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1.5 Introduction

The study of measurable and integrable selections from a
correspondence (set-valued function ) has been of interest for

some time (e.g., see [Al, [H], etc.).

Here we take up the study of distributions of such selectinns,

The motivation for doing this comes from Mathematical Economics
(see [K, section 7]; the reader interest«d in the economic

applications is referred to [H-H=-KI]).

The first question we consider is the following: Does the
distribution of a correspondence determine the distributions of
its selections? If the underlying space contains atoms, then of
course we cannot expect an affirmative answer (e.g., consider the
correspondence whose image is always the set {1,2}, once on a
space consisting of one atom, and once on a space consisting of

two atoms). But what if the underlying space is atomless?

Consider the following example (which is essentially a
reformulation of an example due to G. Debreu [K, section 7]).

Let ¢7(t) = {t,-t} for all t e [0,1] and
_
{2t,-2t} , for t e [0,1/2]7,

¢, (t) =<

L{Zt-l,l-Zt} s fer * & (142,1] -




Clearly, ¢; and ¢2 must be equally distributed by any reasonable

definition of this concept. However, the distributions of their

measurable selections are not the same: let

iy s for t e [0,1/2] ,

£(t) = =

T , for + = T1/2,11 ,

then f is a measurable selection from ¢2, but there is no

measurable selection from ¢ with the same distribution.

The above example, in giving a negative answer to our question,

raises serious difficulties as to possible applications of the

concept of "distributions of selections". However, most of the

difficulties can be eliminated provided the following is true: if

3]

and ¢ are equally distributed correspondences, then the
2 :

closures of the distributions of their selections are equal-.

Theorem 1 is the precise formulation of this statement.

In Theorem 3 we show that when t+he measurable selections are

tpicted to have a constant integral, the closure of their

distributions still depends only on the distribution of the

correspondence (this restriction is of importance in Mathematical

Economics; indeed, our Theorem 3 is a well-known conjecture of

RﬁJC

Aumann [K, section 71).




2 . Preliminaries

We denote by R' +the 2-dimensional Euclidian space, and

by j%dRz) the o-algebra of its Borel subsets.

Let (A,#%,v) be a measure space; in the following, all measure
spaces will be assumed to be complete (i.e., d¥ contains all
subsets of null sets - see [H,D.I]). Null sets will be systematically

ignored.

Let f£3(A,#,V) +-R2 be a measurable function. The

-1

distribution D of £ 1is defined as v e f (i.e., the induced

2 L , 5
measure on B®™)). The seguence {fn} converges to f in

distribution if the sequence ’{Df } converges weakly to Df«,
n

where weak convergence of measures is defined as usual by
1 ¥u if fhdun + [fhdu for all real, continuous and bounded
functions h. The topology of weak convergence can be metrized,

e.g. by the Prohorov metric p, defined as

pluysty) = inf{e > O]pl(B) € U, (B )+e and Uy (B) < ul(B€)+e

for all Borel subsets B},

note that the fn's can be defined on different spaces, but
their range must always be in the same space.




where B_ = {x|d(x,B) < €}.

%*
Let ¢: (A,ft,v) RY pe a correspondence, i.e. ¢(a) is

a non-empty subset of R* for all a e A. The graph of ¢

is the set

¢
if

an

Gy = {(a,x)|x e ¢(ad}.

has measurable graph (or "is Borel-meaturable", as in [AD
%

G¢ € :R@%(Rz)o ¢ is integrably bounded if there exists

integrable function h: (A,ﬁhﬁ) > RY such that

-h(a) € x € h(a) for all x ¢ ¢(a) and for all a € A. ¢ 1is

closed-valued if ¢(a) is a closed set (in Rg) for every a € A,

The set of all integrable selections from ¢ (i.e., all

integrable functions f such that f(a) € ¢(a) for all a € A)

is

denoted §C¢, and f¢ = {SEf|f €é€¢}a For every B, let

o"1(B) = {a € Al¢(a) N B # ¢}

(the [weak] inverse of ¢).

£

we write ¢: A.->-[RR also for correspondences, but then we mean

b(a) < RZ

correspondences are always denoted by the Greek letters ¢ or V.

for all a € A; no confusion will arise, since




and

All the definitions up to now are standard (see, e.g. [B]

[H]). At this point we must make precise the notion of

"equally distributed correspondences". We therefore define the

distribution D¢ of the correspondence ¢  having a measurable
graph, by Dy =V e 61, This definition is meaningful since by

‘the projection theorem [H, D.I(11)], if ¢ has a measurable graph

then

o"1(B) is measurable for all B eB®"*). Note that D,

is not necessarily additive; if, for all a € A, ¢(a) consists

of just one point, then this definition coincides with the usual

one for functions. We say that ¢4 and ¢, are equally distributed

if D

substraction, K

op 4y

The following notations will be used: ~ for set-theoretic

€ for the complement of K, and Jff for

ffla)dv(a). The space ([0,11,&,A) is the unit interval with the

A

Lebesgue measure A. For a set F  of functions with the same range,
D(¥) wi.l denote the set of their distributions, i.e.,

DEF) = éﬁfé f eF}, and DHF will be its closure with respect to

the weak convergence of mecasures.




3 Statement of the Results

In the following, (Ai’ﬁi’vi) (for i = 1,2) will always
be non-atomic complete probability measure spaces, and

$.: (A"ﬂi’vi) > B*  two correspondences with measurable graphs.

Theorem 1. Let ¢l and ¢2 be integrably bounded. If

) and ¢ are equally distributed, then D ) = D& ).
1 2 ¢l ¢2

The following theorem is an immediate consequence of Theorem 1.

Theorem 2, Let ¢l and ¢, be integrably bounded and

closed-valued. If ¢, and ¢, are =qually distributed, then

16, = 16,

Theorem 3, Let ¢, and ¢, be integrably bounded and

closed-valued, and let x € rY, If ¢, and ¢, are equally

dibtributed, then

5({fA¢£§¢1I ff = x} = D{g €$C¢ | fg = x}) .
T . 2




Clearly, if ¢i =y e hi’ where the functions

hl and h2

have the same distribution, then ¢, and ¢, are equally distributed

(this

decomp

is, indeed, the case in Mathematical Economics)

“equally distributed correspondences.

. The following

osition theorem asserts that this is the general structure of

Theorem 4. Let ¢l and ¢2 be .. sed-valued. Then ¢l

and ¢, are equally distributed if and oniy ii there exist

h,: <Ai’ﬁﬁ’vi) + ([0,1],¥%,)2) with the same distribution and

v: ([0,11,£,0) »RY, such that b = e h, for 1=

1,2,



4. Proof of the Results
TIn the procof of Theorem 1 we rely on the following lemma:
Lemma A- Let (A.,f;,v) Dbe a non-atomic measure space. Let
) m m
{Si}i:o c and {ui}izo° 0. 2 0 be such that
(1) v(U S:)3» ) oy, forall Ic (Gt aoesm}
; i . i
iel iel
and
m m
(2) vy Sy = L9
i=o izo
m
Then there exist disjoint sets {Ti}'~ such that T. < S.
i=o i i
and v(Ti) = Qs for all i = 0,1l,00.9Mme
The proof of this lemma may be carried out in complete analogy
with the proof of a well known result in Combinatorics (see [H-v1).
Since it is quite short, we repeat it here.

Proof.

We use induction on me. For m = 0 it is trivial.

Let m > 0. We distinguish two cases.




Case (i), TFor some I g{o,l,uoosm}, there is equality in (1).

Then it is easily verified that both {Si’ai}“

je7 and {Si’a'}i¢l

1

satisfy (1) and (2), and we may apply the induction hypothesis separately

to each one of them.

Case (ii), For all I g;{o,l,oco,m}, there is strict inequality
in (L1). In particular, v(SO) > o, and VIS N ;ﬁosi) < a,. Since

]
v 1s non-atomic, we may find an S, such that

i
SO\ U Sic Soc SO
i1#0

{
and the replacement of SO by SO will preserve all inequalities

in (1), but at least one of them will be an equality. Clearly,

(2) 1s still wvalid, and we may proceed as in case (i).

Q.E.D.,

Proof of Theorem 1

Let f e%q) and let € > 0. We must find g s$¢ such that
1 2

Q(Df,Dg) < €,

Since f 1is integrable, there is a compact set K 1in R*

=-1,..Cy. - C
such that vl(f (K™)) < e, Let Ky = K and let Kis Kz,oao,Km

be a partition of K into disjoint Borel sets of diameter less than €.




every

The

(1)

(2)

therefore we may apply Lemma A to get a partition {T

such

b9 N

= 10 -

. -1 -1 .
Define o, = vl(f (Ki)) and Si = ¢, (K.) for i = 0,1,...,m.

1

Since ¢, and ¢, are equally distributed it follows that for

I C{Ogl,ooogm}

| -1 -1
Vo (d,"C UK = v, (0, (U K:)) = v (U S:)
17 ijer 2772 jer € iel T

Ki’s are disjoint, hence

B¢

-1 -1 -1
vo(o,"CUK:)) 3 v (f “(\JK:)) Z v, (f “(K.)) = 2 O,
1771 ie L 1el ieI L * ier t

We now have

v, U8, 3 WZ as for all I < {0,1,...,m}, and
1el 1el

m m
Vol US:) =1 = ) oa;,
1=0 i

i

o gk -
that Tic Si = ¢2 (Ki) and \)Q(Ti) e aio

Define gIT to be an integrable selection of the correspondence
i

K3 since P is integrably bounded, this selection is possible
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[H,D.II.4, Theorem 2]. Then g e$€¢' and it is easy to verify
2
that p(Df,Dg) < €,

Q.E.D.

Proof of Theorem 2.

Let x € f¢; and let f 8534) be such that Jf = x; by
1

Theorem 1 there 1s a sequence {gn} conv« .ging in distribution

to| £, g, eé£¢2w Since ¢, is integrably bounded, Jfg 6 + /f = x

[B, Theorem 5.4]. Therefore x is in the closure of f¢2u But

f¢, 1s compact [A, Theorem 4], and the proof is completed.

Q.E.D.

Proof of Theorem 3

Let C = f¢l = f¢2 (by Theorem 2). C 1is convex and compact

[A, Theorems 1 and u4].

We proceed by induction on the dimension of C in R&B If
dim(C) = 0, then the theorem follows at once from Theorem 1.

Next, suppose dim(C) = n.

Let x € C and let f e& be such that x = ff. We must

5




find a g €&, such that x = fg and p(D.,D ) < €.
¢ & 2 g

Case (i): x € rel-int C., Let r > 0 be the distance of x

from the boundary of C. Applying theorem 1 znd the integrable

boundedness of $,5 we can find g' €j€¢ such that p(Df,Dg,) < g/2
2

and
|x-Sg'| < r.e/2,

Let y be the intersection of the boundary of C with the half

line from J[g' to =x, and let g" eg be such that /fg" = y.

b
Clearly, x = ay+(l-oa)fg', where a < €/2. Applying Lyapunov's

theorem [L], we obtain a set S C A, satisfying vz(S) = o,

fg' = ofg' and Jg" = afg". Define g by
S
g'(a), a ¢ S

gla) =
g'"a), aesS,

then clearly Jfg = x and p(Df,Dg) < g,

Case (ii): x ¢ rel-int C. Let q define a supporting

hyperplane such that g¢°x = max q°C.
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Denote

N

¢i€a) = {y e ¢;(a)|q-y = max Q°¢;(a)}l, for ace Ay, 1= 1,2,

By [H, D.II.3, Proposition 31, ¢ have measurable graphs. Also,

are integrably bounded and closed-valued, and f e¢¥*

¢

>
e

(by [H, D.II.4, Proposition 61]).

We now claim that ¢l and ¢2 are egually distributed. To

. 3 o . .
see this, apply: theorem 4 to get decompositions ¢i =y ohis then

A

. e h., where
3 V] hl’ r

© >
i1

V) = {y € p(t) |qoy = max q-¥(t)}, for t e [0,17.

But dim (f¢l) < n, hence by the induction hypothesis there is

a g sigzc xq)z such that =x = fg and p(ngDg) < g,

Q.E.D,

In the proof of Theorem 4 we will use the following lemma:

ag,
g

the proof of theorem 4 does not depend on theorem 3.
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Lemma B. Let '{Si}ieI be a finite collectdbn of sets in

a measuraebspace (A,#,v). For every J e I, the measure

v(U S:) is-given.
ieg * idd }

Then, for every J e« I, the measure

v S: N USsS.)
ciegd v idg

is uniquely determined.

Proof.

Itrigseasily verified that the following system of linear

equatiens is non-singular:

o=
cons

v (L

KeJ iekK i¢

Zv-(nsi\ JSi) =vlUS:) , all JcI.
1gK ied

Q.EOD'

Proof of Theorem u.

Let “¢:(A,R,v) + RY be a closed-valued correspondence on a

tomic probability measure gpace. We will show a method of
ructing a mapping h:(A,#,v) + ([6,11,8,)) and a corresp@ndance‘

s 11,8,1) + le s 8uch that Dh and ¢ depeﬁnd only on the

distributien of ¢, ahd ChoEPae hu&uByuapplyihgdthfscsamérmgthod

of construction
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to both ¢, and ¢,, one obtains decompositions $; = by hi

such that Dh and Y. depend only on D¢ (for i = 1,2).
i i

Since ¢, and ¢, are equally distributed, it follows that
¥,  and w2 must coincide, and that hl and h2 Ihave the

same distribution; this will complete the proof.

Let ¢ Dbe.as above. Let JK,= {K.;}. ~ be any finite

4oy
1 dgl

collection of sets in K. Define €=€(X) = {CJ}JcI by

setting

-1 -1
Co= M\ ¢ “(K:) N U ¢ T(K.).
I ieg P S .

The | measures of all sets U ¢-1(Ki) = ¢¢1(L)Ki) are determined
ied ied

by | D By Lemma B, the measures of all the CJ's are also

(b.
determined by D¢.
Let J be a finite partition of iRQ’, then ¢ =¢ X is a

finite partition of A. It is then possible to construction a

partition T = {TJ}J:I of [0,1], where T; is an interval closed

from the left, such that A(TJ) = \)(CJ)o

Define the correspondence ¢ = YX) on the unit interval by
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and |let h = h() be a Mmeasure-preserving function from A to

[0,1]1 such that C; is mapped onto Ty for all Je1,

For every n, divide the set E = {x EEQRI x| < n, i = 1,...,%}

into (2n'2n)2 disjoint cubes of edge 270, Let :Kn be the

partition of R2 consisting of all those cubes and the complement
of E . Let ¢_ = T&), T, =T(X), Vo = ¥X,) and h_ = h(X,),
and define ¢n =y

e ) hn.

Clearly 'Xn+l is finer than X, 3 therefore fn+l is finer

than %, and :rn+1 may be chosen such that it will be finer.

than ?}V

Since ¢ 1is closed-valued and since the diameter of the cubes

in ;Kn converges to zero, it may be verified that ¢n(a)‘» pla)

for all a e A,

Next, we will show that the {hn} can be chosen to be a pointwise

converging sequence.

Let a e A, then for every n thepe is ¢, = ¢ (a) e‘@n

such that a ¢ C,+ We distinguish two cases:

n

E:Dg

1




= LT =

Case (i). v( N C,? > 0. Since ¢, 1s constant on C,» it

n=zl -

follows that ¢ is constant on N Cne In this case, we redefine
n=1
o
th} on N c by setting h
n=1 D n

1t

h1 there (clearly, each such

change does not affect the measure bPreserving property, and there

are at most countably many such changes)’,

Case (ii). v(MN C) = 0. Let Ty ¢ hy(C ), then

L=
ACM T ) = 0 and therefore h (a) e T, 1is a converging sequernce
n=

(recall that {Tn} is a decreasing Sequence of intervals).

In both cases, {hn(a)} is now a converging sequence; let h(a)

be its limit (for all a e A),

For every +t ¢ (0,117, wn(t) is a decreasing sequence;
let  p(t) = lim y_(t).
n->ed n
It remains to prove that Yeh = ¢ ve-almost everywhere., If,
for all n large_enough, h(a) and hn(a) are in the same interval

of’ﬁjl, then (since ¥y is constant on this interval)

Yeh(a) = 1im Y,(h(a)) = 1lim wn(hn(a)) = lim ¢n(a) = ¢(a).

T ~+co n-+co n->




e 18J—

If not, then t = h(a) must be the right end-point of the intervals
hn(Cn(a)) for all n large enough and ,awamuatohel@ngutﬂpcase)(ii).
But then h™1(t) has v-measure zero, and the number 6f end-points

t is countable, so Ye*h # ¢ on a null set.
G.FE:Ds

Remark. Exactly the same proof shows that Theorem 4 is true

for any collection of ‘equally distributed “orrespondences,




& 8§ -

ACKNOWLEDGEMENT

The authors wish to express their deep gratitude to
Professor Werner Hildenbrand for introducing them to these

problems and for many enlightning conversations.




[A]

[B]

[H-V]

[H-H-K]

[H]

[K]

LL]

- 20 -
REFERENCES

Aumann, R.J. - Integrals of Set-Valued Functicns.

J. Math. Anal and Appl. 1965(12), 1-12.

Billingsley, P, - Convergence of Probability Measure: .

J. Wiley & Sons, New York 19£8.

Halmos, P.R. and H.E. Vaughan - The Marriage Problem.
Am., J. of Math. 1950 (72), 214-215,

Hart, S., W. Hildenbrand and E. Kohlberg - Upper-

Hemicontinuity in Distribution of the Walras Correspondencs.,

Forthcoming.

Hildenbrand, W. - Core and Equilibria in a Large Economy .

Forthcoming.

Kannai, Y. - Continuity Properties of the Core of a Marker,

Econometrica 1970(38), 791-815,

Lyapunov, A. - Sur les Fonctions-Vecteurs Complement

Additivies.

Bull. Acad. Seci. USSR, Ser. Math. 1940(u4), 4B5-u478,




	11
	110001

