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LECTURE NOTES ON CONCEPTS AND MEASURES OF
INFORMATION

HANS W. GOTTINGER
UNIVERSITY OF BIELEFELD
P.O.B. 8640
F.R. OF GERMANY

INTRODUCTION,

In recent years a considerable amount of work has been
done on concepts and measures of information within and

beyond the fields of engineering and mathematics.

In these notes an attempt is made to trace the main
sources and motivations of various approaches to conceptualize
and measure information. The development so far showed that
information may explain different things in different contexts,
hence it will not make sense to apply a general measure of
information to practical situations in which information ob-

tains different meanings.

We will start by exhibiting the structure of the Shannon-
Wiener theory of information, then, in Section 2, we turn to

approaches that give axiomatizations of entropy and informa-
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tion measures without using probability measures. Recently,

1.2 has shown that the basic information-

also A.N. Kolmogorov
theoretic concepts can be formulated without recourse to pro-
bability theory. In Section 3 we outline a specific approach of
Domotor in which qualitative information and entropy structures
are considered and qualitative conditions are found that per-
mit representation by suitable information or entropy measures.
Clearly, this construction finds its roots in problems of
model or measurement theory. In Section 4 we essentially ex-

pose our own ideas (Gottinger 3,4

yon qualitative information
in which information is considered to be a 'primitive concept’,
separate from probability, e.g. a binary relation in an alge-
bra of informative propositions. This approach suggests a
rigorous axiomatic treatment of semantic information. Also

we discuss some epistemological aspects of qualitative in-
formation, in connection with a general theory of inductive
inference. In Section 5,6,7 we are concerned with 'infor-
mation provided by experiments' as used in statistical de-
cision theory. The concept originated in works of D. Blackwell
Blackwell and Girshick . and is now extensively used in the
statistical decision literature as well as in the related li-

terature in economics.

The intention of this review is to familiarize infor-
mation theorists with other concepts and measures of infor-
mation which do, not arise from the traditional Shannon theory
and are motivated from considerations to handle the many-
sided concept of information beyond the engineering-technical
viewpoint. It is believed that information theory itself may
benefit from these considerations and may even substantially in-
crease its potentialities toward application not restricted

to engineering science.
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1. THE STRUCTURE OF INFORMATION THEORY.

Shannon's Problem. The abstract problem of information
theory established by C.E. Shannon L and in a somewhat dif-
ferent form by N. Wiener 8 is this: Given a probability

space (S,T ,P), where S denotes the space of elementary

events (basic space),'f a o-algebra of subsets of S and P a
probability measure on), how much information do we receive
about a (randomly selected) point seS by being informed that

s is in some subset A of S.

It is relatively easy to see that the answer depends
on the dimension or measure of A, given in terms of the pro-
bability measure P attached to A. Hence an information measure

is a real-valued set function onff defined by
F [P(a)] = ToP(R) = I (A) for any ac ¥,

where F denotes some appropriate monotonic transformation.
Conceptually, information adopts here the nature of a sur-
prise value or unexpectedness. In this context, note, that
IP is a measurable mapping from ontortb,m] composed of the.
measurable mappints P:J¥ +[0,1] and I:[0,1]>[0,+=], with a

commutative property. Hence we have the following commutative

diagram: T

P (0, +=]
‘f —

v 0,1]

IoP = I, with I being continuous. It is also natural to as-

sume that IP is nonnegative and continuous.

The structure of information theory



Moreover, for any two probabilistically independent
events A,BeJ, write AllB<4> AB x S ~ A x B, we have Al B
IP(Af!B) = IP(A) + IP(B).

Now it has been shown by Shannon that IP satisfies the
additive representation if it can be represented by
IP(A) = - C logzP(A), where ¢ is any positive real constant
(sometimes called Boltzmann's constant in analogy to thermo-
dynamics) .

More generally, let = = {Ai} 121 be an n-fold uniform

partition into finitely many equiprobable events, sometimes
referred to as an experiment. Then the natural question

arises what would be the average amount of information, called
the entropy Hp with respect to a given partition =. This is
computed as

(*) Hp(x) = Azu P(A) * I,(n), and I,(A) = ~log,P (A),

if we choose c, by convention, as unit of measurement.

Let T be the set of all possible partitions of S.
The diagram

72 [0+e]

(PIP'QQQ’P)

[0,1]x[0,1] x...x[0,1]

commutes,'that is Ho (P,P,...,P) = H

v
p’ and H is continuous.

Furthermore, for every Aell we have H({A,A}) = 1 if
P(A) = P(B), and H([B|ANB, AnB]N) = H(N) + P(B) * H({A,A})
if All B, where A,Be¥ and (B|anB, ANB]N is the conditional

The structure of information theory



experiment resulting of replacing B in the nartition N by two
disjoint events ANB, ANB. It hac been shown by D.K.Fadeev 9,
using P. Erdds’ 0 number-theorecic lemma on additive arithme-
tic functions that the only function HP satisfying the above

conditions is of the form (%).

The entropy may be interpreted in various ways, either
as an average measure of uncertainty removed or as an average
measure of information conveyed. Which interpretation one pre-
fers over the other is irrelevant - as will be clear in the
sequel. Thus we see that there is a complete correspondence
between uncertainty and information. The definition of infor-
mation is here naturally tied up to probability, only the

existence of the latter enables the measurement of the former.

If we say, roughly, that we have gained information
when we know something now that we didn't know before, then
it actually means that our uncertainty expressed in teims of
probability at one instance of time has been removed at a
later instance of time - according to whether the event has
occurred or has not occurred. Introducing the notion of a
random experiment in a statistical context we may talk about
uncertainty before an experiment is carried out, at a moment
where we have not yet observed anything, and we may talk about
information after having performed the experiment. Sometimes
Shannon's measure of information has been termed probabilistic
information or selective information(Mackay11).There are severali

12

approaches (see Rényi °, and Kolmogorov 2) how to establish

the measure HP, either on pragmatic grounds arising from
coding theory or, in an axiomatic way or by starting with

the notion of an invariant from ergodic theory. Surprisingly,

13

H_, may even result from gambling theory (Relly ). Shannon's

P

original axioms for the entropy measure have been replaced

several times subsequently by weaker conditions (see D.K.Fadeev 2

The structure of information theory



A.I. Khinchin 14, H. Tveberg 15

s D.G. Kendall16 and many
others). The weakest set of axioms known so far seems to be
that given by P.M. Lee17. Mathematically, the representation
of information involves a study of particulér classes of

functional equations.

As A.N. Kolmogorov L remarked the probabilistic approach
seems appropriate for describing and predicting the trans-
mission of (uniform) mass information over (physically bound-
ed) communication channels C|H as illustrated by the follow-
ing scheme:

X1,X2,...,Xn 3 channeli S

encoding decoding

where X1,X2,...,Xn is a well-defined sequence of random va-
riables (information source). Such kinds of problems are

of fundamental importance in the engineering and physical
sciences where probability meaéures can roughly be identi-
fied experimentally as limiting frequencies for a sufficient-
ly long (precisely infinite) sequence of trials forming a
collective in the sense of von Mises. But what sense does

it make to talk about the entropy of receiving messages from
a certain novel of Tolstoi, or about the experiments getting

married once, twice or even three times?

In other words, can we talk about entropy in the sense
of Shannon's theory if we do not have a well-established random
sequence forming our information source, if events are not
repeatable? Philosophers and linguists consider as a basic flaw
of Shannon's measure the fact that the probability measure de-
fined is obviously confined to a frequency interpretation,
Hence, to the same extent as probability concepﬁs gave rise to

extensive discussions up to recent time probabilistic infor-

The structure of information theory _ 8



mation theory is affected by these discussions concerning
the adequate application of the underlying probability con-
cept (see H.W. Gottinger 18).

The motivation for Carnap and Bar-Hillel 19 is some-
what different from the theory of transmission of uniform mass
information, e.g. the question is how can we evaluate the in-
formation provided by a sentence structure which defies re-
presentation in a random sequence. In the contexé of semantic
information the concept of an 'ideal receiver' as one with
a perfect memory plays a much similar role as that of an
ideal 'rational person' assumed in the theory of logical pro-
bability due to Carnap.

As a matter of fact it turns out that semantic information
theory in the sense of Carnap and Bar-Hillel leads to similar
properties as Shannon's entropy measure, however, relative fre-
quences are replaced by logical probabilities {(degree of con-
firmation). If h represents a hypothesis, e evidence, thus
c(h,e) the degree of confirmation of a hypothesis h given the
evidence e, then by characterizing h as message and e as know-
ledge the information received from h given e is the greater
the more improbable we consider h given e. This again lends
itself to the interpretation of information as a surprise value,
i.e. information provided by a logical true sentence is zero,

and that of a logically false sentence infinity.

The question thén'naturally comes up as to which extent
one can base a theory of prediction on a theory of information
that uses a rather restrictive probability concept for real-
life situations. This concept only'applies to carefully pre-
pared situations of well shuffled decks of playing cards, con-
trolled casts of dice and in random sampling.

The structure of information theory 9



The problem to achieve rational predictions or making
inferences from data has plagued numerous philosophers since
D. Hume (see H.Jeffreys 20), and this has been reconsidered
more recently. It has given rise to a logical theory of pro-
bability predominantely based on inductive inference.However,

this theory incorporated evidence as conditional probability
statements, but it did not show the links between information
processing (in the human mind) and probability evaluation.
Information only comes in by repeatedly revising conditional
probability statements as, for instance, propagated by the
Bayesian approach in statistical decision theory. But treat-
ment of information processing is essential for any theory of
prediction, and it is genuine for any kind of human judgment.
Of course, we cannot dispense with probabilities in a gene-
ral theory of prediction, for if we can, any such theory would
be either completely deterministic or arbitrary. In this I do
not share the pessimism of P.J. van Heerden 21, based on the
assertion 'that a number expressing the probabilities of the
different possible outcomes in real life does not exist' (p.21).

In fact, what we might do is to build a theory of probabi-
lity on the basis of a completely separate theory of information
by generating 'qualitative information', and giving conditions
under which numerical probabilities can be established. This

procedure would entail a satisfactory theory of prediction.

Some approaches in this direction, including the author's,

will be discussed in the next two sections.

Of course, probabilistic information theory, as it stands
now, will continue to play a major role in those circumstances
in which it makes sense to talk about information in a random
sequence which is perfectly legitimate under conditions stated

by Kolmogorov 1.

The structure of information theory 10



However, its valuye for general applications beyond those
anticipated by Shannon appears to be rather limited.

2. INFORMATION WITHOUT PROBABILITY.

In recent years some information theorists were not com-
pletely satisfied with probabilistic information theory. The mo-
tivation for their dissatisfaction was, of course, different
from that of statisticians and philosophers. Although the
axiomatics of information theory was considerably refined
and weakened, the natural question was raised whether one could
develop an information theory without involving the concept
of probability (distributions), at least in the basic axiomatic

structure. The contribution by R.S. Ingarden and K. Urbanik 22,

Ingarden 23,24 answered this question affirmatively. It was the
first step to challenge the hitherto accepted view-point that
information theory is a branch of probability theory which is
also reflected in the organization of textbooks on probability
theory (see Rényi 25). Interestlngly enough, the basic motivation
evolved from certain experimental situations in physics where it
appeared to be meaningful in some situations to talk about in-
formation regarding the state of a system (e.g. the entropy of
some macroscopic system) although its probability distribution

is not known.

Formally, Ingarden and Urbanik achieve to define H (the
entropy) directly on a pseudo-metric space of finite Boolean
rings (of events) satisfying convenient properties of monotoni-
city and continuity. A. Rényi 5 claimed.that these results can
be achieved by using Shannon's measure in terms of a uniquely
defined conditional probability measure which follows from the
Ingarden-Urbanik technique so that defining information with-
out probability inevitably leads to inbroducinq probability at a
later stage. Rényi's straight-forward conclusion is that the

Information without probability ' 11



information cannot be separated from probability. However, this
misses the real point. First of all, as stated before, in some
experimental situations it makes more sense to start with some
basic knowledge, experience, evidence of the experimenter on
the state or movement of a system (physical, biological or any
system which is subject to experimental control) rather than
specifying probabilities in terms of which information should
be defined. Second, in a more general context of human decision
making or drawing inferences from observations it is often

the case that information processing precedes probability eva-
luations in betting on the future and making predictions on
uncertain events. Most reasonable persons would deny that si-
tuations of this kind are comparable or even identical with
random experiments - as probabilistic information theory does

suggest.

Significant work has also been done by J.Kamp& de Fériet
and B. Forte (see Kampé de Fériet ol for a summary aﬁd expo-
sition of his results) on constructing information measures
without using probabilities. Information is defined as a
g-additive, nonnegative measure (invariant with respect to
translations) on a monotone class of events:f, retaining its
customary nature of 'surprise value' as in probabilistic in-
formation theory. The system basically rests on three as-

sumptions:

(y 1:F = R*, where R* is the extended real line [0,=].
The second is a monotonicity assumption in the form:

(2) [(a,B)ef =¥, Bca]=d>1(a)<1(B), A,Bef.
Hence, given the zero element o and the unit element S intf,
we have naturally for any'Aeff>

O<I(S) = Inf I(A)<Sup I(A) = I(o)<=.
Ae Y Ae ¥

(2) already suggests the nature of information as a 'surprise

Information without probability 12



value', in particular I(S) = I(o) = +=», so that information
derived from the sure event is zero, the information derived
from the impossible event, provided it happens to occur
('surprise'), is infinite.

An additional assumption imposes the condition of mono-
tone continuity, i.e. for a countable sequence of events

{An, n=1,2,...} we have either

(3) A, cAa, => A= \1J acefor

A 1€ An::—> A= /1\ Ane‘j’

which implies, for information defined, as in (1) and (2):

(AT A Al T(a) ¢ I(A)

(2,cf A +A] =PI(A)) + I(A), known as monotone

sequential continuity.

In particular, we have a similar property (as in probabi-
listic information theory), i.e. for probabilistically inde-
pendent pairs of events Anajﬁ,n = T, 2p0mnd

I(QAH) = 21: I(A).

An immediate consequence of assumption (2) is that in-
formation is of Inf-type, e.g. I(ALJB)gInf[I(A),I(B)]A,Bej’so
that I(AU B) = F[I(A),I(B)] where F is a suitable monotone
function. This motivates the introduction of a partial ope-
.ration T of composition I(A)TI(B) = F[I(A),I(B)] which is fa-
miliar from the theory of partially ordered algebras and its

representation by functimnal equations. since f can be com-
pleted to a o-algebra we have I[G A l=$ I(A_),A ejz/%.A =Q,
7 0y n n 1 n

hence T is o-composable. T then satisfies well-known algebraic

Information without probability 13



properties for defining an abelian semigroup (see Fuchs 28,

Chap. 10). It is not difficult to show the connection bet-
ween information measure and the underlying algebraic structure.

Let T be defined here in terms of the union U , and define
a dual operation T* in terms of intersection /) . The presen-
tation of partial operations in terms of the more familiar
operations U and N proves to be convenient in case of forming
ordered groups generated by T. We require that the existence
of T implies a unique T#*, and (T*)* = T, by definition.

The following properties hold for any A,Be ¥, T defined,
and provided ATB or AT*B exist in j’.

P.1:  Ae¥ =) [AT*A = AsATA = A]for all acf.

P.2: ATB = BTA, and dually for T* for all A,Bef.
(commutativity)

P.3: (ATB) TC = AT (BTC), for all A,B,Ce f , and

dually for T#*, (associativity)

P.4: ATB => AT* (ATB) = AT (AT*B) and dually for T#*
(distributivity)

Define AT*B&G= A <B and '< ' means 'not more probable
than' a relation of qualitative probability.

v Then it is relatively easy to see that the properties

P.1 - P.4 will make S a lattice-ordered algebra which is also
distributive, and hence a Boolean algebra endowed with a binary
relation <-.

Note that it presents no great difficulties to invoke
continuity properties for T* so that J becomes a topological
Boolean algebra (in the order topology). Since T is defined

Information without probability 14



in terms of U it is then easy to verify that monotone continuity
is equivalent to continuity of the partial operation T and
any information measure defined is o-additive onY .

It is therefore interesting to note here that the intro-
duction of a partial operation suggests certain assumptions
about the qualitative ordering in a partially ordered algebra
so that information measures are compatible with this. ordering.
In terms of this construction it would then appeal to be most
natural to present information measures as Boolean homomorphisms
on j’ (see Sikorski 29).

Finally, we remark that due to the nature of information
as a ‘'surprise value' the compatible information measure is
order-reversing (antitone) w.r.t. qualitative probability
rather than order-preserving (isotone).

The dual properties of T and T* can be shown in the re-

presentation of '<' in ‘f by (information) measures. Since T
is commutative it follows that I(A)TI(B) = I(ATB) = T(I(A),I(B)),

let I(A)TI(B)é=> I(A)>I(B). As defined AT*B¢ Ac B& A c B
in this case yielding AT*B = A, and conditions for T#* are re-
formulations of axioms for a partial order <. Then ,
I(ATB) = I(A)TI(B)<=> I(A)<I(B)&=> AT*B, by strict compatibi-
lity with A< B.

3. QUALITATIVE INFORMATION AND INFORMATIVE INFERENCE.

Only in very recent time, motivated by related develop-
ments in (subjective) probability and measurement theory (see
H.W. Gottinger 30) one has shown some interest to introduce
qualitative information as a primitive notion and to show
whether and under which conditions we have A<:B&= I(A)<I(B),
for all A,Bef where the binary relation '<:' stands for 'not

more informative than'. Such a problem is genuine to measure-
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ment theory.

We should emphasize here that the problem of compatibili-
ty between a qualitative information structure {s,¥ .,<:y and
a quantitative structure <s,Y,1> is important in view of
various applications. In behavioral as well as in natural
sciences we find ample experimental evidence that there is
often no direct way in constructing information (or proba-
bility) measures but only indirectly via a qualitative order-
ing of events, propositions, statements, etc., according
to qualitative information (or qualitative probability). It
also comes closer to the procedure of how individuals or
groups actually evaluate information. Hence it is natural

‘to interpret qualitative information in a subjective sense.

An eiaborate axiomatic system of qualitative informa-
tion (consisting of 15 gqualitative axioms) has been proposed
recently by Z. Domotor 31). Postulating an infinite Boolean
algebra of events:f he establishes his qualitative informa-
tion structure by endowinq:f with an algebraic independence

relation 'Ul ' and the familiar order relation =i.

Hence, we may introduce a binary relation <: on the
Boolean algebra of eventsff (rather than on the set of par-
titions as in case of entropy) with the intended interpre-
tation:

A 5: B means that event A does not convey more infor-
mation than event B. Then one is interested in necessary and
sufficient conditions to have AZ:B&= IP(A)ﬁIP(B) for all

A,Be ' F.

The results will lead to information measures in the
standard information-theoretic sense. It has been the first

attempt so far to derive information-theoretic notions,

Qualitative information and informative inference 16



without recourse to probability theory at the primitive,
qualitative level although the link to probability theory
becomes obvious at the level of representation by informa-
tion measures.

By restricting to finite structures the results will be
somewhat weaker, e.g. non-unique representations are possible
and we will examplify this situation next in view of defining
qualitative entropy structures.

For deriving qualitative entropy structures the well-
known fact is used (see 0.0re 32) that any finite structure
{s5,F,<:) gives rise to a finite partition - the set of
possible partitions is called a class of experiments - so that
for any two partitions LPTAPLE (one of which is finer or coarser
than the other) a qualitative ordering of partitions can be re-
presented by the entropy measure, e.g.

115:124:::; HP(I1)_<_HP(12) .

Then Ty<:m, means that experiment L does not have more entropy
than the experiment Tye

One could consider '<«' as a linear ordering,e.g. being
reflexive, transitive, antisymmetric and connected but these
order properties are obviously insufficient to guarantee the
existence of a function HP.

Along the lines of Z.Domotor we develop qualitative
entropy in an algebra of experiments.

First of all, we need some technicalities regarding par-
titions or experiments. Given two partitions Tie uzsn we say
that », is a finer than x2(11912) if for all Aex, there exists

1
at least one Bex, such that A ¢ B.
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Example
{¢131A§,ABE,ABC} = {¢IZIA§IAB} <’ {¢IRIA}'
Dually, we can define a coarser than relation.

One can introduce some lattice operations in the set
of partitions.

We observe that if LB and t, are partitions of the basic
space S then also LETR P and T, + x, are partitions in I and
the binary operations '.' and '+' determine the inf (g.l.b.)
and sup (l.u.b.) respectively, hence satisfy the definition
af a lattice.

Define x_,°=x

1° %2 {ANB : Aer, & BEIZ}, or, in general,

1

s A exy for all i}. Then = -°=x

i 1°%2 is the

.-‘ﬂ
11
oy

™
o
’d-

i=1

greatest experiment finer than both Ty and L such that

e C‘ ® °
(1) Ry, S wy and LI =3 PV
(1i) n<x, and = & o= T C My cn,.

Dually,define the sum of experiments by

K1+12

or generally

L]

{AUB : Aet1&Bexz},

Lol 2
]
i
o
e

' it all Ai are overlapping events in

11_U uzu ool ln}.

ot is the smallest experiment coarser than both

11 and = i.e.

2'
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(i;i) %y g-x1+12 and Ky S Rotx

172

(iv) "y € and 1, ¢ =pr,+x, c %

Finally one defines the partitions o = {@,S} as the
maximal experiment, and the partition U = {{s} : seS}uU {@}
is called the minimal experiment. We have U €& x € o for any
nell. The following operations are obvious:

T *°0=1 and = + 0o
T * U=U and = ¢+ U

(o)

il

Ko

In order to extend the lattice structure, induced by these
operations, to a full algebraic structure we need to introduce
a relation of independence on experiments. Such an indepen-
dence relation is\éértainly natural in a probabilistic con-
text, but it is essentially an algebraic property, and applies
directly to qualitative (probability or information) structures
(see S. Maeda 33 ).

Let (S,I, c°) be the lattice of experiments, then
%, et,ell are said to be independent,'n1ﬂ.12, if ABxSvAxB, where
v means isomorphic to.

Then L satisfies the following properties for all
LTRSS 2N ells

(1) odl g,

(2) =l x = =0

“(3) 11JL12<:¢ 1211 Tas

(4) = llx, & x, ¢y x1ﬂ.x3

(5) R1ﬂ.12 & Izﬂ.13=;>(x1 . nzﬂ.n3<==§ 111L12 . 13),

Qualitative information and informative inference 19



(6) xHLt&}2ﬂ1=$t1'lex,ifAUB==S,

Aex,, Betz.
(7) 11.11. LD 1'3 & Ty - 12-“- Ty => (x1.ll- r, =) tz-u-t3),

(8) 11111 & nﬂ.12==b (z ° = o ni&=> LP '2)'

(9) x1ﬂ.12 & L 9{12::> ", =0

Furthermore, by applying the independence relation to n,
we get the set-theoretic operation of complementation out of
it, e.g. we then have for any Aex:

A={B:AUB=5 & AlLB for all A,Bex}. Extending this
to partitions define

* = 1T {U} with x,Ax, = (3, » 7,07, «llu, A being
Ueu 17 "y 1 2

a 'meet~operation', in I. Then we get a Boolean algebra for a
collection of all elements of I for which complements do exist
in this way. Therefore, in general, the introduction of Il into
I only induces a Boolean algebra 8 firmly embedded in 1.

Then one finds conditions under which an entropy function
(quasi-entropy) exists on the entire 1.

The main characteristics of a finite qualitative quasi-

entropy structure can be collected in the following proper-
ties.

Let (S,H,g:,ﬂ.) be a qualitative (quasi-)entropy structure,

and A,B,Ce S be elements of any partition = in 0.

M o, = LPSEE I
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(2) ",%3%, and TpliRa=d w,<ixg

RS X4<t®, and not PSSR

: LI ,2¢== 315:12 and u2§:x1, = is an

equivalence relation, -

(3) o<:x for any =el and o<:x if n:E, where E={A,A}
denotes Bernoulli experiments.

(4) o<:{A,A}<:(A,AB,AB}<:{A,AB,ABC,ABC)

€:...23U0 &= Ue...c{A,AB,AB}e. . .co.

(5) t1§:n24==9 LIRS LR PRS ¥ if = AL LERAPY

(6) *92:Uy and n,<:0, =5 RytEy2:U,-U,
if n1Jl t, and U1.u U,.
(7) my=%, and Ry Wglin, = x,cwoce
if K3JL K]’KZ'

(8) If for all UO,U1,...,Un,no,x1,...,x

n

ig M it is true that

mn =, =
E

A,

r,2:U, for all i,0<i<n and
* ‘ i<n

i ﬁ.,ni_iL & U
i n* i<n

2 i
n i

1A =3

:> Ll
Then a2 U
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Condition (8) is a kind of consistency condition for the
representation of a qualitative structure and it is due to
D. Scott 340 This condition essentially forces N to be a

Boolean algebra in the relevant elements being complemented.

Haviﬁg stated some properties in a qualitative entropy
structure one is led to represent this structure by a com-
patible entropy function. The situation is analogous to the
problem of representing qualitative probability by compa-
tible probability measures.

Suppose (S,H,g;,il ) exists. Then there is a (quasi)

entropy function H:N+Re, representing the structure such that

for all 11,126H;

(1) mycix, & Hx,)<H(x),

(1) xiiL 1, =P H(x x,) = H(x,)+H(x,),

(111) = gx, ——— H(x,)<H(x,),

i

(iv) H(o) = 0,H(0) = =,

(v) H(x) = 1, if #=E and E denotes all
equiprobable experiments in 1.

Conditions (i) - (v) are appropriate adjustments of
similar conditions used for representation theorems of qua-
litative probability, hence basically the same proof tech-
niques can be used for proving the theorem (see D. Scott 34,
H.W. Gottinger 30). Condition (ii) constitutes the most im-
portant property of entropy, e.qg. additivity. Domotor 31 pro-
vides a sufficiency proof of the theorem that is in the spi-

rit of Scott's result, it involves an interesting technique.
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Let us sketch the technique by translating everything
into a geometric picture.
We associate to every partition x a vector of partitions %,
all of these are to be cohsidered linearly independent and
Xe V(H) wEere ﬁ i1s the basis of the n-dimensional vector
space V(N) depending on the number of linear independent %'s.
Then mike N a finite subset of V(E) and extend the ordering
to V(nm). Scott's result on representation of ordered,finite-
dimensional real vector spaces by linear functionals imme-
diatelyhapplies and hence we can find a linear functional
¥ v(m) - Re and a compatible functional y:I + Re satis-
fying properties (i) - (v) such that v({a,A}) > o and the
quasi-entropy function is normalized by

H(x) = ¢¥(x}/ v({a,A}).

If we want to establish a connection between the Shannon-
Wiener entropy and entropy derived from qualitative entropy
structures it would be necessary then to investigate the inter-
relationship between qualitative probability and qualitative
information. The reason is seen in that the entropy function
decomposes itself into representations of probability and in-
formation. The result obtained so far is rather weak since
the prefix ‘'quasi' should indicate that the entropy represen-
tation is not unique. It is an open problem to find unique
entropy functions derived from qualitative structures. It is
rather obvious that the answer to this problem depends on im-
posing further structural conditions on the relations ' {| °
and ' <: ' as well as on the interaction between both. There
also have to be interconnecting conditions between qualitative
entropy and qualitative probability structures. However, the
axiomatic setup for this is awfully complicated and we will
not dwell upon this question here. Some hints in this direction
have been provided by Domotor.
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The results can be extended to conditional entropy in
which the underlying qualitative structure will be a dif-
ference structure. No further technical difficulties are
encountered.

4, QUALITATIVE SEMANTIC INFORMATION AND INFORMATIVENESS.

It has been observed by Shannon 7 that the 'semantic
aspects of communication are irrelevant to the engineering
problem'. As noted earlier, a semantic theory of information
along Shannon's line has been provided by Carnap and Bar—Hillel’g.
Unfortunately, the latter theory does not cover aspects that are
important in semantic information-processing, e.g. those re-
lated'to informativeness, information-content of statements,
propositions, sentences, etc. Surprisingly, not much work
has been done on this over the last two decades.

R. Wells 343 made a step into the right direction and de-

veloped a semantical theory of informativeness based on qua-
litative ‘comparison of propositions, sentences according to
information-content. One may again point out that the nature
of 'unexpectedness' covers only one aspect of information,
another aspect would be to order sentences according to in-
formativeness provided they are logically true. For example,
‘the Pythagorean theorem is more informative than the pro-
position 7 + 5 = 12'., We will pursue the latter aspect in

a modified form, substituting logical truth of a sentence by’

'‘occurrence of an event'.

In what follows we will outline one approach (GottingerB’4

)

toward semantic information which is quite different in spirit
and method from the original Carnap-Bar-Hillel approach.
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It is basically assumed that information is prior to
probability, and hence is more fundamental than probability
justifying a Separate treatment.

This approach is built upon the following fundamentals:

(1) We deal analytically with 'information' as we deal
with events ag elements of an abstract algebraic structure,
similarly as events are treated as 'undefined termS' in a
Kolmogorov-Halmos probability algebra,

(2) we confine the notion of information to information

interested in making oredictions on future events,

(3) Qualitative information ig introduced as a binary
relation in an information structure and is meant as 'not more
informative than' W.r.t. occurrence of the respective event,

(4) A qualitative (subjective) information structure
generates a qualitative (subjective) probability structure
by a Boolean homomorphism. This is to make precise the idea
that a person will evaluate 'qualitative probability! only
via qualitative information.

{(5) The theory proposed here is entirely based on a
theory of inductive inference.

(6) The ultimate goal is to measure probabiliﬁy in
terms of information and not vice versa as suggested by
standard information theory.

Note that our approach will exhibit an information
measure which is nonnegative and bounded on the unit inter-
val, and therefore ig quite different from the definition
of information as @ surprise value. Consider quantitative
information as a nonnegative normed measure on a Boolean
algebra of propositions (the information structure) to be
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a probability measure on a Boolean algebra of events.

Definition 1: The triple (S,:r,go is called a quali-
tative (subjective) probability structure (QPS) if

(1) < is a partial order (p.o.) on ¥,
1f for A,B,cef, alls,sllc then
(2) A<B&=> AUCSB U C,

(3) O0<A, Ae'f and J O, 0<¢S,0 being the nullevent
and S the universal event.

Now we assume that 'f' is a derived concept and that
tHe basic concept will be a relation ':' (gqualitative infor-
mation) defined in a family of information sets or informa-
tion structure To generating an algebra of events. In order
to consider a qualitative (subjective) information structure
(QIS) we need the following

Definition 2: (E,To,g)'is called a QIS if

(1) g 1is a'particular order relation in To to be
specified.

(2) 1f£aA,B,CinT_,AllB,BlC

of = then
A<B&=H AUCSBUC

(3) For any fixed XeJ, O,<A for all ReT_,

=X
for any fixed Ye7, Oy<Eys

where E= U(A,B,C,...), and QX means neg-information with

respect to some event XeS,E, means universal information

Y _____

with respect to some YeT.

We say a QIS H-generates (——§—9 ) a QPS, Togéu~—§~+ H(2)
if there exists a Boolean homomorphism H that is order and
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structure-preserving with respect to the operations A, Vv, -
(finite meet, join and complementation).

Suppose we want to have
A¢B =) A c B and A¢B =3 H(A)wH(B),

so that qualitative information may be put in terms of in-

clusion.

However, here we face the difficulty that A,B may con-
tain different semantic information, and the inclusion rela-
tion may not hold. One way out of this involves the con-
struction of a standardized structure T, order-isomorphic
to To. We need the following

Definition 3:

(1) H : Qy * X=0 (neg-information generates a
quasi-null event)

(2) H : Ey + Y=S (universal information generates a
quasi-sure event).

The relation = indicates qualitative equiprobability

Then (S,¥F,<) is considered to be a qualitative probabi-
lity structure which does not permit, in its representation,
strictly positive measures. By this process one is able to
derive a qualitative standardized information structure
(Qs1Is) (I,T,§) order-isomorphic to a QIS with L being the zero
and I the unit element such that LI =2 LcI. This type of
ordering corresponds to ordering of attributes according to
Boole's First Law resulting in a Boolean interval algebra,
and in which L, I constitute lower and upper bounds, re-

spectively.

In the next steps we are going to show that imposing on T
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some weak order conditions will make T a lattice—ordered al-
gebra being equivalent to some kind of Boolean algebra.

One interesting formal aspect of this approach reveals
an exposition of binary relations that play an important role
in the study of topological structures, called topogeneous

structures according to A. Csaszar 2B

Let (I,T,é) be a QSIS. Then < satisfies the properties
of a semi-topogeneous order (STO) if '

(1) LgL, IgI for L,IeT, hence g is reflexive,

(2) agB => acB ,a,BeT
(3) aga'§8'58:==$ agB, a'®,B'eT

(4) Furthermore, g is supposed to be symmetric, i.e.

there exists a complementary order g- with (é—)_=§

such that (1) - (3) can be reformulated in terms of
<+ for example aé's =3 I-BgI-a.

Conditions (1) and (2) are rather weak, (3) is a kind of
transitivity, (4) has far-reaching structural consequences.
Finally, it is shown in Gottinger - that a STO in (I,T,g) can
naturally be extended to a topogeneous order (TO) provided the

following condition is satisfied:

m m

- n n
(5) o358y => [y o35 {34858 (Vo5 5¥e850

i.e.
the ordering is preserved under lattice operations.

The main result can be obtained after several interme-
diate steps (see Gottinger 3'4).

Let < be a STO generated by a semi-topdgeneous structure T.

For < to be a symmetric TO it is necessary and sufficient that T
is a Boolean algebra.
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Rough sketch of proof. &= is obvious since every

Boolean algebra implies a symmetric TO via its partial

order, == 1. Complementarity. It is known that to every STOg
generated by T there is associated a complementary order <
generated by T 5 I-t(teT). Let a&'g,a'i-ﬂ', for a symmetric
TO@ each of the following statements is true:

(M [ag—B & a'gB']:==$ a Aa'<BAB’

(2) laé-B & a'éB']:‘—‘—”‘—) a V a'<B v’

if T is a lattice. T has a L and I element and therefore via
finite join and meet operations T is relatively complemented

and hence complemented.

2, Distributivity. It can also be shown that T is distributive
since because of symmetry and (1) we have:
(3) T - (Bve') = (I-B)A (I-8") g (I-a)A (I-a’)

I-(aVa')

and therefore aVv a'ésv B°® which coincides with the conclu-
sion in (2).

Applying de Morgan's Law we have

I-(ava') = (IAa)A(IAa'") =a Aa'" ,

likewise for I-(BV B8'). Consequently, 8 A B'"éa‘A a'"  and

there exists §_ such that we get

I-(a Aa' )=I Ala Va')=(IAa) V(IAa')= aya’,
analogously for 8, hence awva’cx< BvB"',
Similarly, (2) implies (1), namely again by applying de Morgan's
Law
(4) I-(BAB')=IA (B AB'") = (I-8)V (I-8")g(I~a)V (I-a')
= I-(ana').

All remaining properties can easily be derived, by analogy,

hence T is .a complemented, distributive lattice, i.e. a Boolean
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algebra.

On the basis of this and similar results it is possible
to obtain representation theorems in order to construct fi-
nitely additive information measures strictly compatible
with the 0IS. Standard measure-theoretic results by Horn
and Tarski el
regard.

» Kelley 2B and D. Kappos 39'can be used in this

Then every measure space (I,T,u) that exists by the re-
presentation will induce a probability space via a Boolean
homomorphism F. By the analogy of measures and Boolean ho-
momorphisms one can construct a mesure F ou = P whose pro-
perties are shown in the diagram below:

B.HOM H
(S, 5,¢) ¢ » (6,7 0%)
O.1isom.
NP
(xr,7,%)
N 4 /
B.HOM F v
(Sr:frp)l\ (I, ,u)
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5. INFORMATION IN STATISTICAL DECISION THEORY.

The structure of a statistical game can be outlined as
follows. The statistician plays a game against nature, at
his disposal is a class A of possible actions which he can
take (or decisions he can make) in view of the unknown state
of nature (nature's pure strategy) seS. (By a quick change

of notatibn we now consider S as the set of states of nature.)

He may decide to take an action without experimentation
(e.g. without 'spying' on nature's strategies) and for doing
this may incur a numerical loss L(s,a). The possibility of
performing experiments does exists, thus reducing the loss
by gaining at least partial information about s. Therefore
the concept of information in this context is naturally tied
up with payoff-relevance, any bits of information that do
not reduce the loss are considered irrelevant.

What prevents the statistician of getting full know-
ledge of s is the cost of experiments. This cost may assume
specific functional forms, but, in general, is considered
to be proportional to the number of experiments. Technical
definitions are needed in order to look at the general
structure of a statistical game. Let Z be the space of out-
comes of an experiment, then a function p is defined on ZxS
such that for a fixed seS Pg is a probability distribution.
The triple & = (2,5,p) is sometimes referred to as the sample
space, in general, one does not distinguish betweend and 2
and both may refer to sample spaces. For every subset AC Z,
the probability of the event A is given by

p_(A) =1 p_(z),
S ZeA -

and P satisfies all properties of a probability measure. A

function deD, defined on Z mapping ZEEEgéA is called a de-
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cision function such that d(z) = a.

A risk function 1is represented by expected loss, i.e. a
function R on SxD:

R(s,d) = £ L(s,d(z))p_(2z) = E[L(s,d(2))].
zZed

Now a mixed or randomized strategy for nature is the
same as a prior probability distribtuion (for the statistician)r
on the set of states of nature S, denoted by‘ueJ“.
The problem of collecting information in a statistical game

may be generally posed as follows: Does there exist a parti-
tion of Z such that every possible risk attainable with a
complete knowledge of zeZ is also attainable with only the
information that z belongs to a set of this partition? Such
partitions, if they exist, are as informative as the entire
sample space. They are given by the principle of sufficiency.

We are concerned with information provided by an expe-
riment. An experiment X is completely described by a random
variable associated with the sample space (%,S,p) giving
rise to a set of conditional probability distributions for
every possible parameter (state of nature) seS. X might be
of fixed sample size or of a sequential type where the ex-
perimenter may collect observations finitely many times. To
set up the problem assume yoﬁ (the experimenter, the statisti-
cian or generally the decision-maker) are confronted with
an uncertain situation where you wish to know about the true
value of a parameter (state of nature) seS. Of course you can
make some wild guesses, but you can only gain knowledge about
the true state by experimentation. Let p be some prior pro-
bability distribution of the true state s which indicates
the amount of uncertainty or ignorance on your part. (Adopt

a Bayesian viewpoint that such u always exists and is non-null.)

Information in statistical decision theory 32



Then the information provided by X may be verbally ex-
pressed as the difference between the amount of uncertainty
you attach to the prior distribution and that amount of your
expected uncertainty of the posterior distribution (after
having performed X), i.e. it reflects the residual value of
your uncertainty (reduced).

‘More technically, let M be the set of prior probability
distributions over S (i.e. the space of randomized strategies
for nature), define u as a nonnegative, real-valued measurable
function on M which for obvious reasons should be concave,
i.e. decreasing with increasing observations. Then u{u) re-
presents the amount of your uncertainty (before experimen-
tation) when your distribution over S is u. In some cases
the uncertainty function u is just equivalent to a risk
function in a statistical decision problem, in other cases
it can be directly assigned. Under specific circumstances it
can be identified with the entropy function or can assume
some other form that is compatible with its properties of
nonnegativity and concavity. Now performing X and observing
values of X you may specify a posterior distribution ¢ (X),

then your measure of information I is determined by
I(X,u,u) = ulw) - E [ule(x))|u]

where ¢(X) is usually obtainéd by an appropriate application

of the well-known Bayes' theorem to get the posterior distri-
bution (see Blackwell & Girshick 6.Chap-3y de Groot 40'41)~

It is usually assumed for reasons of non-triviality
that most experiments provide information and that any ex-
periment being more informative than another is also pre-
ferable to the other. Therefore, for any given uncertainty
function, I is nonnegative, and also for reasons of conve-
nience, continuous.
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As we clearly recognize this measure of information pro-
vided by an experiment relative to the specification of u and
u naturally evolves from a model of statistical decision.
Usually the determination of the uncertainty function hinges
upon the loss structure in a statistical game, this becomes
clear when we describe comparisons of experiments according

to informativeness.

6. COMPARISON OF INFORMATION.

In the relevant literature of statistical decision theory
comparison of experiments are sometimes confined to those which
can be represented by Markov matrices (in this context as in-
formation matrices). This is very natural in terms of viewing
it in the context of a statistical game. Assume the experiment

E produces N distinct value €qreces® (signals, observations)

N

and let be S = (s,,...,S_). Then the experiment E can be re-
1 n

presented by an nxN Markov matrix P = (pij) associated to the

sample space (Z,S,p) such that Pyy = P

_si({s:E(z) = ej})’pijia

and L pij= 1 for each {i.
]

Henceforward, for reasons of simplicity, we adopt an
earlier definition of D.Blackwell - in terms of defining ex-
periments as random variables. Incidentally, Blackwell's de-
finition is one of the first better known definitions of 'com-
parative informativeness' in the context of statistical de-
cision theory. EkEvery ekperiment E associated to a sample
space generates a risk function. Then, according to Blackwell,
an experiment E is more informative than another experiment E®
(the set of experiments being partially ordered) if the risk
obtained from E 1is at least obtainable also from E°'.
E>E'4&—) R(E)<R(E'). In other words, the numerical risk for E!
is at least as large as that of E. If the distribution over S

is known then comparative informativeness hinges upon the loss

Comparison of information 34



structure of the decision problem. This immediately gives

rise to an economic view on the evaluation of information.
There were further generalizatidns and improvements of
Blackwell's results in recent years, in particular, in con-
nection with the foundations of statistical inference ('in-
formative inference') (see A. Birnbaum 42); these results

give the main motivations for economic studies on the subject
(see C.B.McGuire 43 and Gottinger 44). This view has been
originated and consistently pursued by J. Marschak*). His
‘value of information' V(n) (attached to experiment n) w.r.t.
any probability distribution u over S (his space of events
uncontrollable to the decision maker) and his benefit function
b : SxA + Re is just the converse value of Blackwell's risk R(E),
this is due to the fact that economists prefer to talk about
benefit or utility, whereas statisticians are more pessimistic
and talk about losses. Note, again, that'the risk function is
completely specified by a probability distribution over S and A
a loss function on SxA.

One can easily see the strong agreement between information
provided by an experiment and the value of information by con-
sidering an experiment as a Markov matrix. In this case null-
information corresponds to identical rows in the Markov ma-
trix, i.e. any observations made through an experiment is in-

dependent of any state of nature.

Accordingly, the risk function obtained by the less in-
formative experiment is larger in value than the risk function
obtained by the more informative experiment. It is obvious that
the dual statement holds if we deal with an economist's be-

nefit function instead of a statistician's loss function.

%
) See next Section
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We have learned of different, but interelated characte-
rizations of an experiment, either as a partition of Z, as a
random variable and in particular as a Markov matrix. Compara-
tive informativeness in terms of partitions of Z given by the
principle of sufficiency has also been studied by Blackwell &
Girschick ® (Chap.8). |

Let X and Y be two experiments whose values are in the

sample spaces, denoted by Z, and 2

X v’ respectively.

Then experiment Y is sufficient for experiment X if there
exists a nonnegative function h on the product space ZxxzY

satisfying the following relations

(1) fx(xls)z Zé h(x,y)fy(yls)du(y) for seS and xeZy,
(1ii) zf hix,y)du({x) = 1 for ysZY
X

(i1i) O< ,f h{x,y)du(y) <> for xeye.
Y

h is a stochastic transformation from Y to X. For each fixed

value yeZ, the function h(:,y) is a generalized probability

Y

density function on 2 Since this function does not involve

x.
the parameter s, a point erX could be generated according
to the generalized probability density function by means of

an auxiliary randomization.

Thus, Y is sufficiéht for X, if regardless to the value
of the parameter s, an observation on Y and an auxiliary
randomization make it possible to generate a random variable
which has the same distribution as X. The integrability con-
dition on h in (iii) is introduced for technical convenience

only.

If Y is sufficient for X then the statistician is strong-
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ly advised not to perform the experiment X when Y is available.
In fact, one can prove that the sufficient experiment Y must
be at least as informative as the experiment X.

Suppose that experiment Y is sufficient for the experi-

ment X. Then, for any uncertainty function u and any posterior
distribution ¢

Elu(${X) > Elu(d(¥))]

The proof of this result is straight-forward and can be found

in M. de Groot 45.

7. ECONOMIZING INFORMATION.

Despite strong trends in economics and related behavioral
science in recent years to use basic results of information
theory for their purpose some serious doubts have been ex~-
pressed concerning the usefulness of H_ for application in

%
economics and for decision-making in general. ) Among others,

47
J. Marschak

us anything about the benefit of transmitting information

arques that Shannon's entropy does not tell

since it assumes equal penalty for all communication errors.
What he instead has in mind is a concept of behavioral in-
formation processing in an economic system, in particular as

*) R.A. Howard 4R has put it this way: '...If losing all

your assets in the stock market and having whale steak for
supper, then the information assciated with the occurrence
of either event is the same. Attempts to apply Shannon's
information theory to problems beyond communications have,
in large, come to grief. The failure of these attempts
could have been predicted because no theory that involves
just the probabilities of outcomes without considering
their consequences could possibly be adequate in describ-
ing the importance of uncertainty to a decision maker.'
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related to an economic theory of teams (Marschak and Radnerqs).
From an economic viewpoint information may be regarded as a
particular kind of commodity which will be traded at a certain
price yielding benefits for consumers and causing costs for
producers. Hence, the economic theory of information (still in
its infancy) is an appropriate modification of the approach
used in statistical decision theory. To put it in other

terms, here we are interested in the economic aspect of use-
fulness of information (based on some kind of utility or loss
function) rather than in the (original) engineering viewpoint
of transmitting and controlling information flows through a
large (noisy or noiseless) communication channel. As a di-
gression more recently some information theorists tried to
remedy the flaw or restrictiveness of 'equal penalty of all
communication errors' by weighing entropy in terms of utility.
For any partition =z of Z they attach to every Aex a utility

such that the entropy is given by H(x) = & U(A)oP(A)°Ip(A)
Aex

(see Belis & Guiasu 49 and for a further elaboration Guiasu50

).
U(A) satisfies well-known properties of expected utility, i.e.
it is for a given preference pattern on x, unique up to po-
sitive linear transformations. It is clear that this proposed
measure makes sense if the amount of information to be trans-
mitted through a channel exceeds its upper (physical) bound

so that a subjective evaluation procedure (via a utility
function) reduces irrelevant information. In this approach
there is no obvious relationship between the utility of the
message and the information derived from the message, and
'therefore both should be measured separately. Let p1 be

the message 'you will receive five dollars', and let P,y be
'you will receive five dollars and you will be shot'. Clearly,
Py is at least as informative as P, but Py is hardly as de-
sirable as P4+ One could even attach utility to the sources so

that the encoder could select only those sources which are
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useful to the encoder (see Longo 51). The approach has been
generalized by introducing explicitly a cost function, that
is really'a tradeoff function being dependent on the length
of code words associated to the message {letter) and on the
utility of the message. Clearly, the cost is increasing in the
first variable but decreasing in the second. The tradeoff
function is uniquely fixed as soon as the utility and the
cost of coding are determined.

Assessment of the tradeoff énd‘utility function is treated
separately. An optimization principle is involved by mini-
mizing the expected tradeoff so determined.

Let us now sketch the basic ingredients of Marschak's

approach as discussed in detail in Marschak 47
52,53,54 '

, (see also
Marschak )+ Information processing is defined as

P ==<X,Y,n,x,r‘> swhere X is a set of inputs, Y is a set of
outputs, n a transformation from X to Y,x is a cost function
on X, and v a time~delay function on X. If you consider, as
Marschak does, information as an economic good there is suf-
ficient motivation for looking at the economic system as a
mechanism (machine): producing and processing information
over time which involves costs and delays. In this respect,
information processing is indistinguishable from the pro-
cessing of physical commodities in, say, a transportation
network. {( A convenient theoretical framework for studying
such processes would be the well-established algebraic theory
of seqguential ﬁachines, and Marschak's approach motivates

a study of these machines for economic information processing,

please see in this regard Gottinger 55.)

On the other hand, Marschak's approach is firmly embedd-
ed in the general statistical decision model. We might then
gonceive n as a stochastic transformation from the random

set X (the space of events, non-controcllable to the decision-
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maker) to the random set Y (the space of available and feasible
decision acts), n:X » Y then establishes a strategy (action).
Up to now we have described the particular case of a one-link
processing chain, more generally, we may conceive a (time) se-
quence of information processing P1,...,PN such that for every
n=1%,...,N we write p? = <Xn,xn_1,nn,...> and

n1:X1 -+ Xz,...,nn—1 : )(N“1 > XN describe experiments with
nature, for example. Hence Xz,...,xN may be referred to as

sets of observations or data, whereas nn:xN > XN+1 forms a
strategy of the decision-maker. A chain of information pro-
cessing is an information system d la Marschak. Some extensions
of this viewpoint with respect to particular organizational
forms (such as multi-person control systems, extensive games

and dynamic teams) have been recently given by the author 56.
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