
Choosing the Best Algorithm for an Incremental
On-line Learning Task

Viktor Losing12, Barbara Hammer2, and Heiko Wersing1

1- HONDA Research Institute Europe GmbH,
Carl-Legien-Str. 30, 63065 Offenbach - Germany

2- Bielefeld University, Universitaetsstr. 25, 33615 Bielefeld - Germany

Abstract. Recently, incremental and on-line learning gained more atten-
tion especially in the context of big data and learning from data streams,
conflicting with the traditional assumption of complete data availability.
Even though a variety of different methods are available, it often remains
unclear which of them is suitable for a specific task and how they perform
in comparison to each other. We analyze the key properties of seven in-
cremental methods representing different algorithm classes. Our extensive
evaluation on data sets with different characteristics gives an overview of
the performance with respect to accuracy as well as model complexity,
facilitating the choice of the best method for a given application.

1 Introduction

Attention in the field of incremental learning has grown drastically in recent years
which is caused by two major developments. The main reason is the rapidly in-
creasing amount of data accumulation in fields such as health monitoring, social
networks, financial transactions or personalized web services [1], [2], demanding
for continuous large-scale, real-time processing. Another trend is to incorporate
individual adaptation to customer habits and environments within smart home
products [3], [4] requiring skills such as efficient learning from few data.
A lot of ambiguity is involved regarding the definition of incremental and on-line
learning in the literature. Some authors use them interchangeably, while others
distinguish them in different ways. Additional terms such as lifelong- or evolu-
tionary learning are also used synonymously. We define an incremental learning
algorithm as one that generates on a given stream of training data x1, x2, ..., xt

a sequence of models M1,M2, ...,Mt and thereby meets the following criteria:

• Mt+1 adapts gradually based on Mt without a complete retraining.
• It preserves previously acquired knowledge and does not suffer from the

effect of catastrophic forgetting.
• It has a limited stream memory.

We specify on-line learning algorithms as incremental learning algorithms which
are additionally bounded in model complexity and run-time, capable of end-
less/lifelong learning on a device with restricted resources.
A variety of interesting incremental learning algorithms have been published but
there is a lack of in-depth comparative studies. In this paper we contribute to
fill this gap by analyzing the core attributes of seven popular methods. Experi-
ments on diverse datasets assess their performance and provide guidance on their



applicability for specific tasks. We focus solely on the classification of stationary
datasets (i.e. we assume the stream x1, x2, ... is i.i.d.) and not yet analyze the
methods in context of concept drift. A recent overview of methods especially
designed to deal with non-stationary environments is given in [5].

2 Algorithms

In the following we briefly describe all tested methods including Bayesian -, lin-
ear -, instance based models as well as ensembles and neural networks.
Incremental Support Vector Machine (ISVM), introduced in [6], is the
only exact incremental version of the SVM. A limited number of examples, so
called “candidate vectors”, which could be promoted to support vectors in the
future, is additionally maintained.
On-line Random Forest (ORF)[7] is an incremental version of the Extreme
Random Forest. A predefined number of trees grow continuously by adding splits
whenever enough samples are gathered within one leaf. Tree ensembles are very
popular, due to their high accuracy, simplicity and parallelization capability.
Incremental Learning Vector Quantization (ILVQ) extends the Gener-
alized Learning Vector Quantization (GLVQ) to a dynamically growing model
by continuous insertion of new prototypes. We introduced a superior prototype
placement strategy in [8] minimizing the loss on a window of recent samples.
Metric learning, as described in [9], can also be applied.
Learn++ (LPP)[10] processes incoming samples in chunks with a predefined
size. For each chunk an ensemble of base classifiers is trained and combined
through weighted majority voting to an “ensemble of ensembles“. Chunk-wise
trained models have by design an adaption delay depending on the chunk size.
Incremental Extreme Learning Machine (IELM) reformulates the batch
ELM least-squares solution into a sequential scheme [11]. As the batch version
it drastically reduces the training complexity by randomizing the input weights.
The network is static and the number of hidden neurons has to be predefined.
Gaussian Naive Bayes (GNB) fits one axis-parallel Gaussian distribution per
class and uses them as likelihood estimation in the Naive Bayes algorithm [12].
The algorithm is lossless, i.e. it generates the same model as the corresponding
batch algorithm, and independent from the training order.
Stochastic Gradient Descent (SGD) is an efficient method for learning a lin-
ear, discriminative model by minimizing a convex loss function. Revived recently
in the context of large-scale learning [13] it performs especially well for sparse,
high-dimensional data as often encountered in the domain of text classification.

3 Experiments

We used the implementations of the Scikit-learn package [14] for SGD and GNB.
All the others are derived from the code of the respective authors. Only publicly
available datasets (see [15], [16]), predefining a fixed train-test-split, were used
to enable reproducibility and comparability of our results. Table 1 gives the



main attributes of the selected datasets. Artificial and real world problems are
included, differing widely in the number of classes, instances and dimensions.
Links to all implementations and datasets are available at https://github.

com/vlosing/Online-learning.

3.1 Hyperparameter setting

Dataset #Train #Test #Feat. #Class

Border 4000 1000 2 3
Overlap 3960 990 2 4

Letter 16000 4000 16 26
Outdoor 2600 1400 21 40

COIL 1800 5400 21 100
DNA 1400 1186 180 3

USPS 7291 2007 256 10
Isolet 6238 1559 617 26

MNist 60000 10000 784 10
Gisette 6000 1000 5000 2

Table 1: The evaluated datasets.

The model selection is varying in com-
plexity depending on the parameter
amount and type. Tree based models usu-
ally perform well out of the box, whereas
the ISVM or ILVQ require an accurate,
dataset dependent configuration of mul-
tiple parameters to deliver good results.
The ISVM is solely paired with the RBF
kernel. We use the metric learning of
ILVQ only for datasets with up to 250 di-
mensions. The GNB algorithm is parame-
terless, hence no tuning is required at all.
We minimize the hinge loss function with SGD and adjust only the learning
rate. LPP requires the number of base classfier per chunk as well as the param-
eters of the base classifier itself (non-parametric Classification and Regression
Trees). All parameter are set by Hyperopt [17] performing repeatedly a 3-fold
cross validation on the training data.

3.2 Measure of model complexity

The algorithm implementations vary in the written programming languages as
well as their efficiency. Therefore, we do not compare training- and run-time
but instead we measure the model complexity by counting the number of pa-
rameter required for the representation. This enables a comparison with respect
to memory consumption. However, the models are fundamentally different so
that this measure, even though there is some correlation, should not generally be
equated with training- or run-time. For instance, the O(log l) run-time of tree
based models, l being the number of leaves, make them incredible fast in com-
parison to instance based ones (O(d∗ i), for i instances (e.g. prototypes, support
vectors) with d dimensions). Another example are the Extreme Random Trees
deployed by the ORF algorithm. By introducing random splits they drastically
reduce the training-time, but also require larger trees[18]. We rather use this
measure as an indicator to decide whether an algorithm struggles (unreasonable
high amount of parameters) or is especially suited (sparse representation paired
with high accuracy) for a given task.

3.3 Results

The evaluation of GNB, ORF and SGD is straightforward since these access
consecutively only the current training example. But methods such as ISVM

https://github.com/vlosing/Online-learning
https://github.com/vlosing/Online-learning


ISVM ORF ILVQ LPP IELM SGD GNB ISVM ORF ILVQ LPP IELM SGD GNB

Border 99.4 97.6 96.8 96.5 96.0 35.5 96.4 797 3.7k 193 1.9k 750 9 12
Overlap 82.2 83.7 83.0 81.7 83.4 67.6 66.4 10k 2.3k 235 1.9k 900 12 16
Letter 97.0 93.2 93.9 87.0 70.0 56.4 63.4 131k 168k 16k 51k 8.4k 442 832

Outdoor 70.9 71.0 66.9 68.5 70.9 23.2 62.2 40k 8.8k 11k 6.2k 12k 880 1.7k
COIL 96.5 92.9 94.3 89.2 91.5 12.4 92.4 58k 61k 18k 9.2k 36k 2.2k 4.2k
DNA 94.9 89.6 92.1 90.5 88.8 93.0 89.1 237k 5.0k 33k 1.6k 55k 543 1.0k
USPS 95.4 92.5 91.4 90.3 92.1 89.0 75.8 710k 33k 15k 9.6k 106k 2.6k 5.1k
Isolet 96.2 92.5 92.0 90.0 91.9 91.5 80.1 2.8M 31k 21k 12.0k 322k 16k 32k
MNist - 94.3 94.8 92.4 89.1 86.0 51.2 - 111k 315k 73k 397k 7.9k 16k
Gisette 98.0 94.6 93.0 94.2 91.4 93.1 71.7 7.0M 4.7k 263k 2.5k 2.5M 5.0k 20k

∅ 92.3 90.2 89.8 88.0 86.5 64.7 74.9 1.2M 43k 69k 17k 344k 3.5k 8.0k
∅ Rank 1.4 2.3 3.1 4.4 4.5 5.6 6.1 6.6 5.6 4.1 3.3 5.2 1.3 2.5

Table 2: Test accuracy (left) and model complexity (right) after training, mea-
sured by the number of parameters and averaged over 10 repetitions.

and ILVQ store additionally a window of recent samples or require chunk-wise
training, as LPP and IELM1 do. In both cases, results depend on the window-
/chunk size. Therefore, we tested several sizes of up to 1000 samples and chose
the one giving the highest accuracy for the respective algorithm. All methods
were trained single-pass, in the same order after initial shuffling.
Table 2 shows the accuracies and corresponding model complexities at the end of
training. The ISVM achieves in average the highest accuracies, often with a large
margin, but at the expense of having by far the most complex model. The large
amount of parameters is partly due to the fact that the model is designed to dis-
criminate 2 classes, resulting in multiple SVMs to perform schemes such as one
vs. all in case of more classes. Another reason is the linear growth of support vec-
tors with the amount of samples. The model gets exceedingly complex for noisy
or overlapping datasets such as Isolet or Overlap. Its high training-complexity,
resulting from the computation and incremental update of the inverse kernel ma-
trix, prevents an application for datasets consisting of substantially more than
10000 samples such as MNist2. The instance based ILVQ constructs a far sparser
model and achieves high accuracies throughout all datasets. As expected, tree
based models require a comparably large amount of parameter for low dimen-
sional data but are eminently efficient in high dimensional spaces, due to their
compressing representation. The ORF has the second highest accuracies and
constantly beats LPP. One explanation, already noticed in [19], is that LPP
trains each base classifier with samples of only one chunk. Therefore, the knowl-
edge integration across chunks is limited since it is exclusively established by
the weighting process. Furthermore, the ORF benefits more from the sub-linear
tree complexity because it generates a few deep trees instead of the numerous,
shallow ones by LPP. The SGD model uses the fewest parameters and performs
especially well for high dimensional data. However, it struggles by design with

1IELM requires for the initialization at least as many samples as it has hidden neurons but
afterwards it can be updated after each sample.

2We canceled the training after one day.



Fig. 1: Influence of the window-/chunk size on the accuracy (left) and model
complexity (right) for dataset Border.

.

non-linear separability as it is the case for the Border dataset, or whenever a
small amount of examples is available per class (COIL). The last rank of GNB
obscures the fact that it performs reasonably well without severe hiccups, in-
corporating a simple and sparse model. Nonetheless, major drawbacks are its
restriction to unimodal distributions as well as its independence assumption.
The typical effects of different window-/chunk sizes are shown in fig. 1 exemplary
for the Border dataset. Usually the algorithms do benefit from an increased
window-/chunk size. For instance, a larger window enables the ILVQ to find
better positions for new prototypes and the ISVM to miss less support vectors.
Simultaneously, the model complexity of ILVQ is reduced since the insertion rate
is coupled with the training-error. In case of LPP, however, larger chunks reduce
the number of base classifiers but at the same time each of them is trained on
more training data, requiring a balancing of these criteria.

3.4 Restriction of the overall classifier complexity

Methods as SGD, NB and IELM are on-line algorithms since they are constant
in their complexity. ILVQ and LPP can be easily restricted to a certain limit by
strategies such as removing the ”worst“ prototype/classifier [20], [21]. In case
of the ISVM, however, it is less trivial. Even though methods as [22] do reduce
the number of support vectors, there is to the best of our knowledge no practi-
cal method to bound them strictly. This applies to a lesser degree also for the
ORF. It learns by growing its trees continuously. Therefore, a depth reduction
or pruning mechanism would be necessarily at some point.

4 Conclusion

We analyzed the most common algorithms of incremental learning on diverse,
stationary datasets. Regarding the results, the ISVM delivers usually the highest



accuracy at the expense of the most complex model. Its training time is tolerable
for tasks consisting of up to 10000 samples. The ORF performs slightly worse
but has a very fast training- and run-time. However, its model as well as those
of the ISVM grows linearly with the number of samples and cannot be limited in
a straightforward way. Therefore, both algorithms are not suited for learning in
endless streams in contrast to all remaining methods, having either a constant or
easily boundable complexity. The ILVQ offers an accurate and sparse alternative
to the ISVM. LPP is quite flexible since the base classifier can be arbitrary
selected, however, it may struggle by its limited knowledge integration across
chunks. Tree based models are especially suitable for high dimensional data
because of their compressed representation as well as their sub-linear run-time,
which does not depend on the number of dimensions. The linear model of SGD
is also a good choice for large-scale learning in high dimensional spaces.

References
[1] Lohr S. The age of big data. New York Times, 2012.
[2] M. Chen, S. Mao, and Y. Liu. Big data: A survey. Mobile Netw. and Appl., 19(2), 2014.
[3] Rayoung Yang and Mark W. Newman. Learning from a learning thermostat: Lessons for

intelligent systems for the home. UbiComp ’13, pages 93–102. ACM, 2013.
[4] Berardina De Carolis, Stefano Ferilli, and Domenico Redavid. Incremental learning of

daily routines as workflows in a smart home environment. ACM, 4(4):20:1–20:23, 2015.
[5] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learning in nonstation-

ary environments: A survey. Computational Intelligence Magazine, 10(4):12–25, 2015.
[6] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine

learning. In Proc. NIPS, 2001.
[7] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In

ICCV Workshops 2009 IEEE 12th International Conference on, 2009.
[8] V. Losing, B. Hammer, and H. Wersing. Interactive online learning for obstacle classifi-

cation on a mobile robot. In IJCNN 2015, pages 1–8, July 2015.
[9] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices in

learning vector quantization. Neural Comput., 21, December 2009.
[10] R. Polikar, L. Upda, S.S. Upda, and V. Honavar. Learn++: an incremental learning

algorithm for supervised neural networks. SMC, 31(4):497–508, Nov 2001.
[11] N-Y. Liang, G-B. Huang, P. Saratchandran, and N. Sundararajan. A fast and accurate

online sequential learning algorithm for feedforward networks. NN, 17(6):1411–1423, 2006.
[12] Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. Updating formulae and a pairwise

algorithm for computing sample variances. Technical report, Stanford, CA, USA, 1979.
[13] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceed-

ings of COMPSTAT’2010, pages 177–186. Springer, 2010.
[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, and M. Perrot. Scikit-learn: Machine learning in Python. JMLR, 2011.

[15] M. Lichman. UCI machine learning repository, 2013.
[16] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.
[17] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. Cox. Hyperopt: a python library

for model selection and hyperparameter optimization. Compu. Sci. & Dis., (1), 2015.
[18] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. ML, 63(1), 2006.
[19] Haibo He, Sheng Chen, Kang Li, and Xin Xu. Incremental learning from stream data.

Neural Networks, IEEE Transactions on, 22(12):1901–1914, 2011.
[20] Mihajlo Grbovic and Slobodan Vucetic. Learning vector quantization with adaptive pro-

totype addition and removal. In IJCNN 2009, pages 994–1001. IEEE, 2009.
[21] Ryan Elwell and Robi Polikar. Incremental learning in nonstationary environments with

controlled forgetting. In IJCNN 2009, pages 771–778. IEEE, 2009.
[22] T. Downs, K. Gates, and A. Masters. Exact simplification of support vector solutions. J.

Mach. Learn. Res., 2:293–297, March 2002.


	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

