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Preface

A game without side payments essentially is given by a set valued mapping
which assignes a system of utility vectors to each coaliton of players. Ma-
ny authors have defined the concept of a value for non side payment games;
let us mentione Harsanyi [1,2]1, Miyasawa [3], Nash [4]., Owen [5], Selten

[8], Shapley [9, 10]1. While Nash's concept of a value is restricted to a
class of "Unanimous Games",most other authors define their value concept

for oames where proper subcoalitions may achieve something.

Freguently it is necessary to apply a fixed point theorem in order to

ensure the existence of a value (cf. [2], (10]) Such a theorem in ge-

neral yields serveral solutions implying that the value is a correspondence
and not a function. By Nash's original paper we know that a value should
have invariance properties under the application of a permutation of the
players as well as of an affine transformation of utility. Now, if the

value is a correspondence, it will usually be invariant as such, however,
does this mean, that an invariant selection of this correspondence does
exist?

Even 1f the answer is affirmative (as it happens for instance with Shapley's
value, cf. [10], [7] ), it may turn out that some of the players trivially
rescale their utility to be identically O without any obvious reason. More-
over, the application of a fixed point theorem is sometimes rather hard to
explain if a bargaining procedure is thought of to be underlying the defi-
nition of the value.

In this paper, we shall attempt to define a value which is somewhat more
constructive (no fixed point theorem being used), which is a function, and
which in addtion enjoys all necessary invariance properties. Intuitivly,
some thoughts will rest upon ideas of Harsanyi in the sense that coalitions
sucessively are looking to the power of theirproper subcoalitions, adding
up all these guantities, and,using the result as a starting point compute



their own power. Mowever, there will be no global rate of transfer c¢f
utility - instead each coalition obtains its own transfer rate by compu-

ting an extended version of the Nash value.

Miyasawa s value should also be mentioned as to he similer
to the concept presented here. But,as is readily seen, tie
value obtained in [3] is a correspondence the values of
which may sometimes cover large parts of the Pareto surface.

Finally, the present value depends only on the “"characteristic
function " wversion of & game, i,e., a set valued mapping defined
R coalitions., Thus no normal form {strateay sets and payoff-

functions } will enter the giscussion,
. i

Notations and definitions are being taken from 7 . Howe ser,
sectior 7 contains a short introduction.



SECTION 0 Notations

Let & = {1,...,n}{n =z 2) denote the ,set of players", P =R () (power
set of 7)) the system of .coalitions". The mapping ProjS: R = " i

defined via

we shall write Xg = ijslfx} (x € [Rn} and AS = Pr‘ﬂ,js (A} (A< ]'Rn]l.

Consider a mapping V : P +§{IR”} satisfying the conditions

(1) V (5) € R (S €P)
(2) V (5) # 0, closed, convex (5 E R}
{3) V (S) = IRg < V (S) (algebraic difference) (S € P)
(4) Ui: = V ({ i ) bounded from above
We may define x 1Y) € R" by

(V) = max {t |t g vﬁ}

{the ,threat point" of V)
Then the mapping V may in addition satisfy the conditions

(5) Xs(V) € V (S) (5 €P)

(6) VA5]) = Ix e ¥(5)' | &= Xg (V)1 bounded from above



befinition 0.1 Lol = i g P sy (U?ﬁ} | ¥ satisfies (1) = (£)]

If V€W, then (2, P, V) is said to be a game (with-
out side payments), x (V) is said to be the threat

point {of V) and

«{¥), % Pareto optinal

e

=

IS{V}: = IxiE M) X =

in V(S)}

is the set of S-imputations {of V) {subscript 5 wil)
be omitted if S = ).

Consider aisn the system

¥ Bl FwiR) =0, Zuldily = vy(5H5€R )}
& i€s 33

(the ,weakly superadditive set functions"). Given
v € W
ViE): = (€ T | Ex, < ¥(5)] -
€S
defines VY €Y. Given ¥ € W,

vW(S): = max {Zx; | x € V (S)]
i€s X

defines vV € W. If v € ¥, then (8, P, v) is a side

. . 5 = .
payment game while (@, F, ¥') is a game with trans-

ferable utility (.without side payments").

Finally, let &: = [m€ ¥ | m additivel. Writing

L IERCS ({i1; (v E ¥, 1€ §1) we may identify mc @

with the vector (my.,m,j € IR"; on the other hard w:

shall always write x(S): = &_x, (S € P} for x € IR";
1S v




S

this kind of notation will be used freely, so that
vectors of R" and additive set functions m € A

will always be used synonymously.



R

SECTION 1 Transformations and values

el e Tl LB P e R B o e
RPN £ S S 5 :_Hx_,,i = -.".l._i .X_i !.Cfl,i k‘!_lgqu.: } 0= 15

und >0, 8 = [G:,...,an £ iﬂn} is an affine transformation of uti'ity

13 VS it :
(et} thinear 3 8= 0L =1}, OF course,

LV(S) & = Lg (V(S})s Lg = = Projc o L
defines a mapping LV € W if V€ ¥, i.e.. we have LW = W,

Similarly, if n» : @ » § 15 a permutation of @, than v : I Hn,

wix): = Xo-173y» induces also n¥ € ¥ for any V € W via
|

() = 7 (V (x71(5)))
i.e. we have

d = W,

Note that x (LW} = L{x{V}), x(n¥) = w(x{V}). as is easily checked. Let

. (L.; denote the system of a.t.u.'s (1.t.u.'s) and 1 the permutations.

vition 1.1. 1. W =¥ is invariant if sW° = ¥°,

LM =0 (nenl, Lek).

2. Let ¥° be invariant. A mapping © : W' » R" is

(1) feasible if @(¥) € V(Q) (Ve W)

(2) Pareto optimal if (V) isP.0. in V(a) (V € ¥°)




(3) individually rational (i.r.) if o(V) > x(V)(veVv®)

7
(4) W-invariant if @(LV) = L{o(V)) (VEV?, Le L)

i.e., 9oL =L oy, ¢ commites with all a.t.u.'s ;

(5) DI-invariant if o(nV) = m{@{sV)) (Yev®, wen) ,
i.e., 07T = T 0, comutes with all permutations ,

a value (for V°) if (1) - (5) are satisfied.

Note that we are not prepared to accept correspondences as ,values".
It is one of our aims to show that a single point value causes
guite specific problems in its definition compared to corresponden-

ces.

Example 1.2
et W « = (el | 94l a0 vEW

V(S) =(x€Rg | ax < v(S)}}

Mote that any a.t.u. L = 1% and any vew

B
yield g 2
L% (5] = {KEIRS | = a;x; < v(S) - B(S)!}
ies
(using 8(S) = — B;, see SEC. 0). Hence
€5

VE = (v 1 ovev, Le L}
(because v-g € W, g € ). Obviously,

it UEUﬁ, then (2, P, V) is a game with constant rate of

utility transfer (this rate being represented by the nor-

mal a (or o) of the hyperplanes bounding V(S)).



Suppose that for some v, w € W, L € IL we

have

Then it is easy to show that L = L% satisfies

U while

et |

L

W= oo v+

T

holds true. (.Strategic equivalence"}. Let ¢ : W = R

denote the ,Shapley value" (Shapley [9]). We claim,

(8) if LvY = L'WY then L{o{v)) = L'(s{w))

fs e Wk tedlby

Indeed in this case we have

£9) W= 01V + B Li= L% I R
o= (o, ,an]

¢ (w) = e(v) + B =T (s(v))

proving {8).




(lo)

Now, let us define for HEHF, v = LvY

¥(V)z= w(LVY) @ = L(s(v))

Clearly, (lo) is noncontradictory in view of (8)

that is, when computing ¥(V) = L(4¢(v)), we may take an

arbitrary representation V = LvY of v € V°.

As is easily seen, Y satisfies (1) and (2) (i.e., ¥ is

\ feasible and P.0.). Property (3) (i.r.) is in general

(11)

only ensured, if v is monotone; thus ¥(V) is an imputa-
tion on a proper subclass of v©. On thus subclass, how-
ever, it is a value, more generally, ¥ is [L- and 1- in-
variant on a V. We proceed as follows:

¥ is L-invariant: Indeed, for V = LvY and E cell :

w(LV) = ¥(LLVY) = (LoLVY)
= LoL((v)) = L(Lo(v)) = L(¥(LV"))
= L(¥(V))

(where the third equation follows from our above remark)

Y is Nl-invariant: let me€ I, L = Lg €.

Define L™ € I by L"(®) and verify that
m(B)

T
mol = L om



Here, of course, mv € ¥ is defined via nv(S) = w{n~ (S))

and the Et” aoustion essentially uses the invariance pro-

ath T

perties of ¢. Moreover, the equation {wv” = ¥ must

be verified.

This example has been straightforward; we have performed
our pedantical computations in view of a further example

which is not quite straisht forward {SEC 2).

The next exampie however is also well known (but we
shall again make some fuss in order to have a rigorous

definition).

Exampie 1.3

Let T E E, V € Wis T-unanimous if

@

= ST
(B s :
B RE T e S S=2T
€T !
(8 - direct sumjicall $ € P flat if ¥(S) = = v.

and callV flat if all 5 are flat.



(13)

o

The following is not hard to see: if VYV € V¥ is T- and
S- unanimous ( S * T), then V is flat. It follows that
T is either uniquely determined or V is T- unanimous for

all T € P and flat.

Given a closed convex set A & 1&?, that is T-comprehen-

sive (A - 1P$+ S A) and a vector X € R", such that

A~ e
X

= {x €A | x> X}
- T

is bounded from ahove, define ¥ = ET e by

3 ¥

~ n+
Ao (g - B s=T

Provided ET € A, we have indeed ¥ € ¥ and it is not hard

to see that

V=B, xvn

for any T- unanimous V € V. Let Ul S ¥ denote the T-

unanimous (for some T) functions. ul is invariant and it

turns out that (see {71)

L% T B T R (n € )
LErng = S Lo(A), L(X) (LeL)



Remark 1.4

Given ¥ = ET,A,E et

H = ¥y — f313 ~ - %
R Tﬂ R B B S Ki > X,
and define g’ R" -~ IR by

v .

GR)- = S kR

1ETG
gj”lJ has a unique maximizer w(V) relative to

] e
(2) «v: W = R is a value for W

and called the Nash - value (NASH [41).

Of course,.TD;;T and v1{¥} = (¥) (i ¢ TDJ,

It will be necessary to have v also defined if V{S} does not
necessarily contain the "threat point” Xg - Now, if we omit
our condition (5) of SEC O,we may still consider V as de-
fined by (13) without asking for “ET € A", A1l remarks of
Example 1.3 apply, so0 V = ET,A,E is well defined and T is
well defined unless V is flat. Hﬂwevef, the Nash vajue is
not well defined because there is in gereral no unique waxi-
mizer of 9y ond ¥(R). If x{V) € V(2) one might of course
take any maximizer of Gy 53y, oOn the Pareto set of V{f).
But , this defines justa correspondence. This correspon-

dence is e.g. symmetric or permutation invariant - but that



g

does not imply, that we may find a permutation invariant
selection (a point valued function of V). This problem is

delt with in the following section.



SECTION 2

Lemma 2.1

Progf

(s

Extending the Nash-value

Ltet A be a closed set and let L be an a.t.u. having a fixed
point T € R",

Assume

+q

1. £ A

i e e Al is non-empty and bounded from
above,

i LOA) =Acthen | ~idodiies a =1, .. 1) A= 0}

Supose for some 10 € [ we have a; # 1.
o

Then, &y (1}

ﬂnﬁ, let

ti= gip s TE+s e £ A} <o

g

Liea'fe

o+

such that



R

Because L(A) = A =L"1! (A), we have also

sup {s | t + se ¢ LAY

5
z 1
= sip {5 | L{t +58=) € A}
= 5up{5|{+5&.i EinEﬂ}
[
s
X

1o

Thus s

oand t € A, a contradiction. Hence a; = 1 (i€ Q)

]

and B 0 (i€2) follows from (1); this means that L = id.

In what follows, we shall consider mappings of the type
V = E, 5 5 as defined by (13) SEC 1. Here A < R" is assumed
to be closed, comprehensive, convex. Moreover, we want the

following conditions to be satisfied

(3) X €A

(4) {x € A | x < X} is bounded.

Note, that it follows from (3) and (4) that

(5) For i € & there is s € IR such that ¥ - se' €A
(6) There is x € A such that x < R

holds true since A® is open.

The set of mappinns U=?Q,A,i » as defined by (3),(4) and {13),SEC 1

is tentatively called UE. Clearly W& is invariant.

Q



_16-.

Corollary 2.2, ' Ept Ve Mo o BF 1V =4 then . L = id.

Indeed, as x(¥) = ¥ and L{X) = X, we have a fixed point
of L. The conditions of Lemma 2.1 are obviously satis-

fied for A = ¥(Q).

Now, it is cur aim to define a solution concept iike the one of NASH for
games of the type ET,A,E’ where X § A. Intuitively,we may imagine that
coaiition T finds itself in a position where everybody has specified
certain ideas about the magnitude of his utility coordinate. This speci-
fication may be justified by bargaining in proper subcoalitions. However,
the utility vector defined by everybody's claims is not available to coa-
lition T. Hence, the players are forced to find a fall-back position
within the utiiity vectors coalition T commands. A "fair" fall-back po-
sition, within good tradition of the NASH value would be a vector which
gives equal utility to all players in T provided utility is transfered
at a rate, which is intrinsincally defined by the solution vector and the
initial starting point or "bliss" point. In view of NASH's result, this
is equivalent to maximizing the function gy on the Pareto surface of A,
Another version is that we are to find a normal at the Pareto surface of

“ in some point x the coordinates of which are inverse to ii A%

The main problem arriving is now that maximizing the function gy in ge-
nerai is not a unique procedure, there may be more than one maximizer

and again we have a selection problem at hand.



Theorem 2.3

Proof

S s

Let V € UE. Then there is x € A = V(@) and'ﬁ € R" such

that

2. hx < hXx (x € A) (i.e., h is normal to a tangency hyper-

plane at A in x),

3. hy = ——— (i €q)

4. Whenever for some L € L, 7w € II

b=y :

then it follows that

Low %) & X

l.St Step

Let G: = {1 = (L,m) | L €W, = € T, LV = V}

For 1 = (L,m)}, 1' = (L',n') define

lo1' = (L,m) o (L',n'): = (LoL'", wor')

Here L" = Lﬂim} Eop s = Lg as in SEC 1, Example 1.2
(k)

If we write 1(x): = (L, w) {x): = Low (%),
then (11), SEC 1, indicates that o can always be interpreted

as composition of mappings. Clearly, (G, o) is a group.



Ll

- 18 -

2" step  (6,0) is finite:
Indeed, T is finite and if (6,0} is not,

then
En¥ = L'nV

for some L, L' €L, n € 1, But then L' oM = sV apd L' =L

follows from Corollary 2.2. since 7V € V2.

f

gi8 Step The set

Bt = {xjx < X, X €A}
is bounded., The set

HO: = (x € R" | 1(x) = x (1 € G))

is an affine subspace of R". Clearly, X € B n H"

but there are also vetors x® such that
¥ie X ¥W"EB W

Indeed, we find x* § A, x* < % by the condition
V € U% {cf {6)). Clearly

L 1(x*) € H®

IGI  1eG

¥

every 1 being an affine mapping. Since 1(x*) < 1(X) = K,we have
also x? < ¥,and if x® is sufficiently close to X, then so

is x%, implying x° € A (Since A is closed).



(10)

x* /
By : : | X
R?‘g“:?' 7 ' arbit {j"F }{* under G
G Ea fr s
oy
b
i
}
/‘*a 2
4" Step  Define g : R" > R by
1ill -
g A%} = ,TT I:3':1 3 J':1J
1ER

g’ takes a maximizng value X on the compact set B n H® and
since there are vectors x° satisfying (8), we know that

X < X. In fact, since B n H" is (relatively) open,it is
seen, that x € A, more specifically, x is a boundary point

of A nH".

Now, as A n H? is convex and closed and X is a boundary

point, there is h € R" such that

%N a ik

x €EANH°

i.e., h is normal to a suporting hyperplane at A n H® in x.

The affine subspace H” is generated by some linear subspace



(11)

- 20 =

M° via H® = n + M” (n a normal to M%) and we may assume

i

h e M,
I Biz = {x g R | g“fx} > gu {x)}, then, for some

spherical neighborhood U of X,

et ne TN R E LA

and hence s o
xh < xh {x € 6" n U}

from (lo). This means that h is normal at 6° in X (al’
relative to H?). However, G° © H® has a unique ("in M°"
normal in X, namely

v

ho: = PPGJHQ-EQH* (x)
X
HU-
up to a constant, hence h = const. Proj.ys = (X)
BX
and
const. xh® < const. xh° (x € H' n A n U)
Define
e 1!"_
h: = const. EEL—{K}
X

then, if x € H®* n A n U, then x-X € M°

and const (x-x}h® = (x-x) PrchEE = {x-X)

that is

xh < xh (x € H n A n U



th

5" Step Let W be a spherical neighborhood of x such that 1(x) €y
(% € W, 1 € G); this is possible since G is finite and
1 € G continuous.
For any x € W let
% = 1 = 1(x)
IGI 1€G
Then X € U. If x € A, then ¥ € A (A being convex), more-
over X € H? is easily checked. Hence
XEH nAnU (x € AN W)
By (12)
(13) ¥h = xh (x € An W
6t step By (11)
hi _ const.
R.-X,

and since we find x € H n An U, x < &, the constant

must be negative and can be normalized to-l.



Ry = % HYj= % (1 € 6)
and - o
S o
whenever
1=(L,r), L = LE . Thus
e e
R =Ry aglioagg) = Reaqg)

It follows that for x€ An W
h(1(x) = X) = h(1({x) - 1{X))
g i ai(Xeapgy = Xpaggy)

HmE en, TRUL S
== = o (X 3 )
Dl e £

1EQ r:.i{xﬁ-l{i} 7t ET“{]}}

=k (%: = X:) = h (x - X)

for all 1€G. Consequently

e o - 1 o
hi(x - x}.=h ] ) 8 R B
167 1eG
= 1 R i By
= TeT % h{1(x) - 1(x})

1

—— = h{x-X) = h{x=X)
1G1 1€6
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Hence, whenever x € A n W, then

using (13) and (14). However, this means now that h defines
a suporting hyperplane at A in X; as A is convex, we may for-

get about the neighborhood W of x thus having

hx < hx ( x € A)

Clearly,2.,3.,4.0f our theorem are satisfied, it remains only
to establish "xP.0.".

However,as h > 0 any X € A, X 3 x would yield hx > hx, g.e.d.

Of course, the definition of a "value" (cf 1.1) has to be
changed for wé. Suitably, the term "i.r." should now mean

"x g X = x(V}". Bearing this in mind, we have

Theorem 2.4

There exists a value v on Ué and a mapping h(:) : ?% » "

such that for every V € V2 the following holds true

1. w(V) < x(¥)
- 1
vi (V) - x;(V)

2. hi(V) =

3. h(V)x < h(V)u(V) (x € V()

(i.e.. h{V) is normal at A = V(@) in w(V))



Proof

(15)

(16)

= Wl -

4. h(n¥) = n(h(V)) (mem

5. E{Lgvj = (L%) "Ih(V) [L=L§ e L)

1SE Step

2
Pick V € W, and define

-
1"
e
—
=
=3

Clearly, @ is invariant. Define

w(V): = X, A(¥): = h
by means of Theorem 2.3. OQur first aim is to extend the de-

finition of v to all of U. To this end, consider ¥¢ V¥ and

assume that it satisfies

= A

L'n'¥ = V® = LaV¥

{i.e. the representation is not unigue). Then

- 4 T *
§=aiL 2wV = L7 nllin'y
= s B | A

i.e. UL e BEE s T

which, by Theorem 2.3. implies

L1 oL anlon'(X) = X
ar
L'ow' (%) = Low(X)
Therefore, the definition
w(¥®)s= w(LV):= Low(x) = Low{vw(V))
is noncontradictory in view of "(15) implies (l€)". That is,
the definition of v on ¥® is independent on the particular |

and 7 used to represent V.



End Step

From this, the invariance properties of v follow at once.

M e
For. if V! =LaV E ¥ and L,m are arbitrary, then
o(TAV®) = w(LALnY)
UEELWTﬂﬁ} fli} ToL"oFom(X)

Lor(Lon(x) 27) Tor(u(vo))

-

We have thus established that v is a value on \ .

Given V® = LnV € W, define h(V®) by

-1
"""i{vn:] & E-E{VUJ

hs(v°) =

Then properties 4. and 5. of our theorem follow immédiate1y
from the invariance of v on V. To check property 3., pick

A
y € V{n) and let x € V() be such that y = Low(x).

A simple computation reveats that (L = L)

g
h(V)e(y = w(V°)) = h(V°) (Lom(x) - Lom(X))
(L*y=tom(h)+(L%n(x - X))

1]

= mw(h)-(m{x - X) =h{x - R) <0

(since h and X where chosen by Theorem 2.3.)

Hence h({V®) has the desired normal property. We have thus

established all claims of Theorem 2.4 as far as the subclass

A

¥ is concerned.



3rd Step

Remark 2.5

Remark 2.6

Now consider W € W2 and let WS W, be defined accordiigly

As is easily seen, either W= Vor Wn W = B. Thus. v and hi.

can be defined on all of W DY a straightforward procedure,q.c.

In view of Remark 1.4 we may define funktions V = ET,A,E
whenever A 5'£R¥ is (relatively) closed, T-comprehens:ve,
convex, and does not contain X.. In addition we shall require
that

-fxE[R.?ixEﬂ,x-_ci}

is bounded. The set of all these functions V = ET A% is de-
noted by W. It is then a purely technical matter to cefine
v, a value on ¥°, with the properties of Theorem 2.4 modified

appropriately.

The following sketches illustrate that Theorem 2.4 is not
quite trivial. The first drawing {n = 2) shows Xand A = Y{0)

i
as well as constancy curves of gi. Clearly, arbitrary selec-
v

tion of a maximizer of g in {xix € A, x < X} might yizld an
"asymmetric" value - despite the game being completely sym-
metric. However, there is a symmetric "local"” maximize-,

which is a (thé only ) candidate for (V).

! ' *

Tia




(s
|
]

The next drawing (n = 2) shows that (4) is a necessary con-
dition to be imposed on the class Vﬂfﬂé}. Here, ¥ and A = V()
are both invariant under the linear mapping L (i.e. in parti-
cular, L(A) = A). But there is no invariant vector xeA) (i.e.
L(x) # x, (x € A)), hence the choice of an invariant maximizer

of g1III (to serve as u(V)) is impossible.

i S [ .;*-/}E=ﬂ
//ff,,/f
“t X=
%, —
7
“, B
e o
A= {xi—ﬂzl xiﬂixf‘zil}"
1
4
F
: L :RE
LbR) =

As Theorem 2.4 tells us, it is sufficient to avoid this

latter pathology in order to have a symmetric selection.



SECTION 3 Tight games

The idea of a marginal value of a player within the frame-work of a2 coope-
rative game is already explicitely stated in Shapley's paper [9]. Given an
increasing system of coalitions, every player receives the marginal value
he is adding to a coalition the moment he enters the process [and t31s
procedure is then randomized). We shall now specify a version of ma-ginal
value for non sfde—payment games: the moment a player enters a coal tion
the Nash value is being computed, using the value of the previous coali-
tion as to be the threat point. However, because of the limited poszibi-
lities of utility transfer, "randomizing" this procedure makes no sense.
Hence we can define a value by thisprocedure only for a very limited
class of games.
Definition 3.1.1 S ={§

o’ 21a aevy SN} EF is said to be a tight system

of coalitions if

WAk
(2) 5 =6 | i =1 .. n

L=
1
()
in
)
In

in

Sh-=0

3.1.2 Ve Vis said to be attached to a tight system S, or

just tight, if, for S € P

V(S) = V(s o T,
where

X =max {k | 5 &5}

and if



e

Let us use the term "S reduces to T" (w.r.t.V) if

V(S) = Y(T)O=>_V; (TES)
P

Now, suppose, that V € W is attached to S and T. If

Sk # Tk for some k, then pick

-
]

max {1 < k | 51 T1}

=
1]

min {1 =k | 5} = T]}

Because 51 # T1 {r <1 < R} we have 51 g7, T1 € 5 and

obviously 51, T reduce to 5. = T.. In particular

Wl e ¥

bl PR

Vs et

V(T;)

From this it follows easily, that V is also attached to

any R, say, such that



Lemma 3.2

= 3 =

Consequentiy, if

say,are the “irreducible" sets of S, then V is attacned

to all T such that T =35_ (1 = ¥,:...8),
) i A

V is uniquely determined by its value on the Sr . Tharefore
1

Wea have

Ve Wis tight, if and only if there is a uniquely de-

fined increasing system

i E such that
1. -T€ ] is-not flat

2. %(5) = V{TsL 0 22V,
i€T-T_

where Tﬂ1 is the largest set of T in-

cluded in S.

If T is empty, then V is flat.

Let ¥ denote the system of tight functions, (Q.P, V) is
tight if Ve W' If Ve V", then T = T(V) as defined oy

Lemma 3.2 is the system of irreducible sets of V.

Note that ¥ is invariant. In fact, if V is attached to S.
then LV is attached to § and 7V is attached to

7S ={n(S) | S € §}
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In [5] OWEN considers the game (2, B, V) defined via

n =23 and

={p}= R™
v, ={0l IR,

n+

{13}

V({i,j}) =0t R {i} #41.2}
V({1,2}) = {x EIR?LE] | X, + 4%z < loo}

Ha) = fx€ B} % + %X * %a-< 100}

43

1

This is interpreted as follows:

The game is taking place somewhere in South America. Coa-
lition 11,2} may obtain an amount of loo units by coopera-
tion, but the money is being paid to player 1 and must be
transfered to player 2. Because of the very unreliable
mail system, a unit of money may vanish with a certain
probablility and hence it is not worth a unit of utility

for player 2. However, they may take in a banker, who,



e

for a smail fee, will transfer the money - in which case
the utility transfer rates are constant and egual fo

everyvbody invalved.

OWEN computes the following values: SHAPLEY's [lo] value

is (*/a2s /2, 0), HARSANYI's [2] value is (4o, 4o, 20).
OWEN<I[51 value is, as he claimes, [51,85; 47,57 0,58},

To which he vightly remarks that player 1 should get more
than player 2 and player 3 should get something. It could be
added that OWEN uses an approximatina procedure in order to
compute his own value (since V does not satisfy the recessary
differentiability assumptions), the uniqueness of which is

not obvigus.

Since V is tight and attached to 5 = {@, {1}, {12},%)
{I{Uj = {{12}. 0}) we propose the following procedure:
coalition {12} computes its Nash value. Then ¢ compuies
its Mash value, using the result of {12} as threat point.
We have

A1 23, v(ct,2y), ) =59 75 0)

and

3 50 5o 50,
U[EE’ U{ﬂ}: |:505 é—%, G:I} 7 (50 + '_'E'; '_'2“ —-1,5“.

This is also a value satisfying the above requirements.
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Definition 3.4 For V € W define

vy: = x(v)

SR Ega e
e =i sy et )
c(v): =2

MNote, that the definition of Cdoes not depend on the

choice of §

Theorem 3.5 1. Tis a value on ?t

t

2. If Ve VAV, then c (V) = w(V)

3. If Ve W n U, then o(V) = ¥(V)

Proof: We shall only indicate a proof for 1. but leave 2. and
3. to the reader (actually, 2 and 3. follow from Theorem

4.13.)

Now, clearly, £ is P.0. and feasible (since v is). More-
over, £ is i.r.: for z! is trivially i.r. and Gk is

finductively) satisfying c“(V) » k1) since v is i.r.

In order to check invariance properties observe that

21 is L invariant (since x (+} is. Now, if, by induction,

Lk has been established to be W-invariant then

- k+1
Ziait TS K
Biaq LIS b BNV

B e B g sy

k#1'7S, k+1/
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= GILE < ki) (by (15) SEC. 2
U Sk WUSpg)s BV } :

L{v(E )] (Since v is _~in-
g e L variant)

| cKEL(V)

- invariance runs similarly, g.e.d.



S

SECTION 4 Extending the SHAPLEY value

Next, let us define a further value. Some of the ideas are similar to the
ones of HARSANYI and some of the following computations have been used

in other contexts. However, our value rests heavily upon the results of
section 2 and moreover, it is a function invariant under permutations of
the players and affine transformations of utility.This will be proved in

a rigorous and may be sometimes pedantical way.

Lemma 4.1 Let {ZS]SEE’ (wS}SEE be families of vectors of IR".
Then
(1) A (T € P)
S=T i

if, and only if

(2) W = i_(-1) 4 i Al

This is well known.

We shall denote by eT € W the function defined by
T 1 521
EWHrk SiT

We have then

Lemma 4,2 The SHAPLEY value §: W -IR satisfies

(3) 0 (vp) = cpbe’) + = (-1)" > p(ug)



Proof:

(4)

oL

Here, c. is the unique coefficient of the representation

N =i Ca I':'!'S
SERE
g B
er = == (-1)¥"5 w(s)
ST

while Vo is the restriction of v on T, AlSDIWE wWrite

b= i, 5 = 15 B

We have

S 5
wes i Bl e Eo A
T s T T g

and if ;7 €/A is uniform distribution on T, then

s
Blvo) = = e e == v
Sl ScT

using Lemma 4.1 we find

1, - B, E:
'I:T¢{E i ':T;J :.:i :‘-rl:-]-}t ” Q{vst’
= O(vp) = =017 (vg)
= .

which proves (3).
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Remark 4.3 Let m €/A < V. Because m = E;.mie{1]= Em_ie1 is the unique
{3

representation of m by the basis {eT}TEPE; W, we have

cr = 0 R R

Lemma 4.2, now yizlds

my = mr) = 0 +-§;;J-llt'5+l¢{m§
t-s+l
(6) me = = (-1) Mg el
scT

Consider a family {ZE}SEP such that 2° E]Rg and an a.t.u.

s Lg. Let us write

L(x) = Lg(x)' = L%(x) + B

Then, for |T| > 2, since L® is Tinear

e (alys e

S;_.-‘T

(i}
Ly(-..) + By

= I:;{~1}t_3+“ig{253 + By (since z° ¢ R)
% i
vt-5+l,, 0.5
=A-1)" (g + ) (by (6))

As the first line and last line are eqgual also for



Remark 4.4

(7)

(8)

(9)

- 38 =

ITlI = 1,0 {trivially)we have
LT e e R
SE_F SEE

which, in view of Lemma 4.1, will be useful later oa.

Define, for v € W

t-s5+

 CigA S A o ot ey SRS

Sgl

accarding to Lemm: 4.7

H(ve) (Tep)

b(vy) = cobie’) + t! = g’ + t1)

T

(where t' € TR" is regarded as an element of Mm).

Now a computation analogue to the one of 4.2 is as

: follows
5
cTE = (-1 %s)
ST
s w1} (=11 ys)
seT
= W(T)-=-1) 5 4(ve) (T)
sgT _ .
because ${v5}{T} = ¢{u5}(31 = ve(S)
- w(T) —{'r_lz-ut‘“lqtvs}) (1)
5T
= W{T) = BT
ol

cx = ¥(T) - tI(T)



(10)

Definition 4.5

Corollary 4.6

(11)

(12)

AR e T
Plugging this into (8) yields

dv) = vy - tT(TReT + )

Given o€ IR, »" el = Rr"
let
. 0
el X = (o - xo(T))e! + x°
i.e.
&2 & + X°(S-T) (S2T)
- (3) =1 xe(s) (53T
T,z,x" :
Clearly e represents a side payment game, where

coalition T will distribute o while everybody else can
only command his x° coordinate. This seems to be the
appropriate version of ET,A,x” in the frame work of W
(note that o - x°{T) is not prohibited from being nega-
tive). Note however, that ET,ﬁ,x* is in general not of

transferable utility type.
For any v € W

¢{VT} > ¢{ET,u[T],t'}

el M= (D F ),

5§T
0= - (T + x°

and of course, (11) and (12) define ¢ uniquely.
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Clearly, we could s5s well state that ¢{ET} = LF and
linearity define § uniquely together with (11). However,
it is nice to oherserve, that Corcllary 4.6 does not need
the linearity condition {which is rather bad to interprete
economically). Instead we have a boundary condition (12)
‘and an "extension rule (11}, which determines § recur-
sively. It is our aim to show that the NASH value has 2
similar property and that this procedure clearly works for
a larger class of =aphings V.

L
Remark 4.7 S e ET,A,x“* e o e A

where :
o= v?{Tj = max {x{T) | x € A}

which may be writien

(13) F R o T (T ]
: Bt 1
2. However, if v =g then in general
¥t
Vo e a0
where
A ={xeRl i x(T) < a

3. If we write ﬁ#

ix € RY | x(T) 2 a)
then

ik g =l Lpita i RN

SR L

(14) = X +{a - X (T))0(e)




(15)

g

e M = (x ¢ RY |
T
e T
S
= U{E ] u}
T,AT,x

Clearly, this holds

(disjoint union)

. Combining (13) and (

3 i}
devET, Ao

- (")

Tooisx?
>

X pT] and

hen (14) may be completed to

# ¢{ET;&gXD}

L

x' + (a - x“[T}v(ET}

true for V = ET,A%,x” eV + \2

15) we find

v 0
¥ = ¢{ET9V (T).x )

)

T,A?,x”*

]

w(E

Meaning that - as far as unanimous games are concerned -

NASH value and SHAPLEY value coincide , if side payments

utility transfer is

As B n W = § there is no problem to consider v asto be

defined on W' + W,

(cf. Example 1.2).

permitted in V(T).

However, we want to compare v and ¥



Definition 4.9

-q?-

i : i ul s :'."l_ e Tl R
Consider ¥V € (W + ¥ ) n ¥, say V ET,A,x“‘

| e

Whenever 5_¢ T, then Y(S) xg L IR2+ should be bounced by
a hyperplane in IRE which can only happen for |S} = 1. Thus,
5 ¢ T implies {81 = 1. It follows that |T1 = i = 2

and V is necesserily

of the type o,
¥ r!?“f?'ﬁ.__h__
+ ﬁri'";-»..
] g 20
al =2, V = LEg g0 o ; ¥ e
| ad l

In view of the definition of ¢ {cf. Example 1.2.) we

observe that in this particular case

ﬂ:&sxn
[ AC& a = 3
S .,!x
Hence
¥ ( 1a}SEC]T etk Xkt 14
) o (T = W e 0)
= - NCEE =2 b

Hence ¥ and v coincide on (' + W) n v

we may therefore state the following definition:

Let Wi = (W + @ )uif
then byt - RT

is defined via



e

Remark 4.1o U is a value on W7, Clearly

ST H By
wEET,ﬁ$,x“J § ”{ET,A$,K*3 = By T,A7:x")

E v}
T: by f ! » L] D
- ¢{e (s X e v(UV 2 HT ¥ )

by our previous remark.

Theorem 4.11 For V € V2, TeP

(16) WVg) = ¢{ET,U(T],z::{-l}t'5+1¢{v51}
SgT
Moreover
(17) WET,A,x0) =VEr g x0)

(where US is the appropriately defined restriction of V on
SEP }

Comparing this with (14) and (15) of Remark 4.7 we
argue that y is uniquely defined by a recursive extension

procedure and a boundary condition.

Proof: First let ¥ € ¥°, say ¥ = LvY. As is easily seen

(18) Vo= LVT (Te B



o

Now we have

B yimy e oy Bl )
= s
= T{E R |£:.. -~"|'I{LSI'-"V5]}
& wi&i,.,...,z::,.+ELS¢{VS}}
e il G 0y
::ﬁl

£ .=__E¢(emm.%t-lf-"“”;?{vsu}
= LT¢(”T}

= M
= WLV T)

= ¥(Vq)

(by (18))

(by definition ofY)

(Remark 4.3, (7))

(by (18))

(by (15) of SEC 1)

(since ¥ is invariant)

(by Remark 4.lo)

(by Corollary 4.6)

{by definition ofy)

(by (18})

This proves half of our theorem since § = ¥ an ¥©, it remains

to check the case that Ve + V.




(19)

(20)

(21)
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1
Suppose that ¥V = ER,A,x* E VWV, say.

First note that for x € R"

= =1 = or= {1} e + T Xe-
SR S SoR R S-R
SgT ST
- X g t-r-{s-rJHl ( I}t r=(s=rj+l
5-ReT-R S-RgT-R
SE¥R S2R
1 .
Bl (IT-R| > 2)
=} R T-R (by Remark 4.3)
X + O (IT-RI =1)
=[XT (IT-Rl = 2)
% (IT-RI = 1)

Moreover., we have for any R-unanimous V = ER A x" in
¥ *

general
e T (T2R)
¥o.=E ot o (T R]
oA 7
From {20) it is easily concluded that
v(V); ToR
VE”T} = . R
51 T2
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Clearly, whenever Edg R, then

t=- F - ;

— (-1t 5+1U(ch s zz_{*l]t stl o

SeT T et .
= A bl

using (21) and Remark 4.3, thus

"‘JiET,v{Ty._.}:.(-l}t‘“]u{vsj:‘
T
i = VAR N(Tvingy L ) il

For T2 R, the argument runs as follows:

we have for |T-R | =2

s e e
<= T 3
; & &
= E:.,..U{H}S + E:_.‘.x% {by (21)}
= Sef
SoR SR
L b I ...X¢ = ZI—...xg (by Remark 4.3}
S__?—J gl {and (19))
2R
b e
x% x%

= el ﬁ. Hence (22) holds true for ToR,{T-R}z22



L

Mext, for-jT=R] =1, TP

= (-1) " (Ug) = () + T

S
T T
% SS‘;:R
= v(‘u‘R} + ES;__J_){% - %K%
52R

= L L} = 0 3
= v{VR} Ay - Xp = v{vR} t Xp_p = u{vTj
so we may again refer to (22),

Finally, for T = R

and
U{ET,U{T},EZ-(-l}t"5+1v{vsj}

) = (v

VT v(T).x T)

L]
T
completes our proof since v= 4 on W (V¥ runs similarly,

if not identically)

Lemma 4.12. Let W’ = V¥ be invariant, ¥ 2 W + V¥, and suppose @: - RR"

is a mapping satisfying

i o A T T e
sgT



Proof;

Theorem 4,13

(23)

-.45%_
1

If v i5 invariant on ¥ + N2, then it is invariant on Yo,

By inducticn. Let L ¢ 1L and observe that

@By Ly(T) = .. .oliv.})
@{ET’,LTV{TLE‘.’_’ oLt ugj (By inductica)

= ¢{ET.LT${T},LT;;:,..m{US}J (By {7), Remark 4.3)

brelErumie etigg) & bty

serves as induction step for (T| > 2. For T = p this oroves
lL-invariance. W -invariance runs analogously (using lineari-

ty of o instead of (7)., Remark 4.3},

There is a unique maximal W < WV, ¥* 5 V%, which admits a

unique mapping

i ¥t o IR

such that

i = umae at hny) e, T e B
SeT :



Proof:

(24)

(25)

(26)

(27)

o s e

x(V) = (V) (Ve + 09

x has the following properties

| 1 iz
Mg -y TV
x| e =
X|1‘r3 =
x| .

ot 3

x 1s I and -invariant

¥ is feasible and Pareto optimal ,

Define x = v on V' + V2. V¥* is the set of all those
V €V such that ¥ my defined inductively via (23), i.e.,
whenever x (Vc) is defined for |S| <t - 1, then

E i 2 . has to be an element of V' + V2
TV(T) e (1) 65+ (v .

and thus K{UTJ is given ﬂy (23); completing the induction
step of our definition,(25), (26), (27) is clear, (29)
follows form Lemma 4.12 and (3o) form the properties of
v . It remains to show (28). This will be postponed for

we need some auxiliary theorems.



Theorem 4,14:

Proof:

= B e )
‘in;}:T =
1 B DT 15 =
Bleie g = 2o () e s itk
o
oy “E-F My T.f i 3
such that t (V') = t' (v} (cf. Remark 4.4}

Let ¥V € . Define rekursively

1, glid

2
-4
=
Lo ]

-]
]
L3

3
(1]
=
&

T . )

= Y1)  (TER)

We have

o P e S R 5 AL 4 aT . #g
5;? ScT
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1.8.
%T = '?{T = IA_?T o _E_ {_l}t'S‘l'l;S
5§T

Therefore %' satisfies

AT - 5
Lo e
T

which defines y uniquely.

We may, therefore, take v,t,and % = x{vT] also as to

be the quantities defined via 4,14

Remark 4.15 1. Note that for V = vV € V©:
4 3y T T
v =X =& =cru = crf(e)

.

where all gquantities except u and ¢{eT} are functions

of V or v respectively

2. Clearly T s
x(Vy) = X' = £ 3§
)

Corollary 4.16 Let V € ¥*. Define recursively the quantities (65]5 €p

by -0 and
1 5 g (v)e

2. IF v is defined for |S| < t.

then
= e i
U = E._Tu - v(ET,"u’[T},L ES}
Sg‘ SiT



ihe procf is trivial, it runs inductively via

Now, 4.16 suggests an interpretation similar to the
one given in 11, [2]: every coalitions somehow

fixes a guaranteed payoff ﬁs {not necessarily € V(S]L
If coalition T cooperates, it takes all guaranteed
values %_;ES of all proper subcoalitions and computes
its ownugiaranteaﬁ payoff GT; the final value is ob-

tained by adding up all these payoffs, i.e., LGT.

[=1

Remark 4.17 It is not hard to verify oy means of (31), (32) and

Lemma 4.3 that

= L(EN (V)

L~
S
-
=
—
o
L =
L
|

L3 ()

..,
-
=
=
%
i
=
am
1
Sl
—
<
i
=
o
b |
A
i
-
L
i

holds true for n € I, L € L, and V € .
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Proof of (28): Pick V € ¥° such that V is attached to S. Recall that

=]

= T(V) is the system of "irreducible" sets (Lemma 3.2.)
Since ¢ and Yare [L invariant, we may assume that

x(V) =0 w.1.9.

i Step We are going to show that

(34) T2 =0 ifS is reducible

This is done inductively. Suppose, (34)1is proved for
|$| < t. Pick T, |T| = £, T reducible; we are going to

show that’s' = 0.

Observe that

(35) e
e
S drred.

for |R| < t follows from induction hypothesis. Therefore,

if 'f0 g T is the largest irreducible set in T, then

Fer 0
T
5 irred.
=Dlos & . (since the irred. sets
5gT, form an increasing se-
S irred. quence, Lemma 3.2)
culp+ tio by (35)
i



7

Therefore
9 VY
X = ":l;'{'g'.:.._: = ‘.}{EI-E—S.H-{-T}’ET}
o £ 5
UETVT) ¥ B )
T—TD
m ST :
T ; {since X'e¢ is P.0. in
= (T,
il %)
= X'e (since x{V) = 0)
and conseguantly
il e
=%o~F0a=0

which proves, by induction (34)

2nd

Step  Given any T ¢ P and TD < 5, the maximal irreducible

set, it follows from the first step, that

i e
F

irred.
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39 Step:  Now, since V is attached to § and § < I, this
means
e K 5
re k+1 _ ¢ 5 1
1=0
k-1
= ok o
1=0
=k + Bk
= 3K
Hence
(36) x(Ve ) = v(E 5k)
S, S YIS, ), T

: V(Esk,u(sKj, xok-1
= v{ESK!v{Sk}I X{vSk-lj}

However, (Vg ) = ESI{U} = ¢'(V) by definition and
thus,

(37) x{vski = g*(v)

follows via induction. Hence, y(V) = %(VQ)

= "(V) = g(V), g.e.d.
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As has been announced, we now have a value defined as a function: no
fixed point theorem is invoived. The computation in general requires
a maximization procedure that might be ﬁﬂlueﬁ be means of Lagrange -
or Kuhn - Tucker principles. In addition the value has all the des red

invariance properties.

Note that despite of being & function, it is not necessarily unigue;
this is s0., because Theorem 2.4 allows for se veral definitions of

It would be easy, to define a subclass of V*, such that y is unique:

by appropriate conditions on the possibilities of proper subcoalitions
ohe can ensure, that the procedure of summing up the values of all sub-
coaiitions of T will never lead out of V (T). In this case only the
classical NASH-value would be involved, hence the theory of section 2

is not required and ¥ is unique.

Simmilarly it would be easy to define a proper subclass of ¥ by appro-
priate conditions on the mappings V, such that this subclass is non-

trivial and ensures the existence of y.

Note. however, that there is also a disadvantage: unless further con-
ditions are imposed, x i5 not necessarly individually rational - a pro-

perty that it shares with other values.
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It is a good custom to present an example, which exhibits the merits of
a newly defined value. The following example is a slight extension of
Example 3.3. Here, in every two-person coalition the rate of transfer

of utility is given by some constant o > 1; while, within the grand
coalition, utility transfers are being performed at a rate 1:1:1. How-
ever, the game is such that player 1 is better off than everybody else
and player 2 is better off than player 3 - at least, if we adapt the
ideas of Example 3.3.Hence a value should rate all 3 players differently
putting player 1 in the best position and player 2 exactly in the middle

position.

Example 4.18 : Let us consider a slight modification of Exampie 3.3 as

indicated by the following figure (n = 3)
43

¥iti.ay) =

Here, SHAPLEY's Value yields {A%E, E%E] E%EJ

HARSANYI's Value yields (132, 192, 199)

While, on the other hand we have

x(V) = (192 + 25(1-1), 52, 190 - 25 (1-1))
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