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Understanding Effector Selectivity in Human Posterior
Parietal Cortex by Combining Information Patterns and
Activation Measures
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The posterior parietal cortex (PPC) has traditionally been viewed as containing separate regions for the planning of eye and limb
movements, but recent neurophysiological and neuroimaging observations show that the degree of effector specificity is limited. This has
led to the hypothesis that effector specificity in PPC is part of a more efficient than strictly modular organization, characterized by both
distinct and common activations for different effectors. It is unclear, however, what differentiates the distinctions and commonalities in
effector representations. Here, we used fMRI in humans to study the cortical representations involved in the planning of eye, hand, and
foot movements. We used a novel combination of fMRI measures to assess the effector-related representational content of the PPC: a
multivariate information measure, reflecting whether representations were distinct or common across effectors and a univariate activa-
tion measure, indicating which representations were actively involved in movement preparation. Active distinct representations were
evident in areas previously reported to be effector specific: eye specificity in the posterior intraparietal sulcus (IPS), hand tuning in
anterior IPS, and a foot bias in the anterior precuneus. Crucially, PPC regions responding to a particular effector also contained an active
representation common across the other two effectors. We infer that rostral PPC areas do not code single effectors, but rather dichotomies
of effectors. Such combinations of representations could be well suited for active effector selection, efficiently coding both a selected

effector and its alternatives.

Key words: effector selectivity; fMRI; foot; MVPA; parietal cortex; pointing

Introduction
The ability to generate an appropriate response in a complex
environment is of utmost importance for the survival of any or-
ganism. A critical aspect is the selection of the effectors involved,
such as eyes, hand, and foot. While the posterior parietal cortex
(PPC) has been implicated in this process, it is debated how this
structure maps multiple effectors onto the 2D cortical surface.
PPC organization could separate motor responses in relation
to the effector that is to be moved. This would lead to separate
neural modules for the control of different effector systems (Cui
and Andersen, 2007). To date, this has been the prevailing con-
cept of PPC organization (Colby and Goldberg, 1999; Matelli and
Luppino, 2001; Filimon et al., 2009). For instance, the lateral
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intraparietal area (LIP) is thought to encode eye movements
(Gnadt and Andersen, 1988), the parietal reach region (PRR)
reaching movements (Snyder et al., 1997), and the anterior intra-
parietal sulcus (aIPS) grasping movements (Murata et al., 2000).
Recently, it has been argued that effector specificity in PPC is part
of an efficient coding scheme, representing effectors in terms of
commonalities in the behavioral repertoire (Graziano, 2006; Levy
et al., 2007; Jastorff et al., 2010). For example, because eye and
hand are often moved together, the efficient coding principle
proposes a shared neural substrate for both effectors. Accord-
ingly, both LIP and PRR respond during preparation of hand as
well as eye movements (Snyder et al., 1997; Calton et al., 2002).
Likewise, human fMRI studies have revealed large overlap in PPC
during the planning of eye, hand (Beurze et al., 2007; Levy et al.,
2007), and foot movements (Heed et al., 2011). However, it re-
mains unclear which characteristic of those effector representa-
tions drives distinct and overlapping representations in PPC.
Here, we characterize identities and commonalities in the
neural representations of eye, hand, and foot movements in PPC
by using a novel combination of multivariate and univariate
fMRI measures. Multivariate pattern analysis (MVPA) tests spa-
tial patterns of fMRI activity to infer informational content (Fig.
1A; Haxby et al., 2001; Haynes et al., 2005; Gallivan et al., 2011,
2013). The underlying logic is that distinct patterns encode effec-
tor identities, whereas a shared pattern across effectors codes
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Figure 1.  Study rationale. 4, Preparing to move different effectors (eye, foot, and hand icons, represented in blue, green, and
red colors, respectively) might evoke different spatial patterns and intensity of BOLD responses in a given cortical region (gray
levels). Activation measures pertain to differences in mean activation (histogram of mean effector-related activities, on the left).
Information measures capture the distance (correlation) between patterns of activation (plot of multidimensional scaling dis-
tances between effectors, MDS, on the right, with similarity in arbitrary units, a.u.). B, Example of how information measures can
disambiguate activation. Given a region equally active for the three effectors (left histogram), information measures can follow
three different patterns (middle column, MDS plots), reflecting three different representational contents (right column). C, Exam-
ple of how activation measures can disambiguate information. Given a region with a pattern of eye-related responses different
from hand- and foot-related responses (left, MDS plot), activation measures can follow three different patterns (middle column,
histograms), reflecting three different representations (right column). D, Combining activation and information measures over
three effectors results in 14 different types of representational content, as indicated by the corresponding icons and RGB combi-
nations. These can be separated in a group pertaining to differences between effectors (“distinct,” on the left, meaning distinct
patterns, or separate dots, for each effector), and a group pertaining to commonalities across effectors (“common,” on the right,
meaning shared patterns, or overlapping dots, for the effectors). A given region can follow types from either group or, when
complementary, both groups. Pattern-activation analysis only considers the activated patterns.

effector commonalities (Fig. 1B). However, multivariate patterns
are inherently undirected (Fig. 1C). For instance, if the multivar-
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guish eye from limb movements. These
possibilities can be disentangled by con-
sidering the degree of activation of that
region for each effector, that is, whether
the region is activated for the eye only, for
the limbs, or for all three, respectively. Ac-
tivation adds direction to the pattern in-
formation results. Crucially, we combine
information and activation measures into
one score, showing which distinct and
common representations (Fig. 1D) are
present as well as activated across PPC
during movement planning.

Materials and Methods

Participants

Twenty-three healthy, right-handed partici-
pants with normal or corrected-to-normal vi-
sion participated in this study. Data of six
participants were not included in further anal-
yses due to poor task performance (see below).
The remaining 17 participants (9 female) were
aged 19-33 years (mean 23.5). Participants
gave their written consent in accordance with
the local ethics committee (CMO Committee
on Research Involving Human Subjects, region
Arnhem-Nijmegen, The Netherlands).

Experimental setup

Participants lay supine in the scanner, with
their head inside a phased-array receiver head
coil. The head and neck were stabilized within
the coil using foam blocks and wedges. The
limbs used in the task (right arm, right leg)
were additionally cushioned for stabilization.
Upper arms and legs were cushioned and
strapped to minimize head movements during
task execution. Visual stimuli were controlled
using Presentation software (Version 14.7;
Neurobehavioral Systems), projected onto a
screen and viewed by the participant using a
mirror, giving the perception that the stimuli
were approximately above the participants’
head. Responses to stimuli were made using
the eyes, right hand, or right foot.

Eye tracking. To track eye movements, the
position of the left eye was recorded using a
long-range infrared, video-based eye tracker
(SMI) at a frequency of 50 Hz. Saccades were
identified by detecting a 2% change in eye po-
sition, relative between baseline and the maxi-
mum amplitude of the trial. Results from the
automatic analysis were verified visually.

Hand and foot movement recording. Hand
and foot pointing was performed with the right
limbs. Hand pointing involved rotating the
wrist, and pointing at the target with the index
finger. Foot pointing involved rotating the an-
kle to point at the target with the big toe. To
track hand and foot movements, infrared light-
emitting diodes (LEDs) were taped to the right
index finger and right big toe. The infrared

light, while invisible to the participants, was visible to a camera, mounted
to the ceiling at a distance of ~2 m of the scanner. One of the two LED

iate activity pattern of a region differs between eye movements lights was shortly interrupted in parallel with presentation of the stimu-
and both hand and foot movements, but not between hand and  Jus and movement cue, respectively, for alignment of movement data

foot movements, the region might code for eye movements, it with the experiment’s events. The LED locations were extracted from the
might integrate hand and foot movements, or it might distin-  video footage frame by frame using MATLAB (MathWorks) as done
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previously (Heed et al., 2011). Movements
were identified by detecting a 5% change from
baseline of hand or foot position, relative to the
maximum amplitude of the current trial, and
were verified visually.

Experimental paradigm

Participants performed a delayed movement
task using three possible effectors (eyes, right
hand, and right foot) to six potential targets (4,
6, and 8 degrees to the left and right of the
fixation point; Fig. 2). Participants started all
trials pointing to a central fixation point (white
dot, size 1°) with all three effectors. The hand
and foot pointed to the fixation dot in the hor-
izontal (left-right) direction only, as the de-
grees of freedom of wrist and ankle limit
vertical movement. Trials started with a change of the fixation dot’s color
to indicate the effector, together with the presentation of a movement
target (400 ms). The fixation dot could change to red, blue, or orange to
instruct a hand, a foot, or an eye movement, respectively. In addition, a
capital letter was displayed in the center of the fixation point (O, H, V, the
first letters for eye, hand, and foot in Dutch). Next, the fixation point
turned white again to indicate the delay period (1.6-5.6 s). Finally, the
fixation dot turned purple to indicate movement execution (400 ms).
During the delay period, participants had to plan the instructed move-
ment to the remembered target, and execute this movement at the pre-
sentation of the purple dot. After 1.6 s, the next trial started.

Trials were grouped in runs of 43 trials. Trial order was arranged
such that each of the six trial types [resulting from three effectors (eye,
foot, and hand) and two target sides (left and right)] followed each
other equally often, while appearing random to the participant
(Brooks, 2012). Each run started and ended with 20 and 8 s of fixation,
respectively. These intervals served as baseline in the GLM analysis.
The length of the breaks between runs was determined by the partic-
ipant. The total duration of the experiment, consisting of 18 runs, 774
trials (43 of each type), excluding the breaks, was 86 min, split into
two sessions.

We used eye and limb movement data to verify that participants held
fixation during the delay period with all three effectors and only moved
the cued effector during the execution period. Six participants made a
large number of errors (performance < 75%) and were excluded from
further analysis. The excluded participants mostly failed to keep eye fix-
ation during the execution of hand or foot movement. For the remaining
17 participants, the average number of trials that entered analysis was
87% (SD: 6.7).

Figure 2.

MRI settings and preprocessing

MR images were acquired using a Siemens Trio 3 T MRI scanner (Sie-
mens Tim TRIO) with a 32-channel head coil. A multi-echo sequence of
five echoes (TE: 9.4, 21.2, 33, 45, 57 ms, TR: 2.01 s) was used to improve
signal strength. It encompassed 26 slices, centered on the parietal and
frontal motor areas (voxel size 3 X 3 X 3.5 mm, FOV 192 mm, flip
angle = 80°). After collecting the functional images, high-resolution an-
atomical images were acquired using a T1-weighted MP-RAGE GRAPPA
sequence (176 sagittal slices, voxel size = 1 X 1 X 1 mm, TR = 2300 ms,
TE = 3.93 ms, FOV = 256 mm, flip angle = 8°).

The multi-echo data were combined using the PAID algorithm (Poser
et al., 2006). Slices were temporally aligned to the center (14th) slice to
accommodate for slice-timing differences. High-pass filtering (cutoff:
128 s) was applied to filter out low-frequency confounds. To retain max-
imal pattern information, no spatial smoothing was applied. GLM anal-
yses were performed in native space, and the resulting images were
normalized to MNI space using DARTEL normalization procedures
(Ashburner, 2007). To estimate normalization flow fields, the structural
images were segmented into tissue type. In addition, the gray and white
matter segment of the normalized brain of one participant was used to
reconstruct and inflate the cortical sheet of each hemisphere in the Free-
Surfer Toolbox (Dale et al., 1999; Fischl et al., 1999). All further process-

Intertrial

Fixation
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Experimental paradigm: the delayed movement task. A white fixation dot was presented for 2 s (Intertrial period).
Next, the effector was indicated by a change of color of the fixation dot for 400 ms, on top of which a small letter was projected
(0, V, H, for the first letter of the Dutch words for eye, foot, or hand). the target stimulus was presented at one of six possible
horizontal locations (Stimulus period, blue arrows, which were not shown to the subject, indicate possible stimulus eccentricities).
Subsequently, the fixation dot turned white again for a variable duration (Delay period). Finally, the fixation dot turned purple
signaling the participant to execute the cued movement to the remembered stimulus location (Movement period).

ing and subsequent analysis steps were performed using the SPM8
toolbox (Statistical Parametric Mapping) and MATLAB (MathWorks).

fMRI analysis

A recent report analyzed the data obtained in the present paradigm using
a repetition suppression approach (Heed et al., 2013) and contains a
detailed analysis of the behavioral data. Here, we developed and applied
anew analysis approach that integrates univariate and multivariate anal-
ysis of these data to examine the cortical representations involved in the
planning of eye, hand, and foot movements.

Pattern information versus activation measures. In the current study, we
combined pattern information and activation measures into a pattern-
activation framework. Pattern information analysis distinguishes re-
gional representations (Kriegeskorte and Bandettini, 2007; Raizada and
Kriegeskorte, 2010), focusing on differences in the activation pattern
across voxels in that region. Activation analysis, on the other hand, is
based on statistical parametric mapping, and typically tests average acti-
vation relative to a baseline in a given region. Activation is believed to
represent the differential metabolic response of a region to different sen-
sorimotor or cognitive challenges (Friston et al., 2011; Fig. 1A). The
metabolic demand, in turn, is thought to indicate the involvement of a
region in current processing. Note that the two measures are indepen-
dent, similar to how a mean and SD are independent, or how a correla-
tion measure is mean independent: a pattern can be highly informative,
but, on average, might not be activated above baseline. Similarly, an
activated region can contain the same pattern of activation across condi-
tions. As such, they have often been explicitly contrasted (Peelen et al.,
2006; Peelen and Downing, 2007; Jimura and Poldrack, 2012; Cou-
tanche, 2013). In the present framework, the two methods are combined,
rather than contrasted: patterns (i.e., representations) can be activated
(i.e., involved) to different degrees.

The rationale of the framework is as follows. Consider patterns of
activation in a region for eye, hand, and foot (Fig. 1D). Patterns for two of
the three effectors can be equal (high correlation or low classification) or
different (low correlation or high classification). Equal patterns indicate
a common representation across effectors. Different patterns indicate a
distinct representation per effector. With three effectors, a combination
of distinct and common is also possible, e.g., eye versus hand and foot.
For each pattern, its mean activation, as tested by univariate analysis,
represents the pattern’s level of involvement. In our framework, patterns
for each effector are weighted based on mean activation per effector: the
more activated, the higher the combined value. This combination of
pattern and activation again results in a separation of common and dis-
tinct representations (Fig. 1D). Representations, which are not activated,
are effectively masked out because the low activation weight leads to
negligible combination scores.

We first performed separate pattern information and activation
analyses, followed by the combination of the two measures into a
common pattern-activation measure. Following the conventions
from MVPA (Kriegeskorte et al., 2006), we refer here to pattern in-
formation simply as “information,” although, in a mathematical
sense, mean activation can also be considered information, albeit on a
different spatial scale.
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GLM. Both information and activation analyses were based on the
output of a participant-specific GLM. Six regressors of interest captured
variance during the planning period, specific to effector (three: eye, hand,
foot) and target side (two: left, right). Side was included because PPC is
highly sensitive to target direction (for review, see Silver and Kastner,
2009). Thirteen additional regressors were used to constrain the variance
explained by the planning regressors: six location-dependent spike re-
gressors at stimulus onset explained location-dependent variance and six
movement spike regressors at go-cue presentation accounted for activa-
tion specific to the direction of the executed of the movement. One spike
regressor at session onset accounted for break-related effects. As defined
by the criteria described above, erroneous trials were removed from the
main regressors of interest and instead captured by corresponding error
regressors. All regressors were convolved with a standard hemodynamic
response function (Friston et al., 2011). In addition, we included 17
nuisance regressors. Twelve movement regressors (translation and rota-
tion, as well as their derivatives) captured signal variance due to head
movement. Five additional regressors accounted for changes in overall
signal intensity in five compartments, which are not expected to reflect
task-related activity (white matter, CSF, skull, fat, and out of brain; Ver-
hagen et al., 2008). Runs were modeled separately in the design matrix,
each run containing 36 regressors (not including the constant and a
variable number of error regressors) and on average 143 scans. We tested
18 runs, resulting in 2574 scans in total.

We used the ¢ contrast scores for the comparison of the planning
regressors versus baseline, collapsed across runs and movement target
sides, as the basis for the pattern information and activation analyses. In
short, for the information analysis we correlated the pattern in ¢ values
between effectors, and for the activation analysis we averaged the values
(Fig. 1A). We chose t values over B-values from the GLM because they are
the more informative measure (Misaki et al., 2010).

Searchlight analysis. Both information and activation analysis were
performed within a searchlight sphere (Kriegeskorte et al., 2006) with a
radius of three voxels. Searchlight sphere size varied at the brain’s border
and was on average 83 voxels. Searchlight analysis was performed in
native space.

Pattern information analysis. Pattern information analysis was based
on a correlation analysis (Haxby et al., 2001; Kriegeskorte et al., 2008) of
the three effector pairs: eye—hand, eye—foot, hand—foot. The spatial dis-
tribution of effector-specific ¢ values across a searchlight sphere was
taken as local effector-specific pattern, which were then compared per
effector pair using correlations. Low correlations between patterns reflect
dissimilarity or information (akin to classification performance), mean-
ing that patterns form distinct effector-specific representations. In addi-
tion, we take into account the alternative possibility: high correlations
between patterns, indicative of similarity or lack of information, mean
that patterns form a common, effector-unspecific representation.

Before calculating correlation scores, we first transformed  values into
z-scores voxel by voxel to ensure voxel contribution to pattern informa-
tion was not influenced by mean activation (Haxby et al., 2001; Pereira et
al., 2009; Hanson and Schmidt, 2011). Next, for each combination of two
effectors, we calculated the correlation score between the voxel patterns
in the searchlight sphere. We then recentered the distribution of corre-
lations across search spheres by subtracting the expected mean correla-
tion (average correlation for permuted spheres, see Significance test,
below) for a given effector pair. This procedure makes the reference value
consistent across participants, allowing group analysis. The correlation,
or similarity, values were then normalized to a value between —1 and 1 by
dividing the values by the maximum absolute value across all three effec-
tors. To obtain a dissimilarity measure (i.e., information measure), while
retaining the two-sided nature of the original correlation measure, we
flipped the sign of the centered similarity score. These dissimilarity values
were used to construct MDS figures (Edelman et al., 1998).

Next, we converted the information scores for effector pairs into three
effector-specific information values. Note that the raw information
scores are comparisons between pairs of effectors (e.g., the correlation
between eye and hand, cyan in Fig. 1D, distinct representation). How-
ever, combination with the effector-specific activation scores requires an
effector-specific information score of one effector versus the other two
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(e.g., eye vs hand and foot, blue in Fig. 1D). First, we converted RGB
values to HSB (hue, saturation, brightness) color space. Second, we ro-
tated hue by 1/67r (effectively rotating color by 60° along the color circle,
that is, half the distance between the colors of two respective effectors:
green becomes cyan, blue turns magenta, and red transforms to yellow.
Finally, we converted the rotated HSB color value back to RGB. After
rotation, each of the three values (R, G, and B) indicated the amount of
information on one effector versus the other two effectorsina [—1 1]
range. We split the range in two [0 1] intervals to differentiate heuristi-
cally between common representations (similarity, left side of dissimilar-
ity distribution, flipped sign) and distinct representations (dissimilarity,
right side of dissimilarity distribution).

Activation analysis. Within a sphere, the activation analysis resembled
an ROI analysis (Poldrack, 2007): we averaged the pattern of ¢ values
within a searchlight sphere for the effector-specific regressor of interest.
Contrasts were first computed against baseline to detect common acti-
vations across effectors. We regard this as a measure of absolute activa-
tion, even though baseline measures are inherently relative in fMRI
(Stark and Squire, 2001). We also calculated the mean ¢ contrasts for one
effector versus the other two effectors as a measure of relative activation.
Both types of activation values were normalized to a [0—1] range by
considering only positive values and dividing by the maximum value
across effectors. For the combined pattern-activation analysis, we con-
verted the two activation measures into one activation measure, consist-
ing of three numbers (one for each effector) in a [0—1] range. The score
was defined as the maximum of the absolute and relative activations per
effector, indicating the region was activated, regardless whether it was
absolute or relative.

Combination of pattern information and activation measures. We sub-
sequently combined the pattern information and activation measures
into a combined pattern-activation measure by elementwise multiplica-
tion of the activation scores with either the dissimilarity or similarity
scores. Multiplying the activation scores with the full [—1 1] information
range and splitting the range afterward gives the same result. The active
common and distinct scores are the left and right side of the pattern-
activation distribution, which allows a straightforward inspection of
common and distinct representations. Subsequently we calculated
square root values of the multiplied values to correct for multiplication
dampening. The multiplication of pattern information and activation
scores attenuates nonactive patterns and increases the strength of active
patterns. To determine areas encoding active distinct representations, we
multiplied activation and dissimilarity scores. Thus, the distinction score
will be high only when both activation and dissimilarity scores are high
for a given effector. To determine areas encoding active common repre-
sentations, we multiplied the activation scores with the similarity scores.
As a result, the value for the common representation will be high only if
both activation and similarity scores are high for a given effector. Such a
high value would indicate that the region, even though significantly ac-
tive, does not carry any specific information about effectors.

The combination of information and activation values can reveal a
large range of representations, including multiple representations within
a region. On the one side, the current approach can identify active dis-
tinct representations (eye, hand, and foot) and combinations thereof,
with up to three active distinct representations within a single region
(Fig. 1D, white, left). On the other side, a region could contain a repre-
sentation common to several (up to all three) effectors (Fig. 1D, right). A
representation can also be common for one effector, if that is the only
effector for which there consistently is a common representation across
subjects. In combination, a region may also contain one active
effector-specific representation, and, in addition, one active repre-
sentation common to the remaining two effectors (Fig. 1D). In our
framework, dominance of a representation over the others is determined
by activation, with that effector assigned dominance for which activation
is highest.

Significance test. To assess significance, we performed within-
participant permutation tests separately for the three types of analyses
(information, activation, and pattern activation). The reference distribu-
tion of the permutation test was created by repeating the searchlight
procedure using the same number of spheres and sphere sizes as in the
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Table 1. The MNI coordinates of the regions used in the ROl analysis and their normalized peak values for activation, information, and combination for eye (E), hand (H),

and foot (F)
Coordinates
Reference Peak Activation Information Combination

ROI X y z X y z Source F H E F H E F H

pPS* =24 =81 29 -2 —87 28  Heedetal.(2011) 038 010 0.10 017 —-011 —0.22 032  —0.08 —0.17

mPs? =19 =69 57 21 —63 60  Heedetal.(2011) 038 026 0.25 012 —-017 —0.27 019  —0.09 —0.24

alPs —-32 —38 57 -39 —42 63 Blangero et al. 0.23 028 0.54 —0.22 —0.16 0.24 —0.21 —0.19 0.46
(2009)

asPL’ =27 —42 70 —24 —54 63  Heedetal. (unpub- 026 028 0.25 0.09 -011 —0.13 012 —0.15 —0.13
lished observa-
tions)

aPCu -9 —54 60 —15 —45 70 Filimonetal.(2009) 0.07 040 0.18 —0.05 021 —0.16 —0.01 032 —0.16

“Coordinates were originally reported in Talairach space. Bold numbers indicate significant effects, p < 0.05, permutation test.

original procedure, but with the voxel data permuted randomly across
the entire brain. As in the original analysis, information, activation, and
pattern-activation scores were calculated for each of three effectors
within each searchlight sphere. The information scores were centralized
by subtracting the mean information score. P values were calculated as
the percentage of permuted spheres with a score higher (one-sided test,
for activation) or different (two-sided test, for information and pattern
activation) than that of the original, nonpermuted sphere, and deter-
mined separately for each effector. This procedure tests whether the con-
tinuous group of voxels in a search sphere gives a significantly different
test score than a random set of voxels taken from the same brain.

Group analysis. For analysis across participants, searchlight sphere re-
sults were first converted to MNI space after which information, activa-
tion, and pattern-activation scores were averaged across participants.
Participant-level p values were accumulated by applying Fisher’s method
(Fisher, 1925), which combines multiple p values into one aggregate p
value based on a y? distribution. Spheres were regarded significant for a
given test if at least one of the three effectors was significant across
participants.

ROIs. To facilitate reporting, and to allow direct linking of our results
to previous, region-specific findings, we defined five ROI search spheres
in PPC, corresponding to areas often implicated in motor planning (Levy
etal., 2007; Filimon et al., 2009; Heed et al., 2011): posterior intraparietal
sulcus (pIPS), medial IPS (mIPS), aIPS, anterior superior parietal lobe
(aSPL), and anterior precuneus (aPCu).

Area pIPS, also known as V7 or IPSO (Swisher et al., 2007), has previ-
ously been implicated in saccade control (Levy et al., 2007). Area mIPS,
also referred to as IPS2 (Silver and Kastner, 2009), has been found active
both for saccade and reach control (Levy et al., 2007; Heed et al., 2011).
Area alPS is involved in hand movements (Culham et al., 2003; Heed et
al., 2011; Konen et al., 2013), whereas aPCu (within area 5L) seems to be
involved in both hand and foot control (Filimon et al., 2009; Heed et al.,
2011). Last, aSPL (area 5L/7A) has recently been found to contain a
shared representation for hand and foot (Heed et al., 2013).

The location of the ROIs was determined based on the peak of the
activation for any of the effectors or combination thereof closest to the
reference coordinates, restricted to fall within a posterior parietal and
precuneus surface mask, as defined by FreeSurfer cortical parcellation.
Thus, the ROIs are based on functional results and, hence, are used for
descriptive purposes only (Kriegeskorte et al., 2009). We report the prop-
erties of the search sphere centered on the activation peaks of the respec-
tive areas. The complete overview of ROIs is shown in Table 1.

Results

The goal of this study was to characterize commonalities and
distinctions in parietal effector representations involved in
movement planning. Participants performed a delayed move-
ment task involving goal-directed movements of the eye, hand,
and foot. A novel searchlight-based pattern-activation approach
(see Materials and Methods; Fig. 1) was developed to disentangle
representations committed to the three effectors. Pattern infor-

mation measures (dissimilarity and similarity) determined
whether regions contained distinct or common representations
for the different effectors. Activation measures tested the strength
of the activation of these effector-specific patterns. The combined
pattern-activation measure was used to delineate active distinct
representations (significant activation as well as information)
and active common representations (significant activation, but
lack of information), revealing the active representational con-
tent of a region. We start with a description of the results of the
left hemisphere, contralateral to the used limb.

Pattern information

Pattern information analysis was applied to determine which
representations are present in PPC, coding effector distinctions
and/or commonalities (Figs. 3A, Fig. 4A).

Information was present within a parietofrontal network, in-
cluding different types of effector-specific representations in PPC
(Fig. 3A, straight arrow, top and bottom). Caudorostral along the
IPS, we found a large and continuous, distinct representation
related to eye movement planning (Fig. 34, blue, left). This was
combined with strong common representation of the hand and
foot to different relative degrees (Fig. 3A, yellow/orange/light
green, right). More specifically, pIPS, mIPS, and aSPL repre-
sented primarily an eye versus limb distinction (Fig. 44, blue vs
yellow colors).

Furthermore, we found a lateromedial hand-eye-foot infor-
mation gradient in rostral PPC. The gradient for common repre-
sentation ranged from foot and eye (Fig. 3A, cyan, right), to foot
(green), to hand and foot (yellow) to hand (red), and to hand and
foot (magenta). Note that the regional boundaries differ between
the two information measures.

Regarding the predetermined ROIs (Fig. 4A), aIPS repre-
sented hand movements versus foot and eye movements (red vs
cyan); aSPL represented the eye versus the limbs (blue vs yellow),
and aPCu represented foot versus hand and eye movements
(green vs magenta). The distinct representation of aIPS and
aPCu continued well into lateral and medial somatosensory
and motor cortex, respectively.

In summary, information analysis revealed a caudorostral dis-
tinct eye representation and a rostral, lateromedial distinct hand-
eye-foot representational gradient, combined with mostly
common representations for the complementary effectors. Thus,
most PPC areas represented a dichotomy between a distinct rep-
resentation for a single effector and a representation common to
the other two effectors.
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Figure 3.

Group results for pattern information (4), activation (B), and combined pattern-activation (C) tests of effector specificity, plotted on an inflated representation of the left hemisphere

(top) and per ROl in color gradients (bottom). The cortical locations of the ROIs are indicated by white crosses on the inflated surface. Color coding following Figure 1D: blue, eye; red, hand; green,
foot; brightness indicates strength of tuning. A, Information is split into distinct (dissimilarity, i.e., information is present) and common (similarity, i.e., lack of information). B, The activation results
are separated in absolute activation (compared with baseline) and relative activation (compared with the other two effectors). C, The combined pattern-activation results split into active distinct
results (both activation and information effects) and active common (only activation, no information effects). Values are normalized per part (4-C). Only voxels and ROIs significant for the respective
tests are shown (p << 0.05, permutation test). The straight and curved arrows highlight the caudorostral and lateromedial gradients, respectively.
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Figure4. Regional results for effector specificity according to pattern information (4), activation (B), and combined pattern information () measures, based on the values in Table 1. Gray texts

highlight examples to facilitate interpretation by the reader. Color coding as in Figure 1. A, Information results, shown in MDS plots, with the color indicating the effectors, the distance, and the
dissimilarity. When two effectors were significantly similar (i.e., have a common representation), the two colors were merged. B, Average normalized activation results, shown in bar plot (== SE).
Asterisks indicate significant differences from baseline. Connecting lines indicate significant relative differences between effectors (p < 0.05, permutation test). ¢, Combined pattern-activation
results, depicting the combination of information and activation scores: only significantly activated representations are included, the size of the dots represents the relative activation of the

effector(s).

Activation

Whereas the information analysis revealed distinct and common
representations across PPC, it does not show which of the repre-
sentations of a given area was most activated by the task, and
whether, perhaps, some representations were on average not ac-
tivated at all. The activation analysis examined such regional in-
volvement (Figs 3B, 4B).

Activation of the different effectors against the fixation base-
line was evident widely across a parietofrontal network, showing
strong involvement of the PPC (Fig. 3B). Within PPC, there was
a caudorostral eye-to-limb gradient: caudally, eye activation was
dominant, whereas more rostral regions were more activated by
all three effectors, both in a shared fashion (Fig. 3B, gray-white
colors, left, straight arrow), and separately (Fig. 3B, red and
green). At thelevel of the preselected ROIs (Fig. 4B), pIPS showed

activation for eye movements only, mIPS demonstrated also ac-
tivation for the other two effectors, and aSPL showed comparable
activations for the three effectors.

We also observed a rostral, lateromedial hand—foot gradient: a
hand bias (Fig. 3B, red, curved arrow) was evident lateral to aSPL, a
foot bias (green) more medially, whereas all three effectors were
represented in the in-between region (yellow or gray-white). For the
ROIs (Fig. 4B) along the postcentral sulcus, alPS was predominantly
activated for the hand, aSPL for the hand and foot, and aPCu for the
foot. In aIPS the dominant hand activation was accompanied by
activation for the foot and eye, and in aPCu the dominant foot acti-
vation was accompanied by activation for the hand. Thus, all rostral
PPC ROIs were activated for multiple effectors. The relative hand
and foot dominance in aIPS and aPCu continued in lateral and me-
dial somatosensory and motor cortex.
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Figure 5.

In sum, the activation analysis revealed a caudorostral eye—
limb gradient and a lateromedial hand—foot gradient, combined
with significant secondary activations in rostral PPC.

Combined activation and information

The information-based analysis revealed mostly dichotomies of
distinct and common effector representations across PPC, but
did not allow conclusions about which representations were ac-
tually activated by the task. Activation analysis, on the other
hand, showed general activation with relative effector-specific
peaks, but did not allow conclusions about whether the general
activations held effector-specific representations. Combining the
two measures in the pattern-activation framework allows exam-
ination of both of these aspects simultaneously, that is, to observe
which unique representations are present as well as which of
them are activated by the task (Figs. 3C, 4C).

The combined pattern-activation analysis revealed active
distinct representations across the frontoparietal network, in-
cluding the PPC (Fig. 3C, left). Caudal PPC was dominated by
eye-related representations, whereas rostral PPC contained
active distinct representations for the hand and the foot, sep-
arated by an active representation distinct for planning eye
movements. Note that all combined activation (Fig. 3B, gray,
left) has been filtered out, revealing clear patches of representa-
tions. ROI analysis revealed that pIPS, mIPS, and aSPL all actively
distinguished movements of the eyes, whereas aIPS encoded
movements of the hand and aPCu represented planned move-
ments of the foot (Fig. 4C).

Of the common representations revealed by the information
analysis (Fig. 3A, right), especially the rostral PPC representa-
tions were activated (Fig. 3B), resulting in rostral patches of active
common representations (Fig. 3C, right). Specifically, the com-
bined analysis uncovered three distinct representations that were
hidden in the overlapping activations: an activated limb repre-
sentation (Fig. 3C, right, yellow/orange), foot and eye represen-
tation (green/cyan), and hand representation (red). The selected
ROIs are covered by these patches (Fig. 4C): in addition to the
active distinct representations, mIPS contained an active com-
mon representation for the limbs (circle diagram, yellow), aIPS
coded an active common representation for the foot and eyes
(green and cyan), and aPCu contained a large activated hand
representation (red). Furthermore, in aSPL, we found an inte-
grated hand—foot representation at the cross section of the aIPS
and aPCu regions.

Both active distinct and active common representations were
found within the same regions in PPC (compare Figs. 3C, left and
right, Fig. 4C), but with different amounts of activation. For most

Relative
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Figure 6.  Group GLM test of effector-specificity on unsmoothed data, depicted on an in-
flated left hemisphere, with magnification of the rostral PPC. Voxels significantly (p << 0.001,
uncorrected) tuned for one or more effectors are included. Colored lines highlights clusters of
effector-specific tuning (red is hand, green is foot, blue is eye).

regions, the distinct representation was also the most activated
representation, that is, most regions were dominated by one ef-
fector. aSPL formed an exception, in that both the eye and limb
representation were equally activated (dominance indicated by
brightness of colors in Fig. 3C, size of dot in 4C).

In summary (Fig. 5), the pattern of representations for effec-
tor planning in PPC emerging from the combined information-
activation framework is mostly that of active dichotomies: mIPS,
eye versus the limbs (most activated first); aSPL, limbs versus eye
(equal dominance); alPS hand versus eye and foot; aPCu, foot
versus hand. Area pIPS appears as an exception, with only an
active representation of the eye.

Right hemisphere

Analysis was focused on the contralateral (left) hemisphere,
which is thought to be most involved in coding right hand and
foot movement (Beurze et al., 2009; Gallivan et al., 2011; Heed et
al., 2011). However, the hemisphere ipsilateral to the moving
limb can also contain information about planned movements
(Gallivan et al., 2013). As Figure 6 shows, eye-specific informa-
tion was present ipsilaterally in caudal PPC, and hand- and foot-
specific information was present in the motor cortex. In rostral
PPCregions, effector-specific informational content was reduced
compared with the contralateral hemisphere. Furthermore, acti-
vation of the right hemisphere was attenuated compared with the
left hemisphere, particularly in motor and somatosensory corti-
ces. The combined analysis revealed that the eye-specific poste-
rior representations were active and distinct, whereas no clear,
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Figure 7. Overview of the effector specificity results per ROI, combining the two pattern-

activation plots (Fig. 3C). Black dots indicate the ROIs, the symbols indicate the different (vs)
activated representations in these ROs. Large symbols indicate the dominant (i.e., most acti-
vated) representations, small symbols the less activated representations.

active distinct limb-specific representations emerged in rostral
PPC. Similarly, we did not observe any strong active common
representations.

Thus, the only representation active in ipsilateral PPC was for
the one effector for which the brain is not lateralized: the eyes.

Control measures

Relation activation and information

Results of the pattern information and activation analysis show a
remarkable consistency: in a given region, the most distinct rep-
resentation was, at the same time, the most strongly activated.
However, this consistency may in fact be artifactual: more
strongly activated voxels may dominate the correlation calcu-
lation and thus increase the likelihood that higher activated
representations turn out distinct. If this is the case, positive
correlations between information and activation should also be
present in the random data generated in the permutation test. If
not, it should be unique to the actual results, more specifically to
the effectors represented in each hemisphere: all effectors in the
left hemisphere, only the eyes in the right hemisphere. We tested
this potential confound by comparing the relationship between
mean relative activation per effector and information per effector
in the actual data, separately for each hemisphere, with the same
measures calculated for random data.

In the left hemisphere, correlations between activation and
information were positive for all three effectors [mean correla-
tion: 0.68 (hand), 0.39 (foot), 0.47 (eye), all p < 0.05]. In the right
hemisphere, the correlations dropped for the hand (—0.02, p >
0.05), but not for the eyes and foot (0.38 and 0.45, respectively,
both p < 0.05). In contrast, for the random data, activation and
information correlated negatively (r = —0.19, — 0.18, — 0.09, all
p < 0.05). Thus, we conclude that the higher relative activations
predict higher information measures, but that the relationship is
not due to a confound in our analyses.

Unsmoothed group GLM

All our analyses are based on tests using search spheres of 83
voxels on average, which is comparable in size to a standard
smoothing kernel. It is possible that this approach has hindered
precise spatial localization, with spheres capturing information
and activation from neighboring areas. To control for such ef-
fects, we performed a standard group GLM on spatially un-
smoothed data (Fig. 7). We predicted that there should be
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effector-specific voxels within PPC areas, validating the spatial
sensitivity of our analyses.

The prediction was confirmed, as activation patterns were
consistent with those determined by the searchlight procedure:
alPS was most active for hand planning; mIPS was most active for
eye planning; and aPCu was most active for foot planning. Un-
surprisingly, activations were more scattered, and patches were
not as consistent as those detected by the pattern-activation anal-
ysis, which underlines the high sensitivity of the pattern-
activation analysis for regional representations.

Discussion

This study characterized distinctions and commonalities across
effector representations in PPC. The motor planning responses of
most regions were dominated by one particular effector: eye
movements in pIPS, hand movements in aIPS, and foot move-
ments in aPCu. The new observation is that several PPC regions
also actively coded for commonalities between the other effec-
tors, distinct from the dominant effector. This finding provides
empirical evidence for the notion that effector selection is based
on an efficient neural code that distinguishes an effector from
other potential effectors (Medendorp etal., 2005; Cui and Ander-
sen, 2011).

Pattern-activation gradient

The pattern-activation measure revealed a caudorostral gradient
in PPC. This finding extends previous reports, showing that ac-
tivation of a particular region by the planning of several effectors
(Levy et al., 2007; Heed et al., 2011) does not necessarily imply
identical representational content. Furthermore, we extend pre-
vious MVPA studies (Gallivan et al., 2011a,b; Gallivan et al.,
2013) by specifying, per region, the dominant representation and
testing for differences between limbs, instead of only eye—hand or
hand-hand distinctions.

Previous reports have shown that, along the caudorostral axis,
pIPS is informative for the eye—hand distinction (Gallivan et al.,
2011). Here we show that the eye representation is dominant, that
there is no information on the distinction between the hand and
foot (limbs), and that limb movements do not lead to activation.
We hence conclude that pIPS is involved in saccade planning
(Levy et al., 2007). Following the same logic, the pattern-
activation findings suggest that areas mIPS and aSPL specifically
distinguish between eye and limbs. Eye, hand, and foot planning
all activate these regions, but the informational content is re-
stricted to a distinction between eyes and limbs, but not between
the limbs. Only the distinct representations for eye movements
are active in both hemispheres, in line with the bilateral organi-
zation of saccade preparation (Sereno et al., 2001).

In rostral PPC, aIPS coded for the hand and aPCu coded for
the foot. The common representations underlying this dominant
hand—foot gradient largely complemented the dominant repre-
sentations: the foot area also represents the hand and the hand
area also represents the foot and eye. This corepresentation of the
different limbs may explain why others have found hand-tuning
in the aPCu region (Fernandez-Ruiz et al., 2007; Filimon et al.,
2009), which we find to be dominated by foot planning (Heed et
al., 2011). Importantly, the combined pattern-activation mea-
sure allowed us to detect two separate representations in aPCu
(one foot, one hand), of which the foot representation is domi-
nant in activation. We hence conclude that aPCu is predomi-
nantly responsible for foot movement planning, while aIPS is
responsible for hand movement planning.
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In addition to motor planning, rostral PPC is important for
somatosensation (Sereno and Huang, 2014). The rostral effector
gradient may hence stem from somatosensory activations. How-
ever, the current analysis specifically focused on the planning
period, during which there is no somatosensory feedback.
Rather, the activation could be related to the prediction of the
somatosensory consequences of the movement from the start of
the trial onward (MacKay and Crammond, 1987), consistent
with the effector-specific involvement of SI and SII in the current
task (SII not shown; Eickhoff et al., 2007) and the predictive
coding framework (Friston and Kiebel, 2009). Furthermore,
knowing the position of the hand and foot, in addition to their
target positions, is essential for the planning of movements with
the respective effectors (Buneo et al., 2002; Beurze et al., 2009).
Such an integrative role would fit with the position of the regions
next to the somatosensory homunculus (Seelke et al., 2012), in
line with continuous topographic coding (Graziano and Aflalo,
2007a), similar to the location of the parietal saccade areas near
regions containing visual maps (Aflalo and Graziano, 2010).

Nature of coding

The continuous topographic organization of different combina-
tions of active distinct and active common effector representa-
tions suggests a more complex organization than modular
effector specificity. The common representations could code
movements with similar computational constraints (cf. Heed et
al., 2011), and the combination of distinct and common repre-
sentations might allow combining effectors toward a common
functional goal (Graziano and Aflalo, 2007b); e.g., hand and foot
in aPCu for walking or climbing (Abdollahi, 2013). Such classes
of movement based on coding commonalities and identities may
represent a more efficient organization of motor preparation
than effector-specific coding per se (Levy et al., 2007; Jastorff et
al., 2010).

The fact that the rostral planning-related PPC representations
are consistently dichotomous suggests that these representations
could additionally be used in the selection of effectors or classes of
movements. For example, in single-effector movements, aPCu
could select foot movements over hand movements, while in
actual climbing or walking it could represent both effectors (Gra-
ziano, 2006). This would imply that rostral PPC regions can make
effector “choices,” rather than representing one or the other ef-
fector (Cisek and Kalaska, 2010; Cui and Andersen, 2011). The
activated distinct representation would then be related to the
selected effector, the less-activated common representation to
the alternative effector(s). Which alternative effectors are consid-
ered could depend on the class of movement represented in a
region (e.g., walking or climbing in aPCu: foot and hand) and/or
on the combination of effectors tested in the task. Whether the
basis of selection is single effectors or classes of movement could
be studied by testing movements involving combinations of ef-
fectors or movements belonging to different movement classes.

Alternatively, the selection process could reflect motor inhi-
bition of the alternative effectors (Brown et al., 2006). In the
present study, participants were explicitly instructed to move
only one effector, while, in nonexperimental circumstances,
some effectors (e.g., eye and hand) are often moved together.
Moreover, the task context itself, with equal probability for each
effector, might have induced coactivation of effectors based on
contingency (Chang et al., 2008; Gallivan et al., 2013). Testing
movement planning with different effector probabilities should
allow the separation of these accounts.
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Finally, the active common representations could be caused
by a general effect, such as spatial attention. We cannot rule this
out, given that we did not test non-motor trials, but the specificity
of our analysis to the delay period, the specific parietofrontal
representations in the ipsilateral hemisphere, and the rich gradi-
ent of secondary representations all speak against a general origin
of the reported common representations.

Pattern-activation framework

The pattern-activation framework makes explicit the notion that
information and activation are complementary measures (Peelen
and Downing, 2007; Jimura and Poldrack, 2012). Patterns are
seen as representations contained in an area (MVPA assump-
tion), whereas the mean activity shows how involved the region is
in representing the condition (univariate analysis assumption).
In essence, the framework assumes that patterns can be active to
differing degrees, allowing quantification of the representation’s
involvement in the current cognitive process: we interpret weakly
activated representations as weakly involved in the task. For ex-
ample, limb representations in the ipsilateral hemisphere were
activated for the current task to some extent, but our framework
makes the testable prediction that comparable representations
should be evident, though at higher activation, during movement
planning of the left limbs.

There are several alternatives with which the pattern-
activation framework may be implemented. An alternative for
the information measure (that is, correlation) is classification
(Cox and Savoy, 2003). The advantage of a correlative measure as
implemented here is the possibility to test whether two patterns
are less distinct than expected by chance. This allowed us to iden-
tify common representations; in contrast, in a classification ap-
proach, nondistinctiveness would be a null result. Alternatively,
we could have used cross-classification: if patterns for two classes
are indistinguishable (low interclass classification score), they
could either be noise (no cross-classification possible) or truly the
same pattern (cross-classification possible). The current results
have large predictive power for such classification results. An-
other alternative for correlation is component analysis ( Beck-
mann et al., 2005). This approach has the attractive feature of
allowing detection of partly shared representations, such as a
common hand—foot representation and a distinct hand represen-
tation within the same region. Any alternative to the activation
measure should be based on a clean baseline and ideally be sen-
sitive to both absolute and relative activation effects.

Activation is essentially information at a different spatial scale.
If one took a larger ROI, some activation results would translate
into information results, as they would become a subpart of the
region, and vice-versa, a smaller ROI would lead to a shift from
information to activation results, when local patterns no longer
activate parts but the whole region. The combined measure we
propose allows taking this into account by combining the two
measures.

Conclusion

We conclude that PPC represents effector dichotomies of distinct
and common representations. The distinct representations are
organized along a posterior-to-anterior, visuosomatic gradient,
which splits into a second, lateral-to-medial hand—foot gradient
in rostral PPC. This appears to reflect a topographically continu-
ous organization, from visual perception and saccades, along
lateral hand and medial foot planning pathways, to the somato-
sensory hand and foot regions. The combination of distinct and
common representations in rostral PPC makes this region ideally
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suited to function as a selector, either of effectors or of classes of
movements.
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