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Introduction

The hallmark of economics is still the general theory of competitive mar-
kets as expressed masterfully in the work of Arrow and Debreu. While this
theory can be considered as complete, its extension to competitive markets
under uncertainty in continuous time remains still imperfect. In discrete
models, it is well known that for potentially complete markets of real as-
sets, one generically has a Radner equilibrium with endogenously generated
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(DFG) via the International Research Training Groups “Economic Behavior and Interac-
tion Models” and “Stochastics and Real World Models”.
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complete markets that implement the efficient allocation of the correspond-
ing Arrow–Debreu equilibrium, see Magill and Shafer (1985) or Magill and
Quinzii (1998), Theorem 25.7.

Anderson and Raimondo (2008) prove a version of this theorem for specific
continuous–time economies where endowments and dividends are smooth
functions of Brownian motion and time, and agents have time–separable
expected utility functions. They establish their result with the help of non-
standard analysis, an intriguing approach to analysis and stochastics via
mathematical logic that allows, e.g., to work with infinitely large and in-
finitesimally small numbers, and to identify Brownian motion with a random
walk of infinite length and infinitesimally small time steps. We believe that
such an important theorem deserves a standard proof – we provide it here.

At the same time, we extend the result to more general classes of
state variables. Many finance models nowadays rely on more general diffu-
sions; prominent examples include the stochastic volatility models (Heston93
(1993)) , where the volatility of the risky asset is a mean–reverting process,
term structure models like Vasicek (1977) or more generally affine term struc-
ture models as in Duffie, Pan, and Singleton (2000). It is thus important to
have sound equilibrium foundations for such models as well.

The paper is set up as follows. The next section describes a smooth
continuous–time Markov economy where all relevant functions are analytic
on the open interior of their domain. In this paper, the term “analytic”
(=real analytic) refers to infinitely differentiable functions that can be writ-
ten locally as an infinite power series1. Then, we formulate our main theorem
on existence of a Radner equilibrium with endogenously dynamically com-
plete markets. The proof is split in several steps. We first recall Dana’s
(1993) result on existence of an Arrow–Debreu equilibrium and show that in
our setup, allocation and prices are analytic functions of time and the state
variable. The natural candidates for security prices are the expected present
values of future dividends. We show that these can also be expressed as
analytic functions of time and the state variable if natural assumptions on
the coefficients of the diffusion are satisfied. On the one hand, if one has a
closed–form version of the state variable’s transition density, the result holds
true. This is straightforward to check in the case of Brownian motion, or
mean–reverting diffusions, e.g. From an abstract point of view, it is better
to have conditions on the primitive of the model that ensure such a nice
transition density. We state sufficient conditions on the drift and dispersion
coefficients of our state variable for such a result.

The analyticity of security prices allows us to extend the local indepen-

1Our reference is Krantz and Parks (2002).
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dence assumption on terminal dividends to security prices, proving dynamic
completeness, as in Anderson and Raimondo (2008). The implementation of
the Arrow–Debreu equilibrium as a Radner equilibrium is then standard.

1 A Diffusion Exchange Economy with Po-

tentially Complete Asset Markets

In this section, we set up an exchange economy in continuous time where
the relevant information is generated by a diffusion X = (Xt)t∈[0,T ] with
values in RK . It is well known that one needs at least K + 1 financial
assets to span a dynamically complete market. We thus assume that this
necessary condition is satisfied. The market is thus potentially complete.
Below, we show that in sufficiently smooth economies a Radner equilibrium
with dynamically complete markets exists.

1.1 The State Variables

Let W be a K–dimensional Brownian motion on a complete probability space
(Ω,F , P ). Denote by (Ft)t≥0 the filtration generated by W augmented by
the null sets. We assume that the relevant economic information can be
described by the state of a diffusion process X with values in RK given by

X0 = x, dXt = b(Xt)dt+ σ(Xt)dWt , (1)

for an initial state x ∈ RK and measurable functions

b : RK → RK

and
σ : RK → RK×K

that are called the drift and dispersion function, resp. We let

a(x) := σ(x)σ(x)T

be the diffusion matrix.

Assumption 1 1. b and σ are Lipschitz–continuous: there exist L,M >
0 such that for all x, y ∈ RK

‖b(x)− b(y)‖ ≤ L ‖x− y‖ , ‖σ(x)− σ(y)‖ ≤ L ‖x− y‖
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2. The diffusion matrix satisfies the uniform ellipticity condition

‖x · a(x)x‖ ≥ ε ‖x‖2 (2)

for some ε > 0.

Part 1 of the assumption ensures that the stochastic differential equation
has a unique strong solution and so our state variable is well–defined. The
uniform ellipticity condition (2) ensures that there is enough volatility in
every state and the diffusion does not degenerate to a locally deterministic
process; in particular, it ensures that the distribution of X has full support,
see Stroock and Varadhan (1972).

We shall need below that our candidate security prices are analytic func-
tions of time and the state variable. We present two ways to establish this
analyticity. An easy approach is just to impose analyticity for the transition
density of the state variable.

Assumption 2 The Markov process X has a transition density P [Xs+t ∈
dy|Xs = x] = p (t, x, y) dy for a continuous function

p : (0, T ]× RK × RK → R+

that is analytic on (0, T ) × RK × RK. Moreover, the transition density p is
bounded on (η, T ]× RK × RK for all η > 0.

In a number of applications, the transition density is explicitly known
and it it then easy to verify the above assumption.

Example 3 1. If X = W , the transition density is explicitly given by

p(t, x, y) = φ(t, x, y) :=
1√
2πt

exp

(
−‖y − x‖

2

2t

)
,

which remains bounded for times t ≥ η > 0 and is analytic on (0, T )×
RK × RK as a composition of analytic functions.

2. An important stationary state variable is the Ornstein–Uhlenbeck pro-
cess with b(x) = a− bx and σ(x) = σx for constants a and b, σ 6= 0. It
has normal transition density

p(t, x, y) = φ

(
e−bt(x− a

b
),
σ2

2b

(
1− e−2bt

))
,

which satisfies again Assumption 2.
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On the other hand, we find it important to have also a quite general result
at hand where the above assumption is a consequence of assumptions on the
drift and dispersion coefficients.

Assumption 4 b and σ as well as its derivatives are bounded, Hölder–
continuous, and analytic functions.

In fact, we have

Lemma 5 Assumption 4 implies Assumption 2.

The proof of this lemma is in the appendix.

1.2 Commodities and Agents

There is one physical commodity in the economy. Our agents consume a
flow (ct)0≤t<T and a lump-sum cT of that commodity at terminal time T . We
introduce the measure ν = dt⊗ δT , the product of the Lebesgue measure on
[0, T ] and the Dirac measure on {T}. This allows us to model the consump-
tion plans succinctly as one process c = (ct)0≤t≤T in the following way. The
commodity space X consists of p–integrable consumption rate processes and
a p–integrable terminal lump sum consumption for some p ≥ 1,

X = Lp (Ω× [0, T ],O, P ⊗ ν) .

The consumption set is the positive cone X+. We will use occasionally the
dual space of X that we shall call the price space

Ψ = Lq (Ω× [0, T ],O, P ⊗ ν)

for q with 1/q + 1/p = 1.
There are i = 1, . . . , I agents with time–separable expected utility pref-

erences of the form

U i(c) = E
∫ T

0

ui (t, ct) ν(dt)

for a period utility function

ui : [0, T ]× R+ → R .

Assumption 6 The period utility functions ui are continuous on [0, T ]×R+

and analytic on (0, T )×R++. They are differentiably strictly increasing and
differentiably strictly concave in consumption on [0, T ]× R++, i.e.

∂ui

∂c
(t, c) > 0,

∂2ui

∂c2
(t, c) > 0 .
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They satisfy the Inada conditions

lim
c↓0

∂ui

∂c
(t, c) =∞

and

lim
c→∞

∂ui

∂c
(t, c) = 0

uniformly in t ∈ [0, T ].

Each agent comes with a P ⊗ ν–strictly positive entitlement2 ei ∈ X+

that can be written as a function of the state variables:

eit = ei (t,Xt)

for continuous functions ei : [0, T ]× RK → R, i = 1, . . . , I.

Assumption 7 The functions ei are analytic on (0, T )× RK .

1.3 The Financial Market

There are K + 1 financial assets. These are real assets in the sense that they
pay dividends in terms of the underlying physical commodity. The assets’
dividends can be written as

Ak
t = gk (t,Xt) , t ∈ [0, T ]

for continuous functions gk : [0, T ] × RK → R+, k = 0, . . . , K. As for
consumption processes, we interpret dividends as a flow on [0, T ) plus a
lump sum payment at time T .

Assumption 8 The dividends belong to the consumption set, Ak ∈ X+. The
functions gk are analytic on (0, T )×RK . Asset 0 is a real zero–coupon bond
with maturity T , i.e. it has no intermediate dividends, i.e. A0

t = 0 for
t < T 3.

2We use the word “entitlement” here to distinguish it from the total initial endowment
used below which is the sum of the entitlement and the dividends of assets initially owned
by the agent.

3We can also work with intermediate dividends. In that case, an additional small detour
is necessary in order to construct a suitable numéraire asset. As this part is not at the
heart of the present analysis, we do not present this generalization here. The argument is
available from the authors.
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Agent i owns initially ni
k ≥ 0 shares of asset k. Without any trade, the

agent is thus endowed with his individual endowment

εit = eit + ni · At .

We denote by Nk =
∑I

i=1 n
i
k the total number of shares in asset k. The

aggregate endowment of agents is then

εt =
I∑

i=1

eit +
K∑
k=0

NkA
k
t =

I∑
i=1

εit .

A consumption price process is a positive Itô process ψ. A (cum–
dividend) security price for asset k is a nonnegative Itô process Sk =(
Sk
t

)
0≤t≤T . We interpret Sk as the nominal price of the asset k. We de-

note by

Gk
t = Sk

t +

∫
[0,t)

Ak
sψsν(ds), (0 ≤ t ≤ T )

the (nominal) gain process for asset k. Note that by no arbitrage we must
have Sk

T = Ak
T at maturity.

A portfolio process is a predictable process θ with values in RK+1 that
is G–integrable, i.e. the stochastic integrals

∫ t

0
θkudG

k
u are well–defined. The

value of such a portfolio is Vt = θ · S.
We call a portfolio admissible (without reference to an agent) if its value

process is bounded below by a martingale. This admissibility condition rules
out doubling strategies4.

A portfolio is admissible for agent i if its present value plus the present
value of the agent’s endowment is nonnegative, or

Vt + E
[∫ T

t+

eisψsν(ds)

∣∣∣∣Ft

]
≥ 0 .

Note that this implies VT ≥ 0 for the terminal value of the portfolio.
A portfolio θ finances a consumption plan c ∈ X+ for agent i if θ is

admissible for agent i and the intertemporal budget constraint is satisfied for
the associated value process V :

Vt = ni · S0 +

∫ t

0

θudGu +

∫ t

0

(
eiu − cu

)
ψuν(du) .

4Anderson and Raimondo use a martingale condition to rule out such strategies. This
requires to impose a martingale condition on potential security prices. As this martingale
property is a consequence of equilibrium, we prefer not to impose this assumption ex ante.
Nevertheless, either way works here.
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We then call the portfolio/consumption pair (θ, c) i–feasible. More generally,
we say that a portfolio θ finances a net consumption plan z ∈ X if its value
process satisfies

Vt = V0 +

∫ t

0

θudGu +

∫ t

0

(
eiu − cu

)
ψuν(du) .

A Radner equilibrium consists of asset prices S, a consumption price
ψ, portfolios θi and consumption plans ci ∈ X+ for each agent i such that
θi is admissible for agent i and finances ci, ci maximizes agent i’s utility
over all such i–feasible portfolio/consumption pairs, and markets clear, i.e.∑I

i=1 c
i = e and

∑I
i=1 θ

i = N .
Our way to a Radner equilibrium with dynamically complete markets

will lead over the intermediate step of an Arrow–Debreu equilibrium. For
the existence of such an equilibrium, the following assumption is, in general,
necessary5:

Assumption 9 For each agent, the marginal utility of his endowment be-
longs to the price space Ψ:

∂

∂c
ui(t, εit) ∈ Ψ .

If the assets are linearly dependent, there is no hope to span a dynamically
complete market. To exclude this, we follow Anderson and Raimondo (2008)
and impose a full rank condition on terminal payoffs:

Assumption 10 On a nonempty open set V ⊂ RK, the dividend of the
zero–th asset is strictly positive at maturity,

g0(T, x) > 0, (x ∈ V ) .

5Assumption 9 cannot be weakened in general. Assume that there is only one agent.
Then, to establish a no-trade equilibrium in the Arrow-Debreu sense, it is necessary to
find a price ψ ∈ L that separates the endowment e from the set G = {d ∈ L;U(d) ≥ U(e)}
of consumption streams preferred to e. The only candidate in a smooth model like this
one for such a price process is the marginal felicity ∂

∂cu(t, et). If it is not square-integrable,
then there exists no equilibrium. For more on the necessity of Assumption 9, the reader
may consult the overview of Mas-Colell and Zame (1991), especially Example 6.5, and
the paper of Araujo and Monteiro (1991), where it is shown that an equilibrium does
generically not exist if one does not have a condition on the integrability of marginal
felicities like Assumption 9.
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The functions hk : x 7→ gk(T,x)
g0(T,x)

are continuously differentiable on V for k =
1, . . . , K and the Jacobian matrix

Dh(x) =


∂h1(T,x)

∂x1
. . . ∂h1(T,x)

∂xK
...

. . .
...

∂hK(T,x)
∂x1

. . . ∂hK(T,x)
∂xK


has full rank on V .

2 Existence of Radner Equilibrium with Dy-

namically Complete Markets

We are now in the position to state our main result. We call the market
given by the asset prices S, dividends A, and consumption price ψ dynam-
ically complete if every net consumption plan z ∈ X can be financed by an
admissible portfolio θ in the sense that its value process satisfies

Vt = V0 +

∫ t

0

θudGu +

∫ t

0

zuψuν(du) .

Theorem 11 There exists a Radner equilibrium
(
S, ψ, (θi, ci)i=1,...,I

)
with a

dynamically complete market (S,A, ψ); the prices and dividends are linked
by the present value relation

Sk
t = E

[∫ T

t

Ak
sψs ν(ds)

∣∣∣∣Ft

]
. (3)

The proof of this theorem runs as follows. In a first step, we establish
the existence of an Arrow–Debreu equilibrium. In the current time–additive
setup, this is a result by Dana (2002). We extend her result by showing
that in our smooth economy the equilibrium consumption price ψ and the
allocation (ci)i=1,...,I are analytic functions of time and the state variable. It
is well known that one can implement the Arrow–Debreu equilibrium as a
Radner equilibrium if one has dynamically complete markets. With nominal
assets, this is more or less trivial (see Duffie and Huang (1985) and Huang
(1987)). Here, our assets pay real dividends, and the completeness depends
on the endogenous consumption price ψ and cannot be assumed exogenously.

The natural candidates for our asset prices are, of course, the present
values of their future dividends as in (3). We have to show dynamic com-
pleteness then. We do this by proving that the (local) linear independence
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of the dividends at maturity T carries over to the volatility matrix of asset
prices. This yields dynamic completeness. This step needs the intermediate
mathematical result that our candidate security prices are analytic functions
of time and state variable.

The implementation of the Arrow–Debreu equilibrium as a Radner equi-
librium is then standard.

2.1 Existence of an Analytic Arrow–Debreu Equilib-
rium

We quickly recall the notions of classical General Equilibrium Theory. An
allocation is an element (ci)i=1,...,I ∈ X I

+. Is is feasible if we have
∑I

i=1 c
i ≤ ε.

A price is a nonnegative, optional process ψ ∈ X+. It defines a continuous

linear price functional Ψ(c) = E
∫ T

0
ctψt ν(dt) on X .

An Arrow–Debreu equilibrium consists of a feasible allocation (ci)i=1,...,I

and a price ψ such that ci is budget–feasible and optimal for all agents
i = 1, . . . , I, i.e. Ψ(ci) ≤ Ψ(εi), and for all consumption plans c ∈ X+ the
relation U i(c) > U i(ci) implies Ψ(c) > Ψ(εi).

Existence and uniqueness of Arrow–Debreu equilibria in our separable
setting have been clarified by Dana (1993). We recall her existence result
and show the additional refinement that equilibrium price and consumption
plans are analytic functions of time and the state variable on (0, T )× RK .

Theorem 12 There exists an Arrow–Debreu equilibrium
(
ψ, (ci)i=1,...,I

)
such that

ψt = ψ(t,Xt)

cit = ci(t,Xt)

for some continuous functions

ψ, ci : [0, T ]× RK → R+

that are analytic on (0, T )× RK.

Proof : By Dana (1993), there exists an equilibrium (ψ, (ci)) with ψ > 0
P⊗ν–a.s. and the allocation (ci) is the solution of the social planner problem

max
c∈X I

+,
∑

ci≤ε

∑
λiU i(ci)
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for some λi > 06.
As we have separable utility functions, the social planner’s problem can

be solved point– and state–wise; we thus look at the real–valued problem

v(t, x) := max∑I
i=1 x

i=x

xi≥0,i=1,...,I

I∑
i=1

λiui(t, xi) .

By Assumption 6, the unique solution of the above real–valued maximization
problem is characterized by the equations

λi
∂ui

∂c

(
t, xi

)
= µ (4)

I∑
i=1

xi = x (5)

for some Lagrange parameter µ > 0. By Dana (1993), Proposition 2.1,
the solution of the above equations is given by continuous functions xi, µ :
[0, T ]× R+ → R+ of (t, x). By the Analytic Implicit Function Theorem and
Assumption 6, these are even analytic on (0, T )× (0,∞) (see also Anderson
and Raimondo (2008), page 881). By Dana (1993), we have cit = xi (t, εt)
and ψt = µ (t, εt). As aggregate endowment is a function of time and state
variable that is continuous on [0, T ] × R+ and analytic on (0, T ) × R+ (As-
sumptions 7 and 8), the result follows. 2

2.2 Analytic Security Prices

The natural candidates for security prices are, of course, the present values
of their future dividends, or (3). It is of essential importance for our develop-
ment that these expectations are themselves analytic functions of time and
state variable jointly.

Theorem 13 Define S by (3). Under either Assumption 2 or 4, there exist
continuous functions s : [0, T ]× RK → R+ that are analytic on (0, T )× RK

and
St = s(t,Xt) .

6λi = 0 is not possible. This is already implicit in Dana’s proof. Here is another
argument based on our Assumption 9. For, if, say, λ1 = 0, then c1 = 0 (by Negishi). By
the strict monotonicity of utility functions, c1 = 0 is an equilibrium demand only if wealth

is zero, i.e. E
∫ T

0
ψtε

1
tν(dt) = 0. But by Assumption 9 and the Inada assumption, ε1 > 0

P ⊗ ν–a.s. Hence E
∫ T

0
ψtε

1
tν(dt) > 0, a contradiction.
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The first derivatives with respect to x, ∂s
∂xl

are continuous on [0, T ]×RK and
we have

lim
t↑T

∂s

∂xl
(t, x) =

∂s

∂xl
(T, x) =

∂g

∂xl
(T, x)

Proof :
Let the securities price process S be defined by (3), so that — in light of

Theorem 12 and the assumptions on the dividends — we have

Sk
t = E

[∫ T

t

gk (s,Xs)ψ(s,Xs) ν(ds)

∣∣∣∣Ft

]
,

hence by an application of the Fubini–Tonelli theorem,

Sk
t =

∫ T

t

∫
RK

gk (s, y)ψ(s, y)p (s− t,Xt, y) dy ds

+

∫
RK

gk (T, y)ψ(T, y)p (T − t,Xt, y) dy.

Since g is analytic by Assumption 8 and ψ is jointly analytic by The-
orem 12, the joint analyticity of p is sufficient for the analyticity of s (as
integrals of analytic functions are again analytic, see Proposition 2.2.3 of
Krantz and Parks (2002) and compare the analogous reasoning at the end of
the proof of Theorem B.4 in Anderson and Raimondo (2008)). This, however,
is Assumption 2 or the content of Lemma 5.

The continuous differentiability of s with respect to the second argument
x follows from Theorem 10.3 on p. 143 of Friedman (1969). 2

2.3 Dynamically Complete Markets

Theorem 14 The market (S,A, ψ) is dynamically complete.

Proof : By Assumption 10, ψ > 0 and the fact that X has full support,
we have S0

t > 0 a.s. Hence, we can take asset 0 as a numéraire. Define

Rk
t =

Sk
t

S0
t

.

By Theorem 13, Rk
t = rk(t,Xt) for continuous functions rk : [0, T ]×RK → R+

that are analytic on (0, T )× RK , k = 1, . . . , K.
After this change of numéraire, we have a riskless asset (with interest rate

0, of course) and K risky assets, as many as indepedent Brownian motions.
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The asset market is dynamically complete if the volatility matrix is a.s.
invertible (see, e.g., Karatzas and Shreve (1998), Theorem 1.6.6)7. By Itô’s
lemma, the volatility matrix is given by I(t, x)Dr(t, x)σ(t, x) where Dr is
the Jacobian matrix of r and I the triangular matrix

I(t, x) =


1

r1(t,x)
. . . 0

...
. . .

...
0 . . . 1

rK(t,x)

 .

Now suppose that the volatility matrix has determinant 0 on a set of
positive Lebesgue measure. By analyticity and Theorem B.3 in Anderson and
Raimondo (2008), we conclude that the determinant vanishes everywhere on
(0, T )× RK . As Dr, r, and σ are continuous on [0, T ], it then follows that

det I(T, x)Dr(T, x)σ(T, x) = 0 .

(For Dr and r, this is Theorem 13.) As σ has full rank by Assumption 1 and
I(T, x) is triangular, we conclude that

detDr(T, x) = 0 .

But r(T, x) = g(T, x)/g0(T, x) = h(x), so

detDr(T, x) 6= 0

on a set of positive measure by Assumption 10. This contradiction shows
that the volatility matrix is invertible a.s. We conclude that the market
(S,A, ψ) is dynamically complete.

2

With dynamically complete asset markets, it is a standard argument to
show that the Arrow–Debreu equilibrium can be implemented as a Radner
equilibrium. The basic argument is as in Duffie and Huang (1985), translated
to our more complex setting, see also Dana and Jeanblanc (2003), Theorem
7.1.10 (apply this theorem to the asset market with asset 0 as numéraire).

A Appendix: Analytic Transition Densities

We provide here the proof of Lemma 5.

7To apply this result, we check quickly that the asset market is also standard in the
sense of Karatzas and Shreve (1998): by construction ((3)), the gain processes are mar-
tingales; hence, our market is arbitrage–free. As our state–price deflator ψ is in Ψ, also
the martingale condition in Karatzas and Kou (1998) is satisfied.
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Proof : By Theorem 5.4 in Chapter 6 of Friedman (1975) X possesses a
transition density p, whence

P [Xs+t ∈ dy|Xs = x] = p (t, x, y) dy

for all s ≥ 0, t > 0, x ∈ RK .
The proof is divided into three parts:

1. First, we verify that the transition density p is bounded as bounded
away from zero, i.e. p is bounded on [δ, T ]× RK × RK for all δ > 0.

It suffices to prove this kind of boundedness for the function Γ∗, defined
by

Γ∗(x, s; y, t) = p(t− s, x, y)

for t > s ≥ 0. By our Assumption 4, the hypotheses (A1)-(A4) in
Chapter 6 of Friedman (1975) are satisfied. By Theorem 4.7 in Chapter
6 of Friedman (1975),

Γ∗(x, s; y, t) = Γ(y, t;x, s)

where Γ is the fundamental solution of the partial differential equation

− ∂

∂s
u+ Lu = 0 .

By Theorem 4.5 in Chapter 6 of Friedman (1975), we have

Γ(y, t;x, s) ≤ C
1

√
t− sK

exp

(
−c‖x− y‖

2

t− s

)
(6)

for some constants c, C > 0. Now take s = 0. As long as t is bounded
away from zero, the density p is thus bounded.

Remark: The density remains also bounded as t goes to zero and x 6= y,
compare also Mikhailov’s example. But we might have a singularity in
t = 0, x = y, as for Brownian motion.

2. Next, we establish the analyticity of p in the time variable.8 The tran-

8An alternative proof for analyticity in time would go as follows: The transition density
p solves the evolution equation

u′(t) = Lu .
As such, it is analytic by Theorem 2.1 in Part 3, Chapter 2 of Friedman (1969) (see also
the Corollary on p. 209) if the conditions (E1)-(E3) on p. 206 or the conditions (F1)-(F4)
on p. 210 of Friedman (1969) are satisfied. Given that L is independent of t, all we need to
verify is condition (E2) or condition (F2), which requires that the resolvent of the Markov
process exists in some complex sector around zero. However, this has been proven in Eq.
(2.11), Theorem 1 of Yosida (1959).
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sition density p solves the evolution equation

u′(t) = Lu

with initial condition p(0, ·) = f for some square-integrable f . It can
thus be written p(t, x, y) = Ttf(x, y) for all t > 0, x, y ∈ RK , wherein
T is the semi-group generated by the smallest closed extension of the
operator L. Theorem 2 of Yosida (1959) (whose proof depends cru-
cially on the earlier paper Yosida (1958) and the resolvent estimate of
Theorem 1 of Yosida (1959)) yields that T is strongly differentiable and
for sufficiently small t > 0 even analytic. As in the proof of Eq. (1.3) of
Yosida (1959), we can now argue that for t0 > 0 the difference between
p(t0 +h, ·) and the nth Taylor expansion of Tt0+hf around t0 converges
to 0 in the L2 norm as n→∞. Since any L2-convergent sequence has
an a.e. convergent subsequence, p(t0+h, x, y) can be written as a power
series around t0 for almost every x, y ∈ RK . Using the analyticity of p
in x, y (see below), one can then finally show that the resulting power
series must even converge for every x, y ∈ RK .

3. Finally, note that p is analytic in (x, y) by Theorem 1.2 in Part 3, Chap-
ter 1 of Friedman (1969) and recall that functions which are bounded
and separately analytic are jointly analytic (a result of Osgood (1899)).
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