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CONVOLUTIONS, INERTIA SUPERGAMES, AND OLIGOPOLISTIC EQUILIBRIA

T. Marschak and R. Selten

I. INTRODUCTION

Consider an oligopolistic economy, where firms choose prices and
productions and each has reason to worry'about how its choices influence
other firms' choices. In a general equilibrium of such an economy all
markets are cleared, and given what it knows and observes, every firm and
household is content with its choice. "Contentment" of firms in such an
equilibrium has long been.an elusive prey for theorists. in this paper
we pursue the hunt fuither; we shall propose and apply & new equilibrium
concept for a class of game situations into which oligopolistic economies
'naturally fit. We shall view the oligopolistic economy as & geme and
its firms as the players. Each player chooses his actions independently.
Whatever agreements occur must be facit ones since, as the law requires
in most real market economies, no institution is available to enforce
agreements.+

Bach firm will be free to change its action, but when it does so
it will evoke responses from other firms. In our approach, it will be
the situation after these responses are completed which will matter to a
firm should it decide to change its action. Any transitory profits which
the firm might esrn before the responses are complete will not influence

its decision to change its action.

T cooperative theory is developed in [13].
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The neglect of transitory profits seems to fit the bulk of classical
oligopoly literature, although much of it is simply unclear on the matter.
In "conjectural variation" and "reaction function" discussions+ the firm
appears either to imagine an instantaneous response to any change it makes,
so that transitory profits cannot occur, or else it‘simply ignores the
intermediate stége at which iﬁs action is a newly changed one but the
other firms' actions are still unchanged.

Outside the classic negligibie-transitory-profit tradition are more
recent studies in which the firms make their choices at each of an infinite
sequence of time periods. They play a supergame--a regularly repeated
game--and a firm which changes its action in one repetition may expéct

others to respond in the next.++

Each firm collects a payoff stream;
the payoff a firm earns in the period when its action is a changed one
but others' are still unchanged does enter its payoff streem and hence
may influence its decision to make a change.

We shall deal here with an inertia supergame which differs in one
important respect from the supergame of the recent literature: a player
incﬁrs a cost when he changes his action. The periods are short and the
cost of change is high enough to outweigh any transitory geins which he
might obtain in one period by changing his action. On the other hand,
if a player can obtain a higher profit in all future periods by switching

forever to a new action, then he considers the change cost negligibly

TThe most extensive criticisms and interpretations of both concepts appear
still to be those of Fellner [3].

++A supergame framework in which oligopoly behavior could be studied is given
by J. Friedman [5], [6]. The second of these papers includes the possibility
that action in one period affects payoffs attalnable in later ones. BSuch
period-wise interdependence also occurs in [15]. The framework we develop
here could be extended to deal with some forms of period-wise interdependence
(see the final footnote of the paper). Other multiperiod approaches include
Shubik's treatment [16] of ruin gemes and Cyert and DeGroot's duopoly model [2]




small in relation to the improvement in his long-run profit.

We shall develop, for the inertia supergame, an equilibrium behavior
with certain persuasive properties. This behavior is best_introduced,
however, without reference to the inertis supergame. It will be presented

first in the setting of an ongoing-game situation, where the timing of

choices and payoffs is not formally specified.

The equilibrium presented here is ggg an equilibrium of the traditional
Nash-Cournot type, wherein each firm is content with its action because
it imagines that if it changed its action othefs would meke no change at
all in theirs. In our concept such implausible behavior is not generally
attributed to others. Moreover, all attempts made so far to argue the
existence of a general equilibrium of such a traditional type, with all
markets cleared, have required quite strong ad hoc assumptions on the
economy 's consumers and producers.+ To argue existence of an economic
state which is a game equilibrium in our sense, and is a market-cleared
state as well, is a very diffefent mathematical task and requires less

extreme assumptions.

in which players alternate choices. Extending the latter notion to n
oligopolists, however, seems somewhat artificial. Telser [18, Chapter VI]
studies a model which is not a supergame since each firm has to commit
itself in advance to a sequence of cholces and cannot revise its sequence
as the others' sequences unfold.

Tarrow and Hehn [1], Negishi [11], Fitzroy [4], Marschak and Selten [10,
Chapter 2], Lamont and Laroque [9], Gabscewicz end Vial [7]. The assumptions
are needed to ensure that the set of choices which are optimal for a firm,
given the choices of all other units in the economy, ls always a convex
nonempty set. This permits use of the appropriate fixed-point theorem.
The difficulty arises whether the economy has oligopolists, monopolists,
or both. See Roberts and Sonnenschein [12] for a demonstration that the
required condition may be violated in simple monopolistic economies with
"normel" testes and technologies, and for & conclusion that nevertheless
any attempt to replace the condition with enother one less easily violated
appears futile for general economies,



Part II of the present paper introduces the new equilibrium concept
in the on-going gahe setting Jjust referred to. Part III studies it in
the setting of the inertia supergame, wherein the opportunity to change
his action confronts each player at precisely dated points of time.

In Part IV we apply the equilibrium concept to an oligopolistic
economy wherein each firm has a nondecreasing-returns technology and
mey enter or leave a number of industries. In doing so, we also deal
with another challenge that has to be faced in finding a reasonable con-
cept of oligopolistic equilibrium: the informatién on which eachvfirm
in a large economy bases its actions ought to be less than total knowledge
of the entire economy and its current state. We shall develop a limited-
information equilibrium for the oligopolistic economy studied, but the

concept can also be stéted abstractly, for noncooperative games in general.



II. CONVOLUTIONS: RESPONSE FUNCTIONS WHICH PRESERVE RATTONALLITY

A duopoly game

Suppose duopolists 1 and 2 face a common demand curve and each is to choose
a selling price. If one price is lower than the other, the entire quantity
demanded is sold by the setter of the lower brice. If both set the same price,
each sells half the demand. Cost conditions are the same for both. The same
four prices are possible choices for each, namely Low (L), Medium (M), High (ﬁ),
and Very High (V). The two profits for each pair of choices are given in the
table, where the upper number in each box is 1's profit and the lower number

is 2's., The table defines a game and we shall freely refer to the duopolists

as "players!
Duopolist 2
L M H v
Li=-1 -2 -2 -2
=1 o# o# 0
M| O% 2% 6* 6%
- @
Duopolist 1 - - 0 0
H | o% 0 L T
-2 6% L # 0|
V| o¥ 0 0 1
-2 6% T A

What grice peir could we reasonably expect to persist? It is possible at
ény instant of time for each duopolist to deviate from the prevailing peir. As
a matter of economic realism, such a deviation will be observed and will evoke
some sort of response from the other. Imagine, as does the traditional oligopoly
literature just referred to, that the respoﬁse evoked occurs at once, or after
a negligible time. It is the new situation, following the response, which
matters; transitional profits, experienced after the deviation but before the

response, are unimportant. What price pelr, then, once established, could be



expected to endure because each duopolist, contemplating & deviation, reasonably
attributes to the other a response behavior which would make the deviation and
the response no better for the deviator than the original price pair? The
clagsic answer is a pair displaying'the Nash property of noncooperative games
--a price pair such that each price ié best against the other. The pair (M,M)
is the (unique) Nash solution; we would call it the Cournot solution if ther
 table described quantity duopolists rather than price duopolists..

The classic discussion does not provide a very convincing reason to
view the pair (M,M) as a sﬁable situation, from which neither player wants to
deviate. For each must repeatedly ask, "What will be his response if I deviate -
from (M,M)?" If the answer is "He will make no change," then each will be content
to stay at (M,M). But the deviation would be observable by the other player and
there are responses which seem more believable than "No change." For example, 1
might say: "If I were to go to V, then he will observe that and will want to go
to H rather than to make no change; If he did so, then we would be in a completely
new situation, and a further deviation might meke me better off than I am now, at

(M,M) "

Consider, on the other hand, the following response function, for either

player i (i = 1,2), an alternative to the classic "no change" response function.
For every possible value of the status quo (every pricé palr), and every pos-
sible deviation by J # i, the function prescribes a response for i. We shall
call the proposed response function the "kinked" response function, To des-

cribe it in words: the responder never reises his price; he follows the

deviator down but never below M. The proposed function is of the kinked-demand-

curve type (price rises are not matched but price drops are) except that it
avoids the matched position (L,L) (costs cannot be covered there). Formally,
let &, (i = 1,2) be i's four-valued action, let & denote (al,ag), and let

¢i(a,a3) denote i's response when the status quo is a and J deviates to
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aj # ay. Then the "kinked" response function ¢, for player‘i is the following:

If, at a, and then

& = 2y = ¢;(a,a3) =

L,M,H,V L

L,M
H,V
L,M
| B,V

< < B H =2 B
H =2 H =2 =

L

We can then ask: if each player attributes the kinked response function
the other, then at what values of the status quo--at what price pair--is each
stable? If 1, say, is stable at a given pair & = (51,52), then 1 cannot benefit
by deviating from El to a] because at the resulting situation a = [ai,¢2(a,ai)]
1's profit is no higher than it was at a. Moreover, a further deviation by 1,
fram'éi to ai,
then it was at &. And similarly for a third deviation, a fourth one, and so on.

leads to [a",¢2(§,a£)], at which 1's profit is again no higher

It is easily checked that for the kinked response function, the price pairs with

Tt for

an asterisk in the upper left (lower right) corner of the box are stable
1 (for 2). The pairs (H,H) and (M,M) are stable for both. Many response
functions (¢l,¢2), besides the kinked one, can be written down. But notice

that the kinked response function has e distinctive property: when a player i

isstaeble, then if he applies ¢i he regains his stability following any deviation

by the other player. This is a property which meny response functions lack;
1.

The function 94 heppens to depend on the status-quo vector & only through the

ai-component of a. It also happens that ¢l and ¢2 ere symmetric in the two

players. Response functions without these properties can certalnly be constructed.

Tt (H,H), for example, 2 has profit 4 and is steble since a deviation (by 2)
to L, M, or V leads, respectively, to (H,L), (M,M), (H,V), at each of which 2's
profit is less than 4, It is also clear that no chain of deviations can yield,
when it ends, a new price pair at which 2's profit is higher than L.



in particular the classic no-change function (¢i(a,a3)'= ai) clearly lacks

it in the duopoly game. We shall argue next that the "restabilizing" property
AOught to be displayed by an established response function, which players expect
to be applied. If this ig so, then the kinked function is a good candidate
\for an established response function, and both (H,H) and (M,M) are reasoﬁable
candidates for a price pair which can be expected to persist, for at both
pairs each player cannot improve himself if he attributes the kinked response

to the other player.

Response functions for general games

We shall argue for the restabilizing property in the context of a general
n-player game, returning to the duopoly game later. Let there be n players,
comprising the set N. Player i chooses an Egﬁigg.ai from the set Ai. For the
action n-tuple a =.(al,...,an), which we shall also call a state, i's payoff
lis Hi(a). The pair+({Ai}i€N, {Hi}iGN)defines a game. Thg symbgl A will denotg.
the set of possible action n-tuples, i.e., the set product Al Q A2 x cee X An‘

We shall assume throughout the paper that in the gemes discussed either the sets
{Ai}ieN ere finite or they are compact and the functions {Hi}iEN are continuous

on A. (In particular, then, every player always possesses & peyoff-maximizing

best reply to given actions of the others.,) A response function for player i,
denoted ¢,, assigns an action a; = ¢i(a,a3) in Ay to every pair (a,aj), where

J is in N, aj is in AJ, and & is in A. The state a in such a pelr will often be
called the "status quo" or "prevailing state," while aj will often be called a'devia-
tion." The n-tuple of individual response functions {¢i}ieN is denoted ¢ and will

be called simply a response function for the game.++

*Some notational conventions: Suppose S is a set, s is an element of S, and with
every element s we associate one variable, denoted Xg o Then the veetor of such

variables is denoted Xg3 an alternative symbol for xq is {xs}ses' Ifx = §S is a

value of the vector, then the symbol E/xé denotes the value obtained from X when x'
becomes the value of the variable x (where s belongs to 8)., If r is an element
of the set R, then R \ r denotes the set which remains when r is removed from R.

tt . .
The function ¢; is from (A x Ak) to A; and the function ¢ from (A x U Ak) to A.
k k



A response function ¢ has two properties:

(II.l) if a = a/a.i = a/aj, then ¢i(a,a3) = a.

) = al

K all j in N.

(II.2) ¢J(a,a3

(II.1) says that i's response to j's deviation is to meke no change if j's deviation
is not a proper one (if aj = aJ), and'(II.Z) makes the symbol ¢ more versatile by
defining a deviator's "response" to his own deviation to be the deviation itself.

The symbol ¢(a,a5) means the h-tuple {¢i(a’a5)}ieN

Associated with ¢ is the extended response function $, which specifies
the outcome of a sequence of deviations by some player Jj; $ is defined recur-

sively by

$(a,{aj,...,a§}) = ¢[$(a,{a§,...,ag-l}),ag], t > 1

$(a,a§) = ¢(a, al)

9

where {aJ, ..,ag} is a sequence with terms in AJ. Then player i is stable at

the state a with respect to ¢ if no sequence of deviations can benefit him

'given that ¢ dictates the responses, i.e., fof any sequence {ai,...,af} with
terms in A;, H;[§(a,{a],...,880 ] < B (a).

The time required by a deviation sequence and by the responses it evokes
is viewed as negligible when a player contemplates a deviation. Only the
final outcome and its payoff matters, not the fleeting, transitory payoffs
due to the states between initial deviation and final response., Moreover,

simultaneous deviation from a prevailing state by two or more players is

treated as an sbnormal and negligible occurrence; &a response function does
not allow for it,
Having defined stebility, we are now in a position to impose conditions

on the response function ¢ so as to capture partially the intuitive idea

The "reaction function" in most of the literature has onlykJ‘Ak as its domain, An

exception is the work of Krelle [8], who appears to have beén the first to consider
the dependence of reactions on the status quo.



10
of a response function which has become established. If ¢ is esteblished,

then every player who contemplates a deviation expects ¢ to be applied in

response and expects that a deviation by himself or others would not destroy

the general belief that ¢ will be applied in response to still further devia-
tions; and a player i who is rational--who never chooses an action which
could be improved upon-—finds that it is in his cwn‘intefest to follow ¢;
should another player deviate.

We propose as & minimum requirement for an established response function

that it possess the restabilizing (or rationality-preserving) property:

¢ is restabilizing if "a is stable for i with respect to ¢" implies

! in A

"¢(a,aj) is stable for i with respect to ¢" for all a in A, aj

R
J in N,
If ¢ did not possess this property, then for some pair (a,a&) some
rational player i would find.it in his own interest to violate ¢i. Such
a pléyer is stable at a and so demonstrates--or gives us no reason to doubte-
his rationality. But given the deviation aj he would not be stable at ¢(a,aj).-
We can therefore not expect him to follow oy and then rest content. Under our
assumption that response and deviation times are neg;igible it mekes no dif-
ference whether we view him as first choosing the action ¢i(a,a3) and then
deviating to &; # ¢i(a,a3) or as immediately applying a response function
§; # ¢; for which $i(a,a3) = Ei' In either case, he would be treated by
the other players as a deviator from the state ¢(a,aj). Since ¢ is esta-
blished, i expects any other player k, including the original deviator J,
to use ¢k' Player i therefore expects the choice of Ei to yield him the
payoff Hi(¢[¢(a,a'),Ei]) and either this payoff or the payoff reached after
still further deviations is larger than the payoff Hi[¢(a,a5)], which he |

would receive if he followed ¢i'
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We could not view ¢ as established, then, if it lacked the restabilizing
property. To put it another way, if and only if ¢ has the property, does
a player i, who is stable at a, find, following a deviation to a& by J# i,
that if he expects every other player k to use ¢k (now and subsequently),

then i's use of ¢, is a best re to the others' use of {¢. } end is also,
i __.__H. k

kal\i
therefore, credible to other players. A pPlayer i who is not stable at a,
may not be stable at ¢(a,a3) and for him the use of ¢i.may not be best given
that the others use {¢k}k€N\i' But such a player has forfeited his claim
to be judged rational at a, and others cannot expect that he displsy rational-
ity in his response.

If a response function is to be of any interest in explaining the per-
sistence of some state, it must meet a second requirement: there must be
at least one state at which all players are jointly stable. At such &
state there is no reason to doubt any player's rationality and if all expect
¢ to be followed none wants to deviate. We shall call a response function

which displays both properties a convolution:

$ is a convolution if (i) it is restabilizing and (1i) there exists
a jointly stable state a¥* in A, at which every player is stable with

respect to ¢.

The kinked response function for the duopoly geme is a eonvolution,
with jointly stable states (M,M) and (H,H). For gemes in general, the "no-
change" response function'is very seldom a convolution. In a game in which
it is oné, whenever an action a; is best (for 1) against Byt it is also best
against aN\i/aj for‘all Jin N\ i, all aj in Aﬁ' That would be & very peculiar

property for & game to display.
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The convolution requirement may be a strong one in many games.+ A weakened

requirement, but still interesting in economic contexts, is the following:

The response function ¢ is a weak convolution if there exists for each player i

a set Si’ a subset of A, such that the sets Si have a nonempty intersection
and such that if a is in Si’ then (i) a is stable for 1 with respect to ¢, .

(ii) ¢(a,a3) is in 8; for all 1,J and all &} € A,. The set 5, is called

J J

i's normality set and a state which lies in all the normality sets is

Jointly normal with respect to ¢.

Player i's deliberate rationality is displayed, in the judgment of other
players, only at all states in Si' If i is stgble with respect to ¢ elsewhere,
then that is an ;bnormal ";ccident" and ¢ is only required to restebilize i
when there is a deviation from a "normal" state, i.e., a state in S, . When that
happens, ¢ takes ; back into Si’ so that his rationality, as Jjudged by others,
is preserved. The "best reply" property discussed above still holds for a
player i given that some player j has deviated from a state in Si' A strong
convolution ¢--a response function which meets the previous definition--is also

a weak one. We need only take as the normality set for i the set

{s; = a| a is stable for i with respect to ¢}.

EEI a b
+A two-player game for which no convolution existe is 1 @ e .
' a |1 e
| = R %
! b, |T 0
Y10 3] o

If a response function ¢ were a convolution, there would be & Jointly stable
action pair. But (bl’ba) cannot be such & pair, since each player benefits by

deviating from it no matter what the other's response. (bl,aa) cannot be jointly

stable with respect to a restabilizing response function, since, if 2 is to be
deterred from deviating, 1 must respond by staying at b4 ,vhich leads again to

(bl’b2)‘ (al,ae) cannot be jointly stable since 1 can be deterred from deviating
only if 2's respomse is b,, which leads again to (bl'ba)' Finally, (al,be) cannot
be, since deviation by 1 must evoke no change from 2, so that (bl’ba) is again
reached. Note that the game does possess two Nash points: (bl,aa) and (al,bz)‘
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Then any state which is jointly stable with respect to ¢ is Joiﬁtly normsl.,
To illustrate & weak but not strong convolution, consider the following

symmetric two-player game:

7 21 o B8 Y 8
5 L. 18 0
= 5 6 0 0
8 6 2 2 0
1 2 0 0
0 0 1 0
Y 0 2 1 0
5 0 0 0 0
: 0 0 0 0

The simple response function given by
B if ai =0 or ai = B3

) otherwise

is a weak but not strong convolution with normality sets

(2]
L]

1 = {(a,0),(8,0),(8,8),(8,7),(8,8)}

and

S5 = 1(0,0),(a,8),(8,8),(v,8),(5,8)}

(pleyer 1's action is the first member of each pair), Player 1 is stable at any
pair in Sl and is brought back to Sl should 2 deviate; and analogously for player 2,
The pairs (a,a) and (B,8) are Jointly normal. The pair (v,y) is also steble for
each player but at that pair each player is judged to be "accidentally" stable,

and is not expected to restabilize himself following e deviation. Thus if the
prevailing state happens to be (y,y) and 1 deviates to o, then the resulting

new pair is (a,é), at which 2 is no longer stable (a deviation from there to B,



1k

say, would benefit him). If the playersii_:_a_xi at one of the Jjointly normal pairs,
howéver, and if only one of the players ever deviates while the other only changes
his action when he is a responder who uses ¢, then the accidentally stable pair
(v,y) can never be reached; nor, in fact, can any "abnormal" pair--any pair

which lies outside Sl U 82. In general, it 1s easier to construct a weak but

not strong convolution for a game than a strong convolution, since not all stable
stateé need to be investigated to see whether stability is regained following a

deviation.
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IIT. INERTIA SUPERGAMES AND CONVOLUTIONS

One could leave the convolution concept at that: restabilizing is a
minimal property for established response functions and if the response
function is to be of any interest in studying persistent states it must have
a Jointly stable state. But our defense of the minimal property, the genesis
of an established respohse function, and the "timeless" éetting of the ongoing
game | with its "instantaneous" deviations angd responses--gll these have been
rather‘sketchy and intuitive. Fortunately, we need not simply let the concept
rest therE,standing on its own feet, to be accepted or rejected depending on
whether one feels that it captures an essentisl part of what one means by an
established response function and a persistent state. We can, instead, ex-
plicitly\relate the concept to the repeated playing of a game at precisely
dated points of time and to the choice of strategies by players of the repeated
game. This will provide a more precise defense of the convolution properties.

As before; the sets {Ai}iEN’ and the functions {Hi}iEN’ are given, but
we now specify that the game defined by this pair is to be played at each
period of an infinite sequence of periods, starting at pericd 1. 1In each
period, each player chooses an action. The n-tuple of choices define that
period's state. If a is a period's state, then player i collects Hi(a) for
thgt period. But if player i's action in period t is ay and in t + 1, it is
af # &;, then he incurs a change cost M(ai,ai); end for period t + 1, i collects
Hi(a') - M(a{,ai), where a' is the state in t + 1. The function M is positive

but bounded from above. For most of what follows we shall also assume that
‘(III.l) max [H,(a/a!) - H,(a)] < M(a al), all 1 €N, all a €A, alla! €4,.
' ach i i i 174 i i

In this way we give a precise rationale for our earlier informal notion of

"instantaneous" deviation and response, wherein we ignored any peyoffs due
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to the states of the game after an initial deviation in a deviation sequence
but before completion of the final responée. If (III.1l) holds, a player's net
gain from changing his action can never be a transitory (one-perio&) gaing
a change can only be beneficial to him as a result of the payoff collected
after he has maintained the new action for at least two periods. If‘the
periods are short enough, a change cost satisfying (III.l)‘is realistic for .
economic games, since all changes of action cos£ something.

Let al = {az}ieN denote the action n-tuple chosen in the t-th period,
st ; {a;,...,at}, a t-period sequence of action n-tuples, and s = {a 58 ,...}
an infinite sequence of action n-tuples. We shall suppose that player i is
interested in the long-run average peyoff which he obtains from the sequence

{al,az,...} which occurs, specifically in+

v
H;(s) = lim inf L Z H?(a.t,a.t l)
v i
L Ve t=1
where
H (at) ifal=atort = 1,
t t-l L L 4
H (%,8"™) =
B (a®) - e¥,al™)  if el #ai™ enat > 1.
Then the triple ({Ai}iEN’ {Hl 1EN’M) defines a supergame with change cost,

wherein each player i chooses an infinite sequence 8y = {ai,af,;..} and
payoffs are given by the functions {H:}ieﬂ' If (III.1) is satisfied by M,

the supergame with change cost is called an inertias supergame.

Each player follows a strategy in his playing of the supergeme. Let S

denote the set compdsed of all possible t-period sequences st for all values

+Other measures of i's gain from en infinite sequence present difficulties.
The simple limit of average payoff might not exist. Using the discounted

sum of the Hz's could not, as we shall see, lead to the propositions we obtain
about strategies for the repeated game.
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of t > 1, together with an empty sequence so. Then a strategy for player i,
denoted s is a function from S £o Ai’ where ﬂi(so)'is an initial action to
be used in period 1. If st has been the history of play up to and including
period t, then player i chooses the action ni(st) for period t + 1. A_straﬁegy
n-tuple 7 = {ni}iEN will be called a combination. If 7 is specified and fol-
lowed, then the history of play from period 1 on is determined: it will be
an infinite sequehce o(w) of action n-tuples with n(so)'as its first term.
Extending our use of the symbol H,, we shall let Hi(n) stand for H;[o(n)].

Note that a combinatioﬁ m must specify, among other things, what action
e player i chooses if some other player j stops following the strategy “J’
which is the j-component of w, or if i himself has Jjust violated Ty o A combi-
nation T is called an equilibrium combination if Ei is a best reply to EN\i’
i.e., Fi is a maximizer of Hi(ﬁ/ni).

It would be a poor theory of the supergame which went only this far. The

equilibrium property is important but there may be many equilibria.* Some of

+There is alweys at least one equilibrium combination in an inertia supergame
as long as the sets {Ai}iEN are finite or are compact with {Hi}iEN continuous.
For any player i, let Ay , be the set of action (n = 1)=-tuples 8y = {ak}kEN\i’
with a € A . Let T {”k}kEN\i be a function which assigns to any &y in Ay

a value of . in Ay, Which minimizes Hi[(ai,aN\i)] on AN\f where (ai’aN\i>

denotes the n-tuple with the indicated components. Let the players in N be
numbered (if i is in N, then i is a positive integer). Call player J the last

deviator from 7 in the sequence st ='{al,...,at} if for some 4 < t,
- ;
(1) a§+l 7 nJ({al,...,ad}), (1i) af 1= ni({al,...,at}) for { < Janddgt<t,

i
(iii) a;+l = wi({al,...,aT}) for 1 > Jand d < T <t. Let a{ be a maximizer of

Hi([ai’“N\i(ai)]) on A;. Then the combination defined by

“1(a§) if J is the last deviator in gb

n;(s%) =

a? otherwise.

is an equilibrium, leading to perpetual repetition of a®* = {ag}iEN' If i violates
™., then the first period in which he does so (by choosing & i af), he achieves

no gain because of the inertia condition (III.1l). Subsequently, the others' actions
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them may require of a player enormously detailed memory of the preceding
history. Others may be unappealing once the history of play has taken a
certain turn. We shall consider a special class of equilibria which has

compelling properties and is closely related to convolutions in the game

({Ai}ieﬂ,{Hi}iEN).

First, a combination m is a low-memory combination if, for t > 1, wi(st)

t-1, % t=l t 1 S | t-1
9

depends only on a® and on (s where s ='{al,...,a ,& } and s = {8 ,40.58

1
To determine his next action, a player i who follows ™ needs to remember only

what action every player k chose last period and what action k should have chosen

if he had followed M o .Low memory does not exclude wide observation--every player

may have to observe every other's current action--but that is reasonable in the

economic conflicts we wish to model.

. Becond, a combination 7 is conservative if for all t > 1 end all 1 €N

ni(st) = a¥ when ag = nJ(st-l), for all j € N \ .1,

In a consefvative combination a player makes no change in his action if all others
have followed the combination. Roughly speasking, a player must have a "good
reason" to change.

A third property for combinations has to do with the infinite-period subgeme
which lies ahéad following whatever particular history of play up to period t
occurs, out of the many possible histories. The initial period for the subgame
is t + 1. A combination m induces a combination m' for the subgame, 1.e., ' is
commanded by m once the history preceding t + 1 is specified. A combination

has to take care of all histories, "unexpected" or "ebnormel' ones inecluded.

We could now require that the combination be a perfect equilibrium, that it

minimize his payoff for a{ and he collects no more than Hi(a*). A further action

change cannot benefit i for the same two reasons.
The combination described is unappealing, being an equilibrium of extreme

caution. Each player acts as if he expected others to punish him maximally, even
at great loss to themselves, for any deviation.
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induces aﬁ equilibrium combination in gzgzz_subgame‘whiCh could lie ahead in
every period.f No matter what the.preceding history, no matter how strange
the behavior of some players in that history, the full rationality of equili-
brium is always required of every player in the subgame which lies éhead.
The slate is wiped clean,.in a sense, and regardless of some piayers' “deviant".
behavior, the persuasiveness of the equiiibriﬁm property for what lies shead
is viewed as undiminished.

We consider instead a less stringent requirement. We shall call a sequence |

gb = {al,...,at} normal for player i with respect to the combination 1 if for

T=1,...,t =1, (i) az = ni(sT'l) end (ii) there is at most one plsyer j # i

with a; # nJ(sT-l). Player i, in other words, has not deviated from the

strategy ™ in the sequence st and in no period has more than one other player

tt

deviated. Following such a sequence, there lies shead a subgeme normal for i

with respect to m. Then the combination 7 is peraperfect if in every subgame

normal for a player i, m induces a best reply for i to the strategies which =
induces for the other players. If m is paraperfect then it is, clearly, an
equilibrium. _

If 7 is both conservative and pareperfect, then it provides each player
with a model of both "deviators" and "nondeviators." Suppose a conservative
end paraperfect'combination 7 is always followed by all players and no player

changes his action from the initial action n-tuple, say El

, which T dictates.
Then, when all follow T, i perpetually repeats El, and Ei is a best reply to
the others' strategies EN\i' Now suppose instead that in some period player

J # 1 violates EJ and deviates to another action EJ ¥ Ei, end that J is viewed

"his version of perfectness is developed in [13] and is reconsidered, together
with other versions, in [1L4].

++Part (ii) drops out for two-persoﬁ games,



20

by i as a "serious" deviator, not an erratic or frivolous one, who will stick
with his new'action as long as other players continue to follow w, in the
sincere if mistaken belief that doing so will benefit him. Then the strategy
which the consertative EJ induces for j in the subgame ﬁhich lies ahead tells
J to stick with his deviation, as loné as no one else subSequently tiolntes
T, and so it fulfills i's view of j. If i is normal at the period when J
deviates, then thé strategy-yhich Fi induces for i is best against the believable
strategy which EJ induces for j and against the strategy which Ek induces for
every other player k # i. A normal player, then, will not want to abandon T,
and neither will a deviating player who fulfills the general view as to how
deviators behave. No claims are made for Ei in the abnormel end unimportant
case in which two or more pléyers deviate simultaneously. Nor is it claimed
that the strategy induced by EJ is a "good" one for a player j who has deviated.
., We only claim that the "conservative" picture of a deviator is a simple and
natural one for other players to form, and that given this picture a normal
player i will find, if 7 is paraperfect, that “i provides a good strategy
Since T is an equilibrium combination, moreover, a player J cannot benefit
by deliberately becoming a deviator (a violator of EJ), knowing that the
other players will follow T in all subgamesl If the combination did not display
paraperfectness, or some other version of the perfectness property, a player J
might, by a well-chosen deviation , give other players a good reason to abandon
the combination in the resulting subgeame, and miéht benefit from doing so.+

We turn now to respcnse functions and convolutions. Given any low-memory

combination m we shall say that the function ¢ = {¢i}ieN represents 7 if for

any t > 1, any sequence st_l = {al,...,a }, any J in N, and any aj in AJ
+See the discussion of the duopoly game in the next section.
++

As before,. ¢ (¢,) is from (A x U ) to A (to A,).
k



(a) n(s®) = ¢[ﬂ(st'l),a3]
whenever
(8) et = n(s*1)/al,

where s® = {al,...,at-l,at}. The equality (B) says that in the n-tuple chosen at t,
all players other than j followed n.b Player J may or may not have_done so;.in any
case he chose aj. |
Any low-memory combination w which is also conservative can be represented by
a funétion.& which is also a response function in our earlier sense and therefore
satisfies (II.1) and (II.2). The low-memory property means that for a sequence
a® satisfying (B8), n(st) depends only on the n~tuple actually chosen at t--nemely,
n(st-l)/aj——and on the n-tuple which should have been chosen if every player had
- followed m--namely, n(st-l). To put it equivalently, n(st) depends only on

n(st—l) and aj--precisely the two arguments of ¢ in (a). If 7 is also conservative
then, first, if (B) holds, then that part of (a) which refers to j himself also

holds and takes the form

a!

my(s%) = 4, In(s"1) 010 = a1,

J

for at t + 1 the conservative "3 commends J to choose a' again, since the others

J
have followed m at t. Second, if, in fact, aj = ag = wj(st-l), so that J's
"deviation" to aj is not a proper deviation at all, then--since all players fol-

lowed m at te-m commands that they repeat their action at t + 1, i.e., (o) becomes

n(st) = ¢[at/a = at/a

3%y 5"

So if m is conservative; if ¢ represents m; and if, to use the langauge of Part II,

we interpret the first argument of ¢ as a "preveiling state" (which would continue

tWe again use the "slash" notation described in the "notational conventions"
footnote of Part II.
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at t if no one deviated from it), then ¢ obeys the conditions (II.1) and (II.2)
required of a response function.

To construct a response function ¢ which represents a given conservative

low-memory combination m, we first consider all n-tuples a in A which equal n(sﬁ-l)
for some sequence g1 o {al,...,at—l} whose first term is w(so).' Then for any

1 : -
j in N and any a3 in AJ we take ¢(a,a3)_to equal n(st), where s’ = {a ,...,at l,at}

and at satisfies (B). For all other n-tuples a in A--those which are not
"reachable" for m in the sense just given--we let ¢ be any arbitrary function
satisfying (II.l) and (II.2) |

To summarize: a low-memory conservative combination m, and a response function
¢ which represents it, equivalently describe the other players' response to a given
player j's proper deviation froﬁ a frevailing state. At such a state a, in period
t - 1, all responses to the preceding history--the responses commanded by m--
have been completed, so that a would also prevail in period t if everyone fol-
lowed m. But in t, player J makes an "unprovoked" deviation--a change of action
not commanded by m,--to al. At t + 1 every player i # j chooses as his response

J J

the action given by both ¢i and Tss while J continues to choose aj, as m, commands.

J

Our previous "timeless" concepts of prevailing state, deviation, and response
have.been given, then, a precise timing.

Next, if we are given a response function ¢, we can then construct a low-
memory conservative combination representable by ¢, once we have specified an
initial action n-tuple, say, &. We shall say that 7 is the &-combination fbr ¢
if for all i in N

fom

for t =0

all k in N N §

n(st) - +¢[w(st'l),a§] if t > 1, and for some J in N, a§ o

while a; = nJ(st'l),

la in all other cases
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Note that this m tells a deviator (a violator of ) to stick with his action
unless another player has just deviated, and tells all players to do so in the
abnormal case of simultaneous deviations by two or more players.

If a conser#ative, low-memory combination w is also paraperfect, then

more can be said.

Theorem A. If w is a low-memory, conservative, paraperfect combination
for a supergame with change cost, then a response function which represents T

must be a weak convolution.

Proof., Suppose ¢ represents the combination . Consider,
fFr each player i, the set
8, = {a € A| for some sequence st = {al,...,at}, e’ = a and s¥ is normal
for i with respect to w}. '
(Si is the set of all states which can be reached by sequences normgl for i, The
state a never leaves the set Si as long as 1 is only a responder who applies
the function ¢i and as long as there is no simultaneous deviation by two or more

players.) Then the function ¢ is a weak convolution with normelity sets S, (the

i
sets clearly have a nonempty intersection). At any state a in Si, 1 is stable
with respect to ¢. For consider such a state and a deviation sequence

{ai,...,a?} for i. Suppose
(I11.2)  H;($la,{a;,...,80H]) > K (a),

where $ is the extended response function for ¢, Conslder, in the supergame,
the subgame which begins at t + 1, is normal for player i, and is preceded by at =g,
Let 7' be the combination which 7 induces in this subgeme, In the subgame 1

could follow a strategy T, defined by:

i
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In periods t+l1,...,t+m choose ai,...,a?, respectively, regardless
»Ei: of what other players have chosen. Apply the strategy wg, induced

by wi, in the subgame which follows t + m.

If (III.2) were true, then, for the subgame in question, Hi(n'/ﬁi) > Hi(n’).
The strategy ﬁi would be a better reply to w' than ni, contradicting paraperfectness,
So Si is indeed a normality set for i and ¢, which represents m, always leads to a

new state in Si after a deviation from a state in Si; ¢ is indeed a weak convolutionJ[
There is also a proposition which is close to a converse of Theorem A.

Theorem B. Let ¢ be any weak convolution (in particular, ¢ may be a strong

i . " * = *
convolution) for the game defined by ({Ai}ieﬂ’{Hi}iEN)’and suppose & {ai}iEN

is a jointly normal state for ¢. Then, in the inertia supergame defined by
, ‘ ' ' . ' . '
({Ai}iEN’{Hi}iEN’M) (with M satisfying (III.1)), the a¥-combination for ¢ is

paraperfect.

be the normality

}
1lien
t 1 to}

sets for ¢. Suppose the to-period history of the game is a sequence s 0= {8" 565058

Proof. Let m denote the a*—combinationﬁfor ¢ and let {8

normal for player i. Such a sequence cannot leave the normality set Si, since i

applies ¢i throughout the sequence. Suppose that in the subgeme which follows to

every player k # i uses the strategy “i induced by Me but player 1 uses a strategy ﬁi

distinct from the induced strategy ni. The distinction appears in perticular at

t.+2 o %L

ty + 2, i.e., aio # ni(s 9 ) (s 0™ is the (to + 1)-period history). Then

every period t > to + 1 must be in one of two classes:

(i) Period t > tg + 1, with history st'l, is & violation period for i if

-~

t- .
i(S l) # Trj'.(st l). In that case, i1 must change his action fromt - 1 to t and,

because of the change cost, collects & net payoff in t which does not exceed

min H,(a). (ii) Period t > ty + 1 is a nonviolation period for i if ﬁi(st'l) =
acA

w!@?qj.

i Then there is no change cost, for ni cannot commend a response (an appli-

cation of ¢i) which is an action change for i1, since no player k # i deviates at

t - 1. But one or more earlier periods were violation periods for i, i.e., there
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_t0+1 1

1' at = $[8. ,{bi,;.-,b?}]s

is a sequence {bi,...,b?}, with terms in A, and with:

t. t+1l t

where a = (s 0).

But because i followed ™ up to period tO’ and because ¢
_to+l _t,tl

is a weak convolution, a is in Si and i is stable at a , so that

t ot

g ). So whether period t > t

Hi(at) < H (2 o ¥ 1 is of the first or second kindﬁ,
player i does not collect a higher net payoff at t than if he had never violated
the strategy L at any previous period followiﬁg to + 1,

Hence for any sequence involving violations by i after to + 1 but not before,
whether the violations are finite in number or not, i's long-run average payoff
in the infinite subgame which follows to + 1 cannot exceed his long-run aversage
payoff if he uses the strategy n{ induced by T from to + 2 on. As for period

ty + 1, it is possible for i to engage in a once-only violation of w; there,
by sticking with his previous actiong not incurring a change cost,
but failing to follow ¢i in response to some player's deviation at to. But any

T o1e

one-period gein froﬁ doing so plays no role in i's long-run average payoff.
i violates Ty at to + 1 and again later, then the preceding two-case argument
applies again.

Parsperfectness of m is then established. ”

It is easy to see why Theorem A could not be strengthened to say that a convolu-
tion representing ¢ must be a strong one, and to see why it is that Theorem B holds
for all weak convolutions, not just for strong ones. Congider the weak but not
strong convolution ¢ illustrated in Part II., The (a,a)-combination for ¢ is a
paraperfect combination--call it T--represented by ¢. The response function ¢ is
a weak convolution and w does not provide player 2, say, with a best reply if the
pair (y,y) has been reached and 1 deviates to a, even though 2 is stable at (y,y)

with respect to ¢. But the pair (y,y) can never be reached by sequences which are

fWe use conditions (II.l) and (II.2) which a response function satisfies.

++If it were the discounted sum of payoffs which measured i1's satisfaction in the
supergame, rather than long-run average payoff, then such a one-period gain might
be significant and 7 might not be paraperfect.
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normal for 2 with respect to T, since in such a sequence 2 always applies ¢2 and
the sequence starts with the jointly normal pair (a,a). So the fact that ¢ repre-
sents the paraperfect combination T does not imply that ¢ is a strong convolutionQ-
that ¢ restabilizes each playér for every prevailing peir at which he islstablg.
And even though ¢ is weak and not strong, we can find a paraperfect combination,

nemely m,which ¢ represents.

The dubpoly game again

Return now to the duopoly game and consider the inertis supergame associated

with it. One equilibrium combination for the supergame would be ﬁ, defined by

v ift =0
Ei(st) = 4L if a} # %d(st-l)
az in all other cases

This is a low-memory, conservative combination and is the (V,V)=combination for

the response function given by
¢i(a,a3) =1, 8] # ey, 1 #J.

"If 7 is followed, the result is perpetual choice of (V,V). But 7 is not para-
perfect. If, for example, 1 deviates to H, then in the subgame which follows,
2's ﬁ2—induced strategy tells him to choose L forever if 1 mekes no further
change. But that is not a best reply to l's subgame strategy (induced by ﬁl)

of meking no further change provided 2 himself does not deviate. Against the
latter subgame strategy, a best reply for 2 is rather "choose H forever."

If 2 thinks of 1 as a "serious," conservative, deliberate deviator, then 2 expects
1 to stick with his deviation provided 2 does what he is expected to do. Given
this view of 1, 2 will wish to sbandon T, in the subgeme,

On the other hend, the (H,H)-combination for the kinked convolution is para-

perfect and so is robust against a deviation by l; given the same view of the
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deviator 1, 2 Qill éég;wisk to abandon the combination end will apply the kinked
response function, Moreover, the perpetual choice of (V,V) can never result
from use of any convolution, or rather from use of the (V,V)-combination for a
convolution whose Jolntly stable state is (V,V). For (V,V) can never be jointly
stable for a convolution: to discourage 1 from deviating from (V,V) to M, 2
must reply with L; but that is not a restebilizing response for 2, since no
matter what 1's response, 2 is better off deviating from (M,L).

The kinked convolution has Jjointly steble pairs at (H,H) and (M,M); (M,M)
happens also to be the Nash solution. In the inertia supergeme, the (H,H)- or
the (M,M)-combination for the kinked convolution results in perpetual choice
of that price pair, Whether one thinks of the inertia-supergame setting or
the "timeless" ongolng-geme setting of Part II, we now have & stronger argument for

persistence of either of these states than the classic appeal to the Nash solution
provides.

Sunmary
The goal of parts II and III has been to describe a state which’

persists because players expect that deviations from that state will be
observed and will evoke certain responses, according to a response behavior
which is credible to other players, is good for the responders, and could
reasbnably become established over time. A prospective deviator is concerned only
with his payoff in the state which prevails when he has stopped deviating and
the responses to his deviations have been completed; and players ignore the pos-
sibility of two or more simultaneous deviators. The reasonableness of the res-
ponse behévior rests on some parficular plausible "péychology" of a deviator as
he is viewed by the other players. In the convolution the simple view is that
a deviator, like all players, expects the response function to be followed and
deliberately deviates because of a serious intent to improve himself; since he

is serious, he will stick with his deviation but is prepared himself to follow
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the response function should other players subsequently deviate. If the other
players accept this psychology, then the convolution prescribes good responses
for them; each responder finds the prescribed behavior of the other responders

to be credible and his own prescribed behavior to be good. Alternative deviation
psychologies can be explored, though the psychology of a frivolous, erratic

deviator would be hard to model.+

The inertia supergame éetting provides us with a precise statement of the
chosen deviation psychology, and permits us to link response functions with
strategies. The use of a response function is associated with the low-memory
and conservative properties of a combination, and the use of a convolution with
the paraperfect property. In constructing a convolution, one has then also
constructed in a convenient and compact form a defensible combination for the
inertia supergame. This compactness is a principel appeal of the convolution,

_ since, in general, a supergame strategy is an extremely complex object to study.

Having provided the inertia supergame setting, we need not repeat 1t when
studying convolutions for an econcmic game and shall not do so iq what follows.
The inertia supergame remeins in the background as an inferpretation. An
economic game may possess & number of convolutions end some, of course, are
ﬁorg plausible than others. A formel theory for choosing emong them remains

to be constructed.

+One alternative nonfrivolous deviation psychology 1s as follows: A deviator

from en action n-tuple which is Jointly stable with respect to a response function
he expects others to obey would realize, after he deviates, that he has made an
error. Knowing that others will apply the response function to each of his
further action changes, he then engages in a corrective sequence of action changes--
a sequence leading to the best possible state for him==but reverts to the role of
responder (and applies the response function himself) should other players start
deviating or violating the response function., For some response functions it

may be that such a "corrective" strategy, in the subgeme of the inertia supergame,
is best for the deviator against a strategy for the others which tells them to
apply the response function 'as he mekes his changes, end their strategy is best
against his. If such a response function is also a convolution, then it provides
good responses to deviations whether the deviator is viewed es a serious but
mistaken deviator or as a deviator who recognizes his mistake and rationally
corrects it, using a strategy which is in equilibrium with the others' strategies.
Response functions having this ambitious dual property would be worth studying.




IV. OLIGOPQLISTIC EQUILIBRIA

A convolution for a "small" oligopolistic game with passive varisbles

We consider now a "small" oligopolistic economy or economic game. Firms
are the players of the game (we refer to a firm.as "he"), and they do not sell
to each other. All firms ére capable of producing the same set of products,
using the same nondecreasing-returns technology with set-up requirements. Inputs
are obtained from households and products are sold to households, but households
are not players in the game; only firms are players. Each firm chooses which
products to produce and sets & price for each of them. A firm produces exactly
vwhat he sells. The quantity of a product sold is positive only if the firm is
one of those who set the lowest price for the product; if he is, then his share

in the total sales of the prodﬁct is proportional to his market potential for

the product. A firm is endowed at the start with a markef potential for each
product. The model does not explain this magnitude further; it reflects previous
advertising expenditures, location, and so forth.

The profit which a firm earns from the sale of a product is then a function

not only of all firms' action variables (product choices and prices), whose

values are chosen by firms, but also of the total sales of the products he chooses
to produce and the prices of the inputs he needs to produce them. Total sales

and input prices are passive variables. Thé values are not chosen by the players

of the geame (the firms). Passive variables bear a complex relation to the be-
havior of households as well as firms. Firms, in our model, are ignorant of

this relationship and of households' behavior. They therefore make the simplest
possible assumption sbout passive variaebles--they assume them to remain unchanged.
How satisfactory this assumption is in economic models depends on how inaccurate
'it makes each player's picture of the economic setting in which the game is played.

For the case of total sales, it seems quite reasonable to suppose that the main



effect of a firm's price change is its effect on the pfices chosen by other
firms, that this is far more important than any effect on total sales, and
that the firms are willing to neglect change in total sales when making their
choices.

We seek a sfate of affairs for such an economy--a value for.prodﬁct choices,
chosen prices, sales, and input prices--at which the players (firms) are content

in the sense developed and defended in the preceding section: the players' action
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n-tuple is jbintly stable with respect to a convolutioﬁ. It is therefore also
the result of applying a paraperfect strategy combination in the inertia super-
game which stretches before the players when they assume sales and input prices
to remain unchanged. The introduction of pgssive varigbles will require us to
restate in a straightforward weay the notions of response function and convolution.
Notation, and the.elements of the game, now follow. There are n players
(firms), cqmprisihg the set N. Each is capable of producing the set II of
products, using the set B of inputs to do so. B and Il have an empty intersection.

Every firm requires z, > 0 units of input v to set up for production of input J;

Jv
in addition, fjv(q) units of v are required when q uwnits of j are produced.

The function f, is increasing and satisfies

Jv
ﬁ#@) %J@
T =" q

(Iv.1) fJV(O) =0; if q' > q > 0, then

(nonincreasing average input requirements). The market potential of firm %
with respect to product j is denoted O g0 with ogy > 0. Total sales (by all
firms) of product J are denoted yd. If R is the set of all firms selling J,

and if firm t belongs to R, then firm t sells yJetJ(R)' where etd(R) = atJ/ ¥ dgy*
s&R

- The symbol A; denotes the set of products for which firm i sets up, end
piJ is the price firm i sets for J. He sets a price for J if and only if he
sets up to produce J. But it will save notatlon if we say that when he declines

to set up for the product J, then he sets an infinite'price for J. Then

pJ Z min PiJ is the prevailing price of j. The symbol Py denotes the price pald
i
by all firms for an input v € B, The action of firm i (whose two components are

called i's action variables) is the set-up-and-price pair a, = (4,,p, ), where
i 1*™1in

Rig = {piJ}JEh denotes an assignment of value to every product price; &y lies in

the set A, = {(Ai,{p

igtgen | B4 ST Py 2048 J €A, pyy = w df J E AL
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The action n-tuple a = (al,...,an) and the passive variables s = (yﬁ,pB)
comprise the state x = (a,s). For a fixed value of x, firm i's payoff (profit) is

0, ir & is empty,
H,(x) =

{p,y.e.(R) - } pf. [y.e (R)]}
(] s6bymgpyt DI Vv yfisty

veB
- vég P2y otherwise,
JEﬂi
where Rj = {i € N| Je Ai;Pij = Pj} is the set of sellers (prevailing-price setters)
of product j. Payoff, then, is the profit i anticipates earning given that product

sales and input prices are fixed and that he can obtain all the inputs he needs

to meet his share of product sales.

A response function ¢ = (¢l,...,¢n) prescribes. a new value of each action
given an existing state and a deviation from it by some firm. Firm i's response
function ¢; assigns an action Ei = ¢i(x,aj) to every pair composed of an existing
state x = (a,s8) and a deviation aj by some j € N. For a fixed value of s, the
passive variasbles, ¢ is then a response function, in our original sense, for the
game defined by the payoff functions {Hi}ie\l and the sets {Ai}ia\l"
Hence the earlier definitions of "extended response function," "i is stable at x
with respect to ¢," and "convolution" are adapted in an obvious way to allow for
the addition of passive variables. In particular, "i is stable at x = (a,s)"
now means "i is steble (in the previous sense) for s fixed"; and "convolution"
is redefined using "steble" in the new sense: ¢ 18 a convolution for a fixed
value, 5, of the passive variables, if there eiists a value a of the action
variables such that x = (&,8) is Jointly stable with respect to ¢ end for any 1, J
"i is stable at x = (a,s)" implies "for any a3 in AJ, i is stable at ¢(x,aj)."

Suppose, for the economic game just defined, we have found a response

function §, and a value s of the passive varisbles, such that ¢ is a convolution

end the state (a,s) is jointly stable with respect to §. Then for the reasons
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developed in parts II and III we have found a state which we may reasongbly
expect to persist, as far as the céntentment of players is concerned.f

We now construct a résponse function ¢ for the "small" economic game.
We shall show that for any fixed value of the passive varisbles the function §
is a convolution. We have assumed that there are separate set-up'requirements
for each product a_firm produces. The function ¢ will be similarly separable
with respect to products. When a firm k deviates in his set-up-and-price action
with respect to a product J, a responding firm r may change his action with

respect to j but not with respect to any other product. We can then speak,

in connection with ¢, of a firm being stsble at a given state with respect to

the product j: changing his set—up;andpprice action with regard to J leads to
responses also involving j which do not improve his payoff, Then a firm is
stable at a given state if and only if he is stable with respect to product J
for every J in II. Effectively, each firm i divides himself into as many
independent "players" as there are potential products, and each such "player"
follows that part of $i which deals with the product in question. To check

| that ¢ has the convolution'property, it then suffices to check that (1) if a
firm is stable with respect to a product J he regains his stability with respect
to J following a deviation (by enother firm) which involves J; and (2) for every

product J there is en n-tuple of set-up-and-price actions with respect to J,

which is Jointly stable with respect to §.

The function ¢ specifies first that if at the state x = (a,s) = [a.(yw,pB)]
the sales yJ of a product J are zero, then no deviation involving J evokes any

change in any responder's action. If the sales of ] are positive then the table

fBut X may not be economically feasible, since markets may not be cleared. To
study feasibility, passive variables must be expleined--e.g., by the behavior

of households who supply inputs end choose demands (sales). We turn to feasibility
(general equilibrium) at the end of the next section.
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which follows describeé §. Each box describes a respoﬁder r's set-up-and-price
action with respect to product J following a deviation from the existing state
with respect to j by a deviating firm k # r. In some boxes the word "rank"
appears. Imagine blayers to be numbered, in a totally arbitrary wey, the number-
ing known to all. A player's number is called his rank. Knowing a pair (a,a&)
everyvplayer knows, for example, who was the lowest-ranked player among those
who chose certain values of their action variables at the state &. Such informa-
tion can then enter the forming of the response $(a,aj). In some boxes of the
table this happens, since & particular kind of response has to be assigned
erbitrarily to one or more of the responders but not to all, and it is convenient
to assign the responses by means of rank. It will prove easy to check that
neither the convolution property of the response function §, nor its Jointly
and individually stable states, are affected by a renumbering of the players.

The term "insider" means a firm who is set up to produce J and "outsider"
a firm who is not. A "nonselling insider" sets & price above the prevailing
(i.e., minimum) price for J; a "seller" sets the prevailing price for j. A
"nonsellér“ is, then, either a nonselling insider or an outside&. A sole seller
is an "accompanied" or "unaccompanied" manopolist depending on whether he is or
is not in the presence of nonselling insiders. The response function ¢ is, as
in the example of part II, partly suggested by the "kinked demand curve' model,
in which price cuts are matched but price rises are not. If the deviator k is
a seller of J who raises his price or leaves the industry (ceases to be set up), then

lthe other sellers (if there are any) make no change. But suppose k is a seller who
/:X:r;rice below the prevalling price, or an outsider or nonselling insider who

now sets the prevailing price (first setting up if he has not yet done 80).

Then the other previous sellers match k if they can do so without losg—if

they form what the table calls a "qualified set". But
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THE RESPONSE FUNCTION ¢ AS IT APPLIES TO A GIVEN PRODUCT J
WHOSE SALES ARE POSITIVE ‘

Responder's (r's) status in eiisting state x

r is a nonselling r is an
r sells J insider outsider
k is & nonseller | (1) n.a. if k is an | (2) all insiders other |(3) no change

who now sets pre-
vailing price or
lower, or a
seller or a.m.t
who undercuts
prevailing price
(but keeps price
above m.b.e.
price)

a.m.; otherwise, all
insiders other than k
(r included) match
deviator if at his
price they fo a
qualified set;! if
not, r takes over as
"policeman" if he has
lowest rank among
responders and makes
no change otherwise.

than k (r included)
match deviator if at
his price they form a
qualified set;t if
not, r takes over as
"policeman" if he has
lowest rank among
responders and makes
no change otherwise

unless police-
man is required
[see box (1)]
and r has lowest
rank, in which
case he becomes
the policeman

k is a seller
who deviates
upward or leaves
industry

' (4) r sells j at pre-

vious prevailing
price if
sellers other than k

plus some "replacers"

(previous nonsellers)
can form a qualified
set at that price; if
not, r takes over as
policemaen if he has
lowest rank; other-
wise, no change

(5) r sells J at pre=-
vailing price

if r is one of the
"replacers" who to=
gether with previous
sellers can form a
qualified set at that
price; if no such set
exists, r takes over
as policeman if he has
lowest rank; otherwise,
no change

(6) same as (5)

k is ayy firm who
deviates to the

(7) r leaves industry
(ceases to be set

(8) no change

(9) no change

m.b.€. price up for J)
or lower ‘
k is a u.m.;+ (10) n.a. (11) n.a. (12) no change

he deviates

downward but
keeps price

above m.b.e.
price

-1-

A set of selling firms is a "qualified set" at a glven prevailing price if they

are the only sellers and each makes nonnegative profit on j. "M.b.e.'price means

monopoly break-even price; "u.m." stands for "unaccompanied monopolist" and "a.m."

for "accompanied monopolist"; "n.a." means not applicable.

"No change' means

that r continues to take his previous action with respect to the product J.
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if they cannot, then, in effect, a price war ensueé. Wé model a price war by
means of a "policeman," He is the lowest ranking of the firms other than the
deviator and he is the only responder who makes a change. In his response

he sets'up to produce J if he was not set up in the existing state and he now
sets the monopoly break-even price for j, computed using the passive variables
of the existing state x = [a;(yﬁ,pB)] (at which sales yy are positive). This is

the price pg = {véB pv[fJv

as the survivor of a price war. His arbitrary selection by rank expresses the

(yJ) + 23§]}/yj‘ The policeman is to be interpreted

fact that the survivor of a price war is unpredictable. The deviator himself
cannot, in our response function, be the survivor of the price war. But that
seems to matter little, if we want to capture the essence of the price-war
threat, especially in our inertia super-game setting, wherein a deviator gains
nothing until he ceases deviating: the deviator is indifferent between being
the sole survivor of the price war and having someone else be the survivor,
since in either case his profits at the end of the war are zero.

If the deviatorkis a seller of j who raises his price above the preveailing
price or leaves the industry (ceases to be set up) then, as'already stated, |
the other sellers (if any) make no change. The "departure" of k may, however,
make room for certain previous nonsellers. The previous sellers (if any)
are joined, at the preceding price, by "replacers'--nonsellers who are added
to the group of previous sellers in the order of their market potentials (with
ties broken by rank) until the addifion of another nonseller to the selling
group would meke the group no longer a qualified set at the preceding price
(i.e., the additional firm would meke negative profit+).
+Condition (IV.1) implies that an "earlier" replacer (one with higher market

potential) makes no less profit than a "later" one (with lower market potential),
since smaller sales can never yield more profit than larger sales,.

If a qualified set
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cannot be formed in this way following k's "departure", then, again, a price

war ensues (a policeman tekes over).+

The proof that ¢ has the restabilizing property is given in the Appendix.

For convenience we shall sometimes call ¢ the matching response.

Which states x = [a;(yﬁ,pB)] are jointly stable with respect to ¢? There
are a number of them. We shall consider the following two extreme states:
(1) a "totally monopolized".state in which one and only one firm sets up to
produce every product in II and sells & positive amount of it at zero profit
(i.e., sets the moﬁopoly break-even price corresponding to (yn,pB)); (2) a "totally
oligopolized" state--any state in which every firm produces and sells a positive
amount of every product and does so at nonnegative profit. A state of the first
kind is jJointly stable with respect to ¢, since if the monopolist lowers price,
his profit becomes negative and if he raises price he loses all sales; and
since nonsellers can only Jjoin him as sellers by setting a price at or below
the monopoly breask-even price. No one can benefit, therefore, by deviating .
from the state. A state of the second kind is Jointly stable with respect to
¢ since undercutting leads only to matching or a price war, while raiéing
price or leaving the industry yields no gain. It is clear that given any
valﬁe of the passive variables (yn,pB), there is & value of the action n-tuple
which achieves a state of the first kind and elso one which achieves a state
of the second kind.++
tIn particular, k mey be a monopolist who raises his price. This "ebuse" of
his power is, so to spesk, punished--either by replacers who set his previous
price, thus depriving him of all seles, or, if this cannot be managed, by a
policeman. Or, interpreting it another wey, the monopolist's greed and its
potential fulfillment attracts other firms who previously stayed outside. His

replacement, or a price war, ensues. The cases in the last two rows of the table
need no comment.

++For the second kind of state one simply picks for each product ) some preveiling
price p3 for which profit on J for the firms with lowest market potential--i.e.,

PSYJ :é; etj(N) - véB Pv(fjv[yj gé; etJ(N)] +_sz)-—is positive. Condition (IV.1)

implies that profit on J for the remaining firms is then also positive.
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To summarize, we have

Theorem C. Let any value (§H’§B) of the passive variables be given. Then
there exists a value a* of the action n~tuple such that every firm sells every
product in Il at a nonnegative profit, using (in’is) to calculate profit. There
also existsia value a*¥* of the action n-tuple such that eveiy produét is sold
by one and only one firm,who does so at zero profit. Moreover, (1) at |
x* = [a*;(in’iB)l and also at x*% = [a**;(§n,§B)] every firm in N is stable with
respect to $, the "matching" response function defined by the table; (2) ¢ is a

convolution.

We turn next to a "large" economy or economic game, wherein each firm

visualizes & small game, possibly a game of the sort just studied.+

A large oligopolistic economy as s game of limited informetion

The "large" econémic game has again price-meking firms as players, but
now they may buy from each other, their technologies and potential products
differ, and their set-up requirements may be "nonseparable," depending in &
nonadditive way on the collection of products produced. To specify the game,
moreover, we must now state ﬁhat variables--active and passive--each player

observes, for it is a game in which players' information is limited, in the

specific sense that a player either correctly observes a given variable or

+One could study general oligopolistic equilibrie for the small economy. Assume
households to be the source of the inputs in B and the demanders of the products
in II. One would seek conditions on households' preference and endowments such
that there exist prices (pn,pB) which evoke demands (sales) ¥y end input offers

sufficient to produce these demands and which at the same time satisfy the cbndi-
tions of one of the two types of stable states. In such an equilibrium markets
are cleared and firms are content in the sense we have developed.
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he does not observe it at all, so that it plays no role in his choice.

Notation, and the elements of the game follow.
N is the set of firms (players). U, V, W are sets of final, intermediate,
and primary commodities, respectively. The set IIi- C UUV is firm i's set
of potential products and B, C VUV his set of potential inputs. Firm i's
i

action is, as before, the set-up~and-price pair a, = (Ai,piII ); again, infinity
. " S i

is taken to be i's price for a'product for which he does not set up. So a, is

-
chosen from the set Ay = {(Ai’PiIIi)l A; € ﬁi; Py 4 20if § € Ai’ pi,;‘j =w if jE&E As}e
To produce q units of product j € Hi’ firm i requires fijk units of input k E.Bi,
If firm 1 sets up to produce the collection A C I, he requires ink(A) units of
input k € Bi‘ As in the small economic game, the function fiJk ié increasing

and displays nonincreasing average input requirements.

The passive variables of the game are sales of produced (final end inter-

mediate) goods and primary-good prices, comprising the nonnegative

'{PJ} o Theisymbolﬂni,
JEUUVUW e

denotes the set of k's products, a subset of Hk, which are observable by i:

- vector t = ({yJ

if j &€ Hi, then i observes k's setting up for J as well as k's chosen price pkj'
(We may formally express i's observing of the set-up deeision by sa&ing that 1

observes whether the price Pyy is finite or infinite.) The set of products whose

sales i observes is denoted Yi

he observes is denoted Wi CW. Firm i observes total sales of his own products,
his own (primary and intermediate) input prices, and the prices other firms
set for products which i can. also produce, so that

CUUYV and the set of primary inputs whose prices

(1v.2) I =1m, B AV C g T, €¥5, B, W o why ana I, AL, € M, a1l k in n.

A state of the game is x = (a,t). The aspect of the state x observaeble by i

comprises the triple x; = ({p i}kEN’ Y 45 P i)‘ .. As before, {a, J}
Y W ‘

in

i JER



are market potentials. The payoff to firm i at the state x depends only on
the i-observed aspect x5 and is given by+

(1v.3) Hy(x) = ] {pyye;4(Ry)

N

- 1 p g lye RO - ] po£ (a).
JvidTigtd viiov'©i
| YEBi Vﬁai

; B ~ B o i i
Define H = {H.}, o, o = {“ij}iev,jeni’ J = ({Hk}iav,ka\r’{Y }iav’{wl}iew)’

F = ({fijk}iEN,jEEi,kEBi’{ink}iEN,kGBi)’ Then a‘game G in the class & of large

economic gemes is defined by a quintuple G = (N,J,a,H,F), for which (IV.2), (IV.3),

and the condition of nonincreasing average input requirements are satisfied.

The aspect. of G known to firm i comprises the septuple++

}

6, = ({ni}kav,wi,Yi,{k e 1| ni # 0}, {a }

{f,
kJ JEﬂinHk,kGN’ ijk jeﬂi,kEBi’
{fmk}keB ). Firm i knows his own technology and market potentials. He knows

i
the identity of firms whose decisions he observes. He knows the identity of

the commodities whose

prices or sales he observes. He knows the market potential of every firm with
respect to any product which i can also produce. But he does not know other
merket potentials or the technologies of other firms.

‘Firm i, then, does not know the complete game G, and he observes only X5
not x, the complete current state of the game. Moreover, taking fully into
account all of Gi and‘gll of x; may be burdensome. TFor both reasons we shall

permit firm i to construct a model. Player (firm) i's model comprises (1) a game

*The symbols e'J’ Rg have the same meaning as in the previous section and again

pj means %éﬁ piJ for J in UU V. Note

that if i's proauction (to meet saies) requires a nonprimary input which no firm
is selling, then Hi takes the value ==,

++¢ denotes the empty set.
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since it may have fewer players and variables and some of G's action variables

may become passive variables in G; (2) a current state, X, of. the game G; and

(3) the response functions, forming the collection {¢ }k i which each

player k # i in G will use to respond to a deviation. To obtain the mo&el

player i uses & modeling rule ?71_ which a.ssignsf a triple

(G,x, {¢}k€lv\1 7)1(G ,x ,i), with G in qﬁ to every triple (G Xy ,i), where, for
some .game G in ﬂ G is the. .aspect of G known to 1 a.nd. X5 is the i-observed aspect
of a state in G.

We shall impose restrlctlons on the modeling rule. A model:.ng rule ?h/ls -

an admissible modeling rule--an AMR-~if it has five properties, which we shall

state in such a way as to suggest informally that they can be viewed as general
properties of a modeling rule in abstract games, nqt only inthe present economic

game .
First, the set N includes. the modeler. i himself and includes only players
whom i observes (w:.th respect to one or more of their action variables) in

the original game G. Second, except for the possibility that some action

variables in G may become passive variables in G, the triple (E,E,F) neither

(=18

contradicts nor goes beyond the game aspect Gi' To be speciﬁé: i 42

1 =

II CII for allkEN'

B; €8, _C_Y

E:l

{'fljk}j@l kEB AT 10k} eBl - {fiok}kéﬁi’ and for every k € N with k # oy

B, k
B oW U (i dgs iy = Oy TOF all J €, NTy ¥ ) g TSV

+Formally,7n, is from the set {(Gi,xi,i)l i € N; Gi is the aspect known to 1 of
a game G m;@ ) Xy ig an i-observed aspect of & state of G} to the set '
{(G,x,{¢ }ka\l\i)l G edl; § is the set of players in U, k is a state of [N ¢

is & response function for k e N\il.

-HA formal sbstract version is given in [10,. Chapter Iv].
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Then+ every variable (passive or action) in § is also an i-observed variable
in G and no player k in G has an action variable he does not have in G. But
some intermediate products, whose prices were‘action variables in G, may in G
become primary inputs, whose prices are passive variables.

Third, if xg* is the i-observed aspect of some state in G, if xg is the
i-observed aspect of a>state in G, and if xg* and x; coincide ﬁith réspect
to those variables they have in common (namely? the variables in xg*), then
ﬁi(x;*) = Hi(xg). The modeler does not discard, in other words, any variable
which determines his true payoff. Specifically, this implies that ﬂi = Hi and
B, = B;. Fourth, the value x;, vhich i gives to the i-observed aspects of G's
current state, must coincide (as regards common variables) with his observations,
Xg,0n the current state of the true game G.

Fifth, the response functions {$k}keﬁ\{i} which i attributes to other
firms in his model must be credible to i, in the sense developed in Parts II and III.
A player k, in i's model, is himself a modeler, using, like all players, the
admissible modeling rule;bl. Player k sees only those aspects Qf & deviation
which the game G assigns to him as k-observed, and these are the arguments in
the response function $k which the modeler i attributes to him. The funection $k
yields new values of the action variables which the game G assigns to k. If

the functions {$k} are to be credible to the modeler i, then, following any

deviation by some player s € N, two conditions must hold: (a) The modeled

responding players k (k # s, k # 1) must, as modelers in thelr own right, not

surprise each other when they use the functions $k;.otherwiae the responses

+We may wish to restrict the rule still further with respect to i's modeling of
the technology of other firms. We may, for example, want to require that for
any firm k # i in N which has a potential product J in common with i, and for
any input & in Ei rwﬁk,the functions fka and fkoz are not too different, in

some precise sense, from i's own functions fiJZ’ in%‘
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generated by these functions would themselves be viewed as deviations and would
evoke further responses. (b) With respect to the response functions which k in ]
attributes to the other players in G, the function $k must restabilize k if

he was stable before the deviation.

Requireménts (a) and (b) musf be met by the response functions assigﬁed by
an AMR. Schematically, the requirements mey be portrayed as on the following
page.

The figure déals with a particular player k # i in i's modeled game G and
portrays the credibility of the response function Ek, given that all players
use the given AMR. To put‘it another way, the figure shows i that if he were
to "propose" $k to k, then k would find it an acceptable response function.

Player k's own modeled game, based on Ek, the aspects of G known to k, is E;
and it is in G that k contemplates using the proposed function $k.

Player % # k is any other player in 5; 2, using =C2and. the glven AMR, forms the
‘modeled game &. Columns of the figure correspond to(paséive and action}
variables in G.In the lower and upper parts of the top two boxes of the
figure, and in the two bottom boxes, imagine every column to contain a
value of that column's variable.There is an initial state of & and some”
deviation from it by a player who is neither k né?‘i?BﬁE;EﬁéfééiVés the
initial state as an 1nifial’state‘bf“5?1T§ vérsiﬁﬁ“ﬁf the intffai‘staté;>
" of the deviation,may (as In‘the_fignre)iﬁvQIVé'£éWer:vafiabIés than k's
version,but the two vetsionﬁ‘agréé“Witn‘respact“tc“thEivariaﬁiés~they~
have in common,player k expects every fellow player r in G to usethe
function 3 given by the AMR.On the other hand, k knows that gexpects -
that in hismodeled game & all other players s, including ® = K/Will "
use $°% And because the modeling rule is admissible, k Knows that the

response of k using the proposed 3%, and the
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Modeler i's view as to why $k is a credible response
function for k in i's modeled game G, when all players
use a given AMR

VARIABLES IN G

i W

INITIAL STATE OF G

pos] i e e fmens Gt e GG —— e G Gt Gveee S —— Gem—s G oofris [l e s

$TATE AFTER DEVIATION BUT BEFORE RESPONSE 1

Ql i

INITIAL STATE OF

TATE AFTER DEVIATION BUT
BEFORE RESPONSE

r

AN LB‘I{_IS;} ‘;[2

STATE OF G AFTER RESPONSE ' -

These two states
coineide, with
respect to the

—3 arieb
Tt ————"= >|STATE OF G AFTER RESPONSE il

"k is stable here with respect
to {7 }ra\l\k if he was so
at the initial state of G.

G is k's model of the game, based on Gk’ k attributes

{$r}ref1 Nk to the other players in G % is & player

in G G is 2's model of the game, ‘based on G

{45 } \ ¢ o the other players in G.

o) L attributes
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responses of k's fellow players r,using the functions 31‘ » cannot surprise{ ;

zs} o

the functions -, {¢°} = agree with the functions 7, 1 sell \ ¢

ek as rggards

the values they assign to common variables. Hence k knows that these responses
will evoke no further ones. In addition, k verifies that if he was stable at

the initial state of G with respect to the functions {$r} which he expects

reVN\k.-

others to use, then if he uses the proposed $k he is stable once again following

the responses of all players in E. ‘The proposed $k is therefore acceptable to
k and the modeler i cdan credibly attribute $k to k. That cancludes the state-
ment of the five admissibility conditions.

Sﬁppose now that x is a state of a game G in 37, and suppose all players
use a given AMR. Suppose that at x every player i finds that in his modeled
game G he is stable at the modeled current state X, with respect to the attri-
buted response functions {ar}re'\T\i .
state of G with respect to the given AMR.

Then we shall say that x is a sustainable

Consider the special case of a full-information game G in ¢7, where every
player observes every variable. For the modeling rule used, let each player's
model of the game and its current state be the true game itself and itsltrue
current state. Then if the modeling rule is to be admissible, all players
must attribute the same response function to a given pleyer; otherwise, his
responses could, for some states and deviations, surprise some player. More-
over, when each player uses the response funetion unanimously attributed to
him he restabilizes himself with respect to the response functions unanimously
attributed to all the others. Hence the collection of unanimously attributed
. response functions form a convolution for the game; and a state"of the game
which is sustainable with respect to the AMR is aiso stable with respect to

that convolution. So the concept of a state sustainable with respect to an

AMR is a true generalization--from the special case of full information and
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full modeling to the general case of limited information and partial modeling

--of our original concept of a state which 1s stable with respect to a convo-

lution. It is a state from which no player wants to deviate given what he
knows and observes and what he credibly attributes to other players. We
now consider two examples bf AMR's and their sustainable states.

First example: The separable-fixed-cost economy; each firm's model

contains only his competitors, who are technologically like him and use the
"matching” response. In an economic game of'the class éy, suppose (a) that
set-up requirements are separable, i.e., firm i, producing the product col-

lection A C M, requires f (a) = Z 24 5k of input k to set up, where k € B,

Jer

and zijk 2 0. Assume also (b) that there are at least two potential producers

of every product.(i.e., if J € I;, then J € Il for some s € N with s #1);

i0k

and (c) if two firms have one potential product in common then their sets

of potential products and inputs are the same (if i and J are in N, with Hi N HJ
nonempty, then Hi = Hj and Bi = BJ). Let ¢7', a subclass of‘¢y, be the class
of economic games for which (a), (b), (c¢) are true.

Now consider the following modeling rule. A player 1, using his current-
state observations x,; and his knowledge of the game aspects Gy, constructs the
response functions {gk}keﬁ‘Vi to be used by the other pleyers in N. The
pleyers k # 1 in K are i's competitors and have i's own technology; i.e.,

M =10, B8 =8,
players in N, however, retain their true market potentials (akd = Oy all k € R,

and for all J € I, v € By, §ka fidv, ?koV = f,5,+ The

all ) € ﬁk)‘ The prices of nonprimary inputs in Bi were action variables in G
but become passive varisbles in G. A state of G specifies prices of all inputs

in Bi’ and set-up decisions, prices, and sales for all products in Hi; Every
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player in G observes the entire state (so that, for all k, s in N, Lo =Y =1,
FE = B;). The payoff function for a player in N
is the same function as in (1v.3), with bars placed over Bi’ fijv’ and

inv. The game G, then, is preéisely_the "small" economic game studied earlier.
In the modeled current state X of G, set-up decisioné, pricés, and sales
are exactly those of x for’the products in Hi, and so are the prices of the
inputs in B;. Clearly, the first four conditions of an AMR are fulfilled.
Finally, the modeler i--as well as every player k in G in his role of
modeler—-attributes to every other player k in N the "matching" response
function defined in the previous section. But then the fifth condition of
an AMR is also fulfilled. The modeler i easily verifies that every player
k in G must, when k applies the rule, take G itself to be k's model of the
game and X as k's model of the game's current state. Moreover, i knows that
each attributes the matching response to every other player in G. Since
each observes what all ﬁhe others observe it follows immediately that no
player's response to a deviation can surprise any other player. As Theorem C
showed, moreover, each player who uses the matching response in G restabilizes
himself.
What states of the original game G are sustainasble with respect to the AMR
Just desc?ibed? There are at least two kinds of sustaineble state of G, cor-
responding to the two kinds of jJointly stable states of G described in Theorem C.
First, consider a "totally oligopolized" state x* of G wherein every product
is sold in positive quantity by every one of its potential producers at non-
negative profit. Then every player i models a state X* of the modeled game G
at which i and every other player sell a positive quantity of each of i's

potential products and does so at nonnegative profit, using the relevant
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sales and input-prices of x¥* to compute profit. Theorem C then tells us that

-

. i
i i3 stabi;fwith respect to the matching response function which he attributes

ii ,j!j§LEQH§K§layers in G. So the state x* of G is sustainable with respect to our
AMR.
Second, consider a "totally monopolized" state x** of G in which"evéry

product j is produced by 6nly one of its possible producers, who does so at

zero profit; it is also true at x*# that if any of the other possible producers
were To join the producer of j as seller of J at its current price (producing

and selling the share appropriate to his market potential), then he would do

so at zero or negative profit (if he were to replace the producer of j at the

replaceris m@zapolyrbreak-even price or less, he would also do so, of course,
&t zero or negative profit). The each pleyer i models austate x#% of G in
w&iaﬁ/&ach.grcduct is produced by a monopolist. If the monopolist is i himself,
tﬁéﬁ iz the zmodeled state he mekes zero profit and gains ncthing by changing

bis price. I7 the monopolist is some player other than i, then i finds that

would meke zerc or negstive profit were he to join the monopolist (& replica

of himself] =% the current price and a fortiori (since sales are constant) if

o

= were to undercut him and be matched. (The nonproducing firm i expects that’

‘ Be could replsce the moncpolist by setting a price less than or equal to i's

-

momopely Sresk-sven price, but that cannot interest i either.) So x** is also

Second example: The nonseparable~fixed-cost economy; each firm's model
contains cnlg'his competitors, whose technology is a "superior' separable
version of his and who use the matching response. Consider & g&me G in the
original class of games in o which satisfies conditions (b) and (e) of the

» preceding example but not necessarily (a): input requirements need not be

5 ‘i
"t
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geparsble. &&&%ﬁﬁ, on the other hand. that (d) every firm d1splays economies
of ézﬁarséfx w::z, This means that for every firm i, and for two product
w&aﬁmsﬁs ﬁ, 2@, with ACAC ﬁi” where A may, in particular, be the empty

- set §,

i

Lauiih)

“10k" Lioxtd) 2 f50, (B U ldh) - £, ()

7;554“&?ﬂ*" 3 in the set I \'A and for every input k € B;. We define f, Ok(Q)

ﬁ‘;ﬁifﬁ dencte the subclass of games satisfying (b), (c), and (d). The

4¥E we now consider differs from the preceding one in one respect only. Any
k # i in i's modeled game G has), though i himself may not, separable

Set-up requirements. Specifically, §kjv = fkjv for every j in ﬁk = 1,3 but
collection A C H i) = )z
=10

) - £:0 (IIi N\ 3). The modeler i, then, in view of condition (d),

kjv? where

(ni

=ssing s separ&ble technology superior to his own: k, in augmenting his

scllection of goods produced, never adds more to his seteup requlrements than

Zimself would have to add. For a firm which, like the modeled firm k, is

separable, the function f is identical to the original regquirement

kov
Therefore, the game G is in &/ " and each modeled firm k # i in G
2 game G (also in /") which is precisely like the game & of the

ng example, wherein all pleyers are separable firms., Once again, then,

deling rule himself) that the matching response function, when used by k and
‘s fellow players, surprises no one and restebilizes k.

Cur second modeling rule, then, is also aqmissible. What states of G
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does it render sustainable? First, a totally oligopolized state x*' in which
every firm sells a positive amount of each of his potential products and,
at the prices and sales of x*' cannot increase his profit by dropping any

subset of them, in particular, any one-element subset. We are then auto~

' matically assured that a firm i has no interest in changing his Erlces.

rais1ng & price simply means, in i's model abandonlng that market to other
producers; lowering the price of a product j either means selling the same
amount at the lower price or -it means take-over of the industry by a policeﬁan
(a price war). The policeman sets the monopoly break-even price pg appropriste
to the superior separable version of %, the technology which, in i's model,
the policeman possesses. But if it i; true that & (separable) firm with that
technology makes zero profit on product j when he supplies the entire demand
at p?,_then it is also true that the (possibly nonseparasble) firm i himself
would find, if he were selling any portion of the demand at p?, that his
profit could be increased by dropping j (since the set-up inputs he saves by
doing so are at least aé great as the modeled 3epar&ble policeman's set-up
requirements for j). If, therefore, firm i does not want to drop j at the
prices of x*', then i has no interest in teking over theentire J-market by
setting a price less than his break-even price. We conclude that if i does
not want to drop any subset of products at the prices of x*'-wand therefore
no single product--then he also is content with his price cholces at x*',

A secord type of state sustained by the AMR is x¥¥', at which every
product is produced and sold by only one of its potential producers. In

this state the seller i of a product J cannot increase his profit, given the

prices end sales of x*#', by dropping either J or any of the other products

e 5
Lt
n
1
f o}
Joot
n
baf

Further, i cannot increase his profit by adding some other product

>

J' to his collection of products sold. Given x**#', the AMR indicates to i
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two possible ways of adding j' to his collection: first, in i's model, he

could Join the seller of j' by matching the price set by that seller, provided

that seller (a superior separable version of i) can survive the matching; if
the seller of j' were to make negative profit whgn i ﬁatches him, then a police-
man would take overithe industry. Second, i could réplaée the seller of jJ',
taking over the jlmarket himself, by setting a price lower than the model's
monopoly break-even price (i.e., the break-even price for the superior
separable version of i). Clearly, the second method can have no interest for i.
Since, at the state x**', no firm wants either to drop products or to add products
by Jjoining their current sellers, it follows from (d) that a fifm has a fortiori
no wish to first drop a product and then to add some other products (by Joining
these products' current sellers); the additional set-up inputs required to
add the new products to the smaller collection are at least as great as the
additional set-up inputs reQuired to add the new products to the original
collection. Just as in the preceding discussion of x*', moreover, firm i has
no wish to make any price change for the products in his collection: he is
deterred by the expected responses of the policeman in his model; the police-
man's break-even price for & product is not higher than any pfice thet can
interest firm i.

We conclude that if x**' is such that each product has one seller and no
firm wants to drop products or to add new ones by Joining their sellers, then

x*¥!' is also such that no firm wants to make eny other of his possible changes.

General equilibria

If a state of an economic game G is sustainable with respect to an AMR

and is also a state in which all markets are cleared, then it is an oligopolistic

general equilibrium of G for that AMR. For a class of economic games, definition
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of the set of market-cleared states of a game requires that household demand
‘functions and endowments, which have so far played no role, be specified
for every ga.me.1~ |

The existence of oligopolistic general eQuilibria for specified AMR's
can be studied.’ In particular, several further conditions on the téchnologies
of firms in games of classes &' and &/", together with conditions on household
demand functions and endowments, imply the existencé of market-cleared states
which are.also sustainable states of the totally monopolized types 2** and x¥**',
These conditions, phen, guarantee the existence of oligopolistic general

equilibria for the two AMR's which we have illustrated.++

}

"n a game G of the class 2 ' or H", a state x = ({Ai,pn } JEN)

s{y } s{P
i ieN J Jj&uvvuw J

is a market-cleared state if

l ‘ .
) + £l (RII+ ) £.5,08,) =L,
him -ié; B, (x) Puuw JéAi 13k 5% 1év 10x'41/ = I

s

yk=hk(
ellk EU UV UW.

Here hk is a households' demand function, assigning a total household demand for

a primary or final commodity k to every ,value of %'pUUW’ with © > 0, where 1

denotes total household income (endowment income plus firms' profits); hk = 0 when
3 ) 0] - . - . '

k is an intermediate commodity (k € V). L = {Lk}keﬂuVUW‘denotes households

total commodity endowments, with L, = O for k €U U YV and Lk >0 for k €W,

HFor an existence proof see [10, Chapter V].
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In both the separable and nonseparable economies there are other convolutions,
which could provide the attributed response functions for other Admissible Modeling
Rules. The matching response functions and the AMR's studied have been illustra-
tions, though the matching response function does prescribe s behavior discussed,
but never rationalized, in the oligopoly literature,+ and perhaps crudely captures
a few aspects of real oligopolistic behavior. One attraction of the approach-
developed here is precisely that it makes the institutionalized behavior of firms
the object of study. The approach seems closer in spirit to the field of "indus-
trial organization" than other fully formalized theories of cligopoly.

We have made each firm, in our illustrations, view only his competitors as
fellow players, not his customers and éuppliers, and have made him model his com-
_betitors in a very simple way, so that they differ from each other in market potentials
only. As a result,
we have achieved the "nonsurprising" property of the attributed response functions
(the fifth property of an AMR) in a very easy manner. It remains a challenge to
construct restabilizing response functions and associated AMR's for oligopolistic
games so as to permit a richer assortment of players, both in the game itself and.
in the models which players construct.

Our concept of limited information has been a special one, which a thorough-
going Bayesian, for example, might view as degenerate and unacceptable., But it
would immensely complicate matters, and would impose far more burdensome compute-
tions on the players, if we were to introduce probebilities, so as to generalize
our notions that a player either accurately observes a varisble or else ignores
it altogether, and that he forms a unique model gf the game and its current state.

The concept of a state steble with respect to & eonvolution, and its genersl-

ization to a state sustainable with respect to an AMR, appear to be more plausible

TMoreover, the states stabilized by the matching response function inelude, as we
saw, states in which e form of "stay-out pricing" is practiced by the producing
firms. See Sylos-Labini [17] for a discussion of this concept.
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and to hold more promise for a noncooperative oligopoly theofy than the classic
Cournot-Nash equilibrium. Convolutions can also be constructed for monopolistically
competitive economies,+ and simple associated AMR's can probably be déveloped~

there as well.

At the same time, & convolution is a compact representation of a generally
very cumbersome object, namely a supergame strategy combinafién, and to check
whether a certain empirically observed or plausible behﬁvior has the convolution
property may be a fairly simple matter. The convalution, and the associated super-
game strategy combination, paint a ﬁicture of‘a'deviator which is reasonable--
he is serious and sticks with his deviation as long as others behave as he ex-
pects them to. Reasonable as it is, it is still arbitrary and so is any other
picture which might Be painfed by another equallyldefensible strategy combination.
Yet every defensible combination must face the question how a deviator is expected
to behave. It is empirical study, whether of subjects in a laboratory or firms
in en economy , which eventuélly will have to settle the usefulness of the concept

developed here.++

*See [10, Chep. 3].

*?Two suggestive extensions of the preceding framework ought to be mentioned,

First, it is possible to handle some truly dynamic supergames (economies),
with one period's actions affecting the payoffs subsequently attainable by players.
To do so, one adds to the action variables and the passive variables what is usually
called a "state variable" in dynamic discussions. Let o denote such a variable.
Then the inertia supergame is defined by a quintuple: (1) the players and their
action variables; (ii) the passive variables; (iii) a transition funetion, which
assigns a current value of ¢ to a pair composed of the previous value of ¢ and
the current value of the passive and action variables; (iv) current-payoff functions,
which assign a current payoff for each player to given current values of o and of
the passive and action variables; (v) a change-cost function defined on changes
in the action variables. If the possible values of ¢ and the other variables
form a compact set and the payoff functions are continuous, then the extension
of all our concepts, and of Theorems A and B, is straightforward, and a reasonable
persistent value for all variables (including o) can be described. If, on the
other hand, one wanted to treat action variables like investment, and a growing
(unbounded) state variable like capital stock, then a more radical reinterpretation
would be required. Long-run average payoff could no longer measure a player's
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satisfaction in the supergame, since that quantity might not be finite. As before,
summed discounted payoff is ruled out, since that might place sufficient weight
on the current period's payoff so as to invalidate . . Theorenm

B. A suitable measure might be one which coincides with equilibrium growth
rate whenever the actions chosen in all subsequent periods of the supergame are
those of equilibrium growth. The persistent state of the preceding theory would
be replaced by an equilibrium growth path, with each player content to repeat
forever his equilibrium growth action. The details remain open. :

~ Second, the static equilibrium which is the persistent state of the theory
we have developed could remain the object of study, but one could associate with
it & comparative-statics analysis. To do so, one enlarges the domain of a player's
response function to include the passive variables. Such a function, then, assigns
& new value of the player's action to existing values of all variables and to
a deviation from them by an action variable or by one or more passive variables.
The definitions of a "state stable for a player with respect to a given response
function" and of "convolution" are adapted in an obvious way. We again want the
response function to have the restabilizing property. Suppose the players (the
economy) are in an equilibrium state (a jointly stable state) of the sort we have
described and a passive variable now changes (consumers' demand shifts, for example).
Then the action variables (e.g., prices) respond and there is a new state, at which
players are again content. If one is interested in general equilibrium in economic
games , then the question is whether, starting from a market-cleared Jointly stable
state, such a readjustment also brings with it the reclearing of markets. Response
functions which are "reclearing" as well as restabilizing would need to be found.



APPENDIX: PROOF THAT & IS A CONVOLUTION

First, consider the ways in which a firm r can find himself stable with
respect to ¢ as far as his decisions with respect to a product J are concerned
--no sequence of deviations with regard to this decision can leave r with a

higher profit on J.

In.Type 1 stability of firm r with respect to product j, firm r is one
of a group of two or more who set the prevailing price. Firm r makes non-
negative profit. Raising price or abandoning the industry does not increase
his profit. (Firm r cannot, clearly, be a nonselling insider.)

In Type 2 stability of firm r with respect to J, firm r is a monopolist--

the sole seller at the prevailing price. Firm r might have become such as a
result of having previously been assigned to the "policeman" role following
some firm's deviation. Firm r is making nonnegative profit on J, and if his
price is above the breesk-even price, he cannot benefit if he lowers price
while keeping it above the bresk-even price, eveh though no response would be
evoked in the others if he did so. Firm r cannot benefit by raising price,

for this would mean entry of a policeman at the break-even price (a price war).

In Type 3 stability of r with respeet to J, firm r is an outsider who

cannot benefit from entering the empty J-industry at any price (even though
this would evoke no changes) or from entering the nonempty Juinduﬁtry at the
prevailing price or lower (the nonempty j-industry might, in particular, have
zero sales). If the industry is nonempty, the result of entering would be a
matching that yields nonpositive profit to r; or entry of & policeman at the
break-even price; or--if J has been solely sold by a monopolist charging the
break-even price or less, or if sales have been zero--negative profit for r.
It is verified easily that no other types of stability are possible and

that if r exhibits any of the above types of stability with respect to J, then
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no chain of deviations can leave r with higher profit than he now receives. -

Now consider the deviations with respect to product J which could be
observed by firm r, who exhibits Type 1 stability with respect to J. Firm r
could observe some firm k (previously‘as an insider or an outsider) setting a
price lower than the prevailing one. -The responses‘to this deviation‘establish
e new situation. There are three possibilities: (1) firm r is again one of a
group of firms making nonnegative préfit with none desiring to raise or lower
price--so that r again exhibits Type‘i stability; (2) a policeman has taken over
the industry as sole seller (or the sole seller is the deviator, who charges the
break-even price or less), so that r now exhibits Type 3 stability; (3) firm r
has hiﬁself been assigned the policeman role, so that he now exhibits Type 2
stability.

The deviator k could, instead, be a seller who raises his price or who
leaves the iﬁdustry (ceases to be set up); The responses will either leave r
--together, perhaps, with some new sellers who replace k--as one of a group of
firms with nonnegative profit and no wish to raise or lower price; or a police-
man (possibly r himself) will take over. In any case r's stability is restored.
The deviator could be a previous nonselling insider who leaves the industry or
raises his price. Then no responder changes his actions and r remains Type-l
stable.

Next ,suppose r exhibits Type 2 stability with respect to J. Suppose a
deviator (a previous outsider or nonselling insider) matches or undercuts r's
price. Then the result is either two firms with nonnegative profit and no wish
to lower price (so that r is Type-l stable) or a single firm set up for produc-
tion and selling, namely either a policeman (possibly r himself) or else the
deviator, selling at the break-even price or less (so that r is Type-2 or
Type-3 stable). If the deviator sets a price above r's, then there is no change

by r and r remains Type-2 stable.
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Finally, let r exhibit Type 3 stability with respect to j. A deviator may
be an insider, or a previous outsider (like r) who now enters the industry,
setting in either case a price at or below the prevailing one. The result,
following the responses, is either that all the previously selling firms con-
tinue to sell, but at the deviator's price or less, whilg r continues to have no
wish to enter the industry (for if he could achieve positive érofit by entering
now he could also have done so before the deviation); or theré is a sole selling
insider who is eithef a policeman (possibly r himself) or else is the deviator
selling at the break-even price or lower; or there is a sole selling insider who
was also previously sole seller (with r having no desire to match or undercut
him) and continues to be such but at a lower price (so that r's attitude
persists). Hence r exhibits T&pe 3 stability or (if he is, in fact, the police~
man) Type 2 stability.

The deviator may be a previous seller who raises price (above the break-
even price) or leaves the industry. As a result r may be one of the replacers
of k, making nonnegative profit with no desire to raise or lower price (Type 1
stability); or he may be excluded from the set of replacers while the industry
retains at least one seller, in which case he knows+ that entering and then
matching or undercutting could not benefit him (Type 3 stability), as was true
before the deviation; or he may observe, once again, a sole seller who may be
a policeman, possibly himself (Type 2 or Type 3 stability).

The deviator may be a previous nonselling insider again ineffectually
setting a new price still above the prevailing one, or he may be an insider
who raises price but to a level less than or equal to the break-even price.

No change is evoked and r retains his Type 3 stability. The deviator may be

1The condition of nonincreasing average input requirements is used here.
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an entrant into an empty industry. Since r had no wish to enter the empty
industry himself (an action which would have evoked no chaﬁge from any responder)
he cannot be interested in enteripg the industry now that it contains one firm,
and so he retains his Type 3 stability.

We have shown, then, that if a firm r is stable at a state x with respect
to ¢ (which means he exhibits one of the three types of stability with respect
to each product), then he continues to be stable following a deviation by some
other firm. Existence of a jointly stable state was shown in the text. It

follows that ¢ is a convolution.
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"Convolutions, Inertia Supergames, and Oligopolistic Equilibrium'

p.12,

p. 30,

Errata

for

by T. Marschak and R. Selten

line 13, '~ replace "i" by "the state" and re-

place "his" by "i's"

line 12, after "if" insert "for every i in N"
footnote, line 5 from bottom, replace "if j" by

"if some j # i"
line 9, "input", at end of line, should be

"product"
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