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Abstract

We consider a Sender-Receiver game in which the Sender can choose between sending

a cheap-talk message, which is costless, but also not verified and a costly verified message.

While the Sender knows the true state of the world, the Receiver does not have this infor-

mation, but has to choose an action depending on the message he receives. The action then

yields to some utility for Sender and Receiver. We only make a few assumptions about the

utility functions of both players, so situations may arise where the Sender’s preferences are

such that she sends a message trying to convince the Receiver about a certain state of the

world, which is not the true one. In a finite setting we state conditions for full revelation,

i.e. when the Receiver always learns the truth. Furthermore we describe the player’s behav-

ior if only partial revelation is possible. For a continuous setting we show that additional

conditions have to hold and that these do not hold for "smooth" preferences and utility, e.g.

in the classic example of quadratic loss utilities.
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1 Introduction

In the early 1980s the first papers on communication games got published and nearly from the

beginning there have been two strains dealing with a different type of communication. Craw-

ford and Sobel (1982) introduced the cheap-talk models, in which the content of the message

can be whatever the Sender wants it to be. The Sender does not have to tell the truth and so

the Receiver either believes the message or not. Given this model the different types of the

Sender (corresponding to our different states of the world) may either send the same messages

or different types send different messages. While in the first case the Receiver cannot trust the

messages and there is a so called babbling equilibrium, in the second case the Receiver can get

information from the message.

While in this setting the Sender has no possibility to verify that she tells the truth, she can

only tell the truth in the models of Grossman (1981) and Milgrom (1981). In the models of

verifiable messages, each message consists of a set of states, which has to include the true

state. In equilibrium all different types of the Sender are separated, caused by the unraveling

argument. In our model we give the Sender the choice between sending a cheap-talk message

or a verified message. The limitation we do is to only allow for the entire truth as the verified

message, i.e. the Sender cannot choose a set of states, but can either tell the complete truth or

send a cheap-talk message.

In this paper we do not model communication in a very own way, but combine the most basic

settings of cheap-talk and verifiable messages. There is one player who has detailed information

about the state of the world. She is called the Sender, as she sends a message about the state

to the second player, the Receiver. In our model the Sender can choose between cheap-talk

messages corresponding to the different states of the world, or a costly verified message. The

Receiver reads this message and chooses an action, which yields to some payoff for both players.

While the verified message reveals the true state of the world, the cheap-talk messages do not.

The content of the cheap-talk messages can be the truth, can contain the truth, but also can be

a lie. The Receiver’s behavior after receiving a cheap-talk message may vary depending on the

preferences of both players. In a situation where there is no benefit for the Sender to lie, the

Receiver can trust the cheap-talk messages, while he should not do so if the Sender’s preference

differs too much from his own.

There are many economic and non-economic examples for Sender-Receiver-games: The

most classic is the idea of an employer (the Receiver) and an agent (the Sender) going back

to Spence (1973). The Sender has different interests than the Receiver, but still wants to be

employed or get a contract. Her effort cannot be observed, but she reports it to the Receiver.

Our model adds the possibility of costly reporting a certified effort, e.g. giving a proof of skill
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enhancement or other training. The Receiver has to choose an action according to the message

he gets. While the verifiable message gives him guaranty, the receiving of a cheap-talk mes-

sage also reveals further information, as the Sender has chosen not to invest into the verifiable

message.

Another example is the Lemon Market by Akerlof (1970). There is a seller (the Sender),

who knows the quality of the good she is selling and a buyer (the Receiver), who can decide to

buy the product or not. The cheap-talk message corresponds to the idea that the Sender simply

tells the quality of the good. We often see these messages in internet auctions or in online

car advertisements. On the other hand the Sender could also invest some money and certify

the quality of his product. In the real world there are several ways to do so, for example by

independent consultants and experts. Of course the Sender will never verify if the quality is low,

but for high quality it might be reasonable to assume that the Sender is willing to invest some

money into the verification to get his good sold.

Related Literature

Since the introduction of cheap-talk models, extensions in many different directions have been

made. Farrell and Gibbons (1989) introduce an additional Receiver. They observe how the

existence of a second Receiver changes the report of the Sender. McGee and Yang (2013)

and Ambrus and Lu (2014) do a similar step with multiple Senders. While McGee and Yang,

2013 focus on two Senders with complementary information, Ambrus and Lu (2014) model

several Senders who observe a noisy state. Noise is also added to the signaling game by Haan,

Offerman, and Sloof (2011). The authors derive equilibria depending on the level of noise and

confirm their results by an experiment. A different extension of cheap-talk is done by Blume and

Arnold (2004). They model learning in cheap-talk games and derive a learning rule depending

on common interest. The idea of Baliga and Morris (2002) is closer to our paper. The authors

give conditions for full communication, but also state conditions under which cheap-talk does

not change the equilibrium.

An overview over cheap-talk models and models with verifiable information can be found in

Sobel (2009). The author describes several models and gives some economic examples. Most

of these examples can be extended to fit our setting by adding a reasonable verifiable message.

At the same time other models focus more on disclosure of information and costly commu-

nication. Hagenbach, Koessler, and Perez-Richet (2014) analyse a game with a set of players,

where each player can tell the truth about his type or can masquerade as some other type. As in

the literature of verifiable messages, the player who deviates from telling the truth is punished

by the other players. If a player masquerades, the other players assume a worst case type and

punish him by choosing the action this type of player dislikes. The authors state conditions for
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full revelation depending on the possible masquerades of each player.

Bull and Watson (2007) and Mookherjee and Tsumagari (2014) deal with communication

and mechanism design. While Bull and Watson (2007) focus on costless disclosure, Mookher-

jee and Tsumagari (2014) add communication costs to prevent full revelation of information.

Communication costs are also introduced by Hedlund (2015). The author derives two types

of equilibria: For high costs there exists a pooling equilibrium, while for not too high costs a

separating equilibrium exists.

Verrecchia (2001) provides an overview over different models of disclosure, which is ex-

tended by Dye (2001).

It remains to mention that there are several works in which the authors have created their own

way of modeling messages, which are most often in between the models of Crawford and Sobel

(1982) and Grossman (1981) and Milgrom (1981). Kartik (2009) introduces a model, where the

Sender sends a message about her type, but has the incentive to make the Receiver believe that

her type is higher than it actually is. If the Sender lies in the message, she has to pay some costs

for lying, which depend on the distance between the true type and the type stated in the message.

Dewatripont and Tirole (2005) analyse the communication, where the Sender has to invest into

effort to make a message understandable, while the Receiver’s investment into effort is to under-

stand the message. They motivate this model by the idea that very confusing written messages

as well as reading messages without paying a lot of attention yield to misunderstandings. The

probability of understanding the message is influenced by the effort of both players.

Austen-Smith and Banks (2000) introduce the possibility for the Sender to send a costly mes-

sage with the same content as a costless message. By this way of burning money the Sender has

an additional possibility of signaling. The authors show that conditions exist under which both

message types are used. Verrecchia (1983) deals with the idea that the disclosure of information

works as a signal itself.

The most closely related to this paper is the work by Eső and Galambos (2013). They start

with a similar idea, but make some different assumptions in their model. While they focus on

optimal actions for Sender and Receiver which are closely related to the paper of Crawford and

Sobel (1982), we start with fewer assumptions and allow for a wider class of utility functions.

Under their assumptions, Eső and Galambos (2013) state conditions under which the equilibria

are split into different intervals depending on the Sender’s type.

The paper is structured as follows. We start by defining a discrete model in Section 2 and

focus on a finite set of states and actions. We state different conditions for full revelation.

Full revelation where the Sender just sends cheap-talk messages is only possible when the

preferences of both players are similar. Even if the preferences differ, there still can be full
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revelation: The Receiver threatens the Sender by answering cheap-talk with an action the Sender

dislikes. By this the Sender has an incentive to pay for the costly verifiable message. As some

actions are incredible threats, we define a set of possible threat points. We provide conditions

under which the Receiver can use an action from this set to enforce full revelation. Furthermore

we look at the cases of partial revelation and state all the different maximization problems. We

get similar conditions as we got for the fully revealing equilibria, but for partial revelation these

conditions just have to hold for some states. While the solving by hand might be complex, we

give some detailed ideas for algorithms. We simplify all these conditions for utility functions

that have increasing or decreasing differences.

In Section 3 we modify our setting to a continuous model. We provide necessary conditions

for the existence of fully revealing equilibria and also give some examples. We illustrate and

prove that in a fully revealing equilibrium the Sender will never use both types of messages,

if the utility functions of both players are continuous. A very detailed analysis is done for the

quadratic loss function. Since full revelation is impossible in a continuous state space, we give

conditions for full revelation in a discrete version. Extension possibilities are mentioned several

times within the paper, but discussed in detail in Section 4. Section 5 concludes. All proofs are

relegated to the Appendix.

2 Discrete Model

We start with a model with only a finite set of states of the world and a finite set of actions the

Receiver can choose from. Let Ω = {ω1, . . . , ωL} denote the set of the L different states of the

world, where each state ωi has the probability P[ωi].

The timing is as follows: The Sender learns the true state of the world and then she sends a

message to the Receiver. We assume that the set of possible cheap-talk messages M corresponds

to the states of the world Ω and that verifiable message v is unique in each state of the world.

The Sender chooses a message from M ∪ {v}, so either sends a cheap-talk message or the

verifiable message v. There is no possibility for partial disclosure. While sending any cheap-

talk message is free, the Sender has to pay costs c > 0 if she sends the verifiable message. An

economic explanation for these costs can be either a payment for a certificate or the investment

into effort. For simplicity we assume that the costs are state independent, but state dependent

costs are discussed in a later part as an extension.

The Receiver reads the message and chooses an action from A = {a1, . . . aN}. By ∆(A) we

denote the set of mixed strategies. Both players have preferences about the actions, resulting in

different von Neumann-Morgenstern utility functions for both players, depending on the action
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and state of the world.

For the Sender it is given by ũS : A×M ∪{v}×Ω → R with ũS(a,m, ω) = uS(a, ω) ∀m ∈

M , ũS(a, v, ω) = uS(a, ω) − c and uS : A × Ω → R. So we can split the utility function of

the Sender up into two parts: First a utility function depending on action and state of the world.

Additionally we have to subtract the costs for the message if there are any.

For the Receiver the utility function is not depending on the type of the message, but just

on the action and state: uR : A × Ω → R. The utility functions show that there is neither

a punishment for lying nor a direct reward for telling the truth. We assume that these utility

functions are common knowledge. Let a∗R(ωi) denote the action the Receiver prefers in the

state ωi. We will make some more assumptions about this function later. We denote the Sender’s

behavior by the function f : Ω → M ∪{v}. This function f maps each state of the world to the

message she sends. We assume that the Sender does not mix different messages.

The Receiver chooses the action, depending on the message he received: g : M ∪Ω → ∆(A).

In equilibria we have to define the behavior of the Sender for every state, so f(ω) and the

Receiver’s action after each message, i.e. g(m) ∀m ∈ M and g(v).

The equilibrium concept we use is the Perfect Bayesian Equilibrium.

Definition 1. A Perfect Bayesian Equilibrium in a dynamic game of incomplete information is

a strategy profile (f ∗, g∗) and a belief system µ∗ for the Receiver such that

• The strategy profile (f ∗, g∗) is sequentially rational.

• The belief system µ∗ is consistent whenever possible, given (f ∗, g∗).

In other words each equilibrium consists of optimal strategies for Sender and Receiver, which

are sequentially rational. Furthermore the Receiver has a belief system over the true state of the

world depending on the message he receives. This belief system is updated by Bayes rule

whenever possible. For Perfect Bayesian Equilibria the actions off the equilibrium path have to

be the best actions for the Receiver for at least one belief system. We can neglect this if we limit

our attention to actions that are undominated for the Receiver.

We are specially interested in equilibria with full revelation:

Definition 2. A Perfect Bayesian Equilibrium is fully revealing, if the Receiver knows the true

state of the world, after reading the Sender’s message.

If there is full revelation, the Sender either sends different cheap-talk messages in each state,

or just verifiable messages, or different cheap-talk messages in some states and verifiable mes-

sages in the other states.

For the entire paper we make two assumptions:
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Assumption 1. Let us assume that for each action aj ∈ A there exists at least one belief system

µ such that aj is the Receiver’s best strategy under the belief system µ.

By ∆̂(A) ⊆ ∆(A) we denote the set of mixed strategies that satisfy this assumption, i.e.

∀â ∈ ∆̂(A) : ∃µ : â ∈ argmax
a

∑

ω∈Ω

µ(ω) · uR(a, ω)

Assumption 1 requires that each action is optimal for the Receiver at least under one belief

system, which means that there are no dominated actions. Our results depend on the idea that

the Receiver uses an action as a threat and so enforces the Sender to send verified messages.

The threat is only credible, if this action is an element of ∆̂(A).

We can think about different equilibrium refinements as introduced in several papers. The

most common ones are the Divinity Criterion by Banks and Sobel (1987) and the Intuitive

Criterion by Cho and Kreps (1987). Using any of them adds more conditions for the threat

points, so the set ∆̂(A) gets smaller and the Receiver has less possibilities to make a threat.

Assumption 2. Let us assume that in every state of the world the Receiver has strict preferences.

Under Assumption 2, a∗R(ωi) is a single action, which will help for the upcoming results.

This is to avoid the situation that the Receiver is indifferent between two actions.

2.1 Full revelation

In this first part we focus our attention on fully revealing equilibria. We will state conditions for

full revelation, where the Sender just uses the cheap-talk messages, conditions where she uses

only verified messages and conditions where she uses both types of message, depending on the

state. Even if conditions for one of these fully revealing equilibria are satisfied, there might be

other equilibria at the same time. By examples we show that the existence of these different

types of full revelation are independent of each other.

Assumption 3. Let us assume that for all states ωi 6= ωj the Receiver prefers different actions,

i.e. a∗R(ωi) 6= a∗R(ωj).

In other words the function a∗R : Ω → A has to be injective.

This assumption assures that there can be a fully revealing equilibrium, even if the Sender

uses cheap-talk messages in several states. For the case that the Sender just uses the cheap-talk

messages and we still have full revelation, the Sender is not allowed to have any incentive to

deviate to another cheap-talk message. It is not necessary that the preferences in all states are

the same for Sender and Receiver. Crucial is that the action the Receiver chooses when he
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knows the true state a∗R(ωi) generates a higher utility for the Sender than the Receiver’s most

preferred action of any other state a∗R(ωj). There is also the possibility that there exists an action

the Sender prefers, but which is never included by the Receiver as long as he knows the true

state of the world.

Theorem 1 (Full Revelation just by Cheap-Talk Messages).

Let Assumption 3 hold. There is a fully revealing equilibrium with only costless messages sent

if and only if:

∀ωi ∈ Ω : uS(a
∗
R(ωi), ωi) > uS(a

∗
R(ωj), ωi) ∀ωj 6= ωi (1)

Remark. If Assumption 3 does not hold, i.e. if there exist two states ωi, ωj such that

a∗R(ωi) = a∗R(ωj), there is no fully revealing equilibrium. Still the Receiver can get the highest

possible utility in every state, while the Sender just sends cheap-talk messages.

Theorem 2 (Full Revelation just by Verifiable Messages).

There is a fully revealing equilibrium with only verifiable messages sent if and only if:

∃â ∈ ∆̂(A) : 1) ∀ωi : â 6= a∗R(ωi)

2) ∀ωi : uS(a
∗
R(ωi), ωi)− c > uS(â, ωi)

The idea behind Theorem 2 is that the Sender replies to cheap-talk messages with an action

â the Sender really dislikes. With this threat point â the Receiver forces the Sender to use the

verified message. The same idea can be found in several existing papers dealing with verifiable

messages, e.g. in Hagenbach, Koessler, and Perez-Richet (2014), which we already mentioned

in the introduction.

We can combine both theorems and get conditions for full revelation, where the Sender uses

both types of messages.

Theorem 3 (Full Revelation by Cheap-Talk and Verifiable Messages).

Let Assumption 3 hold. There is a fully revealing equilibrium with both message types used if

and only if there exists Ω̂ ( Ω with Ω̂ 6= ∅ such that

∃â ∈ ∆̂(A) : 1) ∀ωi /∈ Ω̂ : uS(a
∗
R(ωi), ωi)− c > uS(a

∗
R(ωj), ωi) ∀ωj ∈ Ω̂

2) ∀ωi ∈ Ω̂ : uS(a
∗
R(ωi), ωi) > uS(a

∗
R(ωj), ωi) ∀ωj ∈ Ω̂, ωj 6= ωi

Theorem 3 allows that the Receiver trusts the Sender in some states (Ω̂), but in the other states

he enforces the use of verifiable messages as in Theorem 2. To have both message types used

Ω̂ has to be a real subset of Ω and non-empty, otherwise just one message type is used. The
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two conditions in this theorem are quite similar to those of the previous theorems. Instead of a

single threat point â, every a∗R(ωj) with ωj ∈ Ω̂ has to work as a threat. In addition the Sender

is not allowed to have an incentive to deviate to another cheap-talk message if the true state is

in Ω̂.

There might be several possibilities for the set of states Ω̂, where the Receiver trusts the

cheap-talk messages. Those possibilities do not have to be subsets of each other, but also can

be disjoint. For the case that there are several subsets we can say that for smaller sets Condition

1) has to hold for more states, but Condition 2) for less states.

Remarks.

• For the result of Theorem 3 we need Assumption 3 just for the states in Ω̂. So even if there

exist two states ωi, ωj ∈ Ω/Ω̂ such that a∗R(ωi) = a∗R(ωj), Theorem 3 still holds.

• If Assumption 3 does not hold and there exist two states ωi, ωj ∈ Ω̂ such that

a∗R(ωi) = a∗R(ωj), Theorem 3 does not hold, but under the conditions of that theorem, the

Receiver still gets the highest possible utility in every state.

Theorems 1, 2 and 3 give conditions for different types of fully revealing equilibria. It can

happen that there is no fully revealing equilibrium just by cheap-talk or just by verifiable mes-

sages, but one by a combination of both message types:

Example 1. Assume that there are two states (ω1, ω2) and two actions (a1, a2).

The Receiver prefers a1 in ω1 and a2 in ω2, while the Sender always prefers a1. Obviously

there is no fully revealing equilibrium just with cheap-talk, because the Sender always wants

the action a1 and so she would lie. Furthermore there is no equilibrium just with verifiable

messages, because there is no threat available:

For the mixed strategy that plays a1 with probability p and a2 with probability (1 − p), we

use the notation pa1 + (1 − p)a2. Denote â = pa1 + (1− p)a2. For p = 0, the Sender will not

use the verifiable message in ω2, because she gets the same action by sending cheap-talk, but

verifiable messages are costly. Also for p > 0 the Sender will not use the verifiable message in

ω2, because she prefers a1 over a2 and so she also prefers â over a2.

Still there is full revelation possible if c is low enough. Let us assume that costs c are small,

i.e. c < uS(a1, ω1) − uS(a2, ω1). If the Receiver answers every cheap-talk message by a2, the

Sender will use the verifiable message in ω1, yielding to action a1. The utility the Sender gets is

uS(a1, ω1) − c > uS(a2, ω1), while her utility would be uS(a2, ω1) if she sends the cheap-talk

message. In the second state ω2, the Sender will use the cheap-talk message. Both message

types will result in action a2, so the Sender prefers the costless message.
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Even though we stated conditions for full revelation, it might happen that there is no revela-

tion at all. The easiest example can be done just by two states and two actions:

Example 2. Assume that the Receiver prefers a1 in ω1 and a2 in ω2 and the Sender’s preferences

are switched, i.e. she prefers a2 in ω1 and a1 in ω2. Clearly there is no full revelation just by

cheap-talk, because the Sender will always lie. Furthermore there can be no revelation just by

verifiable messages. Assume that the threat point is â = pa1+(1−p)a2, with the notation used

as in the previous example.

For p = 0, the Sender will not use the verifiable message in ω1, because she prefers a2 over

a1. The same argument holds even for p > 0: Using the cheap-talk message resulting in â gives

the Sender at least a little chance of a2. Therefore uS(â, ω1) > uS(a1, ω1) and this implies

uS(â, ω1) > uS(a1, ω1)− c.

So the only possibility is to have a fully revealing equilibrium with both message types used.

Doing the same steps again for Theorem 3 proves that there is no full revelation. So in this ex-

ample where the preferences of Sender and Receiver differ a lot, the Receiver has no possibility

to enforce the full revelation.

2.1.1 Increasing and Decreasing Differences

The previous results have to be checked for every state, which might be not easy to do. If the

utility function of the Sender satisfies either the increasing or decreasing differences property,

we can state weaker conditions. The idea is that we just need to check the previous conditions,

for one state and then can easily get full revelation for all states, if some additional properties

are satisfied.

Definition 3. We say uS(a, ω) has increasing (decreasing) differences in (a, ω), if

∀a′ ≥ a, ∀ω′ ≥ ω : uS(a
′, ω′)− uS(a, ω

′) ≥ (≤) uS(a
′, ω)− uS(a, ω).

Proposition 1 (Full revelation under increasing differences).

Let Ω = {ω1, . . . , ωL} and sort A such that A = {a∗R(ω1), . . . , a
∗
R(ωL)}. We can ignore all

actions, which are never the best reply for the Receiver in a single state.

There is a fully revealing equilibrium with â = a∗R(ωj) if:

1) uS has increasing differences

2.1) uS(a
∗
R(ωj+1), ωj+1)− c > uS(a

∗
R(ωj), ωj+1)

2.2) uS(a
∗
R(ωj−1), ωj−1)− c > uS(a

∗
R(ωj), ωj−1)

3.1) ∀ωi > ωj : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωi−1), ωi)

3.2) ∀ωi < ωj : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωi+1), ωi)
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The fully revealing equilibrium is such that the Sender sends cheap-talk in ωj and verifiable

messages in all other states.

Corollary 1.

We can replace Condition 3.1) by

3.1′) ∀ωi > ωj : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωj+1), ωi)

and Condition 3.2) by

3.2′) ∀ωi < ωj : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωj−1), ωi)

An interpretation of these properties can be done easily, if we look at the following Corollary.

Corollary 2.

Let Ω = {ω1, . . . , ωL} and sort A such that A = {a∗R(ω1), . . . , a
∗
R(ωL)}. We can ignore all

actions, which are never the best reply for the Receiver in a single state.

There is a fully revealing equilibrium with â = a∗R(ω1) if:

1) uS has increasing differences

2) uS(a
∗
R(ω2), ω2)− c > uS(a

∗
R(ω1), ω2)

3) ∀ωi ∈ {ω2, . . . , ωL} : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωi−1), ωi)

The fully revealing equilibrium is such that the Sender sends cheap-talk in ω1 and verifiable

messages in all other states.

The threat point here is a∗R(ω1). Condition 2) ensures that the Sender prefers the verifiable

message in the state after, which is ω2. Increasing Differences mean that the gains from a higher

action increase, if the state gets higher. With Condition 3) combined, we get that the Sender

also prefers the verifiable message in all states higher than ω2. We can get a similar result with

a∗R(ωL), where we have to replace ω2 in Condition 2) by ωL−1 and adjust Condition 3) as well.

An application can be found in Section 3.1.1.

Similar changes for decreasing differences can be made easily:

Proposition 2 (Full revelation under decreasing differences).

Let Ω = {ω1, . . . , ωL} and sort A such that A = {a∗R(ω1), . . . , a
∗
R(ωL)}. We can ignore all

actions, which are never the best reply for the Receiver in a single state.
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There is a fully revealing equilibrium with â = a∗R(ωj) if:

1) uS has decreasing differences

2.1) uS(a
∗
R(ωL), ωL)− c > uS(a

∗
R(ωj), ωL)

2.2) uS(a
∗
R(ω1), ω1)− c > uS(a

∗
R(ωj), ω1)

3.1) ∀ωi > ωj : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωi+1), ωi)

3.2) ∀ωi < ωj : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωi−1), ωi)

The fully revealing equilibrium is such that the Sender sends cheap-talk in ωj and verifiable

messages in all other states.

Changing the conditions as in Corollary 1 and Corollary 2 is possible.

2.2 Maximization without full revelation

Whenever there is no full revelation, the Receiver cannot get the highest possible utility in all

states. Depending on the preferences, utility and costs, there might be partial revelation or no

revelation at all. We start our analysis by an example with just three states and give conditions

for partial revelation and no revelation. In a numerical example we will show that each of this

possibilities can be the best strategy for the Receiver.

In the second part we generalize: In a setting with more than three states, partial revelation

can be of one of three different types: Verifiable messages in some states, revealing the true

state. Unique cheap-talk messages can have the same effect, but cheap-talk messages can also

partial reveal information to the Receiver, such that it splits the state space into disjoint subsets.

In that case the Receiver might just know whether he is in the first or second state, or in the

third or fourth state.

We give conditions for all the different possibilities of partial revelation and also for com-

binations of those. Furthermore we again use utility functions with increasing or decreasing

differences to simplify these conditions.

2.2.1 Three state examples

Assume |Ω| = 3 and assume that the Receiver prefers different actions in different states.

In general the Receiver can maximize his utility by three different possibilities:

1. Use the same action in every state.
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2. Reply with one action to one cheap-talk message and with another to the remaining mes-

sages.

3. Use the same action as a reply to any cheap-talk message, enforcing the Sender to send

the verifiable message in exactly one state, i.e. revelation of one state.

First possibility

max
â

3
∑

i=1

P[ωi]uR(â, ωi)

s.t. ∀ωi : uS(â, ωi) > uS(a
∗
R(ωi), ωi)− c

Second possibility (Revelation in ω1 (wlog) by cheap-talk)

max
â

P[ω1]uR(a
∗
R(ω1), ω1) +

3
∑

i=2

P[ωi]uR(â, ωi)

s.t. uS(a
∗
R(ω1), ω1) > uS(â, ω1)

uS(â, ωi) > uS(a
∗
R(ω1), ωi) ∀ωi, i ∈ {2, 3}

Third possibility (Revelation in ω1 (wlog) by a verifiable message)

max
â

P[ω1]uR(a
∗
R(ω1), ω1) +

3
∑

i=2

P[ωi]uR(â, ωi)

s.t. uS(a
∗
R(ω1), ω1)− c > uS(â, ω1)

uS(â, ωi) > uS(a
∗
R(ωi), ωi)− c ∀ωi, i ∈ {2, 3}

These are the different maximization problems the Receiver has to solve to find the best strategy.

With different example we will show that either of the strategies can be the best choice. For that

we have to keep in mind that the Receiver cannot commit to any strategies, but plays his best

possibility given his beliefs. Especially in the case where he knows the true state, the Receiver

will always play the action that yields the highest utility for him.

Example 3. Assume c > 2, |Ω| = |A| = 3,

uR(a3, ω1) = 4 uR(a1, ω1) = 2 uR(a2, ω1) = 1

uR(a1, ω2) = 4 uR(a2, ω2) = 2 uR(a3, ω2) = 1

uR(a2, ω3) = 4 uR(a1, ω3) = 2 uR(a3, ω3) = 1

and uS(·, ω1) = uR(·, ω1), but uS(·, ω2) = uR(·, ω3) and uS(·, ω3) = uR(·, ω2). So Sender and
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Receiver have the same preferences in ω1, but switched between ω2 and ω3.

No full revelation

Clearly there is no full revelation just by cheap-talk messages. The proof why there is no

full revelation just by verifiable messages and also not by both message types used, follows the

same idea: Assume that â = π1a1 + π2a2 + (1− π1 − π2)a3, therefore

uS(a3, ω1)− c > uS(â, ω1)

uS(a1, ω2)− c > uS(â, ω2)

uS(a2, ω3)− c > uS(â, ω3)

have to hold. Rewriting this yields to

4− c > π1 · 1 + π2 · 2 + (1− π1 − π2) · 4

2− c > π1 · 2 + π2 · 4 + (1− π1 − π2) · 1

2− c > π1 · 4 + π2 · 2 + (1− π1 − π2) · 1

and finally to

c < 3π1 + 2π2

1− c > π1 + 3π2

1− c > 3π1 + π2

This is impossible for c ≥ 1. For the full revelation by both message types, â can also be equal

to a1, a2 or a3, but all these possibilities still contradict at least one condition.

Maximization

1.) No revelation:

The Receiver solves max 1
3
· (2π1 +1π1 +4(1− π1 − π2)) +

1
3
· (4π1 +2π1 +1(1− π1 − π2)) +

1
3
· (2π1 + 4π1 + 1(1 − π1 − π2)), which yields to â = a1 and expected utility for the Receiver

given by E[uR] =
1
3
(2 + 4 + 2) = 8

3
. The conditions for the Sender not to deviate are:

uS(â, ω1) > uS(a3, ω1) ⇔ 2 > 4− c

uS(â, ω2) > uS(a1, ω1) ⇔ 2 > 4− c

uS(â, ω3) > uS(a2, ω1) ⇔ 4 > 2− c.

All these conditions hold for c > 2.

2.) Partial revelation of ω1 by cheap-talk:
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The Receiver has to answer with a3 to one cheap-talk message and with â to the others. The

maximization problem yields that â = π1a1 + (1 − π1)a2, with π1 ∈ [0, 1]. The conditions for

the Sender’s utility are

uS(a3, ω1) > uS(â, ω1) ⇔ 4 > uS(â, ω1)

uS(â, ω2) > uS(a3, ω1) ⇔ uS(â, ω2) > 1

uS(â, ω3) > uS(a3, ω1) ⇔ uS(â, ω3) > 1,

which are clearly satisfied. Here the Receiver’s expected utility is E[uR] =
1
3
(4 + 6) = 10

3
.

3.) Partial revelation of ω1 by a verifiable message:

For example we can take â = a2. The conditions for the Sender’s utility are

uS(a3, ω1)− c > uS(a2, ω1) ⇔ 4− c > 1

uS(a2, ω2) > uS(a1, ω1)− c ⇔ 4 > 2− c

uS(a2, ω3) > uS(a2, ω1)− c ⇔ 2 > 2− c,

which all hold for c < 3. The Receiver’s expected utility is E[uR] =
1
3
(4 + 6) = 10

3
.

In this example it is possible to get partial revelation inω1 either by cheap-talk or by verifiable

message if c ∈ (2, 3). For c > 3 partial revelation is just possible by cheap-talk.

Example 4. Assume c > 2, |Ω| = |A| = 3,

uR(a3, ω1) = 4 uR(a1, ω1) = 2 uR(a2, ω1) = 1

uR(a1, ω2) = 4 uR(a2, ω2) = 2 uR(a3, ω2) = 1

uR(a2, ω3) = 4 uR(a1, ω3) = 2 uR(a3, ω3) = 1

and

uS(a3, ω1) = 4 uR(a1, ω1) = 2 uR(a2, ω1) = 1

uS(a3, ω2) = 4 uR(a2, ω2) = 2 uR(a1, ω2) = 1

uS(a3, ω3) = 4 uR(a1, ω3) = 2 uR(a2, ω3) = 1.

No full revelation

Obviously there is no fully revealing equilibrium just by cheap-talk message, because Sender

and Receiver prefer different actions in two states. To see that full revelation just by verifiable

messages is impossible, we take a closer look at ω2: To have an incentive to send the verifiable

information the Sender has to prefer us(a1, ω2)−c over uS(â, ω2). Since the left part equals 1−c

and the right part something larger than 1, this is impossible. The same arguments contradict

the full revelation by both message types for mixed strategies.

For â = a1, the Sender does not use the verifiable message in ω3 and for â = a2 she uses
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cheap-talk in ω2. So there is no full revelation possible.

Maximization

1.) No revelation:

The maximization here is the same as in the previous example. It is possible for c > 2 and the

expected utility is E[uR] =
8
3
.

2.) Partial revelation by cheap-talk

Getting partial revelation in ω1 is impossible, because the Sender will use the same cheap-talk

message in both other states. To get partial revelation in ω2, uS(a1, ω2) > uS(â, ω2) has to hold,

which is impossible for any â 6= a1. Same arguments work with a2 in ω3. This means in this

example it is not possible to achieve partial revelation by different answers to cheap-talk.

3.) Partial revelation of ω1 by a verifiable message:

For example we can take â = a2. The conditions for the Sender’s utility are

uR(a3, ω1)− c > uS(a2, ω1) ⇔ 4− c > 1

uR(a2, ω2) > uS(a1, ω1)− c ⇔ 2 > 1− c

uR(a2, ω3) > uS(a2, ω1)− c ⇔ 1 > 1− c,

which again all hold for c < 3. The Receiver’s expected utility is E[uR] =
1
3
(4 + 6) = 10

3
.

In this example partial revelation is only possible by verifiable information and just if

c ∈ (2, 3) holds. For c > 3 partial revelation is impossible and the Receiver maximizes his

utility as he would do without communication.

2.2.2 General results

Again we would like to underline that the Receiver cannot commit to any actions, but maximizes

his utility. Then it should be obvious that the Receiver always prefers partial revelation over no

revelation at all. If there is a partial revelation of one state, the Receiver will maximize his

expected utility in the remaining states. It might happen that several actions (pure or mixed)

solve this maximization problem.

Definition 4. For Ω′ ⊆ Ω we define Ȧ(Ω′) = argmax
a

∑

ω∈Ω′

µ[ω]uR(a, ω).

Ȧ(Ω′) is the set of actions which maximize the Receiver’s utility on a given state space Ω′

according to the Receiver’s belief system µ.

In a general model with more than three states, there can be different types of partial revela-

tion: Partial revelation can be either achieved by verifiable messages, which then fully reveal a

subset of states or by cheap-talk messages. Partial revelation by cheap-talk creates a partition of
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state subsets, each element of the partition can contain a single state or several states. Elements

with just a single state have the same effect as verifiable messages: The Receiver knows whether

specific state is the true state. For simplicity we split partial revelation by cheap-talk up into

two cases.

1 Partial revelation by verifiable messages ⇒ Full Revelation of a subset of states

2 A Partial revelation by cheap-talk ⇒ Full Revelation of a subset of states

B Partial revelation by cheap-talk ⇒ Dividing the state space into disjoint subsets.

The case 2A contains just the special cases, in which the partition consists of some subsets with

just one element and a subset containing the remaining states. Note that also in case 2 there can

be a full revelation of subsets of states.

In a world with four states {ω1, . . . ω4} partial revelation by type 2B for example means that

the Receiver just knows whether the true state is in {ω1, ω2} or in {ω3, ω4}. Of course there can

also be a combination of type 1 with 2A or with 2B.

Even with just 4 states most often it is impossible to see, which partial revelation is possible

without calculating all possibilities. We state conditions for each of the different types and their

combinations. With these conditions it is easy to write an algorithm and let a computer check

all the possibilities.

Partial Revelation just by one message type

Proposition 3 (Partial Revelation just by Verifiable Messages).

There is a partial revealing equilibrium, where the Sender uses verifiable messages to reveal

the true state just in the states in ΩvI ( Ω if

∃â ∈ Ȧ(Ω \ ΩvI) : 1) ∀ω ∈ ΩvI : uS(a
∗
R(ω), ω)− c > uS(â, ω)

2) ∀ω ∈ Ω \ ΩvI : uS(a
∗
R(ω), ω)− c < uS(â, ω).

With this theorem we can define the family of subsets in which partial revelation by verifiable

information is possible.

Definition 5.

ΩvI(Ω) =
{

ΩvI ( Ω
∣

∣

∣
∃â ∈ Ȧ(Ω \ ΩvI) such that

∀ω ∈ ΩvI : uS(a
∗
R(ω), ω)− c > uS(â, ω) and

∀ω ∈ Ω \ ΩvI : uS(a
∗
R(ω), ω)− c < uS(â, ω)

}
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This implies that partial revelation by verifiable information is impossible if ΩvI(Ω) = {∅}.

We can also define the set of all tuples of actions and subsets of states (â,ΩvI), where the action

maximizes the Receiver’s utility on Ω\ΩvI , but for the states in ΩvI this action works as a threat

to enforce the Sender to use the verifiable message.

Definition 6.

ΩvI
A (Ω) =

{

(

â,ΩvI
)

∣

∣

∣
1) â ∈ Ȧ(Ω \ ΩvI)

2) ∀ω ∈ ΩvI : uS(a
∗
R(ω), ω)− c > uS(â, ω)

3) ∀ω ∈ Ω \ ΩvI : uS(a
∗
R(ω), ω)− c < uS(â, ω)

}

This definition will help to combine different types of partial revelation. We can make similar

statements for partial revelation of type 2A:

Proposition 4 (Partial Revelation just by Cheap-Talk).

There is a partial revealing equilibrium, where the Sender uses verifiable messages to reveal

the true state just in all states in Ωct ( Ω if

∃â ∈ Ȧ(Ω \ Ωct) : 1) ∀ω ∈ Ωct : uS(a
∗
R(ω), ω) > uS(â, ω)

2) ∀ω ∈ Ω \ Ωct : uS(a
∗
R(ω), ω) < uS(â, ω).

Definition 7.

Ωct(Ω) =
{

Ωct ( Ω
∣

∣

∣
∃â ∈ Ȧ(Ω \ Ωct) such that

∀ω ∈ Ωct : uS(a
∗
R(ω), ω) > uS(â, ω) and

∀ω ∈ Ω \ Ωct : uS(a
∗
R(ω), ω) < uS(â, ω)

}

Definition 8.

Ωct
A(Ω) =

{

(

â,Ωct
)

∣

∣

∣
1) â ∈ Ȧ(Ω \ Ωct)

2) ∀ω ∈ Ωct : uS(a
∗
R(ω), ω) > uS(â, ω)

3) ∀ω ∈ Ω \ Ωct : uS(a
∗
R(ω), ω) < uS(â, ω)

}

For partial revelation of type 2B the conditions look a little bit different.

Proposition 5 (Partial Revelation just by Cheap-Talk).

There is a partial revealing equilibrium, where the state space Ω is split up into disjoint subsets

if there exists a series of sets (Ωdiv
j )j=1,...,J such that
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1.
J
⋃

j=1

Ωdiv
j = Ω and ∀k 6= l : Ωdiv

k ∩ Ωdiv
l = ∅.

2. ∀Ωdiv
j ∃âj ∈ Ȧ(Ωdiv

j ) such that uS(âk, ω) > uS(âl, ω) ∀ω ∈ Ωdiv
k with k 6= l.

The first condition says that the subsets have to be disjoint and add up to the complete state

space. The second condition ensures that the Sender has no incentive to lie if the Receiver

chooses the actions that maximize his expected utility for each subset. As before, we can write

this as a set, this time consisting of series of tuples of actions and subsets of the state space:

Definition 9.

Ωdiv
A (Ω) =

{

(

âj ,Ω
div
j

)

j

∣

∣

∣
1) ∀Ωdiv

k : ak ∈ Ȧ(Ωdiv
k )

2)
⋃

j

Ωdiv
j = Ω and ∀k 6= l : Ωdiv

k ∩ Ωdiv
l = ∅

3) ∀ω ∈ Ωdiv
k : ∀âk 6= âl : uS(âk, ω) > uS(âl, ω)

}

This set contains all the different possibilities of series of tuples that split the state space into

subsets.

Partial revelation by a combination of verifiable messages and cheap-talk

For the combination of two types of partial revelation it is not sufficient to combine ΩvI and

Ωct, because we need to use the same action â for the states, that are not revealed.

Theorem 4 (Partial Revelation by type 1 and 2A).

All combinations of revelation by verifiable message and cheap-talk (type 2A) are given by:

ΩvI+ct(Ω) =
{

(

ΩvI ,Ωct
)

∣

∣

∣
1) ΩvI ∩ Ωct = ∅

2) ∃â ∈ Ȧ
(

Ω \ (ΩvI ∪ Ωct)
)

such that

(â,ΩvI) ∈ ΩvI
A (Ω \ Ωct) and

(â,Ωct) ∈ Ωct
A(Ω \ ΩvI)

}

This means that all states in ΩvI are revealed by verifiable messages and those in Ωct by

cheap-talk. Therefore it is necessary that â maximizes the Receiver’s utility for the remaining

states Ω \ (ΩvI ∪ Ωct). By the definition of ΩvI and Ωct it is ensured that ΩvI ∪ Ωct ( Ω holds,

because otherwise there would be full revelation.

Similar to the combination of type 1 and type 2A, it is also possible to combine type 1 and

type 2B. This means that there are some states revealed by verifiable information (type 1) and

the remaining states are divided into subsets of the state space (type 2B).
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Theorem 5 (Partial Revelation by type 1 and 2B).

All combinations of revelation by verifiable message and cheap-talk (type 2B) are given by:

ΩvI+div(Ω) =

{

(

(

âj ,Ω
div
j

)

j
,ΩvI

)
∣

∣

∣
1)

(

⋃

j

Ωdiv
j

)

∪ ΩvI = Ω

2) ∀Ωdiv
k : Ωdiv

k ∩ ΩvI = ∅

3) (âj ,Ω
div
j )j ∈ Ωdiv

A (Ω \ ΩvI)

4) ∀âk : (âk,Ω
vI) ∈ ΩvI

A

(

Ω \

(

⋃

l 6=k

Ωdiv
l

)) }

Condition 1) and 2) ensure that the subsets of states are disjoint, but united are equal to the

entire state space. Condition 3) makes sure that the states are split up, if there is no revelation

by a verifiable message. The Receiver plays different actions on different subsets of states, with

Condition 4) the Sender will send the verifiable message in all states in ΩvI and will not deviate

to an action âk from the series (âj).

2.2.3 Increasing and Decreasing Differences

For increasing (or decreasing) differences, we can state the existence of partial revealing equilib-

ria with verifiable messages in a way similar to Proposition 1. The most important change is that

the answer to cheap-talk is no longer a∗R, but â such that this action maximizes the Receiver’s

utility on the non-revealed states.

Proposition 6 (Partial Revelation by verifiable messages under increasing differences).

Let Ω = {ω1, . . . , ωL} and sort A such that A = {a∗R(ω1), . . . , a
∗
R(ωL)}. We can ignore all

actions, which are never the best reply for the Receiver in a single state.

There is a partial revealing equilibrium that reveals the states just in [ω, ω] by verifiable mes-

sages if

∃â ∈ Ȧ(Ω \ [ω, ω]) with a∗R(ω) > â such that

1) uS has increasing differences on Ω′ = [ω, ω] and A′ = [a∗R(ω), a
∗
R(ω)]

2) uS(a
∗
R(ω), ω)− c > uS(â, ω)

3) ∀ωi ∈ [ω, ω] : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωi−1), ωi)

4) ∀ωj ∈ Ω \ [ω, ω] : uS(â, ωj) > uS(a
∗
R(ωj), ωj)− c
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Proposition 7 (Partial Revelation by verifiable messages under increasing differences).

Let Ω = {ω1, . . . , ωL} and sort A such that A = {a∗R(ω1), . . . , a
∗
R(ωL)}. We can ignore all

actions, which are never the best reply for the Receiver in a single state.

There is a partial revealing equilibrium that reveals the states just in [ω, ω] by verifiable mes-

sages if

∃â ∈ Ȧ(Ω \ [ω, ω]) with a∗R(ω) < â such that

1) uS has increasing differences on Ω′ = [ω, ω] and A′ = [a∗R(ω), a
∗
R(ω)]

2) uS(a
∗
R(ω), ω)− c > uS(â, ω)

3) ∀ωi ∈ [ω, ω] : uS(a
∗
R(ωi), ωi) ≥ uS(a

∗
R(ωi+1), ωi)

4) ∀ωj ∈ Ω \ [ω, ω] : uS(â, ωj) > uS(a
∗
R(ωj), ωj)− c

We can do a similar change to Condition 3) as before and also get the same results for de-

creasing differences by the same changes as done between Propositions 1 and 2.

In addition it is possible to rewrite these conditions that they hold for more than just a single

interval [ω, ω], but for a disjoint series of intervals
(

[ωk, ωk]
)

k
.

3 Continuous model

In many settings it is not enough to focus on a finite action or state space, but assume that both

of them are continuous. For example at wage negotiations or any discussions concerning prices,

we have to deal with a continuous interval. In this section we do not limit our attention any

more to the discrete setting, but switch to a continuous model. So in general we can assume

that A = Ω = [0, 1]. We state different conditions under which there is no possibility for a

fully revealing equilibrium. Afterwards we use the example of the quadratic loss function to

visualize our results. Theorem 1 and Theorem 2, which give the conditions for fully revealing

equilibria with only a single message type, still hold. The conditions in these theorems still have

to hold for every state, which is more strict in the continuous model. The following Theorems 6

to 8 give us necessary conditions for the existence of different fully revealing equilibria, where

the continuity of uS and a∗R are the most important factors. Combined with the results from the

discrete model we also get the sufficient conditions.

Theorem 6 (Full Revelation under continuous uS and a∗R).

Assume that a∗R(ω) : Ω → A is continuous and that uS(a, ω) : A × Ω → R is continuous

in both arguments. Then full revelation can only be achieved either by cheap-talk messages in

every state or by verifiable messages only.
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Theorem 7 (Full Revelation under continuous uS(a, ω)).

Assume that uS(a, ω) is continuous. There can be a fully revealing equilibrium with both

message types used if there exists [ω, ω] ⊆ [0, 1] such that for all ω ∈ [0, 1]

1) lim
ωրω

a∗R(ω) 6= a∗R(ω)

2) lim
ωցω

a∗R(ω) 6= a∗R(ω)

3) If ω 6= ω : ∀ωi ∈ [ω, ω] : uS(a
∗
R(ωi), ωi) > uS(a

∗
R(ωj), ωi) ∀ωj ∈ [ω, ω], ωj 6= ωi

holds.

Remarks.

• If ω = 0, then the first condition is always satisfied.

• If ω = 1, then the second condition is always satisfied.

• There may exist more than one interval satisfying the conditions of Theorem 7.

Theorem 7 states that if uS is continuous in both arguments, the function a∗R has to be dis-

continuous. The interval [ω, ω] gives the interval of states in which the Receiver believes the

Sender’s cheap-talk message. For that a∗R has to be neither right-continuous nor left-continuous

at a single ω̂ or not right-continuous at ω and not left-continuous at ω > ω. In the second case

the Sender also is not allowed to have any incentive to deviate to a different cheap-talk message

for states in [ω, ω].

Corollary 3.

There is a fully revealing equilibrium with both message types used if there exists [ω, ω] ⊆ [0, 1]

such that:

• [ω, ω] satisfies the conditions of Theorem 7.

• Theorem 3 is satisfied with Ω̂ = [ω, ω].

Figure 1 shows three different discontinuous functions a∗R(ω). For the blue graph there can

be a fully revealing equilibrium with both message types, where the threat point is at a∗R(
1
2
). The

red graph shows a situation where the possible threat point is at the border of the interval, here

at a∗R(1). So Condition 2) of Theorem 7 is always satisfied. As the function is discontinuous

for ω = 1, Condition 1) also holds. An example where Theorem 7 implies that there can be no

full revelation is given by the green graph. The function is continuous coming from below and

so does not satisfy Condition 1).

If a∗R is continuous the previous Theorem does not hold, but we need that uS is discontinuous

to achieve full revelation under the usage of both message types.
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Figure 1: Different examples for a∗R(ω).

Theorem 8 (Full Revelation under continuous a∗R(ω)).

Assume that a∗R(ω) is continuous. Only if uS(a, ω) is not continuous in at least one argument,

there can only be a fully revealing equilibrium with both message types used.

Remark. Theorems 7 and 8 just state necessary, but not sufficient conditions for the different

types of fully revealing equilibria.

3.1 Quadratic loss function

For this second part we like to focus on the quadratic loss utility for the Receiver and a biased

quadratic loss utility for the Sender. We show how our general results from the continuous

model work and what the intuition behind the missing of the fully revealing equilibria is. The

utility functions are uR = −(a − ω)2 and uS = −(a − ω − b(ω))2, where b(ω) ∈ R is the

state dependent bias function of the Sender. We assume that this bias function is continuous.

For positive values of b, the Sender wants to have a higher action than state, while for negative

values she wants to have a lower action than state. This is similar to the example Crawford and

Sobel (1982) use, but we allow that the bias function is state-dependent.

Clearly we have the problem that a∗R(ω) and uS(a, ω) are continuous and therefore all fully

revealing equilibria just include the use of one message type. As for A = Ω = [0, 1] the

function a∗R(ω) is bijective and so every action is the best reply for one state, we can focus on

pure strategies. It will happen that we misuse notation a little and denote actions by ω as well.

Then we simply mean the action a = ω.

As an immediate conclusion from Theorem 6 we see that there can be no fully revealing

equilibrium with both message types used. As long as the bias function b(ω) is not constant

equal to 0, the Sender will not always tell the truth by cheap-talk. In addition it is also impossible

to have a fully revealing equilibrium where the Sender just uses the verifiable messages, because
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every possible threat point â is the Receiver’s best reply to one state. This means that in that

state the Receiver will never use the verifiable message, but prefers to save the costs and goes

for cheap-talk.

Corollary 4.

For A = Ω = [0, 1] and quadratic loss utility functions for the players, there are no fully

revealing equilibria.

This follows immediately from the continuity of uS and a∗R and Theorem 6. We can see it in

more detail with the help of the following Lemma:

Lemma 1.

There is a fully revealing equilibrium if

∃ω̂ : 1) ∀ω > ω̂ : b(ω) >
ω̂ − ω

2
−

c

2(ω̂ − ω)

2) ∀ω < ω̂ : b(ω) <
ω̂ − ω

2
−

c

2(ω̂ − ω)

Lemma 1 states the condition for a fully revealing equilibrium, where the Sender uses a

cheap-talk message in ω̂ and the verified messages in all other states. We can state the same

result for a set of states with cheap-talk messages, but use this case to illustrate the problem of

the continuous model.
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Figure 2: Regions of fully revealing equilibria, for ω̂ = 0, 0.5 and 1 with c = 0.4
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Figure 2 shows Lemma 1 for three different values of ω̂. For ω̂ = 0, the function b(ω) has

to above the blue curve (in the blue area). If the Receiver answers every cheap-talk message by

the action ω̂ = 0, the Sender should not prefer this action over the one responding to the true

state. This can be achieved by a positive bias function, or for some values also by a slightly

negative one. For ω̂ = 1, the function b(ω) has to be below the red curve (in the red area). For

ω̂ = 0.5, the function b(ω) has to be below the green curve for ω < 0.5 and above for ω > 0.5

(in the green shaded area).

This figure already reveals a problem with this setting: No matter the value of ω̂, it is neces-

sary that the bias function b(ω) gets either really high or low values. The problem here is that

the bias function has values in the real numbers, but Conditions 1) or 2) require |b(ω)| = ∞, for

some ω. This means if the Receiver answers every cheap-talk message with ω̂ there is always a

neighborhood around ω̂ where the Sender prefers sending the costless cheap-talk message over

sending the costly verifiable message. The Sender’s utility loss by the quadratic loss function

(difference between action and state) is less than the utility loss resulting from the costs c.

3.1.1 Discretization

One way to achieve full revelation, while keeping the quadratic loss functions, is to discretize

the type space.
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Figure 3: Regions of fully revealing equilibria, for ω̂ = 0, 0.5 and 1 with c = 0.4
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Figure 3 shows a discretization for example for Ω = {0, 0.1, 0.2, . . . , 1}. There can be a fully

revealing equilibria, even with costly verification, quadratic loss functions and a continuous

action space. Again for ω̂ = 0, the function b(ω) has to above the blue curve (in the blue

area) for ω ∈ {0.1, 0.2, . . . , 1}. As we do not need this condition for values close to ω̂, but

just starting with 0.1 the area is cut off at 0.1. This avoids that the bias function needs too

high values. Analogue for ω̂ = 1, the area is cut off at ω = 0.9 and the function b(ω) has

to be below the red curve (in the red area) for ω ∈ {0, 0.1, . . . , 0.9}. There are two cuts for

ω̂ = 0.5. One at the state lower than 0.5, which is 0.4 and the other one at the next higher state,

0.6. The function b(ω) has to be below the green curve for ω ∈ {0, 0.1, . . . , 0.4} and above for

ω ∈ {0.6, 0.7, . . . , 1}(in the green shaded area).

Lemma 2.

Assume that the Sender’s utility is modeled by a quadratic loss function

uS(a, ω) = −(a− ω − b(ω))2. If b(ω) is non-decreasing, uS satisfies increasing differences.

The application of Proposition 1 and the following corollaries can be seen in Figure 3 as well.

For â = 0 and b(ω) increasing we have as first condition that b(ω) should be above the blue

curve. An example is given by the dashed blue curve. The maximal cost c have to be lower than

the utility difference is 0.1, which is illustrated as the difference between the blue curve and the

dashed blue curve. Similar for â = 1 and the red dashed curve, here the critical condition is that

b(ω) stays below the red curve even for ω = 0.9.

4 Extensions

In this section we want to give some ideas of extension possibilities to fit our model into different

situations. We do not go much into detail, but just state our ideas and possible implications.

State dependent costs

One simple extension of our model is to allow that the costs for the verifiable message c are

state dependent, i.e. c(ω) : Ω → R. As long as the costs are strictly positive for all states, there

are no mayor changes. Of course all conditions of the previous results are slightly different for

each state, but the ideas stay the same. A more dramatic change would happen if we allow that

the costs c are equal to zero for some states. Then there is no possibility to guarantee that there

exists a fully revealing equilibrium, where the Sender uses just cheap-talk. The simple reason

is that, in the states where the verifiable message is for free, she is indifferent as both messages

yield to the same utility. So Theorem 1 does not hold any longer.
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The most dramatic changes happen to our results in the continuous model: Even with contin-

uous utility uS and continuous a∗R, there can be a fully revealing equilibrium if c(ω) = 0 holds

for some ω. This might be an interesting point for future research.

Sender mixing

As long as there is full revelation, the Sender will never mix messages, so the only part where the

mixing plays a role is for the cases of partial revelation. Only under special circumstances the

Sender has an incentive to mix, for example if she is indifferent between several actions resulting

from different messages. If the Sender does not mix, the Receiver will use the probabilities of

each state to maximize his utility, as stated in section 2.2. Knowing that the Sender might mix

his actions, the Receiver will use Bayes’ rule to update his beliefs and maximize according to

them. This means we have to replace the probabilities P in the maximization problems with the

Receiver’s beliefs µ. We state three examples for this:

Example 5.

Assume that Ω = {ω1, . . . , ωl} and for simplicity P[ωi] =
1
L
∀ωi ∈ Ω. Furthermore we assume

that the Sender sends m1 in ω1 and ω2, but nowhere else. After reading the message m1 the

Receiver updates his beliefs to 1
2
ω1,

1
2
ω2.

Example 6.

Assume that Ω = {ω1, . . . , ωl}, P[ωi] =
1
L
∀ωi ∈ Ω and that the Sender mixes such that:

ω1 →
1
3
m1 + 2

3
m2

ω2 →
1
2
m1 + 1

2
m2

In all other states she does not send m1 or m2. Then if the Receiver gets the message m1, he

beliefs that the true state is: ω1 with probability
1/3

1/3+1/2
= 2

5
and ω2 with probability

1/2
1/3+1/2

=
3
5
. Analogue for message m2.

Example 7.

Assume that Ω = {ω1, . . . , ωl}, P[ωi] =
1
L
∀ωi ∈ Ω and that the Sender mixes as follows:

ω1 →
1
3
m1 + 2

3
m2

ω2 →
1
2
m2 + 1

2
m3

ω3 → m3
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Then the Receivers beliefs are:

m1 → ω1

m2 →
2
5
ω1

3
5
ω2

m3 →
1
3
ω2

2
3
ω3

States as Sender’s types

Many economic examples do not consider different states of the world, but different Sender

types. We can easily see our states as types. For the typical notation we replace Ω by Θ with

elements θ1 to θL instead of ω1, . . . , ωL.

A standard example is to see the Sender as an agent looking for a job, with skills θ, while the

Receiver is the employer who wants to hire a well skilled worker. He can either choose to hire

the Sender or not. Of course his action depends on his belief of the Sender’s skills. The Sender

either just mentions her skill sets, which is the cheap-talk message, or she can verify it by some

certificates. If we assume that the Sender’s utility just depends on his employment and not on

his skills, the Receivers threat point here is not to hire the Sender after a cheap-talk message,

but just if the verifiable message shows that the Sender has the necessary skill level.

Receiver’s utility

To avoid multiple equilibria and the waste of money for verifiable messages when they are not

necessary, we can modify the utility function of the Receiver: ûR(a, ω, ũS) = uR(a, ω)+ǫR · ũS ,

with uR and ũS as before and ǫR > 0, but small. We assume ǫ to be such small that

|ǫR| ·max
ax

ûS(ax, m, ω) < |uR(ai, ω)− uR(aj , ω)| ∀ω ∀ai, aj, i 6= j ∀m ∈ M ∪ {v}. (2)

Equation (2) implies that the Receiver aims to maximize his utility directly by uR. He will not

choose an action that gives him not the highest uR, but a high utility through ũS. With this

assumption we assure that the solutions of our maximization problems stay the same, but if

there are multiple solutions, the Receiver will choose the solution giving the highest utility to

the Sender. Especially for the case, where the preferences of the Sender and Receiver are the

same, this is helpful. In this setting there can be several fully revealing equilibria, but just the

one where the Receiver beliefs every cheap-talk message is Pareto-efficient.
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Sender’s utility

In the previous sections we ignored the possibility that the Sender might be indifferent between

sending a cheap-talk message or the verifiable message. We can change the utility function to

ûS(a, ω,m, uR) = ũS(a, ω,m) + ǫS · uR with ũS and uR as before. Under some assumptions it

is reasonable that the Sender prefers cheap-talk, under other assumptions she should prefer the

verifiable messages. The best reason for cheap-talk is the one stated in the previous extension:

The Sender wants to maximize his utility, but at the same time she prefers a higher utility for

the Receiver over a lower one, in that case ǫS should be positive. On the other hand one can

argue that sending a verifiable message gives her certainty, what she might prefer. Then ǫS

should be negative. In both cases |ǫS| should be small enough not to interfere with the Sender’s

maximization problem, as we stated in equation (2) for the Receiver.

5 Conclusion

In this paper we have combined the cheap-talk model of Crawford and Sobel (1982) with the

models dealing with verifiable messages. In our Sender-Receiver game the informed Sender

can choose between verifiable and non-verifiable messages. While the Receiver only learns

the true state for sure after reading a verifiable message, a cheap-talk message will not reveal

the true state to him, but just let him update his belief system. We stated conditions for a

discrete setting under which the Sender reveals the true state to the Receiver. The main idea

behind is known from other models as well: The Receiver punishes the Sender for not using the

verifiable message by answering every cheap-talk message with an action the Sender dislikes.

As we limit our attention to non-dominated action, there always exists a belief system which

makes this action best reply and so it makes the threat credible.

If such action does not exist, full revelation can only be achieved by common interests. In

that case the Sender has no reason to lie and the Receiver can trust every cheap-talk message.

Otherwise there can be only partial revelation or no revelation at all. In the first case we differ

between different ways of revelation, for each of them we state conditions. We have not only

analyzed different examples for partial revelation and have shown that there exist several ways

for the Receiver to maximize his utility, but also stated general results. For the case that the

utility functions have increasing or decreasing differences, all conditions simplify and make

them easier to check.

In a continuous model the enforcement of full revelation is more difficult. Under continuous

utility functions for the Sender and the Receiver there is no full revelation possible. We have

illustrated that at the standard example of the quadratic loss function and also have shown a

29



way to counteract it: By discretization of the state space. All in all we stated results that allow

to check whether there are fully revealing equilibria or not. Therefore we differ between three

different types of fully revealing equilibria: The one where both message types are used and

those where the Sender always sticks to one kind of message.

For future research it might be interesting to make more than one verifiable message avail-

able. Letting the Sender send intervals of states, in which the true state has to be included,

might change our results. By that we could combine the cheap-talk literature and the verifiable

information literature even further. We also like to characterize the group of utility functions

further, which allow for full revelation, either by using specific properties as single-crossing

or by discretization of specific utility functions. There are several ways in which we can push

these ideas, but with this model we created a suitable foundation.
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Appendix

Proof. Theorem 1

Only if: Clearly there is a fully revealing equilibrium just with cheap-talk messages if Condition

(1) holds: The Receiver will trust every cheap-talk message and the Sender has no incentive to

deviate.

If: Proof by contradiction. Let us assume that ∃ωk such that uS(a
∗
R(ωk), ωk) 6> uS(a

∗
R(ωj), ωk) ∀ωj 6=

ωk. This implies that there exists ωj such that uS(a
∗
R(ωk), ωk) < uS(a

∗
R(ωj), ωk) holds. Then

the Receiver has an incentive to lie in ωk and send the cheap-talk message ωj , so there is no full

revelation.

Proof. Theorem 2

Only if: Follows directly.

If: Proof by contradiction.

Step 1) Let us assume that Condition 2) does not hold. Then there exists a ωj such that

uS(a
∗
R(ωj), ωj)−c < uS(â, ωj) holds. This implies that the Sender prefers sending a cheap-talk

message and getting action â over sending the verifiable message and action a∗R(ωj). So she will

deviate in ωj and there will be no full revelation.

Step 2) Let us assume that Condition 1) does not hold, then Condition 2) does not hold and we

can follow Step 1).

Proof. Theorem 3

Only if: The equilibrium is as follows: For ω ∈ Ω̂ the Receiver trusts the cheap-talk and in all

other states the Sender uses the verifiable message.

If: Proof by contradiction.

Step 1) Let us assume that Condition 1) does not hold. This implies that there exist ωi 6∈ Ω̂ and

ωj ∈ Ω̂ such that uS(a
∗
R(ωj), ωi) > uS(a

∗
R(ωi), ωi)− c holds. So the Sender prefers cheap-talk

(and action a∗R(ωj)) over the verifiable message (and action a∗R(ωi)) and there will be no full

revelation, because a∗R(ωi) 6= a∗R(ωj).

Step 2) We assume that Condition 2) does not hold and follow the same steps as in the proof of

Theorem 1.

Proof. Proposition 1

We split the proof in two parts. First we show that for states higher than ωj , the Sender prefers

the verifiable message, then we do the same for lower states. Assume ωi > ωj holds. For

ωi = ωj+1 we have condition 2.1), which states that the Sender prefers the costly verifiable

message (yielding a∗R(ωj+1)), over the cheap-talk message (yielding â).
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It remains to show that for all ωi > ωj+1 : c < uS(a
∗
R(ωi), ωi)− uS(a

∗
R(ωj , ωi) hold.

uS(a
∗
R(ωi), ωi)− uS(a

∗
R(ω1), ωi)

3.1)

≥ uS(a
∗
R(ωi−1), ωi)− uS(a

∗
R(ωj), ωi)

1.)

≥ uS(a
∗
R(ωi−1), ωi−1)− uS(a

∗
R(ωj), ωi−1)

We repeat these two steps until

≥ uS(a
∗
R(ωj+1), ωj+1)− uS(a

∗
R(ωj), ωj+1)

2.1)
> c

Analogue steps yield the proof for ωi < ωj .

Proof. Proposition 2

The proof follows the same ideas as the proof of Proposition 1. The only difference is that we

go step by step from the boundary states and actions to the threat point, while in the previous

proof we moved from the threat point towards the boundaries.

For example for ωi > ωj:

uS(a
∗
R(ωi), ωi)− uS(a

∗
R(ωj), ωi)

3.1)

≥ uS(a
∗
R(ωi+1), ωi)− uS(a

∗
R(ωj), ωi)

1.)

≥ uS(a
∗
R(ωi+1), ωi+1)− uS(a

∗
R(ωj), ωi+1)

We repeat these two steps until

≥ uS(a
∗
R(ωL), ωL)− uS(a

∗
R(ωj), ωL)

2.1)
> c

Proof. Proposition 3

If Condition 1) holds, the Sender has an incentive to use the verifiable message in all states in

ΩvI . She also sends the cheap-talk message in all other states, because of Condition 2). For

the Receiver â is by definition an action that maximizes his expected utility on Ω \ ΩvI . As the

states in ΩvI are revealed, he will play the action he likes the most there. So both players have

no incentive to deviate and we have a partial revealing equilibrium.

Proof. Proposition 4

Analogue to the proof of Proposition 3.

32



Proof. Proposition 5

Condition 1) ensures that Ω is split up in disjoint subsets. If Condition 2) holds, there is at

least one action â for each subset that maximizes the Receiver’s expected utility that is such

that the Sender does not want to deviate to another action. This means that no player wants to

deviate.

Proof. Theorem 4

The first condition is necessary to have disjoint sets for partial revelation by cheap-talk and

verifiable messages. The action â that satisfies condition 2) maximizes the Receiver’s utility on

the remaining states and by definition of ΩvI enforces the Sender to use the verifiable message

in the states in ΩvI . In the states in Ωct the Sender has no incentive to deviate to another cheap-

talk message by the definition of ΩvI .

Proof. Theorem 5

Conditions 1) and 2) make sure that Ω is completely split up into disjoint subsets. In each

subset Ωdiv
j the Sender sends a different cheap-talk message, so that the Receiver knows in

which subset he is. The Receiver maximizes his expected utility in each of these subsets by

âj . If Condition 4) holds, the Sender sends a verifiable message in all states in ΩvI and has no

incentive to deviate to any âj .

Proof. Proposition 6

By Condition 4) the Sender prefers sending cheap-talk over sending a verifiable message outside

the interval [ω, ω]. Therefore it is correct that â is maximizing the Receiver’s utility outside that

interval.

Condition 1) ensures that for ω the Sender sends the verifiable message. It remains to show

that she does so for the rest of the interval as well. For ωi ∈ [ω, ω] we need uS(a
∗
R(ωi), ωi) −

uS(â, ωi) > c. As in the proof of Proposition 1 we show that uS(a
∗
R(ωi), ωi) − uS(â, ωi) >

uS(a
∗
R(ω), ω) − uS(â, ω). By the first condition the result then follows. Starting from the left

side:

uS(a
∗
R(ωi), ωi)− uS(â, ωi)

3)

≥ uS(a
∗
R(ωi−1), ωi)− uS(â, ωi)

1)

≥ uS(a
∗
R(ωi−1), ωi−1)− uS(â, ωi−1)

Repeating these steps until we reach ω yields the result.

We can use the increasing difference property, because by assumption a∗R(ω) > â holds.
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Proof. Proposition 7

The proof follows the same steps as the previous one, but it might help to rewrite the definition

of increasing differences: ∀a′ ≥ a, ω′ ≥ ω :

uS(a
′, ω′)− uS(a, ω

′) ≥ uS(a
′, ω)− uS(a, ω)

⇔ uS(a, ω)− uS(a
′, ω) ≥ uS(a, ω

′)− uS(a
′, ω′)

Compared to the proof of the previous proposition, this time the steps go up from ωi to ω, using

â > a∗R(ω).

Proof. Theorem 6

The possible existence of fully revealing equilibria with just one type of message sent follows

from the conditions imposed in Theorem 1 and Theorem 2. Assume that the Sender sends a

cheap-talk message just in ŵ and uses the verifiable message in all other states. The argumen-

tation for sending cheap-talk in several states or intervals will be the same. The Sender has an

incentive to use the verifiable message if uS(a
∗
R(ω), ω)− c > uS(a

∗
R(ω̂), ω). So for the states

close to ω̂ we get:

uS(a
∗
R(ω̂ ± ǫ), ω̂ ± ǫ)− c > uS(a

∗
R(ω̂), ω̂ ± ǫ) (3)

For ǫ → 0 and the continuity of uS and a∗R this is equivalent to:

uS(a
∗
R(ω̂), ω̂)− c > uS(a

∗
R(ω̂), ω̂)

This then leads to c < 0, which is clearly a contradiction. So under this assumptions it is

not possible that there is a fully revealing equilibrium where the Sender uses both message

types.

Proof. Theorem 7

Assume that 1) or 2) do not hold, the problem is the same as described in equation (3), which

requires negative costs c.

Let us assume that 3) does not hold, then the Sender deviates when the real state is in the interval

[ω, ω] and so there cannot be full revelation.

Proof. Theorem 8

The proof is analogue to the proof of Theorem 7, using the discontinuity of uS instead of a∗R.
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Proof. Lemma 1

Assume that the Receiver answers every cheap-talk message with ω̂.

The utility of the Sender for any state ω is given by:

uS("verifiable message") = −(−b(ω))2 − c

uS("cheap-talk message") = −(ω̂ − ω − b(ω))2 = − [(ω̂ − ω)2 − 2(ω̂ − ω) · b(ω) + (b(ω))2]

So the Sender will use the verifiable message if and only if:

−(−b(ω))2 − c > − [(ω̂)− ω)2 − 2(ω̂ − ω) · b(ω) + (b(ω))2]

⇔ −2b(ω̂ − ω) > −(ω̂ − ω)2 + c

Case 1: ω > ω̂

⇔ −2b < −(ω̂ − ω) + c
ω̂−ω

⇔ b > ω̂−ω
2

− c
2(ω̂−ω)

Case 2: ω̂ > ω

⇔ −2b > −(ω̂ − ω) + c
ω̂−ω

⇔ b < ω̂−ω
2

− c
2(ω̂−ω)

Proof. Lemma 2

Increasing Differences mean that the following condition have to hold ∀a′ ≥ a, ω′ ≥ ω:

uS(a
′, ω′)− uS(a, ω

′) ≥ uS(a
′, ω)− uS(a, ω)

⇔ −(a′ − ω′ − b(ω′))2 + (a− ω′ − b(ω′))2 ≥ −(a′ − ω − b(ω))2 + (a− ω − b(ω))2

⇔ a2 − (a′)2 + 2(b(ω′) + ω′)(a′ − a) ≥ a2 − (a′)2 + 2(b(ω) + ω)(a′ − a)

⇔ b(ω′) + ω′ ≥ b(ω) + ω

This condition is clearly satisfied if b(ω) is increasing, because ω′ ≥ ω holds.
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