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Reexamination of the perfectness concept for

equilibrium points in extensive games

by
Reinhard Selten

The concept of a perfect equilibrium point has been intro-
duced in order to exclude the possibility that disequili-
brium behavior is prescribed on unreached subgames.
(Selten 1965 and 1973). Unfortunately this definition

of perfectness does not remove all difficulties which may
arise with respect to unreached parts of the game. It is
Necessary to reexamine the problem of defining a satisfac-
tory non-cooperative equilibrium concept for games in ex-
tensive form. Therefore a new concept of a perfect equili-
brium point will be introduced in this paper.1)

In retrospect the earlier use of the word "perfect" was
Premature. Therefore a perfect equilibrium point in the old
Sense will be called "subgame perfect". The new definition
of perfectness has the property that a perfect equilibrium
point is always subgame perfect but a subgame perfect equi-
librium point may not be perfect.

It will be shown that every finite extensive game with per-
fect recall has at least one perfect equilibrium point.

Since subgame perfectness cannot be detected in the normal
form, it is clear that for the purpose of the investiga-
tion of the problem of perfectness, the normal form is

an inadequate representation of the extensive form. It will
be convenient to introduce an "agent normal form" as a more
adequate representation of games with perfect recall.

n The idea to base the definition of a perfect equilibrium

point on a model of slight mistakes as described in sec-
tion 6 is due to John C. Harsanyi. The author's earlier
unpublished attempts at a formalization of this concept

were less satisfactory. I am very grateful to John C. Harsanyi

who strongly influenced the content of this paper.
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1. Extensive games with perfect recall

In this paper the words extensive game will always refer

to a finite game in extensive form. A game of this kind can
be described as a sextuple.

(1) r = (x,p,U,C,p,h)

where the constituents K,P,U,A,p and h of I' are as follows:z)

The game tree: The game tree K is a finite tree with a dis-

tinguished vertex o, the origin of K. The sequence of ver-
tices and edges which connects o with a vertex x is call-
ed the path to x. We say that x comes before y or that y
comes after x if x is different from y and the path to y
contains the path to x. An endpoint is a vertex z with the
property that no vertex comes after z. The set of all end-
points is denoted by Z. A path to an endpoint is called a
play. The edges are also called alternatives. An alternative
at x is an edge which connects x with a vertex after x.
The set of all vertices of K which are not endpoints, is
denoted by X.

The playver partition: The player partition P = (PO,...,Pn)

partitions X into player sets. Py is called player i's player

set (Player O is the "random" player who represents the ran-
dom mechanisms responsible for the random decisions in the
game.) A player set may be empty. The player sets Py with
i=1,...,n are called personal player sets.

The information partition: For i = 1,...,n a subset u of Pi

is called eligible (as an information set) if n is not empty,
if every play intersects u at most once and if the number

of alternatives at x is the same for every xeu. A subset u:-:Po
is called elegible if it contains exactly one vertex.The infor-
mation partition U is a refinement of the player partition P

into eligible subsets u of the player sets. These sets u are
called information sets.The information sets u with u& Py are

called information sets of player i. The set of all information

%) The notation is different from that used by Kuhn (Kuhn 1953)



sets of player i is denoted by U;. The information sets of
player 1,...,n are called personal information sets.

The choice partition: For ueU let A, be the set of all alter-
natives at vertices xeu. We say that a subset c of A, is

eligible (as a choice) if it contains exactly one alterna-
tive at x for every vertex xeu. The choice partition C par-
titions the set of all edges of K into eligible subsets c
of the A, with ueU. These sets c are called choices. The
choices ¢ which are subsets of A, are called choices at u.
The set of all choices at u is denoted by C,. A choice at

a personal information set is called a personal choice. A
choice which is not personal is a random choice. We say
that the vertex x comes after the choice c if one of the ed-
ges in ¢ is on the path to x. In this case we also say that
¢ is on the path to x.

The probability assignement: A probability distribution Py
over C, is called completely mixed if it assigns a positive
probability pu(c) to every cecu. The probability assign-
ment p is a function which assigns a completely mixed pro-

bability distribution p, over Cu to every UsUO.(p specifies
the probabilities of the random choices.)

The payoff function: the payoff function h assigns a vector

h(z) = {h1(z),...,hn(z)) with real numbers as components to
every endpoint z of K. The vector h(z) is called the payoff
vector at z. The component hi(z) is player i's payoff at z.

Perfect recall: An extensive game I' = (K,P,U,C,p,h) is called

an extensive game with perfect recall if the following con-

dition is satisfied for every player i = 1,...,n and any two
information sets u and v of the same player i: if one ver-
tex yev comes after a choice c at u then every vertex xev
comes after this choice c.3)

=t The concept of perfect recall has been introduced by
H.W. Kuhn (Kuhn 1953)



Interpretation: In a game with perfect recall a player i who

has to make a decision at one of his information sets v knows
which of his other information sets have been reached by the
previous course of the play and which choices have been taken
there. Obviously a player always must have this knowledge if he
is a person with the ability to remember what he did in the past.
Since game theory is concerned with the behavior of absolute-

ly rational decision makers whose capabilities of reasoning

and memorizing are unlimited, a game, where the players are
individuals rather than teams,must have perfect recall.

Is there any need to consider games where the players are
teamg rather than individuals? In the following we shall try
to argue that at least as far as strictly non-cooperative

game theory is concerned the answer to this question is no.

In principle it is always possible to model any given inter-
personal conflict situation in such a way that every person
involved is a single player. Several persons who form a team
in the sense that all of them pursue the same goals can be re-
garded as separate players with identical payoff functions.
Against this view one might object that a team may be united
by more than accidentally identical payoffs. The team may be

a preestablished coalition with special cooperative possi-
bilities not open to an arbitrary collection of persons in-
volved in the situation. This is not a valid objection. Games
with preestablished coalitions of this kind are outside the
framework of strictly non-cooperative game theory. In a strict-
ly non-cooperative game the players do not have any means of
cooperation or coordination which are not explicitly modelled
as parts of the extensive form. If there is something like a pre-
established coalition, then the members must appear as sepa-
rate players and the special possibilities of the team must

be a part of the structure of the extensive game.

In view of what has been said no room is left for strictly
non-cooperative extensive games without perfect recall. In
the framework of strictly non-cooperative game theory such



games can be rejected as misspecified models of interper-
sonal conflict situations.

2. Strategies, expected payoff and normal form

In this section several definitions are introduced which
refer to an extensive game I' = (X,P,U,A,p,h).

Local strategies: A local strategy b, at the information

set ueUi is a probability distribution over the set Cu of

the choices at u; a probability biu(c) is assigned to

every choice ¢ at u. A local strategy biu is called pure
if it assigns 1 to one choice ¢ at u and O to the other
choices. Wherever this can be done without danger of
confusion no distinction will be made between the choice c
and the pure local strategy which assigns the probability 1
to c.

Behavior strategies: A behavior strategy bi of a personal

player i is a function which assigns a local strategy biu
to every usUi. The set of all behavior strategies of
player i is denoted by B, -

Pure strategies: A pure strategy L of player i is a function

which assigns a choice ¢ at u (a pure local strategy) to
every usUi. Obvicusly a pure strategy is a special behavior
strategy. The set of all pure strategies of player i is
denoted by m, .

Mixed strategies: A mixed strategy ay of player i is a pro-
bability distribution over T,; a probability qi(ni; is
assigned to every L Hi. The set of all mixed strategies

9y of player i is denoted by Q- Wherever this can be done
without danger of confusion no distinction will be made
between the pure strategy g and the mixed strategy qj
which assigns 1 to ni.Pure strategies are regarded as

special cases of mixed strategies.



Behavior strategy mixtures: a behavior strategy mixture s;

for player i is a probability distribution over By which as-
signs positive probabilities si(bi) to a finite number of ele-
ments of By and zero probabilities to the other elements of

Bi‘ No distinction will be made between the behavior strategy bi
and the behavior strategy mixture which assigns 1 to bi‘ The

set of all behavior strategy mixtures of player i is denoted

by S Obviously pure strategies, mixed strategies and behavior
strategies can all be regarded as special behavior strategy

mixtures.

Combinations: A combination s = (31,...,sn) of behavior Stra-

tegy mixtures is an n-tuple of behavior strategy mixtures

aicsi, one for each personal player. Pure strategy combinations
X = (11,...,:n), mixed strategy combinations and behavior

strategy combinations are defined analogously.

Realization probabilities: A player i who plays a behavior

strategy mixture Sy behaves as follows: He first employs a
random mechanism which selects one of the behavior strategies
bi with the probabilities si(bi}. He then in the course of the

play at every ueU, which is reached by the play selects one

- 8
of the choices ¢ at u with the probabilities biu(c)' Let

s = (51,...,sn) be a combination of behavior strategy mix-
tures. On the assumption that the s; are played by the players

we can compute a realization probability p(x,s) of x under s

for every vertex xeK. This probability p(x,s) is the proba-
bility that x is reached by the play, if s is played. Since
these remarks make it sufficiently clear, how p(x,s) is de-
fined, a more precise definition of p(x,s) will not be given
here.

Expected payoffs: With the help of the realization probabili-

ties an expected payoff vector H(s) = (H1(5),...,Hn(s)) can
be computed as follows:

\
(2) H(s) = / p(z,s)h()
r A
zel
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Since pure strategies, mixed strategies'and behavior strategies
are special cases of behavior strategy mixtures, the expected
payoff definition (2) is applicable here, too.

Normal form: A normal form G =(ﬂ1,...,nn;H) consists of n

finite non-empty and pairwise non-intersecting pure strategy

sets Hi and an expected payoff function H defined on

n = H1x...xnn. The expected payoff function H assigns a
payoff vector H(x) = (H1(u),...,Hn(x)}with real numbers as
components to every nell . For every extensive game T the
pure strategy sets and the expected payoff function defined
above generate the normal form of T.

In order to compute the expected payoff vector for a mixed
strategy combination, it is sufficient to know the normal
form of I'. The same is not true for combinations of behavior
strategies. As we shall see,in the transition from the
extensive form to the normal form some important information
is lost.

3. Kuhn's theorem

H.W. Kuhn has proved an important theorem on games with per-

fect recall (Kuhn 1953, p.213). In this section Kuhn's theo-

rem will be restated in a slightly changed form. For this

purpose some further definitions must be introduced. As be-

fore, these definitions refer to an extensive game r'=(X,P,U,A,p,h).

Notational convention: Let s = (s1,...,sn) be a combination of
behavior strategy mixtures and let ti be a behavior stra-

tegy mixture for player i.

The combination (51,...,51_1, ti'si+1""’sn) which results from
s,1f 8y is replaced by t; a?d the other components of s remain
unchanged,is denoted by s/si. The same notational convention

is also applied to other types of strategy combinations.



Realization equivalence: Let si and s; be two behavior strate-

gy mixtures for player i. We say that si and s; are realiza-

tion equivalent if for every combination s of behavior strategy

mixtures we have:
(3) o(x,s/si) = o(x,s/s;) for every xeK

Payoff equivalence: Let si and s; be two behavior strategy
mixtures for player i. We say that si and s; are payoff equi-

valent if for every combination s of behavior strategy mix-
tures we have

(4) H(s/ai) = H(s/sI)

Obviously si and sI are payoff equivalent if they are reali-
zation equivalent, since (3) holds for the endpoints z.

Theorem 1 (Kuhn's theorem): In every extensive game with
perfect recall a realization equivalent behavior strategy bi
can be found for every behavior strategy mixture Sy of a per-
sonal player i.

In order to prove this theorem we introduce some further de-
finitions.

Conditional choice probabilities: Let s = (51,...sn) be

a combination of behavior strategy mixtures and let x be
a vertex in an information set u of a personal player i,
such that p(x,s)> 0. For every choice ¢ at u we define a
conditional choice probability u(c,x,s). The choice c
contains an edge e at x; this edge e connects x with

another vertex y. The probability u (c,x,s) is computed
as follows:

- 0(2:3)
(5) ulc,x,s) £
The probability u(c,x,s) is the conditional probability
that the choice ¢ will be taken if s is played and x has
been reached.



Lemma 1: In every extensive game I' (with or without per-
fect recall) on the region of those triples (c,x,s) where
the conditional choice probability u(c,x,s)is defined

the conditional choice probabilities wu(c,x,s) with xeueUi
do not depend on the components s of s with i#j.

Proof: Let bl,...,b be the behavior strategles which are

selected by Sy with positive probabilities sS4 (b ) .For

p(x,s) >0 an outside observer,who knows that c has been

reached by the play but does not know which of the bi has
been selected before the beginning of the game,can use

this knowledge in order to compute posterior probabi-
lities ty (bj) from the prior probabilities sy (b ). The
posterior probabllity t (bJ) is prOportional to si(bj) mul-
tiplied by the product of all probabilities assigned

by bi to ghoices of player i on the path to x. Obviously
the ti (bi) depend on Sy but not on the other components

of s. The conditional choice probability u(c,x,s) can be

written as follows:

(6) (Goiat) 3 £, 3) bl (0
WhCERR A Y Tiu
=1

This shows that p(c,x,s) does not depend on the sj with i#j.

Lemma 2: In every extensive game T' with perfect recall,
on the region of those triples (c¢,x,s) where the condi-
tional choice probability u(c,x,s) is defined, we have

(7) ule,x,s) = u(c,y,s) for xeu and yeu

Proof: In a game with perfect recall for xeu,yeu and

ueUy player i's choices on the path to x are the same
choices as his choices on the path to y. (This is not

true for games without perfect recall). Therefore at x

and y the posterior probabilities for the behavior stra-
tegies bJ occurring in player i's behavior strategy mixture

s, are the same at both vertices. Consequently {?) fol~=

i
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lows from (6).
Proof of Kuhn's theorem: In view of lemma 1 and lemma 2 the

conditional choice probabilities at the vertices x in the
player set P, of a personal player can be described by a

function ui(c,u,si) which depends on his behavior strateqy
mixture Sy and the information set u with xeu.

With the help of u, (c,u,s;) we gonstruct the behavior strate-
ay bi whose existence is asserted by the theorem. If for

at least one s = (51,...,sn) with s; as component we have
u(x,s8) > O for some xeu, we define

(8) biu(c) = uy (c,u,s;)
The construction of bi is completed by assigning arbitra-
ry local strategies biu to those UEUi where no such s can

be found.

It is clear that this behavior strategy bi and the behavior
strategy mixture s, are realizazion equivalent.

The significance of Kuhn's theorem: The theorem shows

that in the context of extensive games with perfect re-
call one can restrict one's attention to behavior strate-
gies. Whatever a player can achieve by a mixed strategy

or a more general behavior strategy mixtures can be achiev-
ed by the realization equivalent and therefore also payoff
equivalent bahavior strategy whose existence is secured by
the theorem.

4, Subgame perfect equilibrium points

In this section we shall introduce some further definitions
which refer to an extensive game I' = (X,P,U,A,p,h) with
perfect recall. In view of Kuhn's theorem only behavior
strategies are important for such games. Therefore the
concepts of a best reply and an equilibrium point are
formally introduced for behavior strategies only.
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Best reply: Let b = (b1,...,bn) be a combination of beha-
vior strategies for I'. A behavior strateqgy Bi of player i
as a best reply to b if we have

(9) Hi(b/gi) = max Hi(b/bi)

L}
bieBi

A combination of behavior strategies B = (g1,...,ﬁn) is
called a best reply to b if for i = 1,...,n the behavior
strateqgy 31 is a best reply to b.

E%pdlibrium point: A behavior strategy combination

* * *
b = (b1,...,bn) is called an equilibrium point if b
is a best reply to itself.

Remark: The concepts of a best reply and an equilibrium
point can be defined analogously for behavior strategy
mixtures. In view of Kuhn's theorem it is clear that for
games with perfect recall an equilibrium point in behavior
strategies is a special case of an equilibrium point in be-
havior strategy mixtures. The existence of an equilibrium
point in behavior strateagies for every extensive game with
perfect recall is an immediate consequence of Kuhn's theorem
together with Nash's well known theorem on the existence of
an equilibrium point in mixed strategies for every finite
game (Nash 1951).

Subgame: let ' = (K,P,U,A,p,h) be an extensive Jame with or
without perfect recall. A subtree K' of K consists of a
vertex x of K together with all vertices after x and all
edges of K connecting vertices of K'. A subtree K' is called
reqular in ', if every information set in ', which contains
at least one vertice of K', does not contain any vertices
outside of K'. For every reqular subtree K' a subgame

r* = (', p',U',A",p',h') is defined as follows: P',U',A',p"'
and h' are the restrictions of the partitions U,A and the
functions p and h to K'.
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Induced strategies: Let I'' be a subgame of T and let

b = (b1""'bn) be a behavior strategy combination for T.
The restriction of bi to the information sets of player i
in I'' is a strategy bi of player i for I''. This strategy bi
is called induced by bi on I'' and the behavior strategy
combination b' = (bi,...,bﬁ) defined in this way is called
induced by b on I''.

Subgame perfectness: A subgame perfect equilibrium point

% %
b = (bi,...,bn) of an extensive game T' is an equilibrium
point (in behavior strategies) which induces an equilibrium
point on every subgame of T.

5. A numerical example

The definition of a subgame perfect equilibrium point ex-
cludes some cases of intuitively unreasonable equilibrium
points for extensive games. In this section we shall present
a numerical example which shows that not every intuitively
unreasonable equilibrium point is excluded by this defini-
tion. The discussion of the example will exhibit the nature
of the difficulty.

The numerical example is the game of figure 1. Obviously
this game has no subgames. Every player has exactly one
information set. The game is a game with perfect recall.

Since every player has two choices, L and R, a behavior
strategy of player i can be characterized by the probability
with which he selects R. The symbol Py will be used for

this probability. A combination of behavior strategies is
represented by a triple (p1,p2,p3).

As the reader can verify for himself without much difficul-
ty the game of figure 1 has the following two types of equi-
librium points:

1

Type 2: p1 = O %‘tjp £ {33 =1
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Consider the equilibrium points of type 2. Player 2's
information set is not reached, if an equilibrium
point of this kind is played. Therefore his expected
payoff does not depend on his strategy. This is the
reason why his equilibrium strategy is best reply to
the equilibrium strategies of the other players.

0

o

Figure 1 : A numerical example. Information sets
are represented by dashed lines. Choices are indi-
cated by the letters L and R (standing for "left"
and "right"). Payoff vectors are indicated by column
vectors above the corresponding endpoints.
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Now suppose that the players believe that a épecific
type 2 equilibrium point, say (0,1,1) is the rational
way to play the game. Is it really reasonable to be-
lieve that player 2 will choose R if he is reached?

If he believes that player 3 will choose R as prescrib-
ed by the equilibrium point, then it is better for

him to select L where he will get 4 instead of R where
he will get 1. The same reasoning applies to the other
type 2 equilibrium points, too.

Clearly, the type 2 equilibrium points cannot be re-
garded as reasonable. Player 2's choices should not be
guided by his payoff expectations in the whole game

but by his conditional payoff expectations at Xqe The
payoff expectation in the whole game is computed on the
assumption that player 1's choice is L. At X3 this as-
sumption has been shown to be wrong. Player 2 has to
assume that player 1's choice was R.

For every strategy combination (p1,p2,p3) it is possible
to compute player 2's conditional payoff expectations
for his choices L and R on the assumption that his in-
formation set has been reached. The same cannot be done
for player 3. Player 3's information set can be reached
in two ways. Consider an equilibrium point of type 1,
e.g. the equilibrium point (1,1,0). Suppose that (1,1,0)
is believed to be the rational way to play the game

and assume that contrary to the expectations generated
by this belief, player 3's information set is reached.
In this case player 3 must conclude that either player 1
or player 2 must have deviated from the rational way

of playing the game but he does not know which one.

He has no obvious way of computing a conditional proba-
bility distribution over the vertices in his information
set, which tells him, with which probabilities he is

at x, and at X, if he has to make his choice.
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In the next section a model will be introduced which is
based on the idea that with some very small probability

a player will make a mistake. These mistake probabili-

ties do not directly generate a conditional probability
distribution over the vertice of player 3's information
set. As we shall see in section 8 the introduction of
slight mistakes may lead to a strategic situation where

the rational strategies add some small voluntary deviations
to the mistakes.

6. A model of slight mistakes

There cannot be any mistakes if the players are abso-
lutely rational. Nevertheless, a satisfactory interpre-
tation of equilibrium points in extensive games seems’
to require that the possibility of mistakes is not
completely excluded. This can be achieved by a point of
view which looks at complete rationality as a limiting
case of incomplete rationality.

Suppose that the personal players in an extensive game T
with perfect recall are subject to a slight imperfection
of rationality of the following kind. At every information
set u there is a small positive probability €4 for the
breakdown of rationality. Whenever rationality breaks
down, every choice ¢ at u will be selected with some
positive probability d. which may be thought of as de-
termined by some unspecified psychological mechanism.

Each of the probabilities €4 and de is assumed to be
independent of all the other ones.

Suppose that the rational choice at u is a local strategy
which selects c with probability P.- Then the total pro-
bability of the choice ¢ will be

(4) ﬁc - (1-eu)pc Rl
The introduction of the probabilities e, and q, transforms
the original game into a changed game T where the players
do not completely control their choices. A game of this
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kind will be called a perturbed game of T.

Obviously, it is not important whether the p, or the
ﬁc
perturbed game I'. In the following we shall take the

latter point of view. This means that in I' every player

are considered to be the strategic variables of the

i selects a behavior strategy which assigns probability
distributions over the choices c¢ at u to the information
Sets u of player i in such a way that the probability ﬁc
assigned to a choice ¢ at u always satisfies the fol-
lowing condition:

(10) B, 2 €,a

The probability §c is also restricted by the upper bound
1—Eu(1-qc); it is not necessary to introduce this upper
bound explicitly since it is implied by the lower bounds
on the probabilities of the other choices at the same
information set. With the help of the notation

(1) n, = ega,

condition (10) can be rewritten as follows:

(12) B. 3 e for every personal choice c.

Consider a system of positive constants € for the perso-
nal choices ¢ in I' such that

R
(13) 2 e © 1

c at Cu

Obviously for every system of this kind we can determine
positive pro?abilities €u and d. which generate a per-
turbed game T whose conditions (10) coincide with the
conditions (12). Therefore we may use the following
definition of a perturbed game.

Definition: A perturbed game I' ie a pair (I',n) where T is

an extensive game with perfect recall and n is a function
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which assigns a positive probability e to every personal
choice ¢ in I such that (13) is satisfied.

The probabilities n, are called minimum probabilities.
For every choice c at a personal information set u define

(14) g, =1 +n, =
obviously e is the upper bound of ﬁc implied by the

conditions (7). This probability B is called the maximum
probability of c.

Etrategies: A local strateqy for the perturbed game

'= (I',n) is a 1local strategy for TI' which satisfies the
conditions (12). A behavior strategy of player i in I' is a
behavior strategy of player i in I' which assigns local
strategies for I' to the information sets of player i. The
set of all behavior strategies of player i for I' is denot-

ed by Bi' A behavior strategy combination for P is a be-
havior strategy combination B = (51,...zﬁn) for T' whose
components are behavior strategies Eor ' The set o£ all
behavior strategy combinations for I' is denoted by B.

Best replies: Let b —(b1,...,b ) be a behavior strategy
combination for r. A behavior strateqy h of player i

for r is called a best reply to b in T if we have

N ]
(15) Hy (b/b;) = max H, (b/bJ)
]
bieBi
A behavior strategy combination B = (b1,...,b ) for P is

called a best reply to b in I if every component bi of bi
is a best reply to b in F.

Equilibrium point: An equilibrium point of I' is a behavior
strategy combination for I' which is a best reply to itself
in T.
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Remark: Note that there is a digference between a begt
reply in I' and a best reply in I'. The strategy sets By
are subsets of the strategy sets B,. Pure strategies
are not available in T.

7. Perfect equilibrium points

The difficulties which should be avoided by a satisfactory
definition of a perfect equilibrium point are connected

to unreached information sets. There cannot be any un-
reached information sets in the perturbed game. If b is

a behavior strategy combination for the perturbed game
then the realization probability p(x,b) is positive for
every vertex x of K. This makes it advantageous to_ look

at a game I' as a limiting case of perturbed games I'= (I ,n).
In the following a perfect equilibrium point will be de-
fined as a limit of equilibrium points for perturbed
games.

Sequences of perturbed games: Let T be an extensive game

with perfect recall. § sequence F1, Pz,... where for
k=1,2,... the game rk = (F,nk} is a perturbed game of T,
is called a test sequence for I', if for every choice c of
the personal players in ' the sequence of the minimum

probabilities ng assigned to c by nk converges to O for
k +e,
Let P1, rz, ...« be a test sequence for I'. A behavior
%
strategy combination b for I' is called a limit equilibrium
point of this test“sequence if for k =1,2,... an equili-

brium point bk of rk can be found such that for k+« the

&
sequence of the bk converges to b .

#
Lemma 3: A limit equilibrium point b of a test sequence
F1, Fz,... for an extensive game T' with perfect recall
is an equilibrium point of T.

Proof: The fact that the bk are equilibrium points of the

Pk can be expressed by the following inequalities
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(16) H (Ek)> H (Ek/b ) for every b eﬁk and for i=1 n
i > 4 i + Vpkeg e 8 ills

Let 3T be the intersection of all B? with k > m. For

k> m we have

(17) Hi(bk) > Hi(bk/bi) for every b, eB}.

Since the expected payoff depends continuously on the be-
habior strategy combination this inequality remains va-

lid if on both sides we take the limits for k-+«. This yields:

(18) Hi(hf);,Hi(H?bi) for every biEBT .

Inequality (18) holds for every m. The closure of the union
of all BY is B,. This together with the continuity of H;

yields:

(19) Hi(H*)} Hi(57bi) for every bisBi .

Inequality (19) shows that b is an equilibrium point of T.

Perfect equilibrium point: Let T be an extensive game with

perfect recall. A perfect equilibrium point of I' is a be-

* i *
havior strategy combination b = (b;,...,b)) fgr F‘with the

property that for at least one test sequence T ', TZL..;

%
the combination b is a limit equilibrium point of r1,r2,...

#
Interpretation: A limit equilibrium point b of a test se-

quence has the property that it is possible to find equili-
brium points of perturbed games as close to b* as desired.
The definition of a perfect equilibrium point is a precise
statement of the intuitive idea that a reasonable equili-
briums point should have an interpretation in terms of arxbi-
trarily small imperfections of rationality. A test se-
quence which has b* as limit equilibrium point provides

an interpretation of this kind. If b* fails to be the limit
equilibrium point of at least one test sequence b* must be
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regarded as instable against very small deviations from per-
fect rationality.

Up to now it has not been shown that perfectness implies sub-
game perfectnes. In order to do this we need a lemma on the
subgame perfectness of equilibrium points for perturbed games.

-~

Subgames of perturbed games: Let T = (E'”) be a perturbed
game of T'. A subgame T' = (I'',n') of T consists of a subgame

' of ' and the restriction n' of n to the personal choices
of P'.AWe say that ' is generated by T'. An equilibrium

Eoint b of T is called subgame perfect if an equilibrium point
b' is induced on every subgame T'' of T,

Lemma 3: Let T be an extensive game with perfect recall and
oo b W

lethr = (I',n) be a perturbed game of I'. Every equilibrium point
of T (in behavior strategies) is subgame perfect.

Proof: Let g' be the beheviorhstrategy combination induced

by an equilibrium point b of T on a subgame r' of r. Obvious-
Ey b' is a behavior strategy combination fgr the subgame

I'' =(r',n') generated by I''. Suppose that b' fails to be an
equilibrium point of ;'. It follows Ehat for some personal
player j a behavior stratgqy b3 fornr' exist, such that player
j's expected payoff for*b'/ba in I'" is greater than his ex-
pected anoff for b' in I''. Consider the behavior strategy

bj foE r wh}ch agrees with b; on I'' and with player j's stra-
tegy bj inAb everywhere else. Since the realization probabi-
litigs in T are always positive player j's expected paxoff
for b/bj must be greater than his expected payoff for b.
Since aﬁbehavior strategy bj with thi§ property does not
exist, b' is an equilibrium point of I'"'.

Theorem 2: Let T be an extensive game with perfect recall and
let B be a perfect equilibrium point of I'. On every sub-
game I'' of T a perfect equilibrium point B' is induced by

L}
g on I''.
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Corollary : Every perfect equilibrim point of an extensive

game ' with perfect recall is a subgame perfect equilibrium
point of T.

Proof: Let F1 Fz,... be a test sequence for I' which has b as
limit equilibrium point. Let b1: bz,... be a sequence of equi-

librium points b of Fk It follows from the subgame perfectness

of the b that the subgames of Fk generated by TI''form a test
sequence for I'' with B' as a limit equilibrium point. Therefore
B' is a perfect equilibrium point of T'.

The corollary is an immediate consequence of the fact that a

perfect equilibrium point is an equilibrium point. (See lemma 3.)

8. A second look at the numerical example

In this section we shall first look at a special test sequence
of the numerical example of figure 1 in order to compute its
limit equilibrium point. The way in which this limit equilibrium
point is approached exhibits an interesting phenomenon which

is important for the interpretation of perfect equilibrium
points. Later we shall show that every equilibrium point of

type 1 is perfect.

Let €q7€rec be a monotonically decreasing sequence of positive

probabilities with €q < % and g, *+0 for k + =, Let‘rbe‘the game
of figure 1. Consider the following test sequence FT, Pz,... for T.

For k = 1,2,... the perturbed game Pk = (y,nk ) is defined by
k
N ™ &y for every choice c of T.

As in section 6 let P; be the probability of player i's choice R.

A behavior strategy combination can be represented ba aﬁtriple
p = (p1.p2,p3). The behavior strategy combinations for Fk are

restricted by the condition

(20)4‘-€K‘?,p > for 1 = 1,2,3

i = %k

As we shall see, the perturbed game Fk has only one equilibrium

peint pk = (p?,pg,pa ) whose components pt are as follows:



22

(21) pr = 1

2e
& k
(22) R R,
2 1 €1
(23) p§ " %

Equilibrium property of pk: In the‘following it will be shown
that pk is an equilibrium point of Tk. Let us first look at
the situation of player 3. For any p = (p1,p2,p3) the reali-
zation probabilities p(x1,p) and p(xz,p) of the vertices X4
and X, in the information set of player 3 are given by (24)
and (25).

(24) p(x1rp) - 1"'p1
(25) p(x,,p) = py(1-p,)

Player 3's expected payoff under the condition that his
information set is reached is 2p(x,p) if he takes his choice R
and o(xz,p) ifnie takes his choice L. Therefore P,y is a best
reply to p in I'" if and only if the following is true:

(26) Py = € for 2(1-p,) < p,y (1-p,)
(27) €, €P3 < 1-¢, for 2(1-p;) = p, (1-p,)
(28) Py = 1-gy for 2(1-pq) > pq (1-p;)

In the case of pk we have

(29) 0 (x/,0") = €

k
(30) p(x,,p ) = 2¢,

Therefore it follows by (27) that pg is a best reply to pk.
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Let us now look at the situation of player 2. Here we can

see that Py is a best reply to p in rk if and only if the

following is true:

= 1

(31) P, €y for P3 > 7
-

(32) € S Py < 1-ek for Py = 7
P — 1

(33) Py = i €1 Fox P; <37

p§ is best reply to pk in view of (32).

P1 is a best reply to p in rk if and only if the following
is true:

(34) Py = & for 3p3 > 4(1—p2)p3+p2
(35) €, $Pq < T-gp for 3py = 4(1-p,)p,+pP,
(36) By = -2 for 3p; < 4(1-p,)p3+p,

pf is a best reply to pk in view of (36).

Uniqueness of the equilibrium point: In the following iE
will be shown that pk is the only equilibrium point of Pk.
We first exclude the possibility P, # 1/4. Suppose that

p is an equilibrium point with Py < 1/4. It follows by
(33) that we have P, = 1—sk. Concequently 393 is smaller
than P, and (36) yields Py = 1-ek. Therefore (28) applies

to Py. We have Py = 1—sk contrary to the assumption Py < 1/4.

Now we suppose that p is an equilibrium point with Py > 1/4.
Condition (31) yields p, = € In view of 1-p, > 3/4
condition (36) applies to P,. It follows that (26) applies
to Py contrary to the assumption Py > 1/4.

We know now that an equilibrium point p of Fk must have the
property Py = %. Obviously (36) applies to an equilibrium

point p. We must have Py = 1—sk . Moreover neither (26) nor
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(28) are satisfied by p,. Therefore in view of (27) an
equilibrium point p has the following property:

(37) 2(1-p,) p, (1-p,).

This together with Py, = 1~ek vields
2+:k.

(38) Py = 7
2 1 €1

Voluntary deviations from the limit equilibrium point:

%
For k+« the equence pk converges to p =(1,1,1/4).
This is the only limit equilibrium point of the test
sequence T , rz,... 5
k * k
Note that Pq is as near as possible to Py = 1 since P4

is the maximum probability 1 - Ek . Contrary to this pg

is not as near as possible to pz. The probability pz is
smaller than 1 - €x by sk(1+ek) / (1 = ek) The rules of
the perturbed game force player 2 to take his choice L
with a probability of at least €y but to this minimum
probability he adds the "voluntary" probability

ck(1+ek) / (1—sk]. In this sense we can speak of a vo-
luntary deviation from the limit equilibrium point.

The voluntary deviation influences the realization proba-
bilities p(x1,pk) and p(xz,pk}. The conditional probabi-
lities for X4 and xz,if the information set of player 3 is
reached by pk, are 1/3 and 2/3 for every k. It is natural
to think of these conditional probabilities as conditional
probabilities for the limit equilibrium point p*,too,

The assumptions on the probabilities of Elight mistakes
which are embodied in the test sequence F1, Fz,... do not
directly determine these conditional probabilities but

indirectly via the quilibrium points pk .

Perfectness of the equilibrium points of type 1: In the fol-

lowing it will be shown that every equilibrium point of
* %
type 1 is perfect. Let p = (1,1,p3) be one of these equili-

A1 -~

brium points. We construct a test sequence T , rz,...
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¥
with the property that p 1is a limit equilibrium point of
r1, Fz,... . Let €47 € QAR be a decreasing sequence of

positive numbers with e, < p3 /2 and ¢, + O for k » =.

The minimum orobabilitias nk for the perturbed game
Pk = fr,n ) are defined as follows.
fﬁk if ¢ is a choice of player 1 or player 3
k
133 e © 2e

k if ¢ is a choice of player 2.
1-¢
k

With the help of arguments similar to those which have been
used in the subsection "equilibrium property of pk", it can
be shown that for ki = 1,2,... the following behavior stra-

tegv combination § = (§1, B, 53) is an equilibrium point of
=k

I
2ek

(41) p, =1 - c ey

2 €1

. %
(42) Py = P3

A1 A.2 ] Tt
The sequence p , p,» ... converges to p . Therefore p 1is

a perfect equilibrium point.

Imperfectness of the equilibrium points of type 2: In the
following it will be shown that the equilibrium points of

P #*
type 2 fails to be perfect. Let p = (0,p2,1) be an equili-

brium point of type 2 and let T1 Tz,... be a test sequence

%
which has p as limit equilibrium point. Let p i pz, ... be

a sequence of equilibrium points p of rk which for k-+e con-

verges to p . For every >0 we can find a number m(e) such

that for k > m(e) the following two conditions (a) and (b)

are satisfied. (a) Every minimum probability ng in Pk = (I',n )
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*
is smaller than e¢. (b) For i = 1,2,3 we have Ipi—p§|< €.

For sufficiently small ¢ it follows from (a) and (b) that

p? is not a best reply to pk; we must have p, <e for

player 2's best reply to pk and pg cannot be below 1/3 by

*
more than e. This shows that p cannot be the limit equili-
brium point of a test sequence.

9. A decentralization property of perfect equilibrium points

In this section it will be shown that the question whether

a given behavior strategy combination 1s a perfect equili-
brium point or not, can be decided locally at the information
sets of the game. The concept of a local equilibrium point
will be introduced which is defined by conditions on the
local strategies. As we shall see, in perturbed games these
local conditions are equivalent to the usual global equili-
brium conditions. On the basis of this result a decentralized
description of a perfect equilibrium point will be developed.

Notational convention: Let T' be an extensive game and let bi

be a behavior strategy of a versonal player i in TI'. Let

biu be a local strategy at an information set u of player i.
The notation bi/bj'_u is used for that behavior strategy

which results from b; if the local strategy assigned by bi to
u is changed to biu whereas the local strategies assigned

by bi to other information sets remain unchanged. Let

b = (b1,...,bn) be a behavior strategy combination. The no-
tation b/bj'_u is used for the behavior strategy combination:b/bi
with bi = bi/biu. The set of all local strategies at u is

denoted by Biu'

Local best replies: Let b = (b1""'bn) be a behavior strategy

combination for an extensive game ' and let.g be a local

iu
strategy at an information set u of a personal player i. The

local strategy B is called a local best reply to b in I if

iua

we have
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™ L]
(43) Hi (b/biu) = max Hi(b/biu )
biu‘Biu

Local best replies in a perturbed game I' = (T,n) are de-

fined analogously: giu is a local best reply to b in T if
we have

MY ]
(44) Hy (b/biu) = max Hi(b/biu)
: biucBiu

where Biu is the set of all local strategies at u for T.

Conditional realization probabilities: Let I'= (T',n) be a

verturbed came of an extensive game I'' with perfect recall.

For every information set u of a personal player i and
every behavior strategy combination b = (b,,...,b ) for T
we define a conditional realization probability n(x,b)

P (xrb)

T ol

Yeu

(45) u (x,b)

Obviously o (x,b) is the conditional probability that x is
reached by the play if b is played and u is reached. Since
op(x,b) is positive for every vertex x, the conditional reali-
zation probability p(x,b) is defined for every vertex x.

Let x be a vertex and let z be an endpoint after x. We de-
fine a second type'of conditional realization probability
n(x,z,b) which is the probability that z will be reached if b
is played and x has been reached. Obviously we have

(46) n(x,z,b) = %{%L%}

Conditional expected payoff: For every information set u of
a personal player i in a perturbed game I'= (I' n) of an exten-
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sive game TI' with perfect recall we define a conditional ex-

pected payoff funtion Hiu for player i at u:

(47) Hi, (b) = é _n(x,b) E u({x,z,b)h(z)

Xeu z after x

Hiu(b) is the conditional expectation of player i's payoff
under the condition that b is played and u is reached by
the play.

Lemma 4: Let b = {b1,...,bn) Ee a behavior strategy com-
bination for a perturbed game I' = (I',n) of an extensive
game ' with perfect recall. The conditional realization
probabilities n(x,b) do not depend on bi‘
Proof: In a game with perfect recall the information sets
u of a personal player i have the property that the same
choices of player i are on every path to a vertex xeu.
Therefore n(x,b) does not depend on bi'

Lemma 5: Let b = (b1,...,bn)‘be a behavior strategy combi-
nation for a perturbed game I'= (I',n) of an extensive

game T with perfect recall and let giu be a local strategy
for ' at an information set u of a personal player i. The
tocal strateqy giu is a local best reply to b in I if
and only if the following is true:

Y L}
(48) Hiu(b/biu) = max Hiu(b/biu)

b' sg

iua " “iun

Proof: The assertion of the lemma follows from the fact
that the local strategy at u does not influence the reali-
zation probabilities of endpoints which do not come after
vertices of u.
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Now we assume that b; is not a best reply to b in I'. With the

. N n
notation b/bi/biv for b/bi we can write

L] e ]
(49) Hi(b/bi/biv)< Hi(b/bi)

In the follgwinq we shall show that biv is a local best reply

to b/bi in I'. This is a contradiction to (49).
It follows by lemma 4 that we have

(50) n(x,b/bJ/b; ) = n(x,b/B, /b, )

for every xev and every local strategy biv of player i at v.
Moreover the information set v has been selected in such a
way that b and Bi assign the same probabilities to choices

i
at information sets u after v. Therefore we have

(51) u(x,2,b/b! /by ) = u(x,2,b/B /b, )

for every local strategy'biv at v and for every xev. (47) to-
gether with (50) and (51) yields

' - N
(52) H,, (b/b/b, ) = (B (b/B /b, )

Since giv is a local best reply to b/g1 it is a consequence
of lemma 5 and equation (52) that giv is a local best reply
to b/bi. This contradiction to (49) completes the proof of

lemma 6.

Local equilibrium points: A behavior strategy combination
x ® %
b' = (by,...,b ) for an extensive game T is called a local equili-

brium point for T or for a perturbed game T of T if every local

#

strategy biu which is assigned to an information set u by one of
* -~

the bi is a local best reply to b in T or I', resp.

Lemma 7: A behavior sErategy combination b*- (b:,...,b:]
for a perturbed game I' = (I',n) of an extensive game I' with
perfect recall is an equilibrium point for r,if and only if



- 31 =

F

#*
b 1is a local equilibrium point for T.

Proof: The lemma is an immediate consequence of lemma 6.

Local limit equilibrium points: Let F1,F2,... be a test

sequence for an extensive game I' with perfect recall.

» ® #
A behavior strategy combination b = (bi""'bn) for T is
called a local limit equilibrium point of the test se-

quence P1, PZ,... if every Fk has a local equilibrium

point bk such that for k+« the sequence of the bk conver-
%
ges to b .

Theorem 3: A behavior strategy combination b* = (b?,...,b;)
for an extensive game I' with perfect recall is a perfect
equilibrium point of T, if and only if for at least one

test sequence P1, P2, ... for ' the behavior strategy
%

combination b is a local limit equilibrium point of the
=1 =2

test sequence ' , I' ,... .

Proof: The theorem is an immediate consequence of lemma 7
and the difinition of a perfect equilibrium point.

10. The agent normal form and the existence of a perfect
equilibrium point

In this section the concept of an agent normal form will
be introduced. The players of the agent normal form are
the agents of the information sets described by H.W. Kuhn
in his interpretation of the extensive form (Kuhn 1953).
An agent receives the expected payoff of the player to
Whom he belongs. The agent normal form contains all the
information which is needed in order to compute the
perfect equilibrium points of the extensive game. With
the help of the agent normal form one can prove the
existence of perfect equilibrium points for extensive
games with perfect recall.

The agent normal form: Let I' be an extensive game and
let Ugpeee Uy be the information sets of the personal
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players in . For i = 1,...,N let ¢4 be the set Cui of
all choices at uy. In the following we shall define a
normal form G = (¢1,...,¢N,R) where the players 1,...,N
are thought of as agents associated with the information
sets Uqrees Uye This normal form is called the agent
normal form of T.

Let ¢4 be the set of all pure strategy combinations

? = (¢1,...,@n)for G. For every gpe¢ the expected payoff
vector E(9) = (E1(¢),...,En(9)) is defined as follows:
Let n = (11,...,xn) be the pure strategy combination

for ' whose components assign the choice ¢je¢j to every
information set uj. For this n we have

£53) Ei(q) = Hj(n) for uier

The expected payoff function g is extended to the mixed

strategy combinations g = (q1,...,qN) of G in the usual
way.
Induced strategy combinations: Let b = (b,,...,bn) be

a behavior strategy combination for I' and let

q = (q1,...,gN) be a mixed stratey combination for the
agent normal form G of I'. We say that g is induced

by b on G and that b is induced on I' by q if for
i=1,...,N the mixed strategy ay is the same proba-
bility distribution over R, as the local strateqgy as-

Signed to u, by the relevant component of b. Obvious-

- §
ly this use of the word "induced" defines a one-to-one
mapping between the behavior strateqy combination b

of ' and the mixed strategy combinations q of G.

Perturbed agent normal forms: Let G be a normal form

G = (¢1""'¢N'E) and let n be a function which assigns
positive minimum probabilities Ne to every Cedy with
i=1,...,N, subject to the restriction

0 D ne
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The pair G = (G,n) is called a perturbed normal ferm of G.

A mixed strategy qg for G is a mixed strateqy for G = (G,n)
if ay satisfies the following condition:

{55) qi(c) > n for every cs¢i

C

A mixed strategy combination g 2 (q1,...,qN) is called a
mixed strategy combination for G = (G,n) if for i = 1,...,N

the mixed strategy q; is a mixed strategy for G. The set of

all mixed strategies q of player i in G is denoted by Q -

Let T be an extensive game and let G be the agent normal form

of F.‘Obviously a behavior strategy combination for the perturbed
game I'=(T',n) is induced on T by every mixed strategy combina-
tion forﬁthe perturbed normal form G = (G,n) End vice versa.

We call G the perturbed agent normal form of T.

Equilibrium points: A mixed strategy ai of a player i ig a per-

turbed normal form G = (G,n) is called a best replyﬁto G to

the mixed strategy combination g = (q1,...,qN) for G if we
have
i L]
(56) E;(a/qy) = max E; (q/qy)
q;€Q;

~ ~ "™
A mixed strategy combination q = (q1,...,qN)is called a best
reply to g in G, if every qi in q is 2 best reply to q in G.
A mixed strateqy combination q for G is called .an equilibrium
point of G, if q is a best reply to itself in G.

Lemma 8: Let é = (GL") be the perturbed égent normal form of
the perturbed game T' = (T',n) of an extensive game T with per-
fect recall. An equilibrium”point of T is induced on T by‘
every equilibrium point of G and an equilibrium point of G is
induced on G by every equilibrium point of ;.

Proof: It is clear that a local best reply in ; corresponds
to a best reply in G. Therefore the assertion follows by lem-
ma 7.
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Perfect equilibrium points: A test sequence G ,Gz,... for

a normal formAG = (¢1,...,¢N,E) is a sequence of perturbed

normal forms Gk = (G,n ) of G such that for k+« the se-

quence of the nk converges to O for every c in the sets R

c * - -~
A limit equilibrium point g of a test sequence G1,G2,...

is a mixed strategy combination for G, such that there is

iv

at leasE one sequence q1,q2,... of equilibrium points

*
qk for Gk which for k+« converges to g . A perfect equi-

®
librium point of G is a mixed strategy combination gq for
G which i§ aalimit equilibrium point of at least one test
sequence G ,G",... for G.

Lemma 9: A limit equilibrium point q* of a test sequence
e KA

G1, Gz,... for a normal form G is an equilibrium point of G.

Proof: The proof is omitted here since it is completely
analogous to the proof of lemma 3.

Theorem 4: Let I' be an extensive game with perfect re-
call and let G be the agent normal form of I'. A perfect
equilibrium point of T is induced on T by everv perfect
equilibrium point of G and a perfect equilibrium point
of G is induced on G by every perfect equilibrium point
of T.

Proof: It follows by lemma 8 that a one-to-one relation-
ship between the test sequences for I' and for G can be
established where a perturbed game of TI' corresponds to
its perturbed agent normal form. Therefore a 1limit equi-
librium point of one of both sequences induces a limit
equilibrium point of the other one.

Existence of perfect equilibrium points: In the follow-
ing it will be shown that every extensive game TI' with

perfect recall has at least one perfect equilibrium point.
In order to prove this, we make use of theorem 4.
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Theorem 5: Every normal form G has at least one perfect equi-
librium point.

-~

Proof: A perturbed normal for G = (G,n) satisfies well known
sufficient conditions for the existence of an equilibrium

point in mixed strategies (see e.g. Burger, 1958, p. 35,
“k

Satz 2). Therefore every perturbed normal form G  in a test
sequence G1, GZ,... for G has an equilibrium point qk.

Since the set of all mixed strategy combinations is a clos-

ed and bounded subset of an encledian space, the sequence q1,q2,...
has an accumulation point q*. The sequence q1,q2, ... has a
subsequence which converges Eo qt. The corresponding subse-

quence of the test sequence G , Gz,... is a test sequence with
the limit equilibrium point q*. Therefore q* is a perfect

equilibrium point of G.

Theorem 6: Every extensive game I' with perfect recall has at
least one perfect equilibrium point.

Proof: In view of theorem 5 the agent normal form of T' has
a perfect equilibrium point. It follows by theorem 4 that
I' has a perfect equilibrium point.

11. Characterization of pnerfect equilibrium points as best

replies to substitute sequences

In this section it will be shown that the definition of a
perfect equilibrium point as a limit equilibrium point of

a test sequence is equivalent to another definition which

is more advantageous from the point of view of mathematical
simplicity. In view of theorem 4 we can restrict our attention
to perfect equilibrium points for normal forms. It is suf-
ficient to analyse the agent normal form if one wants to

find the perfect equilibrium points of an extensive game

with perfect recall. It is important to point out that it is
not sufficient to analyse the ordinary normal form This

will be shown in section 12 with the help of a counterexample.
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Substitute sequences: Let G = (n1,...,nn;H) be a game
in normal form. A mixed strategy ay of player i is call-

ed completely mixed if for every nyelly the probability
qi(ui) assigned to L by ay is positive. A mixed strate-
gy combination q = (q1,...,qn) is called completely
mixed if a4y is completely mixed for i = 1,...,n. Let

q = (q1,...,qn) be a mixed strategy combination for G.
An infinite sequence of mixed strategy combinations

q1,q2,... is called a substitute sequence for a if qk

converges to a for k»= and every qk is completely mixed.
A strateaqy qy or a strategy combination g is called a
best reply to the substitute sequence q’,qz,... if qy or

a,resp. is a best reply to every q in the sequence.

Substitute perfect equilibrium points: A mixed strategy
* % *
combination q = (q1,...,qn) for a normal form G is call-

ed a substitute perfect equilibrium point of G if q is

a best reply to at least one substitute sequence for 9 .

Lemma 10: A substitute perfect equilibrium point of a
normal form G is an equilibrium point of G.

%
Proof: Let q be a best reply to the substitute sequence

¥
q1, qz, suw O @ « FOrk = 1,2,... and for 1 = 1 ,... .0
we have
¥
(57) Hy (@¥/a)) = max ny(@¥/aq)
93¢Q

In view of the continuity of Hi and the continuity pro-
perties of the maximum operator it is clear that (57) re-
mains valid if on both sides we take limits for k+«, This
shows that q* is an equilibrium point.

Associated perturbed normal forms: Let G = (Mg yeee, Ny iH)

be a normal form, let q = (q1,...,qn) be a completely
mixed strategy combination for G and let € be a positive
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number such that for i = 1,...,n we have g (x;)>e for
4" For every triple (G,q,¢) of this kind we
define an associated perturbed normal form G = (G,n) ,
where the minimum probabilities of the pure strategies

every tieﬁ

for G are as follows:

(58) n_._ =
LE ] |

Le if L is a best reply to q in G

jﬁi(ni) if =, is not a best reply to g in G

for i =1,...,n and for every :isﬂi. Chviously n satisfies
the condition that the minimum probabilities for all pure
strategies of a player sum up to less than 1.

Lemma 11: Let G = (G,n)be the associated perturbed normal
form for the triple (G,q,e). The strategy combination q
is an equilibrium point of G.

Proof: A mixed strategy is a best reply to q in 6 if the
pure strategies which are not best replies to g in G are
used with their minimum probabilities. In view of (58) this
is the case for every component i of q.

Lemma 12: A substitute perfect equilibrium point of a nor-
mal form G is a perfect equilibrium point of G.

* % *

Proof:; Let g = (ql,...,qn) be a substitute perfect aqui-

librium point for G and let q1, qz,... be a substitute se-
% %

quence for g such that g is a best reply to q1, qz,... :

Let €qr Exrene

ek+0 for k+e, such that for k=1,2,... and for i = 1,...,n

3 be a sequence of positive numbers with

we always have qk (u ) > €1 for every nieﬂi Since every
qk is completely mxxed we can find a sequence €,,€5,... of
this kind. Let Gk (G,n ) be the perturbed normal form as-

sociated with the triple (G,qk,en).
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-~ A2
In the follwoing it will be shown that G1,G se.. 18 a test

sequence for G. Obviously for k+« those minimum probabilities

which are equal to ex converge to O. Consider a pure strate-

#*
ay xieni which is not a best reply to a For this pure stra-

* 4
tegy we must have qy ( ui) = 0 Therefore for k+« the minimum
probabilities of pure strategies which are not best replies to
* -~ -
g converge to O, too. Consequently, G, Gz,... is a test

sequence of G.

The sequence q1, qz,...ﬁis a sequence of equilibrium points qk

10G2'.an fOI G.

This follows by lemma 11. Moreover the sequence q1,q2,... con-

for the perturbed game Gk in a test sequence G

*
verges to g . Therefore qk is a 1limit equilibrium point of the
e 2

test sequence G ,G7,... . Consequently qk is a perfect equili-

brium point of G.

* = ¥
Theorem 7: A mixed strategy combination q = (q1,...,qn)
i R *
is a perfect equilibrium point of G, if and only if q is
a substitute perfect equilibrium point of G.

Proof: In view of lemma 12 it remains to be shown that a per-
i | %
fect equilibrium point q of G is substitute perfect. Let
- - *
G1, Gz, ... be a test sequence for G, such that q 1is a
ot 1
'G Fre == - Letq

a sequence of equilibrium points qk gor Gk which converges

limit equilibrium point of G ' qz,... be

*
to g . The definition of a perfect equilibrium point requires

that such secuences G , Gz,... and q1, qz,... exist.

Let Tik be the set of all those pure strategies of player i
which appear with more than minimum probability in qk, i.e.
L is in T? ,if and only if we have q? (xi) > nf for player
i's component qi in qk. Obviously a pure strateg% tieTf is
a best reply qk in G but TE may not contain every pure best
reply to qk inG. Since the ak converge to q* and the nt con-
verge to O, there must be a number m, such that for k>mievery

*
pure strategy L with qi(ni) > 0 is in Tk for 1 = 150y

1
Without loss of generality we can assume m = O since otherwise
we can use subsequences of the original sequences G1, G2,...

and q‘, qz,... for the purpose of this proof.
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*
Since every n, with q,(n;) > O is in Tk and every x.eTk is
i +3 T4 i & L
a best reply to g in G, the mixed strategy ay is a best re-
ply to gk for k = 1,2,..+ « The qk (are completely mixed and
*
q1, qz, ... converges to q . The sequence q , 4 ,... is a
%* %*
substitute sequence for ¢ and q 1s a best reply to this

%
sequence. 9 is a substitute perfect equilibrium point.

12. Two counterexamples

One might be tempted to think that a perfect equilibrium
point of the normal form G of an extensive game T with
perfect recall always corresponds to a perfect equilibrium
point of I'. If this were the case on would not need the
agent normal form. In the following we shall present two
counterexamples. The first one is quite simple but less
satisfactory than the second one.

The first counterexample: The extensive game of figure 2

has exactly one perfect equilibrium point, namely the pure
strategy combination (Rr,L). Here Rr refers to that pure
strategy of player 1 where he chooses R at the origin and

r at his other information set. The fact that this is the
only perfect equilibrium point follows immediately by the
subgame perfectness of perfect equilibrium points. (See the
corollary of theorem 2 in section 7).

In the normal form (Rr,L) is a perfect equilibrium point, too
but not the only one. Since the strategies Rl and Rr are equi-
valent (Rl,L) is just as perfect in the normal form as (Rr,L).
In a perturbed game of the extensive form the strategies Rl
and Rr are not equivalent but this information is lost in the

" normal form and cannot be regained by the construction of per-

turbed normal forms.

The first counterexample is not quite satisfactory since the
onc may be content with the fact that among the two equivalent
perfect equilibrium points of the normal form, there is one
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which is perfect in the extensive form. One may take the point
of view that it is not important to distinguish between these
two equilibrium points.

L R
L1 = 0 0 >
Lr 0 3 ¥ 5
Bl 1 1 1 1
Rr 1 1 ! 1

. Figure 2: Extensive form and normal form for the first
counterexample. The conventions of the graphical

representation of the extensive form are explain-
ed at figure 1.

The second counterexample: Consider the equilibrium points
(Rl L2, R3) and (Rr, L2, R3) of the game of figure 3. As
we shall see both of these equilibrium points are perfect in

the normal form but they fail to be pnerfect in the extensive
form.

Perfectness in the normal form: It is sufficient to show

that (R1, Ly, R3) is a perfect equilibrium point of the
normal form,if this is the case the same must be true for

{Rx; L2, R3) since in the normal form Rr is a duplicate of
Rl-

In order to show the perfectness of (Rl, L2,R3) we construct
the following substitute sequence q1,q rsee ¢ INn g every
pure strateqgy which does not occur in (Rl,Lz,R3) is used with



1 2
3 3 0 11 3
0
1 0
Lr 3 0 Lr 3
0
) 0
R1 0 0 R1 0
0
0 0
Rr 0 0 Rr 0
0
La

Figure 3: Extensive form and normal form for the second counter-
example . The normal form is described by two tri-
matrics one for player 3's choice L3 and one for his

choice R3.
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than 1-¢ in bk. It can be seen immediately that for suf-
ficiently small e player 2's best reply to bk is R,.
Therefore the sequence b1,b2,... cannot be such that
(Rr,Lz,R3) is a best reply to every bk. Consequently
(Rr,Lz,R3) fails to be a perfect equilibrium point of
the game of figure 3.

Interpretation: In the following we shall try to give an

intuitive explanation for the phenomenon that an equili-
brium point which is perfect in the normal form may not
be perfect in the extensive form.

In order to compare the normal form definition with the
extensive form definition, we shall look at a perturbed
game ; of an extensive game I' with perfect recall and at
a perturbed normal form G of the normal form G of T.

Let the behavior strategy combination bk = (bﬁ,...,bﬁ} be
an equilibrium point for I' and let the mixed strategy

* # %
combination g = (q1,...qn) be an equilibrium point for G.

A choice ¢ in I' is called essential for b* if the relevant
local strategy selects ¢ wiEh more than the minimum pro-
bability for c required by I'. A choice which is essential
for bk must be a local best reply to bk in Fs

A pure strategy mn, is called essential for qk if qI {xi)
is greater than the minimum probability for ti*required
by G. A pure strateqy which is essential for g must be
a best reply to q* in. T.

Both b and q* reach all parts of the extensive form in
the sense that the realization probabilities of all ver-
tices are positive. Nevertheless there is a crucial dif-
ference between b* and q*. This differencg concerns the
conditional choice probabilities ui(c,u,qi) which have
been defined with the help of lemma 1 and lemma 2 in the
proof of Kuhn's theorem. In the case of q* these condi=-
tional choice probabilities are defined for every personal
information set.
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It may happen that player i's pufe strategies which are essen-
tial. for q* are such that a given information set u is not
reached by g /ui for every one of these essential strate-

gies LI the realization probabilities p(x,q /ti) are 0O for
every xeu. An information set u of this kind will be called
inessentially reached by q .

If an information set u of player i is inessentially reach-
ed by q*, then the conditional choice probabilities u(c,u,q*)
will be exclusively determined by those pure strategies of
player i which are inessential for q*. Therefore the
ui(c,u,q*) may be very unreasonable as a local strategy

at u.

The crucial difference between b*and q* is as follows:
Whereas every local strategy in b*is reasonalbe in the
sense that the essential choices are local best replies,
qk may lead to unreasonable conditional choice probabili-
ties at those information sets which are inessentially

*
reached by g .

As an example let I' be the game in figure 3 and let q* be
such that only the pure strategies in the equilibrium point
(Rr,Lz,R3) are essential for q*. The information set of
player 1, where he chooses between 1 and r is inessentially
reached. Therefore the conditional choice probabilities

for 1 and r are not determined by Rr but exclusively by

the minimum probabilities for L1 and Lr which may be such
that 1 is selected with a high conditional choice probabi-
1ity.

In an extensive game,where every player has at most one in-
formation set, it cannot happen that the information set

of a player i is not reached by q*/1i for one of his pure
strategies LI His strategy does not influence the reali-
zation probabilities of the vertices in his information set.
The agent normal form corresponds to an extensive form
where every player has at most one information set. There-
fore no difficulties arise in the agent normal form.
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