definition of Nash Equilibrium

(Def. 2.1). Given the strategy of firm 1, observing s < (ae(x̂)−c1)
2

, firm 2 induces
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that x < x̂. Firm 2 chooses to stay out of the market with maxmin preference. So

t∗ is an optimal response to s∗. On the other hand, Given the strategy of firm 2,

t∗, firm 1’s optimal strategy is to maximize its total expected profit. Let δ1 = 1,

then the total expected profits of firm 1 is:

Πe
1(s;x) =

Π0e
1 (s;x) +Re(x) if s ≤ ae(x̂)+c1

2b

Π0e
1 (s;x) if s > ae(x̂)+c1

2b
,

We can show that the difference of the profits of firm 1 between deterring and not

deterring the entrant is decreasing in x if δ1 = 1:

d(Πe
1(x̂, x)− Πe

1M(x))

dx
= −2(aH − aL)(ae(x)− 2c1 + c2)

9b
< 0. (4.9)

And we have shown that firm 1 is indifferent at x = x̃. So firm 1 prefers deterring

to accommodating the entrant when x < x̃. When x̃ < x̂, for any x ∈ [0, 1], firm 1

will choose the monopoly price in the first period because it is too costly to deter

the entrant. But when x̃ > x̂, firm 1 has incentive to deter the entrant by pooling

strategies for x ∈ [x̂, x̃] and what it can do the best is to choose the monoply price

at x = x̂. Given the strategy of firm 2, for any x ∈ [0, 1], firm 1 doesn’t want to

deviate. �
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