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Imitation learning for a continuum trunk robot
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Abstract. The paper applies learning from demonstration (LfD) for high-level trajectory
planning and movement control of the Bionic Handling Assistant (BHA) robot. For such
soft continuum robot with mechanical elasticity and complex dynamics it is difficult to use
kinesthetic teaching to collect demonstration data. We propose to use an active compliant
controller to this aim and record both position and orientation of the BHA’s end-effector.
Subsequently, this data is then encoded with a state-of-the-art task-parameterized proba-
bilistic Gaussian mixture model and its performance and generalization is experimentally
evaluated.

1 INTRODUCTION

An increasing number of soft robots have been developed recently, inspired from biological soft
structures like the octopus arm [1] or the elephant trunk [2]. In spite of all the well-known
benefits of soft manipulators such as hyper-redundancy, flexibility and safe interaction with the
environment, the control of such robots remains challenging [3–5] and calls for biomimetic control
as well.

One widely used bio-inspired approach for rigid robots is Learning from Demonstration (LfD).
It is inspired by the way the knowledge is transferred between human beings while performing
a task. It typically considers non-expert human users teaching or demonstrating to the robot
by kinesthetic teaching, observation or teleoperation and subsequent encoding this data through
machine learning, usually followed by trial-and-error learning for refinement.

Among the demonstration methods, kinesthetic teaching appears easiest and safest to imple-
ment since it taps into the user’s intuitive understanding of the task and is directly performed
on the target platform. In addition, the recorded demonstrations are easier to modify and re-
implement on the same agent. However, this is not the case for soft robots in general, because of
their elastic properties, very complex dynamics and most often the lack of suitable controllers.

Thus there are only few applications of LfD for soft robots. In [3], a context-dependent
reward-weighted learning approach is proposed that extracts from demonstrations the weightings
of some predefined objective functions. It implements skill transfer through demonstration on
a rigid robot to a target soft robot, by defining the reward function in a reinforcement learning
algorithm and thereby avoids kinesthetic teaching directly on a soft robot.

In this paper, we utilize an active compliant control that was introduced in [5] to record
demonstrations directly with the soft continuum trunk robot Bionic Handling Assistant (BHA,
[2]). After recording the demonstrations, we exploit Task-Parametrized Gaussian Mixture Models
(TP-GMM) [6] to encode both the end-effector position and orientation. The contribution is to
demonstrate feasibility of kinesthetic teaching on a soft robot to learn the full 6D-pose with
a task-parameterized Gaussian mixture. The performance and generalization are evaluated in
time-dependent and time-invariant scenarios.
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277 – Cognitive Interaction Technology and has been supported by the CODEFROR project (FP7-PIRSES-2013-
612555).
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Fig. 1: (a) BHA robot actively follows externally introduced posture changes thereby implementing
kinesthetic teaching. (b) Control loop of the BHA robot utilizing feedback control (fbc) and feed forward
estimates (ffc), details see text.

2 Kinesthetic teaching on the BHA

The BHA ( [2]) has been designed by Festo as a robotic pendant to an elephant trunk. It is
pneumatically actuated and comprises several continuous parallel air chambers operated at low
pressures. This makes the BHA inherently safe for physical interaction with humans. The BHA
is separated into three segments as shown in Fig. 1, each of which consists of three air chambers
in a triangular arrangement. The air chambers extend their length in relation to the pressure
in those chambers. A fourth end-effector segment is also available for grasping. The robot
has no fixed joint angles and each segment bends if the three chambers have different lengths.
Beside pressure sensors that are included in the air valves, the BHA is equipped with cable
potentiometers that allow to measure the outer length of the air chambers providing information
about the robot’s geometric configuration.

The BHA is controlled in a component based software framework that we developed earlier [7].
In principle, length control can be accomplished with standard proportional integral derivative
(PID) schemes, however, with low gains due to the slow plant dynamics, which results in very slow
movements. To overcome this issue our BHA low level controller utilizes a learned equilibrium
model to generate an additional feed forward signal that predicts required pressures for postures
with zero velocity and acceleration. The combination of a slow PID controller and the feed
forward signal of the equilibrium model leads to a significant improvement of length control [5]
(see Fig. 1b, inner loop). For estimation of end-effector positions we refer to an approximate
kinematic model ignoring pressures and solely operating on the lengths of virtual air chambers [8].

The earned equilibrium model can also be used to implement a kinesthetic teaching mode, as
was first described for positions only in [5]). As shown in Fig. 1b, outer loop, a compliance mode
is enabled through sensing deviation of the actual pressures p from the predicted pressures p̂ of
the pneumatic chambers for the current posture lreal, which can be changed by the demonstrating
user because of the the elastic material. In case this mismatch exceeds a threshold T , a posture
update is initiated in the robot controller to comply with the deformed robot configuration,
that is, pressures follow the kinesthetically taught postures. An interaction using this active
compliance control is shown in Fig. 1a.

3 Dynamical system for position and orientation

The recorded data consists of 6D-poses of the robot’s end-effector represented by x = [xp> xo>]>,
where xp and xo are the position and orientation (axis-angle representation). To increase ro-
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bustness in task-space control when facing perturbations and to enable compliancy of the task
by introducing tracking gains for the task, we first encode the data into the virtual attractor
space following [9]. I.e. we assume a virtual unit mass at the end-effector of the robot, where two
separate dynamical systems control the position and orientation of this unit mass by weighted
superposition of virtual spring-damper systems. This separation is necessary due to the incom-
mensurability of modalities.

Also the velocity and acceleration ẋp, ẍp are obtained from demonstration through numerical
differentiation. After preprocessing, the Cartesian position is transformed into the movement of
virtual unit-mass attractor points x̂p.

ẍp = KP(x̂p − xp)−KVẋp, (1)

where KP , KV ∈ R3×3 are the stiffness and damping matrices, set to have a critically damped
system.

A second dynamical system with different tracking gains is used to convert the orientation of
the end-effector expressed in a unit quaternion into the orientation of another virtual attractor
x̂o in the unit quaternion space [10].

ẍo = 2KO log(x̂o ∗ x̄o)−KWẋo, (2)

where KO, KW ∈ R3×3 are the angular stiffness and damping and ẋo and ẍo are the angular
velocity and acceleration. The quaternion equivalence of the axis-angle representation of the
orientation xo, is represented by xo. Note that here x̄o is the quaternion conjugate of xo and ∗
denotes the quaternion product.

4 Task-parametrized Gaussian Mixture Model for full pose

Consider a set of task-parameters, that is frames of references, that matter for each demon-
stration, along with a set of demonstrations that depend on these. Then the model parameters
of a GMM are iteratively estimated with expectation-maximization (EM) using the recorded
trajectories and the corresponding task-parameters. Then, during reproduction and for general-
ization, the product of linearly transformed model parameters given new task-parameters is used
to estimate the new trajectory through Gaussian mixture regression [6, 9].

The dataset ξn = [ξIN
n , ξOUT

n ]> includes both position and orientation attractors, where
ξIN
n and ξOUT

n are the input and output part of ξn at time step n and ξOUT
n = [x̂p

n, x̂on]>.
For the time-based movement in 3D Cartesian space, D = 8 and ξn aggregates time as input
(ξIN , one dimension) and Cartesian position (3 dimensions) and a unit quaternion orientation
(4 dimensions).

The task parameters are P frames, represented by tuples {bn,j ,An,j}Pj=1 at each time step
n. For position data, they parametrize the origin and rotation matrix of the j-th coordinate
system w.r. to a global frame of reference. For the quaternion orientation data, bn,j = 0 and
An,j ∈ R4×4 is the matrix representation of the j-th quaternion orientation of the jth frame at
time step n.

A task-space attractor trajectory ξ ∈ RD×N with N samples in the global frame of reference
can be observed from the viewpoint of each of the P coordinate systems (task-parameters)

to obtain P different trajectories {X(j)}Pj=1 ∈ RD×N . At each time step n, this change of

perspective can be obtained by a linear transformation as X(j)
n = A−1

n,j(ξn − bn,j).
The transformed position attractor yields from R−1

n,j(x̂
p
n−on,j), where R is the corresponding

rotation matrix and o is the origin of the coordinate frame and the projected orientation attractor
will beA−1

n,j(x̂
o
n−bn,j) = Q−1

n,j x̂
o
n, where Q is the quaternion matrix representation ofR. Learning
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Fig. 2: (a) Demonstration, (b) Reproduction, (c) Reproduction for new set of frames.

then consists of iteratively updating the model parameters defined by {πi, {µ(j)
i ,Σ

(j)
i }Pj=1}Ki=1, for

a model with K components, where πi is the mixing coefficient for the ith Gaussian component

and µ
(j)
i and Σ

(j)
i are center and covariance matrix of the ith Gaussian component at frame j.

Given a set of task-parameters {bn,j ,An,j}Pj=1, the learned model can be used to reproduce
the demonstrations or generalize to trajectories for new frame of references. At each time step
n, the model first retrieves a temporary GMM as a product of linearly transformed Gaussians

N (µn,i,Σn,i) ∝
P∏

j=1

N
(
An,jµ

(j)
i + bn,j , An,jΣ

(j)
i A>

n,j

)
. (3)

Gaussian Mixture Regression (GMR) is then used to retrieve the trajectory from this temporary
model by estimating the conditional probability P(ξOUT

n |ξIN
n ) relying on the joint probability

P(ξIN
n , ξOUT

n ) (see details in [6]).
By using the dynamical system of Eq. (1) and (2), it is straightforward to reproduce the

position and orientation from their attractors, where stiffness and damping gains can be adjusted
to implement desired task compliance.

5 Experiments

Experiment 1: teaching a point to point end-effector movement. For eight demonstrations,
start and end Cartesian poses are chosen as fixed frames of reference. The user moves the robot
from the start to the end while recording

ξn =

 tnx̂p
n

x̂on

 , bn,j =

 0

o
(j)
n

0

 ,An,j =

1 0 0

0 R(j)
n 0

0 0 Q(j)
n

 , (4)

where o
(j)
n is the Cartesian position of the origin of jth frame and R(j)

n and Q(j)
n are respectively

the rotation matrix and quaternion matrix representation of the orientation of jth frame. The
model has three Gaussian components and the stiffness and damping gains are kP = 500, kV = 50
and kO = 250, kW = 25.

Fig. 2a shows one sample demonstration and the its fixed start and end poses by gray cones.
TP-GMM is used to encode the recorded pose trajectories wrt these fixed frame of references.
Fig. 2b shows the reproduction of the end-effector poses along the trajectory, given the same
pair of frames. The retrieved GMM (green ellipsoids) are overlayed and are constant over time
as the reference frames are fixed. The generalization of TP-GMM is demonstrated in Fig. 2c
though providing different poses for start and end points. The blue arrow is the robot’s end-
effector orientation retrieved by the model. The model is able to produce a suitable and smooth
movement.
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Fig. 3: (a) Demonstration, (b) Reproduction, (c) Reproduction for new pose of frames.

Experiment 2: tracking the position and orientation of a flying object (a cup, shown in
Fig. 3 by blue cones) in the work-space by the end-effector. The position of the cup in the 3D
Cartesian space is the input to learn a time-invariant task based on two frames of references.
The first frame is the moving cup (blue cones) while the second frame is the fixed base of the

robot. We replace in Eq(4) tn → orcn , o
(j)
n → orcn , R(j)

n → Rrc
n and Q(j)

n → Qrc
n with the time-

independent rotation matrix and quaternion matrix representation of the orientation of the cup.
Note that j = 1 and D = 10 because the input now is a 3D position.

Fig. 3a, shows one sample demonstration and frames. The demonstrations are recorded in
the active compliant control, where the user physically moves the robot to follow the pose of the
red cup which was moved randomly in space (by the experimenter). We collect 6 demonstrations.
Since the first frame of reference is always in the vicinity of the robot’s end-effector, the model
learned the importance of this frame. Note that this implicit information is in the demonstration
data and not given to the model explicitly.

Fig. 3b depicts the reproduced pose for the movement of Fig. 3a. The trajectory and
corresponding orientation are shown by blue lines and arrows for some of the time instances. We
examined the generalization of the learned model by providing different poses for the moving
frame (the cup in the real experiment). Fig. 3c, shows a new situation in which the robot
successfully follows the pose of the second frame. The poses of the moving frame have been shown
by gray cones that get darker towards the end of the movement. The reproduced trajectory of
the end-effector is shown by the black line on which the reproduced orientations have been shown
by blue arrows.
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