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On the Regions of Linearity for the Nucleolus and

their Computation

1. Introduction

The concept of the nucleolus has been introduced by D, Schmeidler,

It is the purpose of this paper to give a method for computing the

linearity regions of the nucleolus.

Therefore it was necessary to generalize the notion of balanced
sets (introduced by L.S. Shapley) to that of Bo-halanced sets,

In mection 3 we give some properties about these sets and about
unions of Bo-balanced sets, After having introduced the notion
of Bo—extansions for given Bo—balanced sets we achieve results
about the linear independence of certain incidence vectors corres-
ponding to coalitions out of Bo-balanced sets. Main results are

thecrem 3.2 and theorem 3.5.

In section 4 these results are used to achieve similar statements
about maximal coalition arrays (called B-finest coalition arrays

by J.H. Grotte). The main conclusion is theorem k.10,

In section 5 we then introduce an equivalence relation on the

set of all maximal coalition arrays. The notion of normalized
coalition arrays enables us to find suitable representatives for
each of the equivalence classes. Thus we are able to determine re-
gions im the game space, characterized by a system of inequalities,
on each of which the nucleolus is a linear function (note that the
nucleolus is a piecewime linear function on the game space). The
linearity regions determinedby theorem 5.11, theorem 5.1%4 and
lemma 5.17 are greater than those of E., Kohlberg. We conjecture
that our regions are the greatest possible ones. We have also found a
practical method to compute the nucleolus for games with a small

number of plavers,

In mection 6 we describe a procedure for constructing normalized

coalition arrays and compute the nucleolus for the general 3I-person-
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game, (J.H, Grotte has already computed the nucleolus for the super-
additive 3J-person-games,) Furthermore the author has evaluated the
nucleolus for all superadditive 4-person-games., This will be pub-

lished as a separate working paper.

2, Notations and basic definitions

A characteristic function game is a pair (N;v) consisting of a set

N = 11,...,n} of n players and a characteristic function v,

which maps each subset S of N, called a coalition, to a real
number v(S). In addition it is assumed that v(N} 2 O and that
v(S) = 0 for all one-person coalitions, as well as for the empty

set. The power set of N is denoted by P(N).

We only consider games (Njv) with v(N) > 0; the set of all these

games is denoted by V For the sake of simplicity let v be an

N.
element of VN'

A pay-off vector (imputation) is a n=tupel x € R® such that

x; Z 0 for all i=1l,...,n and x, = v(N). xN(v) is the set

.

n Mo

of all imputations.

For such games D, Schmeidler [D. Schmeidler 1969] has defined the

nucleolus which is described as follows. If x G’XN(V), define

n

Z {(x) to be the vector in RZ "2 with the components

e(5,x) := v(sS) - L x, for all 5 € P(N)\ IN,@#! arranged in de -
ics

scending numerical order. The term e{S,x) is called the excess

of 5 with respect to Xx.

The nucleoius of the game v € VN‘ denoted by N(v), is that unique
imputation x for which O(x) < C)(y) lexicographically for all
imputations y < XN(V)-

If B is a set, then the symbol lBl specifies the number of
elements of B, In the following let N = {1,...,n} be an arbitrary
but fixed set of n players. To avoid trivial cases we further

assume the number n to be not smaller than three.
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The concept of bhalanced sets has been introduced by L.S5. Shapley

[L.S. Shapley 1967]. Here we give a slight generalization of this

concepte.

In the following let Bo be an arbitrary but fixed subset of
{{1},...,in}l] such that [B | <n-1. If B = {b_,b,...,b ) is

a set of non-empty subsets of N, the incidence matrix that corres-

ponds to B is the matrix

Y := - . i = 0,1 e - i = 1 “aw
(YIJ) 1 11y ki ) 134!
. 1 if j £ b,
where Yij T {§ it §fo, C

The vector y; = (yil,...,yin) £ R" is called the incidence vector

belonging to b, P(NY\ {gl. & balancing vector of B is a

) B p o
vector ¢ = (Co’ci’°"'ck) that satisfies

k
Loe,y,, =1 for all N

1,--9,1’1

I

and c. >0 for all i

i

Ogl,ooogko

Obviously, we get the equivalent formulation

B
where e. © R is the vector (1,...,1) and ¢ > O.

We denote by C{B) the set of all balancing vectors of B. Then
. . B
the set B is called _poubalanced. if there exists a set Bo c Bo

such that C{B U Bi) # g,

Remarks 2.1

i. In the case of Bo = @ this exactly coincides with L.S. Shapley's
definition of a balanced set (@-balanced sets). It is clear that
for all possible sets BO < i{ii....,{nfi a fPebalanced set is

also Bonbalanced.

2. Since ]Bol % n-1 the empty set can never be Bo—balanced.



3. The set Bg s which is needed for the set B to be Bo—balanced,
is not necessarily unique. Note that Bﬁ may be empty. In the
following it is assumed without loss of generality that the set

B
Bo C B0 has been chosen so that there does not exist a set

~

B2 ¢ B which satisfies |B°| < |{B°] and c(BU B®) 7 g . Thus
o o o o o

we obviously have BN Bi =@ .

4, If B C P(N) is B_-balanced, then the set B U Bi is @g-ba-

lanced and conversely.

5. Let B,, B, be subsets of P(N); if B, and B_ are B -

1 2 o
balanced, then the set B1 U 32 is Bo-balanced, too,.
It is obviously clear that the sets lN} and P'(N) := P(N)\.iﬁ,N}

are Bo-balancad. Moreover, {Ni is the only () ~balanced set with
one element. In the following we consider only Bb-balanced sets

with elements out of P*'(N).

The concept of minimal balanced sets has been originated by

L.S. Shapley, too., We call a set B C P'(N) B -minimal , if it
is Bo—balanced and if it does not contain a proper subset B!
which is also Bo-balanced.B The set of all Bo—minimal subsets

of P'{N) is denoted by HNO .

definition and from remark 2.1.3 that if Be P'(N) is Bo-minimal,

It follows directly from the above
then the set B W Bg is @-minimal.

The following example shows that in general the converse is not

true:

Let N be the set {1,2,3,4} and Bo 1= i{Jf,,hff 3 the set
111,21,{1,3},{2,3},{4f} is @Peminimal, but the set {{1,2},{1,3}.12,3;}
is nat Bounininal because it contains the Bo-halanced set {{1,2}} .

In the following we use the symbol I(B) for the set of incidence
vectors of a subset B of P'(N) ; the subspace of Rn, which is

generated by the vectors of I(B) , is denoted by L(B)} or L(X(B)).



The next results are due to L.S, Shapley [L.S. Shapley 1967] :

Let B be a @-balanced set., Then B is @-minimal if and only
if the set of the rows of the corregponding incidenpe matrix is
linearly independent (i.e. I{(B) 4is linearly independent).
Furthermore, B is the union of the @-minimal sets that it con-

tainsg.

Remarks 2.2

1. A Bo—balanced set, which contains only one element, is Bo-

minimal.
2, We have |Bl S n for all B -minimal sets B C P'(N).

3. If B is g-balanced, then B is @-minimal if and only if
IC(B)I = 1 ,

4, If B is Bo-minimal, then the set I(B U BE) is linearly
independent,

The next definition serves the purpose to extend a given Bo-ba-
lanced set to a greater one with certain properties, which will

become clear in the following sections,

c L4 -
Suppose B1,B2 P*(N) ; let B1 be Bo balanced and B2 ¢ 31 .
If there exists a set Bé C P*(N) which satisfies

] 1 L] 7=
31U32§B1U32 , Bz¢Bi and C(B, U B) # B , we call the

the set Bé a reduction of 31 v B2 with respect to B1 « Further-

nore, let B1,82 be given as above., Then we cal)l the set 31 U 32

a Bo-extension of B1 s if we have

i Bl ] B2 is Bo-balanced

ii) B, U B, does not possess a reduction with respect to 3B, .
Remarks 2.3
1. The subsets of Bo sy which are necessary for the sets B1

resp. B1 U 82 to be Bo-balanced, are denoted by B; resp. Bi .



If it is clear which reduction resp. Bo—extension is meant, then
the phrase "with respect to Bi" is omitted., In addition to the

requirement for B in remark 2.1.3 we shall always require

1
that the set Bi c Bo has been chosen in such a manner that there

~ -~

does not exist a set Bo c Bo which satisfies fBiI < lBiI and
C(B1 v B: U B2 U 33) 7 ¢ « Obviously, this can be done without
loss of generality. In what follows this requirement will be always
assumed to be satisfied., Now it follows that

2 1 2 2
B, NB,=¢, Bonnonﬁ and B, N Bo-szi.
2. Let B,,B, be subsets of P*(N) with B, 4¢ B,. If both B,
and B1 u B2 are Bo-balanced and if lBl u le = ‘Bll + 1 , then
B1 U 52 is a Bo-extension with respect to Bi'

The notion of coalition arrays has been introduced by E. Kohlberg
[E. Kohlberg 19?1]. A coaliticn array (in the following: "array")

is a sequence Bo’Bl""’Bq of non-empty subsets of P*(N) such
that Bo contains only one-member coalitions, and may by empty,

and Bi""’Bq is a partition of the set P'(N). An array B we

denote by B = [Bo‘B1’°"'Bq] 4 the sets Bi are called array parts.

In accordance with the above definitions an array B = [Bo,Bi,...,Bq]
is called array balanced ("property II" by E. Kohlberg), if for

k
all k = 1,...,q the sets U B

1=1
ing we call such an array "balanced".

1 are Bo-balanced. In the follow-

Remark 2.4

Similarly to the forwmer remarks 2.1.3 and 2,3.1 in the following

t . .
we shall always require that the set Bo < Bo s which is necessary for

t
the set L)Bl (t € [1,....q}) to be B -balanced; has been chosen

-~

=1 .
in such almanner that there does not exist a set Bo C Bo which

~y . t-1 t-1 ~y
satisties |B°| < |BY] and c(UB U UB_UB_UB) 3¢,
] o i=1 1 1=1 o t o

A set Bz C Bo selected in this way is called the t?o-subset

corresponding to the array part Et" « In what follows this




requirement will be always assumed to be satisfied.

We shall use the following notations: let B = LBO,Bl,...BqJ

be a balanced array, For 1 ¢ {0,1,---9qg the array part Bi is

i i i ..

the set ]bo,b;,...,b; } and similarly the set

i
I(Bi) 1= {y; 1 0= 3= ki} is the set of incidence vectors corres-
ponding to b; € Bi « The union of those array parts Bi y which

1
possess more than one element, is denoted by AB’ s -
J { |
A = U B, [ i c 1,-0.,(1 .
B 1-1 11 1
IBi ‘;: 2
1

It AB ¥ ¢ , then i? is the smallest index in the set fl,...,q}

vhich satisfies fBi | 2 2 , and the index i: iz the greatest
1
index in {1,...,q] which satisfies lBi | 22 {if there is no
m

danger of confusion we omit the subindex BE). The set

Zi | f c §1,...,q} is the set of those indices whose corres-
1 n

ponding array parts have more than one element. The set

KB i= AB U Bo is called the Yget of critical coalitions" belonging

to the array B ; furthermore, the union of the set

LB := |B, seeesB, } and the set {B | is called the "set of

critical array parts" belonging to the array B,

-k k k 1
For k= 1,.40.,9 the vector ¢ c¢C (UB U UB') is the
: 1=1 1 121 °

kK k
balancing vector of the set |J B, U LlBi with the components

1=1 =1
ci {1 =i =X} corresponding to the incidence vectors y; € I(Bi)
~J
ang cg corresponding to the incidence vectors belonging to

k
1 i
;giBo . The exemser of coalitions bj € B, are denoted by ei(x)

(with respect to a vector x ¢ R"). Finally, we call the sequence

{Bo'Bl""‘Bl) the l-truncation of the array B (1 ¢ {0,1,...,q}).



An array C = [co.ci,...,cr] is said to be derived from the array
B = LBo‘Bi""'Bq] , if there exists indices

O =k <k, < sae <K = q such that ¢ - B and
o r o o

1

Cv = Bkv o1 U .o U Bkv for all v = 1,..4r + E. Kohlberg has

shown that if an array is balanced, then any array derived from it

is balanced, too.

The foilowing definition has been introduced by J.H. Grotte
[J.H. Grotte 1972] 34 it is used here in a modified way.

An array B = [Bo,Bl,...,Bq] is called maximal {(B-finest by

J.H. Grotte), if it is balanced and ]BOI = n-1 and if the only array
from which it is derived and which is balanced is itself. (The

second condition is useful in view of applications in the next

sections.)

Finally two arrays B = [Bo'BI""’Bq] and C = [co'cl""'ch are
called equai if they satiafy q = r and Bi = Ci for all indices
i = 0’1,0u-'q.

In the following let N = {1,...,n} be an arbitrary but fixed set
of n players; to avoid trivial cases we assume n = 3., Some
proofs in the next sections are somewhat lengthy. Therefore they

will be omitted if they are not difficult.

3. Bo-balanced sets
For the whole section let Bo be an arbitrary but fixed subset of

{{1lyees,ini} which satisfies IBOI < n-1,

We now want to examine the set of incidence vectors corresponding

to unions of Bo—balanced sets. For this purpose the incidence

vectors of a set Bt t= {b:,bi,...,b; } € P*(N) are denoted by YE "
<
i . t
i€ {0,1,000,k | 4 dse. 1(B) = iyi r0s4i<kl.

The following lemma is a direct consequence of the definition of

Bo-balanced sets.



Lemma 3,1

Let B,,8, be subsets of P'(N} ; further let B, be B _-balanced

2
and 32 = & . If B1 U B2 is Bo-balanced (i.e. there is a set

-

& 1 2
B@ < Bo guch that C(B1 U Bo u B2 U Bo) # @) , then we have for all
P4 2 1 2 2
v, £ . .
v, € T(By) + yi € L(B, U B, UB_ UB,N (b2
The next theorem will be important for the whole paper, expecially
for some of the proofs still to follow. It gives an algebraic
characterization of those subsets of P'(N) whose union with a

given Bo-balanced set is again Bo-balanced.

Theorem 1,2

Let B,,B, be subsets of P'(N) ; further let B, be B -balanced

2
and B2 # @ . Then the set B, U B2 is Bo-balanced if and only
if there is a set Bi < Bg and a real-valued vector
v 1= (vz,vz,...,v2 H v°2,...,v02 ) with v >0 such that
o 1 k 1 2
2 |8 |
o
k2
PN v2y2 + by vo2 y2 € L(B_ U 8l .
520 94 o a3 73 1 o
v € 1(B))
Proof:

Obviously we can assume B1 n Bz = @B, The theorem will be proved
for the special case Bo = @ 3 the general case can be reduced to

this case.

Suprpoge first the set B1 U B2 to be Bo-balancad. Then the asser-
tion is immediately clear (note that ey € L(31 u B:)).

Conversely, we first have a vector c1 € C(Bl) which satisfies

ki
1 . 11
¢ >0 and 2 c.y. = e,, Further there is a subset I' of
j=o 93 N

I = {0,1,...,k1} such that {y: 1 1 € I'f is a basis of L(Bl)'

How we define d to be the term ey - z c%y? « This implies
j ¢ Te .



- N

1.1
d= I ¢y

and 4 € L(BIJ. If Y' is a matrix with rows
if€ex

y;(i € I') and it &l ia (cl)

ili e 10 is a row vector, then we have

the following equation: 31 Y* = d,

The matrix Y* characterizes an injective, continuous linear

'
function from R]I I into R" s+ which we call ¥' , too. Using

the continuity of Y'-1 and the assumption of the theorem we can

]
find a real number € , € > 0, and a vector x € R I l with x >0
*2 2 2 *2 2 2
such that xY' = d - € & v,y (note that d - € L vy, € L(B )).
juo 99 j=o 373 1

We now eliminate the term 4 and get

k
N 1 . 11 2
L Xy, + 4 €.y, + L €V

y
jEI. J°J j¢1. J° 3 j-o j j

= eN
1 2 . .
where all coefficients xj, cj, evj are strictly positive. Thus

we have found a balancing vector for the set 51 U B2 .

For the general case Bo = § we have only to note that the assump-
tion that B1 U By is Bo—balanced is equivalent to saying that

there is a set B2 C B such that (B, U BY) U (B, U B%) is
o 1 o 2 o
P=-balanced,

Remarks 3.3
1. The above theorem is also true for sets

B! C {11l yeeesini} with |B!| = n.

1 .
2. Let B, be Bo-balanced, i.e. (51 u Bo) is (-balanced. Then

dim L(B1 U B;) = n implies that the set (31 U B:) U {bl is

@-balanced for all sets b € P'(N).,

Our next aim is to look at the linear independence of sets of inci-
dence vectors of Bo—halanced sets, For this purpose it is appro-

priate to start with Bo-minimal sets which are the "smallest"



- 11 -

Bg~halanced sets and whose sets of incidence vectors are linearly
independent. Step by step we combine these Bo-minimal sets with
cther subsets of P'(N) such that the union is again Bo—balanced.

Then we examine the set of incidence vectors of this greater set,

Le mma 3 - z.t

Let BI,B2 be subsets of P*'(N) such that B, N B2 = @ and

I . - 3
oi = 2 ; further let 51 be Bo balanced. If B1 U 82 is a

Bo-extension of 31 , then we have vy ¢ L(B1 U Bi) for all vectors
2
C -
y ! I(B2 U Bo)

| B

Ysing theorem 3.2 we immediately obtain an indirect proof.

in view of what has been said about the extension of Bo-balanced
gets it is obviously clear that the assumption 31 A B2 =@ is
only a technical one. Furthermore, in the case of IBZI = 2 we
can assume without loss of generality that, if Bl U B is a

2

. 1 .
Bg—exten51on of B1 sy the set Bo f Bz is empty.

The fellowing theorem shows exactly which set of incidence vectors

of a Bo-extension ig linearly independent.

Theorem 3.5

Let Bl,Bz be subsets of P'(N) auch that B, n B, = @ and
B? ;r # 3 further let B, be Bo-balanced. Suppose the set
S,C I(B, U B)) isa basis of L(B, U B!) and denote the set

v/ i 2'1 3 5 1
v U 82‘\fbo;) by 82. Now, if Bi U B2 is a Bo-exten51on of

. 2 it follows:

3 S1 U 52 is linearly independent

iy ooy

[« 2 &

cL_uslus®) ir is|
1 o o 2

The second assertion follows directly from theorem 3.2. To prove

the first assertion suppose that S1 U s ig linearly dependent.'

2
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Then there are real-valued coefficients aj'ﬁj’Yj which do not

all vanish such that

ké - . 1
LR y% + L Y.y? + L a.y, = 0O,
suq 9 o g, 473 1 373

yj = I(Bo) Yj € 81

Because of the linear independence of 51 we can further assume
without loss of generality that the coefficients sj’Yj do not

all vanish, Thus

kh

' . . 1
x) LB y% + L Y.y = -L oy, € L{B, U Bl)
=199 4 2, 79 1 373 e
£ [~
Yj : I(Bo) y‘j 51
Proposition:

We can assume Bj = 0 for all coefficients Bj in equation x)

Proof:

Suppose there is an index 1 € {1,...,k2! such that Bl < O,

In view of the Bo—balancedness of the =met 51 U B; 8] B2 U Bi there
is a vector ¢ € C(B1 U B; U B2 ] Bi) such that ¢ >0 and
kz 2 2 02 k1 1_1 ol o
xx) Ecly + o c2%y% 4+ Loery: ¢+ I [ = ey .
jmo 39 o (8%) 373 5o Y ° ¢ 18" i3
. B
YJ €I YJ o
We get:
kK
2 31 B1 . o2 o S1 1 1.1
E Yy, = 8 e — Y Y, - - Z cC.¥, =
171 c2 N c2 o > J c2 i’i
1 1 y] € 1ed) p d=°
k
Bl ol o B1 2 22
- = X c. ¥, = == L cly
c2 <] 1 J 7 c2 Jj=o 373
1 j € I(Bo) 1
i¥1
This last equation and equation x) imply
k2 Bl 2 2 ﬁl 22 - Bl o2
xxx}) L (B, « ==c3) ¥y, -—2c’y + L (y, - —
J=1 J c2 3 J c2 °e o 2 3 c2 J
1 1 p £ I(Bo) 1
J¥l

(note that e. € L{B, U B1)),
Iy i 0
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Y
b

1

The above replacement procedure {2 guarantees that the coeffients

o? the vectors y% and y? on the left gide of x} will all

increase by a strict positive armount

¢ . El 2 bl o2 .

{notice that {- - cj) >0 and (- 3 ©; } > 0 for all indices j).
1 €2

Ferthermere, coefficientn of wectors yf which are positive in x) ,

are positive in eguation xxx} , too, Ef necessary we have to repeat

the procedure {(P) , now beginning with equation =xxx) , etc. After
at most k2 steps we get a linear combinetion similar to that of

. 1
equation xxx) , which is an element of L(B1 ] Bo) and which pos-

segnes only mositive ccefficiante of vectors y? c I(Ba).

Without losz of penerality we can szzume that this iz the case in
rxz! , MNow, if all coefficients of vectors yg F I(Bi) are positive
in equation =xxx) , we get a contradiction owing to the fact that

Bi U Ba is & Bo-extenaion, hecause theorem 3,2 states the exist-
ence of a B -reduction of B, U 3,. {Npte that at least the term

B,

2, . w s
- =g e, is strictly positivel.

L%, on the other hand, there arn coefficients of vectors yg € I(Bi)

which are strictly negative, then we apply the same procedure (P) on
2

these coefficlants and eguation xxx), After at most IBOI steps

we cat a term of the follewing Zorm:

<
e
4
B
ot
g

1
£ ?.a jim e =
€ ‘{@1 U Bo) L(Sll

o

B 75 € 1ei\ iyl

warT2 all cosfficients v..¥w, ar
k! ot

D

strictly positive and y: € I(BE) .
How, let %t% be the sub;eﬁ\of % corresponding to the incidence
vector yz « Theorem 3.2 states that the met BI U B; U Bz u Bi\\{t]
im B@~balanced, which contradicts the fact that the set Bi has
Yeen Yminimally" chosen in accordance with remark 2.3.1 . Thus

ihe propesition has been proven.
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An analogous proof shows that we can assume all coefficients Yj

(in equation x)) to be equal or greater than zero.
For the proof of the theorem we now have to look at two cases,

Case 1: the coefficients ﬁj in squation x) do not all vanish,
Then theorem 3.2 vyields an immediate contradiction

owing to the fact that B1 U B is a Bo-extension of B

2 s
Case 2: all coefficients Ej vanish (this includes the case
lel = 1) . Without loas of generality we assume all
coefficients Yj to be strictly positive, Now we choose
any vector y: € I(Bi) and evaluate the term y: out of
equation xx) . Instead of y: wa insert the new term

in equation x) and get a term of the following form:

g

2 ' o 1

y; € 1(8,) y; ¢ I(Bﬁ)\{v:i

L

with the appropriate coefficients bj,6; €R . (In the
case of |32| = 1 we can assume 6j >0 .) Again apply-
ing procedure (P) , if necessary, and theorem 3.2 we
get a contradiction owing to the fact that 31 U B2 is
a Bo-extension resp, that the set Bg has been "amini~

mally" chosen in accordance with remark 2.3.1.

Now the proof of the theorem is complete.
Thus, if B1 C P*(N) is Bo-minimal, we have the eguality
I(B1 U B;) = 51 (remark 2.2.4) . Together with the remarks 2,1.3,

2.3.1 and lemma 3.1 we immediately get the following corollary:

Corolliary 3.6:

Let B,,B, be subsets of P'(N) such that B, N B, = g and B, £ P 3
further let 51 be Bo—minimal. If 31 U B2 is a Bo-extension of
31 y it folliows:

12 2 1, .2
i) 1(B U B uUB.UB,\{bJl) is a basis of L(B, UB U B U B,)

. . ' 1, .2 1 2
1) dim L(B, U B U B. U By) = |B | + [B_{ » [Byl » |B]| - 1



[]
a

A%
1

Now we have reached our firgt aim : the property cof being a
Eo-extension iz a sufficiert condition for a certain subset of the
incidence vectors of an extension of 2 ﬁo-minimal set to be line-

arly independernt. Thus, we have a method for constructing larger sets

=

3 linearly independent incidence vactors.

—

The last iemra of this section gives necessary conditions for the

Hjnex&ension of a Bo-balanced set, Both assertions are important
[

Tor the construction of maximal! coalition arrays considered in the

nexhy section,

emma 3.7

e B Bz pe subsets of PY{N) such 4hat 31 N B, =& and Bz F e

1? 2
“Yurther let ©, be B -balanced, If B U B is a B -extension
i o 1 2 o

BE Bi y it folliows:

i) (B U BI) U (B U Bz} is a @-extension of (B, U Bi)
1 C 2 0 1 o

a £ -minimal met V¥ ¢ Mg such that B2 U Bi is a
A

Phe
L
T
o
¢
ia}
]
pa
@

T4t asssriiovs can be proven indirectly., The first proof uses
“hecrem 2,7 and the second usez the Ffact that every @#-balanced
et i3 the unicn of the @-minimal sets that it contains

. L.S. Shapley 1967

2 -»

“. weslition arrays

ne firat aim of this section is 4o show that in the case of AB ball

the space LTKq} has full dimension n § furthermore, we shall

snacifv a hasis of LEKB} .

et B o= (A *3?""’qu be a balanced. array.
e

LY dim L{Kn}

dim L(Bo) Z n=1 if A= @

#

iFY dim L(Kﬁf n if A, 7 o]
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Proof :

To prove the first assertion we have only to show that the set Bo
has n-1 elements; using theorem 3.2 this can be done indirectly.

For the proof of the second assertion it is sufficient to show that

q
L( LJBi} e L(KB) . This is by induction on i (i=1,...,9) , again
i=1

mainly using theorem 3.2. The full prooi will not be given in

this paper.

Obviously this lemma is also true in the case of maximal arrays

which will be considered in the following. The study of maximal
arrays is convenient because for every balanced array there is a
maximal array from which the former can be derived. (in general

this maximal zrray is not unique,
The following remarks are intuitively clear:

Remarks 4.2

1, If B = [Bo,Bl,...,Bq] is a balanced array, then B_ 1 B

k

0 = @# for all indices j 7 k ;

for all V=1,..-,q and Bg ﬂ B

Jik € ii,...sqi (note remark 2.4).

- q
2. If B = {BO,BI,...,Bq} is a maximal array we have U BY = Bo -
v=1

This reflects the fact that the set Bo is not allowed to be larger

then necessary to balance the array.

3. Let B = LBO,Bi,...,Bq] be a maximal array. For an index

k ¢ {2,.-.,q} let the vector y? be an element of the set I(Bk) .

K
If y; € L(B_ ) then [B |

= 1,

4, Let B = [Bo,Bi,....Bq] be a maximal array. If for an index

k € iZ,...,qi the set Bk N Bo is not empty then we have
k-1
B, ¢ UB' and |[B
k G
va1

ki = 1,



The veri lemma gives a connection beiwesen the notion of a Bo—exten-

mlen and the maximal array now to be dimcussed.

Tamme .

-

‘9.'\

zh B = EBD,Bq,...,Bq] be a balanced array. Then a necessary

oy

nd gufficlient condition for B to e maximal is that the following
zrataments are satisfieds
8 = UB

o ]

g ¥
Ve L

14} 8. is B -minimal

K=1 ket
33} UR U5  is a B -extension of U B_  for all indices
wmd ke ° v=1 v

k-‘-'a,u..,q_.,

B

The wroof of fthis lemmz is straightforward,

HNow let R = [BQ’B1""'Bq] be a maximal array. We shall use the
following no-ations: suppose S1 is the set 1(81 U B;) and Sv
iz the gaet E(B: U Bv\\fb:E) for all indices ve2,...,9 . ¥With

Tarse defix llons we get the following

. q
N ,?dg.o.,ﬁqj be a maximal array. Then U S _ is a
- v=1

q
bacis of L(PC(N)) and we have | US| = n .
vzl

imiag Lerma Z.3, lemma 4.3 and theorem 3.5 the proof is by

induction on X=i,...,@ 5, for it is sufficient to show that

S k v Kk
B lo o bagis of L{UB U UB) .
v o v
=t v=1 vzl

Thus, 1r 8 = {Bo,Bi,...,Bq] is a maximal array with iBll
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q
the set USv is a basis of L(KB) = L{P'(N)) which only consists

of incideng vectors corresponding to coalitions out of the set of
critical coalitions KB “

Realizing the fact that y: € L(Bo U Bi ) we have only te use a

1
waell-known result about ckanging of a basis for vectors to get the

following lemma for the case ]Bil = i3

Leama 4.5

Let B

1)

[Bo’Bi""'Bq] be a maximal array such that A # ¢ and

q i
]Bli = 1 . Then the set (J91Sv U {yoil)‘\iy;} is a basis of L(P'(N)).

Thus for all maximal arrays B with AB 7 ¥ we have found a basis of
L{P'{N)) which consists only of elements of I(KB) . In the follow-
ing we are aiways using the sets determined in lemma 4.4 resp.

lemma &.5 as a basis of the space L(P'(N)) , according as IBii = 2
(lemma &.4) or 1311 = 1 (lemma 4.5). Now we have achieved the
first aim of this section; the resuit can be seen in connection

with L.S. Shapley's resuits concerning g-minimal sets and their

incidence vectors (mentioned in section 2).

The following iemma specifies the number of elements of the set AB

and the number of array parts of a given maximal array B.

Lemma %.6

Let B = [Bo,ai,...,ﬂq] be a maximel array., Suppose m is the
number of array parts Bj (1S 5= q) with lBjI = 2 and T is
the number of ail array parts of B {inciuding the array part BO).

Then we have :

= n ¢ {(G=1) = }Bo



Te wrewe 45 fivst aseertion we have to note that £, N Sj = @

or il fufloes L0F 3 1 d,3 € %1,...,q} s This follows directly
Trom the defirition of arrays and from the remarks 2.4 and 4,2 ,
comenowsias remarks 4,2 and lemma 4.4 resp. lemma 4.5 we can

sonelude:

) nqr. | @ 1 Q % v q v
a= s, = Z0s ] ana I s | = ¥ |s\z(e")] + i8Ny .
. VR 2 L ¥ v o o o
res 4 w2 v=1 v=1 v=1

In the cew= of A_7 @ we now have the equations :

e
' ) 3 | j
oyl I Bl = {5 \1(BY)] & (m-1) =
& bos h Jd o
iR = 2 j=1
a 0 i
= !%_ - :BQ! + (m=1) =
w:‘! w f:l
3
= Z '8! -« IB| + (m=1) = n +« (m=1) - {B |
. o
51
2 Ld
fratiesn ATy ‘JB* = B )., In the cage of A_ =@ we have m = 0
=1 % ° B
and !Bg; » el {sce leomma 4,1) . It follows:
Ly - = - - =
oo~ gl = omoe {O-1) - IBOI n 1 n+1=0,
Tl Thmx s ta- the amsertion is also true in the laat case,

To areve he second assertion we note that

. i) ' = 1 , ¢+ B, C = = -
REFELNEN Hos |iB, : B, adl v 1 (1259
fegriasye o ith Lhe first assertion and the fact that there can be
0
- qj‘k,— i)"

array parts B, with iaj} = 1 we now obtain :

2= {2%2) = (n + (m-1) - [Bgi) + me1
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This lemma shows that the number of array parts of a given maximal
array B only depends on the number of players n and the array
part Bo .

Until now we have obtained some general results on maximal arrays
which we now want to specialize, By these specializations we are
able to compute the nucleoius of a given game and the linearity

regions of the nucleolus.

For a given array B = [Bo,Bl,...,Bq] we shall use the following

notations:

{ g i |B| = 1
Zi HE .
:; - }ri e ey Yi - Y;i} if 'Bil > 1

J
Uy

for all indices i=1,.++49G « Furthermore, we define Z to be

B
qQ
the set Uz, uiIi(sy}.
. i o
i=1
Lemma 4.7

If 5 = {BO,BI,...,Bq] is a maximal array, it follows:

i) z.n I(Bo) = @ for ail indices i=1l,4.e4Q
i) 2,02, =0 for all indices i 7 3 § ds.5s € 11yeeesql
Proof:

To pirove the first assertien wa can assume without loss of generality
AB 7 @ « Suppose there is an index i ¢ fi,...,q} with Zi F e,
a vector y € I(Bo) and an index t € {1,...,kii such that

x} o= vi ey .

In the case of i=i1 this equation is directly inconsistent with the

fact that the set Si u I(BO) iz linearly independent. Therefore

1

we have only to consider the case i > 11 with jBi{ = 2 {note
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that 2Z. # @) . Then there is a vector

. i i .
e r o (U B: U UB) with =t >0
v=1 v=1
=il that
K. . k
. i i-1 1
i B 1
N SN § T e D S T R SV R
) i N 3 . i . 372
c c Jj=1 1=1 ¢ J=0
o o o
1 )
p—— = c.y. =
cl o i v 39
°© y% e 1(U 8
J v=1
*
= »—17 L eyl s
61 _— 32
o J
i-1 i i
where © € (1) 8 U I(Bo)) c (U Sv) . Note the fact that
v= 1 v vel
i=-1 i=1
gy - ] Sv} and that the set | .‘.‘-:‘r is a basis of
el va1

Ly 54 v B .
'

vl v ol

i
Hecause of linear independence of the set USv the last equation
v=1

- o’ ., Mew, if we compare the coefficient of the vector y:

with that ‘n ocuation x)  we get

1 i _
1....—iﬂct"‘-0
C

o

ang tuls gives the desired contradiction.

-

Po sreve the second assertion we assume 1 < j and Zi'zj re.

Suppese thers are indices t and m with 15t S k and 1 =m = k.

i
ansh that
o J i - i 3
Y. YO=YD Yt'*ym .
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Again we have a unique representation of the vector yj :
o

K. . k1
J . Jj=-1
yia-}-_'eN-"}T Zc‘:y:-z -2- chyi-
cJ cJ a=1 1=1 cJ s=1 e
) o o
1 - [+]
- j )_. ' [ o] Ya =
€ o v
y € 1({UB))
-] o
v=1
5
o i_- Z ciyi + B
cJ =1
o
j=1 5 i
where B c L{U s uIimY))cL{Us).
v o v
v=1 v=l
J

I1f we compare the coefficients of the vector Y, e get a contra-

diction and the proof is complete.

Theorem 4.8

If B = [BO,BI,...,Bq] is a maximal array then

q
i) U z, U I(Bo) is linearly independent
i=1
. q
ii) Iiv1zi U I(8}| = n-1

Proof:

To prove the first assertion it is sufficient to show that the set

k k .
Uz, u U I(Bz) is linearly independent for all indices k=1,...,4.
i=1 i=1

The proof is by induction on k, 1 =k = q.
Because of lemma 6L4.3.2 the assertion is easily verified in the

case of k = 1 , Suppose the assertion has been proven for all

indices 1 with 1= 1 X kel1< q .« W¥We now have to show:
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-
L

M N
LS £

X -

Uz, u I(Bi) Uz u I(Bk) is linearly independent,
. i . o k o

i=1 i=1

Case 1) z =@

k

First we have IBk’ = 1 ; without loss of generality suppose the

set I(Bt} ‘s not empty. Now, if k< i there is nothing to

1
k k { k i
show because of the fact that Uz U UI(B) = U I’ .
=1+ i=1 ° i=1  °

Therefore assume Kk > 11 +« Then there is a highest index

i€ 43 peecai ! such that ]B ] 22 and i, < k. In order to
1 1 m il |
et a coniradiction suppose that there are real-valued coefficients
i i
. 1
ai’bj’yil""'yj which do not all vanish such that

k
. . i, 14 i
=) by a.y. + z ﬁ Y. + z Y. (Y -Y ) * snn
y2 € (%) v € 1(U BY)
J ° 3 i=1 ©
k;
ﬂl il il il
ease + L Yj (yo - 'yj ) = Q0
J=1
k=1
n wiew of *he facts that the set U Si is a basis of
i=1
I L s Kei

U B U U B2) and that U Sy n I(Bk) = f§ there is a vector
e ° U ¥ i=1 o

k=1
o il 8.) such that we can write equation x) in the following
- o
fomns z a,y, + & =0
o K 373
Y; € I(Bo)

k-1 k
The linear indipendence of I(B:) u u S, = Lisi implies that
i=1 i=1

sia coedficients aj must vanish., By the induction assumption all
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other coefficients in equation x) must vanish, too. This contra-

dicts our assumption,

Case 2) z, P

First we have k & i for the set B has more than one element.

1? Kk
In the case of k = :l1 there is nothing to show because of linear

i -1
1
independendence of the set Si u u I(B:) « Therefore we can
1 v=]l
assume k ~ ii' Again there is a highest index il € {il,...,im}
such that IBi [ 22 and i, <k . In order to give an indirect
1
proof assume the existence of real-valued coefficients aj'sj’bj

i i
and le,...,le s which do not all vanish such that

"

xx) b ay> + ¥ B (yk - YE) + X &.y° s
373 7 geq 970 3 k=1 373
y? € 1(8%) ¥; € 1(U 8l)
J i=1
k k
i i
1 i i i ) S i i
1 1 1 1 1
+ E Y. (yol - Yj )+oon+ 2 Y. (yo - yj ) =0,
j=1 7 j=1 I
kk
Now we define & to be the term L P, . Let us begin with the
j=1
case a = 0O, k=1
Then in the same way as in case 1) there is a vector X € L{ U Si)
i=1

such that we can rewrite equation xx) in the following form :

M

k
Z ajy; + L (—Bj)yj +A =0

o kK J=1
Y5 £ I(Bo)
k
Because of linear independence of the set {J Si and because of the
i=1

: k-1
fact that ( Llsi) ns

= @ all coefficientas « and (-Bj) vanish
i=1

k J
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and so do all other coefficients in equation xx) (note the induc-

+ion assumption) .

k

k
Now we congider the case a:= L P, 7 0 . 1In view of Bo-balancad-
J=1
k " k k v
ness of the set (U B there is a vector c €c{UB U UB))
v v o
v=1 v=1 val
with &5 >0 such that
k a k a K k a o0
o o y. € I{B") "o
J o
k""l k-l\' k—l
vhere M € L{UB U UB) =L(U 5,) .
v o i
v=1 v=1 i=1

Instead of ayt we now insert the last term in equation =xx) .

k-1
Moting the facts that i < k and thus L e, cL(US,) we get
1 kK N i
c i=1
o
the following expressiocon:
kk
a o, © - a k
z (A, w == )y, + L (P, «a =)y, +M =0
o K, 3 K i3 j=1 i ki
Yy € I(E) o o
k-1
*7ith the appropriate vector M € L{ U 5,) . The linear independence
i=1 i
k
of the set L] 5, implies :
i
i=1
e
—i- 33185 = -Bj for all indices j=1,.e.,k

[

M

Now, the case L B.< O implies ﬁj >0 for all indices j=1,...,k_ 3
j=1

1

.4
K

o fy -~ 0 implies sj < 0 for all indices j=1,...,k . In both
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cases we get the desired contradiction and thus the first assertion

has been proved,

To prove the second assertion suppose m is the number of array

parts B, with ]Bi] = 2 ., Remembering lemma 4.6.1 and lemma

i
4.7 and considering the fact that Zi = § if and only if IBj] = 1
we obtain the following equations:
1Oz uz@pl = | Ozl » [p |-z 2,0 + 13|
Z. U I(B = Z,] &+ |B |= 1 A B | =
j=q1 1 o izq b i ]Bi] > 1 o
= bX (IB.] -1} + |[B ] = b} IB,[- m + lB ! =
B, C A B, A, °
i B i B

= (n + (m-1) - ]BO‘) -m+ |B | = n-1.

This proves the second assertion.

Lemma 4.9
If B = LBO,Bl,...,BqJ is a maximal array, then the seat ZB u {eNf

is linearly independent,

Proof:

In view of the fact that ]Bol = n-1 , the assertion is immediately

q q
clear in the case of U z, = @ . Therefore let us assume |J Z, F 8.

i=1 i=1
k k i
it is sufficient to show that U Z, U I( LIBO) U leﬂ} is linearly
i=1 i=1

independent for all indices k=1,...,9. This will be done by induc-
tionoen k, 1S k=<gq.

Conasijder the case k = 1, Contrary to the aspertion assume

ey € L(Zl u I(B;)) . In the case of 21 = @ this yields an imme-
diate contradiction owing to the fact that IBOI = n-1 . Thus we
can assune 21 # # « Then there are coefficients aj'Pj € R such

that
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i
: 1 - )
S RN
v y, £ I(B7)
J
ki i k1 1
= {(Z )y +« £ (~a)y, + X B.y? .

PIVS IGC ISR I g 373

y. € 1(B7)

J o

1

. - 1 -
On the other hand there is a vector o € C(B1 U Bo) with ¢ >0
ancd a unique representation of the vector ey (note that B1 v B;
is %-minimzl)such that
kl
e = ciy? + L c1y1 + o c%y°
N7 %% T %Yt , 375
- ~ I(B
¥y € (B)
1 k1 1
Comparing the coefficients of the vector ¥y we have ra, = c0 >0
0 j=1 3
1 . .
On the other hand we have &j = -cj < 0O for all indices J=1,...,k1 .

Thig yields a2 contradiction and therefore the assertion is true in

L

the case % = 1,

Suprnose that the assertion has been proven for all indices 1 with

k k
1% 1= k-1« q . Suppose further that ey ¢ L(U z, U (U Bi)) .

i=1 i=1
- 1) A =
age 1) 2. 4]
e there are real-valued coefficients aj’Bj and Yj such that
- o o
a = Tz, + % Y, + & R
7T, G743 ko1 e Y573
’ [s] i (o] k
z, € Uzi Y. FI(UBO) Y. FI(Bo)
J i=1 J i=1 J

in viaw of fBg[,S n-1 we immediately have a contradiction in the
zagse k < i, ; furthermore, Zk = P implies k # i1 + Therefore
k-1

> ORI AsSUmEe K > 11 « Because of L € LU Si) there is a vector
i=1
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k-1
A € L(U 5,) such that I ijg+J\=0
i=1 1 ]

k
€
yj I(Bo)

: S k
The linear independence of the set U Si implies that all coeffi-

is1
k-1 k-1
cients Yj vanish and this implies e, € L{ U z, U I( LIB:)) '
i=1i i=1

which contradicts our induction assumption.

Case 2) z 7 @

Consider first the subcase k = 11 + In accordance with the above

assumption there are real-valued coefficients Gj’Bj such that

K %

. k - k o
e = ( L a, (~a.)y, PN .Y .
N . J)YD * . J yJ * BJYJ
i=1 i=1 o 4 i
y, € 3(UB)
J i=1

(Note that the coefficients are uniquely determined because of

linear independence of the incidence vectors). On the other hand

k .
we know from lemma 4.4 that yk €cL{B, UB \ ibk} U UBY) and
o 1 k o i=1 o

that eN

we can rewrite the above equation in the following form :

€ L(B1 U B;) because of Bo-balancedness of 31 . Therefore

kk k © k-1 i

L Y.y, + L b.y. € L(B1 U UB))

j=2 ¥ o Kk, 79 i=1 °
Y4 € 1(B)

with appropriate coefficients Yj’éj € R,

This expression is similar to equation x) in the proof of tkeorem
3.5 « Therefore we can assume without loas of generality that

Yj.éj 2 0 ({(otherwise we can apply procedure (P))., Similar to the
proof of theorem 3.5 we now get a contradiction either to the fact

k-1 k=1

that (JB.) U B is a B -extension of U B, or to the fact
i=1 i K o $=1 i
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that the set Bi hes been "minimally" chosen in accordance

with remark 2.4 ,

Maxt we considar the subcase k >-11 5 again there is a highest

-,

€ % yessqi ! such that |B, | 22 endi, <k . In
1 m i1 1

accordance with the above assumption there are real-valued

i i

. 1 1
coefficients aj'sj'Yj sesesYy and 6j such that

index i‘

-

k}(

an ey, = L G.(yk - y%) + L B.y + X ¢ ye 4
N 529370 3 373 ket . 3
v € 1(8%) v° € 1(U BY)
J o h . o
i=1
ki ki
. 21 Yll(yil ) yll) . . E1 Yil(yxl ) y11
j:‘l ‘] o J =1 j (4] J ) »
kk
Suppose firat that the term a := 2L Q. is zero. In view of the
J=1
k-1 k=1
fact that a. ¢ L(U Si) there is a vector U € L({ U Si) such
* i=1 i=1

252 we cam cewrite equation x) in the following form :

e

T (-2 )yt s T By +u =0
je1 s 4 o (% 373
Y; €1 Bo)

k
Arnaane nf the linear independence of the set LJSi all
i=1

ceetlicientse ("aj)'Bj must vanish and this implies

k-1 k-1
L. cLll z, U0 (U Bi)) s which contradicts our induction assumption.
’ i=1 7 i=1
Ky
o BUPEOIE & = L O, F O .
j=1 9

k
flec wuse ol Eo—balancedness of the set UBv there is a vector
v=1
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-k k k v -k
et ec{UB U UB') with ¢ >0
v [+3
v=1 v=1

such that
k a kk a kk a oo
= — - —— - 2 n——
¥, =X~ 2 X °57; kK °¥3 * T
c j=1 ¢ o k, ¢
o o y. € I(B) "o
J a

k-1
where T is the appropriate vecter ocut of L{( U Si) « Inserting this

i=1

term in equation x) we get the following expression {note that

k=1
eN € L(}J Si)) :
i=1
k
k k k a 0y O
Z (0, -2=c)y,+ L B, -+ cDyl+p=0
j=1 Y LS M o x, 3 K 3773
o . € I{B) o
j o
k-1 k
where p € L( U Si) . The linear independence of the set U 8,
i=1 i=1
implies -0, = = c% = 0 for all indices jsl....,kk +« Both in
3 Kk
o

the case a < O and in the case a > 0 we have now the desired
contradiction similar to that at the end of the proof of the first

assertion of theorem 4.8 . This completes the proof by induction.

Summarizing we get the following

Theorem &4.10
If B = [Bo’Bl""’Bq] is a maximal array, then the =set ZB U {eN}
is linearly independent and the space L(ZB U {eN}) has dimension n .

This result enables us to compute the nucleolus and its linearity

regions.
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5o ©On the computation of the nucleoclus and of ite linearity regions

Let R he the sai !1,...,n} of n players., Then any O«normal-
ized game such that 0 = v(S) = 1 for all S C N can be associated

n
with a unique point v € R2 -n-1 + Without loss of generality we can

assume v{(N) > 0 as otherwise the nucleolus is alwayr the zero-

vactor.

ir v FV¥, is a game and x € 8"  an imputation, let Biiv,x) be

the set of those coalitions in N for which max e(S,x) for S € P!'(N)
is attained; Bz(v,x) the set of those S5 € P'(N) for which

max e{s,x}) , 5 4 Bi(v,x) is attained, and so forth. Let Bo(v,x)

be the set of all fi} (i € N) such that xi = 0 . The collection

B{v,x) := [Bo{v,x),Bi(v,x),...,Bq(v,x)] is called the coalition array

or the array which belongs to the game v and the imputation x ¢ R" .

Theorem 5.1 [E. Kohlberg 1971

Suppose v € VN and x £ R" } then we have x = N(v) if and only

if the aryay which belongs to (v,x) is balanced.

Obricusly we have ]Bo(v,x)f = n-1 for any array B(v,x) belonging
2 =z qame ¢ F VN and an imputation x € R" . This enables us to

apply the results of the previocus chapters,

Tar any given balanced array we now compare the excesses of those

coali*iona which are in the same array part. Together with the con-

Aitian 0 x, = v(N) (for any given game v € VN) we get a system
of n liﬁgg; eguations which are linearly independent and therefore
mozzess a unigue solution x £ r" » Then we have to investigate
waecher this sclution is the nucleolus of the given game v € VN N
Thuer, if 7 and S5 are coalitions of the same array part and if

Yo and Y; are the corresponding incidence vectors, the equation

eli,x} = 2(5,x}) (x ¢ R") is equivalent to: (ys - yT) « x = v(5)-v(T).

Toe maximai avrays, introduced by J.H. Grotte [J.H. Grotte 19?2] s

anables ue to subdivide the met of 21l balanced arrays into subsets
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of arrays which can be derived from the same maximal array (note
that this subdivision is not a partition). Clearly, all coalitions,
which are in the same array part of a maximal array B, are also in
the same array part of an array C which can be derived from B,

In view of our aim this justifies restricting our attention to maxi-

mal arrays.

Now let B = EBO,Bl,...,Bq] be a waximal array and v ¢ VN « In

accordance with the notions of the previous sections we denote by

£

is the incidence vector corres-

-

V(y?) the value v(bg) , where vy,
E ]
ponding to the coaltion b? € Bk(I(Bo) = iyz,...,yz }) . Conmider
o

the following system of equations (PB) :

T . r . o
f 11 11 / ! 11) 11 \

! Y, - ¥y f x, v(yo - v(y1 )
i . . f . |
| : ol s :
i i i i i
1 1 ; | 1 1
j Y, - Yk | . vy, V(Yki )
l *1 ! i 1 H
| . : ! : l
i : f f -
i i i
m m m - m
Yo - ¥, viy ) viy, ")
: Lo B .
L] } L]
i i i i
m m m
yom T Yk, v(yo ) - v(yki )
4] m
o | 0 .
[ |
- - I
] I hd ’f
. o
Tk ” ;
[+ ] ° f; :
ey ! \ x_ f \ v(N) ;

Obviously the rows of the matrix are just the elements of the set

ZB U ieN} . Sae the definitions berore lemma &.7 . Therefore
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theorem &.20 implies that the matrix is quadratic and that (PB)

has an unique solution. This justifies the following definition.

Pefinitien 5.2

If B = LBQ,ET,...,Bq} igs a maximal array and if v ¢ VN s We call

the molution x =: NB(V) € R" of the system (PB) the pseudo-nucleolus

of the game ~ relative to B.

Rawarks 5.3

1. The pseudo-nucleolus of a pame v € VN relative to a maximal
array B cevends only on values of coalitions S € KB y i.es on

values of the "critical coalitions®,

2. Ng(v) may not be an imputation for there can be negative

zomponents,

Now we have to answer the guestion under what conditions the pseudo-
rucleclug iz equal to the nucleolus of a given game. For this pur-
vose let F, be the set of all possible maximal arrays B such

&zt 4thers uxiastsg a game v € VN for which the array belonging to

{v.M{v)) car. be derived from B. Again, the set FN gives rise

to & clasrification of the set of all balanced arrays which have to

be considered ze belonging to any game v £ V and its nucleolus Niv),

N

Definition 5.%

Toat T i?ﬂsﬁﬁs,..,qu be a maximal array. Then we call the set

:b-n FREEE T A ‘4 F VN; NB(V) = oa QI(NB(V)) = see = eq(NB(v))}

tle game recion belonging to the array B.

NMow we c#:: answer our guestion.

Theorom .5

If B = [Bn,B,,...,Bq] is a maximal array out of F and if

v € Vi, than
1Y m_po

npiles NB(V} = N{v)}
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Proof:

To prove the first assertion we notice that B ¢ F implies that

there is a game v, € VN such that the array C ="[co.c1,...,ct]
belonging to (vo,N(vo)) can be derived from B. The excesses

of coalitions (with respect to N(vo)) v vhich are in the same array
part Ci y are equal. Thus, because of the definition of derivations
of arrays and in view of the uniqueness of the solution of (PB) we
have NB(VO) - N(vo). Clearly all conditions of the definition of

DB are satisfied; this proves v, c DB'

To prove the second assertion we notice that if v € DB’ the vector
NB(V) is an imputation., Obviously the array belonging to (v,NB(v))
can be derived from B and therefore is balanced, Theorem 5.1
states NB(v) = N(v) .

Remark 5.6

The converse of the second assertion of theorem 5.5 is not true.
Consider the following example in the case N = ‘1,2,3] {in the

following we omit the brackets when describing the coalitions) :

Suppose +v(N) = 1 and v(i) « O for all i ¢ N ; suppose further
v(23) = 1/2 and v(12) = v{(13) = 1/6 . Then we get

N(v) = (1/4;3/8;3/8) and the array C = [co,ci.cz,c ] belonging to
(v,N(v)) 1is obviously balanced (Co = @, C1 = {1,23 ’ 02 = {2,3},
C3 = {12,13]) « Now it is easy to see that both of the following
maximal arrays A = EAO'Ai'AZ'Aj’Ak] and B = [Bo'Bl'Bz'Bj'BAJ
satisfy N(v) = NA(V) = NB(v) :

A, = £y Ay = {1,230, A, = H2,3), A, = {12}, 4, = {13}

BO = ¢' Bl = 11123le B2 = i12.13},33 = 12}1 34 = 13} .

But the array C can only be derived from A and we have v ¢ DA ’

but v § D, .

For any given maximal array B_E FN the game region DB is easy

to compute: after solving the system (PB) we get a vector

NB(v) ¢ R® whose components are terms v(T), T € P'(N) . The con~-
ditions in the definition of DB give rise to a system of inequalities

in terns of v(T), T € P'(N) , which determine the game region Dy -
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If a glven game v, € VN satisfies all these inequalities, we have

NB(vo} = N{vo} in accordance with theorem 5.5 . Thus we now can
compute the nucleolus of all games v € DB .

Remerke 5.7

-

e E. Kobhlle:g has defined the smet @B i= {v : v € VN 3 the coali-
tion array tist belongs to (v,N(v¥)) is derived from B/ s, where B
is any maximal array of the set FN [E. Kohlberg 19?1] + Obviously,
we have wB = DB which is now easily to compute., In particular,

the linearity of the nucleolus on mB and the convexity of the region
ﬁB
Eote that these results are also from E. Kohlberg.

follow directly from the above definitions and from theorem 5.5 .

2. For any name v € V. let C be the array belonging to (vyN(v)) .
If £ iz net meximal and if F°' C FN is the set of all maximal
arrays fror which € can be derived, then v is an element of the

common border of all game regions DB with B € F* ,

3. In the cagse of n = &4 the set of all maximal arrays
B = LBD,Bj,.,.,Bq] such that Bo = @ is a proper subset of FN .
flote thai a'l corresponding game regions include J.H. Grotte's

Cantsral Cnue.

J.H, Grotts ras mentioned that the set of all maximal arrays B ¢~ FN

give rise Lo a subdivision of the game space VN into a finite number
of regions BB y on each of which the nucleolus is a linear function
{rote that iFNl < ®) . Therefore, we now can theoretically compute
“he waeloziun for any game v € VN 1+ first we evaluate all game
raalops D{ helonging to maximal arrays B € FN + For a given game
v s ¥N we *aen have to look for a "fitting" game region DB‘ .

This reg:on exists and NB.(VO) will then be the nucleolus of the

gRR2 VY o

There in o m=actical difficulty in the fact that even for a small

numher o players the number [F is very large. Therefore, we

n!
now extend ii:e game regions DB (B ¢ FN) such that the nucleolus
remains to pe a linear function on these larger regions. In view
of the nuclecius being a piecewise linear function we hope to achieve

ths larazst 2onnected regions of linearity., This will also reduce
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the number of game regions to be evaluated for computing the

nucleolus,

First we give an example in the case N = i1,2,3} + Consider the

following maximal arrays A and B :

Ao=ﬁ B°=¢

A, = {1,23} B, = {1,23]
A2= {2,13} Bz=' ’2313}
Ay = {12} B, = {31

A, = {3} B, = {12}

Obviously, for any game v <V, we obtain NA(V) = NB(V) . Further-
more, both game regions possess a common border because they have
common derivations. Therefore it is convenient to consider the
union of both game regions. (Note that both arrays only differ in
the arrangement of their cne-coalition array parts.) In accordance
with the notations of section 2 we now give the following defini=-

tion.

Definition 5.8

Two maximal arrays B and C are called strongly-similar if and

only if the following conditions are satisfied:

i) B = C

o] [+ ]
ii) AB = .AC
iii) ir Ay = A, # ¢ , then Bp=C,¢
14 i,

We write: B~ C

By the above definition we obtain a collection of those maximal
arrays which possess the same set of critical coalitions and for
which the arrangement of their more-coalition array parts is the

same. Obviously, relation " ~ " is an equivalence relation on the



- 37 -

set of all maximal arrays, For any maximal array B we denote the

corresponding equivalence class by [B] .

Lemma 5a 9

Let B = LB(;?Bl’G..’Bq] and C = [Co'ci'-..’crj bhe maximal
arraves of ithe set FH e If B~C then

i) qQ=r

ii) M _{v) = ¥ _ {v} for any game v € Vg oo

Proo?f:

The first ascertion follows directly from lemma 4.5.2 and from
the fact thau IBO[ = }Col . The second assertion is an immediate
consequence of remark 5,3.1 and of the fact that 2 = Z {see

B C
she notationsz before lemma 4.7).

The following theorem is important for the practical computation of
the nucleoins, Its proof is immediately. For any array B € F

let D._7 he the set U D. »
LB celB] ©

N

Theorem 5.10

If B £ F: and v € DLBJ s then NB(V) = N(v)} .

For any array B € F E. Kohlberg's game region mh = DB (see

N
remark S.¢.:;) is obviously & subset of the now achieved larger

game regior. Dy The nucleolus is a linear function on D[B] H

B]°
fartharsore, D[B] is a closed Bet. Tocompute the nucleolus we

asve wainly azad these game regions,

in additicn wo definition 5.8 we now abstract from the arrangement

nf the more~coalition array parts {see the notations in section 2) .

Reil

Vatinition

T™wo maximal arrays B and C are called weakly-similar if and only

if the follnwing conditions are satisfied:
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i.e, the sets of the critical array parts are the same, We write:
BrcC .

Again, by relation " ~ we obtain an equivalence relation on the
set of all maximal arrays., The correasponding classes are denoted by
[B]" . oObviously, if B,C € Fy s+ then B~ C implies B <.
Moreover, B ~ C implies KB = K. ; i.e. the sets of critical coali=

C
tions are equal., Similar to lemma 5.9 we now obtain

Lemma 5.12

Let B = [Bo'Bi""’Bq] and C = [Co,Cl,...,Cr] be maximal arrays

*
of the set FN « If B~ C then

i) qQ=r

ii) NB(V) = Nc(v) for any game v € Vy o

The proof is immediate.

&
For B € FN let D[B] be the set clg [B].Dc +« Analogously to

theorem 5.10 we get the following theorem:

Theorem 5,13

Let B be a maximal array of the set F Then it follows:

N L
i) v € DLBE‘ implies Ny(v) = N(v)

ii) D[Bﬂ‘ is a closed set

]

iii) N{v) is a linear function on DLB]‘

L}
iv) If for C € F, and C 7B a game v € Vy is an element
- -
of D[BJ‘ N D[C] y then v 1lies on the common border of

L
some regions DB' and Dc. s where B' € [B] and
"
ct € [c] .

Prooi:

The firat assertions are immediately clear, To prove the fourth
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aseartion we notice that there are maximal arrays B* and (!

such that v € Dy, N D., , where B' ¢ [B]’ and C' € [c]‘ .
Further we have NB,(v) = NC.(VE because of the uniquenaess of the
nucteolus. Then in view of B % C the array belonging to (v,N{v))
is not maximal. Therefore this array can be derived both from B

and C' . This proves the assertion,

We conjiescture that these game regions D[B]. (B ¢ FN) are the
largest regiong on which the nucleoclus behaves like a linear function,

but we do not have a proof,

™he following notation of “"normalized arrays" enables us to achieve

a better Aescription of the game regions D[B] » But first we explain
a procedure which allows us, for any given array B € FN ¢+ to construct
a corresponding maximal array B' such that B! ~ B and such that

the array B' is normalized in view of the following definition 5.14 ,
Let B = [Bo’BI"°°'qu be an array of the set FN such that Bo =@ .
If there are indices t ¢ 52,...,q} such that 1 = i1 < t<x< in and
IBtI = 1 , thon the following array B' which we obtain by shifting

the array partis Bt with IBtI = 1 on places with indices 1 > im ’

is balanced, oo (see theorem 3.2}, Because there is no change of
the set ¢l ~ritical array parts and of their arrangement, the array

B' is maximazl and we have B' ~ B,

. r - 3
- s = : s e 8 \C L J
Now let B LBo’Bl' ,qu FN be an array such that Bo F @

B
adueition ius kz £ il,...,q} be the smallest index such that for all

R B i s
array parts B§ with 1 > kc the Bo-subset B; y corresponding to

In the cive of A = @ we define the index i to be zero. In

the array pat. Bi , is empty, If there is no danger of confusion

i oanlt top subindex B, Again, if there are indices t F‘{Z,...,qi
suci tha*t 1 < t < max (kB, i), |IB,] = 1 and the B -subset st
o m t o ] .
is empty, then we obtain a balanced array B' by shifting thome array
.. B
parte Jt vre places with indices 1 > max (ko, im) « Obviously,

B' is maxival and we have B' ~ B.
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Definition 5,14

1. A maximal array B = [Bo,Bl,...,Bq] with Bo = @§ is called
hormalized , if there are no one-coalition array parts Bi such that

im>.i. (i,imG ii,ooo’q}) .

2. A maximal array B = |B_,B ,...,Bq] with B# @ is called

1
normalized , if there are no one~coalition array parts Bi with an

empty B -subset B such that max(kB, i)>i
o o o' m

. . B .
(1’1n’k§ € [1,....Q} with ko as defined above) .

Example:

The following maximal array B (N = {1,2,3,4!) is not normalized,
because the Bo-subsets Bz and Bﬁ are empty. We only write down

the first array parts:

B, = l1,2} , 3 = {a3sa} , B, = {a3a} , B, = {12} , B, = D3af ,
B, = {13,241 , .. .
Obviously we have ko = 2 and 11 = im = 5 + By the above described

method we obtain the following corresponding normalized array 8!' ~ B :

B! = {1,2} , B} = {2341 , BY = {134} By = {13,241} , B, = {12} ,
BL = {36l , ... .

As remarked above the set FN contains all maximal arrays B with

Bo = @ , and particularly all normalized arrays C with Co =@ .,

The following example shows that this is not true in the case of a
normalized array C with Co F8 (N= {1,2,3;) :

c, = 11l ,c =230, ¢, =1, ¢

o

= ilz} [} CI*E {13} ]

2 3

Cg = {23} .

Obviously C is a normalized array, but there is no game v € VN

- such that the array belonging to {(v,N(v)) can be derived from C .

3
(Note that & x, = v(N) must be greater than zero.)
i=1
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Remarks 5.15

1. If B iz a maximal array of FN’ then by the above mathod we
can always find an array B' which is normalized and which can

zerve as a redresentative of the class [BJ .

2. For normalized arrays B = LBo’Bi’°"'Bq] it follows directly
from theorem 131.2 that by changing the arrangement of one-coalition
array parts on places with indices out of the set iim+1,...,q} resp.

out of imax {ko,im) +* 1.....q} we again obtain another normalized
i

m max(ko,in)
array B' ~ B. (Note that L{(B U |JB.,) resp. L(B U tJ B.)
o ie1 i o i=1 i

has full dimension n,)

3. If B = LBO,B ,...,Bq] is a normalized array of F with Bo = g ,

1 i N
ihen all normalized arrays B' ¢ [BJ have the same im-trunoationa
{note that im = m) . The analogous statement is not true for nor-
malized representatives of an equivalence class [C] s+ where C € FN

and Co ? # . See the following example (N = f1,2,3,4§) :

c_ = t1,21 , c = l234} , ¢, = l13,24] , c, = faa) , o..
c! = {1,2} , Y = {234} , c) = {13,241} , cy = {134} , ...

Both arrays are normalized and belong to the same equivalence class
with respecy to relation " ~ " , Note that in both cases we have

max (kogim) = 3 .

+

4, 4T two normalized arrays B and C with Bo = Co possess the

same i -truncation resp. the same (max (ko,im))-truncation, then
jalxcﬁ

For evrays P € FN with Bo = @ we now are able to describe the
aamse ragion .

LB

LJ

_ema 5.15

auch that

if B = [Bn’ﬂl""’aq] is a normalized array of FN

Bo = @ , then it follows:
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i) D[B] ={vil, vEV and NB(v) = 0

'N
2, Oii (NB(V))E tee = eim (NB(V))
3. ak{NB(v)) = eil (NB(v)) for all indices
k

kK € {1gnoon|q‘ s k >ill P4 llk € iil"..'inl

is the smalleat index such that

i
Y
(UBV) UB

v=1

Kk is P-balancea! .

ii) D[B] is convex .

Proocxf:

When the first assertion has been proven the second is immediately
clear. To prove the first assertion we now assume v € D[B] .

Then there is a maximal array B' = [B;,Bi,...,B&] € [B] such that
the array B" belonging to (v,NB(v)) can be derived from B' and
therefore is balanced. Further we have NB(v) < 0 and

e (NB(V)) e @ (NB(V)) because of B'~ B , Now, if for all

i i

1 m
coalitions of the one-coalition array parts of B' the corresponding

excesses are smaller or equal than e (NB(v)) s then the above third
m

condition is satisfied. Suppose, on the other hand, that there is
a coalition T out of the one«coalition array parts of B' such
that without loss of generality its excess O satisfies the follow-
ing inequalities:

' : =
eil (NB(V)) =2 a > eil+1 (Ng(v)) = eim
the balancedness of B" and in view of the fact that B' ~ B, the

set (B U...U B ) U ET} i! ¢-ba1ancedo If k 6 ii +1'-..'q!
i1 il m
is the index with B

(NB(V)) +« Then, because of

e = {1} , the @-balancedness of

- - - .S
(Bi1 Usaald Bil) UT implies }lk i, and we have
U = ek(NB(v) = e (NB(V)) = e, (NB(V)) .

1 1k

Conversely, let v € VN be an element of the above described set.
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He now have to specify an array B'® € [B] such that v € DB' N
First we notice that NB(V) is an imputation. If for all indices

-0 t i 1 :.t { ( = {':’ \ i ig-
k € {iu+1, ol he inequality . NB v)) eimﬁﬂB JY is satis
fied, then obviously there is 2 maximal array B' with B* ~ B

such that ihe arrays B' and B only differ in the arrangement of
their one~coaiition array parts and such that the array C belonging
to (V,NB(V}) can be derived from B! {see remark 5.15.2} . Thus
£ is balaced and we have NB(v} = M{v}) . In view of remark 5.7.1
E!

index t_ € {1,4..9a] with t_> i such that the inequalities
eil{NB(v>) = etD(NB{v)) > eil+1{NB(v}} =2 eim(NB(v)B are satisfied,
then the third condition of the above definition atates the existence

we now have v € D_  C D[Bq » If, on the other hand, there is an
J

of a maximal B" with B" ~ B from which the array belonging to
(V,NB(V)) can be derived. This array B" can bhe obtained from B
by an appropriate change of the arrangement of the one-ceoaltion

array parts and by inserting the array part B betwezen the parts

t
.}
B and B, » Again we have N_{(v) = N(v) and this implies
1 i +1 R
v €D, C D « Thie completes the proof,
B LBW

For small n € N (e.g. n= 3, n = &)} +the above descrintion of the

game region Dy

B is uzeful to compute the nucleclus for such games
and to determine the reqgions DLB] o NMNotice that, if B is a maxi-~

mal array of the set FN with Bu = @, we only have to know the
im-truncation of any normalized representative of the class [B] .
This is 29 egrential reduction of the s2t of all maximal arrays to

he ronziderec e.g. if we have a normalized array B with Bo = 8

and im = 1 , then IBi| =4 {lemma 4.6.1) and D[B’ contains
- J

about 10 ! game regions D, with B' € 18] .

Por any srray B € FN with Bo = # there is in general no des-

cription of the region D[BJ' like that in lemma 5.16 . But we

have the feollowing

Lemma 5,18

For any arravy B £ FN with BO = @ the game region D[ -* ig
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connected.

To prove this lemma it is sufficient to note that J.H, Grotte's
Central Game is an element of all game regionﬁ DB‘ with B! ¢ LB}.
To compute the game regions D[BJ (B ¢ FN and Bo 7 #) we first
have to evaluate partial regions as follows:

We devide the set of all normalized arrays of the class [B] into
disjoint sets of arrays with identical (nax(kb,im))—truncations
{see remark 5.1i5.3) . For each of these subsets we choose a repre-

sentative B' € [B} and evaluate the region

d = v : 1, v € VN and NB.(V) =0

2. el(NB'(V)) Ztoo;:— )(NB.(V))

®max(k ,i
o''m

A% <.'_ o
3. ek(NB,(Vi) = elk(NB,(V)) for all indices

kK € {1,000yq] and k > max(k_yi_)

1k € il,...,max(ko,i-)} is the smallest

index such that the set

e

' i - .
(inBv) U B} is B° balanced|

Then dB' is convex and DLB] is the union of all these regions

dB' » BY £ [B] +» We conjecture that for B F FN and Bo 7P the
regions D[B] are also convex and that the regions D[B]* are

connected, too.

Again we see that for computing the regions D[B] , B € FN andm
Bo 7§ we only have to consider the normalized arrays B' € [BJ
with different (nax(kogim))-truncations. i.e. we have to know all
(max(k_,i_))-truncations of arrays of the set [B] (see remark
5.15.4) .

Therefore, if we wani to compute the nucleolus or its regions of

iinearity, we can reduce our interest on normalized coalition arrays.



5. Construction of nermalized arrays and computation of

the nuclieolve for 3I-person-games

5,1 Consiruction of nermalized arrays

In view of lemma 4.3 and lemma 3.7.2 we first have to evaluate
the smet Mi of all @-minimal sets (M= {1,2,...,n}) . In the
case of N = {1,2,3,&% thege sets have been determined by

“.5. Shapiey {L.S. Shapley 196?} « Furthermore, B, Peleg has
given a procedure to evaluate the set Mg+1 e if the set Mg is
knewn |[B, Peleg 1965] .

To consiruct normalized arrays B with Bo = § we proceed as

follows:
Firat we choone a Feminimal set of Mg and dencte this smet by Bl .
5.4 iBii = n we have dim L(Bi) = n and all following array parts

have to be cna-coalition parts, arranged in any order, because we
want the array te be maximal (see remark 3.3.2) . Thus, according
to lemma 4,2 the arrays are maximal, normalized and belong to

the same equivalence class with respect to the reilation " ~ 4

Now assume fBli < n . Then the array te be constructed musat possess

e further mecre-coalition array part. Furthermorae, the set Bl U B2

hag 2o be 2 fF~oxtension of 51 {lemma 4.2) . Therefore we have

to form the union of the sat 31 with another set B' £ Mﬁ with
N )

2 " 3 n ] " g
B: ¢ Bi such that there is no set Ba N with Ba L 31 anad

? " < ¢ & " } a b
81 ) 52 - B1 U Ba {see lemma 3:.7.2 Then the set B1 U B2 is

% ~balanced and we denote the set Hé\ B, by B In addition we

.
have to choose the set B, in such 2 vay that TBI U Bé] = ]Bil + 2,
because we want the array to be nermalized, This implies Ile < 2,
I we have 'Sl U Sai = n we are ready and all further array parts
have to be on~-coalition parts (see the notations in lemme 4.4

and remark 2.3.2) . Otherwisme we have to form further @-extensions

X

in the abovs described manner, until we have | U Si] = n for an
i=1

approprisi. iateger 1 =2" - n (see lemma 4.6.2). Note that this

procedu:e anz* end because of corollary 3.6.2,



- 45 -

The whole array we obtain by addition of one-coalition array parts
in any ordering., Obviousiy the arrays achieved are normalized
and belong to the same equivalence class with respect to the re-

lation W ~ 0 |

The construction of normaliized arrays B' with Bé.f # can be
reduced to the above case: for each of these arrays B' with
B; 7 P we in the following construct a corresponding unique nor-
malized array CB' with Cgl =@ . By a converse procedure we

then can get the original array B' .

Let B = [B;,Bi,...,BéJ be a noruwalized array with B; 7 ¢ . Then
we withdraw all array parts Bi with Bi n B! ¥ @ ; note that for

these array parts Bi we have i 7 1 and IBiI = 1 according to
L
remark 4.2.4 . Now we define CE to be the empty set, and the
B 19
array parts Cj to be the union of Bi and B;
{3)

(i(j) 3 il,...,q]) y this in accordance with the ordering of the

remaining parts of the given array B' .

In view of remark 4.2,2 , lemma 3.7.1 and lemma 4,3 the array
CB. is maximal, Furthermore, the array CB' is normalized because
the (max(ko,im))-truncation of the normalized array B' does not
possess one-coalition array partas Bi with empty corresponding

B'-subsets B'' .
0 o

Example for the case N = {1,2g3,&}

By = 11,2} ,By = {234}, By = {56}, By = {13,24) , ..o

Obviouasly B' is normalized ané we have nax(ko,im) = 3 . The
B .
following normalized array C we have achieved by the above

described procedure:

B* B?
c, =%,¢ = {z34,1} , €

B!
2

B? .
= {34’2} s c3 = {13‘2’*; g esse
Thus, if we know &ll normalized arrays B with B = # , we now
can obtain all normalized arrays B' with B; # # by the reverse

procedure described above. Note that for the practical computation
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1

o? the game regicns Srai (B ¢ F“) we only have to Xnow all
vosgible different kinds of im-truncations resp.

{max(ko,im)ﬁwtruncations of normalized arrays.

6.2 Computation of the nuclenlus fer “he general 3-person game

To give an example for the nrevious sections we now compute the
nucleolus of the peneral Jl-person-game and iteg regions of linearity,
Hote that J.H. Grotte has already evalusted the nucleolus for all

superadditive J-person-games [J.H. Girotte 2970 .

By a gsuitable permetation of the three plavers we can assume

v{23) = v{13} z(12) feor all games v € Y, « Then for such a game

x..%.) satisfy X, Z x T x and

{x,.
172 2 1

the components of N(v) := (x

Laad

this implies ef{{3],M{v}} < /{22!, N0v)) << e({1},N(v)) (see [M. Maschler;
B. Peleg 1966]) » Note that this fact has %o be considered when
constructing the necessary normalized arrays. For the purpose of
shortening we only write down the i'-truncations resp. the

(max(ko,im}}-truncations of normalized arrays B ¢ F, , The inequa~

3

lities determining the linearity regions DFB} are already reduced
[ -

as much as possible (see lemma 5,.156) .

6.2.1 fopinimal pets for N = [1.2 3! up te permutations of the
] P B

plavers

1

1 § !
S5 112,123,230 5 {123}

f1,2,21 5 11,23}

-

6.2.2 Nermelized arravs

A -4 B =g
4] o
A, = 11,2,3] B, = 112,13,23]
< ] ? Dﬂ =2 ) Eo = ¢ FO - 51}
c, = :1,233 o, = {1,23] £ = {1,23] #, = 123
. = 2,13 D, = {1z, 13} E, = i2,131 F, = {2,13]
1 o
o = 1 i, = 21} Jo = i1,2! Ko = £1.2}
= 123} I, = {23} 3. = {23} , = 113}
- = i1z,130 %, = dz,3) I, = {13} X, = {23}

oy

b

29
EY)



Note that for the corresponding arrays we have J ~ K i all other
corresponding arrays belong to different equivalence classes with
respect to relation "~ " , In view of the previous mentioned
permutation of the players all possibie normalized Arrays possess

one of the above truncations.

6.2.3 Computation of the game regions D{E] {(see leuma 5,16)

For any 3-person-game v €V we define

3
a = v(12)
b := v(13)
¢ = v{23)
a) NA(V) = {VEN} ’ V;N) ’ vgnﬁ)

- v}
DLA] = iv : 0= ¢ a—"ﬁ“‘%

b) NB(V) - (v(N)+ a + b «2c v{N)+ a +c-2b v{(N)+ b + ¢ - aa)

3 ! 3 ! 3

vil)+ ¢ .

= ; a+ b2 2 - viN)}

D[B] = {v :a+ b

In the case c = v(N) only the last inequality is relevant,

otherwise oniy the firsi one.

) Nc(v) - (v(N;- c , V(N;- b , b ; €y

« viN}= ¢ - vi{N)- ¢

D[c]siv:a- > ;b2 i ¢ = vwim}

& Ky () = (vtﬁg- c | v{N)+ 2a Z'c = 2b v(N) + 2b4+ c - 2a,
D[D] = v :az Eiﬁ%:.& i a4 + b= V(Ni+ = i ¢ = w(N)|

o) N (v) = {viﬁi- e | v(Ni+ e | V(Nie <)
Dizi= lv:es - X <o s vl

Up till now we have achieved the game regions necessary for super-

additive jeperson-games.



f) N (V'} = %0’

D[F] = {v:a<0; b<viN)j; c=<viN)}

<
oo
ilﬂ.a
D
+
>
t
S
2
~—
brd
b
-+
<8
]
]
=

9} N (v}

n
Ein )
o]
-

]

D[67 = v i a+ b= 2¢ = viN) 3 HD=vi{N)ra; e= vi(N) |

\ - v{M} vi{M}
h) NI(V) {0, 5 s = )
D[I]={v:a—‘=b50; c = vimi

In view of the general assumption v{S) = 0 {8 C N) the game

-

region Biﬁl contains the recions D[F] and D[Ij

i) NJ(V) = (0,0,v(N}))
Dryi lv:pZ v(Weas; c2vM)}

Note that D[J] im the wuwnion of the partial regions d and

J
d (see the end of the previous section).

K
In view of the ahove menticned permutation of the players we think
that these game regions are at thes game time the largeat regions on

which the nucleolius iz a linear funciion.

" Recipe "

¥or any giver J-person game we Tirst have enmure by a suitable
permutation that a = b = ¢,

£yt
" I R .
£ ¢ & e, then case a2} and NA{V) will give the nucleolus ;

viN)
3

Furihermore, . f ¢ = w(N) then one of the regions of the cases

if S ¢ = v{N) , then we have to look at the cases b) to e) .

b), g) or i! will be the "fitting® game region,
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