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DECOMPOSITION FOR A STATIC STOCHASTIC HIERARCHICAL SYSTEM.

Hansg W. Gottinger

Abstract:

The decentralized control of a static stochastic large-scale
system is considered. Particular emphasis is given to control
strategies which utilize decentralized information and can be
compufed in a decentralized manner.

The deterﬁinistic constrained optimization problem is generalized
to the stochastic case when each decision variable depends on
different information and the constraint is only required to be
satisfied on the average. For problems with a particular sitructure,
a hierarchical decomposition is obtained.




DECOMPOSITION FOR A STATIC STOCHASTIC EIERARGHICAL SYSTEM.

1. Introduction

In this paper = we consider the stochastic optimization problem
of a static system consisting of several subsystems. Each subsystém has
a decision agent which has noisy inforﬁation on the state of the system.
The overall objective of the system is the sum of individual objectives
of the subsystems. The subsystems are uncbupled except for constraints,
which couple them together. Contrary to the deterministic case, the
constraints do not have to be satisfied exactly. Rather, the problem
solver only requires the constraints to be satisfied on the average. We
have thus a constrained stochastic optimization problem with several
decision agents each having nqisy gnd different information on the state.
The many decision agent aspect of the problem has been considered under
the héading of team theoxry [ 8]. For a constrained deterministic problem
with the special structure described above, a hierarchical decomposition
has been obtained using mathematical programming [ 5 ]Eﬂ. We shall con-
sider the two aspects of the problem simultaneously and obtain a hier-
archical decomposition. This static problem is not only interesting for
its own sake buﬁ is also useful for the decomposition of dynamic systems.

In the next section we present an example to motivate the general
problem that we will'study in this paper .. In Section 3 we review some
results in non—linear programming; these can be used to obtain the decom—
position of a static optimization problem when the state of the system
is observed exactly. In Section 4 the stochastic optimization problem
is formulated for the case when the state of the system is not known
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exactly. In Section 5 the decomposition of the stochastic problem is
investigated. Conditions under which the decomposition is well-posed
are given and related to the information structure of the system. In
Section 6 these results are stated in terms of measurement fupctions.
The stochastic version of the example is solved in Section 7 and compared

with the deterministic solution.
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2 An Example

Consider a ménufacturing company with N divisions, each producing
a set of different commodities using the same resources. The ith division
produces u, units of goods G, from A.,u., units of raw material at a cost
—i =i’ —i—i
of u!R.u, where R, is assumed to be a positive definite matrix.
- e -
The market price of gi is ZT_Ti and the total resources available
are V.
Given any price vector 27_Ti and production U the profit function
of the ith division is

“ = = 2u’ - € )
£y M) = 2wl - WRY, ( 2.1)

The total profit of the company is the sum of the profits of all the

divisions, i.e.,

-£ (291{) ==

[k e P

L futey ( 2.2)

The objective of the company is to minimize the total loss (maximize the
total profit) subject to the constraint that the total resources used are

less than the total resources available. The problem is thus

N
g
Problem 1z SR.ubt o= 2g, 7.
Yo Minimize E ‘2131_1_1.1_ 311{1 ( 2.3)
” " i=1
B jreeeely
N %
! Aju; -v<o ( 2.4)
i=1

Remark: We could have imposed the additional constraint that u, >0
12

i=l,....., N but for simplicity we have assumed implicitly that the u;'s

would turn out to be non-negative when Problem 1 is solved.
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In this example the state of the system consists of the price

vector ]_ri, i=1,...., N, the resource vector v and possibly the cost
matrices R; and the resource utilization matrices _2_\_1 . The decisions
to be chosen are u. i=1,...., N. Calling the state as x we have the

following general problem

N
Problem 2: Minimize 2 £, (u, ,x)
- i=1 * *
N ; _
subject to ) g, (u,,x) - g (x) <O (' 2.5)
fop 104 o _
Por our example
- ] - % o
£.(u ,3) g 'R 8, -2 'm - ( .2.6)
9; (9% =2 ¢ 2.7
go(x) =v ( 2.8)

There are situations when the state of the system cannot be cbserved
exactly, but is described probabilistically. Suppose now that T i is

measured by the ith division manager as

T,

G I+ 8, i=1l,.000, N ( .2.9)

Z,
=
v is measured by the resource manager as

2o = v + ?_0 ( .2.10)

é;)

LY 83 » i=1,.... N, y and 8, are random vectors independent of each

other and having the normal distributions (assumed known)

oy b =1, + var{m} =1, ( 2.1
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{6; =0 ; var{p; } =9, i=l,...., N ( 2.12)
E{lvl=v ; var{vl}l=y | ( 2.13)
E{g } =0 ; var{gy } =9,

= ( 2.14)

All the information available are contained in the measurements 23 o
im0, 56 ey N. The production of each division has to be Baséci on his
measurement and some other signal based én _z_o.

The objective of the company is to minimize the expected total loss.
As for the resource constraint ( 2.4) it can no longer be satisfied
exactly since v is not measured exactly. Instead, we require the total

resources used to be less than the total resources available given the

measurement _z_o s iee.

N ; :
E{X Aj uj -xi.z_o} <0 ( 2.15)
i=1 -

The production of each division has to use some information contained
in 2z because the resource constraint ( 2.15) has to be satisfied. We

thus have the following problem,

: ¢ N
; . i @ -9 6 )]
Problem 1A: Minimize E g}: E-i'!‘iigi z&i‘ﬂii { 2.16)
i=
subject to
(N
E %E Ajuy -zi&;}f_ﬁ .2.17
j=1
u; =n; (gi ;go) Coi=l,0000, N ( 2.18)

Remark: u i at most can depend on all the information contained in z i '2g °

We shall show later that the optimal decision function in some cases can
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be found in a hierarchical manner and operation of the company can be

decentralized.
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3. Decomposition of a Non-Linear Programming Problem

In this section, we present‘some results in non-linear programming.
These give rise immediately to a decomposition method for deterministic
problems. Later on they will be used to obtain a decomposition for the
stochasticAcase. |

Consider the mathematical programming problem.

Problem  3: Minimize f(ul,...., uN)
Subject to g(ul,....; uN)‘f_Q_E R (.3.1)
ui € Ui i=l,ccee, N
where

f(ul,...., uN) fl(ul) + ceocees F fN(uN) (',3.2}

g(ﬁlr----. UN) gl(ul) + oteesee + gN(uN) -9, (' 3.3)

Except for the coupling comstraint ( 3.1), the prcblem is éssentially
uncoupled. The constraint may be interpreted as the common resource avail-
able to all the decision makers. This structure has been exploited to give
a hierarchical decomposition scheme for the solution of the problem using
results in mathematical prégramming. We state one sufficient condition
which makes this possible.

Theorem 3.1 (Saddle-point condition): Let f be a real-valued function

defined on a subset C of a linear space U. Let g be a mapping from C into
the Euclidean space RP. Suppose there exists a p* € RP, p* >0 and au* e C
such that the Lagrangian L(u,p) é f(u) + p'g(u) possesses a saddle-point at

u*,p*, i.e.,
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L(u*,p) < L{u*,p*) < L(u*,p*) { 3.4)
for all u € C, p > 0 then u* solves
-minimize £(u)
Subject to g(u) _<_ ] u€ecC ( 3.5)

The proof of this theorem is elementary [7]. Note that there are
no conditions on the convexity or differentiability of £ or g. For
equality constraints, the same result holds except that p is no longer
required to be non-negative. The following theorem is due to Lasdon [5 1.

Theorem ' 3.2: Suppose there exists a saddlepoiht for the Lagrangian

corresponding to Problem 3, then the following hierarchical scheme can

be used to obtain a solution, provided the minimizing problem is well-

posed.*®
. L "
Lower level: Minimize L, (u,,p) = £, (u) +p gi(ui)
Subject to u, € U,
i i
i=l,c..., N { 3.6)
N A '
: " ] o & = ]
Higher level: Maximize Z=1 L;*(® - R 9,
Subject to p>0 ¢ .3.7)

ny
where Li* (p) is the minimum obtained in equation ( .3.6).

*For some p, the lower level problem may not have a solution. We thus have
to limit p to the set D = {p| the lower level problem has a solution }.
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Proof: We need the fact that the constrained saddle-point for L(a,b),

a € A, b€ B exists if and only if [10]

Min Max L(a,b) = Max Min L (a,b) ( 3.8

atA beB beB acahA

The value of the saddle-point is also egual to either side of equation
( 3.8). Given any p we note that the minimization part on the right
side of equation ( 3.8) can be split up into N minimization problems

independent of each other. Specifically, we have

: N N
Max Min  L{u,p) = Max Mln{z £, (u)) +) g_‘gi(ui)- g'go%
i=1

20 u 220 =
N ¥

= Max §=1 M;n {£, () + ¢ gi(ui)}‘g %

29 ES _ (. 3.9)

Equations ( 3.6) and ( .3.7) are cbtained by making the appropriate
identifications. _ Q.E.D.
Theorem 3.2 suggests a way of finding the optimal p* and u* simul-
taneously. This requires giving %&*(Ep as a function of p. There are
numerical methods [ 5] by which the optimal.solution is found recursively

by choosing a new £t+1 depéndinq on the result of optimizing the dual

N
: . v ;. :
function z L, (ui,_gt). However, we are more iriterested in the structure

i=1
of the decomposition, i.e., once an optimal p¥ is found, the lower level

problems are uncoupled. The significance of this is more cbvious when we

look at the parametric case given by Problem 2. For each x we have a
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mathematical programming problem; X may be regarded as the state of
the system which is known exactly. If we use the result of Theorem 3.2,
the optimal p* would be a function of x, i.e., p*(x). With this optimal

p*(x) , the lower level probléms would be

v
Minimize L, (u,,p*(x),x) = £, (ug %) + p* (x)gi(ui,x)

u; € U " i=l,.00., N (. 3.11)

Thus we can regard the hicher level and lower levei decisionvmakers
as both making observations on the system. The higher level decision maker
(coordinator) observes the state x, chooses the coordinating parameter p*(x)
and transmits it to the lower level. The lower level decision makers then
use this,.together with fi and g, and # to choose their optimal decisions.
This‘is displayed in fig. 1.

Applying‘this iesult to the example given in Problem 1 we have the

following decomposition:

Lower level (Division manager):

Minimize u'R.u, - 2u'm. + pP'A.u. ( 3.12)
u,
=i

i=l,...., N

‘ "
Denote the optimal of ( 3.12) by Li*(gp

Higher level (Resource manager) :

b=

Max Z_l'fi*(g_) - p'v : ( 3.13)
20
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i 2 |eee o o o N LOWER LEVEL

u(x)

f‘

uy(x) TEST S

SYSTEM

Fig. 1 Structure of Decomposition (Deterministic)
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From these equationé we obtain the following optimal Ei*'i=1""' N

and p*
-l 5;1 m; = ‘%55_2*1: | ( 3.14)
N
1, -1, . =
p* = Arg Max - Ip (§=1éi§i allp + p (X= AR T -y
R2O
N " |
-0 mr ) ( 3.15)

Referrihg to equation ( 3.12) we see that the loss function of the
ith division manager has been modified by the addition of an extra term
which reflects the cost of resources. P is the price of the resources
while A.u, denotes the amount used.

—i—] :

In this deterministic case, the lower level decision makers bhase
their decisions on I, while the higher level bases his decision on T

and v. There is some decentralization of information, but the higher

level in fact needs more information than the lower level. In the general

deterministic case, both levels need the same information x, which is
not too satisfactory. This leads us to study the stochastic case when

information can also be decentralized.
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4. Formulation of the Stochastic Problem

We now consider the case when the state x is not known exactly by
the different decision makers. However, there is a piobability description
on the state space X given by the triplet (X,B,u). B»is a 0 - algebra on
X, and U is a probability measure.

Let Fi,i=1,...., N be sub-U-algebras of B. Fi represents the infor-
mation available to the ith decision maker. Since the state x is not
observed exactly, u, will be reguired to be generated by a function Yi
measurable with respéct to Fi. This is equivalent to the existence of a
measurement function hi on x such that ui depends on the meaéurement
z, = hi(x) {4 1. Denote by Ti the set of admissible decision functions Y
measurable with respect to Fi' Then 7y é'(xi,...,YN) £ Pl X swX PN AT.
Given any'decision function v, £({y(x),x) would be a random v&riable. As
in the case of team decision problems Yis chosen to minimize the expected
payoff E{£(y(x) ,x)}.

For the constraint several alternative formulations are possible.

i. gly(x) ,x) <0 a.e. ( 4.1)
As would be expected, it is rather difficult to satisfy this con-

straint.

2. " Prob {gly(x),x) <0} >b ( 4.2)
where b is some given probability.
Particular cases of this problem have been studied under the heading

of chance constrained programming [1 1. It is the situation where the

constraint is only required to be satisfied with a given prcbability.
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e{gly(x),x) |[Fjl < 0 a.e. ' | (. 4.3)

where FO is some sub-O-field of B. Fo specifies the degree of exactness

with which the constraint has to be satisfied or in other words the

information of a coordinator who sees that the constraint is satisfied.

Two extreme cases are possible:
Fo = {2,x} | ( 4.4

This corresponds to no.measﬁrements for the coordinator. Then

E{gly(x),x)} <0 | ( 4.5)
F, =8B | (4
This corresponds'to measuring the state almost exactly. Then

gy (x) X)) <0 a.e. ( 4;7)

With the introduction of the constraint, the information available

to the decision makers may not be sufficient to insure that the constraint

is satisfied. In general some extra information has to be communicated

from the coordinator to the decision makers.

We will investigate what this information should be. Let T;‘:D Pi

be the new admissible functions. F; is set of functions measurable with

respect to Fiij FO' Thus we have formulated the following stochastic

optimization problem.

Problem 4: Minimize E{£(y(x),x)}

subject to Elg(y(x),x) [F )} <0 a.e.

Y = (Yl,....,YN) € I‘ix....xl‘l'q
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E(Y(x) %) = £ (Y, (x),%) + -.-+fN(YN(x) /%)

gly(x) ,x) = gl(Yl(x) $X) + .--ng(YN(x) ' X) - go(x) ( 4.8)

Remark: Pi is the set of decision functions which use both the information
of the ith decision maker as well as the information of the coordinator.

We shall show later that not all the information of the coordinator is
needed by the ith decision maker to choose his best decision. Under
certain conditions, the information of the coordinator can be compressed

into a signal which will be sufficient for the ith decision maker.
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5. Decomposition of the Stochastic¢ Problem

The special form of thé constraint allows us to transform Problem .4
into a simpler form for which the results of section 3 aré applicable.
Lemma 5.1: Let £(y(x),x) be a random function from I'*x X into the reals,
where I'* is a set of functions on X measurablé with respect to F [ FO'

FC B and FO C B. T is the set of functions measurable with respect to F.

Let M= {y[elgty(x) ) [F} <0 a.ce.}

Suppose Min ' E{f(Y(x;y),x)iFo}(y) exists a.e. and is equal
vi;y) € TNm

to E{£(y* (x;¥) %) [F }y) , then
Min CE{£(Y(x) ,x) } = BE{E(Y*(x5%) ,x) }
ye 'y = g{ Min E{f(y(x;y),x)iFo}(y)}
Y(o;v) € INM (..5.1)
Proof: For y(*) € T'(m y(*;y) € TMNiu
ELECY (x5y) ) [F 1y = E{£(v(x) %) [F Hy) , ( .5.2)

For a proof of this see Appendix A.

Thus

Min E{f(Y(x;y).x)!Fo}(y>
Yi*3y) € Tm

E{£(v* (x59) %) [ F 1)

I A

E{f{yex),x)%FO}(y) a.e. for all

vyevynm ( 5.3)

Taking the unconditional expectation and minimizing over I''MNM we have,
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E{ Min z{f(v(xsy),x)iFo}(y)}i Min  E{£(y(x),x} ( 5.4

v(*;y) € TNnm ‘ yeI'Np
On the other hand

{ Min E{£(y(x:y) ,x)IFO}(y)} = E{£(v*(x) ,x) } > min E{f(y() , )}

Y(*;y) € TN yeT'Nu ( 5.5

From equations ( 5.4) and ( .5.5) we obtain equation { 5.1). Q.E.D.
Using Lemma 5.1, Problem .4 can be solved by considering the

following problem.

Problem .5: Minimize E{f(Y(x;y),x)lFO}(y) a.e.

Subject to E{g(Y(x;y),x)iFo}(y) <o a.e. ( 5.6)
Y(°:y) € Tlx....xPN
If FO is such that the conditional probability measure Py°(A) is

regular, i.e. it is a probability measure given any y, then Problem 5

can be transformed to the following form.

Problem . 6: Minimize %(Y;Y)

Subject to §(Y;y) <0

Y(o;y) €T | (- 5.7

~ A r
where £(y;y) = E1f(¥(x;y),x)iF0}(y) = f f(Y(x;Y),x)dPy°(x) ( 5.8)
S(v;y) = E{g(Y(x;y),x)EFo}(Y) = f f(Y(x;y),x}éPy°(x) ( 5.9)

Remark: The conditional probability measure is regular if it is generated
by an observation function [21].
Problem .6 i1s a conventional functional minimization problem given

any yv. The results in Theorems 3.1 and 3.2 do not depend on the finite
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dimensionality of u, thus a hierarchical decomposition is obtained if
a saddle-point exists for Problem . 5. This is summarized in the following
theorem.

Theorem . 5.2: Suppose there exists a saddle-point (y*(°;y) ,p*(y)) for

the Lagrangian associated with Problem . 5. Then Problem 5 can be
solved by the following hierarchical decomposition.

waer level:
Minimize 'fi(yi(wy) 2(Y),y) = E{fi (v, (x57) %) + p' (y)gi(vi(x:y) 1X) iFQ} v

Yi(°ry) € Ti

i=l,..0.., N ( 5.10)
Higher level:
N n, . :
Maximize ) Li* ey - Bp’ Mgy [F iy
i=3 -
B >0 {( 5.11)

n : v
where Li*€2jy),y) is the minimum obtained in equation ( 5.10).

Proof: By using Theorem 3.2 on Problem 6, the decomposition is

cbtained.

Corresponding to Problem ..4 we have the following decomposition.

Higher levgl: Choose p*(y) measurable with respect to FQ.

Lower level:

" '
Minimize L, (y; (*5¥) p*(¥),y) = B{f, (v, (x;y) ,x) + p*° ()g, (v, (x:y) uX7EF0}(Y)
Yilesy) e T i=l....., N ( .5.12)

Note the optimal Yi* can be expressed in the form Yi*(x,p*(x)).
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The optimization problem of each lower level decision maker is
described by equation ( 5.12). A conditional expectation has to be

optimized by each. This optimization is not always well-defined with

the information available to the ith decision maker. We give a necessary

and sufficient condition when this is defined.

Theorem 5.3: Let Gi be the smallest O - algebra of FO with respect
to which E{fi(yi(x;y),x) & Rf(y)gi(yi(x;y),x)[Fo} is measurable. Then
given Ejy),Li(Yi(-;y),Rﬁy},y) can be optimized by the ith decision maker

if and only if GiC:Fi'

Proof: For any measurable function £(x), if E{KIFO} is measurable with

zespect to G, G,CF , then E{L[F} = (|6, 1. (see Appendix A) If

0'
.G, CF,, then
i i

BLE, (v, (ki) 430 + ' (g, (v, (xa) ) [F )}

E{E; (v; ay) %) + p' (9D, (v, (xiy) vx) |6,

E{B{E, (v, (xs9) ,0) + p’ (¥)g; (v, (x5) ;%) |F 1]6,} ( 5.13)

The inner expectation can be evaluated by the ith agent and minimized with.

respect to yi(.;y) e'ri, hence minimizing %i(yi(';y),gjy),y). If Gift Fi'

then E{fi(yi(x;y),x) + Bf(y)gi(Yi(x;y),x)éGi} cannot be evaluated given

the information contained in Fi' and thus it cannot be minimized.‘ Q.E.D.
Gi represents the minimal sufficient information required by the

ith agent to solve the decomposed decision problem given only p(y). If

this information is not available, then the coordinator has to supply

something else besides p(y). Typically this would be Pyl{A\, the
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conditional prbbability measure with respect to Gi' Note that although
FO c Fi satisfies the condition in Theorem 5.3, it is not always

necessary for the ith agent to have more information than the coordinator.

This will be illustrated in the next section.‘
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6. Reformulation in Texms of Measurement Functions

In order to gain more insight, we shall reformulate the problem
in terms of probability densities and measurement functions. The
information requirements for the hierarchical decomposition can

then be seen more easily.

Let x be the state of the system. x includes noises as well,

N
]

hi(x) be the measurement of the ith agent; z, € Zi

N
}

o ho(x) be the measurement of the coordinator (specifying

the constraint); z0 € z0

Then Fi’ i=l,...., N is the 0 - field on X generated by hi and v, is
measurable with respect to Fi.if Yy = niOhi where ng is Borel-measurable
onvZ..

l e
Corresponding to Problem .4 we have
Problem . 7: Minimize E{f(n(z),x)}

Subject to E{g(n(z) ,x)|z,} < o

niz) = (nl (zl:zo) AT --.nN(zN;zo))

£(n(z) ,x) = fl(nl(zl;zo),x) teeeo + £ (z520) %)

g(n(z) ,x) = gl(nl(zl;zo) (X)) + oeeee. + gN(nN(zN;zo) #X)
- QO(X) ( 6.1)

Corresponding to Problem 5, we have

Problem .8: Minimize E{f(n(z),x)iza}
subject to E{g(n(z),x) {zo} <0

with n, £ and g given as in equation ( 6.1) ( 6.2)
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Theorem 5.2 then becomes

Theorem .6.1l: Suppose there exists a saddle-point (n*(';zo),g*(zo))

for the Lagrangian associated with Problem . 8, then Problem 8 can be

solved by the following hierarchical decomposition.
Lower level:
Minimize

%i(ﬂi(-;zo);g(zo),zo) = E{fi(ni(zi}zo)yx) + Ef(zo)gi(ni(zi;zo),x)izo}

i=1l,c0000y N ( 6.3)
Hicher level: A
Maximize §=l%i*(g(zo),zoﬁ - E{g}(zo)go(x)lzo}
Subject to p_(zo) >0 : = ( 6.4)

%;*(Pizoi.zo) is the minimum obtained in equation ( .6.3).

Remark: From egquation (. 6.3) we conclude that ni*(zi;zo) = ni*izispf(zg)):
i.e., all the relevant information about the constraint is contained in
Eféza) if the lower level probleﬁ is well defined.

The hiérarchical decomposition scheme for Problem .7 then qonsists

of the following.

Higher level: Coordinator makes a measurement Zye computes the coordinating

parameter Ef(zo) and sends it to the lower level.

Lower level: ith decision agent makes a measurement Zgo and uses this

together with E}(zo) to compute the best decision function ni*(zi;gf(zo)).

The structure of the decomposition is displayed in Figure 2. Note

that the decomposition is in real-time since no iterations are involved.
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HIGHER LEVEL

LOWER LEVEL

COORDINATOR
bzo p p
ho 2 e e o @ e N
z z 2

% i vu' i 2 'UZ { N WUN

hy ha hy
A x }x ix fx

SYSTEM

Fig. 2 Structure of Decomposition (Stochastic)
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Because of the static nature of the problem, the information flow between the
coordinator and lower level decision makers is only one-way.

An alternative condition for Theorem 5.3,is the following.

: n - : oy
Theorem . 6.2: Li(ni(°;zo),p(zo),z0) can be optimized by the ith decision

maker if and only if

Elf, (n,(z;52.) ,%) + p' (z5)g; (N (2, 520) ) |2, 2.}

= E{fi(ni(zi;zo),x) R (2g)e; M, (z;52) %) [z} ( 6.5)

Proof: By the nested property of the conditional expectation (Appendix A)

"
L, (n, ( 124) p(2) 124)
= E{E{fi(ni(zi;zo),X) + Rf(zo)gi(ni(zi;zo),x)!zi,zo}lzo} ( 6.6)

If the inner conditional expectation is equal to the right side of
equation ( 6.5), then it can be minimized with respect to ni(f;zo).

If equation‘( 6.5) does not hold, then %;(ni(.;zo),g(zo),zo) depends on
the specific value of 2z, and thus cannot be minimized with respect to the
function ni(';gﬁzo)). _ Q.E.D.

We now give the results relating to the information between 24 and

() 2z, C:zi' (Coordinator has less information than ith decision agent)

Then condition ( 6.5) is automatically satisfied.

Thus ui* = ﬁi*(zi;gf(zo)) (8.7

(2) z0 d:zi. (Coordinator has some information not available to ith

decision agent).




=

(a) Condition ( 6.5) is satisfied ui* = ni*(zi; *(ZO))
Examples: (i) .fi(x) = fi(xi) gi(x) = gi(xi) ( 6.8)
z, = hi(xi) z, =vh0(lxi]) ( 6.9)
where Xy and [xi] are statistically independent.
(ii) fi(X) = fi(xi) gi(x) = gi(xi)_ { 6.10)
- 1 ' 1
zy hi(xi) _ ho ([xi]) z,
2 = =
@ h 2( ) = 2
0o ‘*i 0
( 6.11)
z2cz ( 6.12)
0 3 ' ’
(b} Condition ( 6.35) is violated.
* o= % o
u,* o=n, (zi,zo)
e 2 | ‘ e
.ni*(zi,P(x,zo)) ( 6.13)

where ?(xizo) is the conditional probability density of x
given zge In this case 2, and Eﬁ(zo) are no longer a sufficient

statistics for the ith decision maker.

In words, if the coordinator has less informétion than the ith
decision agent, as in thé case when the information of the coordinator is
shared by all decision agents, then the lower level problem is well defined
givenugizo) and the information of the ith decision agent. When this is
not.true, then the structure of the system and the information pattern has

to be compatible in a certain sense, e.q. the state of the ith subsystem




-y Q-
is statistically independent from the rest of the system and the coordin-
ator obseives that state but this information is available to the ith
decision agent.
Under other circumstances, the optimization problem for the itﬁ

decision agent may not be well-defined without the knowledge of zb.
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7. Solution of the Examplé

Using the results derived in the previous sections, the resource
manager would charge an optimal price Ef(zo) for the resources. Each
division manager would then solve the following problem.

Ml?llef E{Ei(gi;EO)R.n.(gi;go) -2n
0; iz,

Since T; is statistically independent of v and 6_, the conditional

_OI
expectation is equal to the unconditional expection given Ef{zd). In fact

3 % lo. 3 3
the optimal Ei( 'EO) is given by

= -1 1., .
nilz;izg) =R, O IElm |z} - Salpr(z ) 1 ( .7.2)

The higher level problem is

N _
i mi E{n*'(z*. * . - 1 . ! n* s
Maximize Z_lE{_r_}i(_z_i,go)giﬂi(gi,go) mitlzyiz)m, + E(-z-o)éi-'-'-i(-z-i'-_z-o) i__zo}
p(zy) 20 =

-E{p’ (_z_o)_\g]_go} ( 7.3
P 2 B (2 rag) - % (img)Ty + R AN (2, i) |2y}
= E{ NFz sz ROz, iz ) I_z_o}
= 1 i &)
= -E{(E{w iz } - %Z_-‘x_ig(go))lRi l(E{w |z.} - -Z-Al' g(go))igef
=2 p'(z)a,R " a'p(z ) + p'(z AR, - o ( 7.4)
4 B %058 Aplay) +RUZIAR T, - e, :
o =~ E{E{Eilzi}gi—lE{EiiEi}} = constant ( 7.5)
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N
1
*(2z,) = Arg Max - 2p'(z)(] AR A "plz)
% p(z) 2 Ak 5l s 3PS
N -1- N
+p'(zy) « B .= E{y_igo}) -3 e, ( 7.6)
i=1 i=1

Comparing with the deterministic case in Section 3 we see that some
kind of certainty equivalence (separation) theorem holds. The lower
level devision managers choose their optimél productions by replacing
the actual prices of their products with the best estimates given their
measurements. However, whereas in the deterministic case the resource
manager needs both Ei’ i=i,..., N and v to arrive at the optimal decision,
resulting in essentially no decentralization in information, now it is

only necessary to have information on V.
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8. Discussion and Perspectives

The decomposition achieved in mathematical programming for a‘class
of systems with the general structure described in Section 3 is really
with reépect to computation. To stuéy a poésible decentralization in
information we have formulated the stochastic version. It is found that
under certain conditions a hierarchical decomposition for the prcblem is
possible. The lower level decision makers need only to get certain signals
from the highef level coordinator iﬂ addition to their information on the
system. When these conditions are not satisfied, then in general the
signals are not sufficient.

Radner and Groves [3, 9] have considered a resource allocation
problem similar to the one mentioned here. However, in their treatmeﬁt
there éxists a resource ménager who is in charge of allocating the resources
direétly. In our formulation, the resource manager serves only a coordin-
ator. In the deterministic case, these two formulations become the same
since the lack of an information pattern reduces the problem to the case

of a single decision maker.
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APPENDIX A

~ SOME RESULTS IN PROBABILITY THEORY

In this appendix we summarize some definitions and results

in probability theory which have been used in this paper . The

probability space under consideration is denoted by (X, B, u).

F and FO are sub-O-fields of B.
Def. A.1: FON FO is the smallest-O-field generated by A M B,

where 2 € F and B ¢ FO'

Lemma A.l: For any random variable £, if E{ZIFO} is measurable

with respect to G, G < FO’ then E{ﬂiFO} = e{L|G} a.e.

Proof: Given any random variable £ and a o-subfield G, the con-

ditional expectatiocn E{EIG} is characterized by two conditions:

(a) It is measurable with respect to G;

) S, E{¢|G}a u = J,tdu

for every A € G

E{KEFO} is measurable with respect to G. Moreover,
Ia E{EIFO}d w=JpLau
for evéry B € FO
Since G C FO’ (A.2) is also true for every B £ G

Thus E{EEFO} satisfies equation (A.l), and E{KHFO} = E{ﬁiG}

(A.li

(A.2)




Lemma A.2: Let Y be a FN FO - measurable function from X into U.

Let £ be a measurable real-valued function on U x X. Then given
any y € X, there exists a function Y(.;y) measurable with respect to
F such that

E{f<y(x),x)lF0}<y) = E{f(y(x;y),x)]ro}(y) a.e. (a.3)

Proof: We assume two conditions, which, for this:paper , will be

satisfied.

[+]
(1) There exists a regular conditional probability measure Py a).

(2) F and FO are fields generated by functions h and h, so that

Y being F N FO - measurable is equivalent to
Y{x) = n(h(x), ho(x)) | (A.4)
where n is A x AO - measufable on Z x Zq
h:X>2%2
hO:X‘*ZO

A and A0 are O-fields on 2 and’Z0

Let  Y(x;y) = N(h(x),hy(y)). Then given y, Y(.:y)

is F - measurable.

E£(v() 2 [Folty) = [y £(a0x) hg(x) x)0d 20 ()

fAf(n(h(X),ho(x)),x)d Py°(x)
+ fX_Af(Y(h(X),hO(X)),X)éle°(x} (A.5)

where

A= {x;ho(x) = ho(y)} & F0 (A.6)



Given A € FO' for all B € FO (see Ref. [2 ))

fB Py° (a)d u(y) = u(aANB) = fé.lA(x)d B (x)

Therefore for all A € FO'
Py°(A) = lA(y) for almost all y
where IA is the indicator funtion of A.

From equation (A.6), ¥y € A. Thus

Py°(A) = 1 for almost all y

Equation (A.5) then becomes

E{f(Y(x),x)lFo}(y)-

E{f(Y(x;y),x)iFo}(y)

Sy £ by () ,x)d B0 (x)

fx £ (h(x) ,hy(y)) ,x)d Py°(x)

(a.7)

(3.8)

(a.9)

(A.10)

0.E.D.

Remark: If F = {X, ®} then this result reduces to the usual idéntity

E{f(Y(x).x)IFO}(y) = E{f(Y(y).x)iFo}(y)

(A.11)

For a discussion of substitution in conditional expectation, see [l ].

Lemma A.3: Let f(u,v,y,2,x) be a function such that x,y,z are

random variables. Suppose it is desired to choose u{y,z} and v(y)

such that E{f(u(y,z),v(y),y,z,x)} is minimized.
Let u®°(y,z), v°(y) be the minimum of
Min E{f(u,V(Y) 'Y 12 ,X) !Y!Z}

u

v(.)




Then

Min _E{f(u(er) WV (y) IYIZIX)}

E{f(u°(y,z),v°(y),y,z,x)}

]

u(.,.)
v(.)
= E{Min E{f(u,v(Y);y,z,x)|y,z}}
3(.) (a.12)
Proof:

Thus

ox

- But

E{£ (u® (y,2) ,v° (V) ,¥,2,%) |y, 2} < BE{f(uly,2) ,v(¥),y,2,%) |y,z}
' for all u(.,.),v(.)

(A.13)

| E{f(u°(y,Z),V°(y).y,z;x)} = E{E{f(u°(y,2) ,v° (V) ,¥,2,%) |y,2}}

S_E{f(u(y,z),v(y),y,z,x)} for all u(.,.),v{.)

(n.14)

E{f(u° (v,z) ,v°(y) IYIZIX)} f_ Min E{f(u(YIz) WV YY) ,Y,Z IK)}

ule,.)

uf.,.)
vi.) '
(A.15).
Min . E{'f(u(Y,Z) sv(y) IYIZIx)} _<__ E{f(uo (yv,z),ve (v) rY!zrx)}
(A.16)

Hence we obtain equation (A.12)
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