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Abstract

Biomedical applications often aim for an identification of relevant fea-
tures for a given classification task, since these carry the promise of seman-
tic insight into the underlying process. For correlated input dimensions,
feature relevances are not unique, and the identification of meaningful
subtle biomarkers remains a challenge. One approach is to identify in-
tervals for the possible relevance of given features, a problem related to
all-relevant feature determination. In this contribution, we address the
important case of linear classifiers and we reformulate the inference of
feature relevance bounds as a convex optimization problem. We demon-
strate the superiority of the resulting technique in comparison to popular
feature-relevance determination methods in several benchmarks.

1 Introduction
The increase in data availability in the biomedical domain has led to growing op-
portunities for machine learning applications. Besides mere statistical inference,
model interpretability offers one possibility to gain insight into the underlying
processes and to align models and expert knowledge [2, 3]. One popular form of
model interpretability is given by feature relevance determination or selection
schemes, which enable users to identify the most relevant input variables as po-
tential biomarkers. Successful applications can be based on metric learning or
sparse linear models, as in [4, 5, 6, 7].

Feature selection focuses on algorithms that identify relevant features for
machine learning tasks. Integrated techniques such as sparse linear models
or relevance learning combine the benefit of computational efficiency with a
natural treatment of multivariate feature relevance [8, 9, 10]. In particular for
high dimensional data, the result is not unique, which can be attributed to the
presence of redundant (weakly relevant) features [11]. As recently demonstrated
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in [12, 13], raw feature relevance profiles can be misleading in such settings,
and discretion is needed to extract meaningful feature subsets. There exists a
variety of methods to identify minimal feature subsets, whereby ambiguities are
mostly resolved randomly and subtle signals are usually neglected. Contrarily,
the all-relevant problem aims for all potentially relevant features. This enables
a practitioner to choose the best biomarkers for a given setting interactively.

The all-relevant feature selection problem is provably more difficult than
identification of only strongly relevant features or a minimal feature subset, and
only few methods tackle it so far [14]. One possible all-relevant feature selec-
tion method is the Elastic Net, which enforces sparsity and encourages grouping
by combining L1- and L2-penalties [15]. Another option is Boruta [16], which
calculates an importance measure based on random forests and determines rel-
evance by its comparison to artificial contrast variables. However, to the best
of our knowledge, no approach addresses a weighting of strongly and weakly
relevant features for a given linear classification by means of linear programs.

In the following, we state the problem of determining feature relevance
bounds for a linear classification task in terms of linear programs yielding unique
feature relevance intervals, and we discuss how to extract strongly and weakly
relevant features for linear dependencies based thereon. We show that the results
are superior to alternative schemes including Boruta, L1-constrained SVM, and
Elastic Net on benchmark data with known ground truth, and we demonstrate
the applicability for two examples from the biomedical domain.

2 Relevance bounds for feature selection
Given a binary classification problem represented by labeled data points (xi, yi) ∈
Rd×{−1, 1}, i = 1, . . . , n, our goal is to assess the relevance of each feature for
linear classification. Kohavi and John [11] distinguish between three different
levels of relevance: A feature is strongly relevant if its removal lowers the per-
formance of the optimal Bayes classifier; it is weakly relevant if it is not strongly
relevant but there exists a subset of features such that it is strongly relevant
among those, and it is irrelevant if it is neither strongly nor weakly relevant.
Inspired by this taxonomy, we investigate feature relevance for the important
case of linear classification. Clearly, more than a single importance value for
each feature is needed to distinguish between both strong and weak relevance,
and weak relevance and irrelevance. Thus, we aim to determine the minimal and
maximal relevance of each feature taking into account the potential influence of
all other features. If the minimal relevance of a feature is greater than zero, it is
strongly relevant. If its maximal relevance is zero, it is irrelevant. If the lower
bound is zero, and the upper bound greater than zero, it is weakly relevant.

For linear classifiers, the absolute values of the weight vector that defines
a separating hyperplane can be taken as an indicator of feature relevance [17].
When this weight vector is computed using L2-regularization, highly correlated
features share their weight, and groups of weakly relevant features may be mis-
taken for noise. L1-regularization enforces a sparse weight vector, revealing the
potential importance of single weakly or strongly relevant features, but not of
all of those. We also use L1-regularization, as it permits weight to be shifted
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within a group of weakly relevant features, but, mimicking the idea proposed in
[12, 13], we use a set of optimization problems to reveal the relevance bounds.

In the following, let (w̃, b̃, ξ̃) denote the solution of a linear SVM with reg-
ularization C, where ξ̃ = (ξ̃1, . . . , ξ̃n) are slack variables controlling margin
intrusion:
minw̃,b̃,ξ̃ ‖w̃‖2 + C ·

∑n
i=1 ξ̃i s. t. yi(w̃ · x>i − b̃) ≥ 1− ξ̃i, ξ̃i ≥ 0, i = 1, . . . , n.

The minimum linear relevance bound for feature j is defined as:

Problem I : minw,b,ξ |wj |
s. t. yi(w · x>i − b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

‖w‖1 + C ·
∑n

i=1 ξi ≤ ‖w̃‖1 + C ·
∑n

i=1 ξ̃i.

The maximum linear relevance bound (Problem II) of j, is defined by
replacing minw,b,ξ with maxw,b,ξ. Note that the L1-bound constraint restricts
the margin of each candidate hyperplane to at least 1/

√
d times the margin

of the original SVM. This factor is minimal as to allow d identical features to
concentrate their formerly distributed relevance onto a single feature.

3 Efficient Realization by Linear Programming
Problems I and II can be solved efficiently using linear programs (LP). Here we
omit the proofs of equivalence due to space limitations.

Theorem 1. Problem I is convex and an optimal solution is obtained via the
following linear problem with 2d+ n+ 1 variables and 2d+ n+ 1 constraints:

minŵ,w,b,ξ ŵj

s. t. wi − ŵi ≤ 0, −wi − ŵi ≤ 0, i = 1, . . . , d
−yi(w · x>i − b) ≤ ξi − 1, i = 1, . . . , n∑d

i=1 ŵi + C ·
∑n

i=1 ξi ≤ µ,

where µ = ‖w̃‖1 + C ·
∑n

i=1 ξ̃i. Its optimal solution (ŵ,w, b, ξ) induces an
optimal solution (w, b, ξ) of Problem I; it holds ŵ = |w|.

While Theorem 1 relies on a classical transformation, an LP formalization
of Problem II requires a problem specific transformation:

Theorem 2. Regard the linear programs

(a) : maxŵ,w,b,ξ ŵj

s. t. wi − ŵi ≤ 0,−wi − ŵi ≤ 0, i = 1, . . . , d
ŵj + wj ≤ 0 (∗)
−yi(w · x>i − b) ≤ ξi − 1, i = 1, . . . , n∑d

i=1 ŵi + C ·
∑n

i=1 ξi ≤ µ,

and (b) where the condition (∗) is substituted by ŵj−wj ≤ 0. Let (ŵa,wa, ba, ξa)
and (ŵb,wb, bb, ξb) be optimal solutions of (a) and (b). Then, (wx, bx, ξx) such
that ŵx

j is maximal optimally solves Problem II.
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As a consequence, for linear mappings, feature relevance bounds can be
efficiently determined and they are unique. The resulting intervals reveal a de-
tailed measure of the feature relevance when taking all possible models with the
same classification accuracy and L1-norm into account. Based on the resulting
bounds, we extract both weakly and strongly relevant features for the consid-
ered linear classification task: strongly relevant features are those with strictly
positive lower bound (they cannot be deleted from the set without sacrificing
model accuracy), while weakly relevant features are those with zero minimum
relevance bound but strictly positive upper bound (they contribute to at least
one, but not all optimal linear models). For an according feature selection, we
determine suitable cutoff values via the relevance bounds related to features
obtained after a random permutation along the given data column.

4 Experiments
Artificial data: For comparison we created three datasets with known ground
truth, containing n = 150 samples and d = 12 features each. The number of
strongly relevant, weakly relevant, and irrelevant features is characterized by the
triplets (6, 0, 6) for Data I, (0, 6, 6) for Data II, and (3, 4, 3) for Data III. The rel-
evant feature dimensions determine a hyperplane that defines class assignments.
Weakly relevant features are linear combinations of strongly relevant ones. We
compare our method to an L2-regularized SVM (no explicit feature selection),
L1-regularized SVM (aiming for a minimal optimal set), Elastic Net (all relevant
features), Boruta (all relevant features) [16], and a forward/backward selection
based on classification performance as proposed in [12] (all relevant features).
Hyperparameters are optimized via grid search and 5-fold cross validation. Since
C controls the sparsity and estimation error of the resulting weight vector, we
aim to analyze its regularization path in the future. Features from linear mod-
els are ranked based on their importance weights, where the cutoff is set to
10−5 for L1-regularized models, and the mean feature value for L2-regularized
models and elastic net. The results of all methods are displayed in Table 1.
The classification performance is 100% accuracy for all methods and data sets.
Reported precision and recall refer to the comparison of the selected feature
sets to the (known) set of all relevant features. Not all methods address the
all relevant features problem; yet, they also partially fail in settings where they
should deliver this solution by design, such as L1-SVM for Data I. The methods
for all relevant feature selection, Elastic Net, Boruta, and forward/backward
search, often do not deliver optimal results. Conversely, our method provides
an F-score of at least 0.97 in all settings. A python-implementation of our
method and the code used to generate our artificial datasets can be found at
https://github.com/lpfann/fri.
Medical data analysis: We evaluate our method for two data sets from the medi-
cal domain: The adrenal gland metabolomics dataset has been described in [18].
147 data points corresponding to adrenocortical carcinoma or adenoma, respec-
tively, are described by steroid markers which relate to five different regimes
of the underlying metabolic processes (see Fig. 1). The binary classification
problem is solved with F-score 0.98 and standard deviation 0.5 · 10−2 for all

https://github.com/lpfann/fri


Preprint of the publication [1], as provided by the authors. 5

Table 1: Precision, recall and F1-values of feature selection methods on synthetic
datasets with different properties. Values are averaged over 10 random instances
of the data sets.

Data I II III
prec. rec. F1 prec. rec. F1 prec. rec. F1

L2-SVM 1.00 0.82 0.89 1.00 0.83 0.90 1.00 0.70 0.82
L1-SVM 0.56 1.00 0.72 0.57 1.00 0.72 0.72 1.00 0.83
ElasticNet 1.00 0.85 0.92 1.00 0.83 0.90 1.00 0.76 0.85
Boruta 0.94 0.83 0.87 1.00 0.85 0.91 0.96 0.80 0.87
forw./back. 1.00 0.77 0.86 1.00 0.80 0.87 0.85 0.75 0.79
our method 1.00 0.97 0.98 0.95 1.00 0.97 1.00 0.97 0.98
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Figure 1: Relevance profile for dataset with features stemming from the grouped
cholesterol pathway in the adrenal gland metabolism [18].

models corresponding to minimum/maximum ranks as shown in Fig. 1. Inter-
estingly,we can extract strongly relevant features in each group of the cholesterol
pathway except in the androgen precursors. The latter is represented by two
weakly relevant features whereby their simultaneous removal leads to a degra-
dation of the classification accuracy by 1%. Hence the extracted bounds do not
only resemble findings as reported in [18], they also align with prior knowledge
about the semantic grouping of underlying metabolic processes. A similar re-
sult can be obtained for the Wisconsin diagnostic breast cancer data set [19].
Malignant versus benign samples are predicted based on 30 statistical features
which describe the distribution and characteristics of images obtained from a
fine needle aspirate. Here the average F-score of the classification result is 0.98
with standard deviation 0.8 · 10−3. The feature relevance profile as depicted in
Fig. 2 singles out a few clear strongly relevant features as well as a handful of
weakly relevant ones, which partially directly relate to the underlying semantic
correlations of the considered features.
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Figure 2: Breast Cancer Wisconsin diagnostic data set (n = 569, d = 30, geo-
metric properties of cell imagery); here, features are grouped according to their
semantic similarity in blocks of three [19].

5 Conclusion
We have tackled the all-relevant feature selection problem for linear classifi-
cation, stating it as the problem of finding minimum and maximum relevant
bounds in the class of all equivalent models as concerns classification accuracy
and L1-norm. We have transferred this problem to a set of LP problems which
yield unique solutions in polynomial time. For artificial data, the technique has
proven superior compared to known alternatives, and its results have aligned
with prior knowledge on two biomedical problems. In practice, the selection of
weakly relevant features for further use depends on the given setting at hand,
and the proposed method opens a way for an intelligent interactive analysis
based on all possibly relevant biomarker candidates. In the future, we will
enhance the model with automatic techniques to also visualize the mutual rela-
tionships of weakly relevant features in order to facilitate expert exploration of
the results.
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