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SOME MEASURES OF INFORMATION ARISING IN STATISTICAL GAMES

BY HANS W. GOTTINGER

UNIVERSITY OF BIELEFELD

MOTIVATION

A rather general approach toward measuring information has
been developed within statistical decision theory. Note that
this development is unrelated to R.A. Fisher's theory of sta-
tistical estimation where the proposed measure of information
(regarding statistical ob§§rvations) turns out to be a parti-
cular case of Shannon's measure.

In modern stafistical decision theory we are concerned with
information provided by an experiment.

An experiment X is éompletely described by a random variable
associated to some sample space giving rise to a set of cone
ditional probability distributions for every possible wvalue
of a parameter (state of nature). Note that X might itself

be of fixed sample size or of a sequential type where the
experimenter may collect observations finitely many times.

To set up the problem assume you (the experimenter or the
statistician) are confronted with an uncertain situation
where you wish to know about the true value of a state wedl,
Of course wvou can make some guesses but the only way to gain
knowledge about the true value of the state (e.g. to rationa-

lize these guesses) is by performing experiments.



Let/m be some prior probability distribution of the true va-
lue « which indicates the amount of uncertainty or ignorance
on your part. (Adopt a Bayesian viewpoint that such/4 always
exists and is non-null.,) Then the information provided by ¥x
may be more loosely described as the difference between the
amount of uncertainty you attach to the prior distribution
and the amount of your expected uncertéinty of the posterior
distribution (after having performed X), i.e. it reflects the
residual value of your uncertainty (reduced)ﬁ

There is an obvious connection of this situation with the struc-
ture of a statistical game in which two players are referred
to as 'mature' and 'the statistician',

Here in order to constitute the statistician's étrategy the
possibility of 'spying' by performing an experiment plays an
important role. Note that in statistical games {J (in sone
finite setjl) constitute nature's pure strategies whereas
nature's mixed strategies can be identified with your prior
distribution overﬁ% associated to some sample space. More
technically, let M be the set of priqr probability distribu-
tionsfm over Jl(i.e. the space of randomized strategies for
nature), define u as a nonnegative, real-valued measurable
function onJM which for obvious reasons should be concave,
i.e. decreasing with increasing observations. Then u (M) re-
presents the amount of your uncertainty (before experimentation
when your distribution over JL is ﬁ4. Now by performing X and
observing values of X you may specify a posterior distribu-
tion /?'A(X)9 then your measure of information T is determined
by I (X, 4, u) =u (M) - E{u(pm(x)lu], where m(X) is
usually obtained by an appropriate application of Bayes'

theoreme.




This approach has been consistently pursued by M. de Groot
E%}’ and somewhat earlier, by Blackwell and Girshick [l,Ch.B].
Tt is usually assumed for reasons of non-trivialty that most
experiments provide information and that any experiment being
more informative than another is also preferable to the other.
Therefore, for any given uncertainty function, I is nonnega-
tive, and also for reasons of convenience continous.

As we clearly recognize this measure of information provided

by ap experiment relative to the specification of u and/a
naturally evolves from a model of statistical decision. Usu-
ally the determination of the uncertainty function hinges
upon the loss structure of a statistical game. Every experi-
ment X associated to a sample space zenerates a risk function,
defined as the expected value of assigning to every decision
act its numerical loss for any given state of natufe. From
this we learn that informétion evolving from & statistical
decision problem generally takes into account economic type
considerations of benefits and costs (via the loss function).
From an economic point of view information may be regarded as
a particular kind of commodity traded at a certain price yiel-
ding benefits for consumers and causing costs for producers.
The economic theory of information hence is an appropriate
modification of the approach used in statistical decision
theory. 1) To put it in other terms, we would be interested

1) I should point out here that there are two main aspects
of an economic theory of information to be considered,
the first is the micro-aspect which can adequately be
dealt within decision theory, the second is the system
theoretic aspect (information provided by an economic
system) for which other tools (for example, machine,
theory) might be more adequate.
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in the economic aspect of usefulness of information (based
on some kind of utility or loss function) rather than in thé
(original) physical viewpoint of transmittiﬁg and controlling
information flows.through”a large (noisy or noiseless) commu =
nication channel. This Viewpoint has been consistently ad-
vanced by J. Marschak E}] on the basis of earlier results
due to Blackwell [ﬁj.

Marschak's'value of information' attached to some experiment
w.r.t. any probability distribution!“ overaﬂ,(his space of
events non-controllable to the decision maker) and his bene=-
fit function bsdb x A= Re (A being the set of decision acts)
is just the converse value of Blackwell's risk r(X). Note
that the risk Tunction is completely sﬁecified by a probabi-
lity distribution §veruﬁaand a loss function on {1 x A.

One can readily see the strong agreement between information
provided by an experiment and the value of information by‘
considering an experiment as a Markov matrix,

In this case null-information corresponds to identical rows
in the Markov matrix, i.e. any observation made through an
experiment is independent of any state of nature.
Accordingly, the risk function obtained by the less informa-
tive exberiment is larger in value than the risk fﬁnction
obtained by the more informative experiment. It is.obvious
that the dual statement holds if we deal with a benefit

function instead of a loss function.



In this paper we suggest various measures of information
which quite naturally arise in the context of statistical
games (also known as games against nature). Although these
measures are strictly confined to a situation cénstituted
by these types of games, the remarks above indicate they
might be also of interest for an economic theory of infor-

mation, at least from a methodological point of view.

We here emphasize mathematical aspects of the general game-

theoretic situation.

THE CONCEPT OF INFORMATION IN A STATISTICAL GAME
We consider a game in which the statistician is able to
select a decision strategy on the basis of information

available to him.

Hence, let us consider a game(gz, Y,“f)between nature and
the statistician with pay off function¥. Let Sl and Y ve
compact metric spaces so that 'y satisfies some mild con-
tinuity condition, e. g. a Lipschitzian condition in JL » Y.
It is well-known that subsets of metric spaces form a
class of Borel sets, hence in defining a probability dis-
tribution on a compact metric space it is. obvious that this
distribution is defined on Borel sets of this space. Since
every random variableXassociated to a sample space (Zﬂﬁ)
induces a probability distribution /4 on Zxdz, it will be -
more convenient for our purposes to refer to/M as an expe-
riment whose out comes z & Z for any&dtdl are governed by
the conditional distribution A, with values # (z). In or-

der to reveal the structure of information in this game
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we will assume that the person must take a decision YE:Y
prior to the experiment, 4, and by adopting a Bayesian view,
ﬁlshould be known to him in choosing a Bayesian strategy
which takes into account prior information in a'systemafic

fashion.

This means that a decision v € Y is taken that minimizes

the average of the pay.off value,

B P, v} = SPW, v) am,(=).
_ Su

Now let us consider the possibility that the statistician
can obtain additional information on his decision problem
by performing an auxiliari experiment. lHence, given a modi-
i'ied space of outcomes (compact metric space) Z', consider
a corresponding experiment‘ﬁ' with (conditional) p. d. A$
on Z' together with ﬁ&(zlz') = ﬁbz'(z) which is the condi-
tional p. d. relative to 2z' on Z., It is in the spirit of
the Bayesian approach to assume that a person can perform
an auxiliary experimentju' prior to taking a decision.
In this case the average pay-off value will be

‘ ’)'Z‘{'m:;n j—hil‘/(i,u, y) d”adz' (Z)} d ' (z|)

Sl w

We may call the difference

(1) .v(ﬁhﬁr) - miniﬁ?ﬁu,y) dﬁ%}z) - ﬁ‘im;néjww,y)

% i
d"awz'(z)j dfuw(z')



the value of infbrmation‘in experiment/A generated by experi-
ment M' This value does not change if we add or subtract some
positive amount. By adoptingva Bayesian Strategy, the sta-

tistician would attempt to choose a decision which minimizes

his expected loss in terms of the pay-off value, i. e.

(2) yvw) = min Y@, v),
M
so that the value 1is given by

wp) = min I (W, y) d f, (=)

which represents his expected loss resulting from the uncer-

tainty of the outcome of experimentﬁ‘.z)

For the next considerations assume that the loss is norma-
lized by the condition max“?ﬁy, y)l =1 »

w,y )
In the sequel of this section we put every_thing into dis-

crete terms and assume the sets Z, Y and Z' to be Tinite,

In set-theoretic notation, let

‘_‘Q :%wi},Y = 5}7‘]%, 7' = i Zk'} 5 /b{ ={'ul7{ N CF = A}\flJ‘}, ,'41' =3""u'k

1,00em; J = 1yeeen; K = 1400.t)

o~
ke
i

In short-hand notation we replacevﬁzv,(z) by}ﬂ;{dmittingzu

since no ambiguity will arise.

- em e wo @s as

2)An.interesting question arises: what could be the relation-
ship between the entropy of an experiment and the value of
an experiment in terms of (2)?
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as the entropy of the experiment{M corresponding to (1 | P

For simplicity, let w = (M), v = v (A M), define h

and let T = I (AH,/O be the amount of ihformation/y genera=
ted by experiment U', corresponding ta (1 ).
/

Thus,
( 3) h =§”&giogﬁ(1/ﬁ&) and

4

]
-S4 -5 I k
(&) 1=%tlog (1/4;) k@gz 7 10gn( A/p)

Ht

THEOREM
The relationships between (1 } and (&4 ) and between

( 2 ) and ( 3 ) respectively are determined by the following

simple set of inequalities

(i) iogn(1/1-w) Z h
. 12,1
(11) 3 vPe g (v/maxlt , -7 . 1) &1
i,1i% J

(iii) vlog (v/1-v) £ I, v = 2/3.

Outline of Proof.1.We first verify inequality (i). Let z'

i

4

be a particular outcome in Z' and let M =;M.:h@ﬂ)§:z'£.
z'ym Y71

Denote by ’ the class of mx n matrices'Y satisfying the
my 11 Y

normalization condition, and by change of notation as intro=-

duced above, also the condition min‘?ij = 0 for all i.
J ,
e} ~
- ; c
Accordingly, let%@m,n - @h,n be the subclass of those

characteristic mgtrices all of whose elements are zeros or
ones. Set wgu) = WQM;?) and let s = s(z') be the least

upper bound
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Now one can easily verif& that w.r.t. @ there exists

9

a l. wy. b. s' such that

sup max max min (1-2.4 )
HEM wep® i i
m,n )\‘At}.lz'm *){—Pxn’n J 1L'j (l’t))
= s' = s = sup max max
1ty 13, /MEM ki O w(/‘{/ ’CF) s
Zm Ye€Pm,n
' - e . )
where ij (¥) = il : %gj = O?

-0 R
Consider a particulariféfim a with<Pij = 0 for all i, then
9 .

we may compute

(%) s = sup max ‘min (1_ﬂﬁ)
m UEM ; ‘
z ! 5m
Let
(*) s = max min (1—/&1) and let
AAebdz',m S ‘

IA ( 1 m
Hm :{’Mmi} i=1

be the maximizing experiment among all experimentS/MéMZ,m

A
slo that # =max M. =1 - s = ¢
. 2 ;om . mi m m

Denote by g and ., the integral number parts of the numbers
1 /A +s) and 1/(1— sm) corresponding to (*), (**) respecti=-

vely. Then we can easily verify the inequalities

1ogn(1 /1—sm) = log, (1/rm){__ q, r, log, (1/rm)

+ (1=q:r ) tog, (1/(1-azr )

- : Y L /R WA {
il 2 log, (1/ my)EB(M )% 2", for m2q.
1T om

Hence log (1/(1-8))% 2.



Now let an experiment i il iz Me _r and a
pay-0off matrix %’EQQ“n_be given. By definition of w and s

we have wgy,Y) < s(z') so that
h(fr) > 1og, (1/(1-s(2")) 2 log, (1/(1-wl@,f))

Since inequality (iii) is a much stronger statement than

(ii) we omit the proof of (ii), and now outline the proof

of (iii).

Evaluating £ experimentsfﬂ and ¥ is équivalent to
evaluating the matrix#y = [?kﬂgk}, i=1, seey m; k = 1,...,5.
Let us specify v_ = sup ma Cryuff), substituting

& Y €¥m,n

v(;%m,f) For v(y%u). By‘%m , we demote the class of matrices

v P ¢ such that
9

w(fﬁ?) =§i?ij Yy (i = 1yeeesm)y

WE =T v 4% (k= ae.nd)
i i\fikA/i

/

Then we may conclude without great difficulty that

A A
v, = max V(Vgﬁb?)- Let %9 :E&Yij} be the maximizing
¢€Pm, 2

P
matrix of f}.’jm Z
: 9

The following notation is convenient:

€5

6L

/u:nyi

: '“ ’\ » N
Pix= 43 Vi (1 = Yix)» O =MV P

1

; = - T
4 Sk Fix = ' - TSk Cux



Then we have

o= y ,.k o ,’j r'k
ve = 2 Fik (&i -1) = Z Yik (1 .1 )
i,k . ik

By straight- forward application of Jenson's inequality

we get
o k - s .k — k o
‘ & > g S ¢ 3 >
2 Piy &5 tosy 2 (Ff ey + 2 G4y &y 0 logy &
i,k i,k ik : ik
¥ kK < = ~ k k ST k -k
4 - :‘,ﬁ > [ e -~ - -
(vik/1 V) Ei 2 2 [y ¢ logy éi # ;3_ Sk éi logn_&i T.
i,k i,k

The first part of this inequality can be conveniently de-

composed into

(vy +:) Tog, (v, +7) )+ (1=, =) log, ((1 ¥5)/(1-2) =

w

Bvo +f) logn(vo+i) + (1-vo-!) 1ogn(1-v01{) +

L= (vo+shog = (1-V5=5) tog(1 -pj= 4 (¢) + B (r),

There_from we derive for O&;yﬁ 1-v0 the inequaiities

A (y)2 v, log v, (1-v,) log, (1-v_)

> 1 -V
B (,‘")f__ 1031,1 (1 V0)9

which together vyields

VO
Ixv_ 1lo '
Q gn

1-vo

w 18 W



3. AN _INFORMATIONAL METRIC

It seems natural in view of the approach adopted here to
use the metric in a compact metric space for constructing

some notion of informational distance in a subjective sense.

From the Bayesian point of view we may assume that a person -
before performing an experiment - knows about a particular

presentation of nature's pure strategy, given by a point

W €L,

Now, after having performed the experiment, this person ob-
serves the actual sfate to be{goéJL. Letgf:SZXJb;Rebe the
ordinéry metric such that d associates a real number JKN’WQ)
with every pair (W’wb) of elements of J{. Then dkuavg) re-
presents a change of the informational state of a person
(change 6T'beiief) in terms of a distance, satisfying well-
knqwn conditions‘of é numerical metric{ Given a set of ex-
»periméhts Xl..., Xn, sequentially désigned, the search
problemAdf a person would consist in observiﬁg a sequence
of pointsﬁdff.,h)n approaching the true stateldoﬁéz: Now
:in,the'cénteif of a statistical game‘ﬁﬂ; Y,%ﬁ there is an
interesting way to reformulate an informational metric in
terms of an economic value of‘information. Let us assume a
person by obsérving&)takes a decision y out of his decision

set

Aw) = {y: 9@, v) =@}

with Y(w) = .min""f’(w. y).
yeY



Hence, the value of information of a person selecting a
decision v on the basis of observation W compared to a

true state(do can be given as a number

mlgow) = max P, v) - min Wy, y)
yed(w) y

Let { be an ordinary metric such that

Now, if J?wo,wn) converges to zero for n sufficiently large,
by implication n&&g,tdn) converges to zero for n sufficiently

large. Hence, the inequality

(*) mW,w) = 2w, w) nolds.

Letgﬂy denote the space of all probability distributions
'AJoveréL, characterizing randomized strategies for mnature.
Then the pay-off value in the game QW, Y,R) is given by
.lgm, y) = %?OJ, y) dp. Accordingly, we may introduce in
M a metric J'inmﬂ(which associates with every pair Qﬁﬁ,% )

2
a number dk/ﬁ,ﬁ%).

In order to obtain a value of information in this case we
may assume accordingly that the a priori probability dis-
tribution known to the player is not the true distribution
}% but some distribution close to it. Suppose he knows the
conditional distribution M(zlg, z'), if the prior distribu-
tion is/M and the outcome of the experiment V is z'., Assume
that the player starts with some distribution/ﬂ which is
close to the true distribution,ﬂb. Then by taking a de-

- 14 «
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cision a priori the player minimizes

i"?(w, y) a4 (z) w.r.t. vye Y.
ot

If the decision is taken after the experiment ¥ has been

performed then he minimizes (setting i (zl/d,z') = ")/M - (z))
9

j(w, v) d/q/,,,z' (z) wer.t. vyeY.

hﬁu

Taking into account that the true distribution is/.'FAO we

may compute the value of information in the game (,,’i/f, Y,l) by

5o T(av) = WP v ape) - 5 Sre, v

{ YA

Gl Lﬁt

ANstg, 7 (z)a v(z')) §&°0(z[”)’ '{rz, G"’Z}(’Yf"’”o’z').

Since the decisions ;7, 37.2, need not be uniquely determined,
the guantity ;r(/A,V) may also not be unique. Let€ be some
other experiment which does not generate true distributionimo,
and letvev (v) = [, 7) ap(z) -2‘5%'{(&), 3,0

Tan, () a EG=1).

By comparing the values of information provided by two

experiments ¥V and E we form the relations

max|v-v|= m@(ﬂo,‘ﬂd) - g‘m(ﬁ?ﬂo’z,)nmlz') ar(z")

< mameO%,/A), é' m(y)m .M )vdV(Z')]‘

)z 74,2}

Consequently, with the help of inequality ( * ) we can write
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lv-v |l gmax@(/b,ﬁ), é' Jknuuz'q ) dY(z'i].

i
M}.'l

The metric inJM is given by

T (s ) = max] (@, ) apy(=z) - {9G@,y) am=)l
)}

Yy d

max | &?Kw. y)i:QWO(Z) - qﬁ(Zﬂ‘u

y

By imposing a rather mild continuity condition onc?,
i. e. by requiring that‘? satisfies a Lipschitzian condi-
tion in the first variable with a comnstantyk , we have

the relation

Jshovh)f 'ké%hoym)-

s, AN ALTERNATIVE MEASURE OF INFORMATION

Consider the game QQ,Y,W). To obtain information about the
true state wo may result in the specification of a set:MC#Jl
to Whichiuo belongs. Hence, we introduce the classlﬂ=={?(;
of closed subsets ofdl. In this case the game is defined
by the triple (¥#,Y,), and the pay-off value will result
from the player's decision on the basis of his represen-
tation® . Here it might be useful to introduce the concept
of diameter value of a set # which characterizes the
player's losses resulting from his ignorance about the
true state Q%EJL The diameter value D(k) is specified

with respect to the strategy of a player with represen-

tation® . The true representation is the singleton ﬁ0g§.
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If the player takes a decision that minimizes a certain

pay-off-value (&, y) the diameter value is given by

D(W): max m(A' ,?f):max mx‘;f’" .‘, )—min' ‘w’ )
W, %WO} W yéaoi)(?l;) Uik - 7 A Y]

where(#)= {y: P, v) = min}

There are three main decision criteria available for the

player which he might considers:

(2) F @ y) =kmax §ory) + (=D mig Plory)s ers)

(Hurwicz strategy or minimax strategy for A=1)

(b)) (y) = rgagcw[%,w - min P (w,y)]

(Minimax strategy of losses)

(c) LetMAAzWO be the conditional distribution depending
on a parameter?{, the payoff-value corresponding to a

Bayes strategy is

Ty Gy) = §F0,y) aual®).

Except for ( b )y D(¥) does not increase whenever # in-

creases in all other cases.
In particular, define

D (%) = max max m(w ,w).
¥ o €W weW ©



This construction relates to the strategy of a player who,
by knowing that(hoézc, selects any point we# at random ba-
sing his decision on the assumption that this point is
true. Also DO(R) increases with® ., Now in case that D (¥)
increases with# (where we can only take a restricted class
of available decision criteria indicated above), this va-
lue can be interpreted.as an analogue of the entropy value.
This interpretation makes sense in view of the following

situation.

Suppose that a player before taking a decision with a re-
presentation?{ performs an auxiliary experiment V yielding
a representation H' where #' is considered to be a closed
subset of{l having a non-empty intersection with® . When
receiving a messageltuoe¥ﬂfhe player forms a representa-

tion XNH' with diameter value D (BnH')< D (#)
The difference
D (#) - D (HN¥)

is nonnegativ and is a suitable analogue of the information

value of an experiment/A generated by an experimentV .
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Notes added in proof. Note that the existence of the metric

is presupposed. Since we consider the metric as some measure
of informational distance in a subjective sense it would be
interesting to pursue proberties of the underlying qualitative
structure. Various structures of this sort have recently been
examined by ®.D. Luce (still unpublished notes) in terms of pro-
ximity structures and extensive measurement,

By choosing a metric as a measure of informational distance in
a statistical game one can fully exploit the generality of
metric spaces., If necessary one can generalize the metric to

a probabilistic metric constituting uncertainty about the true
distance (see B. Schweizer and A. Sklar, 'Statistical Metric

Spaces', Pacific Jour., Math., 10, 1960, 313 -~ 333.)




	scandeckbl10
	10



