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Functional Rather than Effector-Specific Organization of
Human Posterior Parietal Cortex
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Neurophysiological and neuroimaging studies have shown that the posterior parietal cortex (PPC) distinguishes between the planning of
eye and hand movements. This distinction has usually been interpreted as evidence for a modular, effector-specific organization of this
cerebral region. However, the eyes differ markedly from other body parts both in terms of their functional purpose and with regard to the
spatial transformations required to plan goal-directed movements. PPC may therefore provide specialized subregions for eye move-
ments, but distinguish less for other effectors. Using functional magnetic resonance imaging, we compared activity during memory-
guided eye, hand, and foot movements in human participants. The results did not reveal any significant activation differences during the
planning of hand and foot movements, except in the most anterior part of PPC [Brodmann’s area (BA) 5], marginally extending into
anterior BA 7/40. This region showed a lateral-to-medial gradient for hand versus foot movement planning. The limb-unspecific PPC
regions were functionally connected with hand and foot motor regions. In contrast, a gradient-like organization was found for all of PPC
for the planning of eye versus hand and foot movements. Although planning-related activity across the three effectors considerably
overlapped, saccade planning activated occipitoparietal regions more than limb movements, whereas limb movements activated anterior
regions of the superior parietal lobule more than saccades. We infer that PPC does not follow a strict effector-specific organization.
Rather, the large-scale organization of this region might reflect the different computational constraints that need to be satisfied when

planning eye and limb movements.

Introduction

The posterior parietal cortex (PPC) is important for coordinate
transformations for spatially guided motor behavior. In both hu-
mans and nonhuman primates, different portions of the PPC are
preferentially active for preparing different types of actions or for
movements involving different body parts (Hyvirinen, 1981;
Murray and Coulter, 1981; Graziano and Gross, 1998; Andersen
and Cui, 2009; Caminiti et al., 2010). In the intraparietal sulcus
(IPS) of macaques, neurons in the lateral intraparietal area (LIP)
respond preferably during the planning of saccades, whereas neu-
rons in the adjacent parietal reach region (PRR) respond more
strongly during arm reach planning (Calton et al., 2002; Cui and
Andersen, 2007; Andersen and Cui, 2009). Neither region, how-
ever, appears to respond exclusively to either effector (Snyder et
al., 1997; Andersen and Cui, 2009). Accordingly, research using
functional magnetic resonance imaging (fMRI) in humans has
revealed a large overlap of PPC activation during the planning of
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eye and hand movements (Beurze et al., 2007, 2009; Levy et al.,
2007; Hinkley et al., 2009). However, biases for either eye or arm
movements have also been shown in humans (Connolly et al.,
2003; Medendorp etal., 2005; Connolly et al., 2007; Hinkley et al.,
2009; Van Der Werf et al., 2010), and candidate homologs for
macaque areas LIP and PRR have been proposed (Connolly et al.,
2003; Schluppeck et al., 2005; Beurze et al., 2007; Hagler et al.,
2007). These findings have led to the view that, analogously to the
somatotopy of primary somatosensory cortex (Penfield and Bol-
drey, 1937), PPCis organized in an effector-specific manner, with
distinct subregions mediating spatially guided movements for
each effector (Andersen and Cui, 2009; Hinkley et al., 2009).
However, this conclusion about PPC organization may be
premature (Hagler et al., 2007; Levy et al., 2007). Functionally,
eye movements are inseparably bound to visual perception and
serve a different purpose than movements of any other body part;
parietal regions might be differently sensitive to these functions.
For example, the sensory reference frame imposed by the retina
for visual target processing is linked to the motor reference frame
of the eyes. In contrast, the reference frame of a visual target is
distinct from the motor reference frame of a limb (Graziano et al.,
1997; Ferraina et al., 2009). Therefore, specifying a goal-directed
limb movement requires additional transformations to compute
the spatial relationship between target and effector position,
which depends on the current body posture (Buneo et al., 2002;
Beurze et al., 2006). Although effector-specific organization of
PPC has been questioned on the basis of overlapping activity of
eye- and hand-related activity (Hagler et al., 2007; Levy et al.,
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2007), experiments involving only two effectors do not allow
deciding between effector specificity versus other, functionally
based explanations as the reason of existing regional activity bi-
ases in PPC.

Here we used fMRI to compare PPC responses while partici-
pants planned goal-directed movements with their eyes, their
right hand, or their right foot. We tested whether each effector
recruits specific subregions of PPC, or whether only saccades,
compared with any limb movements, are specially processed.

Materials and Methods

Participants

The dataset comprised 23 healthy, right-handed and right-footed par-
ticipants (12 female), aged 19-39 (mean 23.5) years old, with normal
or corrected-to-normal vision. The experiment was conducted ac-
cording to the guidelines of the Declaration of Helsinki and to the
institutional guidelines of the local ethics committee (Committee on
Research Involving Human Subjects, region Arnhem—Nijmegen, The
Netherlands).

Eye tracking

Position of the left eye was recorded using a long-range infrared video-
based eyetracker (SensoMotoric Instruments) at a frequency of 50 Hz.
Saccades were identified by detecting a 2% change from baseline of eye
position in the horizontal direction relative to the maximum amplitude
of the trial and were verified visually. The reaction time (RT) of correct
saccades was calculated as the time between movement cue and saccade
onset. Saccade amplitude was measured as the distance traveled by the
eye between the average of the four sampling points immediately preced-
ing the movement cue and the eye movement’s endpoint. Saccade am-
plitudes were used to correlate target eccentricity with eye movement
amplitude within each participant to ascertain that participants made
accurate eye movements and did not just indicate whether the target had
been left or right. Fisher Z-transformation was used in all statistical tests
involving correlations. Eye tracker data were not available for two par-
ticipants. All reports on eye movement performance include the 21 re-
maining participants.

Hand and foot movement recording

Infrared light-emitting diodes (LEDs) were taped to the right index fin-
ger and to the big toe of the right foot. Their light was visible to a video
camera, but not to the participants. The video camera was positioned at
a distance of about 2 m from the scanner. Short interruptions of the
LEDs, synchronized with the events of the trials, were used for synchro-
nization of the video recording with the eye movement data and the
experiment’s events. LED locations were extracted from each video
frame using MATLAB, rendering a movement time course for both hand
and foot movements. Movements were identified by detecting a 5%
change from baseline of hand or foot position relative to the maximum
amplitude of the current trial, and were verified visually.

Analysis of these time courses was approached similarly as the analysis
of eye movements. Reaction time for correct movements was calculated
as the time between movement cue onset and movement onset. Move-
ment amplitude of correct movements was extracted as the distance (in
pixels in the image) between limb location before the movement cue and
the movement endpoint. Movement amplitude for hand and foot was
scaled arbitrarily (depending on the distance and zoom of the camera).
Performance was therefore assessed by correlating target eccentricity and
movement amplitude.

MRI measurement

Functional MRI measurement. Functional images were acquired on a
Siemens 3 tesla MRI system (Tim TRIO, Siemens). Using an eight-
channel phased array head coil, 26 axial slices were obtained by a gradient
echo-planar imaging sequence [slice thickness 3 mm, gap = 17%, in-
plane pixel size 3 X 3 mm, repetition time (TR) = 1780 ms, echo time
(TE) = 30 ms, field of view (FOV) = 224 mm, flip angle = 90°], covering
all of the parietal lobe, the motor-related areas of the frontal lobe, and the
majority of the occipital lobe.
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Anatomical MRI measurement. After the functional recordings, high-
resolution anatomical images were acquired using a T1-weighted MP-
RAGE (magnetization prepared rapid gradient echo) sequence (176
sagittal slices, voxel size = 1 X 1 X 1 mm, TR = 2300 ms, TE = 3.93 ms,
FOV = 256 mm, flip angle = 8°).

Experimental setup and task design

Participants lay supine in the scanner. Their head was stabilized with
foam cushions. The right arm was cushioned for stabilization. The right
hand was placed near the right hip bone, on the right side of the body.
The index finger was extended, and pointing was executed by moving
both the index finger and the wrist joint, but not the rest of the arm. The
right leg was cushioned, and leg and hip were strapped to minimize hip
movement during foot pointing. For foot pointing, participants pointed
with the big toe by moving the ankle. Participants had to fixate a central
white circle throughout the experiment. The right hand and foot had to
point toward the fixation point only in the horizontal direction (i.e.,
left-right), but not in the vertical direction, because vertical pointing
movements were very uncomfortable to participants.

Visual targets were projected via a mirror so that they appeared to be
located approximately above the participants’ head. Targets consisted of
small, light gray, filled circles. Pointing movements were made to the
apparent location of the target and without seeing the limbs, so that
target processing and general task requirements were identical for all
conditions. We used a multiple-stage delayed-instruction paradigm
(Hoshi and Tanji, 2000; Beurze et al., 2007, 2009) to separate eye, hand,
and foot movements. A normal trial consisted of the following four phas-
es: a fixation phase, an effector-planning phase, a target-planning phase,
and a movement phase. In 25% of the trials, the movement phase was
omitted (i.e., no-go trials) to reduce the correlation of planning and
execution predictors in the general linear model (GLM) (see Preprocess-
ing and statistical analysis section). Importantly, the order of the two
planning phases could be either effector-target or target-effector, allow-
ing a dissociation of these two trial parts in our analyses. The experimen-
tal design is illustrated in Figure 1.

Each trial began with a fixation phase (2—4 s), indicated by a short
blinking of the fixation point. The effector for each trial was instructed by
a color change of the fixation point and a small letter (O, H, or V for the
first letter of the Dutch words for eye, hand, and foot) projected into the
fixation point; both were presented for 350 ms. The start of the next trial
phase was either 2-5 s (when the effector was cued first) or 2—6 s (when
the effector was cued second) after the start of the effector phase.

The target was presented for 350 ms at the same vertical location as the
fixation point, but horizontally displaced to the left or right by a 4.4, 5.4,
6.4, or 7.4° visual angle. It was masked by a large number of identical
circles (presentation time 66 ms). Participants had to keep the exact
location of the target in memory and prepare an accurate movement of
the cued effector. The start of the next trial phase was either 2-5 s (when
the target was presented first) or 2—6 s (when the target was presented
second) after the start of the target phase.

Movement execution was cued by the fixation point turning purple for
350 ms. Participants were instructed to move the cued effector as soon as
the movement cue occurred, and to make small, reasonably fast move-
ments to the horizontal target location and back to the resting position.
The next trial started 2—4 s after the movement cue. In no-go trials, the
fixation point never turned purple but just blinked to indicate the start of
a new trial. For these trials, participants were instructed to simply start
over with the upcoming trial. There was a 20 s pause after every 20 trials,
during which subjects could freely move their eyes.

The experiment consisted of 192 trials, divided into 64 trials for each
effector. Of those 64 trials, 32 had leftward targets, and the other 32 had
rightward targets. Each target eccentricity was equiprobable. Of the 64
trials, 16 were no-go trials (8 leftward, 8 rightward). Participants prac-
ticed the task before going into the scanner until they had clearly under-
stood the task, the meaning of the cues, and had learned to follow the
fixation instructions. The experiment was controlled with Presentation,
version 12 (Neurobehavioral Systems).
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Trial selection

Only correctly executed trials were used in the behavioral and fMRI
analyses. To this end, kinematics of eye, hand, and foot movements were
inspected visually for each trial. Trials in which movement was directed
to the wrong side were discarded. Similarly, trials in which a wrong
effector had been moved (e.g., a saccade was made together with the
pointing, or the hand was moved instead of the foot) were discarded.
Finally, trials were removed from further analyses when movement oc-
curred before the movement cue.

fMRI data analysis

Preprocessing and statistical analysis. Data were analyzed with BrainVoy-
ager QX, versions 1.10.4 and 2.0 (Brain Innovation), and Matlab (Math-
Works). Data were preprocessed to correct for slice scan time, head
motion, and low-frequency artifactual drift. The first three images of
each functional run were discarded to allow for saturation effects at the
beginning of scanning.

Functional images were coregistered with the anatomical scan and
transformed into Talairach coordinate space. Each hemisphere was then
segmented at the gray/white matter boundary, and the cortical sheet of
each hemisphere was reconstructed, inflated, and morphed into a sphere
(Goebel et al., 2006). The same-side hemispheres of all participants were
then aligned based on their cortical folding pattern (van Atteveldt et al.,
2004). Then, rather than analyzing spatially identical voxels in all partic-
ipants, statistical analyses were run over corresponding vertices of the
reconstructed hemispheres, based on the cortex-based alignment. This
method improves statistical power by increasing the cortical overlap be-
tween individual brains (Fischl et al., 1999; Goebel et al., 2006). It also
allows analysis without smoothing of the functional data.

Data were analyzed using a standard GLM. A random-effects group
analysis was performed to test the effects across subjects. Multiple com-
parisons were controlled for by the false discovery rate (FDR) procedure
with a threshold value of 0.05, unless noted otherwise. Thirty-six boxcar
predictor functions were modeled to capture the different events in the
experiment and convolved with a gamma function that modeled the
hemodynamic response of the blood oxygenation level-dependent
(BOLD) signal. The fixation phase of each trial served as baseline. The
fixation phases following no-go trials were modeled with a separate pre-
dictor to ensure that activity related to the undoing of a motor plan
(Brown et al., 2008) would not contaminate the baseline. For the period
of the first cue, there were five predictors (first cue was a left target or a
right target; first cue indicated a hand, foot, or eye movement). For the
period of the second cue, there were 12 predictors, one for each combi-
nation of effector (eye, hand, or foot), target (left or right), and cue order
(effector first, target first). For the movement phase, there were three
predictors, one for each effector; intervals for the movement predictors
were based on the timing of the movement cue, rather than on actual
movement. There were predictors for incorrect trial phases (fixation, cue
1 effector, cue 1 target, cue 2, movement), which coded for all trial phases
that could not be used for analysis (e.g., because of erroneous move-
ments). Separate predictors were used for the period before the first trial
started at the beginning of a run and for the 20 s pauses. To account for
head movement during the course of the experiment, z-standardized and
low-pass-filtered time courses of the movement correction were used (3
predictors for rotational movements, and 3 predictors for translational
movements). Head motion was always <3 mm. Finally, the average sig-
nal of all voxels that covered the ventricles was extracted for each time
point to form a predictor for the CSF; this predictor allowed correction
for signal changes due to mass dislocation of the arm and foot during
pointing (Diedrichsen et al., 2005).

Saccades always involve both eyes, whereas pointing in this study in-
volved only the right hand and foot, possibly leading to stronger lateral-
ization of activation for hand and foot than for eyes. We therefore did not
analyze hemispheric biases of any condition. More importantly, a hemi-
spheric bias for limb movements does not affect posterior-to-anterior
differences between conditions reported here. This holds also for any
lateralization differences that may arise from the limbs being positioned
on the right side of the body during the pointing task, as in some previous
studies (Medendorp et al., 2005; Hagler et al., 2007).
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Gradient maps. The difference between the B weights of conditions of
interest was visualized by normalizing each predictor’s B weight by the
sum of the B weights of the conditions involved in the comparison,
resulting in values within a range of —1 and 1. Thus, when two condi-
tions, a and b, were compared, the 3 weight of a was normalized by a/(a
+ b); when three conditions were compared, the 3 weight of a was
calculated as a/(a + b + ¢). The normalized value of each predictor was
then assigned to one of the three RGB color values of each map vertex.
Thus, if a vertex was modulated mainly by one condition, this vertex
would appear in the color assigned to this condition; if several conditions
modulated the vertex, the color would appear as a mixture of the colors
assigned to those conditions. Furthermore, all three RGB values were
scaled according to the sum of the involved 8 weights; thus, vertices with
high B weights (i.e., at which the experimental conditions modulated the
BOLD signal comparatively much) were colored more intensely than
vertices with low sums of the 8 weights. Only vertices found active in the
contrast of each respective condition against baseline were projected
onto the cortical maps.

Regions of interest. To compare our results to previous findings, we
complemented our gradient analysis with a region-of-interest (ROI)
analysis. We created six ROIs around coordinates defined by previous
studies (see below): visual area V7; two ROIs in the middle of the intra-
parietal sulcus (IPSI and IPS2); two ROIs in anterior IPS (aIPS1 and
alPS2); and one ROI in the anterior precuneus (aPCu). Each ROI com-
prised ~300 vertices centered around the Talairach coordinates of areas
in left PPC. ROIs were analyzed only in the left hemisphere to account for
the fact that participants used their right hand and foot (they obviously
moved both eyes during saccades). In previous studies, ROIs V7, IPS1,
and IPS2 were mapped using topographic mapping of saccades (i.e., their
coordinates were functionally defined by eye movements) (Schluppeck et
al., 2005; Silver et al., 2005; Hagler et al., 2007; Levy et al., 2007). V7 is
located in Brodmann’s area (BA) 19, whereas IPS1 and IPS2 lie anterior
to V7 in BA 7. In contrast to these regions, ROI superior end of the
parieto-occipital sulcus (sPOS) (Filimon et al., 2009) was defined by
selecting voxels that were located between the sPOS and the subparietal
sulcus, and were active when participants reached while their hand was
visible; the coordinates of this sPOS area were very similar to those of
IPS1, as defined by saccades, and were therefore collapsed with this area.
ROI aPCu (Filimon et al., 2009) had the same functional criteria as sPOS,
but was located between the POS and the cingulate sulcus in BA 7. ROI
alPS (Beurze et al., 2009) is located in BA 40 and was obtained by a
conjunction of reach and saccade planning-related activation. Finally,
ROI aIPS (Blangero et al., 2009) resulted as one of several reach-related
areas from a meta-analysis of fMRI reaching studies and was chosen here
for its anterior PPC location; it is located in BA 40, but very near to the
hand area of primary somatosensory cortex (S1) and at the border to-
ward BA 7.

When several studies reported the same area, we averaged the reported
coordinates (for Talairach coordinates of all areas, see Table 1). When
brain coordinates were given in Montreal Neurological Institute (MNI)
space, Talairach coordinates were determined using the Nonlinear Yale
MNI to Talairach Conversion Algorithm, as implemented online at
http://www.bioimagesuite.org/Mni2Tal/index.html. Because our fMRI
analysis was based on cortical reconstructions rather than volume space,
the exact Talairach coordinates were not always part of our cortex model
(values in Fig. 5, therefore, are not always the exact mean of the studies
used to define the ROIs and coordinates reported). However, no center
point was further than 5 mm in any direction from the (average) Ta-
lairach coordinates reported by previous studies. The mean 3 weights
were extracted for each condition and visualized (Fig. 5) by coloring the
part of a ring corresponding to that condition’s fraction of the total sum
of the B weights of hand, foot, and saccade planning in the cue 2 phase
(corresponding to the values used for creating the gradient maps).

Psychophysiological interactions. Functional connectivity was assessed
to complement to the contrast and gradient analyses using a psychophys-
iological interaction (PPI) approach (Friston etal., 1997). We deem these
connectivity analyses exploratory as our experiment was not designed for
this type of analysis, and statistical power is therefore expected to be low.
Activations are thus displayed at the statistical cutoff value p = 0.05
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Table 1. Coordinates of regions of interest in the left posterior parietal cortex used
for comparison of the current results with locations defined functionally by
previous studies

References X y z
V7

Schluppeck et al., 2005 —25 —80 27

Beurze etal., 2007 -21 =79 19

Levy etal., 2007 —26 —81 22
IPS1/sPOS

Schluppeck et al., 2005 -2 —76 4

Silver etal., 2005 -23 =76 39

Hagler et al., 2007 —20 —69 43

Levy etal., 2007 —20 —-79 34
IPS2

Schluppeck et al., 2005 —18 =7 52

Silver et al., 2005 —-19 =75 48

Hagler et al., 2007 —19 —64 51

Levy etal., 2007 —=20 —74 44
alPs1

Beurze etal., 2009 -39 —46 LX)
alPs2

Blangero et al., 2009 -3 —35 57°
aPCu

Filimon et al., 2009 -9 —50° 547

The term alPS has been used for different regions and i therefore used for two labels here. sPOS coordinates (Prado
et al., 2005; Filimon et al., 2009) are very close to IPS1 and are therefore not indicated separately. “Denotes that
coordinates were reported in MNI space and were converted to Talairach coordinates here (see Materials and
Methods for details).

uncorrected. The PPI was seeded in areas IPS1, IPS2, and V7 using the
demeaned average BOLD time course from the ROIs defined above. The
time course of the cue 2 phases (collapsing over left and right target trials,
separately for hand- and foot-pointing trials) was convolved with the
hemodynamic response function, demeaned, and multiplied with the
seed time course of each ROI. The PPI was calculated in the context of
the full GLM as specified above, effectively controlling for all main and
nuisance effects of the experiment, supplemented with the seed time
course as a further predictor.

Results

Twenty-three participants performed a goal-directed movement
task with instructed delays. On each trial, the spatial goal of the
movement and the effector used to respond were separately spec-
ified at two consecutive time points (Beurze et al., 2007, 2009)
(for a detailed description of the paradigm, see Fig. 1). Targets
were presented at one of four eccentricities in either the left or
right visual field. In half of the trials, participants first received
information about which effector to use (Fig. 1a, eye, right hand,
or right foot—“effector cue”), and, after arandom interval (2-5s,
in ms steps, uniform distribution), the spatial target was pre-
sented (“target cue”). In the other half of trials, this presentation
order was reversed (i.e., the target cue preceded the effector cue)
(Fig. 1b). A third cue (“movement cue”) was presented after an-
other random interval (2—6 s) to prompt participants to execute
the prepared motor response.

Behavioral measures

Participants followed the instructions correctly in most trials (av-
erage error rate: 6.7%). For the correct trials, mean RTs were 575
ms (SE 23 ms) for saccades, 649 ms (SE 28 ms) for hand pointing,
and 634 ms (SE 26 ms) for foot pointing and were comparable to
previous studies (Beurze et al., 2007, 2009). RTs differed sig-
nificantly between the three body parts (repeated-measures
ANOVA, F, 4y = 5.5, p = 0.018). Two-tailed ¢ tests for repeated
measurements between each pair of conditions revealed that sac-
cade RTs were faster than both hand (¢(,, = 2.4, p = 0.025) and
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foot (t,9y = 2.6, p = 0.016). In contrast, hand and foot RTs did
not differ significantly (., = 1.3, p = 0.21).

Correlations of target eccentricity with movement amplitude
were calculated for the four targets of each target side (left and
right) separately, as an analysis across target sides would lead to
artificially high correlations. The correlation of target eccentricity
with saccade amplitude was 0.70 (2 SE interval: 0.60—0.78; asym-
metric intervals due to Fisher Z-transformation of correlation
values) for leftward and 0.76 (2 SE interval: 0.69-0.81) for right-
ward targets; hand movement amplitude of 0.47 (2 SE interval:
0.35-0.57) for leftward and 0.50 (2 SE interval: 0.42—0.58) for
rightward targets; and foot movement amplitude 0.51 (2 SE in-
terval: 0.43—0.59) for leftward and 0.50 (2 SE interval: 0.38 —0.60)
for rightward targets. An ANOVA with factors body part (eye,
hand, foot) and target side (left, right) revealed only a main effect
for body part (F, 40, = 19.8, p < 0.001), but no main effect and
interaction with target side (both F < 1, p > 0.33). Unsurpris-
ingly, further ANOVAs, separately comparing each pair of body
parts, showed that accuracy was higher for saccades than for hand
and foot pointing (both main effects of body part: F(, ,o) > 21.9,
p < 0.001). However, performance did not differ between hand
and foot pointing (main effect of body part: F, ,,) < 1,p = 0.64).

Functional MRI— hand versus eye movement planning

We sought to validate our protocol against previous studies on
movement planning that used similar fMRI paradigms and there-
fore first compared hand and eye movements. Our paradigm
allowed distinguishing responses related to goal-directed move-
ment plans from effector-specific activation in the absence of a
known spatial goal (when the effector was cued first), as well as
from later processing related to the actual movement of the effec-
tor and its subsequent sensory feedback (because movement ex-
ecution was cued after a delay). Following the presentation of the
second cue (“cue 2” from hereon), participants had received the
information needed to fully specify the motor plan necessary to
organize the upcoming pointing movement, because both the
effector cue and the target cue had been presented. We contrasted
cerebral activity evoked by eye and hand movement planning at
this cue 2 stage against that evoked during a fixation baseline.
Consistent with previous findings (Astafiev et al., 2003; Connolly
et al., 2003; Medendorp et al., 2005; Beurze et al., 2007, 2009;
Connolly et al., 2007; Hagler et al., 2007; Levy et al., 2007; Curtis
and Connolly, 2008; Filimon et al., 2009), we found that planning
of both eye and hand movements relied on a largely overlapping
cerebral network, encompassing areas along the intraparietal sul-
cus and the superior parietal lobule (SPL; from the sPOS to the
precuneus), as well as the supplementary motor area (SMA) and
cingulate motor area (CMA), and dorsal and ventral premotor
areas (Fig. 2a). Areas more active for hand movement planning,
assessed with a contrast of hand versus eye movement planning
(Fig. 2b), were centered around the hand area of the left primary
motor cortex (M1), the CMA, and the very anterior part of the
left SPL. Areas more active for saccade planning (assessed with a
contrast of eye versus hand movement planning) were located
mainly in occipital-parietal areas bilaterally, encompassing areas
V7, IPS1, and IPS2, which have recently been shown to code
target locations in topographic maps (Schluppeck et al., 2005;
Silver et al., 2005; Hagler et al., 2007; Levy et al., 2007) (Table 1,
Fig. 2b). However, both IPS1 and IPS2 were active also for hand
movement planning, whereas V7 was activated exclusively for
saccade planning (Fig. 2a). Some studies have reported hand-
related activity in the sPOS (Prado et al., 2005; Filimon et al.,
2009); the Talairach coordinates of this area are very near to those



3070 - J. Neurosci., February 23, 2011 - 31(8):3066 —3076

of what others have termed IPS1 (see Ta- a
ble 1), and, accordingly, there was both

eye and hand activity in this area. To allow

a more fine-grained comparison of hand

and saccade planning, we created a gradi-

ent map (Levy et al., 2007; Stark and Zo-

hary, 2008; Beurze et al., 2009), which
directly compares the parameter esti-
mates (8 weights) of the GLM for hand

and eye movement planning (Fig. 2c). S
Such maps give an unbiased view on the 3@
parameter estimates (i.e., here, the magni-

tudes of the eye and hand effects), rather

than focusing on the rejection of null hy-

potheses (as done during statistical infer-

ence). The gradient map showed

qualitatively similar results as the statisti-

cal contrasts, with a saccade bias in more

posterior areas, a strong hand bias in an-

terior PPC and primary motor areas, and

similar activity in intermediate PPC areas.
Figure1.
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Experimental fMRI paradigm. Each trial started with a short (350 ms) blink of the fixation point. After 2— 4s, afirst cue

appeared. a, b, This cue either indicated the effector to be used for pointing (eyes, hand, or foot) (a) or the pointing target (b). The

Functional MRI— hand versus foot
movements: planning and execution

To test whether the use of different limbs
activated different brain areas in PPC, we
compared the motor planning for hand
and foot pointing. Figure 3a shows the activation for each of the
two movement planning conditions against the fixation baseline
(cue 2 hand > fixation baseline, cue 2 foot > fixation baseline).
This figure reveals a large overlap in all brain areas with the ex-
ception of the area around the central and postcentral sulci,
mainly in the left hemisphere. Although Figure 3a suggests some
limb-specific activation to be present also in PPC, the contrast of
hand and foot planning (Fig. 3b, cue 2 hand > cue 2 foot) re-
vealed differences almost exclusively in the primary and cingulate
motor areas and in somatosensory cortex, as well as in the cortex
adjacent to these areas. Hand and foot planning differed in the
most anterior part of the SPL in BA 5, marginally extending into
BA 7 (medially) and BA 40 (laterally). Here, hand activity was
more lateral, and foot activity more medial, consistent with re-
ports of differences between hand and foot motor imagery (Bak-
ker et al., 2008). Importantly, no differences between hand and
foot planning were found in more posterior PPC, including areas
IPS1 and IPS2 and putative human PRR (Connolly et al., 2003).
This indicates that large parts of PPC, and especially the regions
located in and around the IPS, were similarly active for both
limbs. We then compared activation differences for the two ef-
fectors during actual movement execution (hand movement >
foot movement). Figure 3b illustrates that the result of this con-
trast was virtually identical to that of movement planning, sug-
gesting that processing differences for hands and feet are
restricted to those cortical areas that are classically labeled as
motor and somatosensory areas. As a further test, we created a 3
weight gradient map similar to the one used to compare hand and
eye movement planning, but here comparing hand and foot
movement planning (Fig. 3¢). Confirming our statistical analy-
ses, this map showed a strong hand bias around the M1/S1 hand
region, and a strong foot bias around the M1/S1 foot region and
in the postcentral SPL region in the left hemisphere, but no con-
sistent biases for hand or foot planning were evident in PPC.

pointing target was masked to enforce maintenance of the target in short-term memory and avoid visual aftereffects. After 2—6s,
the second cue (complementary to the first cue) was presented, followed after 2—6 s by a cue that prompted execution of the
pointing movement. The next trial started after 2—4s. Eye, hand, and foot movements were recorded throughout the experiment.

Functional MRI—limb versus eye movement planning

Next, we contrasted foot motor planning against saccade plan-
ning (in the cue 2 phase) with a contrast analogous to that used in
the hand—eye comparison above (cue 2 eye > cue 2 foot). The
results of this contrast were surprisingly similar to the hand—eye
comparison (Fig. 4a,b). To confirm this statistically, we calcu-
lated a conjunction between the two contrasts (Fig. 4¢, conjunc-
tion of cue 2 hand > cue 2 eye and cue 2 foot > cue 2 eye). The
results were very similar to the individual contrasts (Fig. 4a,b)
and revealed that the more posterior areas of PPC were more
active for eye movement than for hand and foot motor planning;
this included areas IPS1 and IPS2. In fact, IPS2 was the most
anterior region active in this contrast. The overlap between
planning-related activity of hand and foot movements cannot
reflect floor effects, as participants executed spatially accurate
goal-directed actions rather than stereotyped movements
throughout the experiment. Next, we tested whether the saccade-
related activation in these contrasts indicated merely a bias (i.e.,
that these areas were more, but not exclusively, active during
saccade planning) or specificity (i.e., that these areas were active
only during saccade, but not during hand and foot planning). To
do so, we calculated a conjunction between hand and foot-related
activation, each against the fixation baseline (cue 2 hand > fixa-
tion and cue 2 foot > fixation), and overlaid the resulting map
with the saccade-related activation map (Fig. 4d). This compari-
son revealed that the more posterior regions (including V7) were
indeed specific for saccade planning. In contrast, both IPS1 and
IPS2 were biased for saccade planning, but also showed activation
during both hand and foot planning. In a further examination,
we created a 3 weight gradient map for eye versus foot movement
planning (Fig. 4e) like the gradient map for eye versus hand
movement planning (Fig. 2¢). Both maps showed a strong bias for
hand and foot, respectively, around their M1/S1 and anterior SPL
regions. In contrast, the gradient maps showed a bias for saccade
planning along the IPS, both compared with hand and foot plan-
ning. To summarize the results from the different statistical anal-
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cue 2 eye> cue 2 hand

cue 2 hand > cue 2 eye
i y :
8.0 hand

Figure 2.  Eye and hand planning in the cue 2 phase (both effector and visual target known to participant). a, Eye movement planning (blue) and hand planning (red), each against fixation
baseline. The yellow, orange, and red circles indicate the approximate locations of V7, IPS1,and IPS2, respectively. Hand movement planning exclusively activates the hand region of M1/51and some
anterior SPL regions; eye movement planning exclusively activates occipitoparietal regions, for example, area V7. Dashed lines denote major sulci. CS, Central sulcus; PCS, postcentral sulcus. b,
Contrast of hand > eye movement planning (blue) and eye > hand movement planning (yellow). Hand-biased regions are located in anterior SPL; saccade-biased regions are located in the
posterior end of PPC. Circles as in a. All activations are FDR ( p << 0.05) corrected; ¢ values are indicated in the color legends. ¢, Gradient map of saccade versus hand movement planning (cue 2). At
each vertex (equivalent to a voxel, but represents a location only on the reconstructed cortical surface), the 3 weight from the GLM is compared for the two involved movement planning conditions.
The lighter the color, the larger is the sum of the involved 3 weights at this vertex (indicating a strong modulation by the experimental conditions). The map is restricted to those vertices that were
active in either of the involved conditions (each contrasted against fixation baseline). There is a strong bias for hand planning around the M1/51 area, extending into the anterior SPL. Along the IPS,
both eye and hand movement planning evoke activation.

BURRRNRRET cue2hand > baseline Illlllllll cue 2 foot > cue 2 hand
BONRRRINET cue2foot > baseline 1 cue 2 hand > cue 2 foot
25 8.0
IIII I l FEET move foot > move hand
BRBNRRERET movehand > move foot
32 8.0
Figure 3.  Hand and foot movement planning. a, Comparison of hand (red) and foot (green) movement planning, each against fixation baseline. The two activations largely overlap, with the

exception of the M1/51 areas. Dashed lines denote major sulci. CS, Central sulcus; PCS, postcentral sulcus. &, Comparison of movement planning (cue 2 phase) and movement execution. Contrast cue
2hand (yellow) > cue 2 foot (blue) is overlaid with contrast move hand (green) > move foot (pink). The two contrasts largely overlap, indicating that differential processing for movement planning
ismediated by those areas that also mediate movement execution. ¢, Gradient map of hand versus foot movement planning. The only areas showing a bias are the M1/51 areas. In PPC, no bias toward
either effector is evident.

yses and gradient maps, we created a map in which the 8 weights
during the cue 2 phase of all three effectors, eye, hand, and foot,
were compared with each other (Fig. 5). This figure also shows
the relative contribution of each effector to the different areas
that have been previously identified.

Functional fMRI—psychophysiological interactions

We complemented the contrast analyses by functional connec-
tivity analysis. This approach statistically tests the interaction be-
tween a psychological variable (here, the cue 2 phases of hand and

foot pointing, respectively) and the BOLD signal of a seed region
(here, IPS1, IPS2, and V7, respectively) at each vertex of the re-
constructed cortical surface. Because contrasts and gradient anal-
ysis showed similar activation in areas IPS1 and IPS2 for both
hand and foot pointing, we hypothesized that these ROIs should
exhibit functional connectivity with more lateral regions of mo-
tor cortex and anterior PPC during hand-pointing trials, and
with more medial regions during foot-pointing trials. V7, in con-
trast, should show little or no connectivity with hand and foot
motor regions or anterior PPC during pointing trials, as V7
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cue 2 hand > cue 2 eye AND
cue 2 foot > cue 2 eye
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Comparison of eye with hand/foot activity. a, Contrast cue 2 eye (yellow) > cue 2 hand (red). b, Contrast cue 2 eye (purple) > cue 2 foot (blue). ¢, Conjunction of the two contrasts (eye:

orange; hand/foot: pink). Eye-biased activation is virtually identical in all comparisons. d, Comparison of hand and foot movement planning with eye movement planning. The common activation
of hand and foot movement (conjunction of cue 2 hand and cue 2 foot, hoth against baseline, cyan) is overlaid with eye-related activation (conjunction of cue 2 eye > cue 2 hand and cue 2 eye >
cue 2 foot, yellow). The eye-related activation overlaps with hand and foot activation in region IPST (yellow circle) and IPS2 (red circle), indicating biased, but not exclusive, processing for eye
movements in these areas. The t values are indicated in the color legends of each subfigure. e, Gradient map of saccade versus foot movement planning. The biases are very similar to those of the

eye versus hand comparison.

showed high activity during saccade trials only. We consider the
connectivity analyses exploratory (see Materials and Methods),
and results are presented in Figure 6, a (hand pointing) and b
(foot pointing), with uncorrected p values. During hand point-
ing, connectivity of IPS1, IPS2, and V7 overlap, spreading over
lateral regions of postcentral sulcus, central sulcus, premotor ar-
eas, and SMA. IPS1 and IPS2, however, show more widespread
connectivity, especially in all motor regions. More importantly,
the most significant part of the M1 hand activation in the contrast
analyses (Fig. 64, circled yellow) showed connectivity to IPS1 and
IPS2, but not to V7. During foot pointing, IPS1 and IPS2 showed
connectivity with medial motor, premotor, and supplementary
motor regions, including the most significant M1 region of the
contrast analyses (Fig. 60, circled green), whereas no connectivity
was observed for V7. Thus, the IPS1 and IPS2, which code a
common representation of hand and foot spatial actions, connect
to the effector-specific regions over the motor strip in a func-
tional manner, with the strength of the connection depending on
the type of trial (foot or hand) that is to be executed. The lack of
postcentral connectivity may be due to the relatively high ana-

tomical variance in SPL regions (Scheperjans et al., 2008), which
might lead to sensitivity loss of the already weakly powered PPI
analysis in this region despite the cortical alignment methods
used for statistical testing.

Functional MRI— effector versus spatial responses

The analyses so far have looked at those stages of the trial during
which both effector (eye, hand, foot) and the visual target loca-
tion were known to the participants (i.e., at the cue 2 phase of our
trials), as well as during motor execution stage. In the first cueing
phase of each trial (the cue 1 phase), participants received only
partial information, either the effector to be used for the upcom-
ing movement or the target location of the movement. We com-
pared activity in the cue 1 phase for these two types of trials to
investigate whether there were areas that prepare movements for
a specific effector in the absence of a target. To this end, we first
contrasted each pair of effectors for trials in which the effector
was revealed in the cue 1 phase (cue 1 eye > cue 1 hand; cue 1
eye > cue 1 foot; cue 1 hand > cue 1 foot). None of these con-
trasts revealed any activation in PPC. We then calculated a con-
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alPS [2] (-33,-35,57

aCPu (-12,-52,57,

alPS [1] (-38,-44,45)

IPS2 (-19,-74,39)

. hand
. foot
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Figure5.  Comparison of all three effectors (eye, hand, foot). The gradient map shows the relation
of the 3 weights of eye (blue), hand (red), and foot (green) planning during the cue 2
phase. Lightness of the colors indicates the overall sum of the 3 weights, with lighter colors
indicating higher 3 values (i.e., “stronger” activation). Each ring visualizes the distribution of
B weights for the eye, hand, and foot conditions. Center coordinates (given in Talairach coor-
dinates) for the indicated areas were chosen according to previous reports (see Materials and
Methods; Table 1).

IPS1/sPOS (-19,-74,39)

V7 (-28,-80,23)

a

IPS1 connectivity hand

1]
2.0 ;

I I I I I I I I “ IPS2 connectivity hand
2.0 8.0

I I I I I I I |:| ‘ V7 connectivity hand
2.0 8.0

Figure6.

i
2.0 i

I I I I I I I I II IPS2 connectivity foot
2.0 8.0

I I I I I I I B V7 connectivity foot
20 8.0

observed for V7 (green shading in b) during foot planning.

trast in which all three types of effector cues were contrasted with
target presentation [(cue 1 eye + cue 1 hand + cue 1 foot)/3 >
cue 1 target]. No activation was seen in PPC, which was higher for
effector than for target processing. Rather, there was widespread
activation in PPC for target processing over effector processing,
predominantly in the left hemisphere when thresholding with the

Functional connectivity of PPCregions. a, b, Results for connectivity during hand trials are shown in a, and during foot
trialsin b. Activity for seed regions IPS1, IPS2, and V7 are overlaid to allow comparison. Seed regions are indicated by filled colored
circles (yellow, IPST; red, IPS2; green, V7) and are identical for hand and foot analyses. The open circles show the most active region
during hand (a, yellow) and foot (b, green) movement planning in the GLM contrasts shown in Figure 4a,b. No connectivity is
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false discovery rate (Fig. 7). When using an exploratory threshold
of p = 0.05 (uncorrected), widespread activation was seen also in
the right PPC (Fig. 7).

Discussion

The current study tested whether motor planning in PPC is di-
vided into different regions according to a somatotopic, effector-
specific arrangement beyond the well known biases for eye versus
hand movement planning. Our main result is that PPC responses
during the planning of hand and foot movements were statisti-
cally indistinguishable, whereas hand- and foot-related responses
were spatially segregated from those evoked during the planning
of eye movements to the same visual targets. Importantly,
whereas the lack of activation in the direct contrast between hand
and foot movement planning may be interpreted as a null result,
this is not the case for the contrasts of hand versus eye and foot
versus eye movement planning, respectively. Furthermore, the
fact that the conjunction of these two contrasts revealed virtually
identical results as each of the single contrasts strengthens this
result. Connectivity analyses further confirm overlapping pro-
cessing in PPC for hand and foot pointing, as connectivity from
IPS1 and IPS2 regions was with lateral, hand-related motor re-
gions during hand trials, and with medial, foot-related regions
during foot trials. Thus, our results suggest a functional rather
than effector-specific organization of human posterior parietal
cortex.

Large-scale organization of PPC encompassing different types
of limbs, as shown here, is compatible
with a number of other recent findings.
First, neurons in area PEc (the caudal part
of area 5, located on the SPL and neigh-
boring the IPS) were reported to be re-
sponsive to tactile stimulation and joint
rotation of both upper and lower limbs
(Breveglieri et al., 2006), with anatomical
connections to foot and hand motor cor-
tex and premotor cortex (Bakola et al.,
2010). Second, a recent study on motor
observation implies that, rather than
type of limb, it is the type of action that
determines regional organization in
PPC (Jastorff et al., 2010). Third, such
organization would be consistent with
the affordance competition hypothesis,
which states that different possible ac-
tions are active in parallel, competing
against each other until one is selected
and executed (Cisek, 2007).

The eyes play an entirely different role
than the limbs in that they are used to
explore the environment by aligning the
fovea with objects of interest in the envi-
ronment. It is hardly surprising that plan-
ning saccadic movements recruits brain
regions located relatively early in the vi-
sual cortical pathway. In contrast, other
body parts are used to act upon objects in
the environment. Here, we show that the
most anterior portion of the SPL, namely BA 5, has a lateral-to-
medial gradient for hand versus foot movements, although there
is considerable overlap for the two limbs even in this area (Fig.
3c¢). Area 5 encroaches on primary somatosensory areas (Penfield
and Boldrey, 1937), which display fine-grained somatotopy. This

IPS1 connectivity foot
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Figure 7. Comparison of target versus effector activity. PPC activation during the cue 1

phase, in which only either effector or spatial target information was known. Shown is the
contrast of cue 1target > (cue 1eye + cue Thand + cue 1foot)/3. Green colors represent FDR
corrected activation, and orange colors uncorrected ( p = 0.05) activation. The t values are
indicated in the color legend.

portion of the SPL could therefore specify the effector-specific
motor plan together with frontal motor areas, including M1 and
the premotor cortex (Caminiti et al., 2010).

Computationally, one of the most important requirements
that hand and foot pointing add to the requirements of making a
saccade is the calculation of the spatial relationship between limb
and target location. This calculation must be based on an estimate
of the body’s current posture and requires an alignment of the
reference frames involved in visual processing and limb move-
ment planning. Whereas saccade planning is thought to occur in
eye-centered coordinates, both eye- and body-related reference
frames are probably used for limb movement planning (Pesaran
et al.,, 2006; Chang and Snyder, 2007; Marzocchi et al., 2008;
Changetal., 2009; Ferraina et al., 2009; McGuire and Sabes, 2009;
Bernier and Grafton, 2010; Chang and Snyder, 2010; Pesaran et
al., 2010). The PPC, and especially the SPL, has been suggested to
play a major role in the estimation of the current limb positions
using proprioceptive and visual information (Graziano et al.,
2000; Shadmehr and Krakauer, 2008; Jackson et al., 2009), impli-
cated, for example, by patients suffering from optic ataxia (Kar-
nath and Perenin, 2005). In monkeys, area 5 neurons integrate
vision and proprioception to represent limb posture (Graziano et
al., 2000), and neurons in area PEc code for complex body pos-
tures involving not only hands and arms, but also legs and feet
(Breveglieri et al., 2006, 2008).

Reaching to visual targets without vision of the hand activates
the anterior reaching-related PPC areas more than posterior ones
(Filimon et al., 2009). In fact, SPL is active also during nonvisual
tasks, as when reaching toward one’s own body parts in the dark
(Pellijeff et al., 2006). Furthermore, congenitally blind and
sighted people show similar SPL activation during tasks that re-
quire the exploration of an object with the hand (Fiehler et al.,
2009). Body coding in SPL can thus be independent of vision,
corroborating the present results of only little SPL activity during
saccade planning. In this framework, our results suggest that PPC
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transforms different coordinate systems to relate different body
parts to the (visual) target without any obvious spatial segrega-
tion in the neuronal populations supporting each effector. Our
connectivity results suggest that the specific planning for the cho-
sen body part is then mediated by increased connectivity with
frontal motor areas like M1 and the premotor cortex. The specific
form of clustering body versus eye movement planning may be
due to the need to minimize axonal wiring across neuronal pop-
ulations involved in movements of the body, as has recently been
suggested analogously for frontal motor regions (Graziano and
Aflalo, 2007; Meier et al., 2008).

Previous studies have demonstrated a caudo-rostral gradient
in PPC responses when comparing movement planning for sac-
cades and hand movements in monkeys (Burnod et al., 1999;
Caminiti etal., 2010) and humans (Astafiev et al., 2003; Connolly
et al., 2003; Medendorp et al., 2005; Beurze et al., 2007, 2009;
Connolly et al., 2007; Filimon et al., 2009). The current study
confirms those findings, but also indicates that they cannot be
interpreted as evidence for effector-specific, somatotopic organi-
zation of PPC (Chang et al., 2008; Andersen and Cui, 2009).
Other studies in monkeys (Breveglieri et al., 2008; Chang et al.,
2008) and humans (Medendorp et al., 2005; Beurze et al., 2009;
Blangero et al., 2009) have investigated effector specificity by
comparing movement planning for the left and right hands,
rather than by comparing eyes and hands. Differential PPC activ-
ity for movements involving these limbs was interpreted as indi-
cating effector specificity in PPC. However, this comparison
confounds possible effector specificity with hemispheric process-
ing. Contralateral processing is one of the most prominent fea-
tures of brain organization in both sensory and motor domains.
Processing differences for the two hands may therefore not imply
effector specificity, but rather a bias of each hemisphere in medi-
ating the planning for the contralateral body. This account pre-
dicts that activity in PPC should be sensitive to the use of left and
right limbs, but—as reported here—not to the type of limb of the
same body side. In line with these considerations, ataxia can affect
both limbs of the same body side while sparing those of the other
body side (Rondot et al., 1977).

Limitations of the present study

Our results are constrained by the spatial resolution of our func-
tional measurements and the averaging over participants typical
for fMRI analysis. However, putative human homologs of mon-
key areas like LIP and PRR of considerably larger extent than one
fMRI voxel have been reported (Grefkes and Fink, 2005; Orban et
al., 2006). Furthermore, we minimized effects of anatomical vari-
ability by using landmark-oriented alignment methods (Fischl et
al., 1999; van Atteveldt et al., 2004) (see Materials and Methods),
maximizing the power to find limb-specific areas. Examination
of single participants did not reveal any consistent pattern of
hand- and foot-biased regions in our data.

Our functional considerations remain speculative, as the aim
of the current experiment was to test for effector specificity in
PPC, but did not address all possible differences between eye and
limb movement planning. Yet, important alternative explana-
tions of our data pattern were controlled for. Differences between
eyes and limbs cannot reflect differences in difficulty of task or
muscular control between eyes and limbs as eye-related activity
was higher than limb activity in the more posterior PPC areas.
Furthermore, differences between eye and limb planning cannot
reflect attentional differences, as task presentation and design
were identical throughout the experiment. Finally, it has been
suggested that pointing tasks differ from true reaching tasks (Cul-
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ham et al., 2006; Cavina-Pratesi et al., 2010); therefore, reaching
or grasping tasks may reveal further differences between hand
and foot planning than those observed in the current study. How-
ever, because large limb movements interfere with MR acquisi-
tion (Culham et al., 2006), this possibility might require the use of
other neuroimaging techniques.

Conclusion

To conclude, we report that PPC is organized according to a
caudo-rostral visual-to-somatic gradient in PPC (Burnod et al.,
1999; Beurze et al., 2007, 2009; Levy et al., 2007; Caminiti et al.,
2010). Contrary to common view, this gradient does not seem to
reflect effector specificity beyond a crude distinction between eye
movements and movements of other body parts. Rather, activity
in PPC related to different limbs is surprisingly uniform.
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