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A simnle game model of kidnapping

*
by Reinhard Selten

Hostaqe taking situations such as kidnapping a rich person in
order to extort ransom money undoubtedly have some game theore-
tical aspects. In the following a very simple game model will
be developed which cannot claim to be more than a first at-
tempt to gain some insight into the strategic problems faced
by a kidnapper - he will be called player K - and by the
hostaqge's family, called player F who has to pay the ransom

money.

The two-person game between K and F begins with a choice ‘of
player K who has to decide whether he wants to go ahead with
his plan or not. This choice is modelled by a binary decision
variable b:

0 Kidnapping does not take place
(1) b = :
1 Kidnapping takes place

The qame ends if K selects b=0. If he selects b=1, he kidnaps
the hostage and takes him to a hidden place unknown to player F

and to the police. He then announces a ransom money demand D.

At this point it becomes necessary to look at the negotiation
process between K and F which results if F is willing to pay
but wants to reduce the amount. We are going to model this ne-

gotiation process in the simplest possible way: Player F

"The ideas presented in this paper have been conceived at the
Manacement Training Seminar "Hostage Taking Problems of Pre-
vention and Control" organized by the International Centre for
Comparative Criminology, Université de Montréal, on May 13-15,
1976, at Santa Margherita, Italy. I am grateful to the organizer,
Professor D. Szako, who felt that game theoretical thinking may
help to throw light on the problem.



makes an offer C, the amount he is willing to pay. Then
Player K either decides to accept C and to release the hostage
or he kills the hostage.

This very simple description of the negotiation process
should not be taken literally. Actually there may be some
bargaining involving the reduction of initial demands and

the increase of initial offers but eventually player K will
take a firm stand and ultimatively demand D and player F will
then have to make a final offer €.

Why should plaver K ever decide to execute his threat to
kill the hostage? Ile cannot improve his situation by doing
so. We can safely assume that he does not like the idea of
killing. WVevertheless, his threat has some credibility.

One must fear that under the strain of emotional pressure
the kidnanper may react violently to an unsatisfactory offer
in spite of the fact that this is against his long run inter-
ests. Therefore, we must expect that with a positive pro-
bability o the kidnapper will perceive an offer C < D as
an aggdressive act and a strong frustration to which he will
react wviolently by the execution of his thr«:i.'.t.w:l

It is reasonahle to suppose that the probability a will de-
nend on how high C is in relation to D. The danger will be
greatest for C=0 and it will be virtually non-existent for
C=D. In order to keep the analysis simple, we assume that a
can be described by a linear function of C/D :

(2) a=all-F for0<C <D

where a is a constant with

{3) 0 < a < 1

Lt This assumption conforms to the well known frustration

aggression hypothesis /2/. For our purposes it is not
important whether an aggressive Teaction to frustation is a
learned response or not and whether aggression is a ne-
cessary conseguence of frustration or not.



If non-rational emotional nressures do not result in the
execution of the threat, player K still can make a rational
decision to execute his threat. This possibility is formally
modelled by a binary decision variable e:

O release of hostage for ransom C

1 execution of threat

The analysis of the model will confirm our informal argument

that it is never rational for player K to choose e = 1.

After the release of the hostage or the execution of the
threat, the police will try to find the kidnapper and to
capture him. It is assumed that this attempt will be success-
ful with probability g, where

(5) 0 < qg=< 1

One might consider the possibility that the probability of
detection g depends on whether the hostage has been killed
or not; this will not be done here.

The plavers must attach utility values to the possible out-
comes of the game: These payoffs are described by figure 1.
The numbers w, %X, ¥ and z are positive constants. Sewveral
simplifying assumptions are implied by the table in figure 1.

First, utilities of K and F are assumed to be linear in money.
Obviously, this is unlikely to be strictly true but in the
framework of this very simple model it seems to be inadequate

to burden the analysis with more complicated functional forms.

Sfecond, several factors which may influence the players' utili-
ties have been neqlected, namely player K's cost of preparing
the kidnapping and player F's non-monetary disutilities other
than those incurred by the hostage's life. Thus, player F does
not attach any value to the capture of the kidnapper.



Third, we assume that in the case where the kidnapper is
caught after the release of the hostaqge, the ransom money
is recovered and given back to F. Therefore, the utilities

for this case do not depend on C.

Payoffs
Outcome K F

{Kidnappinag does not take placé‘ 0 0
Release of hostage for ransom payment C C -
kidnapper not caught
Kidnapper caught after release of hostage -X 8]
Kidnapper not caught after execution _ -
of threat b
Kidnapper caught after execution of threat -Z W

|

I

Figure 1: Payoffs

The kidnapper's disutility of being caught can be expected
to be increased by the execution of the threat. Therefore we

assume:
(6) Z > x

Formally the model is an extensive game with perfect infor-
mation. At every point in the course of a play both plavyers
know the complete previous history. A short description of
the game, where the decisions are listed in the sequential
time order of their occurrence, is given in the following
summary of the rules.



Rules

1. Player K chooses between b = 0 and b = 1. If he

selects b = 0, the game ends and both players receive
payoffs O.

2. If player K selects b = 1, he has to announce a demand
D= 0O,

3. After player K has anncunced D player F must make an
offer 0 <« C < D

4. After the offer C has been made, a random choice decides
whether a non-rational execution of player K's threat oc-
curs or not. The probability « of a non-rational execution
of player K's threat is given by (2).

5. If a non-rational execution of the threat does not occcur,
player K chooses between e = 0 and e = 1. If he selects
e = 0, the ransom C is paid and the hostage is released.

If he selects e = 1, he (rationally) executes his threat.

6. After the release of the hostage or the execution of the
threat a final random choice decides whether the kidnap-
rer is captured or not. The probability of capture is q.
After this random choice the game ends with payoffs ac-
cording to figqure 1.

Solution concept: The game is played non-cooperatively. It

is natural to analyse the game with the help of the concept
of a perfect equilibrium point in pure strategies. For the
purposes of this paper, it is sufficient to define a perfect
equilibrium point as a strategy combination with the pro-
perty that not only in the game as a whole but also in every
subgame no player can improve his payoff by a deviation from
his equilibrium strateqy if he expects the other players to
stick to their equilibrium strateqgies. 2)

2) This is the original definition of a perfect equilibrium

point, first proposed in /4] and generalized to behavior
strategies in [ﬁ}. The refined concept of [6] is not con-
sidered here.



As we shall see the game of this paper generally has a unique-
lv determined perfect equilibrium point which can be found

by analysing the game from behind in the well known dynamic
programming fashion. The choices prescribed by the perfect
equilibrium point will be called "optimal".

The optimal choice of e: We first lock at the subgames

which begin with playef K's choice of e. Let vﬂ be his ex-
pected payoff if he selects e = 0 and let U1 be his expected
payoff if he selects e = 1. These expectations are computed
as follows:

(7) ¥

(1=q)C — &k

(8) ¥y = ={1=qly —q8

In view of C 2 O, vy > 0 and z 2 x and O < g < 1 we always

have
(9) V.2 ¥

This shows that e = O is the optimal choice of e. Player K

will never rationally decide to execute his threat.

The optimal choice of C: In the subgame which begins with

player F's choice of C, player F knows that player K will
choose e = 0. Under this condition the expected value of his

utilitv is as follows:

{10) o

={1=a) (l=g)C = aw

With the help of (2), this yields:

a0
(1) U =-all-@F + G - (1-a) (1-@))C - aw

Laquation (11) shows that U is a strictly concave quadratic

function of C. In order to determine the optimal wvalue C of C

we compute 3U/aC.



(12) | - _\C . aw _ . "
3¢ = ~2all-q)lz + 5 (1-a} {1=q)

¥

Faquation (12) shows that U assumes its maximum at

PO ~ol=a
(13) C = 5TT=a) 52 D

if this value of C is in the interval O < C < D. This is the
case if D is in the closed interval between the following criti-

cal values D1 and Dz.

|

W
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(15) D, = 54— *

For D « D1 the derivative 3U/3C 1s positive in the whole interval

0 < C <D . Similarily 3U/3C is always negative in this interval

for D » Dz. Therefore the optimal offer g is given by (16):

D for O < D < D,
= W 1-a
{(16) C = - 3(T-9) >3 D for D15 D <« D2
3 o for D > DZ

Note that with increasing D, the optimal offer C first increases

up to D = D1 and then decreases until it becomes O at D = Dz'

In the interval O < D < D1 player F eliminates the danger of the
execution of the threat by vielding to player K's demand. In

the interval Dy D <D

additional money unit added to C is the lower, the higher D is.

20 the reduction of a obtained by an



This explains that there the optimal offer C is decreased by
an increase of D. For D > D, the influence on a is so small
that it appears to be useless to offer anything at all.

The optimal choice of D: We now look at the subgame which begins

with playver K's cholce of D. Player XK knows that player F will
select his offer optimally and that later he himself will
choose e = 0. We want to determine player K's payoff ex-
pectation V under this condition. Let a and ﬁﬁ be the wva-

lues which a and UG assume at C = C, respectively. We have
e A V= {1-u}?0 + aV,

In order to find the optimal value of D it is necessary to
discuss the behavior of V as a function of D in the regions
below D1, between D1 and HE and above Dz. For C = D we have
a = 1, This yields

(18) Vv = (1-q)D - ax for O < D < D,

Here V is an increasing function of D. We now look at the

interval Dy 2D 2D,

creasing function of D we first observe that V is a decreasing

In order to show that there V is a de-

function of a if ﬁo is kept constant. This is a conseguence

of (9). In the interval D, < D < D, an increase of D decreases
¢ and C/D and thereby decreases ﬁn and increases a. The effect
of an increase of T on V can be traced by first adjusting

only a and keeping ﬁc constant - thereby V is decreased -

and then adjusting ?0. whereby V is further decreased.

For 1} & D2 the variables E,E,ﬁg and therefore also V become
constant.

We have seen that V as a function of D is first increasing
up to D1, then decreasing un to Dz and then constant. It

follows that the optimal value D of D is assumed at 31:



(19) D = e &

Plaver K's optimal demand D can be characterized as the highest
demand such that player F's optimal offer coincides with the
demand. The probability a of a non-rational execution of the

threat wvanishes if the game is played optimally.

The optimal choice of b: Let V be the value of V assumed at
the optimal value D of D. Ecuations (18) and (19) yield:

(20) V=o—w-=-ax

Obviouslv the optimal choice bofbisb =0 for V < 0 and
b=1¢forVvs>o0

a
) 0 for T3 W o< gx
(21) B =
a
1 for Tia w > ax

In the border case V = 0 both P = 0 and b = 1 are optimal choices.
This is the only case where the game fails to have a uniquely

determined perfect eauilibrium point.

V is plaver K's incentive to engaage in the act of kidnapping.
Mote that the formula for V does not contain v and z. This is
due to the fact that in the optimal play of the game player K
never executes his threat. Nevertheless, it is important for
the derivation of the results that vy is positive and that (6)
holds.

Results: With the exception of the border case V = 0 the

game always has a uniquely determined perfect equilibrium

point. The optimal choice of b,.D and C is given by (21),

(12) and (16), respectively. The optimal choice of e is e = 0.
Equation (16) shows how the optimal offer C behaves as a function
17 the optimal offer is

egual to D, then it becomes a decreasing function of D up to

of the demand D. Up to a critical wvalue D

another critical value D,. For D > D, the optimal offer is O.



The optimal demand D is the highest demand, such that the op-
timal offer is equal to the demand; D is the critical value Dj.

If all choices are optimal, plaver K never executes his threat.

Policy conclusions: As long as the crime of kidnapping does

"occur, it must be the aim of public policy to decrease the
incentive to engage in the act of kidnapping. (20) shows that
V is decreased by a decrease of a or w and by an increase of

g Oor X.

The parameter w which can be interpreted as the value of the
hostage's life from the point of view of plaver F, seems to
be outside the range of the influence exerted by public policy.

Plaver X's disutility x of being caught after the release

of the hostage obviously depends on the punishment faced by

the kidnapper. Here the policy maker may face the difficulty
that a substantial increase of the length of the prison term

for kidnapping may not have a noticable influence on x. Whether
this is the case or not is an empirical question which cannot

be answered here.

The probability of capture g can be increased by the allocation
of additional resources to the efforts towards detection.

This possibility of decreasing V¥ is limited by the availability
of resources. It seems to be plausible to assume that a pro-
hibitively hich police budget would he needed to secure the
canture of the kidnapoer with certainty. Interestingly, the po-
licy of increasing g is less effective than one might think,
since it also increasesplayer F's chances to get the ransom
money back and thereby increases his willingness to pay. An in-
crease of g shifts the critical values D, and D, to the right

1 2
and increases the optimal demand D,

In the extreme case where aw/ (1+a) is greater than x, it is im-
possible to achieve the goal of making V necative by an in-
crease of q. tn this respect, the model is unrealistic for
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high wvalues of g. Later, we shall show how this weakness of the
model can be removed by the introduction of an wupper limit M
of player F's ability to pay.

The parameter a is not comoletely outside the range of influence
exerted by public authority. The way in which the authorities
advise plaver F to handle a kidnapping case may help to decrease
this nsychological parameter. Seemingly unimportant details

may have an important effect on the kidnapper's emotional state
and thereby on the parameter a. Evervthing must be done in

order to make it easy for the kidnapper to view his situation

in a rational way. For this purpose, it may be important to
communicate with the kidnapper in a non-aggressive way which

does not enhance his fears and reduces his emotional stress.

Introduction of a limit of player F's ability to pay: The

basic model can be modified by the introduction of an upper
limit M of player F's ability to pay. In the modified model,
rule 3 is replaced by the following rule 3a, whereas all the

other rules remain unchanged:

da. After player K has announced D, player F must

make an offer O < C < min (D,M)

Obviously e = 0 is optimal in the modified model, too.
The optimal offer € is determined as follows:

(22) ¢ = min (C,M)

This follows by the strict concavity of U. In view of (22)
it is clear that the optimal demand D for the modified model
is as follows:

(23) D = min (D,M)

Finally the incentive V to engage in the act of kidnapping is
replaced by a modified incentive 7

(24) V = min (V, (1-a)M=-qx)



In the modified model the optimal choice of b is b = 0 for V < O
and b = 1 for V > O.

Equation (24) shows that for

M

(25) q> s

the value of V is always negative, regardless of the values
assumed by a and w.

As long as the optimal demand D is smaller than M, the effects

of small parameter chanqges are the same as in the unmodified
model.

Fxtension of the model: The basic model looks at kidnapping

as a two-person game hetween the kidnapper and the hostage's
family. Actually, there are many potential kidnappers and many
potential victims. Additional insight can be gained by an extended
model which explicitly includes all these potential participants.

Let k be the number of potential kidnappers, numbered from 1 to k
and let m be the number of potential hostages, numbered from 1 to
m. Iach potential kidnaprer is characterized by different pavoff
parameter Xy0¥y and z, and a different value wﬁ is associated

to each of the potential hostages, such that the assumptions of
the basic model are satisfied. The parameters a and q are assumed
to be the same for all possible kidnappino cases.

Accordina to the basic model kidnapper i's incentive to take

hostage j is given by
v - i
(26) vi' W, ax,
In order to exclude the border case possibility of non-unique

optimal behavior, we assume that the parameters wj and xi are
such that the following is true:



(27) V. #0 for i=l,...,k and j=1,...,m.
ij

Define

¢ for V,. < O
(28)  h,,.= 1]
1] =
1 for vij *» 0

If potential kidnapper i contemplates the kidnapping of potential
hostage j, the value of hij will decide whether he actually will
qo ahead with his plan. The kidnapping will occur for hij = 1

and it will not occur for hij =0

We do not assert that a potentially profitable kidnapping with
ﬁij > O necessarily will occur. Potential kidnapper i must first
turn his attention to his opportunity to take hostage j before he
even begins to find out whether his incentive ﬁij to do so is
positive or not. Ordinarily many criminal and non-criminal
opportunities with a chance of profitability will compete for

his attention and there will be only a small probability that

he spends his limited planning and decision efforts on any one

of them.

Let Py be the probability for the event that at a given period
of time t potential kidnapper i will contemplate the kidnapping
of potential hostage j. For the sake of simplicity we assume
that this probability is the same for all possible pairs i,j.
Time is viewed as a succession of discrete time periods t=0,1,...
Let ng be the number of kidnapping cases in period t. We assume
that a profitable kidnapping opportunity which is contemplated

in period t - 1 will be realized in period t. Define
m
(29) =1 £ ‘h

The wvariable H is the number of profitable kidnapping opportuni-

ties. If k and m are large and p, is small, n_ will be very near

t L=
to its expected value which can be approximated as follows:



(30) n, = H

t = Pe-q
Here we assume that in every period t every potential kidnapper
contemplates at most one of his opportunities and we neglect
the unlikely possibility that two potential kidnappers turn their
attention to the same potential hostage.

It must be emphasized that the attention focusing process is
viewed as a psychological mechanism outside the control of ra-
tional thinking. At this point, an important element of bounded

3}. Only after

rationality enters our theoretical considerations
the attention has been focused rational calculations begin to

determine behavior.

It is reasonable to assume that Py is a function of ng. If more
kidnapping cases are observed and reported by the media, a po-
tential kidnapper will be more aware of his possibilities. He
will be more likely to think of a feasible plan and to consi-

der its consequences. Therefore, we make the following assumption:
(31) Py = £in,]

where P, is a monotonically increasing differentiable function.
(30) and (31) together yield a first order difference equation
for n,:

(32) n, = Ef(n__

. = ‘I:I

Since Py is a probability the function f is bounded from below
and above. This has the consequences that the limit of f(n) for

n + =» gxists., Define

3 The concept of bounded rationality has first been introduced

by H.A. Simon /7/. Relatively few efforts have been made to-
wards economic theorizing on the basis of this concept, e.g:
in [ 17, [37 and [ 9 7. Existing microeconomic theory is
almost exclusively built on the neoclassical view of economic
man Aas an optimizing decision maker.
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(33) p = £(0)
(34) p = 1im f(n)
-+

It is reasonable to assume that we have
(35) 0 = p & pas

and that the shave of the function f is similar to that of a
logistic curve. The situation is illustrated by figure 2.
The intersections of the curve with the 45°—deqree line corres-

rond to stationary scolutions.
(36) n, = n
In the examnle of figure 2 we find three such stationary solutions.
Our assumptions secure that at least one stationary solution

always exists.

If the process starts with an initial wvalue ng such that

n, = Hf(n ) is above the 45°~deqree line, then the process will
converage to the lowest stationary solution ahove n,- Similarily,
if n, = Hf{nG] is below the 45D-degree, the process will converge

to the highest stationary solution below n This shows that only

those stationary sclutions are locally stazle which correspond to
intersections from above to below. In the case of figure £ these
are the stationary solutions n(1] and n{aj. The stationary so-
lution n{Z} is unstable and is never reached by a process which

does not begin there.

Policy conclusions: An increase of H results in an upward shift

of the curve Hf; if the shift is sufficiently small the inter-
sections from ahove to below are moved to the right and the stable
stationary solutions will be increased. It is not surprising that
an increase of the number H of profitable opvmortunities has the

lona run effect of increasing the number of observed cases. The

short run effect on the next period's number of observed cases
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has the same direction but the long run effect is always stronger
than the short run effect.

A special situation arises if an intersection disappears as a
consequence of an increase of H. Suppose, for example, that in fi-

{1}

qure 2 the process has converged to n and that from now on H

begins to increase very slowly. In order to have something speci-

fic in mind we imagine that an increasing lack of police resources
results in a decrease of the probability of detection q and there-
by increases the number of profitable opportunities H. As H is

(1) . (2)

increased and Hf is shifted to the above, n an move to-

wards each other until they meet and finally vanish. Once this
happens the process which up to now was attracted to a slowly
moving n“l| drastically changes its character since now it is
attracted by the much higher stationary solution n‘a}. This
exnlains why without any apparent reason the number of cases

which has grown slowly for some time may suddenly begin to grow

at an alarming rate.q}

Suppose that special police measures are taken in order to re-

duce H to its previous level. If such measures do not come soon

(1)

enough they may fail to bring the process back to n in spite

of the fact that H returns to the same value as before. Instead

of this the process may converge to n[3].

There is only one way to move the number of observed cases from
n{3} to the more desirable equilibrium n[11: a temporary re-
2) (3) yanish. This

low level must be upkept long enough to permit the process to

come sufficientlv near to nt1}. Afterwards the police efforts

duction of H below the value where n and n

may be relaxed and H may be allowed to return to its previous
level.

A parameter change which increases or decreases V will move

the number of profitable opportunities H in the same direction.

4) This phenomenon may be called a catastrophe in the sense

of Thom /[ 8 7. In view of the simplicity of our case we
have avoided the explicit use of catastrophe theory.
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In this sense the policy conclusions derived from the basic model

can be transferred to the extended model.

The extended model may be of interest beyond the subject of
kidnapning. The explanation of the number of observed cases
by a dvnamic model involving a probability of opportunity re-
cognition and the number of profitable opportunities may be

applicable to other criminal actiwvities,
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