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Abstract— Adaptation for social companions is a crucial
requirement for future applications. Personalized interaction
seems to be an important factor for long-term commitment to
interact with a social robot. We present a study evaluating the
feasibility of a dueling bandit learning approach for preference
learning (PL) in Human-Robot Interaction (HRI). Furthermore,
we explore whether the embodiment of the PL agent has an
influence on the user’s evaluation of the learner. We conducted
a study (n=53) comparing a graphical user interface (GUI),
a virtual robot and a real robot. We found no difference
regarding the preference for the virtual or real robot. We used
the obtained study data to compare the PL approach against a
strategy that randomly selects preference rankings. The results
show that that the dueling bandit PL approach can be used to
learn a user’s preference in HRI.

I. INTRODUCTION

Robots have recently been introduced as tools that could

assist user’s during conventional rehabilitation, health care

or learning programs (i.e. stroke-rehabilitation [1], dieting

[2] or teaching [3]). The nature of these tasks requires a

longer commitment of the user. Neither rehabilitation nor

teaching or health care issues can be achieved during a single

session. Hence, tools such as robots have to apply methods

that engage users in long-term interaction. Furthermore, they

will have to provide meaningful and personalized interac-

tion because every person is an individual with a personal

history that is represented in ones desires and preferences.

While highly specialized physicians, therapists or coaches

are trained to provide individualized personal interaction for

each person, robots are still far from such capabilities. Hence,

robotic tools can so far be used alongside trained personal.

However, small steps are currently made to investigate the

implementation of social robots in long-term use cases [4].

A review of different researches has concluded four major

building blocks for robots to be able to engage users in long-

term interaction: behavior, adaptation, empathy and design

[4]. While all of these aspects are important for engaging

users in long-term intervention, we are focusing on the

aspects of adaptation in this work.

Several researchers have already worked on adaptation

in Human-Robot Interaction (HRI) [1], [5], [6]. In these

works, the robot adapts its verbal and non-verbal behavior to

the user’s preferences to increase the short-term acceptance.

But what kind of adaptation is necessary for longer user

commitment for socially assistive robots (SAR)? The main
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purpose of SAR is to assist users on a task. These tasks can

have different difficulties, categories, duration or feedback

types and so on. One possible adaptation is the adjustment of

the task difficulty which has been presented in [1]. However,

the preference for different tasks or task categories has not

received a lot of attention. Since different kinds of tasks

might lead to the same rehabilitation-, learning- or coaching

goal, preference learning (PL) could be utilized to learn a

user’s task preferences over time.

In general, PL is already widespread in the domain of

recommendation systems. Among these algorithms to op-

timize search results or provide customized advertisements

bandit learning algorithms (e.g. exp3, ucb [13], [14]) are

used. By showing the user different kinds of personalized

advertisement or search results the algorithms learns the

user’s preferences. The way those algorithms learn is by

the user’s implicit feedback (i.e. clicking behavior) and thus

personalize the user experience in the background. In this

work, we want to know whether these kinds of algorithms

can be used to learn the user’s preferences in HRI for

socially assistive tasks. Particularly, we study a special kind

of bandit learning (i.e. dueling bandit learning [15]) for

PL. In contrast to standard bandit learning techniques, this

approach does not require a numerical reward function. This

approach is specially suitable for learning tasks where the

reward is dependent on the user’s feedback, because humans

are better in giving relational preference statements than

quantitative preference statements [16]. Thus, those kind of

PL algorithms seem to be more reliable.

A. Research Question

In our recent line of research, we focused on social

assistance during exercising and sportive activities [17], [18].

Hence, our goal is to learn a user’s exercise category pref-

erence. At the moment, we only consider a set of categories

that are suitable for a robot to accompany or instruct a

user in the near-future. These categories are strength, cardio,

endurance, stretching and relaxation/meditation. Our first

research question (RQ1) is to investigate whether dueling

bandit learning is suitable for HRI and whether the algo-

rithm can effectively learn the user’s preferences? We target

this research question by a) evaluating the suitability of

one state-of-the-art dueling bandit learning algorithm in a

human-computer-/human-robot-interaction study and by b)

evaluating the learned user preference ranking of the learning

algorithm against a simulated random ranking condition.

Additionally, we are interested in the effects of the em-

bodiment of the system. A recent literature survey on the



TABLE I: Research in the field of adaptation and personalization in HRI.

work method variables learning goals

Tapus et al. [1] reinforcement learning
user personality traits
nu. of performed exercises

interaction distances/proxemics,
speed, and vocal content

Tsiakas et al. [7] reinforcement learning user performance, session state
adjust time of movement,
move to next exercise, encourage user

Leite et al. [5] multi-armed bandit learning user’s detected valence choose appropriate emphatic behavior

Leyzberg et al. [3] Bayesian net puzzle state provide personalized tutoring sessions

Lim et al. [8] hybrid filtering
semantic knowledge,
event episodic knowledge and emotion

enhance student’s motivation
to prevent negative emotions

Baraka et al. [9] multi-armed bandit learning numerical reward provided by user robot’s light animation

Mitsunaga et al. [6] reinforcement learning body signals
adjust interaction distance, gaze,
motion speed and timing

Hemminghaus et al. [10] reinforcement learning (Q-Learning) gaze behavior, speech, game state memory game assistance

Chan et al. [11] hierarchical reinforcement learning speech analysis, user state, activity state giving instructions, empathy or help

Lee et al. [12] Wizard of Oz
snack choices patterns,
usage patterns, robot’s prior behavior

personalized speech topics

effects of embodiment showed: “that a co-present, physical

robot performed better than a virtual agent simulated using

computer graphics. These studies found a co-present robot to

be more persuasive, receive more attention and be perceived

more positively than a virtual agent even when the behavior

of the robot was identical to the behavior of the virtual agent

and when both agents had similar appearance” [19]. Hence,

in our second research question (RQ2) we want to know

whether the embodiment of the learning agent influences the

user’s perceived likeliness, intelligence and persuasiveness

during a PL task.

B. Hypothesis

We draw the hypothesis 1 (H1) that an embodied agent

will increase the user’s agreeableness with the learned pref-

erences, the perceived intelligence and likeability compared

to a virtual representation or no agent representation.

This paper is organized as follows: Section II gives an

overview of related work in the field of PL and user person-

alization in HRI. Section III describes our PL framework.

Section IV explains our study design. Section V presents

our results which are then discussed in the last section.

II. RELATED WORK

What is going on in the world of personalization and

adaptation in HRI? To summarize, there are basically two

trends. One trend is to adapt the robot’s behavior based

on interactive machine learning. These approaches mostly

utilize reinforcement learning with user feedback and sensor

data (e.g. [1], [5]–[7], [9]). Other approaches create user

models to adapt the robot’s assistance and behavior ([3],

[20]) or rely on techniques from recommendation systems

like collaborative filtering [8]. One of the major applications

of personalization in HRI is concerned with the adaptation

of the robot’s social behavior to match the user’s personality

or desires. In these cases, behavior adaptation is often based

on personality matching to adjust interaction parameters like

proxemics, speed, vocal content, robot’s appearance or dialog

topics ([1], [9], [12]). The goal of these adaptation techniques

is to enhance the user’s acceptance of the robot which is

believed to increase the user’s commitment to interact with

the system in the long run. Other works include approaches

like reinforcement learning, bandit learning or Bayesian nets

to adjust session parameters or generate supportive and

emphatic behaviors (e.g. [3], [5], [7], [10], [11]). In these

scenarios personalization targets the user’s learning gains,

therapy success or enjoyment during games. Table I gives

an overview of different research directions in the field of

HRI.

Basically, all approaches show that an adapted robot

behavior is preferred by the user and leads to better learning

outcomes and a higher robot acceptance. However, most of

the works include some kind of implicit direct feedback from

the user (e.g. sensor data), require the user to fill out a ques-

tionnaire, or a wizard of oz to personalize the robot behavior.

Furthermore, in many reinforcement learning approaches

feedback needs to have numerical value in order to learn a

user adapted policy. This approach can be a bottleneck of the

implementation because a direct feedback is not available or

it is based on the engineers understanding of how to represent

the numerical feedback. In some applications it might be

difficult to determine a numerical reward function or it might

be challenging how to obtain the actual reward. Hence, this

work extends the literature by evaluating how reinforcement

learning, in our case bandit learning, can be used to person-

alize the human’s HRI experience. We therefore draw from

research that extended multi-armed bandit learning scenario

to a dueling bandit learning scenario [15]. In those scenarios

the agent learns the user’s preference by presenting the user

two items. The feedback is then represented by a qualitative

preference feedback of the user. Based on this approach the

agent can learn the user’s preference of a given set of items

without the need of having a numerical reward.

III. PREFERENCE LEARNING FRAMEWORK

To introduce the PL framework we describe the PL prob-

lem first.

A. Problem Statement

The classical multi-armed bandit (MAB) learning problem

is motivated by the scenario of a gambler who has to decide

which slot machine of a row of machines to play, how many

times to play each machine and in which order. The agent

has to simultaneously explore and exploit a set of choice



alternatives in a sequential decision process. Therefore, the

agent needs some kind of real-valued reward. However, this

is often not given and a numerical reward is not available

[15]. For example, it would be more difficult for a human

to associate an action with real-value reward than comparing

two actions and choosing which one is better or which one

they like more. This is because humans excel in giving

relative preference statements in the form of qualitative

comparisons between pairs of alternative [16]. Therefore,

the MAB problem has been extended to an dueling bandit

learning problem [21] which draws two (ore more) actions

and receives a relative preference statement as reward. This

procedure is more formally explained in the following para-

graph.

The dueling bandit problem consists of K(K ≥ 2) arms,

where at each time step t > 0 a pair of arms (α
(1)
t , α

(2)
t )

is drawn and presented to a user. A noisy comparison result

wt is obtained, where wt = 1 if a user prefers α
(1)
t to α

(2)
t ,

and wt = 2 otherwise. The distribution of the outcomes is

presented by a preference matrix P = [pij ]KxK , where pij
is the probability that a user prefers arm i over arm j (e.g.

pij = P{i ≻ j}, i, j = 1, 2, ..,K).).

The goal of the PL task is, given a set of different actions

(e.g. different sport categories), find the user’s preference

order for these categories by providing the user two αi and

αj and update the user preferences based on the selection of

the preference between αi ≻ αj or αi ≺ αj .

Thus, the challenge is to find the user’s preference by

running an algorithm that balances the exploration (gaining

new information) and the exploitation (utilizing the obtained

information).

B. System Implementation

Figure 1 gives an overview of our learning framework.

At each time step, the algorithm selects two candidates

from the preference matrix (Step 1). In our implementation,

we used the double Thompson sampling (DTS) algorithm

as dueling bandit learning algorithm [22]. However, we

neglected the exploitation phase, because in this work we

are only interested in obtaining new information. Based on

the selected categories, two specific exercises are selected

randomly from an exercise database1. This database holds

six different exercises for each sport category. Following,

these exercises are presented as text on a display (Step 2).

Subsequently, the user can give relative preference feedback

by selecting the preferred exercise (Step 3). This feedback is

then used to update the preference matrix accordingly (Step

4). After twenty iterations the system gives the user a ranking

in relation to the learned preference matrix. The sport cate-

gory which wins against most other categories is presented

as first followed by the other categories in descending order

by their number of wins. It takes approximately 10 minutes

to execute all iterations.

1https://www.mongodb.com/,visited on 3/23/2017

Fig. 1: Preference learning system interaction overview.

IV. STUDY DESIGN

In our paper we question two things: The feasibility of a

PL algorithm for HRI (RQ1), and whether the embodiment

of a robot has an effect on the perceived intelligence and

likeability of the robot during a PL task (RQ2). We used

the described PL framework to learn a user’s exercising

preference on which we can further evaluate the effectiveness

of dueling bandit learning. In our study design we only tested

one PL algorithm and all participants interacted with the

same PL algorithm (i.e. DTS) running in background.

To answer RQ1 we used the obtained preference rankings

from this study, as a baseline, to compare the algorithm

against one which randomly selects a preference ranking.

We compared these two algorithms in a simulation by using

preference ranking metrics. This evaluation requires that

the learned preference ranking should not differ across the

embodiment conditions. We will provide evidence in the

result section that this is eligible.

To investigate RQ2, we manipulated the embodiment

of the system (see Figure 2). Participants were randomly

assigned to one of the following conditions: computer only,

virtual Nao2, real Nao. The computer condition only in-

cluded a graphical user interface with buttons and a text

area. The text area displayed an introduction text, exercise

comparisons, explanations regarding the exercises and finally

the learned preference ranking. The user can select their

preferred exercise by pressing the according button. In the

robot conditions, either a virtual Nao (displayed using Chore-

graphe) was presented on the computer display or a real Nao

was standing next to the computer. Besides this manipulation,

the system behavior was the same for all conditions. Both the

real and the virtual Nao spoke the same text as was displayed

on the computer. For speech synthesis and gesture generation

2https://www.ald.softbankrobotics.com/en/

cool-robots/nao,visited on 3/23/2017



we used the ALAnimatedSpeech module of the NaoQi API.

A. Study Procedure

Each participant arrived individually at our lab and had

to read and sign a consent form. The experimenter told

the participant that s/he will interact with a system that

will learn their exercise preferences by displaying different

names of exercises and that s/he can select the one s/he

is favoring. If the name of an exercise is unknown to

the participant, s/he can get more information from the

system regarding the category the exercise belongs to (i.e.

“push-up is a strengthening exercises”, “running belongs

to endurance sports”, and so on). After the instructions,

the participant was guided to the experimental room and

told that s/he should exit the lab after the interaction has

finished. This is when the manipulation happened. In the

room was either only the computer, the computer with a

virtual Nao or a real Nao present. The experimenter did

not explain anything else regarding the virtual or real robot.

During the study, the system iterated through twenty exercise

comparisons and in the end presented the learned exercise

preference ranking. Afterwards, the participant left the room

and answered a survey. Finally, the participant received a

monetary compensation (4 Euro) and was debriefed.

B. Participants

We acquired 53 participants from our campus. They were

equally distributed between the three conditions (computer:

18, virtual: 18, robot: 17). We had 18 male and 34 female

participants. In each condition were 6 male participants. The

average age was M = 25.34 with SD = 5.47.

C. Measurements

In the following, we describe the different measurements

we used to investigate our research question. To evaluate the

utility of PL (RQ1) we use quantitative ranking evaluations

to analyses the efficiency of the PL algorithm compared to

a randomly selected preference ranking. For the evaluation

of the embodiment (RQ2) we use subjective user ratings of

the system.

1) Personality: We used the Neo-FFI-30 personality scale

to assess the participant’s personality profile [23]. We used all

five sub-scales Neuroticism (Cronbach’s α = .79), Extraver-

sion (Cronbach’s α = .62), Openness (Cronbach’s α = .72),

Agreeableness (Cronbach’s α = .48) and Conscientiousness

(Cronbach’s α = .76).

2) Perception of the Agent: In order to assess different

perception of the system between the conditions we asked

the participant to rate the system based on the Godspeed

questionnaire [24], a 5 point-based semantic differential scale

with bipolar items. We used all subscales Animacy (Cron-

bach’s α = .79), Anthropomorphism (Cronbach’s α = .83),

Likeability (Cronbach’s α = .89), Intelligence (Cronbach’s

α = .84) and Perceived Safety (Cronbach’s α = .67).

3) System Usability Scale: We asked the participants to

rate the system’s usability on a ten item 5-point Likert scale

(Cronbach’s α = .85) [25].

4) Perceived Information Quality and Openness: We as-

sessed the participants perception of information (Cronbach’s

α = .76) and comparison quality Cronbach’s α = .78) and

the openness to influence (Cronbach’s α = .88) on a five-

point Likert-scale [26].

5) Intrinsic Motivation and Interaction: To assess intrin-

sic motivation, we used a short German version of the In-

trinsic Motivation Inventory (Cronbach’s α = .84) proposed

by [27]. Furthermore, we asked the participants to rate the

quality of the interaction on a 5-point Likert scale.

6) Learned Preference Quality: To gain insights on the

perceived PL satisfaction, we assessed the participants sat-

isfaction with the learned preference on a four-item 5-

point likert scale (Cronbach’s α = .9). Additionally, if the

participants were not satisfied with the learned preference,

they could provide their own preference order which we will

use later for our system evaluation.

7) Preference Ranking Error: To assess the quality of

the obtained preference rankings, we use the two following

ranking error functions: DPE which is the position error

distance and DDR which is the discounted error. Given a set

of items X = x1, ..., xc to rank and r as the user’s target

preference ranking and r̂ as the learned preference ranking.

Both r and r̂ are functions from X → N which return the

rank of an item x. The position error is defined as follows

DPE(r, r̂) = r̂(argminx∈Xr(x))− 1 (1)

The idea of this distance measure is that we want the target

item (i.e. the highest ranked item from r) to appear as high

as possible in the learned preference ranking r̂. Thus, this

distance gives the number of wrong items that are predicted

before the target item. The discounted error is defined as

follows

DDR(r, r̂) =
c∑

i=1

wi · dxi
(r̂, r) (2)

where wi =
1

log(r(xi)+1) . This distance measure gives higher

ranked items from r a higher weight for the distance error

dxi
between the rankings. In other words, having a correct

ordering of the high ranked values form r is more important

than of the low ranked items of r.

V. RESULTS

We analyzed the data with an analysis of variance

(ANOVAs) when the assumptions3 of an ANOVA where

met. Otherwise, we used a Kruskal-Wallis Tests. To analyze

frequency samples we used the Fisher’s exact test. All

computations have been done with R4.

A. Manipulation Check

Using ANOVAs we did not find any difference for hours

spent for sport per week (P = .6), age (P = .63). We

also did not find any difference between the conditions

based on their previous experience with interactive systems

3We tested the data for homogeneity of variance using a Levene’s Test
and for normality using a Shapiro-Wilk Test.

4https://www.r-project.org/.



(a) Graphical user interface only (b) Virtual Nao (c) Real Nao

Fig. 2: The conditions from this study design.

(a) Godspeed Questionnaire ratings (b) System usability scale and intrinsic motivation scale ratings

Fig. 3: Subjective system evaluation (***:p < .001, **: p < .01, *: p < .05).

or robots (P = .12). Regarding the users personality, we

did not find any difference for neuroticism (P = .41),

openness (P = .98), agreeableness (P = .27), extroversion

(P = .48) and conscientiousness (P = .76) between the

different conditions. Thus, our randomization was successful.

B. Godspeed, System Usability and Intrinsic Motivation

We conducted ANOVAs and Kruskal-Wallis tests to mea-

sure differences in the Godspeed questionnaire rating be-

tween the three conditions. We found differences for the

perceived animacy (F2,50 = 9.27, p < .001 ), anthropo-

morphism (H(2) = 18.398, p < .001), likability (F2,50 =
21.04, p < .001) and perceived safety (H(2) = 14.64, p <

.001). However, we found no differences for perceived

intelligence (P = .3). We conducted several pairwise com-

parisons using multiple comparion test after Kruskal-Wallis

test or t-test with pooled SD and Bonferroni correction for

the different items and conditions. Table II shows the p-

values/observed differences for the pairwise comparisons.

We found no significant differences between the real and vir-

tual condition for animacy, antropomorphism, likeability and

safety. Not surprisingly, we found significant different ratings

between the computer condition and the other conditions

for animacy, anthropomorphism, likeability and perceived

safety. The computer was rated significantly less on all the

Godspeed scales, except for intelligence (see Fig. 3a).

TABLE II: Results from post-hoc analysis.

Pairwise t-test with pooled SD
Godspeed item conditions p-value

Animacy real vs. computer < .01

real vs. virtual n.s.
virtual vs. computer < .01

Intelligence real vs. computer n.s.
real vs. virtual n.s.
virtual vs. computer n.s.

Likeability real vs. computer < .0001

real vs. virtual n.s.
virtual vs. computer < .001

Post hoc test for Kruskal-Wallis test
obs.diff, p-value

Anthropomorphism robot vs. computer 15.86, < .05

real vs. virtual 5.44, n.s.
virtual vs. computer 21.31, < 0.5

Perceived Safety real vs. computer 17.33, < .05

real vs. virtual 0.95, n.s.
virtual vs. computer 16.37, < .05

An ANOVA for the system usability scale revealed signif-

icant difference across the conditions, F2,50 = 4.59, p < .05.

Pairwise comparisons using t-tests with pooled SD and Bon-

ferroni correction revealed significant differences between

the computer and the virtual agent condition (p < .05).

Using a Kruskal-Wallis test, we found that intrinsic moti-

vation was significantly affected by the conditions, H(2) =
8.66, p = .014. A post-hoc test with focused comparisons

of the mean ranks between conditions showed that intrin-



TABLE III: Frequency counts of Learned Sport Preferences

on 1st and 2nd Rank

Exercises
Condition Stretching Cardio Endurance Strength Relaxation

computer 7 4 11 10 4
virtual 8 3 9 7 7
robot 4 6 12 8 6

sic motivation were not significantly different in the robot

condition (difference = 1.06) and the computer condition

(difference = 12.40) compared to the virtual condition.

However, the intrinsic motivation was significantly higher

in the robot condition compared to the computer condition

(difference = 13.47). Finally, the openness to influence

was also not influenced by the embodiment (P = .12).

C. Preference Learning Evaluation

In all conditions (e.g. virtual, computer, robot) we used the

same PL algorithm [22]. At this point we want to compare

whether the embodiment of the system can influence the PL

process. Additionally, we want to measure the effectiveness

of the learning algorithm. Therefore, we used our collected

preference rankings as evaluation criteria in a simulation to

compare the learning algorithm against a random algorithm,

which selects a random preference ranking.

1) Subjective Ratings: We conducted several ANOVAs to

measure the user’s perception of the effectiveness of the PL

algorithm. An ANOVA for the perceived information quality

(P = .156) and comparison quality (P = .63) showed no

significant differences across the conditions. The perception

of the learned preferences quality did not differ significantly

across the conditions (Mcomputer = 3.3, SDcomputer = 1.0,

Mvirtual = 3.7, SDvirtual = .87, Mrobot = 3.9, SDrobot =
.75, P = .12).

2) Preference Ranking Error: Frequencies for the learned

sport preferences are summarized in Table III. A Fisher’s

exact test revealed no statistical significance (p = .83, FET).

The ranking errors DPE and DDE are depicted in Figure

4. An ANOVA revealed no significant differences for DPE

(P = .55) and DDE (P = .32) between the conditions.

Hence, it seems plausible that the embodiment does not alter

the learned preferences and that the obtained data can be used

for an evaluation of the algorithm.

To measure the effectiveness of the PL algorithm we sim-

ulated a random condition where a ranking is randomly se-

lected and compared this to the other conditions that used the

DTS algorithm. We used the obtained ranking preferences as

target criteria and computed the position and discounted error

accordingly. Including this random condition in our ANOVA

we receive a significant differences for DPE (F (3, 75) =
21.5, p < .001) and DDE (F (3, 75) = 28.3, p < .001). A

pairwise comparison using t-tests with pooled SD revealed

significant differences between the random and all other

condition for the DDE and DPE (all p < .001).

VI. DISCUSSION

In this work investigated the suitability of a dueling bandit

PL framework for personalization in HRI and the effects

Fig. 4: Box plot showing the preference ranking errors for

each condition based on the different error measurements

(***:p < .001).

of the system’s embodiment on the user’s evaluation of

the system. Recent work reported that embodied robots are

found to be more persuasive, enjoyable and entertaining

[19]. However, there also exist an ongoing debate on the

effects of embodiment especially on the behavior effects a

robot can have [28], [29]. With this work we contribute to

this ongoing research. To answer our RQ2, we conducted

a study to investigate how the user’s perception of a PL

system is influenced by the embodiment of the system.

Our reported results from Section V do not support our

hypothesis H1. The real robot and the virtual robot have

been rated similar on all the sub-scales of the Godspeed

questionnaire. Also the ratings for the system usability scale

and the intrinsic motivation scale did not differ significantly

between the virtual robot and the real robot. However, we

found evidence that the embodiment of the system (both

virtual and real robot) significantly increased the participants

likeability of it compared to the computer only condition.

Because the Godspeed questionnaire was designed to evalute

robots, we do not discuss any differences on the animacy

or anthropomorphism scales between the computer and the

real/virtual robot. However, we assume that the likability of

a computer system can be evaluated using the items of the

likability subscale. Furthermore, the embodiment increased

the perception of the system’s usability between the virtual

robot and the computer condition and increased the user’s

intrinsic motivation between the computer and the real robot

condition. Regarding the user’s preference ranking satisfac-

tion, the embodiment also did not influence the subjective

evaluation of the ranking quality. Hence, the participants

in all conditions equally trusted the suggested preference

ranking. There are several reason that could hinder an effect

of the presence of the robot. The real and virtual robot

were an additional interface to the graphical user interface.

Hence, the real robot might not have been such a salient cue

as expected compared to the virtual agent. Also the virtual

robot should have been presented on an external monitor

and not on the same display as the graphical interface. This

aspects limit the generalization of this work and should

be investigated in the future. However, other researchers



comparing the physical embodiment during task assistance

also manipulated the presence and kept a graphical user

interface alongside the robot (e.g. [30]). Since the user’s

did not evaluate the intelligence of the robot differently

across the conditions, we could assume that the perceived

intelligence is not influenced by its embodiment but by the

underlying algorithms. Thus, more research on the influence

of embodiment and algorithmic design on the perceived

intelligence is needed.

In our RQ1, we wanted to investigate the effectiveness of

the PL framework for HRI. First of all, the results indicate

that the users were satisfied with the system’s suggested

preference ranking. Their agreeableness with the learned

preferences is fairly high and the calculated ranking errors

low. The comparison with a simulated random condition

showed that dueling bandit learning reduces the ranking

errors significantly (see Fig. 4). To the best of our knowledge

this is the first work exploring the dueling bandit learning

approach in real HRI. Hence, we propose that dueling bandit

learning might be a suitabe framework for personalizing

HRI experiences without cognitively overloading the user,

needing a numerical reward function or taking a lot of time

for the learning process.

VII. CONCLUSION

In this work we wanted to test whether the dueling banding

learning paradigm works in a real HRI situation (RQ1) and

whether the user experience is influenced by the systems

embodiment (RQ2). We found support that the learning

approach might be suitable for future applications. However,

we could not find support for our hypothesis H1. The virtual

agent and real agent where evaluated equally by the users.

However, we can support that users prefer a real or virtual

embodied agent over a non embodied system.

In our future work we will investigate the long-term effects

of personalization in situations where the robot is actually

doing the exercises together with the human or instruct them

during the exercises and thus iteratively learns the user’s

preferences by exploring the exercises together. We assume

that this framework can be used to adapt the exercise program

of the user to his/her individual preferences. Furthermore, we

will explore whether the personalization algorithm can be

accelerated by a user model which predicts whether a user

will like or dislike a certain exercise category based on their

personality type.
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