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Reexamination of the perfectness concept for

equilibrium points in extensive games

by
Reinhard Selten

The concept of a perfect equilibrium point has been intro-

duced in order to exclude the possibility that disequili-

brium behavior is prescribed on unreached subgames.

(Selten 1965 and 1973). Unfortunately this definition

of perfectness does not remove all difficulties which may

arise with respect to unreached parts of the game. It is

necessary to reexamine the problem of defining a satisfac-

tory non-cooperative equilibrium concept for games in ex-

tensive form. Therefore a new concept of a perfect equili-

brium point will be introduced in this paper.1)

In retrospect the earlier use of the word "perfect" was

premature. Therefore a perfect equilibrium point in the old

Sense will be called "subgame perfect". The new definition

of perfectness has the property that a perfect equilibrium

point is always subgame perfect but a subgame perfect equi-

librium point may not be perfect.

It will be shown that every finite extensive game with per-

fect recall has at least one perfect equilibrium point.

Since subgame perfectness cannot be detected in the normal

form, it is clear that for the purpose of the investiga-

tion of the problem of perfectness, the normal form is

an inadequate representation of the extensive form. It will

be convenient to introduce an "agent normal form" as a more

adequate representation of games with perfect recall.

1) The idea to base the definition of a perfect equilibrium
point on a model of slight mistakes as described in sec-
tion 6 is due to John C. Harsany1. The author's earl1er
unpublished attempts at a formalization of thi~ concept
were less satisfactory. I am very grateful to John C. Harsanyi
who strongly influenced the content of this paper.
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1. Extensive games with perfect recall

In this paper the words extensive qame will always refer

to a finite game in extensive form. Agame of this kind can

be described as a sextuple.

(1) r = (K,P,U,C,p,h)

where the constituents K,P,U,A,p and h of rare as follows:2)

The game tree: The game tree K is a finite tree with a dis-

tinguished vertex 0, the origin of K. The sequence of ver-

tices and edges which connects 0 with a vertex x is call-

ed the path to x. We say that x comes before y or that y

comes after x if x is different from y and the path to y

contains the path to x. An endpoint is a vertex z with the

property that no vertex comes after z. The set of all end-

points is denoted by Z. A path to an endpoint is called a

play. The edges are also called alternatives. An alternative

at x is an edge which connects x with a vertex after x.

The set of all vertices of K which are not endpoints, is

denoted by X.

The player partition: The player partition P = (Po,...,Pn)

partitions X into player ~. Pi is called player i's player
set (Player 0 is the "random" player who represents the ran-

dom mechanisms responsible for the random decisions in the

game.) A player set may be empty. The player sets Pi with
i = 1,...,n are called personal player sets.

The information partition: For i = 1,...,n a subset u of Pi

is called eligible (as an information set) if n is not empty,

if every play intersects u at most once and if the number

of alternatives at x is the same for every XEU. A subset UEPO

is called elegible if it contains exactly one vertex.The infor-

mation partition U is a refinement of the player partition P

tnto eligible subsets u of the player sets. These sets u are

called information ~.The information sets u with u~Pi are

called information sets of playe~ i. The set of all information

2) The notation is different from that used by Kuhn (Kuhn 1953)



- 3 -

sets of player i is denoted by Ui. The information sets of

player 1,...,n are called personal information sets.

The choice partition: For UtU let Au be the set of all alter-

natives at vertices XEU. We say that a subset c of Au is

eliqible (as a choice) if it contains exactly one alterna-

tive at x for every vertex XEU. The choice partition C par-

titions the set of all edges of K into eligible subsets c

of the Au with UtU. These sets c are called choices. The

choices c which are subsets of Au are called choices ~ u.

The set of all choices at U is denoted by Cu. A choice at
a personal information set is called a personal choice. A

choice which is not personal is a random choice. We say

that the vertex x comes after the choice c if one of the ed-

ges in c is on the path to x. In this case we also say that

c i8 on the path to x.

The probability assignement: A probability distribution Pu

over Cu is called completely mixed if it assigns a positive

probability pu(c) to every CtCu. The probability assign-
ment p is a function which assigns a completely mixed pro-

bability distribution Pu over Cu to every UtUo. (p specifies
the probabilities of the random choices.)

The payoff function: the payoff function h assigns a vector

h(z) = (h1 (z) ,...,hn(z» with real numbers as components to

every endpoint z of K. The vector h(z) is called the payoff

vector at z. The component hi(z) is player i's payoff at z.

Perfeet recall: An extensive game r = (K,P,U,C,p,h) is called

an extensive game with perfect recall if the following con-

dition is satisfied for every player i = 1,...,n and any two

information sets u and v of the same player i: if one ver-

tex ytV comes afte~ a choice c at u then every vertei XtV
comes after this choice c.3)

3) The concept of perfect recall has been introduced by
H.W. Kuhn (Kuhn 1953)
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Interpretation: In agame with perfect recall a player i who

has to make adecision at one of his information sets v knows

which of his other information sets have been reached by the

previous course of the play and which choices have been taken

there. Obviously a player always must have this knowledge if he

is a person with the ability to remember what he did in the past.

Since game theory is concerned with the behavior of absolute-

ly rational decision makers whose capabilities of reasoning

and memorizing are unlimited, agame, where the players are

individuals rather than teams,must have perfect recall.

Is there any need to consider games where the players are

teams rather than individuals? In the following we shall try

to argue that at least as far as strictly non-cooperative

game theory is concerned the answer to this question is no.

In principle it is always possible to model any given inter-

personal conflict situation in such a way that every person

involved is a single player. Several persons who form a team

in the sense that all of them pursue the same goals can be re-

garded as separate players with identical payoff functions.

Against this view one might object that a team may be united

by more than accidentally identical payoffs. The team may be

a preestablished coalition with special cooperative possi-

bilities not open to an arbitrary collection of persons in-

volved in the situation. This is not a valid objection. Games

with preestablished coalitions of this kind are outside the

framework of strictly non-cooperative game theory. In a strict-

ly non-cooperative game the players do not have any means of

cooperation or coordination which are not explicitly modelled

as parts of the extensive form. If there is something like a pre-

established coalition, then the members must appear as sepa-

rate players and the special possibilities of the team must

be apart of the structure of the extensive game.

In view of what has been said no room is left for strictly

non-cooperative extensive games without perfect recall. In

the framework of strictly non-cooperative game theory such
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games can be rejected as misspecified models of interper-
sonal conflict situations.

2. Strategies, expected payoff and normal form

In this section several definitions are introduced which

refer to an extensive game r = (K,P,U,A,p,h).

Local strategies: A local strategy biu at the information

set UEUt is a probability distribution over the set Cu of
the choices at U; a probability biu(c) is assigned to

every choice c at u. A local strategy biu is called pure
if it assigns 1 to one choice c at u and 0 to the other

choices. Wherever this can be done without danger of

confusion no distinction will be made between the choice c

and the pure local strategy which assigns the probability 1
to c.

Behavior strategies: A behavior strategy bi of a personal

player i is a function which assigns a local strategy biu

to every UEUi. The set of all behavior strategies of

player i is denoted by Bi-

Pure strategies: A pure strategy -i of player i is a function
which assigns a choice c at u (a pure local strategy) to

every UEUi. Obviously a pure strategy is a special behavior
strategy. The set of all pure strategies of player i is

denoted by TIi.

Mixed strategies: A mixed strategy qi of player i is a pro-

bability distribution over TIi:a probability qi(~i1 is

assigned to every ~iE TIi.The set of all mixed strategies

qi of player i is denoted by Qi. Wherever this can be done
without danger of confusion no distinction will be made

between the pure strategy -i and the mixed strategy qi

which assigns 1 to -i.pure strategies are regarded as
special cases of mixed strategies.
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Behavior strategy mixtures: a behavior strategy mixture si

for player i is a probability distribution over Bi which as-

signs positive probabilities si (bi) to a finite number of ele-

ments of Bi and zero probabilities to the other elements of

Bi. No distinction will be made between the behavior strategy bi

and the behavior strategy mixture which assigns , to bi. The
set of all behavior strategy mixtures of player i is denoted

by Si. Obviously pure strategies, mixed strategies and behavior
strategies can all be regarded as special behavior strategy

mixtures.

Combinations: A combination s = (s
"

...,s ) of behavior Stra-n -
~ mixtures is an n-tuple of behavior strategy mixtures

SiESi' one for each personal player. Pure strategy combinations

. = (."...'.n)' mixed strategy combinations and behavior

strategy combinations are defined analogously.

Realization probabilities: A player i who plays a behavior

strategy mixture si behaves as follows: He first employs a
random mechanism which selects one of the behavior strategies

bi with the probabilities si (bi). He then in the course of the

play at every UEUi which is reached by the play selects one

of the choices c at u with the probabilities biu(c). Let

s = (s"...,sn) be a combination of behavior strategy mix-

tures. On the assumption that the si are played by the players
we can compute a realization probability p(x,s) of x under s

for every vertex XEK. This probability p(x,s) is the proba-

bility that x is reached by the play, if s is played. Since

these remarks make it sufficiently clear, how p(x,s) is de-

fined, a more precise definition of p(x,s) will not be given
here.

Expected payoffs: With the help of the realization probabili-

ties an expected payoff vector H(s) = (H, (s),...,Hn(S» can

be computed as follows:

(2) H(s) =
~
/' p(z,s)hC:..)

L~.l

ZEZ
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Since pure strategies, mixed strategies and behavior

are special cases of behavior strategy mixtures, the

payoff definition (2) is applicable here, too.

strategies

expected

Normal form: A normal form G =(n 1,...,n iH) consists of n- n
finite non-empty and pairwise non-intersecting pure strategy

~ ni and an expected payoff function H defined on

n = n1x...xnn. The expected payoff function H assigns a

payoff vector H(.) = (H1(~),...,Hn(t»with real numbers as

components to every tEn . For every extensive game r the

pure strategy sets and the expected payoff function defined

above generate the normal form of r.

In order to compute the expected payoff vector for a mixed

strategy combination, it is sufficient to know the normal

form of r. The same is not true for combinations of behavior

strategies. As we shall see,in the transition from the

extensive form to the normal form some important information

is lost.

3. Kuhn's theorem

H.W. Kuhn has proved an important theorem on games with per-

fect recall (Kuhn 1953, p.213). In this section Kuhn's theo-

rem will be restated in a slightly changed form. For this

purpose some further definitions must be introduced. As be-

fore, these definitions refer to an extensive game r=(K,p,U,A,p,h).

Notational convention: Let

behavior strategy mixtures

tegy mixture for player i.

The combination (s1,...,si-1' ti,si+1,...,sn) which results from

s,if si is replaced by ti a~d the other components of s remain

unchanged,is denoted by s/si. The same notational convention
is also applied to other types of strategy combinations.

s = (s1,...,sn) be a combination of

and let ti be a behavior stra-
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Realization equivalence: Let

gy mixtures for player i. We

tion equivalent if for every
mixtures we have:

si and si be two behavior strate-

say that si and si are realiza-
combination s of behavior strategy

(3)
p(x,s/si) = p(x,s/si) for every XEK

Payoff equivalence:

mlxtures for player

valent if for every

tures we have

Let si and si be two behavior strategy

i. We say that si and si are payoff equi-
combination s of behavior strategy mix-

(4) H(s/si) - H(s/si)

Obviously si and si are payoff equivalent if they are reali-
zation equivalent, since (3) holds for the endpoints z.

Theorem 1 (Kuhn's theorem): In every extensive game with

perfect recall a realization equivalent behavior strategy bi

can be found for every behavior strategy mixture si of a per-
sonal player i.

In order to prove this theorem we introduce some further de-
finitions.

Conditional choice probabilities: Let s = (s, ,...sn) be

a combination of behavior strategy mixtures and let x be

a vertex in an information set u of a personal player i,

such that p(x,s» o. For every choice c at u we define a

conditional choice probability ~(c,x,s). The choice c

contains an edge e at Xi this edge e connects x with

another vertex y. The probability ~ (c,x,s) is computed

as follows:

(5) _ p (y,s)
~ (c,x,s) - p (x,s)

The probability
that the choice

been reached.

~(c,x,s) is the conditional probability

c will be taken if ~ is played and x has
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Lemma 1: In every extensive game r (with or without per-

feet reeall) on the region of those triples (e,x,s) where

the eonditional ehoice probability ~(c,x,s)is defined

the eonditional choiee probabilities ~(e,x,s) with XEUEUi

do not depend on the eomponents s' of s with i;j.J

Proof: Let bi,...,b~ be the behavior strategies,which are

seleeted by si with positive probabilities si(bI).For
p(x,s) >0 an outside observer,who knows that e has been

reaehed by the play but does not know whieh of the bi has
been selected before the beginning of the game,can use

this knowledge in order to eompute posterior probabi-

lities ti (bi) from the prior probabilities si (bi). T~e

posterior probability ti (bi) is proportional to si (bI) mul-
tiplied by the product of all probabilities assigned

by bi to ehoiees of player i on the path to x. Obviously

the ti (b~) depend on si but not on the other eomponents
of s. The eonditional ehoiee probability ~(c,x,s) ean be

written as follows:

k
~., ,.

.' J J
(6) ).I (c,x,s) = /_, ti (bi) biu (e)

j=1

This shows that p(e,x,s) does not depend on the Sj with i;j.

Lemma 2: In every extensive game r with per feet reeall,

on the region of those triples (c,x,s) where the eondi-

tional choice probability ).I(e,x,s) is defined, we have

(7) )j(e,x,s) = ).I(e,y,s) for XEU and YEU

Proof: In agame with perfeet reeall for XEU,YEU and

UEUi player i's ehoices on the path to x are the same
ehoiees as his ehoices on the path to y. (This is not

true for games without per feet reeall). Therefore at x

and y the posterior probabilities for the behavior stra-

tegies bi oecurring in player ils behavior strategy mixture

si are the same at both vertices. Consequently (7) fol-
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lows from (6).

Proof of Kuhn's theorem: In view of lemma 1 and lemma 2 the

conditional choice probabilities at the vertices x in the

player set Pi of a personal player can be described by a

function ~i (c,u,si) which depends on his behavior strategy

mixture s1 and the information set u with XEU.

With the help of ~i(c,u,si) we aonltruct the behavior strate-

gy bi whose existence is asserted by the theorem. If for

at least one s = (s1,...,sn) with si as component we have

~(x,s) > 0 for some XEU, we define

The construction of

ry local strategies

be found.

bi is completed by assigning arbitra-

biu to those UEUi where no such s can

It is clear that this behavior strategy bi and the behavior

strategy mixture si are realizazion equivalent.

The significance of Kuhn's theorem: The theorem shows

that in the context of extensive games with perfect re-

call one can restrict one's attention to behavior strate-

gies. Whatever a player can achieve by a mixed strategy

or a more general behavior strategy mixtures can be achiev-

ed by the realization equivalent and therefore also payoff

equivalent bahavior strategy whose existence is secured by

the theorem.

4. Subgame perfect equilibrium points

In this section we shall introduce some further definitions

which refer to an extensive game r = (K,P,U,A,p,h) with

perfect recall. In view of Kuhn's theorem only behavior

strategies are important for such games. Therefore the

concepts of a best reply and an equilibrium point are

formally introduced for behavior strategies only.
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Best

vior

reply: Let

strategies

best reply

b = (b"...,bn) be a combination of beha-
!\,

for r. A behavior strategy Di of player i
to b if we haveas a

(9)

~ ~ ~

A combination of behavior strategies B = (o"...,Dn) is
called a best reply to b if for i = ',...,n the behavior

~

str~tegy 0i is a best reply to b.

~~librium point: A behavior
" " {e

b = (b"...,bn) is called
is a best reply to itself.

strategy combination
{e

an equilibriumpoint if b

Remark: The concepts

point can be defined

mixtures. In view of

of a best reply and an equilibrium

analogously for behavior strategy
Kuhn's theorem it is clear that for

games with perfect recall an equilibrium point in behavior

strategies is a special case of an equilibrium point in be-

havior strategy mixtures. The existence of an equilibrium

point in behavior strategies for every extensive game with

perfect recall is an immediate consequence of Kuhn's theorem

together with Nash's weIl known theorem on the existence of

an equilibrium point in mixed strategies for every finite

game (Nash '951).

Subgame: Let r = (K,P,U,A,p,h) be an extensive game with or

without perfect recall. A subtree K' of K consists of a

vertex x of K together with all vertices after x and all

edges of K connecting vertices of K'. A subtree K' is called

regular in r, if every information set in r, which contains

at least one vertice of K', does not contain any vertices

outside of K'. For every regular subtree K' a subgame

r' -= (K', p.',U',A',p',h')is defined as foliows: P',U',A',p'
and h' are the restrictions of the partitions U,A and the

functions p and h to K'.
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Induced strateg1es: Let r' be a subgame of rand let

b = (b1,... ,bn) be a behav10r strategy comb1nat1on for r.

The restr1ction of b1 to the 1nformation sets of player i

in r' 1s a strategy bI of player i for r'. This strategy bI

1s called 1nduced by b1 on r' and the behavior strategy

combination b' = (b;,...,b~) defined in this way is called
induced by b on r'.

Subgame perfectness: A subgame perfeet equilibrium point
. . .

b = (bi,...,bn) of an extensive game r is an equilibrium
point (in behavior strategies) which induces an equilibrium

point on every subgame of r.

5. A numerical example

The definition of a subgame perfeet equilibrium point ex-

cludes some cases of intu1tively unreasonable equilibrium

points for extensive games. In this section we shall present

a numerical example which shows that not every intuitively

unreasonable equilibrium point is excluded by this defini-

tion. The discussion of the example will exhibit the nature

of the difficulty.

The numericalexample is the game of figure 1. Obviously

this game has no subgames. Every player has exactly one

information set. The game is agame with perfeet recall.

Since every player has two choices, Land R, a behavior

strategy of player i can be characterized by the probability

with which he selects R. The symbol Pi will be used for
this probability. A combinat1on of behavior strategies is

represented by a triple (P1,P2,P3).

As the reader can verify for himself without much difficul-

ty the game of figure 1 has the following two types of equi-

librium points:

Type 1: P1 = 1, P2 = 1, o t:- L 1- P3 - 4'

Type 2: P1 = 0,
1

P - 1- L. P /, 1 ,
3- 2 .... 3 -
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Consider the equilibriurn points of type 2. Player 2's

information set is not reached, if an equilibriurn

point of this kind is played. Therefore his expected

payoff does not depend on his strategy. This is the

reason why his equilibrium strategy is best reply to

the equilibriurn strategies of the other players.

o
o
o

:3

2
2

o
o
1

41

~I

Figure 1: A nurnerical exarnple. Information sets

are represented by dashed lines. Choices are indi-

cated by the letters Land R (standing for "left"

and "right"). Payoff vectors are indicated by colurnn

vectors above the corresponding endpoints.
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Now suppose that the players believe that a specific

type 2 equilibrium point, say (0,1,1) is the rational

way to play the game. Is it really reasonable to be-

lieve that player 2 will choose R if he is reached?

If he believes that player 3 will choose R as prescrib-

ed by the equilibrium point, then it is better for

hirn to select L where he will get 4 instead of R where

he will get 1. The same reasoning applies to the ~ther

type 2 equilibrium points, too.

Clearly, the type 2 equilibrium points cannot be re-

garded as reasonable. Player 2's choices should not be

guided by his payoff expectations in the whole game

but by his conditional payoff expectations at x3. The
payoff expectation in the whole game is computed on the

assumption that player 1's choice is L. At x3 this as-
sumption has been shown to be wrong. Player 2 has to

assurne that player 1's choice was R.

For every strategy combination (P1,P2,P3) it is possible
to compute player 2's conditional payoff expectations

for his choices Land R on the assumption that his in-
formation set has been reached. The same cannot be done

for player 3. Player 3's information set can be reached

in two ways. Consider an equilibrium point of type 1,

e.g. the equilibrium point (1,1,0). Suppose that (1,1,0)

is believed to be the rational way to play the game

and assume that contrary to the expectations generated

by this belief, player 3's information set is reached.

In this case player 3 must conclude that either player 1

or player 2 must have deviated from the rational way

of playing the game but he does not know which one.

He has no obvious way of cornputinga conditional proba-

bility distribution over the vertices in his information

set, which teIls hirn,with which probabilities he is

at x1 and at x2 if he has to rnakehis choice.
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In the next seetion a model will be introdueed whieh is

based on the idea that with some very small probability

a player will make amistake. These mistake probabili-

ties do not direetly generate a eonditional probability

distribution over the vertiee of player 3's information

set. As we shall see in seetion 8 the introduetion of

slight mistakes may lead to a strategie situation where

the rational strategies add some small voluntary deviations

to the mistakes.

6. A model of slight mistakes

There eannot be any mistakes if the players are abso-

lutely rational. Nevertheless, a satisfaetory interpre-

tation of equilibrium points in extensive games seems'

to require that the possibility of mistakes is not

eompletely exeluded. This ean be achieved by a point of

view whieh looks at complete rationality as a lirniting

ease of ineomplete rationality.

Suppose that the personal players in an extensive game r

with perfeet recall are subjeet to a slight imperfeetion

of rationality of the following kind. At every information

set u there is a small positive probability E for theu
breakdown of rationality. Whenever rationality breaks

down, every choiee c at u will be seleeted with sorne

positive probability q whieh may be thought of as de-c
termined by sorne unspecified psychological meehanisrn.

Eaeh of the probabilities E and q is assurned to beu e
independentof all the other ones.

Suppose that the rational choice

whieh seleets e with probability

bability of the choiee c will be

at u is a local strategy

p . Then the total pro-c

The introduetion of the probabilities EU and qc transforms
~

the original garne into a changed game r where the players

do not eompletely eontrol their choiees. A garne of this
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kind will be called a perturbed game of r.

Obviously, it is not important whether the Pc or the

ßc are consider~d to be the strategic variables of the
perturbed game r. In the following we shall take the

A

latter point of view. This means that in r every player

i selects a behavior strategy which assigns probability

distributions over the choices c at u to the information

sets u of player i in such a way that the probability pc
assigned to a choice c at u always satisfies the fol-

lowing condition:

(10)

The probability p is also restricted by the upper boundc

1-cu(1-qc); it is not necessary to introduce this upper
bound explicitly since it is implied by the lower bounds

on the probabilities of the other choices at the same

information set. With the help of the notation

condition (10) can be rewritten as follows:

(12) for every personal choice c.

Consider a system of positive constants EC for the perso-
nal choices c in r such that

(13) L nc < 1
c at Cu

Obviously for every system of this kind we can determine

positive probabilitiesE and q which generate a per-
A u c

turbed game r whose conditions (10) coincide with the

conditions (12). Therefore we may use the following

definition of a perturbed game.

A

Definition: A perturbed game r ie a pair (r,n) where r is

an extensive game with perfect recall and n is a function
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which assigns a positive probability nc to every personal
ahoice c in r such that (13) is satisfied.

The probabilities" are called minimum probabilities.c
For every choice c at a personal information set u define

(14) ~ = 1 + "C C 1"1' ,C

c'at u

obviously ~c is the upper bound of Pc implied
conditions (7). This probability ~ is calledc

probability of c.

by the

the maximum

Strategies: A local strategy for the perturbed game
A

r - (r,n) is a local strategy for r which satisfies the
A

conditions (12). A behavior strategy of player i in r is a

behavior strategy of player i in r which assigns local
A

strategies for r to the information sets of pla~er i. The

set of all behavior strategies of player i for r is denot-. .

ed by Bi. A behavior strategy combination for r is a be-
havior strategy combination D = (D 1,...,B ) for r whose

A n
components are behavior strategies for r. The set of all

A A

behavior strategy combinations for r is denoted by B.

Best replies: Let b =(b1,...,b ) be a behavior strategy
A n ~

comb:nation for r. A behavior strateg~ 0i of player i
for r is called a best reply to b in r if we have

(15)

~ ~ ~ A

A behavior strategy combination D = (D1,...,5 )for r is
. n ~

called a best reply to b.in r if every component 5i of bi

is a best reply to b in r.

Equilibrium point: An equilibrium point of.

strategy co mb in at ion for r wh ich is a best
A

in r.

r is a behavior

reply to itself
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Remark: Note that there is a difference between a best
A A

reply in rand a best reply in r. The strategy sets Bi

are subsets of the st:ategy sets Bi. Pure strategies
are not available in r.

7. Perfect equilibrium points

The difficulties which should be avoided by a satisfactory

definition of a perfect equilibrium point are connected

to unreached information sets. There cannot be any un-

reached information sets in the perturbed game. If b is

a behavior strategy combination for the perturbed game

then the realization probability p(x,b) is positive for

every vertex x of K. This makes it advantageous to look
A

at agame r as a limiting case of perturbed games r= (r,n).

In the following a perfect equilibrium point will be de-

fined as a limit of equilibrium points for perturbed

games.

Sequences of perturbed games: Let r be an extensive game
A1 A2

with perfect recall. A sequence r , r ,... wherefor
Ak k

k = 1,2,... the game r = (r,n ) is a perturbed game of r,

18 called a test sequence for r, if for every choice c of

the personal players in r the sequence of the minimum
k k

probabilities n assigned to c by n converges to 0 forc
k +-.

A1 A2
Let r , r , ... be a test sequence for r. A behavior

~
strategy combination b for r is called a limit equilibrium

point of this test sequence if for k = 1,~,... an equili-
Ak Ak

brium point b of r can be found such that for k+- the
Ak .

sequence of the b converges to b .

.
Lemma 3: A limit equilibrium point b of a test sequence
A1 A2
r , r ,... for an extensivegame r with perfect recall

is an equilibrium point of r.

k
Proof: The fact that the bare equilibrium points of the

Ak
r can be expressed by the following inequalities
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(16)
"'"k

biEBi and

"'"k

Bi with k

for i=1,...,n.

Let ~ be the interseetion of all
k~ m we have

~ m. For

Sinee the expeeted payoff depends eontinuously on the be-

habior strategy eombination this inequality remains va-

lid if on both sides we take the limits for k+-. This yields:

(18 )

Inequality (18) holds
m

of all Bi is Bi. This
yields:

for every m. The elosure of the union

together with the eontinuity of Hi

(19 )

Inequality (19) shows that b is an equilibrium point of r.

Perfeet equilibrium point: Let r be an extensive game with

perfeet reeall. A perfeet equilibrium point of r is a be-
R R R

havior strategy eombination b = (b1,...,bn) for r with the
, "'"1 "'"2

property that for at least one test sequenee r , r
J..

...

R 1 "'"2

the eombination b is a limit equilibrium point of r ,r ,...

R
Interpretation: A limit equilibrium point b of a test se-

quenee has the property that it is possible to find equili-*
brium points of perturbed games as elose to b as desired.

The definition of aperfeet equilibrium point is apreeise

statement of the intuitive idea that a reasonable equili-

briums point should have an interpretation in terms of arbi-

trarily small imperfeetions of rationality. A test se-R
quenee whieh has b as limit equilibrium point provides

R
an interpretation of this kind. If b fails to be the limit

*
equilibrium point of at least one test sequenee b must be
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regarded as instable against very small deviations from per-

feet rationality.

Up to now it has not been shown that perfeetness implies sub-

game perfeetnes. In order to do this we need a lemma on the

subgame perfectness of equilibrium points for perturbed games.

Subgames of perturbed ~ames: Let r = (~,~) be a perturbed
game of r. A subgame r' = (f',n') of r consists of a subgame

r' of rand the restriction ~' of n to the personal choices
A

of r'. We say that r' is generated by r'. An equilibrium
A A .

~oint b of r is called subgame ~erfec~ if an equilibrium point
b' is indueed on every subgame r' of r.

Lemma 3: Let r be an extensive game with perfect reeall and
~

let r = (r,n) be a perturbed game of r. Every equilibrium pointA

of r (in behavior strategies) is subgame perfect.

Proof: Let b' be the behavior strategy combination induced
A A

by an equilibrium point b of r on a subgame r' of r. Obvious-A

ly b' is a behavior strategy combination for the subgame
A A

r' =(r',n') generated by r'. Suppose that b' fails to be an
A

equilibrium point of r'. It follows that for some personal. A

player j a behavior strat;qy bj forAr' exist, such that player

j's expected payo!f forAb'/bj in r' is greater than his ex-
peeted payoff for b' in r'. Consider the behavior strategy

A

bj fo~ r wh~ch agrees with bj on r' and with player j's stra-

tegy bj inAb everywhere else. Since the realization probabi-

liti=s in rare always positive player j's expected payoff

for b/bj must be greater than his expected payoff for b.

Since aAbehavior strategy bj with thi~ property does not

eXist, b' is an equilibrium point of r'.

Theorem 2: Let r be an extensive game with perfect recall and

let ~ be a perfect equilibrium point of r. On every sub-
~

game r' of r a perfect equilibrium point b' is induced by

~ on r'.
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Corollary :

game r with

point of r.

Every perfect equilibrim point of an extensive

perfect recall is a subgame perfect equilibrium

'"'1 '"'2

Proof: Let r , r ,... be a test sequence for r which has b as
""" '"'2

limit equilibrium point. Let b ; b ,... be a sequenceof equi-
'"'k '"'k

librium points b of r . It follows from the subgame perfectness
'"'k '"'k

of the b that the subqames of r generated by r'form a test
'"

sequence for r' with b' as a limit equilibrium point. Therefore
~
51 is a perfect equilibrium point of r'.

The corollary is an immediate consequence of the fact that a

perfeet equilibrium point is an equilibrium point. (See lemma 3.)

8. A second look at the numerical example

In this section we shall first look at a special test sequence

of the numerical example of figure , in order to compute its

limit equilibrium point. The way in which this limit equilibrium

point is approached exhibits an interesting phenomenon which

is important for the interpretation of perfect equilibrium

points. Later we shall show that every equilibrium point of

type , is perfect.

Let €1'€2"" be a monotonically decreasing sequence of positive
,

probabilities with €,
< _
4 and €k +0 for k + -. Let rbe the game

'"'1 '"'2

of figure 1. Consider the following test sequence r , r ,... for r.
'"'k k

For k = 1,2,... the perturbed game r = (y,~ ) is defined by
k
~c = €k for every choice c of r.

As in section 6 let Pi be the probability of player ils choice R.
A behavior strategy combination can be represented ba a triple

'"'k

p = (P1,P2,P3)' The behavior strategy combinations for rare
restrictedby the condition

for i = 1,2,3

As we

point

'"'k
ahall see, the perturbed game r
k k k k

P = (P1,P2,P3 ) whose components

has only one equilibrium
k

Pi are as follows:
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k
Equilibrium property of p: In the following it will be shown

k Ak
that p is an equilibrium point of r . Let us first look at

the situation of player 3. For any p = (P"P2,P3) the reali-

zation probabilities p(x"p) and p(x2,p) of the vertices x,

and x2 in the information set of player 3 are given by (24)
and (25).

(24) p(x"p) = '-p,

(25 )

Player 3's expected payoff under the condition that his

information set is reached is 2p(x,p) if he takes his choice R

and p(x2,p) ifAhe takes his choice L. Therefore P3 is a best
reply to p in rk if and only if the following is true:

(29)

(30)

Therefore it follows by (27) that p~ is a best reply to pk.

k
(21) P1 = 1 - Ek

2Ek
(22) k _ 1 _ _

P2 - 1-Ek

k 1
(23) P3 = 4"

(26) P3 = Ek for 2 (1-p,) < P, (1-P2)

(27 ) Ek P3 {'-e:k for 2(1-p,) = P1(1-P2)

(28) P3 = 1-Ek for 2 (1-P1) > P1 (1-P2)

In the case of P
k we have
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Let us now look at the situation of player 2. Here we can
Ak

see that P2 is a best reply to p in r if and only if the

following is true:

k k
P2 is best reply to P in view of (32).

Ak
P1 is a best reply to P in r if and only if the following
is true:

Uniqueness of the equilibrium point: In the following it
k Ak

will be shown that P is the only equilibrium point of r .
We first exclude the possibilityP3 ~ 1/4. Suppose that

p is an equilibrium point with P3 < 1/4. It follows by

(33) that we have P2 = 1-e:k. Concequently 3P3 is smaller

than P2 and (36) yields P1 = 1-e:k. Therefore (28) applies

to P3. We have P3 = 1-Ek contrary to the assumption P3 < 1/4.

Now we suppose

Condition (31)

condition (36)

to P3 contrary

that P is an equilibrium point with P3 > 1/4.

yields P2 = Ek. In view of 1-P2 > 3/4

applies to P1. It follows that (26) applies

to the assumption P3 > 1/4.

1
(31) P2 = Ek for P3 > '4

1
(32 ) Ek P2 1-Ek for P3 = 4"

(33 ) P2 = 1-Ek for P3
< 1.

4

(34) P1 = €k for 3P3 > 4(1-P2)P3+P2

(35 ) Ek P1 1-e:k for 3P3 = 4 (1-P2)P3+P2

(36) P1 = 1-e:k for 3P3 < 4 (1-P2)P3+P2

k k
(36) .P1 is a best reply to p in view of

Ak
We know now that an equilibrium point p of r must have the

1
Obviously (36) applies to an equilibriumproperty P3 = 4".

point p. We must have P1 = 1-e:k . Moreover neither (26) nor
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(28) are satisfied by P3. Therefore in view of (27) an

equilibrium point p has the following property:

(37 )

This together with P1 = 1-Ek yields

2Ek
P2 = 1-&,k

(38)

equilibrium point:

For k+- the

This is the
"'1

sequence r ,

.
converges to p =(1,1,1/4).

equilibrium point of the test

k . k
Note that P1 is as near as possible to P1 = 1 since P1

k
is the maximum probability 1 - Ek. Contrary to this P2* *
is not as near as possible to P2. The probability P2 is

smaller than 1 - Ek by Ek(1+€k) / (1 - Ek). The rules of
the perturbed game force player 2 to take his choice L

with a probability of at least Ek but to this minimum
probability he adds the "voluntary" probability

€k(1+€k) / (1-€k). In this sense we can speak of a vo-
luntary deviation from the limit equilibrium point.

The voluntary deviation influences the realization proba-
k k

bilities p(x1,p ) and p(x2,p ). The conditional probabi-

lities for x] and x2,if the information set of player 3 isR '

reached by p , are 1/3 and 2/3 for every k. It is natural

to think of these conditional probabilities as conditional*
probabilities for the limit equilibrium point p ,too,

The assumptions on the probabilities of slight mistakes
"'1 "'2

which are embodied in the test sequence r , r ,... do not
directly determine these conditional probabilities but

k
indirectly via the quilibrium points p

Perfectness of the equilibrium points of type 1: In the fol-

lowing it will be shown that every equilibrium point of
. .

type 1 is perfect. Let p = (1,1,P3) be one of these equili-
"'1 '"

brium points. We constructa test sequence r , r2, ...
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11

with the property that p i8 a limit equilibrium point of
1 2

r , r ,... . Let E1, E2,... be a decreasingsequence of
'* .

positive numbers with E1 < P3' /2 and Ek + 0 for k + 00.

. k .
The minimum orobabilities "c for the perturbed game
k k

r = (r,n ) are defined as follows:

(39)
k
n =c

if c is a choice of player 2.

if c is a choice of player 1 or player 3

With the help of arguments similar to those which have been
k

used in the subsection"equilibriumproperty of p ", it can

be shown that for k = 1,2,... the following behavior stra-

Ak k k k
~~g" combination t'= (1'1'P2' P3) is an equilibrium point ofr

(42 )

1'1 = 1-Ek

2Ek

1'2 = 1 - r=Ek

'*

1'3 = P3

(40)

(41)

1 2 '* '*

The sequence p , p , ... convergesto p . Thereforep is
a perfect equilibrium point.

Imperfectness of the equilibrium points of type 2: In the

following it will be shown that the equilibrium points of
'* '*

type 2 fails to be perfect. Let p = (0,P2,1) be an equili-
1 2

brium point of type 2 and let r , r ,... be a test aequence
'* 1 2

which has p as limit equilibriumpoint. Let p , p , ... be
'* k

a sequence of equilibrium points p of r which for k+- con-
'*

verges to p. For every E>O we can find a number met:) auch

that for k > met) the following two conditions (a) and (b)
k "k k

are satisfied. (a) Every mini.um probabilityn in r - (r,o )c
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is smaller than E. (b) For i = 1,2,3 we have
* k

I Pi -P il < E.

and (b) thatFor suffieiently small E it follows from (a)
k k

P2 is not a best reply to P ; we must have P2 < E for
k k

player 2's best reply to p anQ P2 eannot be below 1/3 by*
more than E. This shows that p eannot be the limit equili-

brium point of a test sequenee.

9. A deeentralization erfeet eauilibrium points

In this seetion it will be shown that the question whether

a given behavior strategy eombination is aperfeet equili-

brium point or not, ean be deeided loeally at the information

sets of the game. The eoneept of a loeal equilibrium point

will be introdueed whieh is defined by eonditions on the

loeal strategies. As we shall see, in perturbed games these

loeal eonditions are equivalent to the usual global equili-
brium eonditions. On the basis of this result a deeentralized

deseription of aperfeet equilibrium point will be developed.

Notational eonvention: Let r be an extensive game and let bi
be a behavior strategyof a personal player i in r. Let

biu be a loeal strategy at an information set u of player i.

The notation bi/biu is used for that behavior strategy

whieh results from bi if the loeal strategy assigned by bi to

u is ehanged to biu whereas the loeal strategies assigned

by bi to other information sets remain unehanged. Let

b = (b"...,bn) be a behavior strategy eombination. The no-

tation b/biu is used for the behavior strategy combination,b/bi

with bi = bi/biu. ThG set of all loeal strategiesat u 18 .

denoted by Biu.

Loeal best replies: Let b = (b" ...,b ) be a behav10r strategy
n ~

eornbination for an extensive game rand let. D1u be a loeal
strategy at an information set U of a personal player 1. The

~

loeal strategy Diu is ealled a loeal best reply to b 1n r 1f
we have
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(43 )

Local best replies

fined analogously:

we have

.

in a perturbed game r - (r,~) are de-
~ A

Diu is a local ~ reply !2 b in r if

(44)

A A

where Biu is the set of all local strategies at u for r.

A

Conditional realization probabilities: Let r= (r,n) be a

perturbed qame of an extensive game r with perfeet recall.

Por every information set u of a personal player i and

every behavior strategy combination b = (b"...,bn) for r

we define a c~nditional realizat10n probability n(x,b)

A

p (x, b)

(45) p(x,b) =
p (y, b)

Obviously p(x,b) is the conditional probab1l1ty that x 1s

reached by the play if b is played and u is reached. Since

p(x,b) is positive for every vertex x, the conditional real1-

zation probability p(x,b) is defined for every vertex x.

Let x be a vertex and let z be an endpoint after x. We de-

fine a second type of conditional realization probability

n(x,z,b) which is the probability that z will be reached if b

is played and x has been reached. Obviously we have

(46) = p(z,b)
p(x,b)

Conditional expected payoff: For every information set u of
A

a personal player i in a perturbed game r= (r ~) of an exten-
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sive game r with perfect recall we define a conditional ex-

pected payoff funtion Hiu for player i at u:

~ ~

(47) Hiu (b) - ~ "(x,b)~(X'Z'b)h(Z)
XEU Z after x

Hiu(b) is the conditional expectation of player i's payoff
under the condition that b is played and u is reached by

the play.

Lemma 4: Let b = (b1,...,b ) be a behavior strategy com-n .

bination for a perturbed game r = (r,~) of an extensive

game r with perfect recall. The conditional realization

probabilities ~(x,b) do not depend on bi.

Proof: In agame with perfect recall the information sets

u of a personal player i have the property that the same

choices of player i are on every path to a vertex XEU.

Therefore ~(x,b) does not depend on bi.

Lemma 5: Let b = (b1,...,b ) be a behavior strategy combi-n .

nation for a perturbed game r = (r,~) of an extensive
~

game r with perfect recall and let Di be a local strategy. u
for r at an information set u of a personal player i. The

~ .

tocal strategy Diu is a local best reply to b in r if
and only if the following is true:

(48)

Proof: The assertion of the lemma follows from the fact

that the local strategy at u does not influence the reali-

zation probabilities of endpoints which do not come after

vertices of u.
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....

Now we assume that bi is not a best reply to b in r. With the
~

notation b/bi/Div for bIbi we can write

(49)

In the foll~wing we shall show that biv is a local best reply

to bibi in r. This is a contradiction to (49).

It follows by lemma 4 that we have

(50)

for every XEV and every loeal strategy biv Cf player i at v.
Moreover the information set v has been seleeted in such a

way that bi and ~i assign the same probabilities to ehoiees
at information sets u after v. Therefore we have

(51 )

for every local strategy biv at v and for every XEV. (47) to-
gether with (50) and (51) yields

(52)

~ ~
Since bi is a loeal best reply to bIbi it i8 a eon.equeneev ~

of lemma 5 and equation (52) that Div is a local best reply

to bIbi. This contradietion to (49) eompletes the proof of
lemma 6.

Local e~uilibrium points: A behavior strategy eombination* *
b = (b1,...,b ) for an extensive game r is ealled a loe_l equili-n ....

brium pOint for r or for a perturbed game r of r if"every loeal*
strategy bi whieh is assigned to an information set u by on. of* u ....

the bi is a local best reply to b in r or r, re.p.

. . *
Lemma 7: A behavior strategy eombination b - (b1,...,b )n
for a perturbed game r = (r,n) of an extensive game r with

....

perfeet recall is an equilibrium point for r,if and only if
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*
b is a loca1 equi1ibrium point for r.

Proof: The lemma is an immediate consequence of lemma 6.

A1 A2
Loca1 limit equi1ibrium points: Let r ,r ,... be a test

sequence for an extensive game r with perfect reca11.
. * *

A behavior strategy combination b = (b"...,bn) for r is
ca11ed a loca1 limit equi1ibrium pOint of the test se-

A1 -2 -k
quence r , r ,... if every r has a loca1 equi1ibrium

k k
point b such that for k+- the sequence of the'b conver-*
ges to b .

Theorem 3: A behavior strategy combination b* = (b~,...,b~)

for an extensive game r with perfect reca11 is a perfect

equi1ibrium point of r, if and on1y if ,for at least one
A1 A2

test sequence r , r , ... for r the behavior strategy*
combination b is a loca1 limit equi1ibrium point of the

A1 A2
test sequence r , r ,...

Proof: The theorem is an immediate consequence of lemma 7

and the difinition of a perfect equi1ibrium point.

10. The agent normal form and the existence of a perfect

equi1ibrium point

In this section the concept of an agent normal form will

be introduced. The p1ayers of the agent normal form are

the agents of the information sets described by H.W. Kuhn

in his interpretation of the extensive form (Kuhn 1953).

An agent receives the expected payoff of the p1ayer to

whom he belongs. The agent normal form contains all the

information which is needed in order to compute the

perfect equilibrium points of the extensive game. With

the he1p of the agent normal form one can prove the

existence of perfect equilibrium points for extensive

games with perfect reca11.

The agent normal form: Let r be an extensive game and

let u1,...,QN be the information sets of the personal
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players in r. For i = 1,...,N let 'i be the set CUi of

all choices at ui. In the following we shall define a

normal form G = ('1'..."N,E) where the players 1,...,N

are thought of as agents associated with the information

sets u"...,~. This normal form is called the agent
normal form of r.

Let , be the set of all pure strategy combinations

, = (~"..."n)for G. For every ,E' the expected payoff

vector E(') = (E, (,),...,En(,» is defined as follows:

Let _ = (."...'-n) be the pure strategycombination

for r whose components assign the choice 'jE9j to every

information set uj. For this _ we have

(53)

The expected payoff function E is extended to the mixed

strategy combinations q = (q"...,qN) of G in the usual
way.

Induced strategy combinat~ons: Let b = (b"...,bn) be

a behavior strategy combjnation for rand let

q = (q"...,gN) be a mixed stratey combination for the
agent normal form G of r. We say that q is induced

by b on G and that b is induced on r by q if for

i = 1,...,N the mixed strategy qi is the same proba-

bility distribution over Ri as the local strategy as-

Signed to ui by the relevant component of b. Obvious-
ly this use of the word "induced" defines a one-to-one

mapping between the behavior strategy combination b

of rand the mixed strategy combinations q of G.

Perturbed agent normal forms: Let G be a normal form

G = ("'..."N,E) and let n be a function which assigns

positive minimum probabilities nc to every CE'i with
i = , ,...,N, subject to the restrietion

(54 ) 11 <,C
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....

The pair G = (G,n) is called a perturhed normal ~ of G.

A mixed strategy qi for G is a mixed strategy for G = (G,n)

if qi satisfies the following condition:

(55) for every CE:~i

A mixed strategy combination q ~ (q"...,qN) is called a

mixed strategy combination for G = (G,n) if fo~ i = ',...,N

the mixed strategy qi is a mixed strate2Y for G. The se: of

all mixed strategies qi of player i in G is denoted by Qi .

Let r be an extensive game and let G be the agent normal form

of r. Obviously a behavior strateqy combination for the perturbed
....

game r-(r,n} is induced on r by every mixed strategy cOmbina-....

tion for the perturbed normal form G = (G,n) and vice versa.....

We call G the perturbed agent normal form of r.

~

Equilibrium points: A mixed strategy qi of a player i i~ a per-
turbed normal form G = (G,n) is called a best reply to G to

....

the mixed strategycombinationq = (q"...,qN) for G if we
have

(56) max

A mixed strategy combination
....

~

reply to q in G, if every qi

A mixed strategy combination*
pointof G, if q is a

~ ~ ~

q = (q"...,qN}is called a best
~ ---,r-

in q is a best reply to q in G.
'Ir ....

q for G is called an equilibrium
....

best reply to itself in G.

....

Lemma 8: Let G = (G,n) be the perturbed agent normal form of
....

the perturbed game r = (r,n) of an extensive game r with per-....

feet recall. An equilibrium point of r is induced on r by
....

every equilibrium point of G and an equilibrium point of G is
....

induced on G by every equilibrium point of r.

....

Proof: It is clear that a local best reply in r corresponds
....

to a best reply in G. Thereforethe assertionfollowsby lem-
ma 7.
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Perfect equilibrium points: A test

a normal form G = (~ 1 ""'~ N ,E) is
Ak k

normal forms G = (r,,~) of G such
k

quence of the ~c converges to 0 for every c in the sets Ri'

* A1 A2
A limit equilibrium point q of a test sequence G ,G ,...

is a mixed strategy combination for G, such that there 1s
1 2

at least one sequence q ,q ,... of equilibrium points
k Ak *

q for Gwhich for k+m convergesto q . A perfect~
l1brium point of G is a mixed strategy combination q for

Gwhich is a limit equilibrium point of at least one test
A1 A2

sequence G ,G ,... for G.

A1 A2
sequence G ,G ,... for

a sequence of perturbed

that for k+m the se-

Lemma 9:
-1 A2
G , G ,...

*
A limit equilibriumpoint q of a test sequence

for a normal form G is an equilibriumpoint of G.

Proof: The proof is omitted here since it is completely

analogous to the proof of lemma 3.

Theorem 4: Let r be an extensive game with perfect re-

call an4 let G be the agent normal form of r. A perfect

equilibrium point of r is induced on r by every perfect

equilibrium point of G and a perfect equilibrium point

of G is induced on G by every perfect equilibrium point

of r.

Proof: It follows by lemma 8 that a one-to-one relation-

ship between the test sequences for rand for G can be

established where a perturbed game of r corresponds to

its perturbed agent normal form. Therefore a limit equi-

librium point of one of both sequences induces a limit

equilibrium point of the other one.

Existence of perfect equilibrium points: In the follow-

ing it will be shown that every extensive game r with

perfect recall has at least one perfect equilibrium point.

In order to prove this, we make use of theorem 4.
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Theorem 5: Every normal form G has at least one perfeet equi-

librium point.

Proof: A perturbed normal for G = (G,~) satisfies weIl known

suffieient eonditions for the existenee of an equilibrium

pOint in mixed strategies (see e.g. Burger, 1958, p. 35,
Ak

Satz 2). Therefore every perturbed normal form G in a test
A1 A2 k

sequeneeG , G ,... for G has an equilibriumpointq
Sinee the set of all mixed strategy eombinations is a elos-

1 2
ed and bounded subset of an eneledian spaee, the sequenee q ,q

· 1 2
has an aeeumulation point q . The sequenee q ,q , ... has a

.
subsequenee whieh eonverges to q . The eorresponding subse-

A1 A2
quenee of the test sequenee G , G ,... is a test sequeneewith* *
the limit equilibriumpoint q . Thereforeq is aperfeet

equilibrium point of G.

, . . .

Theorem 6: Every extensive game r with per feet reeall has at

least one perfeet equilibrium point.

Proof: In view of theorem 5 the agent normal form of r has

aperfeet equilibrium point. It follows by theorem 4 that

r has aperfeet equilibrium point.

11. Charaeterization of perfeet equilibrium points as best

replies to substitute sequenees

In this seetion it will be shown that the definition of a

perfeet equilibrium point as a limit equilibrium point of

a test sequenee is equivalent to another definition whieh

is more advantageous from the point of view of mathematieal

simplieity. In view of theorem 4 we ean restriet our attention

to perfeet equilibrium points for normal forms. It is suf-

ficient to analyse the agent normal form if one wants to

find the perfeet equilibrium points of an extensive game

with per feet reeall. It is important to point out that it is

not suffieient to analyse the ordinary normal form This

will be shown in section 12 with the help of a counterexample.
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Substitute sequences: Let G = (fi"...,finiH) be agame

in normal form. A mixed strategy qi of player i is call-

ed completely mixed if for every ~iEfii the probability

qi(~i) assigned to ~i by qi is positive. A mixed strate-

gy combination q = (q"...,qn) is called completely

mixed if qi is completely mixed for i = ',...,n. Let

q = (q"...,qn) be a mixed strategy combination for G.

An infinite sequence of mixed strategy combinations
, 2 - k

q ,q ,... is called a substitute sequence for q if q
- k

converges to q for k+m and every q is completely mixed.

A strategy qi or a strategy combination q is called a
, 2

best reE!x to the substitute sequence q ,q ,... if qi or
k

q,resp. is a best reply to every q in the sequence.

Substitute

combination

erfect equilibrium points: A mixed strategy

q = (q1,...,q~) for a normal form G is call-'*

ed a substitute perfeet equilibrium point of G if q is
'*

a best reply to at least one substitute sequence for q

Lemma '0: A substitute perfeet equilibrium point of a

normal form G is an equilibrium point of G.

Proof:
, 2

q , q ,

we have

'*

Let q be a best reply to the substitute sequence
'*

... for q . For k = ',2,... and for i = ',...,n

(57)
k

max "i (q /qi)
qi&Qi

In view of the

perties of the

mains valid.if
'*

shows that CJ

continuity of Hi
maximum operator

on both sides we

and the continuity pro-

it is clear that (57) re-

take limits for k+m. This

is an equilibrium point.

Associated perturbed normal forms: Let G = (fi"...,finiH)

be a normal form, let q = (CJ"...,qn) be a completely
mixed strategy combination for G and let E be a positive
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number such that for i = 1,...,n we have qi(~i»E for

every XiEßi. For every triple (G,q,E) of th!s kind we
define an associated perturbed normal form G = (G,") ,

where the minimum probabilities of the pure strategies

for Gare as follows:

(58)
if ~i is not a best reply to q in G

is a best reply to q in G

for i = 1,...,n and for every XiEni" Obviously "
the condition that the minimum probabilities for

strategies of a player sum up to less than 1.

satisfies

all pure

Lemma 11: Let G = (G,~)be the associated

form for the triple (G,q,t). The strategy
A

is an equilibrium point of G.

perturbed normal

combination q

Proof: A mixed

pure strategies
used with their

is the case for

strategy is a best reply to q in G if the

which are not best replies to q in Gare

minimum probabilities. In view of (58) this

every component qi of q.

Lemma 12: A substitute perfect equilibrium point of a nor-

mal form G is a perfect equilibrium point of G.

* * *
Proof: Let q = (Q1,...,q ) be a substitute perfect aqui-

n 1 2
librium point for G and let q , q ,... be a substitutese-

n * 1 2
quence for q such that q is a best reply to q , q ,... "

Let E1, t2,... be a sequence of positive numbers with

Ek+O for k+m, such that for k=1,2,... and for i = 1,...,nk

w~ always have qi (~i) > Ek for every ~iEITi. Since every
q is completely mixed we can find a sequence E1,E2,... of

Ak k
this kind. Let G = (G,~ ) be the perturbed normal form as-

sociated with the triple (G,qk,E ).n
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A1 A2
In the follwoinq it will be shown that G ,G ,... i9 a test

sequence for G. Obviously for k~m those minimum probabilities

which are equal to Ek converge to O. Consider a pure strate-*
gy -iEITi which is not a best reply to q . For this pure stra-*
tegy we must have qi ( ~i) = 0 Therefore for k~m the minimum
probabilities of pure strategies which are not best replies to
* A1 A2

q converge to 0, too. Consequently, G , G ,... is a test

sequence of G.

The sequence q1, q2,... is a sequence of equilibrium points qk
Ak A1 A2

for the perturbed game G in a test sequence G .G ,... for G.

This follows by lemma 11. Moreover the sequence q1,q2,... con-
* k .

verges to q . Therefore q 1S a limit equilibrium point of the
A1 A2 k

test sequence G ,G ,... . Consequently q is a perfect equ1li-

brium point of G.

* * *
Theorem 7: A mixed strateqy combination q = (q1,...,gn)*
is aperfeet equilibrium point of G, if and only if q is

a substitute perfect equilibrium point of G.

Proof: In view of lemma 12 it remains to be shown that a per--- *
fect equilibrium point q of G is substitute perfect. Let
A 1 A2 *
G , G , ... be a test sequencefor G, suchthatq is a

A1 A2 1 2
limit equilibrium point of G , G ,... . Let q , q ,... be

k k
a sequenceof equilibriumpoints q gor Gwhich converges

'"

to g . The definition of a perfect equilibrium point requires
A1 A2 1 2

that such sequences G , G ,... and q , ~ ,... ex1st.

k
Let Ti be the set of all those pure strategies of player i
which appear with more than minimum probability in qk, i.e.

-i is in T~ ,if and only if we have q~ (-i) > n~ for player
i's component qki in qk. Obviously a pure strateg~ ..ETki is

k k 1
a best reply q in G but Ti may not contain every pure best

reply to ~ inG. Since the ak converge to q* and the n~ con-i
verge to 0, there must be a number m, such that for k>m every

'" . k
pure strategy -i with qi(~i) > 0 is 1n Ti for i = 1,...,n.
Without lass of generality we can assume m = 0 since otherwise

A1 A2
of the original sequences G , G ,...

for the purpose of this proof.

we can use subsequences
1 2

and q , q ,...
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Since every ~i Wi~h q~(~i) > 0 is in T~ and :very ~i€T~ is
a best reply to q in G, the mixed strategy qi is a best re-

ply to gk for k - 1,2,... . The qk (are completely mixed and
1 2 * 1 2

q , q , ... converges to q . The sequenceq , q ,... is a* *
substitute sequence for 9 and q is a best reply to this*
sequence. q is a substitute perfect equilibriurnpoint.

12. Two counterexamples

One might be tempted to think that a perfect equilibrium

point of the normal form G of an extensive game r with

perfect recall always corresponds to a perfect equilibrium

point of r. If this were the case on would not need the

agent normal form. In the following we shall present two

counterexamples. The first one is quite simple but less

satisfactory than the second one.

The first counterexample: The extensive game of figure 2

has exactly one perfect equilibrium point, namely the pure

strategy combination (Rr,L). Here Rr refers to that pure

strategy of player 1 where he chooses R at the origin and

r at his other information set. The fact that this is the

only perfect equilibrium point follows immediately

subgame perfectness of perfect equilibrium points.

corollary of theorem 2 in section 7).

by the

(See the

In the normal form (Rr,L) is a perfect equilibrium point, too

but not the only one. Since the strategies Rl and Rr are equi-

valent (Rl,L) is just as perfect in the normal form as (Rr,L).

In a perturbed game of the extensive form the strategies Rl

and Rr are not equivalent but this information is lost in the

normal form and cannot be regained by the construction of per-

turbed normal forms.

The first counterexample is not quite satisfactory since the

one may be content with the fact that among the two equivalent

perfect equilibrium points of the normal form, there is one
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which is perfeet in the extensive form. One may

of view that it is not important to distinguish

two equilibriurn points.

take the point

between these

L R

Rl

LI

Lr

Rr

Figure 2: Extensive form and normal form for the first

counterexample. The conventions of the graphical

representation of the extensive form are explain-

ed at figure 1.

The second counterexample: Consider the equilibrium points

(Rl, L2, R3) and (Rr, L2, R3) of the qame of figure 3. As
we shall see both of these equilibrium points are perfeet in

the normal form but they fail to be perfeet in the extensive

form.

Perfectness in the normal form: It is sufficient to show

that (Rl, L2, R3) is aperfeet equilibrium point of the
normal form,if this is the ease the same must be true for

(Rr, L2, R3) sinee in the normal form Rr is a duplieate of
Rl.

In order to show the perfeetness of (Rl, L2,R3) we eonstruct

the following substitute sequence q1,q2,... : In qk every

pure strategy wh1ch does not occur in (Rl,L2,R3) 1s used with

2 0
0 2

0 0
3 2

1 1
1 1

1 1
1 1
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o
o
5

4
4
o

10

/g

3
o
3

~I

LI

Lr

RI

Rr

LI

Lr

RI

Rr

Figure 3: Extensive form and normal form for the second counter-

example _ The normal form is describedby two tri-

matrics one for player 3's choice L3 and one for his

choice R3-

1 2
3 0

0 0

1 0
3 0

0 5

0 0
0 0

0 0

0 0
0 0

0 0

1 2
3 0
0 0

1 4
3 4
0 0

3 3
0 0

3 3

3 3
0 0

3 3
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than 1-( in bk. It ean be seen immediately that for suf-

fieiently small E player 2's best reply to bk is R2.
1 2

Therefore the sequenee b ,b ,... cannot be such that

(Rr,L2,R3) is a best reply to every bk. Consequently

(Rr,L2,R3) fails to be aperfeet equilibrium point of
the game of figure 3.

Interpretation: In the following we shall try to give an

intuitive explanation for the phenomenon that an equili-

brium point whieh is perfect in the normal form may not

be perfect in the extensive form.

In order to compare the normal form definition with the

extensive form definition, we shall look at a perturbed
A

game r of an extensive game r with perfect reeall and atA

a perturbed normal form G of the normal form G of r.
k k k

Let the behavior strategYAcombination b = (b1,...,bn) be

an equilibrium point for rand let the mixed strategy* A *
eombination g = (Q1,...qn) be an equilibrium point for G.

A
A choiee e in r is ealled essential for b if the relevant

local strategy selects e with more than the minimum pro-
A

bability for c required by r. A choice whieh is essential
k k

for b must be a loeal best reply to b in r.

A pure strategy ~i is called essential for qk if q~ (~i)

is greater than the minimum probability for -i required
A *

by G. A pure strategy which is essential for q must" be
'*

a best reply to q in r.

* *
Both band q reach all partsof the extensiveform in
the sense that the realizationprobabilitiesof all ver-

tices are positive. Nevertheless ther.eis a erucial dif-A *
ference between band q . This differeneeconcerns the

'*

conditional choiee probabilities Pi (e,u,qi) whieh have
been defined with the help of lemma 1 and lemma 2 in the*
proof of Kuhn's theorem. In the ease of q these eondi-

tional choice probabilities are defined for every personal

information set.
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It may happen that player ils pure strategies which are essen-*
tial for q are such that a given information set u is not*
reached by q Ini for every one of these essential strate-*
gies -i; the realization probabilities p(x,q I-i) are 0 for
every x€u. An information set u of this kind will be called*
inessentially reached by q

If an information set u of player i is inessentially reach-
* *

ed by q , then the conditional choice probabilities ~(c,u,q )

will be exclusively determined by those pure strategies of*
player i which are inessential for q . Therefore the*
~i (c,u,q ) may be very unreasonable as a local strategy
at u.

* *
The crucial difference between band q is as folIows:

*
Whereas every local strategy in b is reasonalbe in the

sense that the essential choices are local best replies,
k
q may lead to unreasonable conditional choice probabili-

ties at those information sets which are inessentially
*

reached by q .

*
As an example let r be the game in figure 3 and let q be

such that only the pure strategies in the equilibrium point*
(Rr,L2,R3) are essential for q . The information set of
player 1, where he chooses between land r is inessentially

reached. Therefore the conditional choice probabilities

for land r are not determined by Rr but exclusively by

the minimum probabilities for LI and Lr which may be such

that 1 is selected with a high conditional choice probabi-

lity.

In an extensive game,where every player has at most one in-

formation set, it cannot happen that the information set*
of a player i is not reached by q /-i for one of his pure

strategies nie His strategy does not influence the reali-
zation probabilities of the vertices in his information set.

The agent normal form corresponds to an extensive form

where every player has at most one information set. There-

fore no difficulties arise in the agent normal form.

----
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