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Zusammenfassung

In der komparativen Genomik ist die Rekonstruktion der Genome anzestraler Spezies
ein wichtiges Problem, um deren Evolution analysieren zu können. Die Diversität
heutiger Genome in Bezug auf Mutationen und Umordnungen der Genomsequenz er-
laubt es, die Dynamik der evolutionären Prozesse aufzudecken, die zur Entwicklung
heutiger Spezies ausgehend von einem gemeinsamen Vorfahren geführt haben. Diese
Artenbildung wird in einem phylogenetischen Baum abgebildet. Komparative Metho-
den zur Rekonstruktion anzestraler Genome zielen darauf ab, genomische Merkmale
wie die Reihenfolge von Markern (z.B. Gene) für bereits ausgestorbene Spezies an den
internen Knoten des Baums unter verschiedenen evolutionären Modellen abzuleiten.
Dabei stützen sich diese Methoden lediglich auf die vorhandenen Informationen für
rezente Genome an den Blättern des phylogenetischen Baums.

In der letzten Zeit hat der stetige Fortschritt in der Sequenziertechnologie das Feld
der Paleogenomik geprägt, in welcher sich Studien vorzeitlicher DNA (sogenannter
ancient DNA (aDNA)) aus konserviertem organischem Material zusehends mit der
Sequenzierung und Analyse ganzer Paleogenome beschäftigen. Solche „genetischen
Zeitreisen“ erlauben direkte Einblicke in spezifische Phasen der Evolution, welche
nicht nur implizit von rezenten DNA-Sequenzen abgeleitet sind. Da DNA jedoch
nach dem Tod eines Organismus auf natürliche Weise abgebaut wird und Umweltbe-
dingungen die Konservierung der DNA beeinflussen, können meist nur sehr kurze
DNA-Fragmente sequenziert werden. Dies verhindert eine detaillierte Analyse von
Umordnungen in den Genomen entlang der Kanten des phylogenetischen Baums.

Das Ziel dieser Arbeit ist die Kombination von aDNA-Daten und komparativer
Rekonstruktion anzestraler Genome im phylogenetischen Kontext. Der Vergleich von
rezenten verwandten Genomen kann dabei helfen, eine Anordnung für aDNA-Frag-
mente abzuleiten, während die aDNA-Sequenzdaten als zusätzliche Informationsquelle
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in komparativen Rekonstruktionsmethoden einbezogen werden können, um die Rekon-
struktion aller Vorfahren im phylogenetischen Baum zu verbessern. Unser erster
Fokus liegt auf integrativen Methoden, welche Genanordnungen unter der Annahme
von Parsimonie global in der Phylogenie rekonstruieren. Ein zu Grunde liegendes Dis-
tanzmodell für Umordnungen beschreibt dabei die evolutionären Operationen, welche
entlang der Kanten des phylogenetischen Baums aufgetreten sein können. Während
komplexe Modelle Einsicht in die biologischen Mechanismen der Evolution geben
können, ist das Problem der anzestralen Rekonstruktion mit diesen Distanzmodellen
aus informatischer Sicht jedoch NP-schwer. Eine Ausnahme ist die sogenannte Single-
Cut-or-Join (SCJ)-Distanz, welche eine auf Markerordnungen basierende Repräsenta-
tion der involvierten Genome nutzt, um einfache Brüche und Verknüpfungen in der
Anordnung von Markern zu modellieren.

Wir beschreiben Rekonstruktionsmethoden mit dem Ziel, die SCJ-Distanz im Baum
zu minimieren. Zusätzlich setzen wir voraus, dass die rekonstruierten Lösungen kon-
sistent sind, d.h. sie repräsentieren lineare oder zirkuläre Regionen eines Genoms. Un-
sere erste Methode hat eine polynomielle Laufzeitkomplexität und basiert auf dem
Sankoff-Rousseau-Algorithmus. Die Methode integriert explizit aDNA-Fragmente und
mögliche Verknüfungen an einem inneren Knoten des Baumes. Wir zeigen, dass
der Einbezug von Kantenlängen im Baum in der Praxis eine eindeutige optimale
Lösung ergibt. Unser zweiter Ansatz verfolgt eine allgemeinere Strategie, indem
neben der SCJ-Distanz die aDNA-Sequenzierdaten als lokale Gewichte für Marker-
nachbarschaften in der Zielfunktion einbezogen werden. Wir beschreiben einen pa-
rametrisierten Algorithmus für dieses Problem, welcher auch die Berechnung aller
optimaler Lösungen erlaubt. Zuletzt beschreiben wir einen Ansatz, um die Lücken in
Markeranordnungen mit Hilfe von aDNA-Daten zu schließen und so vollständige Pa-
leogenomsequenzen zu rekonstruieren, unterstützt durch verwandte rezente Genom-
sequenzen. Dies erlaubt uns außerdem, widersprüchliche Markeranordnungen auf
Grundlage der Sequenzdaten aufzulösen.

Wir evaluieren unsere Modelle und Algorithmen mit simulierten und biologischen
Daten. Wir konzentrieren uns besonders auf zwei aDNA-Sequenzdatensätze des Krank-
heitserregers Yersinia pestis, welcher als Ursache mehrerer Pandemien im Mittelalter
gilt. Wir zeigen, dass die Kombination von aDNA-Sequenzdaten und die Rekonstruk-
tion im phylogenetischen Baum zu einer deutlich reduzierten Fragmentierung der
aDNA-Daten führt und können mit Hilfe der vielfältigen Methoden auch alternative
Rekonstruktionen vergleichen, um zuverlässig rekonstruierte Regionen zu unterstrei-
chen.



Abstract

In comparative genomics, reconstructing the genomes of ancestral species in a given
phylogeny is an important problem in order to analyze genome evolution over time.
The diversity of present-day genomes in terms of local mutations and genome rear-
rangements allows to shed light on the dynamics of evolutionary processes that led
from a common ancestor to a set of extant genomes. This speciation history is de-
picted in a phylogenetic tree. Comparative genome reconstruction methods aim to
infer genomic features such as an order of markers (e. g. genes) for extinct species at
internal nodes of the tree by applying different evolutionary models, relying only on
the information available for the extant genomes at the leaves of the phylogenetic tree.

Recently, the steady progress in sequencing technologies led to the emergence of the
field of paleogenomics, where the study of ancient DNA (aDNA) found in conserved
organic material is moving rapidly towards the sequencing and analysis of complete
paleogenomes. Such “genetic time travel” allows direct insight into specific phases
of the evolution of specific genomes that are not only implicitly inferred from extant
DNA sequences. However, as DNA is naturally degraded over time after the death
of an organism and environmental conditions interfere with the conservation of DNA
material, an assembly of these paleogenomes is usually fragmented, preventing a de-
tailed analysis of genome rearrangements along the branches of the phylogenetic tree.

In this thesis, we aim to combine the study of aDNA and comparative ancestral
reconstruction in a phylogenetic framework. The comparison with extant related ge-
nomes can naturally assist in scaffolding a fragmented aDNA assembly, while the
aDNA sequencing data can be included as an additional source of information for
comparative reconstruction methods to improve the reconstructions of all related ge-
nomes in the phylogenetic tree. Our first focus is on integrative methods to reconstruct
marker orders globally in a phylogeny under the assumption of parsimony. An un-
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derlying rearrangement model can describe the evolutionary operations that occurred
along the edges of the tree. However, as much as complex rearrangement scenarios
can give insights into underlying biological mechanisms during evolution, from an
computational point of view the ancestral reconstruction problem under rearrange-
ment distances is an NP-hard problem. One exception is the Single-Cut-or-Join (SCJ)
distance, that uses a marker order-based representation of the involved genomes to
model the cut and join of marker adjacencies as evolutionary operations.

We build upon this rearrangement model and describe parsimony-based reconstruc-
tion methods aiming to minimize the SCJ distance in the tree. In addition, we require
the reconstructed solutions to be consistent, such that they represent linear or circular
regions of the ancestral genome. Our first polynomial-time method is based on the
Sankoff-Rousseau algorithm and directly includes an aDNA assembly graph at one
internal node of the tree. We show that including branch lengths in the underlying
tree can avoid ambiguity in practice. Our second approach follows a more general
strategy and includes the aDNA sequencing data as local weights for adjacencies next
to the SCJ distance in the objective. We describe a fixed-parameter-tractable algorithm
that also allows to sample co-optimal solutions. Finally, we describe an approach to fill
gaps between potentially adjacent markers by aDNA data to reconstruct the complete
genome sequence of a paleogenome guided by the related extant genome sequences.
In addition, this approach enables us to select the adjacencies that are supported by
the sequencing information from sets of conflicting adjacencies.

We evaluate our proposed models and algorithms on simulated and biological data.
In particular, we integrate two aDNA sequencing data sets for ancient strains of the
pathogen Yersinia pestis, that is understood to be the cause of several pandemics in
medieval times. We show that the combination of aDNA sequencing reads and a
parsimonious reconstruction in the phylogenetic tree reduces the fragmentation of an
initial aDNA assembly substantially and explore alternative reconstructions to empha-
size reliably reconstructed regions of the ancient genomes.
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Chapter 1
Introduction

The genetic information of all living organisms is stored in their DNA that is composed
of smaller units called nucleotides. Each cell contains a copy of the genetic information,
where genes among other things serve as the instructions to build proteins that provide
various functionality to the organism. In eukaryotes, DNA is found in the cell nucleus
as well as mitochondria and chloroplasts, while in prokaryotes the DNA is contained
in the nucleoid in the cytoplasm. The genome of an organism denotes its complete set
of DNA organized into linear or circular chromosomes.

Ever since Darwin described the idea of evolution in the tree of life where all species
descended from common ancestors over time [37], the dynamics of genome evolution
through mutations has been studied. Understanding the evolutionary processes under-
lying the development of present-day-species is a key goal of evolutionary genomics.
Mutations can be local modifications of the DNA like substitutions, insertions or dele-
tions that directly influence the transcription and translation of genes, e. g. into long
chains of amino acids. Other evolutionary processes describe the rearrangements of
genomic sequences through larger operations such as inversions or translocations for
example. Following the principle of natural selection, some of these modifications get
fixed in a population of organisms over time as they are inherited between different
generations.

Nowadays, DNA sequencing technologies make it possible to determine the precise
order of nucleotides within a DNA molecule. However only relatively short sequences
of the DNA strands can be read at the same time by the sequencing machines, resulting
in so called reads. The lengths of the reads produced by so called next-generation meth-
ods is typically not longer than around 300 bp, while emerging long-read technologies
are able to extend these read lengths at an expense of sequencing accuracy [56]. The
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Chapter 1. Introduction

reads then ideally cover the whole genome in an overlapping fashion. The subsequent
problem of genome assembly describes the process of reconstructing the complete ge-
nome sequence from the sequencing reads. It is widely studied in bioinformatics, as
the nuleotide sequence of a complete genome is a first step to unravel the genetic
information it contains. However it is also one of the most complex computational
problems, as regions of the genome can be repeated multiple times and hence do not
allow to solve the assembly problem unambiguously [99, 132].

The field of comparative genomics describes the comparison of sequenced genomes to
study evolutionary processes. It includes the analysis of specific evolutionary opera-
tions, gene functions or the analysis of cancer genome evolution. The central problem
this thesis concentrates on is the reconstruction of whole ancestral genomes through
the analysis of the order of conserved regions. Comparing the genomes of differ-
ent species completely or partially provides the opportunity to analyze the dynamics
of genome evolution through the diversity observed in these extant genomes. For
example in the case of human pathogens, such analysis is a key to understand the
emergence of pathogenicity or the development of virulence. Even though related ex-
tant genomes provide only indirect insight into the true genome structure of extinct
species, comparing their genomes allows to infer likely genomic features of ancient
species under appropriate models of evolution to ensure the biological plausibility of
the reconstructions. Different approaches have been applied to propose reconstruc-
tions for a variety of ancestral genomes of plants [39, 94, 97], mammals [16, 29, 84, 154],
vertebrates [12, 100, 106], insects [101], or yeast [27], to name a few examples.

In the next section, we will discuss the problem of ancestral genome reconstruction
and provide some background for models of genomes and their evolution, before
introducing different methods that aim to solve this problem. We will complement
this by elucidating new sources of input data, which can improve the reconstruction
of ancestral genomes.

1.1 Background

The term paleogenomics [15] describes the study of ancient genomes by recovering and
understanding the genomic information in long extinct species. On the one hand,
the term can be seen in the context of mostly computational comparative approaches
that characterize similarities and differences between the genomes of extant species
to reconstruct the genomes of ancestors in a phylogeny that represents the relations
between the extant species. On the other hand, the term paleogenomics is also used to
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1.1. Background

describe the sequencing of ancient DNA from conserved organic material like bones
or fossils [96]. In the following section, we aim to give a background on both contexts,
before linking both fields to form the central question of this thesis.

1.1.1 Reconstructing ancestral genomes

Genome rearrangements as modifications to the genome sequence have been observed
already back in the 1920s. Sturtevant studied the linkage relations in genes of different
Drosophila species and identified rearrangements by mapping the position of specific
genes to their chromosomes [139]. Some years later, Sturtevant and Dobzhansky stud-
ied inversions in chromosomes of Drosophila pseudoobscura and used the comparison of
the gene order between different species to infer the historical relationships between
these species [42]. Another 30 years later, in 1963, Pauling and Zuckerkandl introduced
the term paleogenetics in their studies of human hemoglobin genes [111]. Through man-
ual alignment of specific amino-acid positions in four hemoglobin genes in present-day
organisms, they reconstructed likely amino-acids in ancestral polypeptide chains and
already discussed perspectives of ancestral reconstruction. In 1965, Camin and Sokal
described the principle of evolutionary parsimony, i. e. to explain observed data with
as few evolutionary events as possible, to reconstruct phylogenies under the assump-
tion of directed evolution [23], while the principle of minimum evolution has been
described by Cavalli-Sforza and Edwards in 1967 [24]. Over the years, additional vari-
ants of parsimony emerged as alternative ways to model evolutionary change in the
phylogeny (as summarized in [50] and discussed in [51]). However, inferring the phy-
logeny with the least evolutionary change has been shown to be NP-complete for all
basic parsimony variants [38]. On the other hand, as recently summarized in [34], scor-
ing a tree under the different parsimony assumptions is easy and several algorithms
have been developed [54, 60, 125].

This brief historical overview illustrates the beginning of ancestral genome recon-
struction that is still frequently relying on parsimony as a model of evolution. In
the following sections, we give some background on current ancestral reconstruction
principles and models for extant and ancient genomes.

Genomes as permutations

Genomes consist of linear or circular nucleotide sequences, called chromosomes and plas-
mids. Next to the nuclear genome located in the nucleus of eukaryotes or the nucleoid
region in prokaryotes, also organelles such as mitochondria in eukaryotes or plastids
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Chapter 1. Introduction

in plants and algae contain DNA as part of the complete genome of an organism. The
DNA sequence has two strands, which are oriented in opposite direction to each other.
The sequencing of such DNA sequences produces several thousands of reads that are
subsequently assembled to retrieve the genome sequence, either fully assembled or in
form of several contiguous regions (contigs) of the genome.

We abstract from the pure nucleotide sequence by segmenting each chromosome
or plasmid into a sequence of non-overlapping, oriented markers. Each marker can
then be seen as a substring of the original nucleotide sequence of the genome or
the contig, defined by its coordinates and orientation. We assign a unique identifier
to each marker from a marker alphabet M. In order to represent the orientation
of the marker in the genome (i. e. its location on the homologous strands), we can
use a signed representation (+ for the forward strand, − for the backward strand)
or describe each marker by its extremities. As it is usual in genome rearrangement
models, the extremities of a marker are called head and tail, so a marker a is encoded
by the pair (at, ah) or by (ah, at) depending on its orientation.

5' 3'ATTGTCGAAGTGACGTTGACGCGCGGC

3' 5'
TAACAGCTTCACTGCAACTGCGCGCCG

5' 3'

3' 5'

Genome 1 Genome 2

at ah

bh bt

chct

ACGCCGCGCATTGTCGAAGTGACGTTG
TGCGGCGCGTAACAGCTTCACTGCAAC

ch ct bh bt

at ah

at ah

ch ct

bhbt

1,2

1

2

Figure 1.1: Illustration of markers a, b, c defined on substrings of two genomes. Markers
are indicated in red, blue and green. Genome 1 is defined by the marker sequence
(..., at, ah, bh, bt, ct, ch, ...), while genome 2 is defined by (..., ch, ct, at, ah, bh, bt, ...). All
adjacencies implied by these marker orders are depicted as a joined graph, where the
edges representing adjacencies are marked according to the genome they appear in.
The adjacencies {ct, bt} and {ct, at} are conflicting and cannot be part of the same
marker order.

Defining such markers on several extant or ancient genomes, we can cluster them
into homologous families. Markers belonging to the same family are assumed to be
derived from a common ancestor and assigned the same identifier. If each marker
family is present in each of the considered genomes, so we do not model the dele-
tion or insertion of markers, we say markers are universal. If each marker family is
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present only once in each considered genome, so we do not model the duplication
of markers, we say markers are unique. The loss/gain or duplication of markers in-
fluences the complexity of the genome model heavily [53]. In the present work, we
assume the basic model of unique and universal markers, hence each considered ge-
nome is a permutation of all markers inM. In many publications, markers are coined
as "genes", as ortholog gene annotations are a natural source to define marker fami-
lies [114]. However markers can e. g. also be defined as synteny blocks (as discussed
in [124]), extending the analysis of classical gene orders to the genome sequence level.
These blocks can be found through multiple alignment of several genomes, which can
be computationally expensive for large genomes and hence limiting the number of ge-
nomes that can be handled. To avoid this, also more efficient graph approaches have
been implemented [95, 145]. If markers should be defined between some fully assem-
bled reference genomes and a set of contigs, a segmentation approach as described
in [117, 145] based on the pairwise alignment of contigs onto reference sequences can
also be used.

Instead of modeling each genome as a permutation of markers explicitly, we can
also define a set of adjacency relations on each genome. Assume two markers (at, ah)

and (bt, bh) to be contiguous in a marker sequence, such that there is no other marker
defined between them. Then an adjacency is an unordered pair of the two neighboring
marker extremities. Depending on the orientation of both contiguous markers, we
can have four different combinations of marker extremities that form the adjacency:
{ah, bt}, {ah, bh},{at, bh} and {at, bt}. A set of adjacencies that can be ordered into a
linear or circular marker sequence is said to be consistent. However adjacencies are not
independent instances: If two adjacencies assigned to the same genome contain the
same marker extremity, the set of adjacencies cannot be ordered to a linear or circular
marker order. These adjacencies are said to be conflicting. Conflicting adjacencies
indicate support for different marker orders that need to be evaluated based on the
given information, e. g. the phylogenetic context. We assume assembled genomes to be
consistent, while reconstructed ancient genomes can contain conflicting adjacencies as
an interim result, however most reconstruction methods aim to reconstruct consistent
genomes in the end.

The set of adjacencies for one genome naturally defines a graph, where nodes repre-
sent marker extremities and edges represent adjacencies. If we also add edges between
extremities from the same marker, this graph corresponds to the breakpoint graph as
described in [115], but we do not explicitly require these edges in our graph represen-
tation. Conflicting adjacencies then correspond to branching nodes in the graph. An
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example of markers defined on two genomes and a resulting joined graph for both sets
of adjacencies is given in Figure 1.1. The graph contains two conflicting adjacencies
that cannot be part of the same genome.

Genome distances

Mutations are the driving forces in evolution, applying permanent changes to the nu-
cleotide sequence of a genome. They are rare events scaled to the length of genome
sequences and mostly result from damage to the DNA and subsequent erroneous re-
pair mechanisms, or are caused by the dynamic properties of mobile genetic elements.
Differences in the genome sequence are the basic level to distinguish organisms and
even strains from the same species, so precise models are needed to measure the dis-
tance between genomes. Modifications happening to a genome can be classified as
either local or global. Local modifications are so called point mutations, i. e. nucleotide
substitutions, insertions and deletions. They affect single or few base positions in a
genome and can be silent due to the degeneracy of the genetic code, hence not influ-
encing the translation of the nucleotide sequence at all. The edit distance between two
genome sequences considering these three kinds of local mutations can be efficiently
computed with dynamic programming in polynomial time [102, 134].

On the other hand, global modifications affecting larger parts of a genome are called
genome rearrangements. The set of rearrangement operations includes evolutionary
events like sequence inversions, transpositions, translocations, fissions and fusions.
They are illustrated in Figure 1.2. Rearrangements are less common than simple nu-
cleotide mutations, hence might be traced back further to the very distant past in the
history of related genomes. In addition, they are more closely tied to function, as
large-scale rearrangements are much more likely to destroy the contiguity of opera-
tional units in the DNA.

Several models have been defined that include some or all rearrangement opera-
tions. The now standard Double-Cut-and-Join (DCJ) model [152] subsumes all opera-
tions susceptible to alter genomes globally. Efficient algorithms to compute the DCJ
distance between two genomes have been developed [11], however including such a
complex model into bigger contexts has been proven difficult [140], as genome rear-
rangements do not comply with the assumption of independence between different
parts of the genome. In this thesis, we rely on a simpler model that describes the set of
rearrangement operations indirectly: the Single-Cut-or-Join (SCJ) distance introduced
by Feijão and Meidanis in 2011 [46]. It is a set-theoretic variant of the breakpoint
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Figure 1.2: Global genome rearrangement operations that reorder blocks of the genome
as included in the Double-Cut-and-Join (DCJ) model.

distance [140] for multichromosomal genomes that models cuts and joins of marker
adjacencies.

Definition 1 (Single-Cut-or-Join distance (SCJ)). Given two genomes defined by sets of
adjacencies A and B, the SCJ distance between these genomes is

dSCJ(A, B) = |A− B|+ |B− A|.

In other words, an optimal transformation from genome A to B under the SCJ model
can be described by cutting all adjacencies only present in the adjacency set of genome
A and joining all adjacencies only present in the set of genome B, resulting in a short-
est sequence of cuts and joins defining the rearrangement scenario [46]. While this
model is less complex than the DCJ model, which can explicitly describe the course
of evolution, it provides the possibility of tractable algorithms in problems where DCJ
is too complex, e. g. minimizing the distance between more than two genomes in the
context of a phylogeny. We will define this context in the next section.

Phylogeny and Parsimony

Trees are an important data structure in several computer science disciplines. In phy-
logenetics, trees are used to depict the speciation history of several species during the
course of evolution.
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Chapter 1. Introduction

Phylogeny Let G = (V, E) be a graph defined by a set of vertices/nodes V and
a set of edges E, where each edge connects two vertices in the graph. An edge
e = {u, v} ∈ E connecting two vertices u and v is said to be incident to both vertices.
The degree of a vertex deg(v) is then the number of edges incident to v. An undirected
graph is a graph in which edges have no orientation, hence each edge is an unordered
pair of two vertices in V. If edges are represented by ordered pairs of vertices, the
graph is directed. For an oriented edge (u, v), node u is the parent of v and v is a child
of u. A path in a graph is defined as a set of edges that connects two vertices in V,
potentially including several other vertices in between. A path is simple if it contains
no repeated vertices. In an undirected graph, two vertices u, v ∈ V are called connected
if there is a path between u and v. A connected graph is a graph in which all vertices
are pairwise connected. A cycle in a graph is a path where the first and last vertices
are the same.

Definition 2 (Tree). A tree G = (V, E) is a connected graph with no cycles. The set of
vertices V is divided into the set of leaves l ∈ V with deg(l) = 1 and the set of internal nodes
i ∈ V with deg(i) ≥ 2.

A rooted tree contains a designated root node, implying a direction on all edges
pointing away from the root. We can then distinguish between the in-degree and out-
degree of a node based on its incident directed edges. The root node has an in-degree
of 0. The depth of a node v is the length of the simple path from the root to v. If a
node u lies on the path from the root to node v, then u is an ancestral node of v and
v is a descendant node of u. A subtree rooted at v contains v, all descendants of v, and
all edges connecting them. A rooted tree with out-degree of 2 for all internal nodes is
called a binary tree.

Definition 3 (Phylogenetic species tree). A phylogenetic species tree G = (V, E) is a tree
illustrating the evolutionary relationship of extant and extinct species associated to the leaves
l ∈ V. Each internal node i ∈ V represents a speciation event. If the tree is rooted, the most
recent common ancestor to descendant species in the subtree rooted at i is associated to the
internal node i.

In the following, for simplicity we will use the terms phylogenetic species tree and
tree analogously and assume the tree to be rooted. A phylogenetic tree can be fully-
resolved, in which case the order of all speciation events is known and the tree is binary.
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1.1. Background

Multifurcating trees on the other hand contain nodes with an out-degree of 3 or more,
so called polytomies. In addition, phylogenetic trees often have weighted edges, where
the weight of an edge represents some distance between the species associated to the
nodes incident to the edge.

Finding the correct phylogenetic tree for a set of species under consideration is a
complex problem that is studied widely. Several methods have been proposed to
infer the tree that represents the evolutionary history of these species. Distance-based
methods rely on a distance matrix for all considered extant genomes, e. g. based on a
pairwise analysis of point mutations between them, whereas likelihood methods build
upon probabilistic models to infer the most likely tree topology under all possible tree
topologies [52,136]. In this work, we consider the phylogenetic tree to be given, hence
concentrating on the following reconstruction problem along the branches of the tree.

Reconstruction Given the speciation history of some species in a phylogenetic tree,
we aim to analyze the genomes of ancestral species located at internal points of the
tree. Hence considering the diversity of extant genomes and the dynamics of evolu-
tion, we can formulate the following central question:

Question 1 (Ancestral genome reconstruction)

Given the genome sequences of a set of extant species, how can we infer the genome sequences
of ancestral species considering the evolution along the branches of the tree?

Parsimony The assumption of parsimony is the equivalent of Occam’s Razor in an-
cestral reconstruction: given that especially global mutations like genome rearrange-
ments are rare events, it is assumed that the minimal number of changes along the
branches of the tree can explain the true evolutionary history of the species involved.
We can therefore generally define the problem of ancestral reconstruction of marker
orders as an optimization problem minimizing an objective function in the context of
parsimony. When we assume the tree to be given, this is known as the Small Parsimony
Problem.

Definition 4 (Small Parsimony Problem). Consider a tree T = (V, E) with each leaf l
labeled with a set of labels sl ⊆ S and a distance function d : P(S) → P(S) between sets of
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Chapter 1. Introduction

labels in S . A labeling λ : V → P(S) over the tree is parsimonious if λ(l) = sl ∀ l and it
minimizes the sum W(λ, T) of the distances along the branches of T that is defined as

W(λ, T) = ∑
(u,v)∈E

d
(
λ(u), λ(v)

)
.

The set of labels S can e. g. consist of the set of possible nucleotides or amino acids at
specific positions in the genomes, or represent more complex features such as marker
orders or sets of adjacencies.

When the tree topology is included in the optimization, the problem is known as
the Maximum Parsimony Problem (or Large Parsimony Problem). Finding the most parsi-
monious tree is an NP-hard problem for most reasonable distance functions [38].

There exist several variants of the parsimony principle, defining the distance func-
tion in Definition 4. We refer to [52] for a detailed review on this topic. Camin and
Sokal [23] stated parsimonious evolution as a directed process. They assumed labels
to have a logical order, either numerative if labels are numbers or by some qualitative
measure otherwise. Then changes of labels along branches of the tree are only allowed
in the direction of the given order of labels. To label the tree accordingly, we have to
set the label of an internal node u to the minimum label observed at the leaves in the
subtree rooted at u.

The framework of Dollo parsimony [45, 74] supports the assumption that a label rep-
resents a complex characteristic, and hence no label is created twice. In other words, if
we characterize each label in a binary 0/1 format, stating the presence or the absence
of a label respectively, then under Dollo parsimony the change 0 → 1 along a branch
is only allowed once in the tree, while the number of 1 → 0 changes is minimized.
This excludes the event of homoplasy, where two characters evolve independently in
two subtrees of the phylogeny. The development of wings in birds and bats is a pop-
ular example of homoplasy in nature. So for two labels x, y ∈ S and ` defined as the
number of leaves in the tree, we can define the Dollo parsimony distance as

dDollo(x, y) =


` if x = 0 and y = 1

1 if x = 1 and y = 0

0 otherwise
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1 0 0 0 1 1 0 0 0 1

1 1
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0
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Figure 1.3: Example for optimal labelings under Dollo and Fitch parsimony on a binary
label space.

When labels are independent of each other, e. g. , we can assign any two labels
s1, s2 ∈ S to the same ancestor, the parsimonious labeling can easily be found: For
any two leaves labeled 1 for a label s, label all vertices on the simple path in the tree
connecting these two leaves with 1.

For numerical labels x and y, Wagner parsimony defines the distance as the absolute
difference dWagner(x, y) = |x− y|. Fitch parsimony [54] assumes an equal probability for
all changes of labels along the branches of a tree, generalizing Wagner parsimony for
binary states to any discrete label alphabet. The Fitch parsimony distance can then be
defined as

dFitch(x, y) =

1 if x 6= y

0 otherwise

In other words, the Fitch model is counting the changes of label states along the
branches of the tree, while not assuming an ordering of labels or restrictions to the
direction of changes along branches of the tree. An example of tree labelings under
Dollo and Fitch parsimony is shown in Figure 1.3. A labeling of a tree under this dis-
tance can be computed in polynomial time using a dynamic programming approach.
We will revise this in more detail in Chapter 2.

Ancestral reconstruction under the parsimony assumption can be divided into two
classes of methods: local and global. For the sake of completeness, we will shortly
revise the general strategy of local methods, before we concentrate on the global par-
simonious reconstruction based on rearrangement distances. Parts of the following
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sections have been included in a recent review on ancestral reconstruction methods [7].

Local reconstruction Local approaches consider the reconstruction of one specific
ancestor of interest at a time independently from the other ancestors of the tree [13,29,
84]. Usually, they do not consider an explicit evolutionary model. Given the marker
orders for extant genomes, these approaches concentrate on the reconstruction of local
syntenic characters as for example adjacencies.

In a first step, these methods compare marker orders of ingroup and outgroup
species to define potential ancestral marker adjacencies or intervals. In several meth-
ods [68, 106, 117] the set of potential marker adjacencies is based on the Dollo parsi-
mony principle: For a specific adjacency a, if there exist two extant genomes containing
this adjacency and their path in the phylogenetic tree contains the ancestor of interest,
then a is included in the set of potential adjacencies at this node. Other methods also
rely on the Fitch parsimony principle [84]. As adjacencies are not independent, the
set of potential adjacencies can subsequently contain conflicting adjacencies due to
genome rearrangements, convergent evolution or assembly errors. Hence in a second
step, a conflict-free subset of potential ancestral marker adjacencies is selected [88].
The obtained adjacencies are then ordered into so-called Contiguous Ancestral Re-
gions (CARs) [84]. This step is often defined as a combinatorial optimization problem
aiming to minimize the number or weight of discarded ancestral adjacencies. It fol-
lows principles common in scaffolding methods used to obtain gene orders for extant
genomes from sequencing data [20, 87].

The software ANGES [68] applies these two steps while also considering common
intervals of markers in the first step, reporting ancestral genome maps as PQ-trees or
PC-trees. The method FPSAC adapts these steps to locally scaffold ancient contigs, we
will refer to it in more detail later. Because local methods concentrate on only one
ancestor in the tree, they do not guarantee to solve the Small Parsimony Problem as
defined above. Applying these methods to all internal nodes of the tree separately
might miss some relations that are only apparent when all ancestors in the tree are
reconstructed simultaneously, resulting in a total tree distance that is not minimal.

Global reconstruction Global approaches on the other hand simultaneously recon-
struct ancestral gene orders at all internal nodes of the considered phylogenetic tree,
generally based on a parsimony criterion within an evolutionary model. While sim-
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1.1. Background

ple parsimony distance variants as defined above allow efficient methods to find a
parsimonious labeling, genome rearrangement scenarios based on complex rearrange-
ment models can give insights into underlying evolutionary mechanisms and assign
explicit evolutionary events like inversions and translocations to the branches of the
tree. The Small Parsimony Problem has been studied with several underlying genome
rearrangement models, such as the breakpoint distance, reversal distance or the DCJ
distance [5, 21, 70, 156].

For most rearrangement models that do not include duplications, the distance be-
tween two genomes can be computed efficiently. However even the simplest non
pairwise ancestral genome reconstruction problem, the median problem [21, 123] re-
constructing a genome minimizing the distance in a tree with only three leaves, is
already NP-hard [140]. Adding duplications makes all problems hard even for the
comparison of two genomes [53]. Hence reconstructing rearrangement events that
happened along the branches of a tree is not tractable either.

Heuristics for the ancestral genome reconstruction problem usually follow the strat-
egy of assigning an initial genome arrangement to each internal node of the tree and
then iteratively refining the solution by solving the median problem for internal nodes
until no further improvement in the overall tree distance can be achieved [3]. The algo-
rithm of GASTS [151] improves over previous methods applying this strategy by trying
to find a good initial arrangement avoiding local optima. Using adequate subgraphs
for heuristic assignment of the median, this method can handle multichromosomal
data with unique and universal markers.

Another approach is based on the Pathgroup data structure [155,156] storing partially
completed cycles in a breakpoint graph for each branch in the phylogeny. Informally,
the breakpoint graph [9] is a permutation graph showing the relation of a permutation
to the identity permutation through differentially colored edges. Graphs are greedily
completed and eventually form genomes at all internal nodes. This solution can be
used as an initialization prior to local iterative improvements based on the median
again using the Pathgroup approach. An interesting property of Pathgroup is that it
can handle whole genome duplications.

The method MGRA [5] on the other hand relies on a multiple breakpoint graph
combining all extant genome organizations into one structure. MGRA then searches
for breaks in agreement with the species tree structure transforming the breakpoint
graph into an identity breakpoint graph. While MGRA originally requires unique and
universal markers, it has recently been extended to handle unequal marker content [8].
More complex models of evolution have been considered that include for example
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duplications [82, 109], but are tractable only under some specific condition, such as
the hypothesis that rearrangement breakpoints are not reused.

The idea underlying the recent tool RINGO [47, 48] is to reconstruct intermediate
genomes, which are all genomes contained in an optimal pairwise rearrangement sce-
nario between two genomes associated to two nodes in the tree. Intermediate genomes
can then be seen as all intermediate steps in the transformation from one genome to
another. The method constraints an ancestral genome at an internal node i of the
phylogeny to be an intermediate genome of its two child nodes j and k in the tree.
This basically cuts the optimal rearrangement scenario between j and k in half: all
rearrangements from j to i are assumed to have happened along the branch (i, j) in
the tree, the other half is assigned to the other branch, respectively. In addition, the
method has been extended to handle unequal marker content heuristically [48].

Some methods adopt a probabilistic point of view, like Badger [131], a software
using Bayesian analysis under a model where circular genomes can evolve by reversals.
It samples phylogenetic trees and rearrangement scenarios from the joint posterior
distribution under this model by MCMC implementing different proposal methods in
the Metropolis-Hastings algorithm. It is a local search similar to the heuristic on the
minimization problem, but instead of giving a single solution without guarantee as an
output, it provides a sample of solutions from a mathematically grounded distribution.
However it faces the same tractability issues concerning the convergence time.

The method ROCOCO [138, 149] is following a more general model by reconstruct-
ing ancestral gene clusters based on parsimony and consistency. It follows a variant of
the Hartigan algorithm [60] applying a dense or sparse strategy to find a first possibly
inconsistent labeling. It then applies efficient methods to identify conflicts in gene clus-
ters and subsequently deleting clusters from an initial labeling to reach consistency.

In comparison to the other tools described above, ROCOCO does not model the
evolution of whole genomes as marker permutations. Instead, if the reconstruction is
broken down to smaller instances like marker adjacencies – as for the local mapping
approaches described above –, tractable exact algorithms can be described.

Definition 5 (Parsimonious Adjacency Labeling Problem). Let T = (V, E) be a tree with
each leaf l labeled with a consistent set of adjacencies Al ⊆ A, and d a distance between
consistent sets of adjacencies. A labeling λ : V → P(A) with λ(l) = Al for each leaf is
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parsimonious for d if none of the internal nodes v ∈ V contains a conflict and under all
consistent labelings λ minimizes the sum W(λ, T) of the distances along the branches of T:

W(λ, T) = ∑
(u,v)∈E

d
(
λ(u), λ(v)

)
.

The distance d can e. g. be defined as the SCJ rearrangement distance described
in Section 1.1.1 modeling the cuts and joins of adjacencies. With this model, the an-
cestral reconstruction problem becomes tractable. Ancestral genomes that minimize
the SCJ distance can be computed efficiently in polynomial time using a variant of the
Fitch algorithm [54]. A downside of this approach to reconstruct ancestral genomes
is that constraints required to ensure consistency result in mostly fragmented ances-
tral genomes, i. e. , this reconstruction is sparse and finds only the more fragmented
under all co-optimal Fitch solutions. Some adjacencies will be excluded from the recon-
structed genomes, although they could be included without causing conflicts neither
increasing the SCJ distance along the branches of the tree. As we build upon this basic
model in the course of this thesis, we review the Fitch algorithm and the result of [46]
in Chapter 2.

In [92], a Gibbs sampler for sampling rearrangement scenarios in a phylogenetic tree
under the SCJ model has been described. It starts with an optimal fragmented marker
order obtained as described above at each internal node and then explores the space of
co-optimal solutions by repeatedly changing the presence/absence scenarios of single
adjacencies. However convergence of this sampling method has not been shown.

The DeCo [10] framework models the gain and loss of adjacencies in a similar
dynamic programming approach. The method assumes the evolutionary history of
marker families as additional input, so-called reconciled gene trees, depicting specia-
tion and duplication events as well as horizontal and lateral gene transfers and gene
losses in the context of the species phylogeny. DeCo then aims to reconstruct adjacen-
cies at each ancestral node that are consistent with the respective gene trees for each
marker family, however the consistency of the result is not guaranteed. A similar ap-
proach has also been explored in the DUPCAR algorithm [83]. Several variations of
this framework have been developed so far: including the lateral transfers of genes
between species [110], handling fragmented extant genome assemblies [6] or adapting
a maximum likelihood objective [129]. In addition, DeClone [28] models a probabilis-
tic approach by sampling adjacency scenarios according to a Boltzmann probability
distribution (see also Chapter 3).
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All local and global reconstruction strategies infer tree labelings based on data at
the leaves of the tree, taking steps back in time starting from present-day genomes. In
the next section, we describe an additional source of information through the study of
ancient DNA material.

1.1.2 Sequencing of ancient DNA

Most species that have existed on the planet are extinct, however DNA material can
survive up to several hundreds of thousands of years in appropriate conditions [148].
With the invention of the Polymerase Chain Reaction (PCR), it became possible to
amplify DNA isolated from archaeological or paleontological remains that can provide
direct evidence about the contents and structure of an ancient genome [58]. Early
works on ancient DNA (aDNA) concentrated on mitochondrial DNA not older than a
few thousand years, recovered for example from quagga [61], extinct moa [32], cave
bears [137] or Neandertal [71]. Also museum specimens like the kangaroo rat [141]
provided reliable DNA extraction. Later, advances in sequencing technologies and in
aDNA recovery protocols [62, 89] opened the way to the sequencing of nuclear aDNA
in even older samples of bacteria like Yersinia pestis [19, 146, 157] or mammals like the
extinct woolly mammoth [93, 116] and ancient horses [103, 104]. We refer to [63] for
a review containing many more examples of extinct species that were successfully
sequenced by now.

The sequencing of aDNA can shed light on human history besides its genetic evolu-
tion. The sequencing data can help to provide evidence of migrations and population
development, e. g. human migrations into Europe in the Neolithic [57], or give insights
into the molecular mechanisms involved in virulence of human pathogens, e. g. the
influenza virus [143] or tuberculosis [17].

However, aDNA research presents extreme technical difficulties for sequencing ex-
periments, because of the small amounts and degraded nature of surviving DNA and
the exceptional risk of contamination. When an organism dies, endogenous nucleases
normally degrade the sugar-phosphate backbone of its DNA into single molecules.
It is often referred to as post-mortem DNA damage [43]. Even if DNA has been
conserved in anaerobic conditions, largely neutral pH environments and constant sub-
zero temperatures, usually only short fragments of aDNA can be recovered. Next
to the high fragmentation of aDNA samples, nucleotide misincorporation patterns in
sequencing have been widely described. The reads from aDNA have been shown to
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exhibit specific miscoding lesions, e. g. due to deamination of cytosine residues [107].
In addition, these ancient samples have been exposed to high levels of environmental
contamination for a long time, as well as potential contamination when the material
is retrieved and processed. Hence there exist many publications stressing the impor-
tance of cautious experimental protocols [33, 89] to ensure authenticity and recovery
of aDNA, e. g. dedicated, isolated environments to avoid contamination, broad control
experiments and reproducability in a second laboratory.

Subsequently, the retrieved sequences are usually aligned to references, and variants
are identified keeping aDNA damage patterns in mind [128], precluding the analysis
of more complex rearrangements between the ancient and extant genomes [113]. For
this, the ancient reads need to be assembled into longer contigs, preferably without
a reference sequence guiding the assembly. However, the short length of the aDNA
reads usually entails a high number of contigs in the assemblies, even with the help
of a reference sequence [19]. We illustrate this problem in our analysis of an aDNA
assembly in Chapter 4. So while the contig assembly can be expected to be quite
fragmented, classical scaffolding approaches can often not be applied to aDNA data,
due to the generally low read coverage and the nature of the aDNA capture process
for example. Hence comparative phylogenetic methods following principles similar
to the ancestral reconstruction methods described above have to be used to order and
orient the obtained contigs.

Question 2 (Ancient genome scaffolding)

Given a fragmented assembly of ancient DNA reads obtained from conserved genetic material
of an extinct species, how can we facilitate a comparison with the genomic sequences of extant
related species to reliably scaffold assembled aDNA contigs?

Yersinia pestis and the bubonic plague

The Yersinia genus represents "a key model for understanding the forces that shape
the evolution of pathogenic bacteria" [91]. Especially Yersinia pestis has been of interest
to many researchers as it could be identified as the cause of three major pandemics in
the middle ages: the Plague of Justinian, the Black Death in the 14th - 18th century
and the Third Pandemic in the 19th century. The bacteria is spreading mostly in
rodents and fleas, however in humans it causes the deadly bubonic plague. Besides
several sequenced and fully assembled extant strains [26], also including the close
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relative Yersinia pseudotuberculosis, several ancient strains have been sequenced from
conserved remains of victims of the bubonic plague [119, 135, 146]. Throughout the
following chapters, we concentrate on aDNA data from samples isolated from remains
of victims of the Black Death pandemic in the 14th century [19] and the Plague of
Marseille in 1720 [18].

The relations in the Yersinia phylogeny have been extensively studied [2]. For exam-
ple, the close relative Yersinia pseudotuberculosis is a comparatively non-virulent human
pathogen causing a mild disease called yersiniosis. The comparative analysis of several
strains revealed the pathogenicity of Yersinia pestis due to the acquisition of a single pro-
tease encoding gene [157]. Further whole-genome comparisons identified a high rate
of genome rearrangements induced by a rapid expansion of Insertion Sequence (IS)
elements throughout the genome of Yersinia pestis [25], while otherwise the genomes
in this family are characterized by only a low number of polymorphic nucleotides in
comparison to other bacterial pathogens, allowing the confirmation of a unique phylo-
genetic tree for the Yersinia family [1]. This has led to consider the Yersinia family as an
important model for the study of genome rearrangements during pathogen evolution.
Besides the explicit analysis of the genome evolution in Yersinia, the genetic informa-
tion has also been used in a historical context to reconstruct routes of spread of these
bacterial pathogens in populations over time, especially shedding light on the source
of the three pandemics caused by it [18, 126, 135].

1.1.3 Ancient genome scaffolding and ancestral reconstruction

The problems of reconstructing ancestral genomes on the one hand, and assembling
and scaffolding ancient genome sequencing data on the other hand both share similar
ground: in a phylogenetic context, we can use the comparison of extant genomes to
infer common features that are assumed to be ancestral based on an optimization cri-
terion under an evolutionary model. In this thesis, we want to reconcile both previous
questions into a common framework, described as one joint question:
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Question 3 (Integrated phylogenetic assembly)

Given the phylogeny and genome sequences of a set of extant species, and aDNA sequencing
data for one or several extinct species, how can we simultaneously

1. scaffold the fragmented aDNA assembly through the comparison with extant relatives
and

2. improve the global reconstruction of the genome sequences of all ancestral species in
the phylogeny recognizing the evolution along the branches of the phylogenetic tree?

The connection between both problems can be seen from two sides. The available
aDNA data provides a glimpse into the past and can enable us to improve ancestral
reconstructions by strengthening the information that the reconstruction can be built
upon besides extant genomes sequenced today. On the other side, as standard scaf-
folding methods usually cannot be applied to aDNA data due to its fragile nature,
a reconstruction based on this sequencing data provides a scaffolding of assembled
contigs guided by extant related genomes in the phylogeny.

For extant genomes, there are several methods [6, 66, 69] that use the phylogenetic
context for several reference genomes to scaffold a contig assembly. Besides the work
presented in this thesis, the only method so far specifically targeted at scaffolding
aDNA contigs is FPSAC [117]. It follows a local approach concentrating on one in-
ternal node for which aDNA sequencing data is available. It then applies strategies
of the described local reconstruction methods by computing copy numbers for mark-
ers using discrete parsimony, inferring potential ancestral adjacencies using the Dollo
parsimony principle, linearizing these adjacencies and clearing ambiguities due to re-
peated markers using the algorithms of [118]. The scaffolding itself, aimed at selecting
a subset of contig adjacencies compatible with the inferred copy numbers, is achieved
through a combinatorial optimization algorithm that does not rely on the given phy-
logeny [88]. Moreover, as the set of markers is likely not covering the whole ancient
genome, gaps between adjacent markers in scaffolds are filled in FPSAC using a mul-
tiple alignment of corresponding extant gaps. For each column of the alignment, the
parsimonious ancestral state is reconstructed with the Fitch algorithm [54]. Applied
to the highly fragmented aDNA contigs of an ancient Yersinia pestis strain [19], FPSAC
was able to obtain a single scaffold, showing that scaffolding of fragmented ancient
genomes can be achieved.
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1.2 Thesis overview

The methods and analysis presented in this thesis aim to put this first strategy into a
global reconstruction context. Building upon the polynomial time algorithm for the
Small Parsimony Problem under the SCJ distance in [46], we first present a global
approach for reconstructing all ancestral genomes along a given phylogenetic tree
while also scaffolding the aDNA contigs obtained from a preliminary assembly of
sequenced aDNA for exactly one internal node of the phylogeny (Chapter 2). While
this algorithm still has a polynomial time complexity, we then extend this result to the
concept of weighted gene adjacencies being able to include more sequenced aDNA
at different nodes in the tree (Chapter 3). The resulting algorithm is an exact, but
exponential Fixed-Parameter algorithm, additionally allowing to sample co-optimal
solutions.

In Chapter 4, we take the next step, presenting a method to fill the gaps between
reconstructed marker adjacencies again drawing on available aDNA data. While this
method can be applied to fill the gaps of marker orders reconstructed with the global
methods in Chapter 2 and Chapter 3, we also describe a local pipeline building on the
gap filling approach to reconstruct marker orders where conflicting adjacencies are
solved based on the evidence in the aDNA data directly. This enables us to reconstruct
an ancient genome that has the most support by the aDNA reads and to pay special
attention to specific genome features hidden in gaps between assembled contigs linked
with genome rearrangement breakpoints given as annotations in the extant genomes.

In the last chapter, we evaluate all methods presented in this thesis applied to two
ancient Yersinia pestis strains in comparison to several extant related species. This al-
lows us to highlight differences and similarities in the proposed reconstructions under
the different objectives.

Several parts of this thesis have been published in advance. The theory in Chap-
ter 2 is presented in [77]. Chapter 3 has been published in [80] with an extended
version in [79]. The method presented in Chapter 4 together with a part of the analy-
sis in Chapter 5 has been submitted and published as a preprint [78].
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Chapter 2
The SCJ Small Parsimony Problem
integrating an aDNA assembly

In this chapter, we build upon the result of Feijão and Meidanis in [46] to find a most
parsimonious labeling under the SCJ distance. More precisely, we extend the exact
small parsimony algorithm described in [46] to the case of multifurcating phylogenetic
trees with edge lengths and show how this allows to handle, still within an exact
and polynomial time algorithm, constraints from the assembly graph of a sequenced
ancestral genome. Part of the theory in this chapter has been published in advance
in [77].

Let us briefly recall the considered input. The underlying general data structure is
a phylogenetic tree T = (V, E) representing the relations between extant species. The
edges of the tree are labeled with lengths describing the evolutionary distances in the
tree. We assume that an extant genome at a leaf l is represented by a sequence over a
marker alphabet M. Further, this allows us to define a set of adjacencies Al for each
of these genomes. We denote by A = ∪l∈VAl the union of all different adjacencies
observed at any leaf of the tree.

In [46], the classical dynamic programming Fitch algorithm [54] is used over a binary
representation of adjacencies to reconstruct ancestral adjacencies that minimize the SCJ
distance in the tree. Their result entails three important assumptions:

1. The phylogenetic tree T is binary.

2. The set of adjacencies at each leaf Al is consistent.

3. The cost between two labels a and b is 1{a 6=b} according to the Fitch parsimony
distance.
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We will summarize the result in [46] briefly in the next section, before discussing
how including ancient DNA data in this polynomial framework can violate assump-
tions (1) and (2). We then present an extension for the Fitch reconstruction that tol-
erates these violations at a single node in the tree and hence allows the inclusion of
ancient DNA assembly information. The impact of assumption (3) is further studied
in Chapter 3.

2.1 Consistent reconstructions using the Fitch algorithm

The Fitch algorithm proceeds in two phases: It first assigns a set B of potential labels
to the internal nodes of the tree in a bottom-up traversal, then assigns a final label F
to each internal node in a top-down traversal starting at the root node. For a given
tree T and a specific adjacency a ∈ A, the algorithm first labels each leaf l with either
Ba(l) = 0 or Ba(l) = 1 according to the presence or absence of a in the genome asso-
ciated with l. Then, assuming an internal node u with children v and w, the potential
label of u is defined by the potential labels assigned to v and w:

Ba(u) =

Ba(v) ∩ Ba(w) if Ba(v) ∩ Ba(w) 6= ∅

Ba(v) ∪ Ba(w) otherwise

This ensures the principle of parsimony: If a label or in this case an adjacency is
seen in both children of a node, it is parsimonious to also consider the presence of this
adjacency for the current node. Otherwise, all labels seen in both children have to be
considered.

Subsequently, in a top-down traversal of the tree, the algorithm assigns a final label
Fa(root) = b ∈ Ba(root). Notice that if Ba(root) = {0, 1}, both labels 0 and 1 will result
in a labeling of the tree with minimal cost. The final label of any other internal node
u of the tree is then unambiguously defined by the final label b of its parent node p:

Fa(u) =

b if b ∈ Ba(u)

any b ∈ Ba(u) otherwise
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In [46], the authors show that with the constraint of choosing 0 at the root in the
mentioned case of ambiguity, ancestral genomes at each internal node u defined by the
set of adjacencies Au = {a : Fa(u) = 1} are consistent and minimize the SCJ distance
in the tree. The constraint applied ensures tractability and consistency, however it au-
tomatically excludes adjacencies that are potentially conflicting, even if they could be
included in a consistent genome reconstruction, thus it results in the most fragmented
solution at each internal node.

In the following, we first extend the results on the Fitch algorithm to the more gen-
eral Sankoff-Rousseau algorithm and prove that the optimality and consistency of the
reconstruction still hold. Then we show a first approach to include ancient DNA as-
sembly information explicitly in the optimization.

2.2 Generalization to the Sankoff-Rousseau algorithm

Besides reconstructing the most fragmented solution, the Fitch approach as described
above is not guaranteed to find all optimal solutions, even if the ambiguity at the root
would be explored on the danger of losing consistency. Note that this is not true for the
algorithm stated in the original paper by Fitch from 1971. We rely on a generalization
of the Fitch algorithm: the Sankoff-Rousseau algorithm [125].

2.2.1 Edge-weighted SCJ Labeling Problem

Like the Fitch algorithm [54], the Sankoff-Rousseau algorithm [125] consists of a bottom-
up and a top-down traversal of the tree. However, this more general algorithm induces
ambiguity at internal nodes of the tree. For the Small Parsimony Problem with the
SCJ distance, it can easily be shown that choosing a 0 label (i. e. the absence of an adja-
cency) whenever it is possible, also at internal nodes of the tree, results in a consistent
labeling, but this could result in an even sparser solution than the result of the Fitch
algorithm. Conversely, always including an adjacency in case of ambiguity can result
in complex conflicts and would therefore require a subsequent conflict clearing step
that is mindful of the tree structure. To avoid this, we propose to include edge lengths
in the reconstruction and minimize an edge-weighted SCJ distance. The solution is
then likely to be unique in practice, as will be illustrated in the evaluation.

23



Chapter 2. The SCJ Small Parsimony Problem integrating an aDNA assembly

Definition 6 (Edge-weighted SCJ Labeling Problem). Given a tree T = (V, E) with each
leaf labeled with adjacencies and each edge e ∈ E labeled with an edge length `(e), a labeling
λ of the internal nodes of T is an edge-weighted SCJ minimizing consistent labeling if
none of the internal nodes contains a conflict and under all consistent labelings it minimizes
the edge-weighted SCJ tree distance

D(λ, T) = ∑
(u,v)∈E

dSCJ(λ(u), λ(v))
`
(
(u, v)

) .

2.2.2 Overview of the Sankoff-Rousseau algorithm

The Sankoff-Rousseau dynamic programming algorithm [125] solves the general Small
Parsimony Problem for discrete characters. Let S be the set of all possible labels of a
node in the phylogeny. For each node v in the tree, the cost of a label l ∈ S at this
node is defined as the minimal total cost within the subtree rooted at v when labeling
it with l. It can be computed by minimizing the sum over the cost to all possible label-
ings of children of v together with the corresponding cost along the edges from v to
its children. Then for each node v with children set d(v) in the tree, the cost Cl(v) of
assigning label l ∈ S to this node is defined recursively as follows

Cl(v) = ∑
u∈d(v)

min
m∈S

(
Cm(u) + d(l, m)

)
.

This equation defines a dynamic programming algorithm whose base case is when
v is a leaf in which case Cl(v) = 0 if v is labeled with l and Cl(v) = c∞ for a suffi-
ciently large c∞ otherwise. Then the cost for each label at each node can be computed
in a bottom-up approach, labeling a node as soon as all its children are labeled. Af-
terwards, we can choose a label with the minimum cost at the root node r as its final
assignment F(r) = minl Cl(r). In a top-down traversal of the tree, the final label of an
internal node v being a child of node w already labeled with F(w) then corresponds
to the labels that yielded the minimum in the bottom-up computation, such that

F(v) = min
l∈S

(
Cl(v) + d(F(w), l)

)
.

24



2.2. Generalization to the Sankoff-Rousseau algorithm

We refer to [34] for an extensive review on the Sankoff-Rousseau algorithm. The
distance d in the algorithm is character dependent, hence we can define a specific dis-
tance for each pair of labels along an edge in the tree. If for example labels correspond
to nucleotides at a specific position in a genome sequence, we can define a different
distance between purines and pyrimidines to emphasize substitutions along an edge
within the same base group.

2.2.3 Sankoff-Rousseau on adjacencies with edge lengths

Consider the reconstruction for one adjacency a in a tree T. The set of all possible
labels S = {0, 1} is then a binary labeling representing the presence or absence of a
at an internal node. A leaf is labeled according to the absence or presence of a in
the corresponding extant genome. Hence when v is a leaf, we have Ca

l (v) = 0 if a is
present at v and Ca

l (v) = c∞ otherwise. The length of the edge between two incident
nodes in the tree is then directly included in the bottom-up assignment of the cost
Ca

l (v) of assigning label l ∈ S to v with children set d(v):

Ca
l (v) = ∑

u∈d(v)
min
m∈S

(
Ca

m(u) + d(l, m)
)
,

d(l, m) =

0 if l = m
1

`(v,u) otherwise

At the root node r, we choose F(r) = minl Ca
l (r) as its final assignment. Then the

final label of v being a child of node w is

Fa(v) = min
l∈S

(
Ca

l (v) + d(F(w), l)
)
.

If either at the root node or at an internal node the cost for both l ∈ S is minimal, we
choose the absence of the adjacency to ensure consistency. However with non-trivial
edge lengths directly included in the recursion, this ambiguous case with equal cost
should rarely occur. Subsequently, the labeling in the top-down phase of the algo-
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rithm is already determined by the bottom-up labeling. Hence in most real instances,
we can expect that there will be a unique most parsimonious labeling for all adjacen-
cies in practice.

2.2.4 Reconstructing consistent genomes

We show that the edge-weighted Sankoff-Rousseau algorithm assigns consistent ge-
nomes. We assume a sparse variant of the algorithm where the label 0 is chosen
during the top-down phase any time there is an ambiguity, i.e., either at the root node
or at an internal node, the cost for both l ∈ S is minimal. We call it the sparse edge-
weighted Sankoff-Rousseau algorithm.

Lemma 1. Given two conflicting adjacencies a and b, for each node x of T labeled according
to the edge-weighted Sankoff-Rousseau algorithm, we have Ca

1(x)− Ca
0(x) ≥ Cb

0(x)− Cb
1(x)

and Cb
1(x)− Cb

0(x) ≥ Ca
0(x)− Ca

1(x) if there is no leaf l with Ca
1(l) = 0 < Ca

0(l) = c∞ and
Cb

1(l) = 0 < Cb
0(l) = c∞.

Proof. The proof is by induction on the height h of a node x in the tree, which is the
maximal number of nodes on the path from x to any descendant leaf. For h = 0,
the node is a leaf in the tree consistently labeled as required by the lemma. Table 2.1
indicates all potential labelings for adjacencies a and b and shows that the lemma
holds for all leaves.

Table 2.1: Possible leaf assignments for conflicting adjacencies a and b and resulting
values for C1 and C0. In all cases, the lemma holds.

a
b

1 0

1 conflicting
Ca

1 = 0, Cb
1 = c∞ Ca

1 − Ca
0 = Cb

0 − Cb
1Ca

0 = c∞, Cb
0 = 0

0
Ca

1 = c∞, Cb
1 = 0 Ca

1 = c∞, Cb
1 = c∞

Ca
0 = 0, Cb

0 = c∞ Ca
0 = 0, Cb

0 = 0

Ca
1 − Ca

0 = Cb
0 − Cb

1 Ca
1 − Ca

0 > Cb
0 − Cb

1
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2.2. Generalization to the Sankoff-Rousseau algorithm

When h ≥ 1, we assume that any node with height g < h and therefore all children
of x satisfy the lemma. Let d(x) be the set of children of x. For each y ∈ d(x), we set
ky := 1

`(x,y) .

Assume a leaf labeling for the presence or absence of adjacency a, then the edge-
weighted Sankoff-Rousseau algorithm computes the cost of labeling x with 1 or 0 as

Ca
1(x) = ∑

y∈d(x),
Ca

1(y)≥Ca
0(y)+ky

(
Ca

0(y) + ky
)

+ ∑
y∈d(x),

Ca
1(y)<Ca

0(y)+ky

Ca
1(y)

= ∑
y∈d(x),

Ca
1(y)≥Ca

0(y)+ky

(
Ca

0(y) + ky
)

+ ∑
y∈d(x),

Ca
1(y)<Ca

0(y)+ky
Ca

0(y)<Ca
1(y)+ky

Ca
1(y) + ∑

y∈d(x),
Ca

0(y)≥Ca
1(y)+ky

Ca
1(y) (2.1)

Ca
0(x) = ∑

y∈d(x),
Ca

0(y)≥Ca
1(y)+ky

(
Ca

1(y) + ky
)

+ ∑
y∈d(x),

Ca
0(y)≤Ca

1(y)+ky

Ca
0(y)

= ∑
y∈d(x),

Ca
0(y)≥Ca

1(y)+ky

(
Ca

1(y) + ky
)

+ ∑
y∈d(x),

Ca
0(y)<Ca

1(y)+ky
Ca

1(y)<Ca
0(y)+ky

Ca
0(y) + ∑

y∈d(x),
Ca

1(y)≥Ca
0(y)+ky

Ca
0(y) (2.2)

The conditions for the three terms in Equation 2.1 and Equation 2.2 assign each
child y unambiguously to only one sum. Further, since all children fulfill the lemma
and hence Ca

1(y)− Ca
0(y) ≥ Cb

0(y)− Cb
1(y) and Cb

1(y)− Cb
0(y) ≥ Ca

0(y)− Ca
1(y), we can

derive the following relationships for potential values C0 and C1 for the labeling of
both adjacencies:

For all y with Ca
1(y) + ky ≤ Ca

0(y)⇔ Ca
1(y) + ky − Ca

0(y) ≤ 0,

we have Cb
0(y) + ky − Cb

1(y) ≤ 0⇔ Cb
0(y) + ky ≤ Cb

1(y)
(2.3)

For all y with Cb
1(y) + ky ≤ Cb

0(y)⇔ Cb
1(y) + ky − Cb

0(y) ≤ 0,

we have Ca
0(y) + ky − Ca

1(y) ≤ 0⇔ Ca
0(y) + ky ≤ Ca

1(y)
(2.4)

For all y with Ca
1(y) ≤ Ca

0(y) + ky ⇔ Ca
1(y)− Ca

0(y) ≤ ky,

we have Cb
0(y)− Cb

1(y) ≤ ky ⇔ Cb
0(y) ≤ Cb

1(y) + ky
(2.5)
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For all y with Cb
1(y) ≤ Cb

0(y) + ky ⇔ Cb
1(y)− Cb

0(y) ≤ ky,

we have Ca
0(y)− Ca

1(y) ≤ ky ⇔ Ca
0(y) ≤ Ca

1(y) + ky
(2.6)

Based on these observations for all children y, we can now show that the lemma
holds for node x. First, we plug in Equations 2.1 and 2.2, and directly embed the
subtraction inside each term as follows:

Ca
1(x)− Ca

0(x)

= ∑
y∈d(x),

Ca
0(y)≥Ca

1(y)+ky

(
−ky

)
+ ∑

y∈d(x),
Ca

0(y)<Ca
1(y)+ky

Ca
1(y)<Ca

0(y)+ky

(
Ca

1(y)− Ca
0(y)

)
+ ∑

y∈d(x),
Ca

1(y)≥Ca
0(y)+ky

(
ky
)

For all children y contained in the first term, we can apply observation 2.3 to derive a
condition on adjacency b. Equivalently, we apply observation 2.4 to the last term und
observations 2.5 and 2.6 to the middle term:

= ∑
y∈d(x),

Ca
0(y)≥Ca

1(y)+ky

Cb
1(y)≥Cb

0(y)+ky

(
−ky

)
+ ∑

y∈d(x),
Ca

0(y)<Ca
1(y)+ky

Ca
1(y)<Ca

0(y)+ky

Cb
0(y)<Cb

1(y)+ky

Cb
1(y)<Cb

0(y)+ky

(
Ca

1(y)− Ca
0(y)

)
+ ∑

y∈d(x),
Ca

0(y)+ky≤Ca
1(y)

Cb
1(y)+ky≤Cb

0(y)

(
ky
)

Again, the conditions on adjacency b sort each child y unambigously into only one of
the terms. In fact, removing the condition on adjacency a does not move any child y to
another term, as all observations are valid on a children considered in the respective
term. Further, since Ca

1(y)− Ca
0(y) ≥ Cb

0(y)− Cb
1(y) for all children y, we then know

that

≥ ∑
y∈d(x),

Cb
1(y)≥Cb

0(y)+ky

(
−ky

)
+ ∑

y∈d(x),
Cb

0(y)<Cb
1(y)+ky

Cb
1(y)<Cb

0(y)+ky

(
Cb

0(y)− Cb
1(y)

)
+ ∑

y∈d(x),
Cb

1(y)+ky≤Cb
0(y)

(
ky
)

= Cb
0(x)− Cb

1(x)

The symmetric case for Cb
1(y)− Cb

0(y) ≥ Ca
0(y)− Ca

1(y) can be stated equivalently,
by simply exchanging variables a and b. This proves that the inequality holds for x
and concludes the proof.
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Corollary 1. Given two conflicting adjacencies a and b, for each node x of T labeled according
to the edge-weighted Sankoff-Rousseau algorithm, if Ca

1(x) + kx < Ca
0(x), then Cb

0(x) + kx <

Cb
1(x) if there is no leaf l with Ca

1(l) = 0 < Ca
0(l) = c∞ and Cb

1(l) = 0 < Cb
0() = c∞.

Proof. The Corollary follows directly from Lemma 1.

Lemma 2. Given two conflicting adjacencies a and b, for each node x of T labeled according to
the edge-weighted Sankoff-Rousseau algorithm, if Fa(x) = {1}, then choosing Fb(x) = {0}
is always possible.

Proof. Suppose there are internal nodes with value 1 assigned to both a and b. Choose
such a node with minimal distance to the root and call it v. Let w be the parent of v
and kv = 1

`(v,w)
.

Table 2.2 lists all possible combinations of Ca
1(v), Ca

0(v) and Cb
1(v), Cb

0(v) of v. In
case of ambiguity, i. e. both C1 and C0 are minimal, choosing Fa/b(x) = {0} is always
possible. Cases that cannot occur according to Corollary 1 are marked in the table re-
spectively. For other cases, either Fa(x) = {0} or Fb(x) = {0} is assigned independent
from the parent assignment. In case (∗), we only have Fa(v) = {1} and Fb(v) = {1}
if the parent w of v was already labeled Fa(w) = {1} and Fb(w) = {1}. This, however,
contradicts the minimality of the depth of v and therefore concludes the proof.

Table 2.2: All combinations of values C1 and C0 for both adjacencies a und b computed
in bottom-up traversal according to the edge-weighted Sankoff-Rousseau algorithm.

Cb
1(v) + kv < Cb

0
Cb

1(v) < Cb
0 + kv Cb

0(v) + kv < Cb
1Cb

0(v) < Cb
1 + kv

Ca
1(v) + kv < Ca

0 Cor. 1 Cor. 1 Fb(v) = {0}

Ca
1(v) < Ca

0 + kv,
Cor. 1 (∗) Fb(v) = {0}Ca

0(v) < Ca
1 + kv

Ca
0(v) + kv < Ca

1 Fa(v) = {0} Fa(v) = {0} Fa(v) = {0},
Fb(v) = {0}
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Theorem 1. For a rooted tree T with leaves annotated with consistent genomes containing
the same set of markers, the adjacency sets Av = {a : Fa(v) = 1} assigned to all internal
nodes v with the sparse edge-weighted Sankoff-Rousseau algorithm are consistent genomes and
minimize the edge-weighted SCJ distance.

Proof. The labeling with the edge weighted Sankoff Rousseau algorithm minimizes the
edge-weighted distance for each adjacency observed in any leaf of the tree. According
to Theorem 6.3 in [46], including the adjacency a in every node v where Fa(v) = 1
builds genomes that minimize the SCJ distance over the tree T. Lemma 2 shows that
also with the edge weighted Sankoff Rousseau algorithm no conflicting adjacencies
will be assigned to a node v. Therefore assigning the set of adjacencies Av to any
internal node v in T minimizes the total sum of SCJ cost per edge length.

2.3 Integrating aDNA sequencing information

We will now extend the framework of the Sankoff-Rousseau algorithm to include
aDNA sequencing information by adding an additional leaf with the aDNA infor-
mation to the tree. For this, we exploit the property of the algorithm to allow for
multifurcating trees by extending the given phylogenetic tree with an additional leaf.
Further, we show how to still ensure consistency of the result even though the assump-
tion of consistency in the auxiliary leaf genome is violated.

2.3.1 Augmented phylogenetic tree

Now, we assume that one internal node of T is augmented with an assembly graph
A = (VA, EA) (defined below and illustrated in Fig. 2.1). We will refer to this aug-
mented node as the assembly graph node and to the resulting tree as an augmented
phylogenetic tree in the rest of this chapter.

An assembly graph is a graph whose nodes are contigs, and edges indicate poten-
tial sequences that can join contigs. Such a graph can be obtained from the de Bruijn
graph or string/overlap graph created by most assemblers, but also from the compar-
ison with extant genomes [117]. The assembly graph is an important source of infor-
mation for scaffolding purposes, as paths in the graph are possible substrings of the
considered genome, while branches indicate uncertainty about the exact genome se-
quence (see [40] for example). For our purpose, it is important to notice that branching
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Figure 2.1: Augmented phylogenetic tree annotated with extant genomes at its leaves.
One internal node is augmented with an assembly graph illustrating the fragmented
assembly. It may contain conflicting adjacencies, e. g. (2h, 3h) and (2h, 4t), or (2h, 3h)
and (2h, 5t).

nodes in the assembly graph connect one extremity with several others, thus inducing
conflicting adjacencies.

Definition 7 (Augmented phylogenetic tree). Given a tree T = (VT, ET) with each leaf
labeled with consistent sets of adjacencies. We call the tree augmented if one internal node x
is assigned a set of possibly conflicting adjacencies A∗ inferred from an assembly graph G on
connected contigs.

2.3.2 Labeling Problem on an augmented phylogenetic tree

The assembly graph based on ancient sequencing reads defines putative adjacencies
between markers on connected contigs (see Figure 2.1). These adjacencies constrain
the reconstruction by providing evidence of the genome structure directly seen at an
internal point in the tree. This defines the following variant of the Small Parsimony
Problem:

Definition 8 (Edge-weighted SCJ Labeling Problem on augmented phylogenetic tree).
Given a phylogenetic tree T = (VT, ET) augmented at node x and each edge e ∈ ET labeled
with an edge length `(e), a labeling γ of the internal nodes of T is an edge-weighted SCJ
minimizing consistent labeling that respects the assembly graph if none of the internal
nodes contains a conflict and under all consistent labelings it minimizes the edge-weighted SCJ
tree distance and the distance to the adjacencies inferred from the assembly graph:

D(γ, T) + dSCJ(γx,A∗)
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In this section, we show how to solve this problem by augmenting the original tree
with an additional leaf attached to the assembly graph node. This leaf will be labeled
with the presence or absence of an adjacency in the assembly graph just like other
leaves representing extant genomes. However the set of adjacencies present in the as-
sembly graph is not necessarily consistent and can cause conflicts. Instead of adding
a postprocessing step that resolves all the conflicts in the tree after the reconstruction,
in Algorithm 1 we propose an approach that integrates the conflicts resolution into
the reconstruction process. To clear conflicts, we rely on the exact polynomial time
MAX-ROW-C1P algorithm described in [88]. This algorithm, based on computing a
maximum-weight matching in a graph derived from the assembly graph, selects a sub-
set of adjacencies that forms a set of linear and/or circular chromosomes.

Algorithm 1 EWRA: Edge-Weighted Reconstruction integrating aDNA Assembly
graph

Input: Tree T = (V, E) with edge lengths, extant consistent genomes, aDNA assembly
graph at node v

Output: Consistent labeled tree minimizing the edge-weighted SCJ distance
1: Attach an additional leaf to the assembly graph node v
2: Assign adjacencies inferred from assembly graph to new leaf node
3: Reroot the tree such that v becomes its root
4: for each adjacency a do
5: for each internal node x in bottom-up traversal of T do
6: Compute Ca

1(x) and Ca
0(x) with sparse edge-weighted Sankoff-Rousseau

7: A = {a | Ca
1(v) < Ca

0(v)}
8: Solve MAX-ROW-C1P for A
9: for each adjacency a do

10: for each internal node x in top-down traversal of T do
11: Compute Fa(x) with sparse edge-weighted Sankoff-Rousseau

Theorem 2. Given an augmented phylogenetic tree, Algorithm 1 (EWRA) computes an edge-
weighted SCJ minimizing consistent labeling that respects the assembly graph in polynomial
time.

Proof. According to Theorem 1, the edge-weighted Sankoff-Rousseau algorithm as-
signs consistent, SCJ minimizing genomes when the leaf labels are consistent. Reroot-
ing the tree will not affect the outcome of the reconstruction. Then, in the bottom-up
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phase, the conflicting leaf will only influence the assignment at the root. All other inter-
nal nodes fulfill Corollary 1, as the original leaves are consistently labeled. Therefore
they cannot cause a conflicting assignment in the top-down phase when the parent
assignment is consistent. As conflicts can be restricted to the root node, they have
to be resolved with a minimal increase in parsimony costs before propagating the as-
signment down the tree during the top-down phase. A maximum cardinality subset
of all adjacencies assigned to the root is selected by solving the MAX-ROW-C1P in
polynomial time [88]. Note that this set of adjacencies can potentially result in circular
scaffolds. With a then consistent root labeling, the top-down assignment will be con-
sistent according to Lemma 2.

Hence applying the edge-weighted Sankoff-Rousseau algorithm to the rerooted tree
and resolving conflicts at the root introduced by the assembly graph leads to a consis-
tent labeling with minimal parsimony cost and solves the SCJ minimizing consistent
labeling problem.

2.4 Evaluation

We first evaluate a reconstruction of a real data set of several mammalian genomes with
the pure SCJ optimization using the Fitch algorithm [14] compared to a reconstruction
with the discussed sparse edge-weighted Sankoff-Rousseau algorithm to measure the
differences induced by the change of algorithm and the inclusion of edge lengths
in the objective. We further test our method EWRA on a data set of Yersinia pestis
genomes including ancient DNA sequencing information at one node of the phylogeny
in Chapter 5.

Mammalian dataset: Reconstruction in comparison to Fitch

The data set consists of marker orders for several mammalian species as published
in [29]. The extant species contain a diverse number of chromosomes ranging from
9 chromosomes in opossum to 39 chromosomes in pig. Unique and universal markers
were computed as synteny blocks from whole-genome alignments with different reso-
lution in terms of minimum marker length. It results in five different data sets varying
from 2, 185 markers for a resolution of 100 kb to 629 markers for a resolution of 500 kb.
We evaluate here the results for the data set with 100 kb, 300 kb and 500 kb resolution.
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The underlying phylogeny and applied edge lengths are depicted in Figure 2.2 taken
from [29].
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Euarchontoglires
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Figure 2.2: Underlying phylogeny for the mammalian data set.

On all three data sets, we computed three reconstructions: (1) using the Sankoff-
Rousseau algorithm without considering the lengths of the edges, (2) with the Fitch
algorithm implemented in [14] and (3) with our implementation of the edge-weighted
Sankoff-Rousseau algorithm as described above. Note that we do not include any
aDNA information in the evaluation of this data set (see Chapter 5 for this).

The number of scaffolds is highest with the Sankoff-Rousseau algorithm when edge
lengths are not considered, as depicted in Figure 2.3. The number of scaffolds di-
rectly correlates with the number of reconstructed adjacencies, indicating as expected
that more adjacencies are absent with the Sankoff-Rousseau algorithm, as we have to
extend the constraint for the cases of ambiguity also to the internal nodes of the tree.
These are exactly the SCJ-optimal solutions that cannot be found by the Fitch algorithm
as stated before. In this sense, when the underlying tree is binary, the most fragmented
solution found by the Fitch algorithm can differ from the most fragmented solution
found by the Sankoff-Rousseau algorithm. Further, Figure 2.3 shows the number of
reconstructed scaffolds when the edge lengths are included in the Sankoff-Rousseau
algorithm. For all data sets, the number of scaffolds at all internal nodes is reduced, in-
dicating the inclusion of adjacencies that are always excluded with the Fitch algorithm
due to the consistency constraint.
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Figure 2.3: Number of scaffolds reconstructed at each internal node for data sets with
100 kb, 300 kb and 500 kb resolution. We ran the Sankoff-Rousseau algorithm without
edge lengths (e. g. all edges have a length of 1), the Fitch algorithm as provided in [14]
and the edge-weighted Sankoff-Rousseau algorithm.

We directly compared the set of reconstructed adjacencies at each internal node of
the tree between the Fitch and the edge-weighted Sankoff-Rousseau algorithm as seen
in Figure 2.4. While most adjacencies are reconstructed by both methods, some adja-
cencies at nodes higher up in the tree are only reconstructed by one of the two methods.
To be more precise, between 0.01 and 0.03 percent of all reconstructed adjacencies are
only reconstructed by the Fitch approach. This indicates that for such an adjacency,
the edge-weighted presence/absence scenario in the tree differs from the pure SCJ sce-
nario, resulting in the exclusion of the adjacency at nodes where it is present in the
conservative SCJ scenario. For adjacencies with a mixed signal of presence/absence
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Figure 2.4: Percentage of adjacencies at each internal node for data sets with 100 kb,
300 kb and 500 kb resolution that are reconstructed by both methods, only by the pure
Fitch approach and only by the extended Sankoff-Rousseau approach.

in the observed leaf genomes, differences can be caused by the objective function
assigning different costs: For two scenarios x and y for the same adjacency, while
dSCJ(x) < dSCJ(y), we can have dweightedSCJ(x) > dweightedSCJ(y) while placing changes
along edges with greater edge length. Especially in the mammalian phylogeny, as we
have two leaves close to the root, the reconstruction for the Boreoeutherian ancestor will
always be propagated to the Theria ancestor and the root node, as the loss or gain of ad-
jacencies will be placed on the long edges to the considered genomes of opossum and
chicken, indifferent to the assigned labeling of these leaves. The adjacencies unique
to the edge-weighted Sankoff-Rousseau reconstruction are then either part of these
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sub-optimal SCJ scenarios, or refer to adjacencies where the edge lengths strengthen
the signal for their presence or absence at the root of the tree.

2.5 Discussion

In this chapter, we have described a generalization of the exact algorithm solving
the Small Parsimony Problem under the SCJ rearrangement distance. Computing the
labeling of internal nodes with the Sankoff-Rousseau algorithm enables the use of
multifurcating trees. Including edge lengths still ensures the reconstruction of valid
genomes, and it is also expected, in practice, to provide a unique optimal solution
under non-trivial edge lengths.

Building upon this result, we presented an integrated phylogenetic assembly ap-
proach. It includes aDNA sequencing information in the reconstruction of other an-
cient genomes in the phylogeny and also scaffolds the fragmented assembly while
minimizing the SCJ distance.

Among the questions our work raise, it would be interesting to see if one can extend
the current model, that relies on markers that appear once in each genome, in order
to integrate copy numbers and unequal marker content. Another question of interest
is to design efficient heuristics, or parameterized algorithms, to augment an initial
parsimonious consistent labeling with extra adjacencies that preserve both parsimony
and consistency.

In our evaluation, we discuss the differences to the pure SCJ reconstruction with
the Fitch algorithm, e. g. reducing the fragmentation of reconstructed genomes in the
mammalian data set. It also shows the impact of edge lengths in the tree, where
the gain or loss of adjacencies is placed at branches to extant leaves with large edge
lengths. Especially for adjacencies with a mixed presence/absence signal in the extant
genomes, available edge lengths in the phylogeny provide a useful indication to solve
ambiguity.

Given the current development in ancient genome sequencing, the limitation of a
single ancient genome data set is likely the biggest drawback. Our polynomial time
algorithm does not allow for augmenting the phylogenetic tree with more than one
assembly graph if a consistent result is required. One would have to add further post-
processing steps to the algorithm to ensure consistency, probably losing exactness of
the method. Therefore, in the next chapter, we explore a different way of including the
aDNA sequencing data, namely in the form of adjacency weights at internal nodes of
the tree based on read mappings.
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Chapter 3
The SCJ Small Parsimony Problem for
weighted adjacencies

In this chapter, we generalize the problem described in the previous chapter to further
allow the inclusion of aDNA information at each internal node of the phylogeny. Most
parts of this chapter have been published in advance [79, 80]. While in Chapter 2, we
have presented a polynomial method that ensures the assignment of a consistent set
of adjacencies at each internal node, consistency can no longer be ensured if more
than two leaves in the phylogeny are labeled with inconsistent sets of adjacencies.
This regards assembly graph leaves representing an ancient DNA data set as well as
not fully assembled extant genomes. We present an exponential time algorithm that
overcomes this restriction and provides a more general approach to include aDNA
data in the reconstruction.

The motivation for this approach is a combination of the two main strategies that ex-
isting ancestral genome reconstruction methods concentrate on and that have already
been elucidated in Chapter 1: Local approaches on the one hand compare marker or-
ders of ingroup and outgroup species to define potential ancestral adjacencies for one
specific ancestor in the tree and then select a consistent subset of these adjacencies to
obtain a set of CARs [13, 29, 84]. Global approaches on the other hand simultaneously
reconstruct ancestral marker orders at all internal nodes of the considered phylogeny,
generally based on a parsimony criterion as described in the background chapter
within an evolutionary model. While this has been studied with several underlying
genome rearrangement models, such as the breakpoint distance or the Double-Cut-
and-Join (DCJ) distance [5, 70, 156], the problem is NP-hard for most rearrangement
distances [140]. An exception is the SCJ distance, for which linear/circular ancestral

39
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marker orders can be found in polynomial time [46]. However constraints required to
ensure algorithmic tractability yield fragmented ancestral marker orders.

The work we present is an attempt to reconcile both approaches. The underlying
goal of the local approach is to maximize the agreement between the resulting ances-
tral marker order and the set of potential ancestral adjacencies, independent of the
reconstruction at other nodes of the tree. When applying the local strategy to all an-
cestral nodes independently, potential ancestral adjacencies with a mixed signal of
presence/absence in the extant genomes might lead to a set of non-parsimonious an-
cestral marker orders. On the other hand, the global approach aims at minimizing
the evolutionary cost in the phylogeny and can result in more fragmented ancestral
marker orders. Therefore in this chapter, we introduce a variant of the Small Parsi-
mony Problem based on an optimality criterion that accounts for both an evolutionary
distance and the difference between the initial set of potential ancestral adjacencies
and the final consistent subset of adjacencies conserved at each ancestral node. More
precisely we consider that each potential ancestral marker adjacency can be provided
with a (prior) non-negative weight at every internal node. The contribution of the
discarded adjacencies to the objective function is then the sum of their weights. These
adjacency weights can e. g. be obtained as probabilities computed by sampling scenar-
ios for each potential adjacency independently [28] or can be based on ancient DNA
sequencing data providing direct prior information assigned to certain ancestral nodes.
It follows that the phylogenetic framework we present can then also assist in scaffold-
ing fragmented assemblies of aDNA sequencing data [77, 117].

We prove NP-hardness of the problem variant we introduce and describe an ex-
act exponential time algorithm for reconstructing consistent ancestral genomes under
this optimality criterion, based on a mixed Dynamic Programming/Integer Linear
Programming approach. We show that this Small Parsimony Problem variant is Fixed-
Parameter Tractable (FPT), with a parameter linked to the amount of conflict in the
data. Moreover, this also allows us to provide an FPT sampling algorithm for co-
optimal solutions, a problem recently addressed in [92] using an MCMC approach.

We evaluate our method on a simulated data set and compare our results to sev-
eral other methods reconstructing ancestral genomes. Further, we apply our method
to two real data sets. We analyze the method in terms of complexity of a data set
consisting of mammalian genomes spanning roughly one million years of evolution,
while analyzing the total tree distance and the fragmentation of the resulting scaffolds.
In Chapter 5, we also apply our method to a data set of several Yersinia pestis genomes
spanning 20, 000 years of evolution, allowing us to compare different weighting ap-

40



3.1. Generalization by weighting adjacencies

proaches for ancestral adjacencies and the impact of including the aDNA sequencing
information in the reconstruction. We show that we can reduce the fragmentation
of ancestral marker orders in both data sets by integrating adjacency weights while
reconstructing robust ancestral genomes.

3.1 Generalization by weighting adjacencies

In this section, we generalize the objective defined in Chapter 2. Again, a phylogeny T
is given and we assume that all extant genomes are represented as marker orders or
sets of adjacencies respectively. We define the set of all adjacencies observed at some
leaf of the tree as A. When considering an internal node v, we define node u as its
parent node in T.

Following the spirit of the local reconstruction methods, we first assign a set of po-
tential adjacencies Av ⊆ A to each ancestral node v. It can follow one of the parsimony
principles describe before, thus restricting the set of potential adjacencies to a subset
of A, or it can just be equal to A in order to not exclude any adjacency beforehand.
None of the potential adjacency sets is required to be consistent. Each Av can be seen
as a graph assigned to each node v of T, where nodes represent marker extremities
and edges indicate potential adjacencies. We will refer to this graph as an adjacency
graph in the following, despite a slightly different usage of this term in [11].

For each adjacency a ∈ Av, we are given a weight wv,a ∈ [0, 1] representing a confi-
dence measure for the presence of adjacency a in species v associated with the edges
in its respective adjacency graph. In order to receive a consistent subset of adjacencies
in Av, local methods would choose a maximum-weight subset of adjacencies for a fi-
nal labeling of node v. In the following, we want to embed this local approach in a
global reconstruction, such that in the phylogenetic context the loss of an adjacency
with a higher weight along an edge has a higher impact in our objective than the loss
of an adjacency of lower weight. We will later illustrate two approaches to obtain these
adjacency weights.

Formally, we define two additional variables for each adjacency a ∈ A at each in-
ternal node v ∈ V: The status of a at node v is represented by pv,a ∈ {0, 1}, where 0
is associated with the absence and 1 is associated with the presence of the respective
adjacency. The variable cv,a ∈ {0, 1} indicates a change for the status of an adjacency
along an edge (u, v), i.e., pu,a 6= pv,a. We consider the problem of optimizing the fol-
lowing objective function, where α ∈ [0, 1] is a convex combination factor.
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Definition 9 (Weighted SCJ Labeling Problem). Let T = (V, E) be a tree where each leaf l
is labeled with a consistent set of adjacencies Al ⊆ A and each adjacency a ∈ A is assigned a
given weight wv,a ∈ [0, 1] for each node v ∈ V. A labeling λ of the internal nodes of T with
λ(l) = Al for each leaf is an optimal weighted SCJ labeling if none of the internal nodes
v ∈ V contains a conflict and under all consistent labelings it minimizes the criterion

D(λ, T) = ∑
v,a

α(1− pv,a)wv,a + (1− α)cv,a.

This objective combines the global optimization according to the SCJ model on ad-
jacencies in the tree with a local weighting that punishes the local loss of adjacencies
along an edge. Note that with this criterion, we also sum the weight if an adjacency
stays lost over several internal nodes. Depending on the combination factor α, it would
hence favor the inclusion of an adjacency over a smaller SCJ cost in the tree if the re-
sulting set of adjacencies is still consistent.

To examine different co-optimal rearrangement scenarios that can explain evolution
toward the structure of extant genomes, a sampling method is important. Especially
for adjacencies with a mixed signal of presence and absence in the extant genomes, ex-
ploring co-optimal solution scenarios can give a more precise notion of how likely the
adjacency is present at each internal node of the tree. We thus state the corresponding
co-optimal sampling problem.

Definition 10 (Weighted SCJ Sampling Problem). Given the setting of the Weighted SCJ
Labeling Problem, sample uniformly from all labelings λ of the internal nodes of T that are
solutions to the Weighted SCJ Labeling Problem.

We do not take the edge lengths in the tree into account at this point. As we reasoned
in the previous chapter, this would likely result in a single optimal solution, whereas
here we concentrate more on exploring the whole co-optimal solution space to the
problem.

3.1.1 Problem complexity

Aside of the many heuristics for the Small Parsimony Problem for non-SCJ rearrange-
ment models (see for example [70, 151, 156] for the DCJ distance), there exist a few
positive results for the Weighted SCJ Labeling Problem for the extreme values of α.
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If α = 0, we only minimize the gain and loss of adjacencies in the tree and hence
the objective function corresponds to the Small Parsimony Problem under the SCJ
distance, where a solution can be found in polynomial time [46]. A generalization of
this result towards multifurcating, edge-weighted trees including prior information on
adjacencies at exactly one internal node of the tree was given in the previous chapter
and in [77], respectively.

Recently, Miklós and Smith [92] proposed a Gibbs sampler for sampling optimal
labelings under the SCJ model with equal branch lengths. It starts from an optimal la-
beling obtained as in [46], and then explores the space of co-optimal labelings through
repeated constrained parsimonious modifications of the evolutionary scenario for a
single adjacency. This method addresses the issue of the high fragmentation of inter-
nal node labelings, but convergence is not proven, and so there is no bound on the
computation time.

If α = 1, i.e., we do not take evolution in terms of SCJ distance along the branches
of the tree into account, we can solve the problem by applying independently a
maximum-weight matching algorithm at each internal node [88]. This problem is
also polynomial for the case of adjacencies.

So the extreme cases of the problem are tractable, and while we assume that the
problem is hard for all 0 < α < 1, it has been proven only for a small range of α.

Theorem 3. The Weighted SCJ Labeling Problem is NP-hard for any 1 > α > 33/34.

The detailed proof for this theorem can be found in [79]. The hardness of the
Weighted SCJ Labeling Problem is shown by reduction from the Maximum Intersec-
tion Matching Problem, which is defined as follows. Let G1 and G2 be two graphs
on the same vertex set. Find a perfect matching in G1 and G2 such that the number
of edges common to both matchings is maximized. NP-hardness of this problem is
shown by reduction from 3-Balanced-Max-2-SAT (see [79] for details).

Theorem 4. The Maximum Intersection Matching Problem is NP-complete.

The relation of the Weighted SCJ Labeling Problem and the Maximum Intersection
Matching Problem can be sketched as follows. For a given instance of the Maximum
Intersection Matching Problem, G1 and G2, we construct a tree that contains the edges
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of both graphs as potential adjacencies. Then for α > 33/34, an optimal labeling of
two internal nodes corresponds to perfect matchings in G1 and G2. Maximizing the
number of common edges of the matching minimizes the SCJ distance between the
nodes. While this bound on α is quite small, we are confident that the bound can be
extended with a more complex reduction from the Maximum Intersection Matching
Problem.

3.2 Methods

In order to find a solution to the Weighted SCJ Labeling Problem, we first show that we
can decompose the problem into smaller, independent subproblems. Then, for each
subproblem containing conflicting adjacencies, we show that, if it contains a moderate
level of conflict, it can be solved using the Sankoff-Rousseau algorithm [125] with
a complexity parameterized by the size of the subproblem. For a highly conflicting
subproblem, we show that it can be solved by an Integer Linear Program (ILP).

3.2.1 Decomposition into independent subproblems

Given the framework of the Sankoff-Rousseau algorithm reviewed in Subsection 2.2.2,
we can apply it to solve the Weighted SCJ Labeling Problem. We first introduce a
graph that encodes all adjacencies present in at least one internal node of the consid-
ered phylogeny. As introduced previously, we consider a tree T = (V, E) where each
node is augmented with an adjacency graph.

Definition 11 (Global adjacency graph). Given an adjacency graph for each internal node
v in the tree T. The set of vertices VAG of the global adjacency graph AG consists of all marker
extremities present in at least one of the adjacency graphs. There is an edge between two ver-
tices a, b ∈ VAG that are not extremities of a same marker, if there is an internal node in the
tree T whose adjacency graph contains the adjacency {a, b}. The edge is labeled with a list of
all internal nodes that contain this adjacency.

Each connected component C of the global adjacency graph defines a subproblem
composed of the species phylogeny, the set of marker extremities equal to the vertex
set of C, and the set of adjacencies equal to the edge set of C. Connected components
are generated by rearrangements (the cut or join of an adjacency) and conflicts in the
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Figure 3.1: Simplified example of a connected component in the global adjacency graph.
All internal nodes of the tree are augmented with adjacency graphs. At node v, the
graph contains the adjacencies {xt, yh} and {yh, zt}, at node w, the graph contains
the adjacency {xt, zt}. Along the edge {w, v}, one adjacency has been cut, the other
has been joined. In the global adjacency graph, we see a connected component that
contains two edges incident to xt.

set of potential adjacencies. Assume every node x in a connected component being
connected to dx edges. If no two of these edges are labeled with the same species v,
then there is no conflict in the connected component. At each internal node v, the
marker extremity x is part of only a single adjacency and the connected component
represents valid genomes. However if there are two edges incident to x labeled with
the same species v, the connected component contains a conflict for v. In this case we
need to choose an adjacency for x that is part of the optimal solution for the Weighted
SCJ Labeling Problem in respect to the tree. Consistent adjacencies that are never cut
or joined will form components with only a single edge. An example for a simple
connected component is shown in Figure 3.1.

According to the following Lemma it is sufficient to solve the Weighted SCJ Labeling
Problem for each such component independently.

Lemma 3. The set of all optimal solutions of the Weighted SCJ Labeling Problem is the set-
theoretic Cartesian product of the sets of optimal solutions of the instances defined by the
connected components of the global adjacency graph.

Proof. The two extremities of one marker do not have to be part of the same connected
component, as the SCJ distance is defined in terms of cuts and joins of adjacencies
between marker extremities. As we do not consider the creation of adjacencies that
are never observed at any leaf of the tree, all potential adjacencies are contained in

45



Chapter 3. The SCJ Small Parsimony Problem for weighted adjacencies

ch

dh
et

fh

a1

a2a3

a4

a5
v

v

w

v,w
v,w

C

bt

bt ch et fh

a1

a2

a1

a4

a2

a4

a5

a5

(bt,a1), (ch,a1), (et,a5), (fh,a5)
valid:

(bt,   ), (ch,a4), (et,a4), (fh,   )

invalid:
(bt,a1), (ch,a4), (et,a5), (fh,a5)

ch

et

fh

a1

a2

a4

a5
v

v

v
v

Cv

bt

Figure 3.2: Example for a given connected component C. At node v of the tree, possible
assignments are defined by the connected component containing all edges annotated
with v. Possible assignments for a marker extremity, for example bt, are defined by the
incident adjacency edges, hence in this example we can assign a1,a2 or ∅ to bt. Here
two valid joint labels for v are shown, while the third one assigns different adjacencies
for bt and ch and is therefore invalid.

the global adjacency graph. We can therefore find a solution of the weighted SCJ
distance labeling problem for each connected component of the global adjacency graph
independently of each other.

To solve the problem defined by a connected component C of the global adjacency
graph containing conflicts, we can rely on an adaptation of the Sankoff-Rousseau al-
gorithm with exponential time complexity, parameterized by the size and nature of
conflicts in C. Hence the algorithm can manage all subproblems that contain only a
moderate amount of conflicts, however breaks if there is a single subproblem that is
too complex.

3.2.2 Application to the Weighted SCJ Labeling Problem

After labeling each internal node with a set of potential adjacencies (Algorithm 2, line
1), we solve the problem defined by a connected component C of the global adjacency
graph (Algorithm 2, lines 2-3).
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We define a label of an internal node of the phylogeny as the assignment of at most
one adjacency to each marker extremity. More precisely, let x be a marker extrem-
ity in C, v an internal node of T, and e1, . . . , edx be all edges in the global adjacency
graph that are incident to x and whose edge label contains v (i.e., represent adjacen-
cies in the adjacency graph of node v). We define the set of possible labels of v as
Lx,v = {∅, e1, . . . , edx}, representing all adjacencies that can be assigned to the marker
extremity x. The set of potential labels Lv of node v is then the Cartesian product of
the label sets Lx,v for all x ∈ V(C), resulting in a set of discrete labels for v of size

∏x∈V(C)(1 + dx) (Algorithm 2, lines 5-6).
Note that not all of these joint labelings are valid as they can assign an adjacency

a = {x, y} to x but not to y, or adjacency a = {x, y} to x and b = {x, z} to z thus cre-
ating a conflict. Figure 3.2 illustrates an example for a simple connected component.
For an internal node v, we can reduce the component to all edges labeled with v, as
all other edges are not a potential adjacency for this node. We can then simply enu-
merate all adjacencies in addition to the empty label that each marker extremity can
be contained in. Figure 3.2 shows two possible valid labels. The third label is invalid,
as the adjacency a1 = {bt, ch} is only assigned to one of its contained extremities.

For an edge (u, v) in the tree, we can then define a cost matrix that is indexed by
pairs of labels of Lu and Lv, respectively. The cost is infinite if one of the labels is not
valid, and defined by the distance in our objective function otherwise. We can then
apply the Sankoff-Rousseau approach to find an optimal labeling of all internal nodes
of the tree for each connected component C (Algorithm 2, lines 7-11).

Note that, if C is a connected component with no conflict, it is composed of two
vertices and a single edge, and can be solved in space O(n) and time O(n), with n
being the number of leaves in the tree.

3.2.3 Complexity analysis

The time and space complexity of Algorithm 2 is obviously exponential in the size
of C. Indeed, the time and space complexity of the Sankoff-Rousseau algorithm for
an instance with a tree having n leaves and r possible labels for each node is O(nr2)

and O(nr) respectively [34]. In our algorithm, assuming n extant species, mC vertices
in the global adjacency graph of C and a maximum degree dC for vertices (marker
extremities) in this graph, (1 + dC)

mC is an upper bound for the size of the label set Lv

for a node v. Moreover, computing the distance between two labels of Lv and Lu, where
(u, v) is an edge of T, can trivially be done in time and space O(mC): If both labels are
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Algorithm 2 Adapted Sankoff-Rousseau algorithm to find a solution to the Weighted
SCJ Labeling Problem

Input: Tree T = (VT, ET) with root r, extant set of adjacencies Al for each leaf l ∈ VT
Output: An optimal weighted SCJ labeling in T

1: Assign set of potential adjacencies Av for each internal node v
2: Construct global adjacency graph AG with Av ∀ v ∈ VT
3: for each connected component C = (VC, EC) in AG do
4: for each internal node v ∈ VT in bottom-up traversal do
5: Enumerate Lv as cartesian product Lx,v ∀ x ∈ VC
6: for each lv ∈ Lv in top-down traversal do
7: Compute C(lv, v) with Sankoff-Rousseau
8: Choose FC(r) = minlr C(lr, r)
9: for each internal node v ∈ VT do

10: Compute FC(v) with Sankoff-Rousseau

valid, it suffices to check how many common adjacencies are present in both labels,
while deciding if a label is not valid can be done by a one-pass examination of the
label. Combining this with the Sankoff-Rousseau complexity yields a time complexity
in order of O(nmC(1 + dC)

2mC) and a space complexity in order of O(nmC(1 + dC)
mC).

Given a general instance, i. e. an instance not limited to a single connected com-
ponent of the global adjacency graph, we can consider each connected component
independently (Lemma 3). For a set of N markers and c connected components in
the global adjacency graph defining a conflicting instance, we define D as the maxi-
mum degree of a vertex and M as the maximum number of vertices in all such compo-
nents. Then, the complexity analysis above shows that the problem is Fixed-Parameter
Tractable (FPT).

Theorem 5. The Weighted SCJ Labeling Problem can be solved in worst-case time O(nN(1+
D)2M) and space O(nN(1 + D)M).

In practice, the exponential complexity of our algorithm depends on the structure
of the conflicting connected components of the global adjacency graph. The dynamic
programming algorithm will be effective on instances with either small conflicting
connected components or small degrees within such components, and will break down
for a single component with a large number of vertices of high degree. For such
components, the time complexity is provably high and we propose an ILP to solve
them.
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3.2.4 An Integer Linear Program for complex components

If a connected component is too complex for the DP algorithm, we can formulate the
optimization problem as an ILP. We consider two variables for any adjacency a and
node v, pv,a ∈ {0, 1} and cv,a ∈ {0, 1}, defined as in Section 3.1.

minimize ∑
a,v

α(1− pa,v)wa,v + (1− α)ca,v

subject to pv,a + pu,a − pw,a ≥ 0 for (w, u), (w, v) ∈ E(T) (c1)

pv,a + pu,a − pw,a ≤ 1 for (w, u), (w, v) ∈ E(T) (c2)

pv,a + pu,a + cv,a ≤ 2 for (u, v) ∈ E(T) (c3)

pv,a + pu,a − cv,a ≥ 0 for (u, v) ∈ E(T) (c4)

pv,a − pu,a + cv,a ≥ 0 for (u, v) ∈ E(T) (c5)

− pv,a + pu,a + cv,a ≥ 0 for (u, v) ∈ E(T) (c6)

∑
a=(xt,y)

pv,a ≤ 1 and ∑
a=(xh,y)

pv,a ≤ 1

for any marker x and node v (c7)

The first two constraints express c1 and c2 basic parsimony assumptions, i. e. , no
adjacency can be present at a node w if it is not present in any child node of w.
Also, if an adjacency is present in all child nodes of w, it has also to be present in w.
Consistency of the solution is ensured with constraint c7. Constraints c3− c6 define the
correct value for cv,a dependent on the value of pa along an edge (u, v), distinguishing
between all status combinations for an adjacency along the edge. Minimizing cv,a then
ensures parsimony of the solution. This ILP has a size that is polynomial in the size
of the problem.

3.2.5 Sampling co-optimal labelings

The Sankoff-Rousseau DP algorithm can easily be modified to sample uniformly from
the space of all co-optimal solutions to the Weighted SCJ labeling Problem in a forward-
backward fashion. In the bottom-up traversal, in addition to the minimal cost induced
by labeling a node v with a specific label a ∈ L, we can also store the number of
optimal solutions under this label for the subtree rooted at v. Let x and y be the
children of v, and Lx and Ly the sets of labels that induced the minimum value for a
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at v (which means a label out of these sets is assigned in the backtracking phase if v is
labeled with a). Then

C(v, a) =

(
∑

l∈Lx

C(x, l)

)∑
l∈Ly

C(y, l)


gives the number of optimal solutions for the subproblem rooted at v. At the root, we
might have the choice between different labels with minimum cost. Let Lroot be the set
of these labels, then the number of overall possible co-optimal solutions is simply the
sum of the number of solutions for all optimal root labels:

C(root) = ∑
l∈Lroot

C(root, l).

Subsequently in the top-down traversal, choose a label l ∈ Lroot with probability

C(root, l)
C(root)

.

If at an internal node more than one label in a child node induced the minimum value,
choose one of these labels analogously. This classical dynamic programming approach
leads to the following result with the complexity analysis analogously to Theorem 5.

Theorem 6. The Weighted SCJ Sampling Problem can be solved in worst-case time O(nN(1+
D)2M) and space O(nN(1 + D)M).

For subproblems that are too large for being handled by the Sankoff-Rousseau algo-
rithm, the SCJ Small Parsimony Gibbs sampler recently introduced [92] can easily be
modified to incorporate prior weights, although there is currently no proven property
regarding its convergence.

3.2.6 Weighting ancestral adjacencies

A first approach to assign weights to ancestral adjacencies follows the idea presented
in [28] to consider evolutionary scenarios for an adjacency independently of the other
adjacencies in a probabilistic framework. The Boltzmann distribution describes a prob-
ability of a system to be in a certain state depending on the energy of that state and
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the temperature of the system. In our context, we want to describe the probability of
a labeling σ of presence and absence for an adjacency in the tree depending on the
parsimony score p(σ) of that scenario. The parsimony score is simply the number of
gains and losses for the adjacency along the branches of the tree based on σ.

As described in [28], the Boltzmann score for a scenario is then defined as

B(σ) = e−
p(σ)
kT ,

where kT is a given constant as the product of the Boltzmann constant and the ther-
modynamic temperature. For each adjacency a ∈ A, denote by S(a) the set of all
possible evolutionary scenarios for the adjacency a (i. e. not restricted to parsimonious
scenarios). The partition function of a as defined in the Boltzmann context is then
given by

Z(x, y) = ∑
σ∈S(a)

B(σ),

so adding up the Boltzmann scores over all scenarios in S(a) as the normalizing
constant for the probability distribution. Subsequently, the Boltzmann probability for
the scenario σ is defined as

Pr(σ) =
B(σ)
Z(a)

.

We can infer the weight of the adjacency at internal node v as the ratio of the sum of
the Boltzmann probabilities of all scenarios where the adjacency is present at node v.
All such quantities can be computed in polynomial time [28].

The parameter kT can then be used to skew the Boltzmann probability distribution.
If kT tends to zero, parsimonious scenarios are heavily favored and the Boltzmann
probability distribution tends to the uniform distribution over optimal scenarios, while
when kT tends to ∞, the Boltzmann distribution tends toward the uniform distribution
over the whole solution space.

In our experiments, we use the tool DeClone [28] to infer adjacency weights by
sampling scenarios under the Boltzmann probability distribution. We will refer to
these weights as Boltzmann weights in the following. We chose a value of kT = 0.1 that
favors parsimonious scenarios but considers also slightly suboptimal scenarios and
kT = 1 that samples more evenly over the whole solution space.

When aDNA sequence data is available for one or several ancestral genomes, mark-
ers identified in extant species can be related to assembled contigs of the ancestral
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genome, as in [117] for example. For an ancestral adjacency, it is then possible to
associate a sequence-based weight to the adjacency – either through mapping based
methods such as the probabilistic model of GAML [22], or scaffolding methods such
as BESST [120] for example. In comparison to the weighting approach described above,
these weights are then not directly based on the underlying phylogeny, but provide
an external signal for the confidence of adjacencies at the respective internal node. We
will refer to them as aDNA weights in the following.

The probabilistic model of GAML [22] is based on the mapping of reads to a gap
between potentially adjacent markers. The general idea is that an adjacency whose
gap can be covered continuously by aDNA reads has a higher probability to be an-
cestral than an adjacency that is not supported by aDNA reads. To apply this model,
we first need to compute potential DNA sequences filling the gaps between two adja-
cent marker extremities (template gap sequences). For example in FPSAC [117], these
templates are obtained by aligning the gap sequences of the corresponding conserved
extant adjacencies and reconstructing a consensus ancestral sequence using the Fitch
algorithm. While this is a simple and efficient way to provide gap sequences, it mostly
works for well conserved extant species.

Then we compute the weights as a likelihood of this putative gap sequence given
the aDNA reads. Each adjacency together with its template gap sequence details a
proposition for an assembly A as a piece of the real ancestral sequence. Given the
aDNA read set R, the model defines a probability

Pr(R|A) = ∏
r∈R

Pr(r|A)

for observing the reads R given that A is the correct assembly. The probability Pr(r|A)

can be computed by aligning r to the assembly A while the alignment is evaluated
under an appropriate sequencing error model. Taking into account L as the length of
A, the model defines the probability of an alignment with m matches and s mismatches
as R(s, m)/2L, where R(s, m) = εs(1− ε)m includes the respective sequencing error
rate ε. By dividing the matching probability with 2L, we consider that reads can be
aligned to both strands of the assembly sequence. With a set of mappings Sr of a read
r to the assembly A, we approximate the probability by

Pr(r|A) ≈
∑j∈Sr

R(sj, mj)

2L
.
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In [22], this model is used to iteratively find a high likelihood assembly or improve
existing assemblies.

3.2.7 An extinct leaf

As an extension to the framework described above, we can also assume an ancient
genome to be a leaf in the phylogeny, i. e. the ancient species has no direct sequenced
descendants. The dynamic programming approach we propose can deal with this nat-
urally. Each leaf that corresponds to an extant genome is assigned a fixed label for
each connected component based on the observed adjacencies in the genomes. In con-
trast, a leaf representing an ancient genome can be treated similar to an internal node:
given a set of potential adjacencies for this node, we can enumerate all possible labels
for each connected component. These labels then influence the bottom-up labeling
in the tree, while an optimal label can be chosen in the top-down refinement. Note
however that there are no descendants that could influence the labeling for such a leaf
in the tree. For example, in the evaluation in Chapter 5, we include an ancient Yersinia
pestis strain that has no known extant descendants. We assume the same set of poten-
tial adjacencies as for all internal nodes in the phylogeny and weight them with the
GAML probabilities based on the available aDNA data. In this approach, we follow
the strategy of the local reconstruction methods: we first assign potential adjacencies
and then select a consistent subset that minimizes the distance in the tree.

Another approach can be to adapt the strategy of Chapter 2 for extinct leaves with
ancient DNA: we constrain the set of potential adjacencies at the beginning to all
adjacencies seen in an assembly graph of the ancient data, then use the comparison
in the tree to scaffold the assembly by including new adjacencies. However, as the
initial adjacency assignment of the extinct leaf influences the reconstruction of the
whole tree, it contains the danger of too much missing information: in extant leaves,
a missing adjacency is really missing, whereas in ancient leaves, a missing adjacency
can also be due to not assembled regions in the genome. We avoid this in Chapter 2
by rerooting the tree.

3.2.8 Implementation

A Python implementation of the adapted Sankoff-Rousseau algorithm is available at
https://github.com/nluhmann/PhySca. The tool is divided into two steps: First,
preprocessing scripts are provided that parse extant marker order files in GRIMM
format and extract all potential ancestral adjacencies. Adjacency weights can then
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DeClone

GAML model

other source

extant marker orders
newick tree

kT

ancient DNA

potential adjacencies
+ adjacency weights

+ phylogeny

PhySca

alpha

- python implementation
- weight cutoff threshold 
- parallelized sampling of 
  co-optimal solutions

optimization

preprocessing

Figure 3.3: The described method is implemented in python and divided into a prepro-
cessing and an optimization phase. The scripts for the preprocessing compute po-
tential ancestral adjacencies for each node together with an adjacency weight. We
provide two methods to compute the weights: either sampling adjacency scenarios
with DeClone under parameter kT or computing the probability for an adjacency based
on ancient DNA read mapping. Further, the user can also provide adjacencies and
weights obtained from other sources. The main tool PhySca then takes the thus pre-
processed data as input and reconstructs ancestral genomes for a specific value of α.
It provides a cutoff parameter x for data sets that are too complex to handle. When
x is provided, all adjacencies with a weight smaller than x are not considered as po-
tential adjacencies at an ancestral node. The sampling of co-optimal solutions can be
parallelized: either in python itself or with the help of a framing bash script.

be computed using DeClone [28] based on the Boltzmann sampling described above,
or based on aDNA read mapping to all potentially ancestral gaps under the GAML
model. The main implementation PhySca then takes all potential adjacencies with an
associated adjacency weight as input, allowing an easy extension to other adjacency
weighting approaches. An overview of the implementation and program parameters
is given in Figure 3.3.
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3.3 Results

We evaluated our algorithm on a simulated data set and compared its sensitivity and
precision to several other reconstruction methods. Further, we applied our method
to two real data sets: mammalian and Yersinia genomes. The results for the Yersinia
data set are given in Chapter 5. The mammalian data set was used in the studies [29]
and [92] and has also been used in the evaluation for Chapter 2. It contains six mam-
malian species and two outgroups, spanning over 100 million years of evolution, and
five different marker sets of varying resolution (minimal marker length). Our exper-
imental results consider issues related to the complexity of our algorithm, the use of
a pure SCJ reconstruction (obtained when the α parameter equals 0) and the relative
impact of the value of α on both the total evolutionary cost and the ancestral marker
orders fragmentation. We refer to Figure 2.2 on page 34 for the species phylogeny of
this data set.

3.3.1 Simulations

We created simulated data sets as described in [47]: with a birth-rate of 0.001 and
a death rate of 0, we simulated 20 binary trees with 6 leaves and scaled the branch
lengths such that the tree has a diameter of 2n, where n is the number of markers in
each unichromosomal genome. The root genome with n = 500 markers was evolved
along the branches of the tree by applying inversions and translocations with a prob-
ability of 0.9 and 0.1 respectively. The number of rearrangements at each branch cor-
responds to the simulated branch length, the total number of rearrangements ranges
from 1242 to 2296 in the simulated trees. We compare results of our implementa-
tion PhySca for different values of α ∈ {0, 0.3, 0.5, 0.8, 1} with the tools RINGO [47],
MGRA [8], Fitch-SCJ [14], ROCOCO [138,149] (dense approach for signed adjacencies)
and ANGES [68] (adjacencies only). We computed adjacency weights as described
in Subsection 3.2.6 with the software DeClone [28] and parameter kT ∈ {0.1, 1}.

The methods RINGO and MGRA are global approaches minimizing the DCJ-distance
in the tree, while ANGES reconstructs specific ancestors locally in the tree and is
applied for each node separately. For α = 0, our objective is finding a consistent,
most parsimonious solution and equals the objectives of Fitch-SCJ and ROCOCO,
where Fitch-SCJ always finds the most fragmented solution whereas ROCOCO and
our method aim at reporting least fragmented reconstructions.

By comparing the simulated and reconstructed adjacencies, we can count for each
method the number of true positives (TP) as all simulated and correctly reconstructed
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adjacencies, false positives (FP) as all falsely reconstructed adjacencies, and false nega-
tives (FN) as all simulated adjacencies that were not reconstructed. We computed the
following measures for the performance of the different methods:

Sensitivity S =
TP

(TP + FN)

Precision P =
TP

(TP + FP)

F-score Fβ =
(1 + β2) TP

(1 + β2) TP + β2 FN + FP

A high sensitivity indicates the ability to recover the true marker order of ancestors
in the phylogeny, while a high precision denotes few wrongly reconstructed adjacen-
cies. Our method reaches a high precision of 0.99 for all values of α ≥ 0.5, while
increasing the sensitivity in comparison to the pure Fitch-SCJ solution by reducing the
fragmentation of the reconstructed scaffolds, as shown in Figure 3.4. For higher values
of α, the influence of the weighting becomes apparent: for kT = 0.1, the precision only
decreases for α = 1, while for kT = 1, the precision decreases also for lower values of
α, however leading to more complete reconstructions. In comparison, both DCJ-based
methods RINGO and MGRA produce less fragmented solutions by recovering more
true adjacencies under the jeopardy of also reconstructing more false adjacencies. The
sensitivity and precision of Fitch-SCJ, ROCOCO and ANGES are comparable to our
method for low to medium values of α.

The F1 score (F-score with β = 1) assesses the relation of sensitivity and precision
with equal importance. RINGO achieves a better F1 score than all other methods.
The F0.5 score (F-score with β = 0.5) emphasizes the precision of a method over its
sensitivity. With this measure, our method with kT = 1 and α = 0.5 outperforms the
other tools, while ROCOCO and ANGES also reach similarly good scores.

In general, it can be seen that the equal contribution of global evolution and local
adjacency weights in the objective function provides a reliable reconstruction. The
simulations also underline that our tool is useful tool to explore the solution space
under different values of α, and we will investigate this further on a real data set in
the next section.
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Figure 3.4: Average precision and sensitivity (top), and F1 and F0.5 (bottom) of recon-
structions on 20 simulated data sets. Adjacency weights have been obtained with
parameters kT = 0.1 (left) and kT = 1 (right).
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3.3.2 Mammalian data set

The mammalian data set has already been used in Section 2.4. It consists of five
different data sets varying from 2, 185 markers for a resolution of 100 kb to 629 markers
for a resolution of 500 kb.

We considered all adjacencies present in at least one extant genome as potentially
ancestral. To weight an adjacency at all internal nodes of the tree, we relied on evo-
lutionary scenarios for each single adjacency, in terms of gain/loss, independently
of the other adjacencies (i. e. without considering consistency of ancestral marker or-
ders). We considered two values of the DeClone parameter kT, 0.1 and 1, the former
ensuring that only adjacencies appearing in at least one optimal adjacency scenario
have a significant Boltzmann weight, while the latter samples adjacencies outside of
optimal scenarios. For the analysis of the ancestral marker orders obtained with our
algorithm, we considered the data set at 500 kb resolution and sampled 500 ancestral
marker orders for all ancestral species under different values of α.

Complexity

The complexity of our algorithm depends on the size of the largest connected compo-
nent of the global adjacency graph. In order to restrict the complexity, we kept only
adjacencies whose weights are above a given threshold x. As expected, Figure 3.5
shows the decrease in computational complexity correlated to threshold x for the five
different minimal marker lengths. In most cases, all connected components are small
enough to be handled by our exact algorithm in reasonable time except for very large
components in the marker sets with higher resolution under a low threshold x. For
the 500 kb data set with x = 0.2 and kT = 1, the computation of one solution takes
on average 200 s on a 2.6 GHz i5 with 8 GB of RAM. It can be reduced to 30 s when
Boltzmann weights are based on kT = 0.1. This illustrates that our algorithm, despite
an exponential worst-case time complexity, can process realistic data sets in practice.

Optimal SCJ labelings

Next, we analyzed the 500 optimal SCJ labelings obtained for α = 0, i. e. aiming only at
minimizing the SCJ distance, and considered the fragmentation of the ancestral marker
orders (number of CARs) and the total evolutionary distance. Note that, unlike the
Fitch algorithm used in [46], our algorithm does not favor fragmented assemblies by
design but rather considers all optimal labelings. Sampling of co-optimal solutions
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Figure 3.5: Number of different labels for the largest connected component in each of the
mammalian data sets. This statistic provides an upper bound for the actual complexity
of our reconstruction algorithm.

shows that the pure SCJ criterion leads to some significant variation in terms of num-
ber of CARs (Figure 3.6).

In contrast, Table 3.1 shows that most observed ancestral adjacencies are present in
all sampled scenarios. Only about 5% of adjacencies, mostly located at nodes higher
up in the phylogeny, are present only in a fraction of all sampled scenarios, indicating
that there is a small number of conflicts between potential adjacencies that can be
solved ambiguously at the same parsimony cost. The optimal SCJ distance in the tree
for α = 0 is 1, 674, while the related DCJ distance in the sampled reconstructions varies
between 873 and 904 (see also Figure 3.8). In comparison, we obtained a DCJ distance
of 829 with GASTS [151], a small parsimony solver directly aiming at minimizing
the DCJ distance. More precisely, over all ancestral nodes, 70 adjacencies found by
GASTS do not appear in any of the leaves and do thus not belong to our predefined
set of potential ancestral adjacencies, and another 147 appear in the 500 samples with
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Figure 3.6: Number of reconstructed CARs at each internal node in 500 samples for the
mammalian data set with 500 kb resolution, x = 0.2 and α = 0.

Table 3.1: Frequency of adjacencies in 500 samples with α = 0 as percentage of optimal
labelings they appear in.

Ancestor Frequency f
f = 100% 100% > f > 50% f < 50%

Boreoeutheria 94.66 1.07 4.27
Euarchontoglires 95.42 0.88 3.79
Ferungulates 96.53 0.55 2.92
Primates 98.82 0.34 0.84
Rodentia 99.49 0.34 0.17
Theria 97.67 0.89 1.43
root node 92.23 1.23 6.53

a frequency below 50%. This illustrates both a lack of robustness of the pure SCJ
optimal labelings, and some significant difference between the SCJ and DCJ distances.

Finally, we compared the Boltzmann probabilities of ancestral adjacencies with the
frequency observed in the 500 samples. There is a very strong agreement for Boltz-
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mann weights obtained with kT = 0.1 as only 14 ancestral adjacencies have a Boltz-
mann weight that differs by more than 10% from the observed frequency in the sam-
ples. This shows that, despite the fact that the Boltzmann approach disregards the
notion of conflict, it provides a good approximation of the optimal solutions of the
SCJ Small Parsimony Problem.

Ancestral reconstruction with Boltzmann weights and varying values of α.

For α > 0, our method minimizes a combination of the SCJ distance with the Boltz-
mann weights of the adjacencies discarded to ensure valid ancestral marker orders.
Again, we sampled 500 solutions each for different values of α with the 500 kb data set.
We distinguish between DeClone parameters kT = 0.1 and kT = 1. Figure 3.7 shows
the impact of this parameter on the distribution of the weights. While for kT = 0.1,
favoring parsimonious scenarios, we get specific weights grouping the adjacencies ac-
cording to their extant appearances, with kT = 1, sampling more uniformly, we get a
much more distributed picture.
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Figure 3.7: Distribution of Boltzmann weights of all potential adjacencies for the 500 kb
data set with DeClone parameter kT = 0.1 and kT = 1.

Figures 3.8 and 3.9 show the respective observed results with the reconstruction
based on Boltzmann weights in terms of evolutionary distance and fragmentation.

For kT = 0.1, the optimal SCJ and DCJ distance over the whole tree hardly depends
on α. Including the Boltzmann weights in the objective actually results in the same
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Figure 3.8: SCJ distance (upper half) and DCJ distance (lower half) in the whole tree for
all samples and selected values of α in the mammalian data set.

solution, independent of α > 0. In fact, while applying a low weight threshold of
x = 0.2, the set of potential adjacencies is already consistent at all internal nodes ex-
cept for a few conflicts at the root that are solved unambiguously for all values of α.
This indicates that building Boltzmann weights on the basis of mostly optimal adja-
cency scenarios (low kT) results in a weighting scheme that agrees with the evolution
along the tree for this data set. More importantly, Figures 3.8 and 3.9 show that the
combination of Boltzmann weights followed by our algorithm, leads to a robust set of
ancestral marker orders.

In comparison, for kT = 1, we see an increase in SCJ and DCJ distance for higher
α, while the number of CARs at internal nodes decreases, together with a loss of the
robustness of the sampled optimal results when α gets close to 1. It can be explained
by the observation that the weight distribution of ancestral adjacencies obtained with
DeClone and kT = 1 is more balanced than with kT = 0.1 as it considers suboptimal
scenarios of adjacencies with a higher probability. It further illustrates that, when
the global evolutionary cost of a solution has less weight in the objective function, the
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algorithm favors the inclusion of an adjacency of moderate weight that joins two CARs
while implying a moderate number of evolutionary events (for example an adjacency
shared by only a subset of extant genomes). From that point of view, our algorithm
– being efficient enough to be run on several values of α – provides a useful tool to
evaluate the relation between global evolution and prior confidence for adjacencies
whose pattern of presence/absence in extant genomes is mixed.

Finally, we can briefly relate the PhySca reconstructions with Boltzmann weights
in this chapter to our results with the edge-weighted Sankoff-Rousseau algorithm
in Chapter 2. The comparison is summarized in Figure 3.10, depicting the number
of adjacencies reconstructed by only some of the methods. We also include the Fitch
algorithm as a reference in the comparison, while it basically corresponds to one sam-
pled solution with α = 0. As we do not include aDNA data with this data set, the
algorithmical difference between PhySca and the edge-weighted Sankoff-Rousseau al-
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Figure 3.10: For the 500 kb data set, we compare the reconstructions with the pure Fitch
algorithm, the edge-weighted Sankoff-Rousseau (SR) algorithm described in Chap-
ter 2 and PhySca with α = 0.5. This plot depicts the number of adjacencies recon-
structed only by some of the methods, and we indicate the large number of adjacen-
cies reconstructed by all methods at each internal node above each bar in the plot.
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gorithm are the included edge lengths on the one hand, while we apply the weight
threshold x to reduce the complexity of the data for PhySca on the other hand.

As expected, all of the adjacencies reconstructed by the Fitch algorithm are recon-
structed by PhySca. However, we see some adjacencies reconstructed only by PhySca
and Sankoff-Rousseau, as well as some adjacencies reconstructed only by PhySca and
Fitch. In the first case, these are adjacencies included in the reconstruction reducing
the fragmentation, hence they are not reconstructed in the most fragmented Fitch so-
lution. In the latter case, these are differences already observed in Chapter 2 due to
the influence of the edge lengths in the reconstruction, being the counterpart of all the
adjacencies reconstructed only with the edge-weighted Sankoff-Rousseau algorithm.

Interestingly, we also observe a small number of adjacencies only reconstructed with
PhySca. All of these adjacencies have a high adjacency weight, causing the inclusion
of the adjacencies at some internal node at the price of slightly increased global tree
cost. On the other hand, none of the adjacencies filtered by the threshold x in the
PhySca reconstructions are reconstructed with the edge-weighted Sankoff-Rousseau
algorithm, indicating that all differences observed are either due to the edge lengths
in the tree or the weights of specific adjacencies.

3.4 Discussion

In this chapter, we introduced the Small Parsimony Problem under the SCJ model with
adjacency weights, together with an exact parameterized algorithm for the optimiza-
tion and sampling version of the problem. The motivation for this problem is twofold:
incorporating sequence signal from aDNA data when it is available, and recent works
showing that the reconstruction of ancestral genomes through the independent analy-
sis of adjacencies is an interesting approach [10, 28, 46, 92].

Regarding the latter motivation, we address a general issue of these approaches
that either ancestral marker orders are not consistent or are quite fragmented if the
methods are constrained to ensure consistency. The main idea we introduce is to
either take advantage of sampling approaches recently introduced in [28] or include
available aDNA data to weight potential ancestral adjacencies and thus direct, through
an appropriate objective function, the reconstruction of ancestral marker orders.

Our results on the mammalian data set suggest that this approach leads to a robust
ancestral genome structure. However, we can observe a significant difference with a
DCJ-based ancestral reconstruction, a phenomenon that deserves to be explored fur-
ther. Our algorithm, which is based on the Sankoff-Rousseau algorithm similarly to
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Chapter 3. The SCJ Small Parsimony Problem for weighted adjacencies

several recent ancestral reconstruction algorithms [10, 28, 92], has a fixed parameter
tractable time complexity and can handle real instances containing a moderate level of
syntenic conflict. Our experimental results suggest that introducing weights on adja-
cencies in the objective function has a significant impact in reducing the fragmentation
of ancestral marker orders, even with an objective function with balanced contribu-
tions of the SCJ evolution and adjacency weights. For highly conflicting instances, it
can be discussed if a reconstruction through under the assumption of parsimony is
the right approach to solve these conflicts or if these should be addressed differently.

Our sampling algorithm improves on the Gibbs sampler introduced in [92] in terms
of computational complexity and provides a useful tool to study ancestral genome
reconstruction from a Bayesian perspective. Moreover, our algorithm is flexible regard-
ing the potential ancestral marker adjacencies provided as input and could easily be
associated with other ideas, such as intermediate genomes for example [47].

There are several further research questions opened by this work. From a theoretical
point of view, we know the problem we introduced is tractable for α = 0 and α = 1,
and it is shown to be hard for α > 33/34 [79], but it remains to see whether it is
hard otherwise. Further, given that the considered objective is a combination of two
objectives to be optimized simultaneously, Pareto optimization is an interesting aspect
to be considered.

Our model could also be extended towards other syntenic characters than adjacen-
cies, i. e. groups of more than two markers, following the ancient gene clusters recon-
struction approach introduced in [138]. As ancestral marker orders are defined by
consistent sets of adjacencies, the principle of our dynamic programming algorithm
could be conserved and it would be a matter of integrating gene clusters into the objec-
tive function, especially as conflicting instances are not as easy to define and compute
as for adjacencies [105, 150].

From a more applied point of view, one would like to incorporate duplicated and
deleted markers into the Small Parsimony Problem. There exist efficient algorithms for
the case of a single adjacency [10, 28] that can provide adjacency weights, and natural
extensions of the SCJ model to incorporate duplicated markers. However it remains
to effectively combine these ideas.

Finally, again due to the flexibility and simplicity of the Sankoff-Rousseau dynamic
programming algorithm, one could easily extend our method towards the inference of
extant adjacencies if some extant genomes are provided in partially assembled form
following the general approach described in [4, 6].
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Chapter 4
Mind the gap: completing ancestral
marker orders

In this chapter, we deal with the last step in scaffolding, which is filling the gaps be-
tween contigs ordered into scaffolds. The method was developed in the context of the
analysis of two ancient Yersinia pestis data sets that was published as a preprint in [78]
and will be described in more detail in Chapter 5, which is why the argumentation in
this chapter is often based on Yersinia pestis as an example organism.

After reconstructing an order of markers using a local or global reconstruction ap-
proach, the markers still represent only a part of the actual genome. Gaps between
contigs, that are the basis of markers in our setting, can correspond to for example
repeat regions or less conserved regions that were not assembled, hence these regions
are excluded when unique and/or universal marker families are computed. While
short aDNA reads can be mapped onto one or several extant reference genomes to de-
tect important evolutionary signals such as SNPs and small indels [113,127], analyzing
the evolution of genome organization requires the assembly of the reads into longer
contiguous sequences. However, highly fragmented assemblies make it challenging
to exploit aDNA sequencing data for this task, including the analysis of important
features such as the evolution of repeats and large scale genome rearrangement. Es-
pecially for repeat sequences, an initial de novo assembly needs to be improved by
closing the gaps between ancient contigs in a scaffold.

The method FPSAC [117] aims to fill these gaps with putative sequences recon-
structed from multiple sequence alignments of conserved extant genome regions. The
method was applied to scaffold an ancient Yersinia pestis genome analyzed in Chapter 5,
where gaps accounted for roughly 20% of the genome size of the ancestor, especially
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taking advantage of the high sequence conservation in Yersinia pestis to reconstruct
reliable gap sequences. The closing of the gaps shed an interesting light on genomic
features hidden within the assembly gaps, in particular IS and their correlation with re-
arrangement breakpoints. However, the scaffolding of adjacencies and gap sequences
obtained in [117] were inferred through computational methods within a parsimony
framework, which can be sensitive to convergent evolution that cannot be ruled out
for genomes with a high rate of genome rearrangements such as Yersinia pestis [36].

In traditional scaffolding experiments, if re-sequencing of these specific regions –
e. g. using long-read sequencing technologies – is not feasible, gaps are usually closed
using an estimate of the gap length through paired-end or mate-pair read mapping
and then assembling potential reads for this gap locally, matching the expected length
of the gap. Several assembly tools like ABySS [133] or Allpaths-LG [55] integrate
methods for the gap filling, but also stand-alone tools [112, 121] have been developed.
See [98] for detailed strategies that have been applied to finish several extant Yersinia
draft genomes. In the context of aDNA reads however, such approaches are usually
not successful as reads are too short and the read coverage is not sufficient (as will be
shown in Chapter 5).

In this chapter, we introduce the method AGapEs (Ancestral Gap Estimation). For
a potential adjacency between two ancient contigs, the method attempts to fill in the
inter-contig gap sequence by selecting a set of overlapping aDNA reads that minimizes
the edit distance to a template sequence obtained from the extant genome sequences
that support the adjacency. This also allows us to pay special attention to specific
annotations in the gap between two contigs, e. g. Insertion Sequences. In particular,
when the presence of an IS is doubtful due to a mixed signal of presence/absence in
the supporting extant genomes, a pair of templates can be considered, respectively
including and excluding the IS.

In the following, we first introduce the general idea of the gap filling method
AGapEs. Afterwards, we present a pipeline based on this approach to confirm sets
of ancestral adjacencies by the available read data and also provide the opportunity
to directly solve conflicting adjacency signals in reconstructions that are not yet con-
sistent. It allows us to compare the consistent results of the methods presented in
the previous chapters with a reconstruction that is mostly confirmed by the read data
directly.

In Chapter 5, we apply this strategy to two data sets of aDNA reads for ancestors
of the human pathogen Yersinia pestis [25, 91]. For both data sets, we obtain an as-
sembly with reduced fragmentation and are able to fill a large number of inter-contig
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gaps with aDNA reads. We identify several genome rearrangements between the an-
cient strains and extant Yersinia pestis genomes, however observe only a single small
inversion between both ancient strains, suggesting that the genome organization of
the agent of the second major plague pandemic was highly conserved.

4.1 Gap Filling as a shortest path problem

The input we take into account are the marker orders for extant genomes in a phy-
logeny and aDNA reads for the ancestral genome of interest. In the following, we
describe a local strategy to fill gaps between two potentially adjacent markers in the
ancestral genome.

Ancestral marker adjacencies For extant genomes, extant adjacencies can be ob-
served directly, while for an ancestral genome of interest, we can determine a set of
potential ancestral adjacencies. It can consist of e. g. all adjacencies observed in the ex-
tant genomes or based on the Dollo parsimony principle as used in [117]: two ancient
marker extremities are potentially adjacent if there exist two extant genomes whose
evolutionary path contains the ancestral genome of interest and where the two corre-
sponding extant marker extremities are contiguous. This restricts the conflicts between
potential ancestral marker adjacencies to conflicts between adjacencies conserved by
the Dollo parsimony criterion. We will rely on this assignment of potential ancestral
adjacencies in the next section.

Consequently every potential ancestral adjacency is supported by a set of extant
adjacencies. A gap is the sequence between the two marker extremities defining an
adjacency. Therefore each ancestral gap is likewise supported by a set of extant gap
sequences. The key element of the approach we will describe lies in defining a template
sequence or a set of alternative template sequences associated to each potential ances-
tral gap. We follow the general approach described in [117], that computes a multiple
sequence alignment of the supporting extant sequence gaps and applies the Fitch par-
simony algorithm [54] to each alignment column to reconstruct a most parsimonious
ancestral sequence.

If the multiple sequence alignment of extant gaps shows little variation, as is the case
for most gaps in our data sets, then a single template sequence can be considered, as
we expect that minor variations compared to the true ancestral sequence (substitutions
and small indels) will be corrected during the local assembly process. Alternatively,
if larger variations are observed, such as larger indels or a contradicting pattern of
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presence/absence of an IS in the supporting extant gaps, then alternative templates
can be considered, under the hypothesis that the true variant can be recovered from
the mapped aDNA reads.

4.1.1 Assembly of ancestral gap sequences from aDNA reads

We introduce a template-based method to assess the validity of an ancestral adjacency.
The general principle is to associate to every ancestral gap a template sequence ob-
tained from the supporting extant gaps sequences. We can then map aDNA reads
onto this template and assemble the mapped reads into a sequence that minimizes the
edit distance to the template sequence.

Definition 12 (Template-based Gap Filling Problem). Given a set of reads R and let d
be an edit distance between two nucleotide sequences. For a potential adjacency between two
oriented markers and a template gap sequence t, find a sequence of perfectly overlapping reads
Rt ⊆ R mapping to t that is minimizing

∑
r∈Rt

d(r, t).

The rationale for this template-based approach is that, due to the low coverage of
the aDNA reads and their short length, existing gap-filling methods fail to fill a large
number of ancestral gaps. For example, the method gap2Seq [121] is a recent efficient
gap-closing algorithm based on finding a path of given length corresponding to the
expected length of the gap in a de Bruijn graph. However the method is not able to fill
roughly half of the ancestral gaps of an ancient DNA data set analyzed in Chapter 5
(see Table 5.4 on 88).

In the following, we will treat each potential ancestral adjacency separately, hence
describing the details of our gap filling approach for a single ancestral adjacency.

Ancestral Gap Estimations (AGapEs) We will show how to find a solution to the
Template-based Gap Filling Problem as a solution to a shortest path problem in a
graph. Assume we are given a template sequence t for a gap in an adjacency between
two oriented markers m1 and m2. We define S = m1 + t + m2 as the concatenated
nucleotide sequence of the oriented markers and the respective template. We first
align all aDNA reads onto S, e. g. using BWA [75], where we only consider mappings
whose start and/or end position is in t, i. e. either fully included in t or overlapping
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the junction between a marker and t. We denote the set of all such mappings as Mt.
The set of reads R defined by the mappingsMt is the input for the problem described
in Definition 12, and our objective is to find a sequence of overlapping mappings that
is covering the full gap and minimizes the edit distance to t.

When sorting all mappings r ∈ Mt by their start coordinates in S, we cut the
first mapping such that its end coordinate corresponds to |m1|. Taking this mapping
as a start then assures that we have at least one overlapping pair of reads covering
the junction between m1 and t. Next, we construct a graph G(V, E) where vertices
are mappings r ∈ Mt and there is an edge between two vertices if the two mapping
coordinates (segments of S) overlap. For each such edge e ∈ E, we define xe as the non-
overlapping suffix of the mappings with the highest end coordinate. We can associate
a weight to each edge given by the edit distance between xe and the substring Sx of S
it aligns to.

A sequence of overlapping mappings that covers t with minimal distance can be
found by searching for a shortest path in G between the vertex labeled with the small-
est start position (i. e. the first mapping ending at the junction between m1 and t) and
the vertex labeled with the largest start position (i. e. the last mapping covering the
junction between t and m2). See Figure 4.1 for an illustration. If such a path exists,
it can be found with Dijkstra’s algorithm [41] implemented based on a min-priority
queue in O(|E|+ |V| log |V|) time. If no such path exists, then there are either regions
in t that are not covered by any mapped aDNA read or mapping breakpoints, where
two contiguous bases in the sequence are covered, but not both by the same read and
hence no overlapping mappings can be found. In these cases, uncovered regions and
breakpoints can be identified in the mappings beforehand to identify start and end ver-
tices for several shortest paths to obtain a partial gap filling, precisely for the regions
covered by mapped reads.

The sequence of read mappings can then be assembled into a corrected ancestral
gap sequence while paying attention to the marker junctions covered by the last read.
As we already know all the overlaps between reads based on their mappings, we
only need to concatenate the suffixes xe for each edge in the shortest path respectively,
cutting all suffixes covering the marker sequences. Further, for each template that
is only partly covered by mapped reads, we can correct the covered parts according
to the read sequence and revert to the template sequence otherwise in a partial gap
filling.

The same principle has been developed independently to correct sequencing errors
in PacBio long reads with available short reads on the same dataset [59]. While the
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d(xe,Sx)
S

tm1 m2

mapped
reads

xe

Figure 4.1: Example for a mapping of ancient reads to an adjacency in combination with
a template gap sequence. We define a graph based on overlapping mappings of read
to the adjacency and find a shortest path in this graph representing a sequence of
reads that minimize the edit distance d to the template sequence.

long reads correspond to the template defined above, the short reads are expected to
be more accurate and a mapping of these reads can hence be used to correct the long
read. However the distance between the template and the mapped read sequence can
be assumed to be smaller than in this application.

4.2 Local ancestral reconstruction based on Gap Filling

The AGapEs method can generally be applied as a follow-up step after a reconstruc-
tion method that produces a consistent order of markers for an ancestral genome of
interest, e. g. as described in the previous two chapters. In addition, we can also use the
illustrated gap filling strategy to avoid optimization decisions beforehand and directly
start from a possibly conflicting set of adjacencies, for example defined with a simple
parsimony criterion. In the following, we describe a local reconstruction pipeline that
takes advantage of the available aDNA data as much as possible. Given a set of po-
tential marker adjacencies that are possibly conflicting, we can solve conflicts directly
based on the coverage in the aDNA data. In particular, we can include features of the
genome sequence in the assembly gaps that are known to influence the rearrangement
of genomes.

IS annotations Insertion sequence elements are simple transposable elements in bac-
teria that only encode the gene required for its own transposition [86, 130]. In Yersinia
pestis, the expansion of four major IS families has been identified as the cause of gene
loss during the emergence of Yersinia pestis from Yersinia pseudotuberculosis through
gene inactivation at the sites of insertion. In addition, these highly transposable ele-
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ments are known to be the cause of widespread genome rearrangements and hence an
important key to analyze the rearrangement history of a species in a phylogeny. These
repeated sequences however propose a challenge for de novo assembly [142], hence we
include the coordinates of all IS annotations in all extant genomes to identify ancestral
gaps that potentially contain one or several IS elements in the following.

4.2.1 Local reconstruction pipeline

We divide the set of potential ancestral adjacencies into three different groups: simple,
conflicting and IS-annotated adjacencies.

An ancestral adjacency is IS-annotated if at least one of the supporting extant gaps
is annotated as containing at least one IS. Due to the apparent high dynamic of IS, the
presence or absence of the IS in the extant gaps pose the question if the IS element was
also present in the ancestor.

In addition, these IS elements are also often present in adjacencies that are conflicting
with other potential adjacencies, i. e. adjacencies sharing the same marker extremities.
This implies the problem to decide which adjacencies to discard as a putative false
positive to reconstruct a linear or circular ancestral genome structure. By mapping
the available ancient reads to conflicting potential adjacencies, we can analyze which
adjacency has support by the read data in terms of read coverage and hence a stronger
signal to be ancestral. In order to obtain high confidence scaffolds for the ancestral
genome, we will discard all conflicting adjacencies without support by the read data.
Note that if a gap is conflicting and IS-annotated, we assign it to the conflicting group.

Finally, if an ancestral adjacency is not conflicting and none of the associated extant
gaps is annotated with an IS, we call it simple. Simple adjacencies are the ones for
which the extant support is robust and that we can hope to confirm using unassembled
aDNA reads that align well on a reconstructed ancestral gap sequence obtained from
a multiple sequence alignment of the supporting extant gaps [117].

The local reconstruction pipeline is summarized in Figure 4.2. For simple adjacen-
cies, we can apply the AGapEs method described before directly. If the extant gap
sequences are well conserved, we can compute a high quality template sequence as
a basis for the read mapping and then correct the template according to the aDNA
reads, depending on the mapping coverage that can be reached either completely or
partially.

For conflicting adjacencies, we can use the gap filling analysis for all adjacencies in
a conflicting component to identify mapping breakpoints or uncovered regions that
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set of potential ancestral adjacencies

simple conflicting IS-annotated

covered?

complete 
gap filling
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gap filling to identify 
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set of ancestral adjacencies 
and ancestral gap sequences

determine absence/
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Figure 4.2: Local reconstruction pipeline based on filling the gaps between potential
adjacencies with sequences of aDNA reads that minimize the distance to a template
sequence. We differentiate between simple, conflicting and IS-annotated potential
adjacencies respectively. For conflicting and IS-annotated adjacencies, we can use
the AGapEs method to identify the supported ancestral adjacency and the supported
variant of the ancestral gap sequence.
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can indicate how to solve these conflicts. As no shortest path can be found in the
mapping graph in these cases, the AGapEs method naturally identifies these features
when attempting to fill the gap. Note that at this point, we solve the conflicts between
potential adjacencies only based on the aDNA read data. One has to be careful to
not interpret uncovered regions as missing data while they can also indicate false
ancestral adjacencies. We discard any conflicting adjacency that is not sufficiently
covered by aDNA reads, even if this removes complete conflicting components from
the reconstruction.

For IS-annotated gaps, we divide its supporting extant gaps into sets of annotated
and non-annotated extant sequences respectively and build a multiple alignment on
each of these sets separately. This allows us to define two alternative templates with
the Fitch algorithm that can be used as a basis to fill the gap, while breakpoints and
uncovered regions in the gap variants identified by our method help to determine the
supported variant for each IS-annotated gap.

4.3 Discussion

The AGapEs method presented in this chapter provides a useful way to fill inter-contig
gaps in ancient reconstructed genomes where classical gap filling methods cannot
be applied. It relies on a template sequence e. g. parsimoniously reconstructed from
supporting extant gap sequences and utilizes unassembled aDNA reads to fill the gap
locally. The strategy has been extended to a local reconstruction strategy confirming
ancestral adjacencies with aDNA support and indicating all adjacencies that are not
covered by reads.

The method relies on the quality of the aDNA data, as missing data does not allow to
fill a gap completely. However the relation to extant genomes still provides a point of
reference for regions of the ancient genome that cannot be retrieved due to degradation
of the DNA material. Also, regions with very low coverage involve the danger of
erroneously “correcting” the template sequence due to sequencing errors or aDNA
damage apparent in the reads. If there is no support for all adjacencies in a conflicting
component, it will result in a more fragmented solution in comparison to optimization
methods. All these points reveal critical issues for methods that rely on aDNA data
as the main source of information, which need to be taken into consideration in the
analysis of these data. However they also provide the opportunity to point out weak
adjacencies in reconstructions by optimization based methods.
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For aDNA data with sufficient quality in terms of read coverage however, the com-
bination of the local assembly of reads and parsimonious gap sequence reconstruction
can improve the number of closed gaps considerably, as can be seen in our analysis
of two ancient Yersinia pestis genomes in the following chapter. With the on-going
improvement of aDNA sequencing methods, it provides an opportunity to de novo
assemble the full nucleotide sequence of ancient genomes.
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Chapter 5
Reconstruction and analysis of two
ancient Yersinia pestis strains

This chapter describes the reconstruction of genomes in the Yersinia pestis phylogeny,
including two sequencing data sets of ancient Yersinia pestis strains. We will first start
with a detailed local analysis of both ancient data sets separately using the gap filling
approach described in Chapter 4. We then apply the global methods presented in
Chapters 2 and 3 to one of the data sets and compare the result to the reconstruction
obtained with the local method FPSAC [117]. Finally, we combine the information
from both ancient data sets in a global reconstruction as described in Chapter 3, and
compare the proposed reconstructions by all methods for both ancient Yersinia pestis
genomes.

5.1 Sequencing data and reference genomes

The first aDNA data set was obtained from the remains of a London victim of the
Black Death pandemic in the 14th century [19], the second consists of five samples
from victims of the Great Plague of Marseille around 400 years later [18]. We will refer
to them as the London and Marseille data sets in this chapter respectively.

The read set for the London strain (Genbank accession SRA045745) consists of
merged single-end reads sequenced from dental material found on a excavated me-
dieval cemetery in London. The sequencing material was obtained by array-based
enrichment using the extant Yersinia pestis strain CO92, and the enriched libraries
were sequenced on the Illumina Genome Analyzer IIx platform [19]. We used the
sequencing data for individual 8291 in this analysis. The average read length is 53 bp
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Figure 5.1: Read length distribution of individual 8291 in the London data set (left) and
Marseille sample OBS116 (right) after preprocessing. The mean read length in each
data set is indicated in red.

in this data set (see Figure 5.1), with a coverage estimate of 28.2 reads per site for the
chromosome.

The read set for the Marseille strain (ENA accession PRJEB12163) contains five sam-
ples from victims of the Great Plague of Marseille in 1722, obtained again by array-
based enrichment using strain CO92 and additional chromosomal regions from other
Yersinia pestis strains that are absent in CO92. Enriched libraries were sequenced on
an Illumina HiSeq 2000 [18]. For this data set, we preprocessed the reads as partly
described in [18] by first trimming adapters separately for both paired-ends using cu-
tadapt [90] for the adapter sequence AGATCGGAAGAGC, a maximum allowed error
rate of 0.16 and a minimum overlap length between read and adapter of 1. We merged
paired-end reads with negative insert size with flash [85] with a minimum required
overlap length of 11 and finally filtered all reads shorter than 24 bp. The average read
length is 75 bp in the five Marseille samples (see Figure 5.1).

In all analyses, we rely on seven extant Yersinia pestis and four Yersinia pseudotu-
berculosis as reference genomes. For all these references, a fully assembled genome
sequence is available, the respective accession numbers are given in Table 5.1. As the
ancient data does not contain sequencing information about the plasmids, we restrict
the analysis to the main chromosome of the bacteria in the following.
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Figure 5.2: Underlying phylogeny of extant Yersinia pestis and Yersinia pseudotubercu-
losis species used as reference genomes and the location of both considered ancient
Yersinia pestis data sets.

Table 5.1: Accession numbers of full assemblies for the chromosome of all extant Yersinia
pestis and Yersinia pseudotuberculosis reference genomes. In addition, the number
of IS annotations per reference is given.

strain accession no. IS annotations

Yersinia pestis
CO92 NC_003143.1 233
Antiqua NC_008150.1 293
Z176003 NC_014029.1 170
Nepal516 NC_008149.1 212
KIM10+ NC_004088.1 151
biovar Microtus 91001 NC_005810.1 168
Pestoides F NC_009381.1 190

Yersinia pseudotuberculosis
IP 31758 NC_009708.1 -
YPIII NC_010465.1 -
PB1/+ NC_010634.1 -
IP32953 NC_006155.1 -
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The phylogeny of the considered strains is depicted in Figure 5.2 and is taken
from [18, 19], inferred from mutation analysis. The London strain is assumed to be
ancestral to five extant Yersinia pestis genomes. In addition, the ancient Marseille strain
is assumed to be a direct descendant of the London strain, but not ancestral to any
sequenced extant strains. Hence it is placed as an extinct leaf in the phylogeny.

Insertion sequence annotation. Since Insertion Sequences (IS) are strongly related
to rearrangements in Yersinia pestis evolution, their annotation in the considered ex-
tant genomes is crucial. In order to complete IS annotations in the reference ge-
nomes, the following annotation pipeline has been designed in [78]. First, already
annotated IS were extracted for all extant Yersinia pestis genomes from their Genbank
files. Then, they were completed by an automatic annotation using the Basys anno-
tation server [144] and Hidden Markov Models (HMM) trained for 11 different IS
families, implemented using hmmer [44]. The number of IS annotations per reference
genome ranges from 151 in Yersinia pestis KIM10+ to 293 in Yersinia pestis Antiqua (see
Table 5.1). The length of the annotations ranges from 60 bp to 2,417 bp as can be seen
in Figure 5.3. We see several annotations of similar length arising from IS families
with a high frequency. Some short annotations deviate from the expected length for
IS of at least 500 bp. They can indicate incomplete IS annotations and are frequently
overlapping with additional, longer annotations. However, in order to avoid filtering
any true annotations, we include them all as potential IS coordinates in the following
analysis.

5.2 Local reconstruction of both ancient strains

Applying our reconstruction pipeline described in Chapter 4 to both ancient Yersinia
pestis data sets, we first show the consistency of genome organization in reconstruc-
tions based on a de novo and a reference-based assembly for the London outbreak
strain. With the reconstruction of the Marseille outbreak strain, we will then analyze
the genome evolution between both ancient genomes and extant genomes in terms of
genome rearrangements. This analysis has been published as a preprint in [78].

5.2.1 Reconstructing the London outbreak strain

In order to assess the impact of the initial contig assembly on the final result, we con-
sidered two contig assemblies of the aDNA reads. Bos et al. [19] describe a reference-

80



5.2. Local reconstruction of both ancient strains

Length

N
um

be
r 

of
 IS

 a
nn

ot
at

io
ns

0 500 1000 1500 2000 2500

0
20

0
40

0
60

0
80

0

Figure 5.3: Lengths of all potential IS annotations in all Yersinia pestis reference ge-
nomes.

based assembly of the London strain consisting of 2, 134 contigs of length at least
500 bp that add up to a total length of 4, 013, 159 bp. It was obtained with the assem-
bler Velvet [153] again using the extant strain Yersinia pestis CO92 as a reference. In
order to assess the influence of the reference sequence on the assembly, we addition-
ally de novo assembled the ancient DNA reads into contigs using Minia [30]. Minia is
a conservative assembler based on an efficient implementation of the de Bruijn graph
methodology. In general, the tool produces shorter contigs, as it avoids assembly deci-
sions in case of ambiguity in the sequence data. We assembled aDNA reads with Minia
with different values of the k-mer threshold k ∈ {17, 19, 21} and a minimal k-mer oc-
currence of 3. We evaluated the total contigs length with regards to a minimal contig
length threshold ∈ {200, 300, 400, 500}. The total contig length can indicate how much
of the expected genome size the assembled contigs can cover, while a higher minimal
contig threshold can provide a better base for defining markers. We found the best
trade-off with k = 19 and a minimal contig length of 300bp for the de novo assembly
of the London data set. As expected, the de novo assembly is more fragmented with
4, 183 contigs that cover 2, 631, 422 bp (see Table 5.2). We will refer to the assembly
by Bos et al. as reference-based and the Minia assembly as de novo assembly in the
following.

We first compared both assemblies by aligning them with MUMmer [73]. Most con-
tigs can at least partly be aligned to a contig from the respective other set. The de novo
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Figure 5.4: Contig length distribution for the reference-based assembly of the London
data set (left), and both de novo assemblies of the London (middle) and Marseille
sample OBS116 (right) respectively.

assembly however covers only 60% of the reference-based assembly. Unaligned bases
mostly belong to regions in the reference-based assembly that have not been assem-
bled in the conservative de novo assembly, and only an extremely low amount of
nucleotide variations can be observed (Table 5.2), together with no observed genome
rearrangement evident from the contigs. We collected the bases of reads mapping to
these variable positions, but could not find any indication that the nucleotide varia-
tions are caused by the reference genome used in the reference-based assembly.

To allow the comparison with extant genomes, contigs above a minimum length
threshold were aligned to the extant genomes to define families of markers as de-

Table 5.2: Comparison of sets of contigs obtained in reference-based assembly and de
novo assembly for the London strain.

reference-based assembly de novo assembly
Velvet [19, 153] Minia [30]

Length threshold L 500 bp 300 bp
Number of contigs > L 2,134 4,183

Total contig length 4,013,159 bp 2,631,422 bp

Aligned contigs 1,866 (87.44%) 3,885 (92.88%)
Aligned bases 2,414,881 (60.17%) 2,380,757 (90.47%)

Single Nucleotide InDels 14
SNPs 39
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5.2. Local reconstruction of both ancient strains

scribed in [117]. Marker families were filtered to retain only unique and universal fam-
ilies, i. e. families that contain exactly one marker in each considered genome (includ-
ing ancient genomes). Subsequently, for the reference-based assembly, we obtained
2, 207 markers that cover 3, 463, 281 bp in total. For the de novo assembly, we obtained
3, 691 markers covering 2, 215, 596 bp in total. All markers of the de novo assembly
are contained in or overlapping with markers from the reference-based assembly, with
small non-overlapping regions in the de novo assembly marker set that are due to the
segmentation process.

Reconstructing potential ancestral adjacencies. For the reference-based assem-
bly, we inferred 2, 208 potential ancestral adjacencies: 1, 991 are simple, 207 are IS-
annotated but not conflicting, and 10 are conflicting. Among the conflicting adjacen-
cies 8 are also IS-annotated, illustrating that most rearrangements in Yersinia pestis
that can create ambiguous signals for comparative scaffolding are associated with IS
elements. For the de novo assembly, we obtain 3, 691 potential ancestral adjacencies:
3, 483 are simple, 201 are IS-annotated and non-conflicting, and only 7 are conflicting,
including 5 IS-annotated adjacencies (see also Figure 5.6). The difference in the num-
ber of IS-annotated adjacencies between the two assemblies can be explained by larger
gaps in the de novo assembly that contain potentially more than one IS sequence but
are separated into several gaps in the reference-based assembly.

For most potential ancestral adjacencies, the lengths of the sequences in extant ge-
nomes associated with the supporting extant adjacencies are very similar, indicating
well conserved extant gaps (Figure 5.5). We have 28 and 21 gaps in the reference-based

0 5 15 21 45 95 153 1389 8120

Extant gap length differences

N
um

be
r 

of
 g

ap
s

1
5

50
50

0

0 6 14 20 32 53 141 1429 102876

Extant gap length differences

N
um

be
r 

of
 g

ap
s

1
5

50
50

0

Figure 5.5: Differences in extant gap lengths for all markers of the London data set (left)
and the Marseille data set (right).
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Chapter 5. Reconstruction and analysis of two ancient Yersinia pestis strains

and de novo assembly respectively whose length difference falls into the length range
of potential annotated IS elements, thus raising the question of the presence of an IS
within these adjacencies in the ancestral genome. We note a small number of poten-
tial ancestral adjacencies with strikingly large extant gap length differences (7 and 5
respectively) in the order of Kilobases. All of these gaps accumulate more than one
IS annotation in some extant genomes. Most problematic are two gaps with length
differences of more than 100 kbp. As these gaps are not well conserved in general
(apart from the inserted sequences), it is difficult to obtain a good template sequence
based on a very fragmented multiple alignment at this point. We will get back to these
special gaps in the next paragraphs.

Ancestral gap filling We apply AGapEs to close all potential ancestral gaps. For
mapping the reads to the template gap sequences, we used BWA [75] with parame-
ter -a to keep all alignments for each read and samtools rmdup [76] to remove PCR-
duplicates. In order to correctly identify breakpoints in the mappings, we also re-
moved all clipped alignments.

We assume a gap to be filled, if we find a sequence of reads that covers the whole
ancestral gap. As we test two alternative templates for an IS-annotated gap, we con-
sider it filled if only one alternative is covered or if both templates are covered but
the IS is only annotated in a single extant genome. In the latter case, we expect the
non-IS gap version to be ancestral, as the IS was most likely obtained along the edge
to the annotated extant genome. If otherwise both alternatives are covered, we cannot
unambiguously recover the supported gap variant at this point and mark it as not
filled. If a gap template sequence is only partially covered by mapped aDNA reads,
we correct the covered regions as described above and use the template sequence of
the uncovered regions to complete closing the gap. In Figure 5.6, the gap-filling results
are summarized and detailed numbers are given in Table 5.3.

For both assemblies, a high number of gaps is supported by sufficient read coverage
that enables us to fill the gap with a sequence of overlapping aDNA reads. Especially
considering partially covered gaps for the de novo assembly improves the length of the
genome that is supported by reads. We also find covering reads for all gaps of length 0,
spanning the breakpoint between directly adjacent markers and hence confirming the
adjacencies respectively. Gaps that are not covered by any reads and hence not filled
indicate either genome regions that have not been sequenced or where a contradicting
signal of presence or absence of an IS element could not be solved based on the reads.
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Table 5.3: Detailed results of gap filling for both assemblies for the London data set and the de novo assembly for the Marseille
data set. Note that if a gap is conflicting and IS-annotated, we assign it to the conflicting group. The length associated to gap
regions uncovered by mapped aDNA reads is the length of the corresponding template sequence.

London reference-based assembly London de novo assembly Marseille de novo assembly

simple conflicting IS simple conflicting IS simple conflicting IS

gaps of length 0 48 29 27
gaps filled 1,162 2 109 2808 2 92 2610 4 157
length (bp) 172,614 7,876 70,550 710,138 86,805 751634 13231 222079
gaps partially filled 718 - 84 637 - 98 9 - 15
total length (bp) 319,633 - 240,085 862,307 - 505,856 15001 - 34223
covered by reads (bp) 245,779 - 194,414 765,406 - 443,090 6140 - 28650
gaps not filled 63 8 14 9 5 11 1 3 33
length (bp) 7,154 172,689 25,777 18,249 130 77125

total number of gaps 1,943 10 207 3454 7 201 2620 7 205

total assembly length 4,398,214 4,441,004 4,342,298
coverage by marker 3,463,281 (78,74 %) 2,215,596 (49.88 %) 3,143,627 (72.40 %)
coverage by reads 4,154,514 (94.46 %) 4,230,162 (95.25 %) 4,165,361 (95.93 %)



5.2. Local reconstruction of both ancient strains

We further computed the edit distance between the reconstructed gap sequence and
the previous gap template (see Figure 5.7). For IS-annotated gaps, we computed the
distance to a template sequence based on all extant gap occurrences, i. e. without con-
sidering the alternative templates as described previously. This allows us to compare
the filled gap sequence with the reconstructed gap sequence if IS annotations are ig-
nored. While the distance between reconstruction and template is very small for most
gaps, we identified one case where the parsimonious gap sequence based on all extant
occurrences of the adjacency excludes the IS element. The gap has a larger distance
of 1959 to the template, corresponding to the annotated length of the IS for this gap.
However if aDNA reads are mapped separately to alternative templates based on IS
and non-IS annotated extant gaps, only the IS-annotated gap template is covered. The
mappings of the reads shows clear breakpoints at the respective gap for the non-IS
template and provides full coverage for the IS template.

For IS-annotated gaps, in both assemblies 95 ancestral gaps are reconstructed con-
taining the IS, while 112 resp. 106 ancestral gaps are reconstructed without the IS.
From the 95 IS gaps, 22 contain annotations that are shorter than 400 bp, however they
all contain additional longer annotations in the same gap, confirming their classifica-
tion as IS gaps and indicating that the short annotations are potentially incomplete.
Analyzing the number of ancestral IS with a Dollo parsimony criterion considering
only the extant IS annotations, we have 96 ancestral gaps that contain an IS, indicating
a large agreement between the IS that are conserved by the parsimony criterion and
the IS supported by aDNA reads.

Comparison with gap2Seq The gap2Seq algorithm aims at closing gaps in assem-
blies as an exact path length problem on a de Bruijn graph of the given reads. We ran
gap2Seq on the reference-based assembly gaps with k = 19. For the de novo assembly
gaps, we could only get results for a higher k = 23, while the implementation could
not finish for lower values of k. In comparison, we can fill more gaps than gap2Seq
when taking advantage of a template sequence in AGapEs, as detailed in Table 5.4.

Conflicting adjacencies Conflicting adjacencies are related by the marker extremi-
ties they share, defining clusters of related conflicting adjacencies. For the reference-
based assembly, we identified three such clusters (see Figure 5.8). Two of them consist
of three adjacencies that are all annotated with IS elements, while the other consists
of four adjacencies, including two IS-annotated adjacencies. In total, only two of these
conflicting adjacencies are supported by aDNA reads. All other adjacencies contain
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Chapter 5. Reconstruction and analysis of two ancient Yersinia pestis strains

uncovered regions indicating potential breakpoints. So in order to propose a conflict-
free scaffolding, we chose to remove all unsupported conflicting adjacencies. Filling
these gaps only partially does not provide much information, as uncovered regions
can be either breakpoints or not sequenced regions of the ancestral genome.

For the de novo assembly, there are only two clusters of conflicting adjacencies
that match with the clusters observed in the reference-based assembly according to

Table 5.4: Comparison of gap filling results for AGapEs and gap2Seq on the London data
set. For each assembly, we divide all gaps into the three respective categories. We
count gaps that are filled by both methods and gaps that are only filled by one of both
methods. The total value sums up the number of gaps filled by each method.

reference-based de novo assembly

all AGapEs gap2Seq both all AGapEs gap2Seq both

simple 1991 263 3 924 3483 1919 0 886
conflicting 10 3 0 0 7 3 0 0
IS 207 70 0 62 201 76 0 37

total 2208 1322 989 3691 2921 923
59,87% 44,79% 79,14% 25,01%

4214 327 4172 3779

4658 4140 325 123 7388 6495 459 154

KIM10/Nepal516
CO92/Z176003/Antiqua
PestoidesF/biovar Microtus str 91001
pseudotuberculosis

4499 501928244405 7095 803230276924
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ISIS IS IS

IS IS IS IS IS IS
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* *

**

reference-based assembly de novo assembly

4406 23 27 4500 5020 6923 28 29 7096 8031

Figure 5.8: Conflicting components in the set of potential adjacencies of the London
reference-based assembly and the de novo assembly. Markers are indicated by the
grey boxes. Each marker x is represented by its extremities with 2x for the head
and 2x− 1 for the tail of the marker. The depicted IDs correspond to the marker IDs
assigned in our data analysis. Adjacencies are depicted by connecting lines between
two extremities. Gaps containing IS sequences are labeled accordingly. The color
labels assigned to each adjacency indicate the extant occurrences and hence the
conservation of the adjacency in the tree. All gaps that are fully covered by reads and
do not contain breakpoints in the mappings are marked by green stars.
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Figure 5.9: Read coverage for discarded adjacencies in conflicting components for the
de novo reconstruction for the London data set. The gap sequence is flanked by the
marker, the gap borders are indicated in red. All gaps have regions with no read
coverage.

the coordinates of the supporting extant gaps. As the same adjacencies are covered
by aDNA reads, we resolve the scaffolding conflicts identically to the reference-based
assembly by keeping the two supported adjacencies and removing all other conflicting
adjacencies. The read coverage of discarded adjacencies is shown in Figure 5.9.

For the reference-based assembly, the set of ancestral adjacencies can then be or-
dered into seven CARs, while we obtain five CARs for the de novo assembly. We
convert the reconstructed sequences of markers back to genome sequences by filling
the gaps with the read sequences if possible and resorting to the template sequence
otherwise.

As mentioned earlier, we observe two corresponding gaps in both reconstructions
respectively with highly differing extant gap lengths (≥ 100, 000 bp) and very little
conservation. While the extant gap coordinates are similar for both gaps, the multiple
alignment of the extant gap sequences is in both cases very fragmented and hence the
resulting template sequences are dissimilar, even though they are based on mainly the
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Chapter 5. Reconstruction and analysis of two ancient Yersinia pestis strains

same extant gap sequences. The mapping of reads onto these templates is poor: in
the de novo assembly, the gap contains 211 uncovered regions of 9319 bp in total. An
overview of the uneven read coverage for this gap in the de novo assembly is given
in Figure 5.10. As the reconstructed sequences have a high edit distance after partial
gap filling to each other, we cannot reconstruct a coinciding sequence in both recon-
structions. Hence we remove these gap sequences completely from the reconstruction
to avoid faulty reconstructed sequences.
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Figure 5.10: Large gap in the reconstruction of the London strain that has been removed
from both assemblies due to insufficient read coverage.

Comparing the two improved assemblies To evaluate the impact of the initial as-
sembly on the final result, we compared the two sets of CARs obtained from both ini-
tial assemblies by aligning the resulting genome sequences again using MUMmer [73].
As can be seen in Figure 5.11, we observe no rearrangements between both result-
ing sets of CARs, showing that the final result does not depend on the initial contig
assembly in terms of large-scale genome organization.

We achieve a high similarity between both sets of CARs. While the improved
de novo assembly contains a larger amount of filled gap sequences, we align nearly all
of both sequences and observe only a low number of SNPs, insertions and deletions
between both assemblies (see Figure 5.11 and Table 5.5).

The differences found are often located in gaps with low read coverage regions. If
short regions in the gaps are only covered by a single read, in order to find a shortest
path in the mappings, this read has to be included at all costs and can cause corrections
to the template that are not supported by any other read. Further re-sequencing of
these regions could clarify which variant is present in the ancient genome.
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5.2. Local reconstruction of both ancient strains

Figure 5.11: Comparison of the de novo assembly (left) and the reference-based assem-
bly (right). The inner links connect corresponding CARs in the reconstructions. The
grey lines indicate substitutions and InDels observed. The positions in both assem-
blies covered by markers are indicated in blue. All gaps that have IS annotation in the
extant genomes are shown in orange. In addition, gaps that are only partially filled or
have unconserved extant gap lengths are indicated in red in the same circle. Finally,
the outmost ring shows the average read coverage in windows of length 200 bp in
log-scale. The figure has been compiled with Circos [72].
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In addition, we aligned all reads again to the final assembly to assess the amount
of uncovered regions in the reconstructed sequences. In total, only 85,578 bp in the
reference-based assembly and 88,529 bp in the de novo assembly are not covered by
any read and most uncovered regions are rather short (see Figures 5.11 and 5.12).
Based on these mappings, we ran the assembly polishing tool Pilon [147] on the final
assembly. The tool identified several positions where the assembled base (also present
in the template) is the minority in comparison to all reads mapping at this position.
As Pilon is not taking the respective bases of the extant genomes into account, it runs
the risk of correcting the assembly according to sequencing errors in the reads. In fact,
the most frequent proposed substitutions correspond to the common damage pattern
of cytosine deamination observed in aDNA [108]. As a consequence, we only kept
small indel corrections but reject all single-base corrections.

Given the differing quality of the two considered assemblies, the resulting improved
assemblies have a different ratio of subsequences defined by markers and gap se-
quences. In the reference-based assembly, 78.74% of the resulting sequence is defined
by markers and hence directly adopted from the initial assembly, while for the de novo
assembly only 49.88% of the assembly is based on marker sequences and a larger part
is based on the filled gap sequences. Together with the gaps that have been filled by
read sequences, we can say that for the reference-based assembly in total 94.46% and
for the de novo assembly in total 95.25% are reconstructed using only the available
aDNA reads, while the rest of the assembly is based on extant sequence information.

5.2.2 Reconstructing the Marseille outbreak strain

This data set consists of five samples as described in [18] that we assembled separately
with Minia and parameter k = 21 as the k-mer length used to build the de Bruijn graph.
Unlike for the London data set, there was no available reference-based assembly, and

Table 5.5: Comparison of improved assemblies on nucleotide level. Both sets of CARs
have been corrected with Pilon [147], but only corrections of small Indels are kept.

reference-based de novo assembly

Aligned CARs 6 (85.71%) 5 (100%)
Total bases 4398441 4441094

Unaligned bases 13145(0.30%) 38702(0.87%)
Indels 216

Substitutions 389
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5.2. Local reconstruction of both ancient strains

a de novo assembly does not pose the risk of influencing the assembly by the choice
of the reference sequence.

We first compared the quality of the five resulting assemblies by mapping contigs
with a minimal length to the genome of the extant strain Yersinia pestis CO92 and
summing the total length of the mappings as seen in Figure 5.13. While restricting
the minimal contig length, two of the samples cover an extensively larger part of the
reference and thus indicate a better sequencing quality. The differing quality of the
samples can also be observed in Figure 5.15, showing the specific mapping positions
of contigs to the reference strain. The notable deletion in all samples in comparison to
Yersinia pestis CO92 has already been described in [18] based on a mapping of reads to
the reference.

If we restrict the minimal contig length, only a small part of the reference genomes
are covered by contigs from all five samples as shown in Figure 5.14. We conclude
that the different samples should be pooled in order to achieve a good coverage of the
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Figure 5.12: Length distribution of uncovered parts in bp after mapping all reads from
the London and Marseille data sets back to the improved reconstructed sequence for
each assembly respectively.
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Chapter 5. Reconstruction and analysis of two ancient Yersinia pestis strains

complete ancient genome, under the assumption that all samples represent the same
ancient Yersinia pestis strain. In order to confirm this assumption, we compared all
assemblies on the level of the contigs by alignment, but found no breakpoints between
the assemblies of different samples that could indicate different underlying strains on
the basis of the assembly.

Nevertheless, we rely on the assembly of sample OBS116 with a minimal contig
length of 500 bp to segment the extant genomes into markers. The assembly consists
of 3, 089 contigs with a total length of 3, 636, 663 bp. We also computed an assembly
of the pooled reads from all samples that could however not extensively improve the
quality of the assembly, so we only joined all sample read sets for filling the gaps
in the reconstruction to achieve a better coverage. The segmentation results in 2, 859
markers with a total length of 3, 143, 627 bp, and we analyze 2, 859 potential adjacencies
observed in the extant genomes: 27 of these gaps have a length of 0, leaving 2, 832 gaps
to fill. All gaps of length 0 can be covered by reads, supporting the direct adjacency of
the markers involved.

We can see in Figure 5.6 on page 85 that with the combined set of reads, we can
fill almost all simple gaps by read sequences. In addition, we obtain a higher number
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5.2. Local reconstruction of both ancient strains

Figure 5.15: Mapping of contigs greater than 500 bp from all samples to Yersinia pestis
CO92. The contigs from each sample are shown in a different color (from OBS117
in red to OBS137 in orange), indicating the different quality of the five samples. The
reference is depicted in grey in the innermost ring, the shading indicates the number
of samples covering a region in the reference genome.

of IS-annotated gaps that are filled in comparison to the London data set. For the
IS-annotated gaps, 95 are reconstructed containing the IS, 22 contain IS annotations
shorter than 400 bp. Hence we found the same number of potential ancestral IS as for
the London strain.

We identified two conflicting components in this set of potential adjacencies (see
Figure 5.16). Both of them align in terms of gap lengths and extant coordinates with
the two components we observe with the de novo assembly for the London strain. In
the first component, again only one conflicting adjacency is covered by reads. However,
this is a different adjacency in comparison to both reconstructions for the London
strain, while on the other hand we have no read support for the gap that is covered in
the London data set. This could indicate a potential point of genome rearrangement
(see discussion in the next section). In the second component, all involved adjacencies
are covered by reads from the five samples. In order to obtain a set of high confidence
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ancestral CARs, we removed all conflicting adjacencies in this component from the
set of potential adjacencies. The coverage of all discarded adjacencies is shown in
Figure 5.17.

Solving these conflicts results into 6 CARs for the ancient Marseille genome. Again,
we used BWA [75] to align reads from all five samples to the assembly to assess the
amount of uncovered regions in the reconstructed sequences. In total, only 54,672 bp
in this mapping are not covered by any read and the length of the uncovered regions
is rather short (see Figure 5.12 on page 93).

5.2.3 Comparison of both reconstructed ancient genomes

As the Marseille Yersinia pestis strain is assumed to be a direct descendant of the Lon-
don Black Death strain [18], we aligned the obtained CARs of both de novo reconstruc-
tions to identify genome rearrangements [35, 73].

As shown in Figure 5.18, apart from one larger deletion and one larger insertion in
the Marseille strain related to the removed gap sequence in the London strain and a
small inversion of length 4, 138 bp marked in black, the reconstructed CARs show no
larger rearrangements between both genomes (grey links). The difference in conflicting
adjacencies kept is a possible indication for a rearrangement that however cannot be
explicitly identified at this point. It causes the split pattern observed between the
CARs L3 and L1 in the London strain and M2 and M5 in the Marseille strain. Given
that the available read data does not allow us to further order the resulting CARs into
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Figure 5.16: Conflicting components in the set of potential adjacencies for the Marseille
data set. Markers are indicated by the grey boxes. Each marker x is represented
by its extremities with 2x for the head and 2x − 1 for the tail of the marker. The
depicted IDs correspond to the real values in our data analysis. Adjacencies are
depicted by connecting lines between two extremities. Gaps containing IS sequences
are labeled accordingly. The color labels assigned to each adjacency indicate the
extant occurrences and hence the conservation of the adjacency in the tree. All gaps
that are fully covered by reads and do not contain breakpoints in the mappings are
marked by green stars.
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Figure 5.17: Read coverage for discarded adjacencies in conflicting components for the
de novo reconstruction for the Marseille data set. The gap sequence is flanked by the
marker, the gap borders are indicated in red.

a single scaffold, additional potential rearrangements could be assumed to be outside
of the reconstructed CARs.

In contrast, Figure 5.18 depicts several inversions and translocations between both
ancient sets of CARs and the extant Yersinia pestis CO92 strain (red and blue links
respectively), confirming the high rate of rearrangements in the Yersinia phylogeny.

5.2.4 Discussion of local reconstruction

In this section, we have presented the analysis for two ancient Yersinia pestis strains
isolated from the remains of victims of the second plague pandemic based on the local
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Figure 5.18: Comparison of the de novo assembly of the London strain (blue) and the
Marseille strain (orange) with the reference Yersinia pestis CO92. The inner links con-
nect corresponding CARs in the reconstructions and the reference. Note that there
is only a small inversion marked in black among the grey links. The positions in both
reconstructions covered by markers are indicated in green. All gaps that have IS anno-
tations in the extant genomes are shown in orange. For CO92, all IS annotations are
shown as well. In addition, gaps that are only partially filled or have very unconserved
extant gap lengths are indicated in red. Finally, the outermost ring shows the average
read coverage in windows of length 200 bp in log scale. The figure has been compiled
with Circos [72].98
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reconstruction that combines comparative scaffolding using related extant genomes
and direct aDNA sequencing data as described in Chapter 4.

The comparison of the reference-based and de novo assemblies for the London strain
illustrates that relying on a shorter initial de novo contig assembly does not impact
significantly the final result. In this case, we do not obtain any differences in terms of
rearrangements between both assemblies, however using a reference during assembly
involves the risk of missing rearrangements in the following analysis and hence being
able to avoid a reference in the initial assembly is preferable. The results we obtain
with the Marseille data set illustrate that if a good coverage of reads over the whole
genome can be provided (as through multiple sequencing experiments for multiple
samples), even a cautious initial contig assembly can be improved in such a way that
most gaps are filled using unassembled aDNA reads. With both data sets, we obtain
largely improved genome assemblies, with a reduced fragmentation (from thousands
of contigs to a handful of CARs) and a very small fraction of the final assembly that is
not supported by aDNA reads.

Applied to the same data set for the London strain, the method FPSAC [117] was
able to obtain a single scaffold based on local parsimonious optimization. Compar-
ing our resulting assembly to this single scaffold, we can identify two breakpoints
between both assemblies, hence both methods do not entirely support the same scaf-
fold structure for the London strain (see Subsection 5.5.1 for a detailed discussion).
These disagreements should be seen as weak points in both solutions, as they are not
reconstructed by different scaffolding objectives and would need to be confirmed more
confidently by additional sequencing data.

We see a clear connection between conflicts in the set of potential adjacencies and
the presence of IS elements in the corresponding gaps. Solving these conflicts based on
aDNA read data provides a useful way to identify ancestral adjacencies in a conflicting
component if the quality of the aDNA data is sufficient. The mapping of aDNA reads
has shown to be mostly difficult at repetitive regions like Insertion Sequences, where
the presence of the IS in the ancestral gap cannot be clearly detected by the aDNA
sequencing data.

Interestingly, the improved assemblies of the London and Marseille strains show no
explicit large genome rearrangements except for a small inversion. Even if potential
genome rearrangement might not be observed due to the fragmentation of the assem-
blies into CARs, the synteny conservation between two strains separated by roughly
400 years of evolution is striking compared to the level of syntenic divergence with
extant strains. This might be explained by the fact that both the London and Marseille
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strains belong to a relatively localized, although long-lasting, pandemic [18]. Further,
conflicting adjacencies in the Marseille data set were covered by aDNA reads, thus
making it difficult to infer robust scaffolding adjacencies. This raises the question of
the presence of several strains in the Marseille pandemic that might have differed by
one or a few inversions.

Answering these questions with confidence would require additional targeted se-
quencing of a few regions of the genomes of the London and Marseille strains, or the
sequencing of additional strains of the second plague pandemic, such as the recently
sequenced Yersinia pestis genome from plague victims in Ellwangen [135] which is
assumed to be an ancestor of the Marseille strains.

5.3 Global reconstruction of London ancestor with EWRA

While we presented a local reconstruction in the previous section, we use the aDNA
data for the London Black Death agent in the global reconstruction approach described
in Chapter 2 next. Again based on the phylogeny depicted in Figure 5.2 on page 79,
we refer to this augmented ancestral node as the London (L) node in the following. Note
that we do not consider the Marseille data at this point.

We assembled the reads with ABySS [133], an assembler for short read data based
on a distributed de Bruijn graph implementation [31]. In comparison to several other
short read assemblers including Minia [30], ABySS allows to output the graph after
assembly. This graph then depicts assembled contigs and additional connections be-
tween contigs that could not be resolved during assembly. Given the short read length
in the data, we set k = 21 as the k-mer length used to build the de Bruijn graph and
option −g to output the assembly graph needed as input for EWRA. The resulting as-
sembly contains 3, 018 contigs with a length ≥ 500 bp. The contigs cover 3, 104, 032 bp
in total, while the N50 value for the assembly is 1, 126. The quality of this assem-
bly hence lies somewhere in the middle between the reference-based and the Minia
de novo assemblies described in Section 5.2, however the choice of assembly tools is
limited by the requirement of the assembly graph in this analysis.

We used the segmentation process as described in [117] for the obtained contigs
and all extant reference genomes to compute marker sequences, restricting the set
of markers to be unique and universal. In total, we obtain 2, 763 marker families.
On these markers, we also compute reconstructions using FPSAC [117] and the Fitch
algorithm [54] as described in Chapter 2.
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Figure 5.19: Venn diagram showing the number of marker adjacencies reconstructed at
the London node by all three methods in comparison to the adjacencies only recon-
structed by some of the approaches.

In order to use the assembly as input for EWRA, we additionally extract all adja-
cencies defined by the assembly graph as follows. We first locate all mappings of
markers onto contigs (representing nodes in the assembly graph). Then we can eas-
ily find intra-contig adjacencies for all markers that are located on the same contig.
For all markers that are mapped to the border of a respective contig, we can follow
all edges in the de Bruijn graph connecting this contig to others in the graph, defin-
ing all adjacencies for potentially adjacent contigs. We obtain 124 adjacencies between
markers within contigs, while we have 1, 176 adjacencies defined by the edges between
contigs in the assembly graph. As expected, the number of intra-contig adjacencies is
low but still interesting, as they indicate either potential rearrangement breakpoints
or assembly errors in terms of wrongly connected contiguous sequences. The set of
inter-contig adjacencies is likely not complete, hence we do not restrict the scaffolding
of the fragmented assembly to edges present in the assembly graph. It further con-
tains 228 pairwise conflicting adjacencies that need to be resolved in the phylogenetic
context.

We reconstruct 2, 753 adjacencies at the London node with EWRA. All intra-contig
adjacencies are reconstructed, confirming that there are no errors in the aDNA ABySS
assembly. As all reconstructions are based on the same set of markers, we can di-
rectly compare the reconstructed adjacencies to the FPSAC and Fitch reconstructions
as shown in Figure 5.19. We see a high agreement between the reconstructed sets with
2, 749 adjacencies found by all three methods. The small differences however deserve
to be discussed in more detail. We have one adjacency that is reconstructed by both
global SCJ methods, but absent in the FPSAC reconstruction. The adjacency is present
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in the Yersinia pestis strains Antiqua, Nepal516 and KIM10 but absent in the rest of the
extant genomes. Hence global parsimony indicates the presence of this adjacency at
the London node with a later loss along the branch to the strains CO92 and Z176003.
In FPSAC however, for both extremities in this adjacency, conflicting adjacencies are
reconstructed that are present in CO92 and Z176003 as it optimizes the weight-based
objective in FPSAC to select a subset of adjacencies. Despite these, there are six other
adjacencies that are only reconstructed in FPSAC, but have no support in a global
reconstruction. In addition, none of these adjacencies are supported by the assembly
graph.

We see three adjacencies with mixed signal in the extant genomes that are only
reconstructed by EWRA, with conflicting alternatives reconstructed by FPSAC and
the Fitch approach. For one of these adjacencies, we have support by the assembly
graph, influencing the inclusion of this adjacency at the London node. More precisely,
this adjacency would not be reconstructed without the positive signal in the assembly
graph. For the other two, the edge lengths in the tree cause the scenario for these
adjacencies to differ from the Fitch solution. This effect has already been observed
with the mammalian data. Hence all these adjacencies only reconstructed by some of
the methods are up for discussion when looking for a set of high confidence scaffolds,
as these adjacencies do not have the global support in the tree when edge lengths are
considered in the objective.

This analysis shows that the edge lengths considered in the EWRA method have an
influence on the reconstruction despite being potentially able to reduce the fragmen-
tation of the resulting scaffolds. We see a high agreement between the Fitch and the
EWRA reconstruction when including adjacencies derived from an assembly graph
of aDNA reads. These provide a way to confirm adjacencies with a mixed signal in
the extant genomes. We also have a high agreement with the local FPSAC method,
while also indicating adjacencies that should be classified as potentially weak in both
reconstructions.

5.4 Global reconstruction of London ancestor with PhySca

Finally, we apply the adapted Sankoff-Rousseau method PhySca as introduced in Chap-
ter 3. We will first give some results on the reconstruction considering only the London
aDNA data. Besides the sequenced aDNA single-end reads for this strain, we build
upon the reference-based assembly by Bos et al. [19] for London individual 8251, as it
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provides the best assembly quality. Again, we will refer to this augmented ancestral
node in the tree as the London (L) node.

The marker sequences for all extant genomes were computed as described in [117],
restricting the set of markers to be unique and universal. For a total of 2, 207 markers
in all extant genomes we obtain 2, 232 different extant adjacencies, thus showing a
relatively low level of syntenic conflict compared to the number of markers, although
it implies a highly dynamic rearrangement history over the short period of evolu-
tion [117].

As for the mammalian data set analyzed in Chapter 3, we considered as potentially
ancestral any adjacency that appears in at least one extant genome. This does not re-
strict the set of potential adjacencies e. g. according to some specific parsimony model,
but still does not allow the creation of adjacencies that are not observed in any extant
genomes. Thus we are starting with a slightly higher number of potential adjacencies
than in the analysis in Section 5.2. In contrast to the mammalian data set, where the
phylogeny covers a larger evolutionary time, it is not necessary to reduce the com-
plexity of connected components by applying a weight threshold x. We evaluate both
approaches described in Subsection 3.2.6 on page 50 to weight adjacencies, starting
with the weighting that is independent of the aDNA read data.

5.4.1 Ancestral reconstruction with Boltzmann weights

Fist, we computed Boltzmann weights for all internal nodes of the phylogeny, hence
not considering the available aDNA data at this point. We sampled 500 solutions for
different values of α each.

Recall that the parameter kT influences the weighting of the adjacencies: For kT =

0.1, the weights are based on sampling mostly optimal scenarios of presence and ab-
sence for the specific adjacency, while for kT = 1 also sub-optimal scenarios are likely
to be sampled. The influence of this parameter on the distribution of adjacency weights
is depicted in Figure 5.20. Again, we observe the specificity of weights with kT = 0.1,
while the weights with kT = 1 are more balanced. In comparison to the mammalian
data set however, we still see a larger amount of adjacencies with a weight close to 1
for kT = 1, hinting at the different complexity of this data set in comparison to the
mammalian data.

Figure 5.21 displays the number of reconstructed scaffolds for some selected nodes
in the phylogeny (see Figure 5.2 on page 79). For α = 0, the number of scaffolds min-
imizing the SCJ distance over the whole tree varies at all considered internal nodes.
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For higher values of α however, the number of scaffolds becomes robust and is gen-
erally decreasing with the increase of α, as the inclusion of adjacency weights favors
the presence of adjacencies at internal nodes in combination with the overall tree costs.
Interestingly, for kT = 0.1, the solutions are robust over all 0 < α < 1, indicating that
the importance of both parts of the objective function is variable over the resulting
solutions. As the weights for kT = 1 are in general less precise, the solutions are only
robust for specific values of α.

While the number of scaffolds decreases, the total SCJ distance in the tree increases
with increasing values of α as seen in Figure 5.22. Regarding the London node, the
comparative approach is able to reduce the number of scaffolds to a maximum of 15
and a minimum of 1 when only the adjacency weights are considered, confirming the
result in [117].

5.4.2 Ancestral reconstruction with aDNA weights

For the London node, adjacency weights can be based on the given aDNA reads for
each given potential ancestral adjacency. In order to solely observe the effect of the
aDNA weights in the global reconstruction, we assign a weight of 0 for all adjacencies
at other nodes in the tree. Moreover, this weighting scheme addresses the issue of
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Figure 5.20: Distribution of the Boltzmann weights for the London Yersinia pestis data
set for all potential adjacencies with kT = 0.1 and kT = 1.
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potential adjacencies at the London node with a lower weight due to the difficulty of
sequencing ancient DNA.

As expected, the aDNA weights are more skewed to the higher end of the scale
than the Boltzmann weights as displayed in Figure 5.23. Only one adjacency has a
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weight close to 0, indicating that nearly all gaps have at least some reads mapping to
the proposed template gap sequence. As already observed in the gap filling analysis
in Section 5.2, a high amount of ancestral gaps can actually be covered completely
with read sequences, resulting in weights close to 1 and corresponding to the peak
observed in Figure 5.23.
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Figure 5.23: Distribution of the aDNA
weights for all potential adjacencies
at the London node.
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Again we sampled 500 solutions for this data set under different values of α. As
shown in Figure 5.24, for selected internal nodes of the phylogeny, the pure SCJ solu-
tions at α = 0 result in the highest fragmentation, while the number of CARs decreases
as we increase the importance of the adjacency weights in the objective of our method.
For the London node, when including the aDNA weights, the fragmentation is de-
creasing while the reconstructions for each α > 0 are robust. At the other nodes, the
applied sequencing weights also reduce the fragmentation except for node 6 which is
located in the pseudotuberculosis subtree and hence more distant to the London node.
This shows that the aDNA weights not only influence the reconstructed adjacencies at
the London node, but also other nodes of the tree.
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5.5 Global reconstruction of London and Marseille strains

The method described in Chapter 3 allows the joint global scaffolding of multiple an-
cient assemblies. We will use the previously separately analyzed ancient Yersinia pestis
strains from the Marseille [18] and London outbreak of the bubonic plague [19] and
build a combined set of markers using assembled contigs from both strains. We can
then compute the adjacency weights for all potential adjacencies based on both aDNA
read sets and apply the Sankoff-Rousseau framework to obtain a global reconstruction
using both sources of information. The Marseille strain represents an extinct leaf in
the phylogeny. Eventually, we will compare reconstructed genome sequences with
the sequences obtained by the AGapEs pipeline [78] as described in Section 5.2 and
FPSAC [117].

Defining marker families

Given two sets of ancient contigs, the first step is to define a common set of markers
supported by each set of contigs and the set of extant genomes. Ideally, we search for
non-overlapping markers that have a unique occurrence in each of the extant genomes
and match at least one contig in both ancient data sets. For this task, we adapt the iter-
ative segmentation approach described in [117]. As it is based on pairwise alignments
between contigs and the extant reference genomes, we can extend the segmentation
by also aligning the sets of contigs against each other, then filtering for families that
are unique and universal in the extant genomes and are additionally supported by
both ancient data sets. This approach is obviously not very efficient as a lot of pair-
wise alignments have to be computed. It is further hard to extend as soon as additional
ancient assemblies are included or the quality of the ancient assemblies is differing sub-
stantially. A more general framework based on a pan-genome data structure would
be a point of research for the future as discussed in Chapter 6.

As input, we consider both de novo assemblies of the London and Marseille strains
and the extant reference genomes as described in Section 5.2, as well as the phylogeny
depicted in Figure 5.2 on page 79. The segmentation results in 2750 marker families
with a minimal length of 100 bp, covering 1, 786, 815 bp in total. Hence with the re-
quirement that each family contains a contig of each ancient data set, we lose around
400.000 bp in comparison to the marker set for the de novo assembly of the London
strain alone.
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Reconstruction

We sampled 500 solutions for each α between 0 and 1 in steps of 0.2. As the complexity
of the data allows us to omit a weight threshold, we identify 2774 potential adjacencies
at each ancestral node. Among them, we have 51 conflicting adjacencies.

Figure 5.25 shows the number of reconstructed scaffolds for the London and Mar-
seille nodes as well as one ancestor (node 5) and one descendant (node 1) in the
phylogeny. We can see a gradual decrease in the number of scaffolds for both nodes
with aDNA weights, but in contrast to the Marseille node, we do not get robust results
for the London node over different values of α as seen in the previous section. For
α = 0, the range of number of scaffolds in the sampled solutions is lower for the Mar-
seille ancestor, and the solutions are more robust for higher values of α. This is not
surprising, as the set of adjacencies reconstructed for this leaf is not influenced in the
bottom-up traversal of the tree. For values of α close to 1, we obtain a single scaffold
for both ancient nodes, while we still obtain several scaffolds at the other unweighted
nodes.

As seen before, with the decrease in the number of scaffolds, we see an increase in
the total SCJ tree distance. In comparison to the previous analysis however, while the
distance is constant over all samples for smaller α, we sample solutions with slightly
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differing tree distances for higher values of α. It shows that the weighting of two nodes
in the tree based on aDNA data results in co-optimal solutions that are balancing
differing tree cost. We did not observe this when we weighted only one internal node
based on the aDNA as seen in Figure 5.22 on page 105.

5.5.1 Comparison to FPSAC and AGapEs

In this section, we compare the reconstructed nucleotide sequences for the London
and the Marseille strain for different approaches. While FPSAC [117] uses the aDNA
sequencing data only in the form of assembled contigs and afterwards applies parsi-
monious optimization for the scaffolding, with AGapEs we described a combinatorial
method that substitutes this optimization steps (solving conflicts, filling gaps) by us-
ing the unassembled aDNA reads. We compare these two results with the PhySca
reconstructions presented in the previous section, where the global tree distance and
the aDNA read information are combined in a global reconstruction. In all PhySca
reconstructions, we also filled the gaps in the already consistent marker orders with
AGapEs in order to compare complete nucleotide sequences.

We identify two rearrangements between the proposed scaffolds that have to be
scrutinized to find the most reliable ancestral genome for the London ancestor. We il-
lustrate the alignments of the resulting scaffolds for the London strain as synteny plots
computed with r2cat [67] in Figure 5.27. Comparing the reconstructions of FPSAC and
AGapEs, we see two rearrangements that are marked in red and green respectively. We
analyze these differences by comparing them with the PhySca results over different val-
ues of α. We also marked two noticeable unaligned regions observed in the alignment,
one due to the removed unconserved gap sequence in the AGapEs reconstruction and
the other due to the reconstructed IS sequence that is not seen in the parsimonious
Fitch gap sequence reconstructed by FPSAC.

The rearrangement marked in red shows a transposition between the FPSAC and
the AGapEs reconstruction. In the PhySca reconstruction, we find the AGapEs variant
for smaller values of α, e. g. α ≤ 0.3, and reconstruct the FPSAC variant accordingly
for higher values of α, e. g. as marked in red for α = 0.5. At a first glance, this seems
counter-intuitive, as higher values of α lay the importance on the adjacency weights
based on read data and this data is likewise used to solve the conflicts in AGapEs.
However, this can be explained by a closer look at the underlying conflicting compo-
nent: the red rearrangement is caused by the conflicting component identified in the
AGapEs analysis consisting of three conflicting adjacencies (see Figure 5.8 on page 88).
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unconserved gap

IS

Figure 5.27: Visualization of alignments between reconstructions for the London ances-
tor by FPSAC and AGapEs (top), PhySca and AGapEs (left column), and PhySca and
FPSAC (right column). Synteny plots computed with r2cat [67].
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Based on the read coverage for these adjacencies, in AGapEs we include one of these
adjacencies and discard the other two. In fact, this kept adjacency also has a higher
adjacency weight in PhySca as expected. As all of these adjacencies are only present
in a fraction of the extant genomes, the PhySca objective then keeps the higher weight
adjacency only in combination with the global SCJ costs. For higher α however, it be-
comes optimal to keep both flanking adjacencies with a lower weight and to discard
only a single adjacency, which also corresponds to the maximum weight objective used
in FPSAC to solve conflicts.

The small inversion marked in green shows the opposite trend: For lower values of
α, even for α = 0 which represents the most fragmented solution in PhySca, we see a
difference in comparison to the AGapEs reconstruction, hence confirming the FPSAC
variant at this point. Only with a high emphasis on the adjacency weights with α = 0.8,
the marker order as seen in AGapEs is reconstructed. It indicates an adjacency with a
high weight that is however also causing high evolutionary costs in the tree.

For smaller values of α, PhySca is not reconstructing any differences that are not seen
in either AGapEs or FPSAC. Especially the longer scaffold that can be seen for α =

0.3 and 0.5 is consistent over all reconstruction methods, allowing to assume a high
confidence in this part of the reconstructed genome sequence. However, for higher
values of α, the alignments also visualize the drawback of only focusing on adjacency
weights in the optimization, as we see a lot of differences to the other reconstructions.
Even though with α = 0.8 we still consider the evolutionary tree costs in the objective,
the weights are already superimposing the tree costs (also, there is no difference to
the solution with α = 1). Hence for high α, it indicates that the adjacency weights
based on the GAML model are not complying to the parsimony assumptions for some
conflicting adjacencies. This can be due to missing data in the aDNA reads, which
is not accounted for in the weighting of the adjacency. Also note that the AGapEs
analysis is mainly focused on uncovered regions and breakpoints in the mappings
of the aDNA data. While these regions surely influence the weighting in the GAML
model, it is however less emphasized compared to the weights of adjacencies that are
fully covered by reads. This shows that we need to combine these weights with the
evolutionary tree model in order to receive reliable results in the reconstruction.

In the PhySca setting, the global reconstruction of the Marseille strain being an ex-
tinct leaf is only directly influenced by the parent node, i. e. the London strain, but not
by any other extant leaves in the tree. We do not observe any rearrangements between
both ancient strains in the PhySca reconstructions, confirming the high conservation
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Figure 5.28: Visualization of alignments between reconstructions for the Marseille data
set by AGapEs and PhySca. The less fragmented solution is taken as the reference.
Synteny plots computed with r2cat [67].

between both strains as seen in the AGapEs analysis. Comparing the reconstructions
for the different methods in Figure 5.28, we see the same differences as observed for
the London strain, due to the different emphasis on missing data and uncovered re-
gions. Again, we see a few differences between the AGapEs reconstruction and the
PhySca reconstruction for small values of α. Interestingly, for α = 0.5, the difference
observed in the synteny plot is caused by the circularity of the chromosome and no
other larger rearrangement can be observed. For α = 0.8, the differences are very simi-
lar to the differences we already pointed out for the London strain, indicating that they
cannot be caused by the aDNA data alone but are rather imputable to the methods
themselves, given that the Marseille reconstruction in PhySca is highly influenced by
the reconstruction of the London strain.

5.5.2 Discussion of compared reconstructions

A reconstructed ancestral genome is a complex result that cannot be easily validated.
Local and global methods with a different emphasis on the inclusion of the aDNA data
provide a useful way to identify points in the reconstructions that are questionable. For
the reconstruction of the London ancestor in the Yersinia pestis phylogeny, we point
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out two weak adjacencies, that can also provide hints at weak points of the different
methods presented. Especially the AGapEs method depends on the quality of the
aDNA sequencing data, while the optimization framework in FPSAC does not account
for potential convergent evolution. Parameter α in the PhySca method provides a
useful way to explore different reconstructions with varying emphasis, as can be seen
in the comparison with FPSAC and AGapEs, where the solutions for different values
of α can agree with one method or the other.

In comparison to the PhySca method in Chapter 3, AGapEs is based on a purely
combinatorial approach, while adjacency weights in PhySca are computed using the
aDNA data in a probabilistic framework. In comparison, the AGapEs approach relies
on uncovered regions and mapping breakpoints alone, hence scaffolding a fragmented
assembly mainly concentrated on these regions. On the other hand, the aDNA weights
in PhySca do reflect such regions in the aDNA data by lower weights respectively, but
include them in the weighting based on the coverage observed for the whole gap. The
comparison between both approaches here illustrates these differences.

On a positive note, the number of weak points in relation to the large part of the
ancient genomes that can be reconstructed confidently is small and indicates that the
assumptions underlying the different methods are well grounded. Again, additional
sequencing data for these regions of the reconstructions can help to clarify the most
likely variant, while especially the global reconstruction methods can show its true
value if even more ancient DNA data sets become available (e. g. very recent sequenc-
ing data for additional ancient Yersinia pestis genomes [49, 135]) and can be integrated
in the analysis.
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Chapter 6
Conclusion and Perspectives

In this thesis, we investigated the joint question of ancestral genome reconstruction
and scaffolding of fragmented aDNA assemblies. Based on a given phylogeny and
extant genomes as a common basis for both problems, we explored integrative phylo-
genetic methods to solve the Small Parsimony Problem with different approaches to
include aDNA data in the optimization, and also presented a local method to close
gaps in proposed marker orders based on aDNA as the last step of scaffolding.

At first in Chapter 2, we generalized the result of [46] regarding the SCJ Small
Parsimony Problem towards multifurcating trees with edge lengths, while we showed
that consistency of the solutions can still be guaranteed and we can expect to obtain
a unique optimal solution under non-trivial edge lengths. Building upon this result,
we presented EWRA, an integrative approach including one aDNA sequencing data
set in the form of a contig assembly graph. The global reconstruction of all ancestors
in the tree by minimizing a distance based on the parsimony principle also provides a
scaffolding of the fragmented ancient assembly in the same time.

In Chapter 3, we extended the previous approach by allowing the inclusion of lo-
cal information at different nodes of the phylogeny, e. g. provided through several
aDNA sequencing data sets. We defined the SCJ Small Parsimony Problem with lo-
cally weighted marker adjacencies. The optimization problem is described through an
objective that – based on a presence/absence representation of adjacencies – combines
the global evolutionary cost and local weights for absent adjacencies at specific nodes
in the tree. Both terms are integrated through a convex combination factor that al-
lows to explore the influence of both the global tree evolution and the local adjacency
weights on the solutions. We presented a fixed-parameter tractable algorithm based
on an adaption of the Sankoff-Rousseau method to find a solution under this objective,
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enabling also to extend the dynamic-programming framework to sample co-optimal
solutions to explore the solution space. We investigated two ways of weighting ad-
jacencies locally in the tree: Through independent sampling of adjacencies scenarios
under the Boltzmann distribution and through the mapping of aDNA reads to poten-
tial marker adjacencies.

While these two methods are based on global ancestral reconstruction in a parsi-
mony framework, in Chapter 4 we mainly concentrated on available aDNA read data
for specific genomes of interest in the tree. We described the problem to fill gaps be-
tween adjacent markers with overlapping sequences of aDNA reads, minimizing the
distance to a template sequence. We illustrated a straight-forward algorithm based on
Dijkstra’s shortest path algorithm in a graph defined by overlapping read mappings.
Based on this approach, we introduced the pipeline AGapEs to benefit from the estima-
tion of ancestral gap sequences in order to clear conflicts and analyze specific features
for a set of potential adjacencies for an ancient genome.

In Chapter 5, we put the theory into practice and presented a detailed analysis of
extant and ancient Yersinia pestis strains. Applying all methods presented in this thesis
to two ancient strains in a global phylogenetic context and comparing the resulting
reconstructions facilitated us to explore the strengths and weaknesses of the different
approaches. The diverse array of strategies let us identify confidently reconstructed
parts of the ancient Yersinia pestis genomes as well as weak points in the reconstruc-
tions.

With the methods presented in this thesis, we illustrated the connection between
ancestral genome reconstruction and scaffolding of aDNA assemblies as stated jointly
in Question 3 (page 19) from both angles. The first two methods are based on global
ancestral reconstruction principles and include the aDNA data as additional input to
the optimization problem. In PhySca, our objective then allows to vary the importance
of either the global evolutionary cost in the tree or the integrated local aDNA data. In
other words, both methods start from a comparative ancestral reconstruction and we
extended them to integrate the scaffolding of the fragmented aDNA assembly. With
the local gap filling method, we started with a marker order based on a fragmented
assembly of the aDNA data and included the comparison of related extant genomes
in the phylogenetic context to find ancestral gap sequences. Such template sequences
constructed parsimoniously from extant gap sequences allow to fill the gaps and an-
alyze conflicting adjacencies as well as potential breakpoints in the same time. Both
directions pave the way towards a fully integrated phylogenetic scaffolding method

116



that combines an evolutionary model and sequencing data for selected extant and
ancestral genomes.

Perspectives The research presented in this thesis gives rise to several extensions
and generalizations that could improve and enhance solutions to the integrated phylo-
genetic assembly problem.

A first exciting perspective is the availability of new sequencing data for ancient
genomes that we can include in the reconstruction analysis in a phylogenetic context.
Especially the global methods presented in this thesis can benefit from additional
sequenced ancient strains in the same phylogeny, as e. g. in PhySca, we can provide
more local weights based on aDNA data to guide the reconstructions. Also the local
reconstructions by AGapEs can be evaluated more reliably, as additional reconstructed
genomes can confirm the rearrangement history described in the tree. To this end,
additional data can entail better evaluation methods to provide an improved notion
of confidence in the reconstruction results, as the quality of methods estimated by
simulation experiments is often biased.

Especially for the Yersinia pestis phylogeny, given the special interest of several re-
search fields to unravel the history of the ancient plague pandemics, additional se-
quencing data sets – some even with increased sequencing quality - were already pub-
lished very recently [49, 135] and hence provide an interesting perspective to extend
the analysis on this specific bacteria family presented here.

With the inclusion of more ancient data, a crucial first step is the definition of marker
families supported by extant genomes and several ancient sets of contigs in a combined
problem statement of scaffolding and reconstruction. The methods presented here are
relying on unique and universal markers so far, hence the amount of markers that can
be defined with the support of all sets of contigs will decrease rapidly with the number
of assemblies considered. Especially different sequencing quality and conservation of
the ancient material can make it harder to define unique and universal marker families
with a good coverage of the expected genome size and efficient methods to compute
marker families are needed.

Naturally, this problem is closely related to the analysis of pan-genomes, where
several data structures have been developed to store and analyze the core and dispens-
able genomes of several related strains or species. If these data structures allow an
efficient extraction of the core genome, we can define markers on this core as input
for the rearrangement analysis. Especially data structures that do not require assem-
bled genomes as input, e. g. the BFT [64] which is based on the decomposition of reads
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into k-mers, could even allow to avoid a first assembly of the aDNA reads and hence
provide a way to find markers when several ancient read sets are available, however
the efficiency of assembly and marker definition in one simultaneous step has to be
investigated. Ideally, if a pan-genome representation is able to also take the relations
between strains given in the phylogenetic tree into account, markers could be defined
much more generally during the extraction of the core genome and we could avoid
fragmentation that is only caused by missing data in the ancient reads.

Besides generally improving the step of marker definition, the methods presented in
this thesis assume several restrictions to the underlying modeling of the data that can
be generalized in order to extend the coverage of genomes by markers as input to the
reconstruction methods. Deviating from the notion of unique and universal markers
in the optimization would allow to be less strict and to include repeated regions of the
genomes in the context of duplicated markers [122], however increasing the complex-
ity of the problems defined on this genome model. Gene trees provide an opportunity
to integrate duplicated markers in the reconstruction of genome structure and it is
interesting to extend the problems discussed here in this direction. The models could
also be extended towards other instances than adjacencies, i. e. gene clusters as groups
of more than two markers, following the reconstruction framework introduced in [138].
However the notions of conflicts and consistency are not as easily defined and identi-
fied as for simple adjacencies [105,150], again increasing the complexity that has to be
handled to find solutions.

Besides the genome model, we used the parsimony principle to model evolution
throughout this thesis. An alternative to explore are probabilistic approaches as for
example in [65,81] defining a maximum-likelihood based objective. Such probabilistic
solutions are interesting to compare to the parsimony-based reconstructions presented
here.

All in all, the perspectives for integrated phylogenetic scaffolding and reconstruc-
tion are driven by the availability of ancient data sets that are exciting to explore from
a practical point of view. From a theoretical and methodological point of view, devel-
opments of the underlying models for genomes and evolution in order to integrate
aDNA data open several research avenues that are to be addressed further in the fu-
ture.
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