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SECTION O

INTRODUCT.ION




Fenergl Kemarks

The purpose of this paper is to define a concept of egquilibrium
for eoconomies with public goods and production. Generally
speaking, this concept represents an attempt to generalize the
notion of the Lindahi-equilibrium while simultanecusly the 1dea
of the "fair value", as defined within the framework of Game
Theory, is introduced into the model. Also we are dealing with
the question which kind of possible taxation policies are
feasible in order to admit our notion of equilibrium.

As the production mechanism of our economy ist just given by an
aggregate production set, the taxation mechanism may be viewed
just as a method to decentralize the decision as to which bundle
of public goods should be produced. In fact, there are two
guantities that can be viewed as externally imposed institutio-
nal financing machanism: The value {in the sense of Cooperative
Game Theory) and the taxation structure or policy. These

notions will interact as follows.

As the consumer pays taxes towards the consumption of the
public goods, his budget set, given prices for private goods,
is restricted. Hence, if it so happens that for large bundles
of public goods the marginal cost of providing these goods for
the consumer exceeds his marginal utilities for the private
goods, then his preference for public goods eventually will
decrease. This idea is discussed e. g. in the paper of
ZECKHAUSER-WEINSTEIN [23]. It will then happen that, given
prices for private goods, the consumer will have "satiation
points", "bliss points" , with respect to the public goods.
However, in general these satiation points will vary with
different consumers, and hence the question occurs which public
bundle actually should be produced.

The Lindahl equilibrium concept can be interpreted as toc answer
this question as follows: Taxes can be set up linearly and
individually for each consumer such that the consumers do have
a common bliss point while simultaneously maximizing their

utility within their budget constraints. In our context,



however, it is suggested that different policies of taxations
are considered; for instance taxation might be linear and
equal for each consumer. In this case we cannot expect that
consumers have a common "bliss point". This is where the

game theoretical value enters the picture as has been dis-
cussed in several recent papers (OSTMANN [12],[113],

RICHTER [14],[15],[16], ROSENMOLLER [18],[19]). Values, as
discussed in Game Theory, can be redefined or newly defined
in conflict situations that do not feature the usual game
theoretical assumption of a "threat point" but rather enjoy
the property of having "bliss points". Such situations
typically occur in what we would like to call "location
conflicts": This is a structure which features utility
functions having a bliss point that is usually different for
all players involved. The value is then a mapping which
assigns fair solutions or "fair locations” to a certain class
of bliss point problems or "location problems".

As our analysis of the underiying economy leads to a system
where the consumers do have different bliss points with
respect to the utility of public goods, i1t is suggested that

a notion of the fair value as developed in [13],[16],[19]
might be applied to the corresponding location problem. This
then can be seen as adding the notion of "fairness" to the
institutional financing mechanism. Hence the society has the
possibility of choosing a certain value concept which is then
applied to the location problem resulting from the utilities
as defined for public goods. This yields what one could call
the "fair bundle of public goods". Prices for private goods
and taxes (within the constitutional framework) should then be
set in a way such that every consumer maximizes utility within
his budget set with respect to the private goods. Moreover, the
'fair bundle"is produced and finally the result is feasible in
a sense that 1t can be obtained by the underlying production
mechanism. As it turns out in most cases (and in particular

in the case of linear but equal taxation as considered here)
that production is effective in the sense that it takes place
at the boundary of the aggregate production set provided the
production structure is of constant returns to scale. However,



typically it will happen that the distribution of private
goods cannot be identified to be Pareto optimal; that is,
the advocated equilibrium concept is a "second best model"
or, to use a phrase of [23], a "mechanism constrained

Pareto optimum".

In other words, if the society chooses to have the notion of
justice enter via introduction of a "value" and a "fair tax
system", then it usually will have to pay for it with a
non-Pareto-optimal solution. On the other hand, tﬁe Lindahl
equilibrium is an example where the taxation policy admits
of a Pareto optimal solution - but in the framework of our
concept cannot be called a fair taxation policy.

It should be noted that our present model also bears a
resemblance to certain set-ups which appear within the frame-
work of "voting equilibria", "voting market equilibria", etc.
In this context, we restrain ourselves to citing only a few
relevant papers, e. g. McKELVEY-WENDELL [9], SLUTSKY [22],
and DENZAU-PARKS [5]. Conceivably, a "voting equilibrium“lis
a "yalue"” in the sense of Section 2 and thus, our general
existence theorem may have implications with respect to the
existence problem treated in [22], [53].

However, the general version of a value (in the sense of Game
Theory, or as defined in Section 2) respects the shape of the
players' utilities more generally compared to "voting in finitely
many directions". Also, we prefer the taxation functions not to
be fixed in advance, the relation, say, between the equilibrium
treated in [22] and the present model is not quite obvious. At
this state of affairs we prefer to postpone this question fo a
possible later treatment.

In what follows Sec tion 1 gives a short introduction and specifies
the conditions to be imposed upon utilities and taxations. 5ection

2 will recall some basic features of location conflicts as defined
in [14], [16]1. Finally Section 3 will define the equilibrium concept
and give proofs for existence.



Notatione

Vectors x e R™ X R will be written x = [%.xm+lj AR

where ¥ EIRT and x =z eR. Similarly, if

m+ 1
m+ 1
PP s el [ pres b sl
i=1

m+1

denotes the "price simplex", then p e P is written

]
s {5,pm+1) = (Pso).
symbals e' are reserved for the i'th unit vector

while e = $1,.001):

|  is the Euclidian norm, o denotes max {(a,0)
(for o €IR). As for wvectors, xT  is defined coordinate-wise.
If*- £: T - IR 15 a function, then MT f denotes the

maximizers of f with respect to T_ <= T.

5.(x) denotes the sphere with center x and radius r.



SECLION 1

ECONOMIES
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GFenerval Definitions

An economy (with public goods and production) is a tupel

M=o, X% 0 0.8, B 7

+!

where the quantities are specified as follows.

0= {1,...,n} vrepresents the set of players (traders, agents,

consumers) and K= IRT ¥ IR is the system of bundles ¢f

private goods. Private ghod m+l appears in negative quantities

and has certain aspects of a booking account; thus players may
be willing to accept negative quantities of m+l 1in exchange
for goods of other types. ml represents bundles of

public goods.

Next, U = {uTJi where u' : = ¥ X B +R [(i€®n)

=g 2

is the family of utility functions of the players. Each Th

is assumed to be continuous, strictly monotone, and concave.

A = {31}1 B g ez {i € ) 1indicates the players'

£ 5 'S
initial holdings of private goods, while

b € ml is the economy's initial endowment of public gocds.

IRm+1 : 1

Finally, Fie X R, is the aggregate production set.

We assume that Y 1is closed, convex, and contains 0O . Moreover,

if (x,y} e ¥ and x' EIRm+1, x'sx, then (x',y)ey("free disposal"”
Thus, in particular, (x.,0) £ ¥ for all = EIRT+1 is required.
In addition,
flesyy € F | x=x'}
is assumed to be compact for every x' EIRm+1,

+

| =
i



If (%:%) =¥ 5 such that [(nigy') 2 fxsyls X'y} EX

implies Xx's=x, y'=y, then we shall say that (x,y) 1is efficient.

For technical reasons, it will be necessary to have truncated

versions of M . Thus, let k be an integer such that

(1) %. a 4 ke
ieQ
Define
ook m+1
(2) %% : o= fre (ReryeR | x & ke}
£ Kyk o = g e () EIRT ¥ T A s key ok sk sk
T O m e
(4) zv = {x = (%,e) eR" X R | -ke s x = ke}
(5) ko os ffisy) € T | =X E ank}
(6) ?k : o= {y &Rt | 3 x € Dxnk:(ux,y}E Py s Prujsz
Then
(1) M e e LS LA N Y e
k-truncated version of M.
Note that., by our requirements, Xk, Ek, and fk are compact

sets. Also, u' (i € ) should be restricted to x° X ¥

in (7), however, we shall not introduce a further symbol.

As has been said commodity m+l plays a particular role as
it is available in large negative quantities; in fact we are
tempted to call it "fiat money". (In particular mﬁr results should
be applicable in the case of a "transferable utility market”
as introduced by SHAPLEY [20] and extensively treated e. g.
in AUMANN/SHAPLEY [41, AUMANN [3], and similar papers.)



However, we want the consumer to be aversive against high
debts in terms of "money" compared with positive quantities
of the non-monetarian private goods. More exactly, if he pays
proportionally to private goods in terms of the monetarian
good, then given any proportional constant, the consumer
éhnu]d not be willing to buy arbitrarily large amounts of
private non-monetarian goods in return for "money”. This is

a requirement to the utility functions as expressed by the
following definition. In fact, mathematically it is necessary
to insure that maximizing within someones budget constraints
is a reasonable concept.

Definition 1.1: u' is said to be admissible if, for

W e.ml , £t >0 ., there exists r > 0
such that
(8) ui{E, SEYRE, W) u‘{ﬂ, 0, y) whenever (%] zr.

M s admissible if u' 1is admissible for i € .

1 and a bundle

Given prices for private goods, say p €P
¥ EIRl s consumer i , having some wealth w IR available,
wants to maximize his utility within his budget constraints.
Indeed, we have

Lemma 1.2: If u' is admissible, then, for p e P"!,

y £ ml » W £ 1R
max {u1[x,y} | a2 EX 5 px = W)
exists whenever p > 0.

The proof is an easy exercise:

If ix1 is sufficiently large and w.l.0.g. § « 0, then
px £ w . PR +pf 2w
implies

E = 2. g8 for a suitable t > 0.



Hence _ )
u'(x,y) = u' (%,6,y)
< ui{E,-t|E1,yJ < u'(0,0,y)

For fixed prices of private goods, the players will have
utility functions defined on public goods and wealth via

Definition 1.3: Let u' be admissible.

Then, for p EIPm+1 + P >0

ol mx RaR

is defined by

(9) ﬁp1{y,w}-: = max {u1{x,yj | X € X, px = W}
Similarly, for p e P™! and k sufficiently large,
Rpi 3 -k - oo =
y. 1 X [=pigki=) =R
is defined by
(10) 5p1(3=w} ;= max {u'(x,y) | x € krk,px < W),

0f course, the existence of (10) is trivial while Lemma 1.1.2
ensures the existence of (9).

Taration

We have so far discussed properties of the underlying economy.
Let us now turn to the taxation structure. Generally speakirag,
taxation is used as a means to decentralize the decision of
producing a certain bundle of public goods. Hence the players
will be asked to pay a certain fee towards the production of
public goods. This in turn will restrict their budget possibi-
lities. We shall assume that taxation functions will provide
increasing marginal costs for the players.

Definition 1.4: A taxation function is a continuous, strictly

monotone, and convex mapping

1
G & m+ + IR .



WG o
If © ds a taxatibn funcétion {i ¢ ), then

€ = {cl,...,c”j is a taxation scheme.

Let € : = {C | C is a taxation scheme}, then

6° c € is called a taxation policy.

By introducing the notation of a "taxation policy" as a subset
of the possible taxation schemes we imagine that the society has
certain notions in advance as to which tax schemes are in zome
sense "feasible" by customs or institutional restrictions. This
is a decision which enters the picture externally. It concerns
the type of taxes that are to be applied. Later on we will then
discuss the welfare implications of a certain taxation policy.
For instance, cne might face the institutional restriction that
the individual tax burden should be proportional to the output
level of public goods without discriminating between individuals.
This obviously defines a certain specified taxation policy.
Another decision would be that the taxation policy constists of
linear functions possibly differing among the players. A
taxation policy is based upon reasoning which is not inherent

to the economical structure. It is imposed upon the economy in
order to find a means for allocation private goods and supplying
a certain bundle of public goods.

Example 1.5
(11) %R 0kt ] B AT A Bl

aj €R : c'(y) = q'y + a;) = ¢

is the affine taxation policy. If @ 1is adopted, then.p1ayer5

pay towards public goods proportionally to the size of the

various public commodities. However, the proportionality constants
might differ among the players. Within the framework of the Lindahl

equilibrium (see LINDAHL [B] or MILLERON [10] for a survey) the

L

g

Lindahl prices" constitute a particular example of an "affine

taxation scheme".



Here we have el = 0 while q1 represents the individual

marginal rates of substitution of private for public goods.

As it turns out, a is of no significance; we shall write

LI -i- L 1] -E

q instead of "¢ " whenever (§ 1is adopted.

Example 1.6
(12) % Gos b s 8 e | 30 emlguelﬂ:
c-!':.}"} = gk o {}F_Elﬂl i e et el

We shall write "g" instead of el whenever 0° is adopted.

The next step apparently is common in the literature, see
e. g. ZECKHAUSER-WEINSTEIN [23] or SLUTSKY [22]. Given a
taxation scheme C , the consumer take private goods
prices p and the provision of public goods y for gran-

ted. He then evaluates his budget constraints to be

W = pai + ci{b} = ciqy}
Thereafter he is going to maximize his utility with respect
to the private goods only. This maximization procedure allows
us to eliminate private goods completely from consideration;
thus we are capable of deriving the utility of the public
goods bundle y for a fixed taxation scheme C.. Hence we

have the following definition.

Definition 1.7: Let M be an admissible economy and C a

taxation system, s. t. c‘(b\ 2Ol s B nY.

¢

Given p €™, p > 0, the function

7
B L T

(the "derjved utility function") is defined by

891{y, pa1 + ci{bj i

ﬁ
i
ra

e
=%

i
—
s

5
1

(¥))

max {u'(x,y) | x € %, px s pa'+c'(b)-c(y

]



Moreover, let
(13) i?[p,c1,y}::{xeﬁ | px = pa'+c'(b)-c'(¥), u*[x,y}:ﬂ]{yj}

denote the maximizing private bundles given prices p, taxation

and a public bundle. Then X(+,+,+) 1is a correspondence, which,

given a suitable topology on € , might turn out to be u.h.c

at certain arguments p, ¢', ¥.

Definition 1.8: Let M be an economy and C a taxation system.
Pm+3

Given p = and k sufficiently large, define

Too gk o 1 i G
(14) B = ¥ o {y eH, c'ly)] s pa *C {b}+pm+1k}

and a function
- P :
ku1{y}:= kupc i, kB1 R
by
k=4 .. kpi I | i
{15) g by yes yrobyapacHe - th)=e " (¥))

| %€ kxk, pxgpai+ci{bj-ci(y}}.

max{ui{x,y}

Moreover let, for y € ¥

{xe“x" | pxspa'+c'(b)-c'(y),u'(x.¥)=KiT(y)

k for y-= B!

(16) *X'(p,ctiy):=

pi

. > 1 C ;
‘._.KE X | p:‘iﬂ-"kﬁ'm_‘_l s U f:{!j,rj:d (J’i‘_gp;“.k] :II

otherwise

It should be noted that, for large bundles y of public goods,
c}{y} might increase as to render the budget set

{x € kxk t pX & pat + c‘(h} - c1{yj}

kol

to be empty. However, for y € "B’ , clearly the private

bundle (0,k) i1s within this budget constraints.
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Once a taxation system has been chosen and prices for private
goods are fixed, the consumer values public goods according
to how much utility he will gain by maximizing w.-r. t. the
private goods gfven his imposed budget cunﬂtraintﬂg this jis
expressed by oA Certain properties of u' are at once
carried over to the derived utility functions.

Theorem 1.9: GP' 4s continuous, strictly monotone, and concave.
T 2
Gpec i

js continuous and concave.
The same holds true for the k-truncated version.

The proof is an easy exercise. See also [23], where a proof is
indicated for the case of one private and one public good as
well as linear taxation. However, arbitrarily many private and
public goods and & generally convex taxation are feasible.

As has been observed by EEEKHAUSER~HEINSTEIN‘[231 we cannot
expect that the derived utility functions u' are in addition
monotone. However, the remark in their paper that the tax
payers' bliss point is achieved at an internal location where
the marginal cost to him of providing more of each public

good just equals his valuation of a marginal unit cannot be

seen as a4 statement or theorem.

In fact it is rather a condition concerning the utility
functions although it is a very reasonable one. Of course

the properties of a bliss point ought to be defined in terms
of marginal utilities (partial derivatives of the utility
functions), that is, by some version of ,,Gossen's Law".
However, its existence is a requirement concerning the giobal
behaviour of the utilities "far cutside".

Intuitively we are to reguire that, given prices p and a
taxation system, the marginal increase of utility of large
public bundles will eventually become small compared to margi-
nal costs of the sacrifices that are necessary in order to
provide these bundles. As we do not want to introduce
differentiability conditions at this stage of affairs, w2 shall
choose a rather different formulation in order to ensure that
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e
L

1

the players enjoy bliss points with respect to the derived
utility functions.

Since commodity m+l plays a separate role, we shall just
ensure that the consumer facing large bundles of public goods
for which he has to pay by the taxation system as well as large
bundles of non-monetarian private goods for which he has to

pay proportionally will eventually have decreasing utility if
his debts are to appear in his money coordinate.

More precisely, we have

Definition 1.10: Let M be an economy and C a taxation
system. [ui,ci}, (1 € Q) is said to be
compatible if the following condition
holds true:

For welR , s >0 there is R > 0 such that
(17) u (Fow-c (y)-si%i,y) < u'(0,0,0)
whenever 1(X,y)! z R
M and C are compatible if (17) holds true
for i € q.
;

m+1

It is not hard to see that, giuep p 1P s p >0 and u

5 1-:
admissible, it follows that uP® !

has maximizers withir
some compact set and only there. For the purpose of a later
existence theorem we shall, however. rephrase our definition
for the case of linear taxation and prove somewhat more.

Definition 1.11: An economy M is said to be compatible with

nearly linear taxation if, for i € g, w €1IR,

s,L > 0, there i7s R z 0 such that
(18) u' (Raw-tiyi-siXi.y) < u'(0.0.0)

whenever Iiﬁ,y}l z R




Note that (0,0,0) 1is chosen for convenience, the definition

may be reformulated such that the existence of any (X,Z.y)

replacing (0,0.0) 35 reguired.

Theorem 1.12: Let M be an admissible economy, compatible

with nearly linear taxation, and let (% < (

be a taxation policy such that there is n_ > 0,

t

r >0 satisfying

"~
&

(19) ¢i(y)
(20) cl(b)

I

o
n 1¥! (e % 1yl 2 rc}

0

Then, for any B, ¥ 0 , there is RG > 0 such that, for all
peP™! . p>ce and for all Ce€° it follows that

N
(21) Bk By uPE e Sy (0) (1 € 9}
IR 0

+
That is, if prices are bounded away from zero and taxes behave
nearly linearly, then maximizers fo the derived utility functions

exist and are uniformly located within some compact set.

Proof
Choose ¢ > 0. Write W : §;Gea1 and let R be such that
(223 Ter > & implies cﬁ{y} e B

as well as

(23) 1Y > W

(24) u' (%, Wen_1F1-e_1%1, §) < u'(0,0,0)

for |{§,y}| 2 RO ; this is clearly possible by Definition 1.11.
Now, let 1y1 > R . We are going to show that

-
E Q0

P i
uhe Tegy ¢ 4R Ty
E

for all p > € e and
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Indeed, if

1
—
>
I

[
—
i
LA
L
| =
O
=
=
=
o
=+

then, observing (20)
o0
PX + pE *+ C

SO Pt € 4 1 o M it

I

1
]
=
™y o
i
I
b3

Hence, as the numerator is negative by (23),
E < W= n.lyl -« 1%

and, using (24),
ui{ﬁ,g,ﬁj < uf{i,ﬁ-noiy;-gﬂ|x|,§]
< u'(0,0,0) 5 u'(0)

q. e. d.

Remark 1.12: Let M be an admissible economy and let C

a taxation system such that M and C are

compatible. If p EIPm+1 s P > 0, then

Hese
Moy uPe Tt s p PR
R,

The proof is trivial.

be
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SECTION 2

LOCATION CONFLICTS




Location Conflicts and Values

We are going to use some topics of the theory of location
conflicts and their values as well as of games with "bliss
points" as developed in recent papers by A. OSTMANN [13],[14],
W. F. RICHTER [14]1,[15],[16], and the author [18],[19].
However, in order to make our treatment selfcontained, we shall
just informally discuss the concept of location conflicts and
their fair values, the latter term referring to the "value" as
defined within the framework of Game Theory.

Suppose a planning agency has to consider the problem where to
locate an attractive object (for instance a park, a swimming
pool, a public 1ibrary) given the location of n individuals
(players, communities, cities) within the plain (or n-dimensional
space) that are interested in the site of our object and

are capable of expressing their interest in terms of a utility
function which attaches a utility to each possible location of
the object. Such a utility may or may not be proportional to

the negative or inverse of the distance to the object. It is

not unreasonable to expect that each player involved would prefer
to have the object located as close as possible to his own
location, in other words we expect the utilities to have
satiation points (maximizers) which frequently might coincide
with the players' locations.

Let us adopt a formalization: a location conflict is a tripel
L = (9,B,U), where the data are defined as follows: o = {1,..,n}

is the set of players, B c R' s a convex closed subset of R'

which is called the planning area, U = |.’,u1},I i u' : B - R
is a family of continuous concave utility functions for the

players such that HBu1 + 0

Given a location conflict as defined,the planning agency faces
the problem of finding a “fair location” or "fair value" of I.
"Classical location theory" when dealing with such problems is
frequently adopting a naive solution concept like minimizing the
sum of the distances between individual players and the object



T

to be located. However, we would rather consider this a problem
which should be tackled by methods of Game Theory as has been

done for instance in [14].

Formally this would mean that we consider cooperative games
without sidepayments, that is, tripels (@,P,V) , where again
G = {l;...,n}  while P = P{2} is the power set of @
(meaning the coalitions) and V : P - P( R") is a mapping
which attaches a set of feasible utility vectors to each

coalition.

The mapping V should obey certain regularity conditions. For
instance, it should take values which are closed convex and
comprehensive subsets of R" and it should be superadditive or
the like. Now, clearly a location conflict = gives rise to a
game {Q,E,v ) where V is defined for instance by means of
the formula:

V.(S) = comprehensive hull of {{”1{”9155 | € B}
(imbedded in R")

However, the game which is induced by the mapping £ - vz will

in general not enjoy superadditivity. In fact, the usual
interpretation of the mapping UE as common in Game Theory cannot
be maintained because we cannot assume that coalitions will be
able to place the desirable object within the limits {(convex hull)
of their own locations. Rather one should adopt the idea, that the
planning agency just considers the merits or demerits that
coalitions would obtain if planning the object was restricted to
the interests of such coalitions. This topic is discussed at

length in [16].

In fact, the mapping =& - VE as defined above is not the only
feasible one. Quite naturally, one might restrict the discussion
to the case where only the utility vectors of the grand coalition
and of the single player coalitions really matter. This means
that we consider the set UE{Q} which gives the utilities of all
players obtained by varying the object in the planning area and
certain sets V({i}) which define the utility of a single player
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if the object is to be located in his "position", that is,
in a satiation point of his utility. Such a cooperative
game without sidepayments is usually called a "pure bargai-
ning game". However, it should be noted that there 1s no
threatpoint at hand. Rather., this game exhibits a "bliss

i (utility space)

point". This is the vector x(V_}) €IR
which is obtained by computing the utility of each player

at his satiation point simultaneously, 1. e.,
i _ i
x; (V) = u'(x)  (x € Mg(u'))
In general, the blisspoint is not feasible (x{(V.) & V_(%)),
and the planning agency considers the problem as to which

point of the feasible set of the grand coalition would be a
fair value given the bliss point of the game.

There are values for games without sidepayments which may
easily be defined for non-superadditive games, that is for
games with bliss points. Compare for instance SHAPLEY [20],
HARSANYI [6], [7] and [15], [19]1 . As this 1s not our present
topic it suffices to mention that such values in principle
could be carried over as to define values for location
conflicts: for instance by a formula like

i s [ T w{vzj
where v 1is a value which is defined for games without

sidepayments featuring blisspoints.

On the other hand it seems sometimes reasonable to discuss
values for location conflicts axiomatically. As it turns out
one might arque that a value like the NASH bargaining solution
(NASH [111) might not be intuitively feasible for location
conflicts. An axiomatic definition of values for location
conflicts has been given in RICHTER [16]. This author adopts
the viewpoint that defining fair values for Tocation conflicts
is rather a problem of Wellfare Theory and not so much of
Game Theory. He then gives axioms and definitions of values
and introduces a certain class of values which for instance
are defined for games in the “pure bargaining” form, that is
where only the grand coalition and the bliss point matters.
Typically such a value would be obtained by minimizing the
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distance of the bliss point and some point on the Pareto surface
of the feasible set of the grand coalition where the word
"distance" has to be interpreted in the sense of a certain
p-norm. It is important to note that such a value would enjoy

in addition to the axiomatically stated properties also certain
continuity properties which are to be used in our later treat-
ment. Such contiuity properties will possibly not be attached to
values for games with bliss points as defined for instance in
[19]. It is quite possible that they enjoy the property of being
upper hemicontinuous correspondences given the appropriate
topology on lecation conflicts. At this stage of our analysis

we shall not enter the problem of continuity but rather make
this a requirement. For the following discussion we shall just
assume that values for location conflicts are available and that
they enjoy certain properties to be defined in the next section.

Fair distribution of Publie Goods

Definition 2.1: Let I : = {r£ = (q,B,U)} denote the set of

location confiicts,

Given 1°

I, a value (for I“} is @
correspondence ¢ : g% - F{IR]}
enjoying the following properties:

- ¥ii) = B

2. v preserves blisspoints.

(B 1T M e =00 HBu1 £+ P , then
i ieq

3. w is finitely determined.

[i. e., Tor any famfly £" € 29 of
location conflicts admitting of a
compact set K such that

i : ;
Mg u ek (f' € 1'), there is a compact
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=l

convex set such that K > K and

K
implies +w{(g') = w(z")

4. %(r) < convex hull of ] MBu

The fourth condition is not extremely appealing. Preferably

it should be replaced by Pareto optimality. There are clearly
situations such that both requirements are easily satisfied

(e. g., if the location conflict is one-dimensional, i. e. if

1 =1, or if the utilities of the players enjoy some symmetry,
i. e., if they are norms). On the other hand, in the case of

two players and two dimensions of the planning area, the inter-
section of the contract curve and the convex hull might just
contain the satiation points of the players. By technical
reasons we shall impose the above convexity condition (cf.
Theorem 3.8, second step) and leave Pareto optimality for later
treatments. Further requirements possible are invariance under
permutations of the players, invariance under linear rescaling
of the utility functions and the like. However, every value
should at least choose Pareto optimal points and, if bliss points
are feasible at all, then t value should choose these feasible
bliss points.

Let us now recall the results of Section I. We have seen that
given suitable conditions, positive prices and an appropriate
taxation system, the resulting derived utility functions are
concave and enjoy satation points. This means that given prices
and a taxation systems the market or economy induces a Tocatiaon
conflict. Now let us assume that some planning agency, knowing
the preference structure of the individuals with respect to the
public goods and some "concept of fairness" ¥ , will compute
some public good to be produced which might in the ideal case
of course be a "bliss point"” but usually will be something which
is just "fair". The value to be chosen may be opted for by
society in advance. What is left to the planning agency

is just to compute the fair value given the



o A e

location conflict that results from the market at present
prices and tax structure (There is af course the serious
counter-argument to this procedure that individuals might
possilby tend to reveal false preferences in order to

influence the choice of the public goods.

Definition 2.2: Let M be an economy and C a taxation

system s.t. M and C are compatible,

P e gy

Given p €
@l o Pb 5 o (a, ml . !“jﬂ[l:| tuhare OPCo(iPC iy

is the location conflict generated by W
(via C at p)

Definition 2.3: Let M be an economy and € a taxation

system. Define
kg . = n kgd e, pef. 1.8)
ieQ

Then, given p e pP™!

' g -
(2) KePC . < (a, B, KGPC)(where XGPC-(KiPCS 1)

ieq)

is the location confiict generated by Hk

Note. If C & Q@ (Example 1.5} is an affine taxation system,
then budget restrictions of the type
pX = pa1 + cT[hJ - € ¥)

can be rewritten as

or

: Ol e :
provided c ' (y) = q1y o . Hence, ! g gt 1 depends on q1
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A i I
and not on @y We shall use the notations 0 = (g S

i’

(instead of L) as well as

;i o gpai | gpe  .p0
and the 1ike. Similary, if C € @° (Example 1.6), then we shall
identify c1, C1Eyj s gy + o , and g, 1. e., Write

TR, : P4 ) P4
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SECTION 3

EQUILIBRIUM
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Definitiong and the Genergl Affine Taxation Case

Definition 3.1: Let M be an admissible economy, €° e &

a taxation policy, and ¥: £° - PR")

value for location conflicts. Then

1

. L & re®Byd X iRy B

is a2 y-C°-equilibrium for M if

1. M and € are compatible

i, %' e X5, &, 7)) (ieq)
5. (£ X' -a'.y-b)evy
ien

0f course, conditions 1 - 3 are of technical nature. Hence the
obvious interpretation of the definition is that,

given equilibrium prices and taxes, the public bundle is
considered to be "fair" within the location conflict induced. Given this bundle,
every player maximizes his utility with respect to the private goeds,
and finally the result obtained this way is feasible and efficient with

respect to the production technoloagy.

Mathematically,it could be considered to be a blunder carrying
the taxation policy €% in the definition of equilibrium.
However, it is cur idea that a taxation policy as well as the
value are institutional data and selected in advance.

Hence one is 1meeking for a taxation scheme which allows an equilibrium
within a certain prescribed family or pelicy of taxations.



Let us also formulate the definition in case of the fruncated

vVErsion.

Definition 3.2: Let M be an economy and £° e & a taxation

policy. Let v : 1% - P{IR1} be a value faor
location conflicts. Then

k k.n 1

il O LR L L R,

(P, T, X, y) P

is a v¥-{"-equilibrium for Hk if

2t kgl o go
3. Je v{kzﬁt}
4. e, el ¥ (ieq)
§'. 5 (X' -a', §-b)evy
e

A first and obvious result is that, given affine but arbitrary
taxation, the ¥-Q-equilibrium is a generalization of the well-
known Lindahl equilibrium. As we do not want to enter the formal
definition of Lindahl equilibria the reader is referred to

[el, [10].

The definition of a "Lindahl equilibrium" within our

framework is rather obvious. Note that., given linear
taxation, compatibility of M and 0 = qu,...,qn}

is easily verified if § 1is positive, say, in

the presence of strict concavity or utility functions that are
not increasing too fast with respect to the private goods. In
fact, such reguirement can be imposed upon linear taxation
functions in a uniform manner. (Cf. Definition 1.11 and Theorem
p T b



Theorem 3.3: Let M be an admissible economy and let

Froof.

(2)

y : £% B{ R™) be a value s

£z € 1% whenever HF i HB

it 1EQ

Suppose (B, 0, %, ¥) eP™! x ¢ x ®" xR)" X R,

is a Lindahl-equilibrium suc

are compatible. Then (p, 0,

y-0-equilibrium for M

] = — $is :
For i €q, (x, ¥y} maximizes i's ut

iy | 26X, Y E Rl , Px + d'y £ pa +q'b)

This shows that for x with px g pa

we have

Pa S TR TR S e

X' & . &' B

uch that

i
u = @

h that M and

X, ¥) ‘iz a

ility within

'+3'b-q'y

and 4. of Definition 3.1 is satisfied.

Moreover, (2) implies

iz

Py = ux P

= max {u‘{x,yi | XX E mi, px+g 'yspa +3'b)

max {u'(X,¥) | X € X, PX+§

Py

-

= apq.1ty1 for all y

This means obviously vy e n M ] uP
iea R
i

iyﬂﬁai+afh}

0

Hence, :pﬁ ex° and y &£ w{zpﬂ} , by Definition 2.1,

hence 2. and 3. of 3.1 are satisfied.
monotony, 0. of 3.1 is clear while 5.

definition of a Lindahl equilibrium.

Given strict

is part of the

1



Egqual Tazatien

This section is dealing with an existence proof for equal
taxation. This does not mean that equal taxation is a
principle advocated generally,but it should rather imply
that it is possible to prove the existence of equlibria in
the presence of certain restricted taxation policies.

Clearly.we have so far not been dealing with properties of
the production set ¥ . In fact, the conditions we are to
impose result from fairly general properties of Y . This is
a problem that has already been carried through by ROBERTS
[17]. This author provides a 1ist of the requirements for ¥
sufficient to prove that our conditions as stated below are
satisfied; in paricular it is claimed that ¥ should feature
constant returns to scale, that is, ¥ should be a convex
cone. However, we believe that decreasing returns to scale
are sufficient, that is, that convexity of ¥ essentially
would be a sufficient condition.

In ény case as we do not want to enter this discussion we
shall just make the results of [17] as to be our conditions

in order to establish equlibrium. This motivates the folluwing
definitions:

Definition 3.4: ¥ 4s smooth , if

T | 1
1. G 2P X m+

y 1
-« P(-X X R})
{Bs ¥) = 1%, 8) | X € ¥, 4 R

PX+4y = max{Px+qy

is & nonempty, convex valued, compact
valued, u.h+c°rc0rrespﬂndence.
2. For every k sufficiently large
6" PPl x BE L o0k
(B> ¥) = G(F, ¥) n (-°x

is nonempty (and, of course, as well convex

1
X R, )

nk !
XR,)

valued, compact valued, u.h.c.).



Theorem 3.5: (Equal taxation, truncated market)

Let M be an economy with smooth ¥ and

b= D. Let  BY be equal taxation.
Furthermore, let v : x° - B RI] be a
value such that

KPq ¢ go
for a1l p e P™! . g e §° and come k e
sufficiently large., If

(p, q) - v(*eP9)

]Pm+1 % 0° . ]Rl}
is a convexvalued u.h.c. correspondence, then

there exists a ¥-@°-equilibrium for MK

Proof. 1.Step. Befine

0
yk Proj, wu Gk{p.y} :

pe H:,m-l~1
yE pk

1

K is u.h.c.). Let K be its

this is a compact set (since G
convex hull (as well compact). We are going to define

A& correspondence

F 2 f".k = ;)!:'_'ﬁkj
where
ﬂk A mm+1 ¥ Hk y EHKZEHE y Tk
as follows:
Given (p,q,x,y) e &k . define
+
(3) p' ;= B2 X
: 1 + EKT
3

Next, choose

(4) y' & v(*zPY)




(6)

(8)
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As ¥ s smooth, there is

o K i 1

b A s g ».:IR+
stich that

% ' k

{xsnq') € 6 (pey)
Next, choose

S
and define

X! =% Bt ot ®

iED
Now, F(p,g,x,¥) is defined to be the set of

all (p'.q'.x',y') that are obtained by this

procedure. Formally
F(p.qax.y) = {{p'.q'.x",y') |

+
ps iy e L Al Tfkﬂpq},

1 + Exg
J
'z E @ - al <%, (Fang')eskip.g
ien
-5 s ey A, 5
for some (x }iEﬂ’ XE K PGk dnd
some X £ -ank}

It might be useful to visualize F by means

of the following diagramm.
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i [
b
(]
=1
(]
=




o R

Step, Let us check that F takes values that are

subsets of &

Now, p Pl e obvious. Next, as y € fi,
p £ Pm+1 » We have

(X.na') € 6%(p,y)
¥ B

gt e Prod, Gk{p,F}

q' & % Proj, 6 (p.y) & B
Moreover, as kzpq = {ﬂ,kB.kﬂpq], by Property 0.
of Defition 2.1,

y' o= w{kzpq} = kg = fk

(ef. Dafinition 1.8, {14)). Therefore, it

remains to show that x' ¢ EnkZEnk

-2nke = x' z 2nke
To this end, note that by

Gk _"""' 8] I'Ik

definition of RoiE e FaR L

B s =% = nke

Similarly i g kfk
-k = %f =k
0 = ii ke

In view of a' 2 @ (i € a), it follows that
o R < nke - ¥

By

B

ke + nke = Znke

i
atigd; 85 a' = ke,

" e % T gt g -nke - nke = -Znke

Ay
158

completing Step 2,




(s)

(10)

(11)
(12)

(13)

(14)

(15}

3.

Step.

SoaE o

= 3
By assumption, ¥+ and G are convexvalyed

and u.h.c. correspondences. It can be
verified that ki]{-,o,-] 1s u.h.c and
convexvaiued as well. From this it follows

at once that
i ﬁk - ﬂK
s u.h.c. and convexvalued, and hence satisfies

the conditions of Kakutani's fixed point theorem.

K

Let [ﬁ,ﬁ,ﬁsﬁl g A be B Fised paint. 1. 8.,

.;-\..E_

there is X, [x Yoen &t

g B
I

]
{~1]

]
>

iER
Lt o b
(ng.X) € G"(p,y)
x' e X' (5,3.5)
y € r(kePh)
Let us disprove
Indeed, if (14) holds true, then from (9)

-

Rz
d




As b = 0 was assumed for'convenience, we

have for x' € iifﬁ:a:?)

_|_.--..i

px - pa < -qy

¥ &8s L15) centinucs

£ -ngy - pX ...
and since (0,0) € v*  and (X, ng)le G

P
it follows that nqy + pX 2 nq0 + p0 = 0 ,

1A

3 T
4 contradiction.

Hence (14) is wrong, 1. e.

xt =0
X =0
meaning
(16) zx' - a' 5%

But as (X,¥) € ¥" , this implies
(17} {EQ? o i ¥) e ¥
Now, (13), (12) and (17) imply that
R ~ 4 ;
(Ps Q. (X :I'iEQ s ¥)

is a v-0%-equilibrium for Mk




In order to prove the general existence theorem for the non-
truncated market a few additional conditions are necessary.
First of all it is necessary to have some kind of strictly
decreasing marginal utility imposed upon the players. In
particular we shall reguire that the consumer has a very udrgent
desire to receive at least some quantity of every private good.
His desire for acquiring private goods when having none should
be very high compared with his desire to hold cash.

This is wnot all together unreasonable. On the other hand
we shall ask that his marginal utility with respect to the
public goods is bounded. Again one could imagine that consumers
in a situation where they have almost no private good would
certainiy prefer some private goods to public goods with

great urgency.

The fact that we are going to formulate these questions in terms
of partial derivatives does not mean that the theorem hinges on
the existence of continuous partial derivatives as reguired.

In fact, the experienced reader will see at once that appropriate
formulations could replace the differentiability requirements

in an obvious manner.

There will also be an additional requirement with respect to Y.
In fact we want that taxes are

bounded away from 0. This means essentially that the g-coordi-
nates of tangents to the production set ¥ can be chosen as to
be bounded away from 0, and this as is easily seen is onlv a
requirement which concerns the boundary of Y . Similarly we
want that taxes are ranging within some set bounded from above.



Definition 3.6: Let M be an economy. Suppose each utility

function o' (i € o) admits of continuous
5 el
partial derzwatﬁwes %%; {xj o ;;
(£ & RY, ;;. (y; » 0), such that
]
aui
: .
(18) ayj is bounded,
qg
(19) %E— (8,0,¥) 2 n for some n > 0
and
EIIJ‘E
(20) “jﬁ?} CTEMEIRY, JOn WIS
-1
=

(Think of e , locally!)

Let ¥ have a closzed efficiency set.
In addition, assume that ¥ is smooth and
there is some 4,8 > @ such that for p € Pm+1,

y € ml , there iz (x,q) € Gk{p,y} with

ae =z g z se for k sufficiently large.

Then M will be called smooth.

We are now in a position to formulate a general existence theorem
for linear and equal taxation. Of course this is running via a
1imit theorem of the truncated versions. It should be notad
however that the general procedure applied to such 1imit theorems
is to be changed with respect to several details. The main
obstacle is that the bundle of private and public goods that the
single consumer receives in the egquilibrium will in general not
maximize his total utility. Instead his total utility is maximized
by the maximizer of the derived utility function u . This causes
some probliems when arguing that prices in the long run will be
positive.




Theorem 3.7: {Equal taxation, general version)

Let M be an economy which is smoﬂtﬁ,
admissible, and compatible with nearly
Tinear taxation. Assume that b = 0

Let @° be the equal taxation policy.
Furthermore, let ¥ : g% = p{ m‘} be

a value such that

L

(21) kKePQ ¢

for ali p EIPm+1, q € @°

and sufficiensly
large k £ IN.

(22) lat Bty
far all p. = 05 g > 0
Assume, in addition, that for all k c N
sufficiently large

(23) _ (p,a) = ¥(*=PY)
is a convexvalued u.h.c. correspondence.
Also,

(24) (p,q) = v(zPY)
is a convexvalued u.h.c. correspondence for
psg > 0
Then there is & ¥-0"-equilibrium for M
If ¥ has constant returns to scale, then

production is efficient.




- Wl .

Proof. 1. Step. Within the proof of Theorem 3.5., we may replace the

correspondence Ek by Gk’a’E

K,6,A

where

(3.5) = 6(F.¥) n {(x,q) | te 2z q = se}.

Hence we may assume that equilibrium taxes range within some
compact set and are bounded away from zero

independently of k € IN

Now, for k eIN sufficiently large, Theorem 3.5
guarentees the existence of a v-Q°-equilibrium

for Hk . say

{pk, qk, xk. yk}
We may assume that
(25) L e pitl ok - g EIRl, g >0
k
Also, since
(26) tr x - al, g8 e v
iED
we have
(27) 0sz & s §
jeq ieq

and hence, w. 1. 0. g.

. 0
(28) get & 51
k
E.' .|:|_.
where x. EIRT and £ %' = E al
ien ieq
2. Step. Let us verify that
(29) 6 = Ppsy > 0
To this end, assume first of all that
| k k
(30) pal sty g0

for all i €9 and all k €IN sufficiently

large. By property 4. of Definition 2.1,there



K =
¥ 15 a convex

kY 4 € Y. From (30) it

combination of the y
follows that
{31) p

for some 1 € . Let §k1 £ ﬁ{pk, qk. ykt} ’

ka1 - qkyu1 & B

that is
ek K ; . . A
(32) oPq 1{yk1} . u1(§k1, ykx}
and
(33) pk§k1 < pkai B qkyki < h
Since a' > 0 (i € 2), there is j such that
y?i is bounded away from zero. On the other
hand, (33) implies that ¥X' < 0 . Therefore,
given small = > 0, the bundle
cale ook $ki  gki gatoi e e
{34} {x:.}rj:={ 5E t es ¥ ‘E—k'e:]
q.
o
(where - p$+1j s *n kxk Obviously
pk?k 3 pﬁik11D el pka1 qkyk1+pke=pka1-uK~k ,
and hence
ek K :
GP 9 1E§k} 5 uifﬁk, r---lc:|
(35) . ,
i ! . b X i
3 u1fﬁk1. }k.} i E{;g - iF B }(ﬁk} LK j30 e
q; 3Y¥.
J J
k

where E—éil - D e =i}

ke : 5
As E"' 50 and u' concave, the term-%i-{-.*}

in (35} is larger than n (by (19))}. The term
1
au k

=y~ 1s bounded. If " - 0 (k »=), the coefficient

B}'j

of ¢ will, therefore, become positive. We may




(36)

5 W

then choose ¢ small enough (for fixed but
large k) such that (35) implies

K 4 ok s Ki ki,
)

ﬁp g 1{} Ji u1{; iy 0 2 A i DR o L

= U ) ) R
contradicting the maximizér property of yk1
This takes care of (30); for the rest of this
step assume now

pkai ’ qkyk n 7
for some 1 € @ and (by choosing a subsaquence)
for all k sufficiently large.

For this player i , 0 is a feasible private

bundle, i. e.,

a¥a e kel o K
Hence, gki = = cannot happen. For, boundedness
of (¥*), cp (by (36)) and of %X' (by (27).(28))
would imply

oki k1 k

1. K i
|:J"- i i}':]""“'

VRE S e yk} = |
;

(u’ is concave and strictly monotone), i. e.
ui{xki, yk} o ui{ﬁ, yk} (k large) .

contradicting xki = i{pk, qk, yk}

Thus; Eki is now bounded (by L a;+i from above).

Now, if pkai - qkyk et 8§ >0 1$§r some & , then

30 u {0} j%] would be feasible in player 1i's

budget sei. Clearly, u'(0, f% L

pk + 0, contradicting the fact that uﬁ{xLi, yk}

is bounded and xki is i's maximizer.

It remains to treat the case that
ki k k .k
P A 28 =l
k
Now, as (0, QE} is feasible for i ,we conclude
(-]

- 0



(37)

(38)

k
that Et is bounded {octherwise, like above,

. k "
1 L3 \
u {ﬂj iE ] j-" 1.:' -..:n}, Sa_}"
B

k
B
LR
2 k y ; k
Assuming p = O, there is5 Jj such that pj

is bounded away from zero; consider the bundle

: 2 k.
ki ki _ _m+l e
X 2 e +"-Ee

Pj

which is in i's budget set. We have by concavity

. . . ; k i i
u‘{fk1, yk} % uT{?kT, Fk} + EEE au - gz }f?k]
i bl

.i
The term %%— is bounded. The j'th arcument

j ; ; k
au : ki ok D
in E‘T 15 ’i'j Kj + —E-
J Pj
Because of
pkxkt ’ ﬁk

we have in view of {37)

KF g of e ki
3 pif pr (with L' & Ciw STRECE | £
J J is bounded )
: ki k i
and hence X, = Eln A P . {k e )
J P
k . 1 : kA
Bl ki K au e ke
T L el R G ot 1
Py SR +
by (20). This again contradicts the

maximality of y & via (38).

We have thus completed step 2. and proved (29).



(39)

i

4.

Step.

Step.

As p >0 it follows clearliy that p > &
Far, if p: = 0, then
J k
ks i ; P ¥
xk' T LTy E:—”E Em'l

would be a feasible bundle for i with higher
i

. if k is large {using 98 < By

"‘"ki
aXx .
1

utility than

We are now going to invoke Theorem 1.172.

Because of ﬁ > 0, there is € > 0 such that

o
K
p >¢OE
for large k € N. By Theorem 1.12., the maximizers
o K B
of uP 91 are uniformly located within some

wik K ok ok
compact set. Clearly, Tl L kup g : also

it is not hard to see (inspect 1:12) that, for

N
large k , the maximizing values of el LN v
Bk

be attained by “&F 9 7 as well; meaning that
both functions have equal maxfmizers for large k.
Hence, the maximizers of kapﬂqki will be
uniformly located within some compact set. By
Definition 2.1., Property 4., it follows trat yR

is a bounded sequence. Hence, there is ¥ € IR,

+

3 yk +y wW. 1. 6. g. We have established that
k
k ki ol k - = = =
™y g X5y ) . x. (Pe Gs Xy ¥)
k €N
w. 1. 0. 9., because
Dkxk1 < pkaT et yk

and boundedness of yk together with ﬁm+1 >0
will prevent ak} from tending to -=, as this
would contradict the budget maximizing properties

of xk1 eventually.



5

S5tep.

and
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It remains

(B 8

Conditions

to show that

Ks ¥) s a ¥-@°-equilibrium,

e}

1.. and 2. of Defifiition 3.1 are

obviously satisfied, 5. follows from closadness

ef Y . As

i'l

Concerning
k_k

large sets.

determined,

large k

is w.h.

gP @1

to 4., it is not hard to verify that

c. at >0, q » 0 and ¥
k~pKgki
condition 3., observe that uf 9

will coincide on increasingly

By Definition 2.1, as ¥ 1is finitely
e ook Kk
this means ¢(*zP ¥ ) = w(zP 9 ) for

Because ¥ 9% U.R.€. 2% Pa 8 -0

we conclude that y e v[zpq}

Supposé now that Y has constant returns to

scale. Then

{0,0) 1is efficient,and returning

to the proof (and notation) of Theorem 3.5.,

we find that (16) implies

0=p0+n30=pX+ngy z pr (X '-a')+ndy

This holds

Ten
within the framework of ﬁk

However, turning to the 1imit, we find

0. pL.

{x} - ai} + ngy

isn

“"holds true aiso w. r. the equilibrium established

for M . But ">" din {39) would establish

pX' - a') + Gy < 0

for at least one 1 & o0 - a contradiction to the

fact that

u' s strictly monotone.
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