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Abstract

Skilled human full-body movements are often planned in a highly predictive manner. For example, during walking
while reaching towards a goal object results in steps and body postures are adapted to the goal position already
multiple steps before the goal contact. The realization of such highly predictive behaviors for humanoid robots is a
challenge because standard approaches, such as optimal control, result in computation times that are prohibitive for the
predictive control of complex coordinated full-body movements over multiple steps. We devised a new architecture
that combines the online-planning of complex coordinated full-body movements, based on the flexible combination of
learned dynamic movement primitives, with a Walking Pattern Generator (WPG), based on Model Predictive Control
(MPC), which generates dynamically feasible locomotion of the humanoid robot HRP-2. A dynamic filter corrects the
Zero Moment Point (ZMP) trajectories in order to guarantee the dynamic feasibility of the executed behavior taking
into account the upper-body movements, at the same time ensuring an accurate approximation of the planned motion
trajectories. We demonstrate the high flexibility of the chosen movement planning approach, and the accuracy and
feasibility of the generated motion. In addition, we show that a naı̈ve approach, which generates adaptive motion by
using machine learning methods by the interpolation between feasible training motion examples fails to guarantee the
stability and dynamic feasibility of the generated behaviors.

Keywords:
robotics, navigation, walking pattern generator, goal-directed movements, movement primitives, motor coordination,
action sequences

1. Introduction

The modeling and the synthesis of the online-reactive
multi-action sequences is an extremely important topic
in both, computer graphics and humanoid robotics. The
most challenging problem in the online control of com-
plex whole-body behaviors, which is solved apparently
effortless by humans, is the flexible coordination of
goal-directed movements with the maintenance of dy-
namic balance during locomotion. The solution of this
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problem requires simultaneously the flexible adaptation
of executed upper-body behaviors, e.g. to changing po-
sitions of goal objects or obstacles, combined with a
control of dynamic balance during walking, in order to
avoid that the robot falls. In addition, the robot’s joint
torques have to be kept in a feasible range. The detailed
analysis of human behavior shows that their motor con-
trol is highly predictive, and often optimizes complex
behaviors over long time horizons, e.g. lasting over
multiple steps. This is fundamentally different from
many solutions of this problem in humanoid robotics
[Siciliano and Khatib (2016)].

The realization of such complex behaviors for hu-
manoid robots with long time horizons for predictive
control is a challenging problem. A standard method
for the computation of control signals for such high-
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dimensional robots is optimal control. However, the
solution of optimal control problems over such long
temporal horizons is computationally extremely costly.
With state-of-the-art methods [Koschorreck and Mom-
baur (2012)] even the optimization of a single step for
a humanoid robot can take minutes, and multi-step se-
quences would take even multiple hours. This ren-
ders such methods inappropriate for the real-time plan-
ning and control of such complex full-body motion se-
quences in humanoid robots.

In this paper, we present an approach for the solu-
tion of this problem that combines two components.
The first component is an online-capable planning algo-
rithm that is based on learned dynamic movement prim-
itives, which generates human-like full-body motion se-
quences that flexibly adapt to changes in the action
space, e.g. displacements of the goal object. The sec-
ond component is a nonlinear Model Predictive Control
(MPC) system [Naveau et al. (2016, in press)] for the
humanoid robot that combines the outputs of a Walking
Pattern Generator (WPG) with the panned upper-body
motion in a way that guarantees the the dynamic feasi-
bility of the resulting full-body motion. An essential el-
ement of this architecture is a dynamic filter that appro-
priately modifies the planned Center of Mass (CoM) and
Zero Moment Point (ZMP) trajectories in dependence
of the planned upper-body motion. We demonstrate the
novel approach by the control of multi-step sequences
that realize highly adaptive reaching and walking to-
wards goal objects at different distances, where the sys-
tem implements human-like highly predictive control
over multiple-steps. The resulting computational com-
plexity of this control system is not much higher than
the one of the state of the art WPG algorithm [Naveau
et al. (2014)].

Our article is organized as follows: In the following
section, we give an overview of related work in the ar-
eas of computer graphics and humanoid robotics. Sec-
tion 3 describes the developed system. This includes
a short description of the underlying human trajectory
data from a drawer-opening task, of the online planning
algorithm that is based on a special form of dynamic
movement primitives, and a more detailed description
of the integration of this planning algorithm with the
MPC-based control architecture of the robot. In Sec-
tion 4 we present a variety of results obtained with the
OpenHRP robot simulator, which evaluate the proposed
approach also in comparison with simpler solutions, and
a preliminary test that implemented the planned trajec-
tories on the HRP-2 humanoid robot. Limitations and
extensions of the developed approach are discussed in
the final section.

2. Related Work

Work related to the developed system can be
found in biological motor control and related robotics
approaches, computer animation, and in humanoid
robotics.

2.1. Control of multi-step sequences in biological sys-
tems

Biological systems effortlessly coordinate locomo-
tion with other goal-directed tasks [Weigelt and Schack
(2010)]. A relevant example are studies on the coordi-
nation of walking and reaching. The kinematics of this
behavior can be approximated by two separate under-
lying movement components, which mainly model the
periodic locomotion and the non-periodic goal-directed
movement [Chiovetto and Giese (2013)]. A recent study
[Land et al. (2013)] investigated in detail the underly-
ing coordination, using a task where participants had
to walk towards a drawer and to reach for an object.
Participants showed highly predictive control in their
motor behavior, where within multi-step sequences al-
ready the first step was adapted dependent on the posi-
tion of the goal object. In addition, participants adjusted
their behavior in a way that ensured comfortable reach-
ing during in the last step. This behavior is compatible
with the maximum end-state comfort hypothesis that has
been formulated in human motor control [Rosenbaum
(2008); Weigelt and Schack (2010)]. In recent work we
have tried to reproduce this behavior by an algorithm
for trajectory synthesis that is based on learned dynamic
movement primitives [Mukovskiy et al. (2015)]. A sim-
ilar problem has also been solved by [Gienger et al.
(2010)], who computed optimized stance locations with
respect to the position of a reaching target, using a dy-
namical systems approach for the generation of reach-
ing behavior.

An influential idea in the field of biological mo-
tor control has been the concept of movement primi-
tives [Flash and Sejnowski (2001); Flash and Hochner
(2005)]. According to this hypothesis the coordina-
tion of complex movements is based on the combina-
tion of lower-dimensional control units, strongly reduc-
ing the dimensionality of the underlying control prob-
lem. Such primitives have been extracted by unsuper-
vised learning from kinematic and EMG data. This idea
has been transferred to robotics. [Taı̈x et al. (2013)]
extracted primitives from human reaching movements
using principle component analysis (PCA), success-
fully implementing reaching behavior on an HRP-2 hu-
manoid robot. Movement primitives, including the use
of force feedback, have also been proposed by [Gams
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et al. (2009, 2013)]. A related important idea is the
concept of dynamic movement primitives that generates
planned trajectories by appropriately designed nonlin-
ear dynamical systems [Schaal et al. (2003); Ijspeert
et al. (2003)]. Systems based on dynamic movement
primitives have been proposed for the generation of
complex movements in real-time [Ijspeert et al. (2013),
Ajallooeian et al. (2013)]. But all these online DMP-
based methods of modeling the kinematic trajectories
do not guarantee the dynamic feasibility of the resulting
motion, which is a critical issue.

2.2. Modeling of whole-body movement sequences in
computer graphics

The problems of kinematic synthesis of complex
whole body movements has been addressed extensively
in computer graphics, e.g. [Levine et al. (2012)],
and many learning-based approaches have been pro-
posed that provide low-dimensional parameterizations
of classes of whole body motion [e.g. Hsu et al. (2005);
Safonova et al. (2004); Wang et al. (2008); Li et al.
(2002)]. The generated individual movements can be
automatically concatenated into longer sequences, tak-
ing into account additional task constraints [Kovar et al.
(2002)]. A relevant example is [Huang and Kallmann
(2014)] who modeled the coordination between loco-
motion and arm pointing in the final step, by blending
and selecting arm pointing primitives dependent on the
actual gait phase. All these methods model the move-
ment kinematics without taking dynamic constraints
into account. A recent example is [Feng et al. (2012)]
who blended motion-captured example motion priori-
tized ’stack of controllers’. [Shoulson et al. (2014)]
presented a method where controllers for different body
parts are blended, where their prioritization is changed
sequentially over time, dependent on the actual action
within a longer sequence.

Other work in this domain has developed dynamic
filtering techniques in order to adjust such synthesized
motion to fulfill dynamic constraints derived from phys-
ical models, e.g. for the Zero Moment Point (ZMP),
in order to increase the generalization regime of such
learning-based methods [Liu et al. (2005)].

2.3. Related approaches in humanoid robotics

In humanoid robotics numerous approaches have
been proposed for the synthesis of walking in combi-
nation with grasping movements. An example is the
DARPA robotic challenge valve manipulation task. For
this problem, [Ajoudani et al. (2014)] proposed a hy-
brid controller with a goal-driven fast foot step planner

that is combined with visual servoing for the reaching
and grasping of the valve. [Kuindersma et al. (2015)]
proposed a control architecture for the humanoid robot
Atlas that automatically finds foot steps around and over
obstacles, in order to reach for a goal object and to real-
ize more complex actions. Other solutions for the com-
bination of walking and vision-controlled reaching of
a static and mobile targets during walking have been
proposed in [Stasse et al. (2008)] and [Brandao et al.
(2013)].

Some researchers have used randomized motion
planning algorithms for whole-body walking combined
with manipulation tasks in constrained environments
[Dalibard et al. (2013)]. For example, [Kanoun et al.
(2011)] proposed a method that is based on a virtual
kinematic tree for the planning of foot placements,
which was successfully implemented on the HRP-2
robot. A framework that decomposes reach-to-grasp hu-
man movements into sequences of kinematic tasks has
been developed in [Sreenivasa et al. (2012)]. Further
work applied imitation learning [Mühlig et al. (2010)],
where walking and grasping were modeled as a se-
quence of separate actions. A task priority approach
based on a generalized inverse kinematics was applied
in [Yoshida et al. (2007)] in order to organize several
sub-tasks, including stepping and hand motion.

The control of human-like multi-joint systems taking
into account contact constraints and guaranteeing dy-
namic balance is a challenging approach. Current solu-
tions range from near real-time whole body Model Pre-
dictive Control with regularized modeling of contacts
in order to decrease the associated computational cost
[Tassa et al. (2012); Koenemann et al. (2015)] to ap-
proaches based on optimal control with precise model-
ing of contact phases, requiring typically hours of off-
line computation time (e.g. [Koschorreck and Mombaur
(2012)]).

A solution based on prioritized IK, that integrates
DMPs with MPC for individual actions has been pro-
posed by [Vuga et al. (2013)].

3. System architecture

In the following we first give a brief overview of the
human data that was used for the training of the prim-
itives of our online planning algorithm, and which also
provides evidence of the highly predictive coordination
of complex human goal-directed movements. Subse-
quently, we describe briefly our movement primitive-
based online motion planning algorithm and discuss
how this planning algorithm can be integrated with the
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Parameters optimized according
to “end-state comfort hypothesis

Step length inferred from
residual target distance

Figure 1: Illustration of the different phases of the human behavior, illustrated in terms of intermediate postures: 1) normal step; 2)
step with initiation of reaching; and 3) standing with opening of the drawer and reaching for the object.

model predictive control architecture for the humanoid
robot HRP-2.

3.1. Human data

3.1.1. Drawer opening task
The modeling of the coordination of walking and

reaching was based on a motion capture data set from
humans who opened a drawer. The participants walked
towards a drawer, opened it with their left hand and
reached for an object inside the drawer with right hand.
The initial distance from the drawer and the position
of the object inside it were varied [Mukovskiy et al.
(2015)]; see Fig. 1. The recorded sequences consist
of three subsequent actions: 1) a normal walking step
(starting with left heel strike and ending with left heel
strike); 2) a shortened step with the left-hand reaching
towards the drawer. This step showed a high degree of
adaptability, and its length was typically adjusted in or-
der to create an optimum distance from the drawer for
the final reaching movement. This behavior is consis-
tent with the maximum end-state comfort hypothesis in
motor control, which assumes that motor planning op-
timizes the comfort of the end state of planned move-
ments [Land et al. (2013)]; 3) the drawer opening com-
bined with the reaching for the object while standing.
An example trial is shown in [movie1].

The data set consists of the trajectories of ten trials
of single participant, recorded in Univ. Bielefeld with
optical motion capture system (Vicon Motion Systems,
Oxford, UK) consisting of 12 MX-F20 CCD cameras at
a frame rate of 200 fps with a spatial accuracy of about
1.5 mm. PluginGait marker set was used with 41 mark-
ers. The length of the individual steps (actions) for the

1https://goo.gl/5HKiG7

individual motion-captured sequences is shown in Fig.
2. This figure very nicely illustrates the predictive na-
ture of the motor planning. The size of the second step
(yellow) is strongly adapted dependent on the distance
of the starting point from the goal position. The lengths
of the other steps is much less variable and shows sys-
tematic dependence on this distance. (See [Mukovskiy
et al. (2015)] for further details about this data set.)
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Figure 2: Predictive planning of real human trajectories. Dis-
tances from the pelvis to the front panel of the drawer
(green, yellow, red), and the distance between the front panel
and the object (blue) for different trials. (Reproduced from
[Mukovskiy et al. (2015)].)

3.2. Preprocessing of training trajectories

The recorded motion capture data was processed and
animated in MotionBuilder (Autodesk), using an ’actor’
puppet whose geometric parameters were adapted to the
recorded subject. The trajectories were cut, starting at
the first heel strike and ending with the object reach-
ing. A kinematic model of the HRP-2 robot was created
in Maya (Autodesk), neglecting joint angle constraints.
All ten trajectories were retargeted to the HRP-2 model
using MotionBuilder. During retargeting the feet posi-
tions of HRP-2 were constrained to level ground, and
the step sizes were reduced proportionally to the height
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Figure 3: Offline pre-processing of motion capture data from humans.

of the robot. The resulting joint frame trajectories were
exported, using the Denavit-Hartenberg (DH) conven-
tion. Trajectories were then segmented by hand, and the
durations each action and the corresponding step sizes
were stored separately.

The computed trajectories were further analyzed in
Matlab (MathWorks) and resampled, resulting in a nor-
malized duration of 1.6 sec for each action. The data
was split into two subsets, separating the stored pelvis
trajectories (time course of pelvis position and pelvis
direction in the horizontal plane), and the upper body
trajectories (HRP-2 joint angles extracted from DH
representation). The pelvis position trajectories were
rescaled, ensuring the maximally admissible propaga-
tion velocity for the HRP-2 (0.5 m/sec). The pelvis yaw-
angle trajectories were rescaled by a constant factor, and
a fraction of the yaw angle trajectory was added back to
the trunk yaw-angle for compensation. After this com-
pensation, customized inverse kinematics (IK) methods
were applied to correct the upper body arm reaching
motion in order to satisfy joint limit constraints. As in-
put to the Walking Pattern Generator (WPG) (see be-
low) we used the time courses of pelvis velocities in the
horizontal plane, and of the pelvis yaw angular velocity.
An overview of the pre-processing steps is given in Fig.
3.

An illustration of this preprocessing is given in
[movie2], which shows the angular trajectories, animat-
ing a human avatar, and the corresponding retargeted
trajectories for a HRP-2 kinematic model in Motion-
Builder.

3.3. Primitive-based online motion planner

The first core component of our architecture is an on-
line motion planning algorithm that is based dynamic
movement primitives, which are derived from classes of
human trajectories by unsupervised learning. Because
of space limitations we can here only briefly sketch the

2https://goo.gl/ucbVA2

structure of the online planning algorithm. Further de-
tails can be found in [Mukovskiy et al. (2015)].

3.3.1. Learning of kinematic primitives
The first step in the construction of dynamic move-

ment primitives is the learning of a low-dimensional
representation of a set of motion-captured trajectories
that spans the space of relevant behaviors, by a super-
position of a small number of source or basis functions.
By this form of dimension reduction the relevant behav-
iors can be generated by a very small number of cou-
pled dynamic movement primitives (s.b.). Contrasting
with many related approaches for the modeling of tra-
jectories, which exploit for example PCA or ICA (e.g.
[Safonova et al. (2004)]), we fit such trajectory sets by a
generative model that is known in acoustics as anechoic
mixing model. Opposed to the instantaneous mixing
model that underlies PCA and ICA models for trajec-
tory representation, the anechoic model allows for time
shifts of the superposed components. We have shown
elsewhere [Omlor and Giese (2011)] that the anechoic
mixing model for many types of movements result in
representations with a much smaller number of source
functions (typically by factor two), for equal approx-
imation quality in comparison with standard methods
such as PCA or ICA. This low dimensionality is essen-
tial since it determines the dimensionality of the state
space of the nonlinear dynamical system that generates
behaviors adaptively online.

Mathematically, the anechoic mixture model is
defined by the equation:

ξi(t)︸︷︷︸
angles

= mi +
∑

j

wi j σ j

(
t − τi j

)︸       ︷︷       ︸
sources

The joint angle trajectories ξi(t) were derived from the
original motion capture data that is temporally seg-
mented into the three subsequent actions (s.a.). The nor-
malized action trajectories are approximated by a linear
mixture of the source signals σ j(t), weighted with the
mixing weights wi j. The individual sources are shifted
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Figure 4: Approximation quality as function of the number
of sources for all three actions, comparing anechoic demix-
ing without constraints (blue) and PCA (green). The purple
dotted line indicates approximation quality for the first action
with fixed delays across trials. The red dashed line indicates
approximation quality with two additional sources (with fixed
delays).

in time with the delays τi j. The means of the angle
trajectories are indicated by the variables mi. Source
functions and model parameters were learned, apply-
ing anechoic demixing algorithms described in [Om-
lor and Giese (2011); Chiovetto et al. (2013)]. For the
application presented in this paper, in addition to the
learned source functions, which approximate the peri-
odic signals components, we used an additional non-
periodic source component, which was pre-specified.
This component was given by the fixed function s0(t) =

cos(πt/T ), where T was the cycle time of the learned
periodic source function with the lowest fundamental
frequency.

In order to model the multi-step sequences we learned
such a representation using a step-wise regression ap-
proach. The whole training data was first used to fit
the mean values mi and the weights corresponding to
the non-periodic source function. The residuals of ac-
tion 1, the normal walking step, were then approximated
by three periodic source functions, applying a modified
algorithm that constrains all time delays for the same
source function to be equal across all trials (but allow-
ing different delays for different joint angles). This con-
straint simplifies the spatio-temporal blending between
different motion patterns, at the cost that more sources
have to be introduced for an accurate approximation (cf.
Fig. 4). The second and third action then were approxi-
mated using the sources introduced for the normal walk-
ing step, and two additional periodic sources that were
added in order to account for the residuals, where the
same constraint was applied to the estimated time de-
lays. Fig. 4 shows the obtained approximation quality in

time

time
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nonperiodic source
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1

1.5

-2

-1

0

1

2
Sources: 1st action

Figure 5: Estimated source functions.

comparison with a PCA model, and with models with-
out constraints for the time delays. It is possible to ac-
complish a quite accurate approximation with a total of
four sources for the first action and two additional pe-
riodic sources for actions 2 and 3. And the resulting
shapes of the learned source functions for the approxi-
mation scheme of 4+3 sources are shown in Fig. 5.

3.3.2. Online planning of multi-action sequences
Our online planning algorithm for whole-body move-

ments generates the trajectories as solutions of nonlin-
ear dynamical systems that is based on dynamic move-
ment primitives, which are derived from the kinematic
primitives described in section 3.3.1. Dynamic move-
ment primitives have been proposed in robotics before
[Schaal et al. (2003); Ijspeert et al. (2003)], and similar
approaches have been described in [Gams et al. (2009);
Petrič et al. (2011); Buchli et al. (2006)]. These pre-
vious approaches, however, exploit no dimension re-
duction for the learning of the kinematic primitives.
We have previously demonstrated the suitability of our
approach for the adaptive online generation of com-
plex multi-step sequences, coordinated with arm move-
ments, and for the animation of coordinated crowds of
agents [Mukovskiy et al. (2015); Giese et al. (2009)].

We constructed dynamic movement primitives
(DMPs) from the kinematic primitives described in the
previous subsection. For this purpose, we mapped the
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Figure 6: Architecture for the online synthesis of body move-
ments using dynamic primitives, [Giese et al. (2009)].

state space of simple nonlinear canonical dynamical
system onto the values of the learned source functions.
These nonlinear mappings were learned using Support
Vector Regression (using a Radial Basis Function ker-
nel, exploiting the LIBSVM Matlabr library [Chang
and Lin (2001)]). In this way the source signals can be
generated online as solutions of a nonlinear dynamical
system. The canonical dynamical systems related to
different primitives were dynamically coupled in order
to ensure a synchronization of the corresponding states.
The resulting architecture is summarized in Fig. 6. A
more detailed discussion of the design of this coupling
and its relationship to the stability of the resulting
dynamics is given in [Mukovskiy et al. (2013)]. The
online generated source signals are then used as inputs
for the anechoic mixing model, which defines the
planned joint angle trajectories. An overview of the
underlying architecture is shown in Fig. 6.

As canonical dynamics for the periodic DMPs we
chose a limit cycle oscillator (Andronov-Hopf oscil-
lator), which is given by the equations (ω defining
the eigenfrequency), and the pair of state variables
[x(t), y(t)]:

ẋ(t) = [1 − (x2(t) + y2(t))]x(t) − ωy(t)
ẏ(t) = [1 − (x2(t) + y2(t))]y(t) + ωx(t))

Since the attractors of this nonlinear systems can be
mapped onto circle in the phase plane, delays can be
represented by a rotation of the vectors in state space by

an angle that is proportional to the delay. In this way, we
are able to model coupled networks with delays between
different CPGs by a set of coupled set of differential
equations without explicit delay times (see [Giese et al.
(2009)] for further details). The instantaneous phase of
the leading DMP, which generates the periodic solution
with the lowest frequency also was used to control the
timing of the non-periodic source.

In order to plan online highly flexible behaviors, with
an adaptation of steps and reaching behavior to the goal
position, we learned nonlinear mappings from task pa-
rameters onto the mixing weights of the anechoic mix-
ing model. The task parameters were the were steps
lengths and durations. Mappings were learned from
training data, applying Locally Weighted Linear Re-
gression (LWLR) [Atkeson et al. (1997); Mukovskiy
et al. (2015)].

For the synthesis of multi-step step sequences the step
lengths was computed from the actual estimated target
distance. For this purpose we tried to reproduce the
dependencies between the individual step sizes and the
distance to the goal. In the human data, the reaching dis-
tance of the arm (action 3) is positively correlated with
the distance to the object inside the box, and negatively
with the length of the previous step. These dependen-
cies were modeled by linear regression and exploited for
the computation of the reaching distances while stand-
ing. For the second step, the step length was adjusted in
order to realize a maximum-comfort distance for reach-
ing. The length of the other steps then was adjusted
accordingly. Step ranges were computed from the train-
ing data, and an appropriate number of additional steps
was automatically introduced when the target could not
be reached within three steps. A more detailed descrip-
tion of the algorithms for the smooth interpolation of the
mixing weights, ensuring smooth transitions between
the different steps is given in [Mukovskiy et al. (2015)].

Figure 7 illustrates the high degree of flexibility of
this online planning algorithm. For this example, the
goal (drawer) jumps away from its original position
while the agent is approaching it. The algorithm adapts
online to this perturbation, generating very human-like
adaptive coordination, and it includes automatically an
additional step in order to compensate for the suddenly
increased distance to the drawer. See also movie3.

3.4. Integration of online-planning with model-
predictive control of the HRP-2

The central innovation of our work is the integration
of the described online-planning algorithm with a con-

3https://goo.gl/9fLzO7
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t=1.18s
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t=3.30s

t=2.36s

t=1.94s

Figure 7: Adaptivity of online planning. If the goal (drawer)
jumps away during the approaching behavior, automatically
an additional step is introduced. Overall, a very smooth
human-like whole-body coordination pattern emerges.

trol architecture for the HRP-2 humanoid robot, which
is based on nonlinear model predictive control (NMPC).
This does not only involve the combination of trajecto-
ries derived from human data, as described in section
3.2, but it requires specifically the approximation of hu-
man data by dynamically feasible trajectories, exploit-
ing NMPC framework. These feasible trajectories form
a novel training set, from which a new set of optimized
dynamic primitives was derived.

3.4.1. Overview of control architecture
The control architecture for the HRP-2 robot is shown

in Fig. 8. It consists of three main building blocks. The
online kinematic synthesis algorithm, which was laid
out in section 3.3, provides input to the control archi-
tecture (shaded box in Fig. 8) in terms of two sets of
variables: the velocity and angular velocity of the Cen-
ter of Mass (CoM) (variables vref and ωref), and the joint
angles of the upper body qupper body.

The first building block is a Walking Pattern Gener-
ator (WPG) that computes from the variables vref and
ωref , for one gait cycle, foot placements xfeet and trajec-
tories of the CoM xCoM and of the Zero Moment Point
(ZMP) xZMP that ensure the dynamic stability of the gait
[Vukobratović and Stepanenko (1972)]. This computa-
tion is based on model predictive control (MPC), and
further details about the underlying computations can
be found in section 3.4.2 and in [Naveau et al. (2016, in
press)].

The second block is a Dynamic Filter (DF) that cor-
rects the preplanned foot, CoM, and ZMP trajectories,
taking into account the planned upper-body motion, re-
sulting in the corrected trajectories xcor

feet, xcor
CoM and xcor

ZMP.
The DF operates in closed-loop together with WPG,
and further details about the underlying algorithms are
described in [Naveau et al. (2016, in press); Stasse
(2013)].

The third building block is generalized inverse kine-
matics (IK) module that implements a ’Stack-of-Task’
approach. This module combines the corrected CoM
and ZMP trajectories, and the upper-body motion (spec-
ified by the joint angles). This module outputs joint
angle trajectories for the legs and the upper-body that
respect the dynamic stability constraints of the robot,
at the same time approximating, as far as possible, the
planned behavior of the upper body. For this purpose
the task of stabilizing the locomotion is given the high-
est priority, and the approximation of the planned tra-
jectories is realized in the null-space of the control sig-
nals for this prioritized task. The resulting optimization
problem is solved by a sequential quadratic program-
ming approach (QP solver).
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Figure 8: Control system for the humanoid robot HRP-2. The Walking Pattern Generator computes foot positions and CoM and
ZMP trajectories, which are further adjusted by the Dynamic Filter, dependent on the planned upper body motion. The resulting
trajectories are consistent with the dynamic stability constraints of the robot. The approximation of the planned upper body
movement and dynamic stability of walking are guaranteed by a Stack of Task approach, where optimal trajectories are computed
by sequential quadratic programming. (See text for further details.)

The resulting optimal trajectories q are dynamically
feasible and can be realized by the low-level controllers
of the HRP-2 robot. During motion execution, the real-
world environmental and task parameters and the cur-
rent state of the robot are fed back to the kinematic plan-
ner, closing the control loop for an adaptive interaction
between online planning and MPC in the real world.

3.4.2. WPG based on optimal predictive control
The Walking Pattern Generators (WPG) based on

Model Predictive Control (MPC). The first WPG of
this class was proposed by [Kajita et al. (2003)]. This
method computed the reference nominal Zero Moment
Point (ZMP) trajectory from the desired placements of
feet during the gait cycle. A simplified linear inverted
pendulum dynamics (’Cart-Table Model’) was used to
link the Center of Mass (CoM) and the ZMP. Preview
control was exploited for computing the CoM trajec-
tory from the desired ZMP. Due to the model simplifica-
tions, the real ZMP trajectory deviates from the desired
one. This deviation is the result of neglecting the iner-
tial and Coriolis forces generated by the leg swing and
by fast movements of the upper-body. In order to alle-
viate this problem, the authors ran the full body inverse
dynamics in order to compute a better approximation
of the real ZMP. This new ZMP can be computed for
the preview horizon in real-time. The resulting ZMP
error was transformed into a resulting CoM error via
the Preview Control, following the approach proposed
by [Kajita et al. (2003)]. This result can then be ex-

ploited to correct the CoM trajectory. The described
two steps of preview control combined with an evalua-
tion of the inverse dynamics can be repeated iteratively,
successively reducing the ZMP error. This approach for
the dynamic correction can be interpreted as a kind of
Newton-Raphson iteration [Stasse (2013)], and was re-
ferred to as Dynamic Filter in section 3.4.1.

Another improvement of MPC-based WPG is the in-
tegration of the computation of the optimal ZMP tra-
jectory within the constrained quadratic optimization
framework that computes the optimal CoM trajectory
[Wieber (2006)]. This approach requires only the speci-
fication of the preplanned foot positions as input, return-
ing the optimal trajectories for the ZMP and the CoM.
Our approach for nonlinear MPC relies in addition on
another improvement of the same framework made by
[Herdt et al. (2010)], which is the further extension of
the approach by [Wieber (2006)]. This reformulation of
the optimization framework allows to exploit positional
and angular velocities of the CoM as reference trajecto-
ries (for a time horizon of the next two steps), returning
the foot placements and the optimal ZMP trajectories as
result of the nonlinear predictive control problem. This
framework (which is described in detail in [Naveau et al.
(2014, 2016, in press)]) was exploited in our system.

3.4.3. Generation of the dynamically feasible training
data

In order to link the described approach for the online
synthesis of movements with the NMPC approach de-
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scribed above, we transform a set of human-compatible
movement trajectories that were generated by interpola-
tion from the original human data into trajectories that
result in dynamically feasible behavior of the robot. For
this purpose, we approximated the human-like trajec-
tories by ones generated by physics-based simulations,
exploiting the NMPC framework discussed in section
3.4.1. This training of our learning-based approach us-
ing dynamically feasible training data is one of the key
concepts of our proposed approach. The details of retar-
geting and transformation in dynamically feasible tra-
jectories of the training data are discussed in section 4.3.

4. Results

In the following we first briefly discuss the compu-
tation time of our approach. Then we present some re-
sults on the online kinematic planning algorithm. We
then present results of the performance of the method
in the off-line mode, where it was used to reproduce
the behaviors of retargeted training trajectories with-
out adaptation to new step sizes or goal distances. We
demonstrate that the obtained behaviors indeed are dy-
namically feasible and can be implemented on the real
HRP-2 robot. We then demonstrate the performance of
the system in case when adaptive behavior is planned
dependent on the actual goal positions. In the last sec-
tion we compare the robustness of the proposed method
that integrates MPC with learning-based online plan-
ning with a simpler machine learning-based approach,
which realizes control by interpolation between learned
whole-body angle trajectories which have been derived
from training examples that were dynamically feasible.
It turns out that such a more naı̈ve machine learning ap-
proach in many cases results in instability and infeasi-
bility of the produced behavior.

4.1. Computation time
The kinematic pattern synthesis algorithm has a com-

putation time around 81-86 ms for the whole trajectory
(1280 time steps, each 5 ms) on modern a CPU (Intel(R)
Xeon(R) CPU E3-1241 v3, 3.50GHz, Ubuntu 14.04).
The kinematic synthesis required only when target goal
changes its position, and this computation time is be-
low the buffer size for the preview control (100 ms).
The average computation time of the optimization prob-
lem involving WPG-DF iterations is 4 ms (see Naveau
et al. (2016, in press)), which is below the duration of
control time-step (5 ms). The whole algorithm is thus
realtime-capable. In contrast, the optimal control ap-
proaches typically require several hours for the off-line
synthesis of multi-step sequences.

4.2. Primitive-based synthesis of kinematic trajectories

In order to validate the primitive-based online plan-
ning algorithm we generated a set of highly human-like
novel full-body movement behaviors, varying the initial
distance of the actor from the goal object, including a
spectrum of distances that were not part of the training
set. In order to judge the human-likeness of the inter-
polated behaviors, we did not retarget the movements
to the robot kinematics and illustrate them as movies,
using a human avatar. We learned 3 sources for the
approximation of the first step, and another two extra
sources for approximating the residuals of the second
and third step (”3+2 sources”). The training data set
consisted of 10 human joint-angle trajectories.

From the model trained with this data new trajectories
were generated by interpolation, and the agent’s propa-
gation velocity and rotation of the base (pelvis) were
computed from the feet-ground contact events. The step
distances from this simulation served as task parameter
for the Linearly Weighted Regression (LWLR).

For all tested novel goal distances the algorithm gen-
erated very human-like highly coordinated three-step
sequences. This is illustrated in the movie4 that shows
step sequences for total goal distances between 2.34 and
2.94 m, all of which were not in the training set. Be-
haviors for goal distances above 3 meters are shown in
movie5, where the algorithm introduces automatically
additional gait steps in order to ensure that the agents
reaches the goal. Also these behaviors look amazingly
human-like.

The capability of online replanning is demonstrated
in movie6 (see also Fig. 7). I this case, the goal jumps
away from the agent during the approaching behavior
towards a more distant position, where it cannot be
reached anymore with the originally panned number of
steps. The online planning algorithm automatically in-
troduces additional steps and adjusts the others, so that
the behavior can successfully accomplished, again re-
sulting in quite human-like appearance of the generated
behavior.

4.3. Approximation of training trajectories by robot
movements

In order to validate our new architecture, we first
tested the system by the realization of open-loop con-
trol, simulating a physical model of HRP-2 robot that

4https://goo.gl/Pn7atI
5https://goo.gl/JBz216
6https://goo.gl/9fLzO7
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was implemented using the OpenHRP simulator, and
also testing generated behaviors on the real robot.

In a first set of simulations the robot started from a
parking position and makes a transition to a normal step.
At the end of this step the pelvis velocities (propagation
and angular) were determined and used as initial condi-
tions for the generation of a three-action sequence. At
the end of the last action, a step back to the final park-
ing position was generated by spline interpolation of the
pelvis angular and positional coordinates between the
final state of the last step of the action sequence and
the final position, introducing two additional steps on
the spot. We also generated examples of four-action
sequences. For this purpose, the retargeted trajectories
were extended by an additional normal walking gait cy-
cle. In order to augment the training data set for the
learning of the mappings between the task parameters
and the model parameters, we generated additional ar-
tificial kinematic data by scaling of the pelvis forward
propagation velocities for all gait cycles uniformly (by
the factors 0.8, 0.92, and 1.2), while keeping the up-
per body trajectories fixed. In this way we generated a
total of 30 training examples from the original 10 mo-
tion capture trials. Examples of the generated three- and
four-action sequences are shown in movie7.

These trajectories were dynamically feasible for the
robot, but still based on movement primitives learned
from human data. In order to construct optimized prim-
itives for the control of the robot, we generated 30 tra-
jectories that were simulated with the OpenHRP physics
simulator of the robot as novel training data and learned
from this novel optimized movement primitives. For
this purpose, the trajectories were approximated using
4 sources for the approximation of the first step, and 3
additional ones for the approximation of the residuals
of the other steps, because this resulted in the best ap-
proximations with a small number of sources (Fig. 5).

A systematic validation of the approximation qual-
ity, dependent on the number of learned sources, is pre-
sented in Fig. 9. This figure shows histograms of the re-
production errors of the step sizes of the first two actions
and the resulting arm reaching distance for the last ac-
tion for different choices of the number of source func-
tions. In all cases the spatial errors of the parameters,
realized by the full control system, are small, always
below 10 mm and often below 5 mm. This shows that
in spite of the high complexity of the operations that
are necessary to transform the original human motion

7https://goo.gl/7IZ0P1
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shows the histograms of the spatial errors. The first number in-
dicates the number of sources learned from the first step (ac-
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into a motion sequence that is feasible for the robot the
final control system produces movements that approxi-
mate the planned step sizes and reaching distances quite
accurately.

1 2

3 4

5 6

Figure 10: Real HRP-2 robot performing a 4-action walking-
reaching sequence in the laboratory of LAAS/CNRS.

Some of these feasible re-synthesized trajectories
were also tested using the real HRP-2 robot (cf. Fig.
10). A demonstration of the resulting behaviors for the
three-action sequence is shown in movie8, and a four-
action sequence is shown in movie9.

8https://goo.gl/jjAVfT
9https://goo.gl/RqT6Q3
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Figure 11: Trajectories of the Zero Moment Point (ZMP) (in
walking direction, x coordinate) for different architectures.
The blue curve xreference

ZMP indicates the reference ZMP trajec-
tory computed from the linear inverted pendulum model. The
green curve xunfiltered

ZMP shows the ZMP trajectory without filter
correction. The trajectory with filter correction of all degrees-
of-freedom is indicated in orange color xDF(full body)

ZMP , and the
case where the dynamic filter was only applied to the lower-
body degrees-of-freedom is indicated by the magenta trajec-
tory xDF(legs only)

ZMP .

We also quantified the improvement of the behav-
ior resulting from the inclusion of the dynamic filter in
comparison with an architecture without this stage. Fig.
11 shows the x-coordinate trajectories of the Zero Mo-
ment Point (ZMP) for different model variants: 1) the
idealized inverted pendulum model, which provides a
reference trajectory for the underlying MPC approach
(solid blue line xreference

ZMP ); 2) the architecture without
the dynamic filter correction (green dashed-dotted line
xunfiltered

ZMP ); 3) application of the dynamic filter only to
the lower body degrees of freedom, assuming the up-
per body degrees-of-freedom to be freezed (magenta
dashed-dotted line xDF(legs only)

ZMP ) and 4) when the dy-
namic filter takes in account the full body motion (or-
ange dashed-dotted line xDF(full body)

ZMP ). The trajectory of
a model without dynamic filter correction (green) devi-
ates significantly from the planned reference trajectory
(blue). The inclusion of the dynamic filter results in a
much better approximation of the reference trajectory
(orange color curve). This correcting effect of the dy-
namic filter is significantly reduced when it is only ap-
plied to the lower body degrees-of-freedom (magenta
curve). This implies that only if the dynamic filter is ap-
plied to all degrees of freedom the robot motion is close
to the planned dynamically feasible motion.

4.4. Inference of adaptive behaviors for novel gait dis-
tances

In order to test the architecture, with an online gener-
ation of new behaviors (step lengths and reaching move-
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ments) dependent on the actual state of the robot, we
synthesized the control signals for 30 different 4-action
sequences, where a spectrum of step sizes was gener-
ated by linear morphing of the sources’ weights. The
first normal walking step length spanned 30 values in
the range of 50.5 and 56.1cm, and the size of the second
step was linearly sampled within the interval between
16.3 and 35.9cm. The reaching distance of the box in
the last step varied in the interval of 66.3 to 75.5cm.
The distance between the object and the front of the
drawer was varied within the interval between 12.4 and
27.3 cm. The generated behaviors for the most extreme
step sizes (smallest and largest) are shown in Fig. 12.
Movie10 shows these action sequences. For all tested
intermediate step sizes that were not part of the initial
training set very human-like coordinated behavior was
generated.

In order to validate more precisely whether the gener-
ated closed-loop behaviors reproduce details of human
grasping-reaching behavior we quantified the generated
step sizes for different goal distances and starting po-
sitions. Figure 13 shows the step sizes generated for
10 different combinations of the two task parameters:
distance of initial standing positions from the goal, and
position of the object in the drawer. Consistent with the
results in humans, the generated behavior shows a weak
positive correlation between position of the object in-
side the drawer (blue) and the reaching distance of the
arm (red). This reaching distance is almost constant,
realizing the principle of the optimization of end-state
comfort. The bars in the other colors indicate the dura-
tions of the starting step, the initial walking step, and the
stopping step, which are changed in an adaptive manner
similar to the behavior shown in Fig. 2. The starting
gait cycle is not present in the human behavior, and is
required in order to ensure a correct initiation of the first
step from the parking position.

A more quantitative assessment of the performance
is given in Fig. 14, which shows the variability of the
ZMP in the lateral plane. The figure compares feasible
trajectories, which are generated by the WPC from orig-
inal trajectories without interpolation to novel step sizes
or goal distances, with the behaviors of the system for
novel goal distances that were not part of the training set
and that required adaptation of the behavior using the
online planning architecture. We compared again the
behaviors for the choices of different number of sources
for the anechoic mixing model (in total between 5 and 9
sources). The analysis is based on 30 newly synthesized
four-action sequences for novel goal distances.

10https://goo.gl/IcwrXb

shorter steps longer steps

Figure 12: Synthesized behaviors with the full close-loop ar-
chitecture, simulated with the OpenHRP simulator for the two
most extreme goal distances.

The ZMP trajectory in the lateral plane was computed
within all stance intervals, and the standard deviation
(STD) of the difference between this trajectory and the
reference ZMP trajectory was computed. The figure
shows error bars with mean and variances as well as the
maximum ranges of the variation. The ZMP variability
is relatively independent of the number of sources for
the reconstruction of trajectories and even for an infer-
ence of novel step distances the variability is not sig-
nificantly higher that for original trajectories generated
with the WPG. This shows that the closed-loop system
produces highly stable behaviors in terms of the varia-
tion of the ZMP.
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closed-loop architecture using the OpenHRP simulator. The
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The results are shown for 10 simulated trials, aligning the po-
sitions according to the front of the drawer. Different colors
refer to different steps within the sequence. (See text.)

4.5. Comparison with simple machine learning ap-
proach

One might ask if the proposed complex architecture is
really necessary, and if one could not just learn dynam-
ically feasible trajectories generated with the WPG and
interpolate between the corresponding full-body kine-
matic angle trajectories using machine learning tech-
niques. This approach would be based on the hope that
the generated interpolations of the control signals also
result in dynamically feasible behaviors when the train-
ing trajectories were dynamically feasible. We tested
our method against such a simpler approach.

For this test we created training data consisting of
30 dynamically feasible walking-reaching trajectories,
which were directly generated by the MPC-based WPG.
Each of these trajectories results in dynamically stable
behavior of the robot. The resulting full-body angle tra-
jectories were again approximated with anechoic mix-
ing models with different numbers of sources (between
5 and 9). Based on this training data 30 new trajecto-
ries for the new goal distances were computed, using
either the simple machine learning approach discussed
above, or with our method of learning upper-body and
base trajectories separately.

The behaviors generated with the simple machine
learning approach often result in falling of the robot,
specifically during the last action (box opening and
reaching for the object, where both arms are extended).
The instability frequently also emerges earlier, already
after the robot stops during the reaching step. A demon-
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Figure 14: ZMP variability in the lateral plane (y-direction).
See the text for more explanations.

stration of this behavior is given in movie11, which
compares the behavior generated by the naı̈ve machine
learning approach with the stable behavior obtained
with our method. The parameters of the target behav-
iors are exactly identical for the two simulations.

A further quantitative analysis is given in Tab. 1, that
shows how often the robot fell down out of the 30 novel
synthesized behaviors. The simulations are grouped
according to the speed of the walks. In addition, we
tested interpolations generated with different numbers
of source functions for the machine learning approach,
and compared this with our method using 4+3 sources.
For the low speed behaviors the machine learning ap-
proach leads to stable behaviors in some cases, and to
falling in others, where the success of the method varies
in a non-systematic manner with the number of source
functions used for the approximation. For the fast speed
movements the simple machine learning approach al-
ways results in falling in a significant number of cases.
Opposed to this result, our method always results in sta-
ble behaviors without falling.

The superiority of our approach is also confirmed by
an additional analysis of mechanical parameters that de-
termine whether the behaviors can be realized on the
real HRP-2 robot. Figure 15 shows the peak values of
the ankle pitch torques for behaviors created directly us-
ing the MPC-based WPG, behaviors generated with the

11https://goo.gl/6hbX6g
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The distribution of falling events
Algorithm slow speed (tr.1-10) middle speed (tr.11-

20)
fast speed (tr.21-30)

”ML 3+2” 0 10 7
”ML 4+3” 1 0 2
”ML 5+4” 0 5 10
Our method 0 0 0

Table 1: Fraction of trials with falls of the robot within 30 test trials with novel goal distances that were not part of the training set. Simple
interpolation using machine learning techniques, approximating the trajectories with different numbers of sources (ML) is compared with our
method that integrates online planning with the MPC control system. (For the ML conditions, the first number indicates the number of sources for
the approximation of the fist action, and the second number the additional sources introduced for the approximation of the other steps).

naı̈ve machine learning approach (ML) of approximat-
ing the full body angle trajectories, and our method. For
the naı̈ve machine learning approach almost all torque
peak values exceed 30 Nm, which is infeasible for the
robot (red shaded region in Fig. 15). This is especially
true if this approach is used for the learning-based in-
ference of the new trajectories. Contrasting with this
result, the torques for behaviors generated directly with
the WPG and the ones generated with our method are
always in the feasible range. This is true for both, for
the off-line reconstruction and for the learning-based in-
ference using our method, and independent of the used
number of source functions.

A similar result emerges for the analysis of the
ground reaction forces (maximal normal force of the
feet during the 4-action sequence). The maximum ad-
missible force for the real HRP-2 is 800 N. Figure 16
shows that for the naı̈ve ML approach in many cases the
ground reaction force is too large compared to this limit,
except for the reconstruction with 9 sources. Especially
for the synthesis of new inferred behaviors, the peak
ground reaction forces are always infeasible. This con-
trasts with the results obtained with our method. Here
in all cases, for the off-line reconstruction and for the
learning-based inference, the ground reaction forces are
always in the feasible range and quite similar to the peak
values that are obtained when the behavior is directly
computed by the WPG using MPC.

Summarizing, we think that these results convinc-
ingly show that the proposed architecture provides a sig-
nificant benefit over simpler approaches that just inter-
polate between control signals obtained from training
data that corresponds to stable behaviors of the robot.
The integration of online planning with the MPC-based
control architecture in combination with the dynamic
filter results in always stable and robust behavior, even
largely independently of the accuracy of the learned tra-
jectory model (number of source functions).

5. Conclusions

We have presented an architecture that combines the
highly flexible online planning of coordinated full-body
movements, based on learned dynamic movement prim-
itives, with a control architecture that is based on a
Walking Pattern Generator, which exploits nonlinear
Model Predictive Control. The proposed architecture is
suitable for the online generation of human-like highly
coordinated full-body movements with long planning
horizons. It generates dynamically feasible behavior of
the robot, ensuring appropriate balance control during
walking in presence of fast online replanning.

To our knowledge, no other presently existing ap-
proach allows the realization of such human-like long-
term predictive motion planning in combination with a
guarantee of dynamic balance during walking in combi-
nation with other tasks for the upper body of bipedal
robots. Common alternative approaches, such as the
optimization of such complex behavior by model-based
optimal control approaches [Koschorreck and Mombaur
(2012)] are presently computationally too costly to al-
low the online generation of such complex, where even
the optimization of short multi-step sequences can take
easily hours of computation time with the presently
available optimization methods. The functionality and
flexibility of the proposed architecture was demon-
strated by simulation using the OpenHRP physics sim-
ulator and also in trials on the real HRP-2 robot. In
addition, the proposed system realizes predictive motor
behavior that is compatible with the end-state comfort
hypothesis [Weigelt and Schack (2010); Rosenbaum
(2008)]. Similar approaches have been proposed for the
off-line optimization of reaching behaviors before (e.g.
[Gienger et al. (2007, 2008)]).

The shown results represent only a first feasibility test
of the proposed architecture, and they demonstrate that
a single highly complex behavior can be robustly im-
plemented on the HRP-2, resulting in robust behavior,
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Figure 15: Peak ankle torques obtained for testing trials with
different methods: WPG: trajectories generated with the
WPG; naı̈ve ML: interpolation of feasible control signals us-
ing machine learning methods; and with our method. We
compare also resynthesis of training behaviors, using differ-
ent numbers of sources for the approximation of the trajecto-
ries, and the synthesis of new trajectories for new target dis-
tances. (Blue error bars indicate mean and standard deviation.
Red lines indicate the ranges between minimum and maxi-
mum value).

where the closed-loop system so far has been only tested
using the OpenHRP simulator, and presently is being
implemented on the real robot. Our present work fo-
cuses on the implementation of the full adaptive algo-
rithm on the real HRP-2 platform, testing the system in
scenarios that require online replanning.

An extension of the approach to other classes of com-
plex behaviors seems possible, since we have demon-
strated elsewhere that the proposed primitive-based
planning model is suitable for the highly adaptive syn-
thesis of other types of complex behaviors, either of
individual agents or even crowds [Mukovskiy et al.
(2013)]. Since the computational efficiency of optimum
control approaches is limited, we think that architec-
tures like ours make a useful contribution to the control
of humanoid robots, especially for the online genera-
tion of complex behaviors with longer planning hori-
zons. The realization of the end-state-comfort hypothe-
sis contributes to the creation of robots that realize prin-
ciples of human motor control. This helps to increase
the human-likeness and acceptance of humanoid robots,
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Figure 16: Peak ground reaction forces obtained for testing tri-
als with different methods: WPG: trajectories generated with
the WPG; naı̈ve ML: interpolation of feasible trajectories us-
ing machine learning methods; and with our method. We
compare also resynthesis of training behaviors, using differ-
ent numbers of sources for the approximation of the trajecto-
ries, and the synthesis of new trajectories for new target dis-
tances. (Blue error bars indicate mean and standard deviation.
Red lines indicate the ranges between minimum and maxi-
mum value).

and might be interesting for the realization of smoother
interactions between real humans and humanoid robots.
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