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EXISTENCE OF A UTILITY ON A TOPOLOGICAL SEMIGROUP

HANS W. GOTTINGER

" UNIVERSITY OF BIELEFELD

1 Introduction

This paper establishes conditions under which a 'measurable!
(additive) utility exists where the domain of definition of a
utility satisfies mixed algebraic-topological properties inducing
a topological semigroup. The various considerations 1eading to
the proof of existence are important in economic theory for at

least twe reasons:

(1) They lead to a comprehensive treatment of additive
utility theory comprising topological and algebraic

elements,

(2) They establish a link between additive and expected
utility theory to the extent that the same mathematical
considerations leading to the derivétion of an additive
representation are also valid for proving the expected
utility theorem.
As regards the first point we would like to recall some well-known
facts. The existence of order-preserving (non-additive) utility
functions has been proved in general by constructing an igomorphism
between an order (preference) system (X,Z<) and a numerical relational

system (Re,< ). To obtain necessary and sufficient conditions for



embeddability an order topology - in analogy to the natural
topology of the real number system ; has to be established.
Por an additive representation we need somé specific algebraic
assumptions, in addition té those of the order topology. Both
together we find in an ordered topological semigroup.
A construction of additivé functions on archimedean ordered
semigroups has been‘accomplished earlier by Krantz et.al. [~2_7,
however, although there is sone natural connection with their
results, our construction is'somewhat different and the proof
techniques are entirely novel. Also results obtained in the book
by L. Fuchs / 3/ are relevant. As indicated in (2), we wish to
arrive at a representation of expected utility as a natural conse=-
quence of the embedding process. As pointed out in 1—2:7 p. 394
axiomatizations of an oxrder (preference) system leading directly
to a representation of utility (combining propertiés of additive
and expected utility) 'are not entirely gsatisfactory', and it is
suggested to look for axioms 'that are formulated in terms of
primitives only'.
To my knowleage, the idea of using additive utility theoxry for
deriving expected utility is due to Arrow [~ 17/, his proof is
only given for the discrete case and lacks the elegance of measure

theory.



2. Preliminaries

Let X be the set of sure prospects. A binary (preference) relation <

on X is said %o be a complete order (or simple order) if it is

transitive, antisymmetric and connectedéi%ubsets of X could be
identified as intervals, denoted by (a,b), [a,b), (a,b] and [a,b]
with obvious properties. An interval is open if it is either of

the form (a,b), I(a) = {x : x < a z, or I(x) = ia t a<x }.
"Let X and Y be two sets endowed with a simple order. Then a mapping

£ 3 X=>Y is called monotone (or order-preserving) if f(x)ef(y)&=xK y.
Let the intervals [é,b) generate a topology T}, and the open intervals
generate a topology 5", which ig referred to as the interval- ox
order topology. This topology is a Hausdorff topology. In general,
3} is finer than 3 . The collection of I(x) generates a & -algebra,

the elements of which may be called Borel sets. Every finite measure

M defingd on this collection is a Borel measure, it is cailad normed
if M(X) =1. Let J = [0,1] be the real unit interval. The following
reéult is well-knowns

Let X bela gimply < - ordered set. The mapping H X—>9d with re-

presentation H(x) = M(I(x)) has the following propertiess

(i) H is weakly monotone, i.e. x < y =>H(x) * H(y)

(ii) | If x € X has a countable neighborhood basis w.r.t. 5;
then H in X is continuous w.r.t. 3}-

(iii) If there exists a countable sequence in X, (unbounded above

or below) then 1im H(x) = 1 or O whenever x increases or

decreases indefinitely.

(1) directly follows from the monotony property of M . Let a be

a point with a countable neighborhood basis given 3°,. Then there

1.
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exists a weakly monotone sequence of points X converging to a,
given 3;. Then we have M(I(a)) = lim /A(I(xn)) (see [‘4;7, §9 ),
and therefore (ii) holds. Likewise one proves (iii).
If H: X=>J is.a mapping from a simply ordered set X into J
satisfying the conditions (i), (ii), (iii), then a normed Borel
measure M is defined and represente&>by /M(I(x)) = H(xaﬂ)anﬁA/u(X) % T«
4 proof of this statement can be obtained from standard resulis in
measure theory (/ 47, ch. IT). Let then M be a set of normed Borel
measures on g gimply ordered set X. For every/utfﬂ let E(x,/u ) =

M(I(x)). Purthermore let M<V , M, ve M if and only if (briefly iff)
H(xnm)-ﬁ.H(x,vf) for all x € X and strict inequality exists at least
~on one open set. Then, it is said, 2 sequence /Un converges to
’l,ueJV(, M = 1im/‘4n, if H(‘,/un) converges pointwise to L H(e,M).
Construct a monotone and contingous mapping f ¢+ X — J and suppose
Borel measures/ﬂ exist in M, If one sets EfQu) = £(x)d p(x) then

M “*>lEfQu) is s monotone mapping and Ef(lim/ﬁn) = lim Ef(/un) holds
for every convergent seguence /“n'inuﬁf. This conclusion uses
Lebesgue's theorem of bounded convergence (seé 4-.¢7,vp. 110).
From a measurement-theoretic point of view most of utility theory

is concerned with the problem of embedding isomorphically a *i~simply
ordered set X , under preservation of its structure, into fhe set of real
numbers. Necessary and sufficient conditions are known for achieving
this, most of these conditions reguire =z topological.structure on X
in order to prove the existence of a continuous, order-preserving
‘utility function.

In order to find a representation by édditive utilities usually a
qualitative independence assumption is used for the order systenm

(X,< ). To deal effectively with this kind of assumption we will argue

here that a natural way consists of enriching the structure of X.

- 5 -



This enrichment is achieved by defining an algebraic concatenation

operation such that o(x,y) = xy or simply (x,y)—> xv. Here

;ﬂ: X xX —»X is a continuous function such thgt (i) X is a
topological space (Hausdorff) and (ii) ¢ is associative. This turns
¥ into a topological semigroup. Then we could pose the embedding
problem for the enriched structure, in particular we want to know
under which necessary and sufficient conditions there exists a monotone
homeomorphisn (topological isomorphism) f. ¢ X—>Re such that

£(xy) = £(x) + £(y). This form would naturally represent 'additive
utility', where the ordered space on which utility is defined is &
topological space,the operation of the semigroup being continuous in
the topology .of this space.

The concept of 'homeomorphism' is used in accordance with N. Bourbaki

[ 5_7, i.e. a topological isomorphism f is a monotone, homeomorphic

mapping from a topological space onto another topological space.
Also, in what follows otherx concepts such as 'limit’, 'isolated point',

'quotient space', 't compactness' etc. are used in the Bourbakian

terminology.

3. Construction of the Embedding

Tn this section let us first generally assume that every nonenpty
bounded subset of X has an upper limit. X is then locally compact
WeT+t. the order topology. The concatenation operation in X should

gsatisfy the following requirements:

Definition 1: (i) (x,y) —> xy is continuous
(ii) x < y =>vx < vy for all ve X
(iii) every element x €X generates a semigroup.




_

(ii1) assufes that concatenation is associative, in particular that
it is possible to compute copies according to assbciativity. '
We assume that x, xx = xz, XeX eX = xa, «+s are perfect copies
of a standard element x, in the sense that if x°*x = x2 and fis a
function then f(a.2a) = 2 f(a). The sequence x, xz, xa, .ss could be

considered as a gtandard seguence according to [/ 2_/.

Lemma 1: Def. 1, (i) - (iii) implies the archimedean property, i.e.

g 2 - < ‘ 3
if =x<x then x<x < XBA... and this sequence is unbounded from

above. Likewise, if x°< x then x;-x2>‘x3>z.. is unbounded from

below.

Proof. From x-<x2, due to (ii), we get by complete induction

5

L2 ; .
X <X X ese « Suppose this sequence is bounded from above. Then,

by our construction, lim xnﬁ=v exists. Because of (i), inconjunction
with (iii), we have vx- = lim x**2 = 1im x**' = vx. This contradicts

(ii), by assumption x<x°. Q.E.D,

Lemma 2: Suppose (ii) of Def. 1 and (iv) are satisfied:

(iv) there is a neutral element e such that ve = v for all v.

Then the sets X+ = {v : es’:’év} and X_ = {v ¢ v e} form subsemigroups

of X.

Proofs Suppose e=x<x,y, then e x = xe< xy. QeE.D.

The next lemma is extremely useful and forms a partial result for our

main theorems.

Lemma 3: Let conditions (i) - (iv) be satisfied. Let e be the

smallest element, not being isolated. Then there exists an isomorphism

f from the semigroup Re+ of all non-negative real numbers onto X such

that f£(0) = e.



Proof.

1. Let U be a compact, non-trivial interval [:e,a] in X. For every

xe (eya j there exists a smallest natural number n(x) such that

a < xn(x)-r-‘l’ by Lemma 1. For some real number r let r> be that
particular integer for which 0 = r - Lrp4L1. In general, there

always exist integers a(x), 0 % d(x) £ 1, so that<(r+s}n(x)> =
{rn(x))+ sn(x)) + d(x) for real s,r and every x€ U\{e}} :

Define xd(x) = e if d(x) = 0. Clearly, for every xeU there is defined
‘a mapping from 'J into U whenever we set fx(r) = ¢ for x = & and .
fx(r) = x<rn(x)>. U\{e} is a < -directed set, hence the f_form a
net on the compéct product space UJ'. This net must contain a
converging subnet {fx(i} o i(’.l‘ﬁi associated to a directed index setif.
Let the limit be denoted by g. Then g(0) = e and g(1) = a, since

x(i) ~>e iﬁplying 1im x(i)n(x(i)) = 1lim x(:’.)n(x(i))‘H , the limit
equals a,by definition of n(x). For all 0 € r,s,r+s £ 1 we have
f.x(r+s) ~ ’i‘x(r) fx(s)d(x), therefore by forming limits in the subnet

we get g(r+s) ~ g(x)e(s).

2, It remains to be shown that g is continuous at 0. Let C be the
intersection of all compact sets g((0,2)) for all 0<&r<1. By
continuity of concatenation one c_omputes CC& . Since evefy element

of U, distinect from e, does have a  CODY . not in U, C will only
contain the element e. Therefore, the assertion is proved. By the
functional property of g, & isAcontinuous from above in every

point of [0,1).

Now let 0« r<1, the net of g(xr')& U, r'< r contains comferging subnets
since U is compact. Pick up a perticular one, say {g(r'(i))} ,

and let it have the limit v. Since r-r'{(i) converges 1o zero,

ve get g(r) = g(z'(1))e(r-r'(1)) = 1im g(x'¢1)Lin &(z-r'(1)) = ve= v.



Therefore, all converging subnets have the same limit g(r), this
showsvcontinuity of g at r from below.

Let q be a ratiohal number in terms of p/zn,'p,n non-negative integers.
If q = p/2" = p'/2" with n'<n then g(1/2%)° = 8(1/2n)p,2n-n'

= g(1/2"")P",

Now let us define h(q) = g(1/2™)".

For doing this we have exploited condition (iii), and we can

easily see that for two non-negative dyadic rational numbers q and q'
the relation h(q+q') = h(q)h(q') holds. Obviously, h and g coincidé

on the set of dyadic rational numbers between 0O and 1.

For an arbitrary non-negative T ve define £f(r) = (Y )elz-{z>).
If n is a natmral number then by approximation from above

lim £(r) =h(n)lim g(r-n)= h(n)e=h(n) and by approximation from below
lim £(r) = h(n-1)1lin g(r-n-1) = h(n-1)g(1) = h(a-1)n(1) = (n). |

Hence f is an everywhere continuous function on Re+ which coincides
with g on thé dense subsemigroup of all non-negative dyadic rational
numbers. Therefore f is a continuous (algebraic) homomorphism. By

the gene;al properties of this homomorphism and Lemma 1 it follows
that £ is unique. Let f(Re+) be a connected subset of»X, hence an
interval, since this subset is not bounded from above f(Ee+) = X holds,.
By monotony f can be extended continuously on the one-point compacti—.
fications of Re+ and X,

Therefore f is a homeomorphism. Q+E.D,

Lemma 4: Let (i) - (iv) be satisfied. Let e be the smallest element

being isolated. Moreover, let the following condition be satisfiedf

(v) if x< y there exists a 4 such that xd~y.

Then there exists a monotone mapping £ from the set Z+ of all non-

negative integers onto X, so that f(xy) = £(x)+f(y) for all x,y € Z,.

If ex = x is asgumed then f is ap isomorphisa.
..9...
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Proof. Denote the lower bound of X \{e;} by a, by assumption e < a.
Define £(0) = e, £(n) = a" forn = 1,2,... Now let x & X. By Lemma 1

n-1

R . ; n
there is a smallest natural number n so that a& £ x4 a . Then

- ,
there exists a v such that a 1vﬂn’x, if there were a< v then
. Tl N
at=al 1a<:a 1V , contradicting the assumption.
Hence e£ v< a. Since a is the lower bound of X\ ge} we must have

n+1 :
v~ a and x~va R Q.E.D,

Now let us sharpen condition (iii).

Definition 2.
]
(iii)  Every element x belongs to a semigroup (X,*)., If xy~e then

also x and y belong to (X,.).

1
Lemma 5. Let conditions (i), (ii), (iii) ,, (iv),(v) be satisfied,

guppose e is ndt the smallest element of X and X+ is discrete.

Then X is isomorphic to the additive group of all integers.

Proof. Suppose xy~e, then (yx)" nry(xy)n"1x ~ yx. Hence, because

of Lemma 1 and (ii) it follows that yx ~ e. Therefore x generates

ra group (X,*). By Lemma 4 there exists an isomorphism from Z+ onto

X _» hence X_ cannot be connected, since otherwise £(1) would be in the
non-trivial, connected space f£{1)X_, but £(1) is isolated. Because of
Lemma 3% the upper bound a of the set X~\{e} is smaller than e. Then
there exists an a' so that aa' a e because of (iv). Also, because of
(ii), e<a' since a'Z: e would imply e~aa'® aer a. We have

a ™ ae < af(1), consequently e < af(1) since there iz no element
between a and e, i.e. aa'<af(1), therefore a' < f£(1). Since f£(1)

is the smallest element next to e, a' = £(1) holds. How define

2(0) = e and g(;n) =a" forn=1,2,... Let x<e. Then there exists

a largest natural number n so that g(-n-1)< x<g(-n). According to

(iv) there exists a v such that x = g(-n-1)v, and because

- 10 -
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of e< v we must even have v = f(m) for some m% 1. Since according

to (ill) g(~ 1) and £(1) belong to a group we have
g(=n-14+m), if m<n + 1

g(-n-1)2(n) -éf

(m-n-1), otherwise.

In any case g(-n-1)f(m)»g(-n). Hence for m = 1, x = g(-n) holds.
The mapping h with h(n)~f(n), n = 0,1,2,... and h(n) ~ g{a),

n=-1,-2y~.e. 1is the appropriate isomorphism. G.E.D.

11
Lemma 6. Let conditions (i), (ii), (iii) , (iv) be satisfied,

and let e be not the smallest element that is not isclated in X.

Then X is isomorphic to the additive group of all real numbers.

Proof. If e is not isolated from above then there exists an
isomorphism f from Re+ onto K+; by Lemma 3; if e isﬁ not isolated

from below then there exists an isomorphism g from {the additive
semigroup of all non-positive real numbers) Re_ onto X_. Because

of (ii) the sets éf(Re+) and ag(Re_) are non-trivial intervals

without gaps (since they are connected), and they contain a as a

lower or upper bound, respectively.

NWow suppose e is iéolated from below but not from above. Then the

set X\\{e}Ihas‘a largest element a and [a,e] is a gap (contradicting
the fact tha a (and bﬁ non—triviality of "af(Re+)) also e must be
contained in af(Be+).\An analog. ous conclusion holds if e is isolated
from above but not from below. Therefore e is not isolated from

both sides and both f and g exiét. Now let s <40 be such that 0 <g(s)f(1),
this is possible by the assumption of continuity (i). So e is contained
in the interval g(s)f({0,1]). Hence there exists s' so that g(s)f(s;)ze.

By appropriate norming of f and g it is always possible to obtain

g(-1)£(1) =

- 11 -
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Now let 0¢t <1. Then there exists %' such that g(t')f£(t) = e,
since we have g(-1)f(t)< e on the one hand, and e= g(0)£(t) = ef(t)~£(t).
By (iii)' everly element £(1/2") generates a cyclical subgroup in X.
For the element g(t') with g(%')£(1/2") = e we have e = (g(t')f(1/2n))2n=
g(t')znf(1). Therefore 2°t! = =1 or t' = -1/2". The union of all
subgroups generated by £(1/2") is a chain of groups and therefore
again a group. Furthermore, this group is dense in X since it is dense
in both X+ and X_. The mapping h defined by

(¢(z) if O£

hizr) =
Zg(r) if r<0

is the appropriate isomorphism. Qe.B.D.

4o Main Resulits

Let us summarize the results obkained so far..
Theorem 1. Let X be a simply ordered set in which every non-empty
set has an upper bound. Let a binary operation ('concatenation') be

defined on X satisfying the following natural conditions:

(1) (x,y) —xy is continuous

(11) x<y implies vx<vy for all v.

(iii) Every x€X belongs to a semigroup

(iv) There exists a neutral element e such that

venv for all v.

(1) iIf e is minimal and not isolated then X is isomorphic to the

additive semigroup of all non-negative real numbers.

(2) If e is not minimal and not isolated and suppose the following

additional condition is satisfied:

(v) If xy~e then x and y belong to a group.

Then X is isomorphic to the additive group of all real numberg.
- 12 -
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(3) Finally, if e is isolated and suppose the following condition,

in addition to (i) - (iv), is satisfied:

(vi) If x-y then there exists a d such that xd~y.

If e is minimal and isolated then it follows from (i) - (iv) and (vi)

that: X \{e}is isomorphic to the semigroup of all positive
em—m— J

integers; if e is not minimal but isolated then it follows from

(i) - (vi) that Xﬁ\{e%is igsomorphic to the additive group of all

integers.

Remark

It is natural +to raise the question to which extent it is really
necessary to postulate the existence of a neutral element for the
derivation of the previous results. In order to give some more specific
statements we.havé to strengthen. the weak associativity postulate as
expressed in (iii) by a much stronger réquirement. This requirement
aléo follows from natural considerations in L. Fuchs [:3] Pe227,

where it is proved that an archimedean, naturally ardered semigroup

is commutative.

Definition 3.

1t
(ii1) (X,*) is a commutative semigroup. The embedding property
of a regular commutative semigroup into a group is reflected by the

following

Lemma 7. Let ¥ be a locally compact simply ordered semigroup satisfying

(ii). Then there exists a simply ordered locally compact topological

¥
abelian grouv A containing a subsemigroup X of X isomorphic to X

o
guch that A = X X 1. If every bounded non-empty subset of X has

an upper limit then also 4 possesses this property.

= 15 =
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Proof. 1. Denote by H the direct product Xx X of X. A relatioﬁ Q

on H between (x,x') and (y,v') exists if and only if xy'rvx'y. One

can easily verify, on the basis of (ii) and (1ii)" that q is an
equivalence relation, and eveﬁ a congruence relation, e.g.(x,x')a(y,y')
implies (x,x')(z,2z'")a(y,y')(2,2'). By defining Q({x,x')a(y,v')) =
Qxy,x'y')ond = H]Q (the auotient space) a semigroup multiplication
is defined. ‘ ,

2. Denote (x,x) by 1 and set {é(x,x')] e o(x'x) so that vv | = 1
for all ve€ A, hence A is an abelian group. Let a and b be distinct
elements of X, then (ax,2)Q(bx,b) holds for all x € X. Therefore,

the mapping f : x*?Q(ax,a) is an algebraic homomorphism from X onto

a subsemigroup X' of A. Therelation f(x) mf(y) is equivalent %o
axan azy, from vhich x A~ y can be derived, by (ii) and (iii)", i.e.

h'a

. ]
X is algebraically isomorphic to X:. Let Q(x,x') be an arbitrary

' - L
element of A then Q(x,x') = Q(axga)lé(ax',a)] 1, hence A = X X 1.

3. Let us now turn to the order and topological properties of A.

One gets a simple order on A by establishing (x,x')<(y,y') on H iff
xy'l.x'y and this being equivalent to Q(x,x')<q(y,y') on A.

It can be shown that‘the order topology on A coincides with the
quotient topology on A/Q = A' . Let UlIA, be open w.r.t. thé guotient
topology, i.e. if Q'1(U) is open in A, being the union of open inter-
vals in A. Then Q;1(U) is open in H = X XX, i.e. it is the union of
sets X1 XKZ such that X,' ={x : a4x :’b? , and X‘Z = {y : ciyffi.d‘j? .
Therefore we have xc< by and ay<xd, i.e. @(b,c) £0(x,y) <0(a,d).
Consequently, U is the union of open intervals, therefore, open w.r.t.
the order-topology.

Conversely, let U be open w.r.t. the order-topology. Without loss of

generality let U be the open interval between Q(u,u') and q(v,v').

14
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Then (x,x') is in Q-1(U) iff ux'<Zutx and xv'< x'v. The mapping
gz (x,x")=>(xv',x'v) of X % X into itself is continuous. Since a set
D= g(z,z')_: z 42'_} is open in X XX, also the set g-1(D) in
g(XxX) = &(x,x') s xv'< x'v % is open. Likewise for the set
z(x,x') s ux'4u'x 3. Prom this we conclude that Q'T(U) is open, 80

U is open in the quotient topology.

4., Furthermore, it follows from previous derivations that the
‘onto'mepping G : X AX-7A is open since the open sets X1>{K2 will be
mapped onto open intervals in A. If the Xi are compact intervals

then the map is a compact interval. Therefore, A is locally compact.

5. Now we prove that the mapping {u,v)’?(u,v—1) from AXA into itself
is continuous. Let m be the continuous mapping froml:(x,x'),(y,y')]
onto (xy',x'y). The mapping (u,v)m3>uv—1 from A X4 into A is denoted
by m. |

Then the following diagram is commutative:

(Q,4)
H A B A X A
n { n

set (9,8)(u,v) = (a(u),2(v)). By continuity of m and Q and (Q,Q)
being open it follows that n is continuous.

6. Summarizing, we have proved that A is a simply ordered, locally

compact abelian topological group. The mapping £ ¢ Xw&Q(ax,a) from

X into A is monotondly continuous, by its uniqueness property it is

a monotone homeomorphism since X is locally conmpact. Hence X. is
isomorphic to X in every possible sense: order-theoretic, algebraic
and topologecal. Beeause of A = X'X'-1 every bounded, nonwempty set in

t
A has an upper limit whenever this is true in X .

- 15 =
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Lemma 8. Given the grbun A of Lemma 7. Let K be the set of all

x€ 4 for which the set of idempotents xn is bounded above by sone

" a(x)€ A. Then we have either X = {1} or K is an open subgroup of A. The

1 .
first cagse holds iff A is archimedean and X N YE£{1% The factor group

AfK is also archimedean.

Proof. If the set of . COpies . of x and y is bounded from
above by a(x) and a(y) , respectively, then the set of ‘copiles

! is bounded from above by a(x)a(y)-1, hence X is a subgroup.

of xy‘
First, let 1<v€X. If there is no element between 1 and v then A
is discrete and trivially X is open. If 14Au4v then the set if
idempotents of u is bounded by a(v). Hence K is an interval and
o e e e : n -

therefore open. Now let Q(xa,a)€ KX and let 1+ Q(x a,a) = ¢(zr,s)
forn = 1,2,... i.e. x as “ar and x84 1. Then there exists

g n .
v=1im x's and we have xv=v. But (xv,v)Q(xa,a), hence Q(xa,a) = 1.
By defintion of X it follows that no non-trivial cyclical group is

bounded in A/K.

Lemma 9. Suppose X contains an unbounded, connected interval. Then A

is connected, X = i1§ , and A is isomorphic to the additive group

of all real numbers, Re.

Proof. LetI be an unbounded, connected interval in X'. Without loss
of generality let - be unbounded from above and contained in A+. For
every i€l ana gEA+ we have i £ ig with 1igc L In particulaxr,
IJe I Because of connectedness, every bounded subset in I has an
upper limit. Because of condition (ii) tﬁe set of all positive

‘COPLES  of elements from L, being contained inI , is bounded.

"

Let i€ 1. Then {i—n t N = 1,200 z is unbounded from below. The

=0T . . .
set Ui ™ is unbounded from below and from above, and as a union

T~ 16 -
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of an increasing sequence of connected sets it is connected.
Therefore A is connected. Then A cannot contain a proper open

subgroup and X is equal to.{1} . Hence A is archimedean and connected

and therefore is isomorphic to Re.
Therefore we have proved the following theorem.

Theorem 2. Let X be a simply ordered set being locally compact

WeTsh. the order topology. An evervwhere defined concatenation on

X, (x,y)>xy satisfies the following conditions:

(1) (x,y)~> xy 4is continuous,

(i1) x<y implies vx<vy for all v,

(11)" x(yz)~ (xy)z and xy~yx for all x,y,z.

If X contains an unbounded connected subset then X is isomorphic
to a closed sﬁbsemigroup of the additive group of all real numbers.
If evefy non-empty bounded subset of X has an upper limit then

X is ismorphic to a closed subsemigroup of the additive group of
all real numbers. | |

Let ¥ be the semigroup of all natural numbers under the operation
of addition. Then the lexiographically ordered product N XRe forms
a locally compact, abelian and ordered semigroup which is not

isomorphic to any closed subsemigroup of Re. Incidentally, these

closed subsemigroups of Re may be extremely compliceted.
7

Definition 4. Let 2 'concatenation'! be defined on X satiéfying
condition (i). Moreover, letpm and v be Borel measures on X with
_respect to which all oven sets of X are measurable. Clearly, this
is the case if X has a countable basis of open sets. Hence in the
product space X *X the set of all (u,v) with uv< x is measurable

wer.t. the product measuremry, Define the mapping E, as in Sec. 2, with .

- 17
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the indicated properties. Designate the Borel measure associated

to H with representation

H(x) = Axaf {(u,v) M A< x} ) by MY, the convnlution of # and A,

Theorem 3., Let £ ¢+ X->Re be an isomorphism of X with the additive

group of real numbers and set Ho(f(x),/u) :/“(A(x)) for every Borel

measure on X. Then Ho(r,/wY) = Ho(r-s,/“)dﬁo(s,«r).

The set of all Borel measures on X, O/ﬁ becomes a commutative
semigrdup = by convolution. The relation/“<v on M implies 2/‘« L Lv*

and even (l/“' £ lfv* if H(-, 4 ) is monotone and continuous. Then we have

Ef(/u) ¥ Ef(v) = Ef(/av).

Remark. By assump't;ion s see Sec., 2, for every Borel measure/‘ injlff.f
is a random variable in the usual sense and Ef(/u) is its expected
value. The corresponding distribution function = w)HO(r,/f“) is
defined by Ho(r,/u) - /’1«1 {x s Px)« r} and Efgﬂ ) equals the

Stigltjes_jptegral Srdl’«’o(r,/u) and H(x,Mm ) :HO(f(x),/A ).

Because of Ho(r,i,h"f) = v %(x,y) : £(x) + £(y)<« r? ) the distribution
function HO("“MV) of the sum of both is determined. Since i< v
implies E-Io(r,/a ) < Ho(r,*v*) for all r, we conclude

VHy(z-5, 4 JaHy(s, X ) £ \Ho(r-s,v)dﬂo(s,k ) and if H(+, 3)-is con-

tinuous and monotone, strict inequality must hold.

Conclusions

We have proved that there exists an order system (X, % ) which is

embedded in the numerical systen ('Re_L, <) by a an isomorphism £, a

utility, that satisfies the functional equation f(xy) = £(x) + £(y).

- 18 -



= 18 =

Bﬁt we could also identify f as a random variable so that f(xy)
designates a gamble or a von N.M. lottery. Given some Borel

measure M the expected value is represented by F..f(/M ), and
correspondingly we can prove that for ény WO measureS/h,v-é,ﬂlz Efgﬂﬁﬂ
= Eo(m) + Ef('sr). Therefore, let f{xy) be represented by Ef(/hf\r),

we easily see that the additive utility representation implies the

expected utility representation.



Abstracts

EXISTENCE OF A UTILITY ON A TOPOLOGICAL SEMIGROUP

This paper presents a comprehensive mathematical framework
in which a unified +trestment of additive and expected
utility can be given. For achieving this,elaborate
structural assumptions, characterizing a simply ordered,
toﬁological semigroup, have to be established in order

to congtruct an isomorphism with the additive group of

real nunmbers.

Thig construction establishes a link between additive and
expected utility theory to the extent fhat the same mathematicél
considerations leading to the derivation of an additive re-
presentation are also valid for proving the expected utility

theorem.
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Footnote .

1) For two elements x,yEX we define x~y if not x<y and not y<=.
loreover, it isg assumed throughout that equality implies
the relation '~ ',



