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The Chain Store Paradox

by
Reinhard Selten

~

It is the purpose of this paper to present the exarnpleof a

simple game in extensive form where the aetual behavior of well

informed players eannot be expeeted to agree with the elear

results of game theoretieal reasoning. A story about a fieti-

tious ehaim store and its potential eompetitors is a eon-

venient way to deseribe the game. This expositionary deviee
should not be misunderstood as a model of areal situation.1)

In view of the story thc game will be ealled "the ehain store

game". The disturbing disagreement between plausible game be-

havior and game theoretieal reasoning eonstitutes the "chain

store paradox".

The chain store paradox throws new light on the well known

difficulties which arise in connection with the finite super-

game of the prisoners' dilemma game. A limited rationality

approach seems to be needed in order to explain human strategie

behavior. An attempt shall be made to discuss the possibility

of a "three-level theory of decision making" as an explanation

of discrepancies between game theoretic analysis and human beha-

vior.

1. The chain st~re game

Consider the following fietitious market situation:

A chain store, also called player A, has branches in 20 towns,

numbered from 1 to 20. In each of these towns there is a po-

tential competitor, a small business man who might raise money

at the local bank in order to establish a seeond shop of the

same kind. The potential competitor at town k is called player k.

Thus the game has 21 players :.~he chain store, player A and

1)Nevertheless the industrial organizat1on flavor of the story
is not purely fort1tious. I became aware of the problem 1n
the course of a conversation about the theory ofentry pre-
venting prices. I am grateful to professor A. Gutowsky of
the univers1ty of Frankfurt am Ma1n with whom I had th1s
very 1nterest1ng 1nterchange of 1deas.
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its 20 potentialcompetitorsthe players k with k = 1, ... ,20.

Apart from these 20 players the chain store does not face any

other competition, neither now nor in the future.

Just now none of the 20 small business men has enough owned

capital to be able to get a sufficient credit from the local

bank but as time goes on, one after the other will have saved

enough to increase his owned capital to the required amount.

This will happen first to player 1, then to player 2, etc: As

soon as this time comes for player k, he must decide whether

he wants to establish a second shop in his town or whether he

wants to use his owned capital in a different way. If he chooses

the latter possibility, he stops to be a potential competitor

of player A.

If a second shop is established in town k, then player A has

to choose between two price policies for town k. His response

may be "cooperative" or "aggressive". The cooperative response

yields higher profits in town k, both for player A and for

player k, but the profits of player A in town kare even

higher if player k does not establish a second shop. Player klS

profits in case of an aggressive response are such that it is

better for him not to establish a second shop if player A

responds in this way.

~

After this description of the fictitious market situation

which yields a convenient economic interpretation of the

chain store game, a more abstract and more precise description

of the rules must be supplied in order to remove possible

sources of misunderstandings. In this section we consider a

first version of the chain store game. For some purposes it

is convenient to introduce a somewhat different second version

of the game. This will be done in a later section. In both cases

it will be useful to assume that there are m potential com-

petitors, where m may be any positive integer. Nevertheless

it is convenient to focus attention on m = 20, since the game

changes its character if m becomes too small. The extensive

.
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form of the first version with m potential competitors will be
1

denoted by rm.

Rules for r;, the first version of the chain store game:-----_..

~

The game has m + 1 players,player A and Players 1, ..., m.

The game is played over a sequence of m consecutive

periods 1, ..., m. At the beginning of period k player k must

decide between IN and OUT. (The decision IN means that a se-

cond shop is established by player k.) Player kls decision

is immediately made known to all players. No further decisions

are made in period k if player kls decision was OUT. If his

decision was IN, then player A has to choose between COOPERATIVE

and AGGRESSIVE (both words stand for possible price policies of

player A in town k). This decision is immediately made known

to all players, too. Then for k = 1, ..., rn-I the period k + 1

begins and is played according to the same rules. The game ends

after period m.

.',.

Player Als payoff is the sum of m partial payoffs for the pe-

riods 1,...,m. Player Als partial payoffs and the payoffs of the

players 1,...,m are given by table 1.

.1.

I -,
Table 1: player Als partial payoffs and player kls payoff.

The game is played in a non-cooperative way, The players cannot

commit themselves to threats or promises. No binding contracts

are possible. Side payments are not permissible. The players are

player k's player A's player k's player A's
decision decision in payoff partial payoff

period k for period k

IN COOPERATIVE 2 2

IN AGGRESSIVE 0 0

OUT - 1 5
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not allowed to talk during the game.

I~I I~I I~!
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Figure 1:
1 1

The extensive form rl and the normal form of rl.

Player Als payoffs are above and player l's payoffs are below.

"CO" and "AG" stand for "COOPERATIVE" and "AGGRESSIVE". The

game begins at the origin o. Information sets are indicated by

lines which encircle vertices belonging to the same information

set. The player who has to make a choice at a given information

set is indicated by the appropriate symbol. - In the represen-

tation of the normal form, player Als payoff is given in the

upper left corner and player Ils payoff is given in the lower

right corner.

I -

1
Figure 2: The extensive form r2. The components of the payoff
vectors above the endpoints refer to the payoffs of players A,l

and 2 in that order from above to below. (For further explanations

of the graphical representation see figure 1).
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2. A first view of the paradox

In this seetion the ehain store paradox will be introdueed in an

intuitive way without making use of the formal tools of game

theory.
~

~

Let us foeus our attentionon the ease m = 20. Consider the si-

tuation of one of the player 1,...,20. Should he ehoose IN or

OUT? The ehoiee of OUT guarantees a payoff of 1. The ehoiee

of IN may yield a payoff of 2 if player A's response is COOPE-

RATIVE but if the response is AGGRESSIVE, then the payoff is O.

Consider the situation of player A.How should he respond to

a ehoiee of IN ? the COOPERATIVE response yields a partial

payoff of 2 and the AGGRESSIVE response yield a partial payoff

of O. In the short run the COOPERATIVE response is more advan-

tageous but in the long run it may pay to ehoose the AGGRES-

SIVE response in order to diseourage the ehoiee of IN.

There are two different theories about the adequate behavior

in the garne.One will be ealled the "INDUCTION THEORY" and the

other will be ealled the " deterrenee theory ".

The induetion theory: If in period 20 player 20 seleets IN,

then the best ehoiee for player A is the COOPERATIVE response.

The COOPERATIVE response yields a higher payoff. Long run eon-

siderations do not eome in, sinee after period 20 the garneis

over. This shows that it is best for player 20 to ehoose IN.

Obviously the strategie situation of period 20 does not de-

pend on the players' deeisions in period 1,...,19.

~
Now eonsider period 19. The deeisions in period 19 have no

influenee on the 'strategiesituation in period 20. If player 19

seleets IN, then the COOPERATIVE response is best for player A.

The AGGRESSIVE response would not deter player 20.
~

It is elear that in this way we ean go on to eonelude by in-

duetion that eaeh player k should ehoose IN and eaeh time player A

should use the COOPERATIVE response. The strategie situation
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in the remainder of the game does not depend on the deci-

sions up to period k. If it is already known that in pe-

riods k + 1,...,20 players k + 1,...,20 will choose IN and

player A will always select the COOPERATIVE choice, then

it follows that also in period k a choice of IN should lead

to a COOPERATIVE response.

~

The induction theory comes to the conclusion that each of

the players 1,...,20 should choose IN and player A should

always react with his COOPERATIVE response to the choice

of IN. If the game is played in this way, then each of the

players 1,...,20 receives a payoff of 2 and player A re-

ceives a total payoff of 40.

The deterrence theory: Player A should not follow the reason-

ing of the induction theory. He can get more than 40. It is

true that the reasoning of the induction theory is very c9m- ~.~

pelling for the last periods of the game. Therefore player A

cannot neglect these argumentscompletely.He shoulddecide ~~
on the basis of his intuition for how many of the last pe-

riods'he wants to accept the induction argument. Suppose he

decides to accept the argument for the last 3 periods 18,19

and 20, but not for the periods 1,...,17.Then, on the basis

of this decision he should act according to the following stra-

tegy: In the periods 1,...,17 the response to a choice of IN

is AGGRESSIVE, in periods 18,19 and 20 the response to a choice

of IN is COOPERATIVE.

~

Suppose that the players 1,...,20 expect that player A behaves

according to thls strategy. Then it is best for players 1,...,17

to choose OUT and it is best for players 18,19,20 to choose IN.

If the game is played ~in this way, players 1,...17 will receive

a payoff of 1, players 18,19 and 20 will receive a payoff of 2

and player A will receive a payoff of 91.

~

Even if some of the players 1,...20 have a different view of

the force of the induction argument, player A will still be

better off than the induction theory suggests. Suppose that
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not only the 3 players 18,19 and 20, but also 10 of the players

1,...,17 choose IN, whereas the others choose OUT. In this case

player Als payoff will be 41 which is still more than 40.

~

Suppose that early in the game 2 or 3 of the players 1,...,17

choose IN. If they are punished by Player Als AGGRESSIVE response,

then most of the others will have learnt their lesson. It may

still be true that player 17 feels that the induction argument

applies to him,too,and the same may be true for player 16, but

on the whole, it seems to be very improbable that more than 5 of

the players 1,...,17 will choose IN. This means that it is very

probable that player A will have a payoff of at least 66.

It mayaiso happen that in spite of the fact that player A does

not plan to react by his AGGRESSIVE response to choices of IN

by players 18,19 and20, player 18 and.maybe even player 19 will

still be deterred by this threat.

r

Since the players 1,...,20 can expect that player A will follow

the deterrence theory, they should behave accordingly. If up to

period k - 1 not very many of the players 1,...,k-1selected IN

and player Als response was always AGGRESSrvE, then player k

should select OUT unless he feels that period k is sufficiently

near to the end of the game, to make it probable, that player.A

will accept the induction argument for period k.

The deterrence theory does not yield precise rules of behavior,

since some details are left to the intuition of the players but

this does not impair the practical applicability of the theory.

I
I ~

I

Comparison of the two theories: As we shall see in section 8,only

the induction theory is game theoretically correct. Logically,

the induction argument cann~t be restricted to the last periods

of the game. There is no way to avoid the conclusion that it

applies to all periods of the game.

Nevertheless the deterrence theory is much more convincing. If

I had to play the game in the role player A, I would follow the

deterrence theory. I would be very surprised if it failed
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to work. From my discussionswith friends and colleaguesI

get the impression that most people share this inclination. In

fact, up to now I met nobody who said that he would behave

according to the induction theory. My experience suggests

that mathematically trained persons recognize the logical

validity of the induction argument but they refuse to accept

it as a guide to practical behavior.

It seems to be safe to conjecture that even in a situation

where all players know that all players understand the in-

duction argument very well, player A will adopt a deterrence

policy and the other players will expect him to do so.

The fact that the logical inescapability of the induction

theory fails to destroy the plausibility of the deterrence

theory is a serious phenomenon which merits the name of a

paradox. We call it the "chain store paradox".

3. The second version.of tE:echain store game

Consider a fictitious market situation similar to that

described in section 1. Again the chain store, player A,

has 20 branches in 20 towns and there is one potential compe-

titor, player k in each town k. But now we assurnethat already

at the beginning of the game every potential competitor has

a sufficient amount of owned capital but there is only one

bank where they all have to apply for credit if they want

to establish a second shop.As long as there are any applicants,

in every period the bank gives a credit to one of them who is

selected randomly. Thus in every period exactly one of the

players 1,...,20 establishes a second shop until aperiod

arrives where there are no applicants. If this happens the

game ends. Before the end of the game a player k who did

not yet establish a shop may or may not apply for a credit

in every period: he may change his decision in the next

period. In order to avoid misunderstandings a more precisely

formulated set of rules is given below. The extensive form

of the second version of the Ijamewith m competitores will
2

be denoted by r .m
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2
Rules for r , the second version of the chain store game:m

f

The game has m + 1 players, player A and players l,...,m.

The game is played over a sequenceof periods t = 1,...,T,

where T is determined by the decisions of the players. In

every period t some of the players l,...,m are called "outside"

and others are called "inside". At the beginning, in period 1

all of them are outside. Let Mt be the set of outside players
in period t.

In every period t each player in Mt has to decide between IN

and OUT. These decisions are made secretly. Let It be the set

of all players in Mt who choose IN in period t. A random mecha-

nism~ selects a player jtE It. Each of the players in It has

the same probability to become the selected player jt. In period

t + 1 the player jt becomes an inside player. Mt+l is the set

Mt -t j t 1 .

The players in Mt must make their decisions for period t without

knowing the decisions of the other members of Mt for period t.
Irnmediatelyafter these decisions have been made they are made

known to all players.

If in period t the set It is empty, then period t is the last
period T and player A does not have to make adecision for this

period. This is not the only way in which the end of the game

can be reached. It may happen that Mt+l is empty; then t is the
last period T. (In this case we must have T - m.)

If It is not empty, then player A has to choose between a "COOPE-
RATIVE" and an "AGGRESSIVE" response in period t. This decision

is immediately made known to all players. Player A has full

knowledge of all past decisions when he makes his choice.

Player jt receives the payoff 2 if player Als choice in period t
is COOPERATIVE,he receives 0 if player AlS choice in period t

is AGGRESSIVE. Let m be the number of periods where player Alsc
decision was COOPERATIVE. Player A receives the payoff

2m + 5(m+l-T), if IT is empty and 2m otherwise.c c
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The Paradox in the seco~dversion of the game: Game theore-

tically the induction theory holds for the second version of the

game, too. If all players 1,...,m with the exception of one al-

ready have chosen IN, then the last one can do SO,too, 81nce

player Als best response is the COOPERATIVE one. Therefore, if two

are left over in Mt' both of them should choose IN, etc.

For the discussion of the deterrence theory let us focus our

attention on the case m = 20. Here the deterr~nce theory is

even more convincing than for the first version of the game.

It may easily happen that already in the first period none of

the players 1,...,20 dares to choose IN. In this case player A

receives the payoff 100.

If in period 1, some of the players choose IN and player A

takes his AGGRESSIVE response, then in period 2 the players

in M2 will have a very good reason to fear that the same will
happen again. If in spite of this some players still choose IN

in period 2 and player A again takes his AGGRESSIVE response,

then in period 3 it will be very probable that nobody dares ~~~ I

to choose IN. w~

It seems to be highly improbable that player A will have to

take his AGGRESSIVE response more than 2 or 3 times. Thus it

is very likely that he will get a payoff of at least 85 which

is much more than the payoff of 40 which he should get accord-

ing to the induction theory.

~

Player A does not have to worry about the question what will

happen if the game should reach periods, 18, 19 or 20, since

this is highly improbable. In this respect player A has an

easier decision problem in the second version of the game.

If m is big enough, then he does not have to pay any attention

to the induction argument. Only if one looks at the set of
2

all games rm' this problem arises again. For whichof the2
games r the number m is sufficiently small to make the in-m
duction theory acceptable ?
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4. A look at the finite supergame of the prisoners' dilemma garne

If the same game in normal form is played again and again for

a finite or infinite number of times by the same set of players,

then a supergame of the original game in normal form results.

The k-th repetition of the original game is also called period k

of the supergame. In the following we shall only consider such

supergames where after each repetition of the game, the strategy

choices of all players are announced to all players; thus at

the beginning of each new period each player has a complete

knowledge of the past history of the supergame. Moreover, we

shall only consider finite supergames with a finite number of

repetitions. The number of repetitions is assumed to be known

to all players at the beginning of the supergame. The super-

game payoff of a player is the sum of his payoffs for all re-

petitions. The original game which is repeated in a given super-

game is also called the "source game" of this supergame.

I .

I

i

~

i

I

It is important to distinguish between the supergame and its

source game. A supergame may have garnetheoretical properties

which are not apparent from the analysis of the source garne.

Prisoners' dilemma garnes are a much discussed class of symme-

trical two-person garnes in normal form with 2 strategies for

each of both players. For our purposes it is convenient to

focus attention ,on the normal form represented in figure 4 which
is in this class.

Figure 4: A specific prisoners' dilemma game. Player 1's pay-

off i8 given in the upper left corner and player 2's payoff is
'\

given in the lower right corner of the fields representing the

strategy combinations.

2
A B

I
A

31 4_I
I
I

B ! I
.

1 I
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Let r3 be the extensive form of the supergame which resultsm
from the m-fold repetition of the normal form of figure 4.

3
The graphical representation of r2 is givep in figure 5.

It is well known that for sufficiently large m, say ,m = 100,
3

the analysis of r leads to a result which is very similar to them
chain store paradox~) In the same way as in the case of the

chain store game we are faced with a conflict between two theories,

an "induction theory" and a "cooperation theory". (The coopera-

tion theory corresponds to the deterrence theory.) The induction

theory is the game theoretically correct one but the cooperation

theory seems to be the better guide to practical behavior.

I~

The conflict between the two theories is less serious than for

the case of the chain store game. Practical recommendations

for a laboratory situation, where the payoffs are money payoffs,

can be given on the basis of a third kind of theoretical reason-

ing. It is plausible to assurnethat the utility payoffs of

the players are different from the money payoffs. The "bene-

volence theory" which will be presented below is a theory of this

type.3) The practical conclusions of this theory are similar to

those of the cooperation theory but contrary to the cooperation

theory the benevolence theory does not face any logical diffi-

culties. It is not necessary to reject the induction argument,

since it does not apply.4)

2) The book "Games and Decisions" by Luce and Raiffa contains
a thorough discussion of the finite supergame of the priso-
ners' dilemma game (Luce-Raiffa 1957, pp. 97 - 102)

3) Luce and Raiffa are aware of the possibility of such theories
but their view is that of the cooperation theory. I think
that they underemphasize the paradoxical nature of their re-
commendations. (Luce-Raiffa 1957, pp. 97 - 102)

4) Luce and Raiffa suggest that this is not a solution of the
problem,since it is possible to imagine a laboratory situation,
where the psychological effects are compensated by appropriate
changes of the money payoffs (Luce-Raiffa 1957, p.98n).This ar-
gument is not conclusive. It is very hard to imagine a labora-
tory situation of this kind. Therefore one might argue that
one would be inclined to behave according to the induction
theory if one were confronted with such a situation.
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3
In the following we shall outline the three theories for rm.
We shall focus our attentionon the case m = 100

I
I "

The induction theory: Clearly, in the last repetition of the--.,. . ...- ,.,- ..

qame it is better to choose B, whatever the other player does.

This determines the last period of r~OO . Both playerswill
choose B. Therefore the situation in the second last period

is not different from that of the last one. Again it is clear

that both should choose B. If it is already clear that for

the last k periods both players will always choose B, then it

follows that they should choose B in the (k+1)-th last period,

too. If both behave rationally, they will always choose B.

2.~y-&

The cooperation theory: T~e reasoning of the induction theory

is very cOIDpellinq for the last periods of the supergame .

A player must decide on the basis of his ~ for how
many periods at the end of the supergame he should follow this

reasoning. Suppose this number of periods is r. Then in the

last r periods he should always choose B, no matter what the

previous history of the supergame has been but for the first

100-r he should behave differently. In the following we assume
r = 3.

The exact nature of the supergame strategy up to period 97 is

not very important. The strategy should be such that the other

player has an incentive to choose A for as many periods as pos-

sible. In the following we shall describe one strategy of this

kind but there are rnanyother strategies which would serve the

same purpose. The description will take the form of a recommen-

dation to player 1 but it is rneantto apply to player 2, too.

The recommendation for the periods k = 1,...,97 is as folIows:

player 1 should choose A in period 1. For k=2,...,97 he should

choose A in period k, unless in period k-l player 1 selected A

and player 2 selected Bi in this case player Ils choice in pe-

riod k should be B.

liiII
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This kind of behavior has the following interpretation:

With the exception of the last 3 periods, player 1 is willing

to use A as long as he observes that player 2 has chosen A.

If player 2 deviates to B then player 1 punishes this deviation

by a selection of B in the next period but irnmediatelyafter-

wards he returns to A, in the expectation that player 2 will

return to A, too. If this expectation is disappointed, a new

punishment will follow. Each punishment lasts for one period only.

Suppose that player 2 knows that player 1 behaves in this way.

What is his best reply? As we shall see it is best for player 2

to choose A in the first 96 periods and B in the 4 last ones.

We first consider a special kind of deviation frornthe proposed

best reply. After aperiod k, where both players have chosen A,

player 2 selects B for s consecutive periods and then returns to

A. Here we assurnek + s L97. Figures 6 and 7 describe the re-

sults of two such deviations. In both cases the deviation does

period: k k+1 k+2 k+3 k+4 k+5

player 1's choice: A A B A B A

player 2's choice: A B B B B A

player 2's partial
payoffs: 3 4 1 4 1 3

Figure 6: The result of a 4-period deviation.

per iod: k k+1 k+2 k+3 k+4 k+5

player 1's choice: A A B A B A

player 2's choice: A B B B A A

player 2's partial
payoffs: 3 4 1 4 0 3

Figure 7: The result of a 3-period deviation.
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not pay. Obviously this is true for all deviations of the

same kind. The deviation yields a payoff of at most 5/2 per

deviation period whereas a choice of A yields 3 per period.

It can be seen easily that other kinds of deviations do not

pay either. One can restriet ones attention to deviations

for s consecutive periods k + 1,...,k + s, which are such

that both players never choose A at the same time and where

both players select A in periods k and k + S + 1. The situation

is essentiallythe same for k = 0 or k + S + 1 = 97. After the

end of a deviation of this kind player 1 will behave as if no de-

viation occurred. Whenever player 1 chooses A in the periods

k + 1,...,k + s player 2 chooses B. Therefore in these periods

player 1 alternates between A and B. The best payoff per devi-

ation period which player 2 can get under these conditions is

5/2. In aperiod where player 1 chooses A, player 2 can get at

most 4 and in aperiod where player 1 chooses B, player 2 can

get at most 10 Moreover s must be an even number, since player 1's li

choice in period k + 1 is A and A is always followed by B as long

as the play does not return to a situation where both select A.

I -

Suppose that both players follow the recommendationsof the coope-[

ration theory. Each player i selects a number ri of periods at
the end of the supergame where he plans to use B under all cir-

cumstances but in earlier periods he follows the pattern of

one period punishments described above. Suppose that we have

rl = 3 and r2 - 4. As we have seen, in this case player 2 uses
a best reply to player 1's strategy. More generally, we can

say that player i uses a best reply to player j's strategy if

ri = rj + 1. It is impossible that both players choose their

numbers ri in such a way that agame theoretical equilibrium
results, where both players use best replies against the other

player's strategy but it is possible that one of them uses a

best reply to the other player's behavior. Therefore the coope-

ration theory does not recommend a specific number rio Each

player i must decide on the basis of his intuition which ri he

1

11

I
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wants to select. In order to do this he may try to optimize

with respect to his subjective expectations about the other

player. It is true that at least one of them must have wrong

subjective expectations. Nevertheless both can try to do their
best.

"'-(~t...:l LJ~-

t-11<--

Suppose that player 1 selects rl - 3 and player 2 succeeds to

"outquess" him by the selection of r2 - 4. Then Player 1 re-
ceives a supergame payoff of 291. Player 2 receives 295. If

both players would always choose B as the induction theory

suggests, each of them gets 100. Clearly, for reasonably small

ri it is much more advantageous to be outguessed in the coope-
ration theory than to use a best reply in the induction theory.

The benevolence theory: Strictly speaking this theory is not a
3

theory for rlOO. It is a theory for a laboratory situation,
where the payoffs are money payoffs. The utility payoffs are

assumed to be the sum of two components, a "primary" utility

which depends linearlyon the money payoffs and a "secondary"

utility which depends on the player's perception of his social

relations with the other player. The perceived character of

the social relationship is determined by the past history of

the supergame and by the way in which the decisions influence

the primary utilities. In the light of the primary utilities

past and future choices are interpreted as friendly or unfriend-

ly acts. A friendly atmosphere is preferred to an unfriendly one.

The benevolence theory is only one specific theory which can be

constructed on the basis of these general ideas. One should

not overemphasize the details of the psychological mechanism

which yields the secondary utilities. The exact nature of this

mechanism cannot be clarified without empirical research. The

assumptions which will be made below are purely speculative.

They exemplify a certain type of explanations for a plausible

pattern of behavior in the finite prisoners' dilemma supergame.
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The secondary utilities are assumed to reflect the following

tendencies: (1) A friendly social relationship is preferred to

an unfriendly one. (2) A player does not want to be "!!!~an"in ~

the sense that he disappoints the other player's trust.

i ~

The simplest way to model tendency (1) is the assumption that

each of both players receives a secondary utility a for every
period, where both players choose A. The constant a reflects

the strength of the tendency. Since the selection of A by both

players is the obvious cooperative solution of the game of fi-

gure 4, it is reasonable to suppose that no other combination

of choices creates the impression of a friendly relationship.

In order to make an assumption about the secondary utilities

resulting from tendency (2), the notion of trust must be made

more precise. Imagine that in period t - s - 1 at least one player

selected B, but then for the s following periods up to period

t - 1 both players selected A. In this situation a player shows

"trust" if he selects A in period t. If he selects Band the

other selects A, then he "disappoints the trust" of the other

player. There i8 no disappointment of trust if both of them

choose B, since in this case there was no trust in the first

place.

Obviously there is more reason to expect trust and to extend

trust after a long sequence of choice combinations (A,A) than

after a short one. (The first symbol refers to the choice of

player 1 and the second to that of player 2). Therefore it is

more ~bj~ionable to disappoint the trust of the other player

after a long sequence of this kind than after a short one.

In view of these considerations we assume that a player who

selects B in aperiod t where the other player selects A, ex-

periences a negative secondary utility -b where s is the numbers
of periods with choice combinations (A,A) after the latest pe-

riod k~t such that in period k the choice combination was dif-

ferent from (A,A). (Obviously we have s - t - 1 - k). It is
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If the secondary utilites are added to the primary utilities
3

than the original supergame r is transformed into a new game
4 m 4

which we denote by r . Player ilS payoff in r is the summ m
of all his primary and secondarypayoffs for all m periods.

4
Obviously r does not have the structureof a supergame,sincem
bs depends on the past history of the play.

4
Suppose that in rlOO both players have chosen A for 99 periods.
Then, up to the irrelevant additive constant 99(3+a) the last

period payoffs are given by the bimatrix in figure 9.

A B

-b99

~oA
l--- -

B 0 1
'---'-'-"-'-

Figure 9: Last period payoffs after 99 periods with (A,A).

For a+b99~1 the bimatrix game of figure 9 has two equilibrium
points in pure strategies (A,A) and (B,B). The benevolence theory

does not give a different result from the induction theory unless

this is the case. Therefore in the following we ahall always as-

sume a+b99 ~ 1.

4
As we ahall see under this assumption the game flOD has equili-
brium points which are such that both players alwaya choose A

if both of them stick to their equilibrium strategies. An example

is supplied by the following simple rule of behavior: In period t

choose A if A was always selected by both players in periods

l,...,t - 1: otherwise choose B.

I

(:
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assumed that bS is an increasing function of s.

N A B

A
.

a -be

\- -be 0
B

01 0

Figur 8: Bimatrix of secondary utilities.
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If this rule is followedby the other player, then it does not

pay to deviate to B in aperiod where B was not chosen before

byat least one of the players. For t~lOO already the sum of

the primary utilities is reduced by a deviation of this kind and

the secondary utilities make it even more disadvantageous.

For t = 100 a deviation of this kind does not pay because of

a + b > 1. The situation is that of figure 9.99

Let s be the smallest integer with a + b- > 1. If s is suf-s -
ficiently small, then it is possible to change the rule in the

direction of a pattern of one period punishments and returns

to A as described in our discussion of the cooperation theory,

without destroying the equilibrium character of the strategy

pair. Such possibilities will not be explored here. It is suf-

ficient to demonstrate that the induction argument does not
4

apply to r if the influence of the secondary utilities ism
big enough.

Another way in which the strategy pair may be changed without

destroying its equilibrium character is as foliows: Suppose

that we have sL99. Consider the following rule of behavior:

For t <100 choose A if A was chosen by both players in pe-

riods l,...,t-li otherwise choose B. In period 100 choose B.

Obviously for s ~99 the players use an
4

strategies for rlOO if both apply this
play both choose A up to per iod 99 but

effect" takes place and both choose B.

100 the mutual trust breaks down.

equilibrium pair of

rule. In the equilibrium

in period 100 an "end

We may say that in per iod

Note that the strategy pair where both choose B under all cir-
4

cumstances is an equilibrium pair for rlOO' too. The benevolence
theory permits that trust is established between the players

but it"does not exclude the possibility that no trust is estab-
lished.
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Comparison of the three theories: The logical conclusions of

the induction theory are inescapable if no secondary utilities
3 .

are introduced and the game r is taken literally. Neverthelessm
the recommendations of the cooperation theory are much more

plausible. This does not necessarily mean that the induction

argument fails to be behaviorally convincing. Probably one
~~~

cannot form a ~ intuitivejudgementabout the practical
usefulness of different strategical recommendations without

thinking about a concrete situation like a laboratory expe-

riment where the payoffs are money payoffs. Therefore it may

be impossible to avoid that one's intuition is influenced by

the presence of secondary utilities. As soon as secondary uti-

lities enter the picture, theories of the type of the bene-

volence theory provide rational reasons not to accept the

induction argument. Intuitive judgement and game theoretical

analysis are brought into agreement. Unfortunately, in the

light of the chain store paradox this easy escape from the

problems posed by the induction argument is less convincing

than one may think if one looks at the finite prisoners' di-
lemma supergame in isolation.

~

Aremark on the evidence from prisoners' dilemma expe~iments:

Many experimental studies have been based on prisoners' dilemma

supergames. Unfortunately in most cases the number of repe-

titions waS not made known to the players at the beginning of

the game. If the number of periods is not revealed, then the

experimental situation is more like an infinite supergame.

The infinite supergame has equilibrium points in pure strate-

gies where the equilibrium play is such that the players

always take the cooperative choice (in our case A). Suppose

that the game of figure 4 is repeated an infinite number of

times and that the long run average payoff or more precisely

the limes inferior of the average payoff is taken as the su-

pergame payoff. (The ordinary ljmes may not exist). It can be
3

seen easily that an equilibrium point for this game r~is

obtained if the players always behave as recommended by the

cooperation theory for the first 100 - r per iods.
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There are some experiments where the laboratory situation did

eorrespond to the finite supergame with money payoffs. (See for

example Lave 1962, Lave 1965, Morehous 1973, Rapoport and Dale 1973.)

. ,

The results do not show any obvious disagreement with the eoope-

ration theory or the benevolenee theory, at least, if one is willing

to make adjustments for the possibility that a sizable proportion

of the subjeets did not understand the strategie situation very

weIl. In many eases the players manage to aehieve eooperation in

the sense that both of them take the eooperative ehoiee for a long

sequenee of periods. It happens quite often that the eooperation

breaks down in the last periods. Sueh end effeets are predieted

by the eooperation theory andnotexeluded by the benevolenee theory.

The way in whieh the game is deseribed to the players strongly

influenees the behavior of the subjeets (Evans and Crumbaugh 1966,

Pruitt 1967, Pruitt 1970, Guyer, Fox and Hamburger 1973). Aeeording

to these experiments one must expeet that it makes a differenee
3

whether rm is deseribed by figure 4 or by a table of the following

B 1 0

Figure 10: Alternative deseription of the game of figure 4.
..

Rere both players have the same table and eaeh of the players

receives as his payoff for one period the sum of what he

"takes for himself" and what the other player "gives to him".

The representation of t~e game seems to influenee the inter-

pretation of the other player's ehoiees in terms of his inten-

kind:

I take for and I give
myself to hirn

A I 0 1 3
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tions. In figure 10 choice A looks more "cooperative" than

in figure 4. Looking at figure 4, a subject may think: "he

has selected A because he wanted to receive the payoff of 3",

whereas figure 10 suggests another kind of interpretation:

"he has given 3 to me and has taken nothing for hirnself in

order to show his good will." Presentation effects of,this kind

point in the direction of secondary utilities. Probably the

benevolence theory does not provide the best explanation in

terms of secondary utilities but some psychological effects

do come in.

Comparison with the chain store paradox: Since secondary uti-

lities seem to be important for the prisoners' dilemma super-

game, one may be tempted to try to apply the same kind of

reasoning to the chain store game. What kind of assumptions

about secondary utilities can be made in order to avoid the

chain store paradox?

One could assurne that human beings have some kind of "inter-

nal commitment power". Once somebody has made a plan, a nega-

tive utility will be attached to any change of the plan.

This idea is in agreement with the theory of cognitive dis-

sonance (Festinger 1957).

i~

Suppose that player A in the first version of the chain store

game makes an internal plan to react by his AGGRESSIVE response

to a choice of IN up to period 17. Assurnethat the negative

utility for a change of his plan is -3. Then he has a good

reason to stick to his plan, since in period 17 it will be

better to react by the AGGRESSIVE response. (As before pri-

mary and secondary utilities are assumed to combine additively.)I

1~ If player A has this internal commitment power, it would be

even better and just as feasible to make an internal commit-

ment .,to take the AGGRESSIVE response up to the last period

of the game. This is not very plausible. Therefore the "inter-

nal commitment theory" which,by the way,would be applicable

to the finite prisoners' dilemma game, too, does not seem to

be a reasonable theory for the chain store game.

Univ.
Bibliothek
Bielefcid
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I
I ,

Another possibility of introducing a secondary utility is as

folIows: if player A follows the behavior prescribed by the

deterrence theory and nevertheless many of the players 1,..., 20

select IN, then player A will become very angry. As an angry

person he will have a positive secondary utility for aggressive

behavior. This is in agreement with the frustration aggression hypo

thesis. (Dollard,Doob,Miller, Mowres and Sears 1939).The "anger

theory" has similar implications as the internal commitment theory.
Player A should be able to deter all players 1,...,20. The

deterrence should not break down for some of the last players.

Therefore the "anger theory" is as implausible as the "internaI
..

commitment theory .

3
The game r100 is a 2-person game where both players interact
for a considerable number of periods. Some interpersonal re-

lationship can be expected to develop. Contrary to this the

chain store game r;o is a 21-person game where player A inter-
acts with each of the players 1,...,20 at most oncei there is

no occasion for the development of interpersonal relationships.

This is an important difference between both games which is

partly responsible for the fact that plausible theories based

on secondary utilities are much more difficult to construct for

the chain store game.

" I '

On the basis of these considerations it seems to be justified

to draw the following conclusion: Theories based on secondary

utilities do not provide a satisfactory explanation for the

fact that rational players refuse to accept the conclusions of

the induction theory as a guide to practical behavior. It is

necessary to look for a different explanation.

5. Sketch of a three-Ievel theory of decision making

In this section an attempt shall be made to develop an infor-

mal model of some aspects of the human decision process. The

general approach is based on the idea that adecision may be

reached on three different levels, the levels of routine,

imagination and reasoning. The theory is speculative rather

..
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than based on empirical facts other than circumstantial evi-

dence.

It is of course an oversimplification to assume that there

are exactly three levels of decision making, neatly seperable

from each other. There cannot be any doubt about the fact that

the decision process is much more complicated than the simplistic

picture which we are going to paint. The three-level theory canna

claim to be more than a heuristic tool for the investigation of

problems of limited rationality.

The level of routine: The level of routine may be thought of

as a simple mathematical learning model where the possibilities

with which one of kalternatives l,...,k in a given decision

problem is selected, depends on the experience with sim11ar

decision problems in the paste 5) On the routine level decisions

are made without any conscious effort. The underlying criteria

of similarity between decision situations are crude and sometime!

inade~uate.

The le~el of imagination: On the level of imagination the de-

cision maker tri es to visualize how the selection of different

alternatives may influence the probable course of future events.

The result of this process of imagination is the selection of

one alternative which appears to be preferable to other alter-

natives. The decision maker does not know why he imagines one

scenario rather than another. The imagination process is governe

by a multitude of orocedural decisions which are made on the

routine level. We may say that the imagination level employs

the routine level. The imagination process is similar to a com-

puter simulation. The program of this simulation is determined

on the routine level.

-------

5) Since the appearance of the classical work by Bush and
Mosteller (Bush and Mosteller 1955 ) many mathematical
learning models of this kind have been explored in the
literature (See e.g. Restle and Greeno 1970)
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The level of reasoninq: The level of reasoninq is eharaeterized

by a eonseious effort to analyse the situation in a rational

way on the basis of explieit assumptions whose validity is exa-

mined in the light of past experienee and logieal thinking. The

result of the reasoning proeess is the seleetion of an optimal

alternative. The level of reasoninq needs the help of the lower

levels of imagination and routine. Ordinarily logieal analysis

is based on some kind of simplified model whose assumptions

are produets of imagination. Moreover, the results of the ima-

gination proeess are used as heuristie hints whieh guide the

proeess of reasoning.

The pred~sion: Suppose that adeeision maker is eonfronted

with adecision problem where he has to seleet between k al-

ternativesl,...k. Which of the three levels are aetivated by

this situation? Sinee the higher levels need the help of the

lower levels there are only three possibilities. (1) Only the

routine level is aetivated. We may say that the deeision maker

does not stop to think. (2) The routine level and the imagination

level are activated. The deeision maker visualizes the eonse-

quences of different alternatives but he does not transcend the

level of imaqination. (3) All three levels are aetivated. A con-

seious effort is made to analyse the situation in a rational way.

Obviously, adeeision has to be made which of the three pos-

sibilities (1), (2) and (3) is seleeted. This decision will be

called the "predeeision". The predeeision is made on the routine

level.

The fin~l decision: After the predieision has been made those

levels which have been aetivated will begin to operate. Normal-

ly each of these levels will produee one alternative whieh will

be called a "level decision". We assume that the routine level

always reaches a level decision but we do not exelude the possi-

bility that the imagination proeess or the reasoning proeess are -

~ .
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employed without reaching any conclusion. Time may be too short

or the decision problem may be too difficult.

.

Suppose that several level decisions have been reached. General-

ly these level decisions will be different from each other. Ob-

viously adecision has to be made which selects one of the level

decisions. This decision is called the "final decision". The

final decision determines the actual behavior. It is made on

the routine level.

Note that we do not assume that adecision on a higher level

automatically supereedes adecision on a lower level. No final

decision would be needed if this were the case. It is an im-

portant feature of the three level theory that adecision

maker who has found the rational way of behavior may make

the final decision to do somethinq else.

The influence of past experience on predecisionand final

decision: predecision and final decision are the results of

learning processes which operate on the routine level. In both

cases the decision is adecision between levels. The tendencv

to select one level rather than another will be influenced

by the consequences of similar decisions in the past.

Let us first look at the final decision. If the final decision

was made in favor of one level, e.g. the level of reasoning and

it turns out that the behavior in the decision situation is

rewarded by a succeS8, then this will strengthen the tendency

to make a final decision in favor of this level in case of a

similar decision situation in the future. The tendency is

weakened by the experience of a failure.

The tendency to make one predecision rather than another will al-

so be influenced by the successes and failures experienced in

similar decision situations in the past. If a final decision

in favor of a certain level was successful then the probability

of a predicision which activates this level and the lower ones

~
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is increased. The probability is decreased by the experience of

a failure.

It may happen that after the decision has been made,it turns

out that it would have been better to take another level de-

cision as the final decision. This will also influence the

tendencies~ select one level rather than another.

The-.~hort E.~nc:ha.!~~~e~of succ~~s and__~ai!.u~~:The way in which

a learning process operates depends on the criteria which de-

fine what constitutes a success or a failure. The process can-

not function well if there is a lack of feedback, successes and

failures must be experienced sufficiently often. Therefore, the

definition of success and failure must be based on short run

criteria; within a reasonably short time after adecision has

been made it must be possible to determine whether the conse-

quences of the decision are favorable or unfavorable.

The short run character of success and failure does not exclude

the pursuit of long run goals. Long run goals may be approached

by short run measures of achievement. Each step in the right

direction is experienced as a success.

There is no reason to suppose that the substitution of short

run measures of achievement for the pursuit of long run goals

will work in a similar way as a long run optimization in the

sense of modern decision theory. Therefore one cannot expect

that learning processes have the tendency to produce a way of

behavior which approximates long run utility maximization.

l

Economy of decision effort: Decision time and decision effort

are scarce commodities. In terms of these commodities the ima-
I ~

gination process is more costly than the routine process and

the reasoning process is more costly than the imagination pro-

cess. The predicUion serves the purpose to allocate decision time

and effort in a reasonable way.

In view of these considerations one may ask the question why the

final decision sometimes does not select the level decision pro-
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duced by the highest activated level. After all, the decision effor

has been spent already.

The answer is quite simple. It is not true that the higher level

always yields the better decision. The reasoning process is not

infallible. It i8 subject to logical and computational mistakes.

The imagination process has its shortcomings, too. Which level

has the best chance to produce a successful decision will depend

on the nature of the decision problem. Therefore it is necessary

to gather experiences about the comparative merits of the de-

cisions made on different levels. For such purposes it may be

useful to produce a higher level decision in a situation where the

final decision will select a lower level decision with a very

high probability. The selection of the lower level decision does nc

mean that the decision effort spent on the higher level is wasted.

Why rational behavior cannot be learnt completely: Suppose that

adecision maker is repeatedly confronted with the same kind of

decision problem under uncertaintYi assurne that on the level

of reasoning he is able to find the rational solution of a

problem of this kind. In order to have something specific in

mind, we may think of a sequence of investment decision situation

where some amount of money can be invested in several different

waysi the goal is the maximization of profit.

Since the decision is made under uncertainty the rational solu-

tion in the sense of modern decision theory will involve the

maximization of expected utilitYi in our specific example we

may assume that this expected utility can be represented by ex-

pected profit.

If the decision has long run consequences then the utility ma-

I ximization will be long run; in our specific example the expect-

ed profit to be maximized will be a discounted sum of a stream

of expected future profits or something similar. From our re-

marks on the short run character of success and failure it is

clear that in this case it is not very probable that a long pro-

cess of learning will lead to adecision behavior which approaches
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f the rational solution. In the following we shall assurne that

I there are no such problems. The decision situation is supposed to
I

I be such that it is rational to maximize short run expecterlpro-
fit.As we shall see, even in this case a long process of learn-

ing may fail to approach the rational solution.

The learning process which determines the probabilities with which

the final decision selects one level decision or another operates

on the routine level. Since expected profit is not observed,the

experience of actual profits will supply the criteria of success

and failure which guide this learning process. Because of the

uncertainty of the decision situation it is unavoidable that

sometimes the rational decision produced on the level of reason-

ing appears to be a failure whereas the routine process or the

imagination process may seem to be more successful. This will

weaken the tendency to take the rational choice. Even if the

rational choice has a much higher rate of success than the de-

cisions produced on the other levels, failures will occur with

some probability and the decision maker will never trust his

reasoning process completely. From time to time he will not

take his rational choice.

Consider a situation where in our specific example the decision

maker had some very bad experiences with a certain kind of in-

vestment, say the investment in common stock. On the reasoning

level he comes to the conclusion that this was due to some un-

foreseen events which had a very low probability when the de-

cision was made and that under the present circumstances the

investment in common stock is the most profitable one. Neverthe-

less, he cannot help to be impressed by his bad experience. He

feels less inclined to trust his reasoning process. On the lower

levels an investment in common stock does not seem to be ad-

visable. On the routine level he has learnt to fear the repe-

tition of his bad experiences. On the level of imagination he

vividly vizualizes the repetition of the unforeseen events

which reduced the price of stock in spite of the fact that on

the level of reasoning he knows that now such events are even

less probable than before. In the end he makes the final deci-

sion to choose another investment possibility.
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6. The induetion problem in the ligh.!:-5'L,tl?-ethree-level theory

of deeision making

"

For the sake of shortness we use the term "induetion problem"

in order to refer to the diffieulties whieh arise in eonneetion

with the induetion theories for the two versions of the ehain

store game and for the finite prisoners' dilemma supergame.

In the following the ideas of the preeeding seetion will be

applied to this problem.

Why strategie deeisions are likely to eome from the level of

imagination. Most of the strategie deeision problems whieh oeeur

in human life are quite eomplieated. Usually rational solu-

tions are not easily available. Even in the case of relatively

simple parlor games it is rarely possible to eompute optimal

strategies. Strategie deeision problems of business and war

are subjeet to the additional diffieulty that the unstruetured

nature of such situations makes it very hard to analyse them

in a rigorous way.

I ~

It is plausible to assurne that under such eireumstanees the

level of imagination has the best chance to produee a sueeess-

ful deeision. Usually the visualization of the possible eon-

sequenees of different ehoiees will reveal some important

struetural details of the strategie situation whieh are not

obvious enough to be recognized on the routine level. Therefore

the imaginat~on level is likely to produce better decisions

than the routine level. In a game situation it is often im-

portant to put oneself into the situation of the other player

in order to form an expectation about his behavior. This ean

be done on the level of imagination. A player who does not

stop to think and makes his decision on the routine level is

likely to make somemistakes which ean be easily avoided by

imagining oneself to be in the other player's position.

If a player tries to analyse the game situation in a rigorous

way, then he will often find that the proeess of reasoning does

not lead to any clear conclusion. This will weaken his tendeney
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to activate the level of reasoning in later occasions of the

same kind. It mayaIso happen that the process of reasoning

yields an inadequate decision which is the result of rigorous

thinking about an oversimplified model of the situation.

The decision situation itself is often not sufficiently weIl

structured to permit the direct application of rigorous analysis.

The analysis must be applied to a model of the situation. The

level of reasoning needs the help of the level of imagination

in order to construct the model.The imagination process is not

unlikely to be more reliable as a generator of scenarios than

as a generator of assumptions for a model of the situation.

On the basis of these considerations one must expect that the

final decision shows a strong tendency in favor of the level

of imagination even in such cases where the situation is

weIl structured and the application of rigorous thinking is

not too difficult.

Application to the induction problem. Obviously the induction

argument is a result of abstract thinking which is done on

the level of reasoning. On the level of imagination a clear

and detailed visualization of a sequence of two, three or

four ~eriods is possible - the exact number is not important.

A similarily clear and detailed visualization of a sequence

of 20 periods 1s not possible. For a small number of periods

the conclusions of the induction argument can be obtained

by the visualization of scenarios. For a large number of pe-

riods the scenarios will either be restricted to several pe-

riods, e.g. at the end of the game or the visualization will

be vague in the sense that the individual periods are not

seen in detail. A player may imagine that "in the beginning"

something else will happen than "towards the end" without

having any clear view of the extension of these vaguely de-

fined parts of the game.

~
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On the level of imagination one cannot find anything wrong

with the deterrence theory for the two versions of the chain

store game and with the cooperation theory for the finite pri-

soners' dilemma supergame. On the contrary, the scenarios which

support these theories appear to be very convincing.

The fact that the last oeriods apDear to be different fram

the earlier ones is easy to understand with the help of the

three-Ievel theory. Theories based an secondary utilities

do not exclude end effects but they do not really explain them.

(See our discussion of the benevolence theory in section 4.)

The three level theory seems to be a very natural way to look

at the induction problem.

7. Perfect equilibrium points

In the following some game theoretical concepts are introduced

which are needed in order to make the induction argument precise.

For the purposes of this section a game will always be a finite

n-person game in extensive form with perfect recall.6) Games

with Derfect recall can be analyzed with the help of behavior

strategies. There is no need to consider other kinds of stra-

tegies.7)

Definitions8) : Let U. be the set of all information sets ofl.
player i in agame r. A behavior strategy

(1)

qi = [qu~ UE14.

of player i in r assigns a probability distribution q over
. .. u

the choices atU to every rnformation set of player i. If y is

a choice at u,then qU(y) is the probability with which y is

chosen by qi'

6) See Kuhn 1953 and Aumann 1964

7) Kuhn has proved that i~ agame with perfect recall a payoff
equivalent behavior strategy can be found for every ordinary
mixed strategy. (Kuhn,1953 , p. 213)

8) It will be assumed that the reader is familar with the notion
of a game in extensive form (See Kuhn 1953 or Selten 1960
and Selten 1964)

~
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Let Qi be the set of all behavior strateqies qi of player i
in r. An n-tuple q= (al,...,G ) with q,tQ 1' is called a stra-n 1

tegy ~ombinat~oE for i: The set of all strategy comhinations

for r is denoted by q,.

.., .
Since no other strategies are considered, in the followinq

behavior strateqies often will be simplv called strategies.

For every strategy combination 1tQ an ~cted payoff vector

H(1) = (Hl(~)' ..., Hn(q)) is defined in the usual way. Hi(~)
is player i's expected payoff under the condition that the

strateqies in q are used by the players.

~ 1-

If ~ is a strateqy combination and ~l is a strategy for player i,
then the notation q/a~ is used for the strategy combination1

(ql' ..., ai, ... , qn) which results from q, if in q player i's

strategy Gi is replaced by qi, whereas all other strategies
in q remain unchanqed.

A strategy qi is called a best reply to the strategy combination

q= (ql'''.' qn) ifwehave

(2) Hi(Glqi) = max Hi (q/qi)
qitQi

..J#- * '

An equilibrium point i5 a strategy comblnation q-n=(qi' . . ., ~ )

where for i = 1, ..., n the strategy Gi* is a best reply to af.

" ,,

Subqames: Let x be a vertex of the tree K of agame f. Let K
. x

be the subtree which contains x and all those parts of K which

come after x in the sense that they can be reached by a play

after x has been reached. K is the tree of a subqame r if andx --- x

onlv if Kx has the followlnq property: if an information set U

contains at least one vertex of K then every vertex in U belonqsx
to K . - The subqame r results from r by restrlcting thex x
rules of r to K : On K the information sets and the choices ofx x
the players, the probabilities of random cholces and the payoffs

are the same as in r.

. 111
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A strategy qxi of player i for a subgame rx of r is ealled

indueed by a strategy q. for r if on r the strategies q . and qilX . Xl

~reseribe the same behavior. A strategy eombination qx=(qxl,...,Qxn)

for rx is indueed by a strategy eombination q=(Ql,...,qn) if for

1=1,...,n the strategy qxi is indueed by °i.

Perfeet equilibrium points. A perfeet equilibrium poin! Q~ =

(q~, ..., q; ) for agame r is an equilibrium point for r which
induees an equilibrium point c(-= (Qt 1 ' ..., ~ ) on every sub-X x xn
game r of r.x

It has been argued elsewhere that a strictly non-cooperative

solution of a game in extensive form must be aperfeet equili-

brium point. 10) A rational theory which speeifies eomplete

strategie recommendations for all players in agame r must

preseribe aperfeet equilibrium point for r. The theory must pres-

cribe an equilibrium point,sinee otherwise at least one of the

players can improve his payoff by a deviation from the theoretical

reeommendations,if the other players behave in the prescribed way.

A situation of this kind should not only be exeluded in the game

as a whole but also in the subgames of the game. This is not

automatically true for every equilibrium point since an equili-

brium point for the whole game may induce a disequilibrium strate-

gy eombination on a subgame whieh is not reached if the equili-

brium point for the whole game is played. It is elear that a ra-

tional theory should prescribe rational behavior in all parts

of the game, even in those parts which cannot be reached if the

game is played rationally.

r The difference between a perfect equilibrium point and an imper-

feet one ean be exemplified with the help of the game r~ in

figure 1. As we ean see from the bimatrix, this game has two equi-

librium points in pure strategies; the equilibrium point COOPERA-

TIVE/IN is perfeet and the equilibrium point AGGRESSIVE/OUT 1s

imperfect. After player 1 has seleeted IN, a subqame begins;

--- --- --- ---- ----

10)
See Selten 1965, Selten 1968 or Selten 1973
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this subgame has only one equilibrium point, namely the COOPE-

RATIVE response of player A. It follows immediately that r; has
one and only one perfeet equilibrium point, the strategy combi-

nation COOPERATIVE/IN.

The imperfect equilibrium point AGGRESSIVE/OUT has an interesting
I1

interpretation: player A threatens to take the AGGRESSIVE respon

to the choice of IN. If this threat is believed by player 1, then

it i5 better for hirn to choose OUT. Player A does not have to

execute his threat if player 1 chooses OUT. The subgame after

the choice of IN is not reached by AGGRESSIVE/OUT.

Player Als threat is not credible. Player 1 knows that it is not

in the interest of player A to take the AGGRESSIVE response

after a choice of IN. Therefore it is better for player 1 to

choose IN. The imperfect equilibrium pOint is no rational alter-

native to the perfeet one. Player 1 cannot be deterred.

8. Precise statement of the in~uction theory

."

Apreeise statement of the induetion theory for the two versions

of the ehain store game and for the finite prisoners' dilemma

supergame requires the eoneept of aperfeet equilibrium point.

The deterrenee theory for the two versions of the chain store

game is not ineompatible with the idea of an equilibrium point.

As we have seen in the preeedinq seetion even in r~ an imperfect
equilibrium point is available, where player 1 is deterred from

ehoosing IN. The deterrenee theory fails to be game theoretieallv I

eorreet sinee it is ineompatible with the eoncept of aperfeet

equilibrium point.

I
I

I

I1

It is weIl known that in the ease of the finite prisoners' di-

lemma supergarne the eooperation theory 1s already ineompatible

with the equilibrium point eoneept.11) Nevertheless, it is more

adequate to apply the notion of aperfeet eauilibrium point.

I
11) .

See Luee-Raiffa1957, pp. 99 - 100

.. ....
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The finite prisoners' dilemma supergame is a game in extensive

form. Moreover, the natural way of reasoning from behind, first

looking at the last period, then on the second last, etc. is

closelv connected to the requirement of perfectness. Among

the imperfect equilibrium points of the finite prisoners' di-

lemma supergame there are many which in some unreached sub-

games prescribe the cooperative choice A in the last period.

The following theorem contains a precise statement of the in-

duction theorv.

123
Theorem: For m = 1,2, ... each of the games r , rand r--- mm m
has one and only one perfect equilibrium point. In the case

of the two versions of the chain store game r1 and r2 them m
uniquely determined perfect equilibrium point requires that

whenever one of the players 1, ..., m has to make a choice,

he chooses IN and whenever player A has to make a choice,

he chooses COOPERATIVE. In the case of the finite prisoners'

dilemma supergame r; , the uniquely determined perfect equili-
brium point requires that each of both players selects B under

all circumstances in every period.

F

Proof: Let us first look at the two versions of the chain store
1 . 2

aame. There is no difference between r1 and r1. Our discussion
. 1 .

in the preceding section has shown that as far as r1 lS con-

cerned, the assertion of the theorem is correct.Assume that the
I 1 2 2theorem holds for fI' ... , f l and for f

1' ..., f 1 . Up tom- m- -

the numberinq of the players and up to some strategically ir-

relevant constants in the payoff function the subgames of r;
at the beqinning of period 2 have the same structure as r1 1.

m-

Analoqously the subgames at the beginning of period 2 of r~ have

essentially the same structure as r;-l. In view of the defini-
tion of the perfectness requirement it is clear that a perfect

equilibrium point is induced on every subgame by a perfect equili-

brium point.It follows from the induction assumption that the sub-

games at the beginning of period 2 have exactly one perfect

equilibrium point each. The perfect equilibrium point of the

whole qame must induce these equilibrium points which prescribe

,l-

f .
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~

the behavior required by the theorem. Since the behavior in the

subgames does not depend on the outcome of per iod 1, there is only

one way in which this behavior can be completed in order to con-

struct aperfeet equilibrium point for the whole game by adding

preseriptions for per iod 1. In r1 play~r 1 has to ehoose IN and
m 2 I

player A has to take his COOPERATIVE response.ln r~ the playe~ 1,...,m
must ehoose IN and player A has to take his COOPERATIVE response.

It is elear that player A must behave in this way. He eannot in-

fluenee the other playersl behavior in later periods. If he would

behave differently, the perfeet equilibrium point would fail to induc(

an equilibrium point in the subgame whieh begins with player Als

response in period 1. It follows that in per iod 1 it is better for

player 1 in r1 and for the players 1, ..., m in r2 to choose IN.
m 12mThis shows that the theorem holds for rand r .m m

Let us now look at r;. The assertion of the theorem holds for rio
This game has only one equilibrium point, namely (B,B). Assume

that the theorem is eorrect for ri, ..., r;-1. Up to a strategical-
ly irrelevant additive eonstants in the payoff functions, the sub-

3
games of rm at the beginning of per iod 2 have the same strueture

3as r 1. Therefore eaeh of these subgames hasm-
equilibrium point whieh preseribes the choiee

3
cumstanees. A perfect equilibrium point r must prescribe the samem
behavior for periods 2, ..., m. There is only one way in which this

behavior ean be eompleted hy a prescription of ehoices for period 1,

if one wants to eonstruet an equilibrium point for the whole game:

both players must ehoose B in period 1. Given the behavior in the

subgames, in period 1 the ehoiee of B yields a bett er payoff than

the ehoiee of A, independently of the other player's ehoice in

period 1. This eompletes the proof of the theorem.

I

I

I

exaetly one perfect

of B under all eir-
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