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Abstract

SEQUENTIAL ANALYSIS AND OPTIMAL STOPPING

Hans W. Gottinger

This exposition reviews main ideas in the theory of sequential-
decision-making and optimal stopping. It attempts to show the
wide range of possible applications in operations research,
management science, control and system engineering, economics
and statistics.

The bibliography provides a (not neccessarily representative)
sample on idcreasing activities of sequential decision theory

and methods in many areas of interest.



+
Sequential Analysis and Optimal Stopping--

1. General Considerations

We arehere going to analyze and discuss a very important class
of decision problems which involve time explicitly as an irreversible
resource. These problems are known as dynamic or sequential decision
problems. They have a most natural formulation since every real-life
decision has to take care of 'time-induced' changes to which the
decision maker has to adjust or to adapt. These types of problems may be
extremely complex: they may involve changes in preferences, technology
and resources, the environment. Complexities may be added by uncertainty
or lack of information and multidimensionality. A general, very useful
technique of resolving dynamic decision problems has been introduced by
R. Bellman's dynamic programming 1_1_7. The original class of decision
problems treated by dynamic programming were restricted to deterministic
problems. Later dynamic programming in conjunction with the theory of
Markov chains and general stochastic processes have covered uncertainty,
and the case of conflict among many decision-makers acting sequentially
in time has been treated by differential game theory. In statistics,
sequential analysis was developed by A. Wald LT§7in the forties as a
consequent extension of his statistical decision theory.

All these problems, although originating in various subjects,
have common elements and also involve similar methods.

We first describe some of the problems and methods amd then
turn toward statistical problems in which Bayesian methods play a
crucial role. Bayes' theorem obtains new importance in view of

obtaining new information by sequential experimentation.

+ .
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2. Sequential Decision Problems

In every conventional decision problem one is faced with
the situation to act in one or another way. Then if the decision
is taken and a particular event occurs, a certain result will be
obtained. In a sequential decision problem one has another option
which could be summarized as 'wait and see', or 'go on and take
another observation'. This choice problem constitutes one stage, if
the choice problem is carried over several stages then the obvious
questior arises when should the decision maker stop in collecting
further information, this depends upon his expected utility of
taking one more observation. But it is difficult to compute the
expected utility of taking one more observation. In order to find
the best decision now, i.e. whether to stop and make a decision
or to go on and take another observation, it is necessary to know
the best decision in the future. Consequently, the search for an
optimal decision should not proceed according to chronological
time but in reverse order to work backwards in time since the present
optimum involves the future optimum. This fundamental fact is in-

corporated in the principle of dynamic programming.

Let U(w,t) be the expected utility of the best sequential scheme
when starting from a situation in which the parameters describing the
.distribution of @ are w and t, w changes randomly and t deterministically.
(w could be the mean of the distribution of 8, and t the inverse.of
the variance, i.e. the precision.) Let ﬁ(w,t) be the expected utility
of taking the best decision now, without further observations. Then
U(w,t) is either U(w,t) (and it is not worth taking further ob-
servations) or it is worth taking further observations. In the latter
case we start with U(w,t) and look at the change of the situation,

i.e. w and t change to w' (randomly) and t+h (deterministically). Let
then P(w‘lw,t) be the distribution of w' given w and t, let c(t,h)
be the cost of 'taking one more observation' from t to t+h.

Then in general, by taking further observations the expected

utility functional is

U(w,t) = JUGw',t+h)P(w' |w,tddw'-c(t,h).



The optimality principle, according to dynamic programming,

requires that

U(w,t) = max{ﬁ(w,t):fU(w',t—h)P(w'[w,t)dw'—c(t,h)}

This optimality principle yields a unique criterion on optimal

stopping depending on whether or not

U(w,t) = max {ﬁ(w,t)}

.3, The Marriage Problem

This type of sequential decision problem is representative
for a very general class of decision problems that can be solved
via dynamic programming, 1—14_7 or with other tools 1_8_7.

A known number of ladies , n, are going to be inspected in
a random order. You are able to rank them according to some fixed
criterion catalogue as to which lady will best meet your standards.
Let r, an integer, be that number indicating the rank among n ladies,
l<sr<n. At any stage of this procedure you may either propose to
one lady (by which the procedure stops) or continue inspecting.
Whenever you inspected a girl and you didn't propose she will
never come back, i.e. she will never get inspected.again.

If you propose to a lady she will always accept. What is
the optimal stopping rule? The desirability of every lady to be
inspected is represented. by a utility index U., the utility of
being married to the i—th lady with the ;"th rank with

Ujep 2 U3 205y,

We denote by r the number of n ladies, and by s the
apparent rank after some ladies have been inspected, hence r
changes deterministically and s changes randomly.

Correspondingly, we denote the expdcted utility by U(s,r)
and ﬁ(s,r), respectively. Now, the probability that the r-th lady
of apparent rank s will have true rank S is easily calculated by

the binomial equation

/ S—1 n-§’ ‘n
( ) P



Hence we have
s+n-r

(2) U(w,t) = U(s,r) = ;L P

as the expected utility, and ﬁ(s,r) is considered to be a known
funiction. Given the situation to have chosen the s—th rank out of r
inspections, the probability that the next lady will have apparent
rank s' is clearly 1/(r+1) for all s' so that P(s'[s,r) equals
1/(r+1).

Hence, the expected: utility fungg%onal becomes

(3) U(s,r) = max {U(s,r):ig1 U(i,r+1)/r+1)}

Consider two cases.
1) Set U1 = 1 and Ui = 0 for 1>1, i.e. follow the instruction
'always take the best'. Then the optimality criterion - to search

for - is according to (3).

(4) U(1,r)

max {r/n:iii U(i,r+1)/(x+1)}

and

(5) U(s,T)

;g: U(i,r+1)/(r+1) for s> 1

U(s,r) must be a function only of r since with increasing r it is
more likely to find the true top rank S whichk coincides with s.
(4) and (5) may be written in terms of recursive functions.

(6) U(l,r) = max{r/n,nr}

s A4

) b T 5

{ul,r+1) + rn_ . }.

r+l
2) Suppose U(],r):>ﬁ(1,r) = r/n, i.e. the utility of continuing
exceeds that of proposing. It follows from (6) that U(l,r) = n_ and
from (7), by reducing the value of r by one , U = U

Therefore, ur:>r/n, ur_]>(r—1)/n and from (6) U(l,r» U(l,r)»>U(l,r-1)
(r-1)/n. If it is not worth proposing to a lady who is best out of r
it is not worth proposing to a lady who is best out of (r-1). The best
strategy must be to propose to a lady who is best out of r, provided
r is large enough. How large should r be?

Suppose that U(l,r) = U(l,r) = r/n and U(l,r') = r'/n for all

r'>r. From (7) we derive

1 r+l ’ 1
= it — - = -
(8) Yr T £l { o T rur+l} or if Ve T U/T s Ve T T Ve 2

for all r. Adding together the r.h.s. of these equations we get



(9) v = + A4 s + —— } and

(10)

] <1 (bounded by 1).

As long as (10) exists it is worth proposing to the best lady
out of r.

Let r = R be the least such value, that is

1 1 1 1
(11) R+1 Tt T n=l R-1 R = R+i

o] —

+ — + <1« + + —+ ... + —l~
n-1
Then from (7) with r = R-1:
_ 1 .R ~ _R-1 .1 1 1
(12) Upe1 T R G Y B = S= gt )
from (9).
If n is large the value of R is given by IE dx/x = 1 where

the series (10) is approximated by an integral and hence n/R = e is

the base of natural logarithm. Hence for large n the optimum rule

is to inspect until a proportion e_](0.368) have been inspected and

then to propose to any subsequent lady of apparent rank one. The
expected utility, given by (12), is calculated by e—]. If someone looks
for a marriage partner at 18 through 40 (i.e. 22 years) one should

never propose until age 18 + 0.368 = 26.

4. Stopping Rule Problems

The essential features of a stopping rule problem can be
split into two parts, consisting of:

1. A probabilistic mechanism, that is, a random device that
moves from state to state under a known, partially known, or unknown
probability law.

2. A payoff and decision structure such that, after observing
the current state, we have a choice of at most two decisions.

(a) Take your accumulated payoff to date and quit.

(b) Pay an entrance fee for the privilege of watching one

more observation.

This procedure is very natural for casino or gambling problems.
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(a) Take your accumulated payoff to date and quit.

(b) Pay an entrance fee for the privilege of watching one

more observation.

This procedure is very natural for casino or gambling problems.



Some of the following examples have been lucidly described
by L. Breiman [W6_7.

Unrestricted coin-tossing, restricted coin-tossing, house-
hunting problem, purchasing a used car, parking place problem, the
stock market problem, the job searching problem, the dynamic inventory
problem.

Other classes or problems contain the product design problem,
medical diagnosis and sequential control processes.

The gambling problem often involves the following scheme:

An urn contains N red balls and M blue balls. You are allowed
to draw with or without replacement as long as there are any balls
in the urn. Each time you draw a red ball you receive one dollar
and each time you draw a blue ball you lose one dollar. This situation
can be formulated as follows.

Let {Xk, k = 1,2,...}be a sequence of random variables, and
let X, = +1 provided the k~th toss results in heads and -1 provided
it results in tails. Then S, = Z? Xk is the accumulated profit at
the n-th toss. If you and your opponent are infinitély wealthy you
could adopt two decision rules: Stop and collect your profits (or
pay your losses) or continue for at least one more toss. (In case
of a restricted coin-tossing situation, where your initial fortune
SO is finite, there may be at some stage a forced stopping rule,
e.g. Sn = -So, you have lost all your money and must quit.)

An attractive strategy would be 'to stop when you are ahead’'.
Such coin-tossing game can be treated fully by Markov devices.
Examples of this type will be encountered in a subsequent section
on gambling problems. As a probabilistic device we can understand
a Markov chain with a countable number of states and specified
stationary transition probabilities. .Under the gghditions specified,
Markov devices work well far gambling problems. Other
devices are possible, those which require more or less restrictions
such as simple random walks, Brownian motion, martingales, or other
stochastic processes (see L. Breiman 1-7_7, L. Doob 1_9_7, Dubins

and Savage / 10_/, Griffeath and:J.L. Snell / 13 _/.) For practical



applications and computational work they rely in most cases on the
functional equation approach of dynamic programming. The initial
state SO covers all relevant information of the past. The Markov
property is defined by the assumption that if Sn (e.g. accumulated:
winnings) is the state at time n, then P(S

n+l
and all past history up to time n) = P(sjlsi), where P(sj

= sj given Sn = 5.

s.) is
i)
the specified transition probability of moving to state'sj from
state s, satisfying

P(sj]si) zO,SZjP(st i) = 1.

One immediate empirical outcome of the Markov property is
to be seen in the fact that the past is incorporated in the present
so that the transition probabilities are only conditioned on the

present state.

5. Payoff and decision structure

Any stopping rule problem may involve a specification of the
initial conditions and a payment of the entrance fee (as a compensation
for taking part in a game). After some duration of the play you may either

collect your winnings or losses to date or continue playing. The

collection of your winnings or losses my be referred: to as your (sequential)
payoff. The terminal payoff F(Si) is the integral payoff over time. Payoff
and entrance fees are virtually dual-notions in. this context. To the decision
rule 'stop;aﬁd collect the payoff F(si)' we will associate a stopping set T,
containing all forced stopping states at which we must.stop and collect F(si).
For example, you may end in a state s where the game is forced to
stop, for whatever reason. Likewise, consider a set Tc’ disjoint from
TS, containing all forced continuation states associated to the
decision rule 'continue and pay the fee f(sj)', i.e. being in a state
sj we may be forced to continue playing, the set of these states
is the set of forced continuation states. So payoffs and costs (of

observation) are dually related.



Example: Consider a simple coin-tossing game. The probabilistic

device has the Markov property with transition probabilities:

P(j|i) %» for § = i+,

-% for j = i-1

= 0 for other values of j.

A well defined stopping rule must tell us when to stop
along each possible sequence of states, since otherwise it would
be possible for the device to produce a sequence of states along
which our rule would not hold. Therefore, a stopping rule involves
a matching process between a criterion catalogue represented by
expected utility and computational costs in terms of 'costs of
observation'. The best stopping rule, the solution we are seeking,
makes the expected. utility or expected monetary value as large
as possible. In general, expected total payoff (rather than utility)

is defined by

EZ = ZZ(SO’SI""’Sn)P(So’Sl""’Sn)
where the sum is taken over all stopping sequences ont the list

weighted by the probability of the sequence. Z(so,s "’Sn) is

the payoff function. ]
A stopping rule then involves a binary choice 'either

stop or continue observing, samplingletc.'. Let T be the set of

these rules, then a stopping rule T is optimal with respect to the

total expected payoff if ET*Z ZETZ for all other stopping rules T.
Stability of a stopping rule means that it can be approximated,

in terms of payoff, by rules in which we decide to quit after a

large but fixed number of plays. This corresponds to a forced stopping

rule.



6. Decision Trees

A heuristic device for representing sequential decisions is
given by decision trees. Also it presents an intuitive meaning to
the idea of structuring and organizing complex decisions in a time
context, where a decision problem can be broken down into a sequence
of problems which follow one another in a natural time order.
Standard examples of that sort are the product decision problem
or other R & D decision problems, the medical diagnosis and treatment
problem amd: the investment decision problem, but the list can be
extended: almost indefinitely. Example of a product decision problem
can be traced as follows: The decision grows from the left to the
right, and it reflects the structure of decisions (decision nodes)
and uncertainty (random nodes) in a sequential framework. Although
it proceeds in a chronological order, it has been demonstrated
by the optimality principle of dynamic programming that to obtain
an optimal decision in terms of maximizing expected utility (or
minimizing expected loss) it is necessary to proceed in the reverse
direction since an optimal sequential decision can only be maintained
if each of the next steps of the decision have shown to be optimal.
A'decision tree @onsists of a series of branches (corresponding to
the complexity of the problem). Summarizing, the decision tree method
proceeds in the following stages:

(1) the tree is written out in chronological order, the
decisions and-events being. described by branches in the order in
which they occur,

(2) probabilities are attached to branches emerging from
random nodes in any coherent way,

(3) wutilities are attached to the terminal branches,

(4) proceeding back from the terminals to the base,
by taking expectations at random nodes and maximizing at decision
nodes, the best decisions and their expected utilities are de-
termined.

This procedure is well adapted to computational work and

to the structure of dynamic programming, see D!V. Lindley 1-15_7. Chapt. 8.



7. Adaptive Processes and Optimal Stopping

Another type of application of optimal stopping rule is
motivated by adaptive processes occuring in sequential sampling.
Suppose that there are two drugs available for treatment of a certain
disease. It is not known which one is more efficient. How are the
drugs to be used to save as many patients as possible? If two large
samples are used initially we can determine which is better with
high confidence. But this implies that a high proportion of patients
would have been treated with the inferior drug. A more successful
procedure would consist in trying the drugs initially on small sample
groups, observing the outcomes, weighting the next test in favotr of
which seems to be the better drug on the basis of current knowledge,
and continuing in this fashion. This procedure involves optimal
stopping at a stage when sufficient information is collected
allowing to choose the superior drug. Learning and acting simultaneously
are already involved. For adaptive control processes a decision-making
device (or controller) is called upon to perform under various
conditions of uncertainty, conditions which may range from complete
knowledge to total ignorance. In fact, optimal stopping rules can be
viewed as control devices governing a deterministic or stochastic
dynamic system. The evolution of the system will be the result of
the interaction between the laws of notion of the system and the
sequence of actions taken over time.

To show the connection between adaptive system theory and
optimal stopping ruleswe exhibit the simple transformation of a
deterministic process.

We assume that when a system is in the current state s and
a decision a is made, the new state of the system s, is sl=T(s,a).

1

Then if the system is observed to be in state s, and the decision

a is made, the system is transformed into 5, = T(s],al).

Next with the system observed to be in state s, and the

decision a, to be chosen, the new state is 4 = T(sz,az), etc.



Then after N stages the system will be transformed into state

= T(SN—I’a ). Therefore the pair (s,a) generates a semigroup

°N N-1
of transformations over the state space S. The optimality of process
is to obtain a final state at which the(expected) net gain or loss is
maximal or minimal. The expected gain or loss consists of the
difference of the gain or loss associated to the final state and
the costs involved to obtain that state, hence it is a function
of the final state ¢(SN).

Bellman's principle of optimality is very natural in pursuing

this goal, and the functional equation technique is very appropriate

in reaching it. It states: An optimal sequenceof decisions has the

property that whatever the initial state and decision are, i.e.

given the pair (so,ao) the remaining decisions must be optimal with

"regard to the state resulting from the initial . decision.

A more interesting and less restrictive .case is that of
partially known transformations. Those involve processes in which
the outcome of a decision is not precisely known. This means instead
of considering deterministically known states we are concerned with
random states. Let it be assumed. that the controller or decision-
maker does not know the exact distribution of possible resulting
random states, rather he has an initial estimate of this distribution
that may be justified by adopting the Bayesian philosophy, and in
the process of decsion-making he is able to modify this estimate
in the. light of the actually observed history of the process which
can be transformed via Bayes formula to obtain new information. This
idea is basic to learning system theory in a random environment
(K.S. Fu [—12_7). An interesting application of this procedure for
the treatment of ptients has been given by J. Cornfidxz“18_7.

We first give a general treatment of this situation before
we turn to spdcific sequential estimation techniques in this
framework.

Let the decision maker's knowledge be specified by an

information pattern I. This information pattern contains all the
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information about the past on which the future actions are to be
based. It may be represented by ana priori probability density
function. The overall state of the system plus the decision maker's
knowledge is specified by a point in a new state (s,I). Then, if
the state of the system is (s,I) and the decision a is made, the
new state 1is s, Il = Tl(s,I,a,r), where r is a random variable
having an a priori probability distribution function G(s,I,a,r),
knowledge of which in itself is part of the information pattern.

The new information pattern I2 is specified by a transformation
12 = TZ(SI};E,T)-

The goal is to determine a sequence of decision {al,az,...,aN}
that will minimize the expdcted value of a preassigned function of
the final state ¢(SN,IN). Since the exact distribution functions

are not known, the expected value is taken regarding the a priori
distribution functions as the true ones.

Introduce a sequence of functions {fk(s,I)}

£,(s,I) = Min E ‘L'q)(sk,xk)j.
{a,,...,a
Then the principle o% optimality yields the relationships
N fN+](s,I) = Mén frfN(T](s,I;a,r),Tz(sll,a,r))dG(s,T;a,r),
H="1520xs

and for N = | we have

(2) £,(s,T) = Mgn J"r¢(T1(s,I;a,r),Tz(s,ll,a,r))dG(s,I;a,r)-
The relationship (1) and (2) can be used for establishing the existence

of optimal policies.

8. Sequential Estimation

Sequential estimation and related sequential detection
processes of this type to be.discussed occur in radar and communication
technology where the receiver uses variable rather than fixed sample
sizes. In such cases the principle of optimality provides a natural

mathematical formulation and a numerical solution. Let us assume that



the task of a controller is to estimate the value of an unknown
probability p. Take a binary sequential experiment where p is the
unknown probability that a certain random variable takes the value
unity, and I-p is the probability that it takes the value zero.

The controller is to conduct a series of experiments, record the
outcomes, and make an estimate of p on the basis of this experience
plus any a priori information available. There are also costs
assqciated»with performing each experiment and possibly making

wrong estimates of p. The problem is to determine when the experiment
should be stopped\and:what estimate should be made by the controller.
Let us specify the situation in detail. Suppose that at the be-
ginning of the process the controller is in possession of the prior
information that n ones out of s trials have been observed. Regarding
the observation of the outcome of the process itself, we assume

that n of r trials have resulted in a one, but here we disregard
information concerning the order in which the events occurred. Since
p is unknown we regard it as a random variable, its distribution
function changes during the course - of the process. First
consider only the prior information, the change of the distribution
function is given by

o v ﬁp—l(]_p)s-n—l .
P B(n,s-n) Ps

where B is the beta function.

Second after m ones have been observed. in r additional trials, we
consider it to be

m T-m

S op (1-p)~ "dG(p)

r,m >

a Bayes' approach.

Let ¢ o denote the expected:cost of incorrect estimation
b

after r additional trials have resulted in ones and set

21 2
(3) c = aJo(pr,m p) dGr

r,m m(p)’

3

where p is the estimate which minimizes c¢ . The value of p
r,m r,m r,m
is given by the formula

m+n

r+s

_ o5
) Pom = foPdC, (@) =



which yields an intuitively reasonable estimate for p. A calculation

then shows that

(5) . - o I [m+n+1 _ m+n]

r,m r+s | r+s+] r+s

Now suppose that if m experiments have been performed the
cost of the next experiment is k(m), allowing for the cost of the
experiment to vary during the process, a feature that entails
interesting possibilities. We shall assume that in the absence
of additional information estimated probabilities are to be regarded
as true probabilities. Also we wish to require that no more than R

experiments be performed, thus we introduce a forced termination rule

of the sequential process. This forced termination rule makes sense
in many practical situations, particular those which are alike the
marriage problem. If the termination rule comes into effect the
process must be truncated at this point. By dynamic programming one
can determine the optimal control policy. In doing this the cost

funetion fr(m) is defined by

(6) fr(m) = expected cost of a process beginning
with m ones in r experiments having been observed, and using an
optimal sequence of decisions.

Then the principle of optimality yields the functional

equation Tc:k(r)+pr,mfr+l(m+1)+(1”pr,m)fr+l(m)
(7) £ (w) = Min liT mtn [mint] _ men
s %% s{_r+s+l r+s
which holds for m = 0,1,2,...,r and r = R-1,R-2,...,0. The sets

Tc and Ts denote the continuation and stopping rule sets respectively.

In view of the termination rule we also have

(8) fR(m) = q

R+s | R¥s+1  R+s

m+n [m+n+l m+n}
These relations quickly enable us to calculate the sequence of
functions fR(m), fR_](m),...,fO(m).
At the same time we can determine whether to stop or continue
and what estimate to make of p in the event the process is terminated.
The functional equations have been investigated computationally
by R. Bellman and others 1_2_7, 1_3_7, [—4_7 for a wide range of

values for the parameters o and R, and for several cost functions

k(m) . When the cost of experimentation was constant from experiment
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to experiment, or when it increased and when one out of two ones
had been observed:a priori it was found that the optimal policy
essentially consisted in:

1. Continuing the experiments if r was small (not
enough information present on which to base an
estimate) .

2. Stopping the experiments if r was sufficiently
large.

3. Continuing the experiments for intermediate values
of r, unless extreme runs of either zeros or ones
occurred and stopping otherwise.

On . the other hand, in the case of a decreasing cost of experiment
the optimal control policy is more complex. This is intuitively
plausible since the cost of experimentation may have dropped to
such a low level that it might be profitable to do at least one

more experiment before making the estimate.

9, Gambling Problems

Consider the classical ruin problems as formulated by Feller
1“119 Oh. W7 Suppose a gambler with an initial capital S, plays
against an infinitely rich adversary but the gambler always has the
option to stop playing whenever he likes to. The gambler then adopts
the strategy (policy) of playing until he loses his capital or
obtains a net gain Sn—SO at the n-th play. Then p is his probability
of losing and l-p the prcbability of winning. In other words, the
gambler's net gain G is a random variable with the values Sn—SO at
probability 1-p and -SO at probability p. The expected gain is
E(G) = Sn(l—p)+p!—So. The treatment of this problem can be facilitated
by interpreting the gambler's process as a random walk with absorption
barrier (O’Sn)' Such kind of problem immediatley leads to a problem
of sequential sampling. Let a particle start from a position SO such

that 0 < SO < Sn’ we seek the probability Pg that the particle will
o



attain some position < O before reaching any position.zSnf Then the

position of the particle at time n is the point SO+X1+X +...+X  where

the {Xk} are mutually independent random variables withzthe common
distribution {pr}. The process stops when for the first time either
X]+...+Xn < —So or X]+...+Xn > Sn—so. In sequential sampling the Xk
represent certain characteristics of samples or observations. Measure-
ments are taken until a sum Xl+...+Xk falls outside or inside the
preassigned limits. In the first case it leads to rejection, in the
second case to acceptance. The main ideas of sequential sampling

are due to A. Wald (1947). The whole problem can be formulated in
terms of a Markov chain. The idea of finding optimal gambling
strategies for favorable and unfavorable games has been pursued
rigorously in the literature on stochastic processes. In particular,
martingales have been found very useful for studying optimal stopping
times and stopping rules. However,their investigation require more
advanced methods than developed here. The more advanced reader is
advised to consult L. Breiman / 7_/, Ch. 5, Doob / 9 7/ Ch. II,VII

and Dubins and Savage 1—10_7; the standard reader is referred to

Feller / 11 _/.

10. Sequential Statistical Problems

Consider a statistical problem where the statistician can
take observations XI,Xzﬂ..,,Xn at different time from some population
involving a parameter W whose value is unknown.

After each observation he can evaluate the imformation
having accumulated up to that time and then make a decision whether
to terminate the sampling process or to take another observation
(to continue) sampling. This is called sequential sampling. In general,
there are some costs of observation (the costs of an experiment),
at some stage of sampling the imcremental benefits of taking one
more observation are offset by the incremental costs of observation.
The criterion for the statistician is to minimize the total risk,

therefore, in many situations he will compare fixed sample size



sampling with sequential sampling with respect to this criterion.
Although the benefits of sequential sampling may be determined

in advance, the costs of sampling may assume different forms, one
particular reasonable form is that costs of sampling may be sharply
increasing in the process of taking more and more observations. The
risk of the sequential decision rule d in which at least one ob-

servation is to taken is

p(E,8)= E{ng,aN(xl,...,xn)} c ety d

N

-2 I .
nél {N=n}QL(W’6n(X1""’Xn»

g(w|x],...,xn)dv(w)an(X],...,ang)

+n§](c]+...+cn)p{N=n}

with £(-

Xl""’Xn) being the posterior generalized probability density
function of W after: the values X] = x],...jxn =X have been observed.
A Bayes sequential decision procedure is a procedure § for which the
risk p(£,8) is minimized, hence it is optimal.

It is said a sequential decision process § is bounded if there
is a positive integer n such that Pr(Nsn) = 1 . The existence of
bounded sequential procedures reflects the existence of a termination
rule of the game. For practical applications there are many reasons

for introducing a forced termination rule since there are situations

vhich force ourselves to make a decision not to continue.

1. Evistence of Optimal Stopping Rules

For a g.p.d.f. ¢ of W let pO(w) be defined as follows:
po(¢) = inf IQL(w,d)¢(w)dv(w)
d D

Then po(¢) is the minimum risk from an immediate decision without
any further observation when the p.d.f. of W is ¢.
Let XI’XZ""’ be a sequence of observations which have a

specified joint distribution, and for n = 1,2,..., let Yn = Yn(Xl,...,X )
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be a random variable whose value depends on the first n-observations
X.5+«..,X . Suppose that the statistician terminates the sampling
1 n .

process after having observed the values of X ..,Xn)his gain is Yn.

1°°
The question is does there exist a stopping rule which maximizes
the expected gain E(Yn). For a given stopping rule the expection E(Yn)

exists iff the following relation is satisfied.
B[ = 2, E(|Y[N=n)P (N=n)< =,

We are interested in determining whether there exists a stopping
rule which maximizes the expected gain E(YN). For a given stopping
rule, the expectation E(YN) exists iff the following relation is

satisfied:

E(JYy ) = £ E(|Yy[N=n)P (N=n)< =

12. Sequential Statistical Analysis

After having shown that the idea of sequential decision making
pertains to many real-life decision processes we are going to demonstrate
-now that they are also particularly useful for the theory of statistical
decision.

Suppose that there is a stream of potential observations XI’XZ""
generally infinite, but sometimes finite, as in the case of sampling
from a finite population. In the simplest case the variables Xl""’Xk’
could be considered as imdependent observations from a fixed

population with probability function

£ Gy nxfo)= £0x [0)E(x,[0) ., f(xkle>,

where f(x]@) is the probability function of the population, if we
restrict to the discrete case only.

An optimum decision procedure is one that would minimize the
overall expected loss (or, equivalently, maximize expected utility).
One special problem that one encounters in the loss structure, and

which is not considered in samples of fixedr size, is the cost of

L



obtaining observations or cost of sampling: In the sequential case the

cost of sampling must be added to the loss ordinarily associated with

the consequences of taking a certain action. In general, it is reasonable
to let depend the cost of sampling on the state of nature, the number

of observations and sometimes even upon the values of the observations.
Hence, define C(e,k,X],..,,Xk) as the cost of observations.

A very simple special kind of assumption is that all costs
being proportional and independent of the state of nature that obtains,
e.g.

C(X|»-..,X) = kC.

For simplicity we will work with the latter function in what
follows. The sequential nature of sampling is generally exhibited
in two ways. First, the sequential nature of the experiment has to be
.defined, and second a termination rule has to provide a criterion at
which step of the sequential process one has to stop taking further
observations. Therefore, the experimental design involves two key
notions: a stopping rule and a terminal decision rule. A sequential
decision rule is specified for each number of observations Xl""’Xk
by a function dk’ so that dk(Xl""’Xk) represents a certain action
after X]""’Xk observations are at hand. A class of such sequential

decision functions do’dl’d ., defined by 4 = {do,dl(XP,dz(X],Xz),...}

IRk
is called a terminal decision rule for a given sequential process

under consideration, where dO is one of the action when no data are
at hand.
A stopping rule is associated to a terminal decision,

characterized by a family of functions.

5 = {so,sl(Xl),sz(X],Xz),...}, where

7 0, 1f at least one
further observation
should be taken,
given X ,...,X
have been observed.

1, if no more obser-
vations should be
taken given that
Xl""’Xk are at

w hand.
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Now given a sequence of observations XI’XZ"" the function
Sy should be uniquely determined by the conditional probability

that precisely k observations will be taken, i.e.

PN = k|X],X2,...) = Sk(Xl”"’Xk)'

Then the probability of stopping, to be computed before the

observations will be known, and given a particular stopping rule is
PN = k) = Ejs (X,,..., X))

An interesting example is provided by a hypothesis testing

problem to be. discussed later more extensively.

Example:
Let a<m<b and let Ln = Ln(Xl""’Xn) denote the likelihood

ratio
. fo(Xl)fo(XZ)"'fo(Xn)
n fl(X])f](Xz)...f](Xn)

where fo and f] are probability (or density) functions that

characterize two states of nature (the hypothesis HO and Hl’
respectively). Then define the sequential decision rule
]""’Xn) = J reject Ho if Ln<m
accept H if L_>m.
o n

The stopping rule will be defined as follows: let B, = 0, and

for n > O,
<0, if a<L_<b

Sn(X X ) =

12°°°°"n 1, if L_<a or L_x2b.
n n

Then the pair (s,d) defines a sequential decision procedure for

the problem of testing a simple hypothesis against a simple alternative.

13. Bayesian Procedures

Suppose a sequence of observations X],X is available at

g3
cost kC for k observations. For a given sequential procedure (s,d)

the total loss, including the costs of observation will !be

Z(S,dN(X],...,XN)) + NC



with N being a random variable (its distribution determined by ©
and the stopping rule s), whose value is given by the number of
observations actually used in reaching a decision.

The expected loss or risk is then
R(6,(s,d)) = E[2(8,d\(X,,...,X)) + NC]

and the Bayes risk for a prior P(6) is obtained by further averaging
with respect to that prior
B(s,d) = E[R(8,(s,d))].

The problem then is to find.a pair (s,d) which minimizes the
Bayes risk. This involves a two-stage procedure: first determine the
minimizing d for each stopping rule, and then choose the étopping
rule that produces the overall minimum. We can state the following
result whose various technicalities do not permit a proof here for
which the reader is referred to Blackwell & CGirschick 1_5_7, Chap.9.

For a given stopping rule s and a given prior P(8) the Bayes

. . e . . ¥* X X

risk B(s,d) is minimized by the decision rule d = (do,dT,...,dz,...)
where d; is the Bayes rule applied to any fixed-sample size problem
with i observations X]’X2"°"Xi""

Sometimes a sequential statistical problem has only a finite
number of stages, this demonstrates the similarity to problems such
as restricted coin tossing games, the marriage problems and other
problems‘discussed in the previous section where, in general ,
termination is enforced. In view of statistical sequential analysis
the introduction of forced termination is motivated by the consideration
that one may run out of data, for instance, if one takes samples
without replacement from a finite population.

Whea the number of stages is finite, the above result can
be obtained in a process of backward induction, on the basis of
computational procedures as developed by dynamic programming, to
determine the optimal stopping rule s™ such that the Bayes procedure
(s*,d*) is 'best' for a given prior distribution. In order to outline
the approach suppose that the stages of observation are restricted
to n(and not more), corresponding to observations Xl""’Xn' If it

happens that the Bayes procedure requires taking all n observations,



the terminal decision is made according to the Bayes criterionm,
i.e. the posterior distribution obtained on the basis of n observed
values is applied to the given loss function to obtain averages

in terms of which the available actions are ordered and the optimal
one is chosen. If the stopping rule s*, on the other hand, requires
at least n-k observations, the problems of whether to stop (and

use the Bayes terminal rule for those observations) or to obtain

more sampling data is resolved by comparing two conditional expected

losses;
(1) the expected loss conditional on the previous
n~k observations, and
(ii) the expected conditional loss if one takes more

observations (including costs for future observations).
Having determined the optimum procedure for k = o, the
computations and comparisons can be made for k = 1,2,... revealing
the optimum among rules calling for at least n-1,n-2,... observations.
Proceedings recursively this way the Bayes rule is completely

determined via backward induction.

.14, Hypothesis Testing

This section exhibits an example of testing a statistical
hypothesis with two states of nature and two actions, e.g. testing
a simple null against a simple alternative hypothesis. Consider the
problem of testing the hypothesis that a population is normal with
mean u, = O against the alternative that it is normal with mean Hy = 2
the variance being the same in both cases:<ﬁ2 = 022 = 1. The actions
available are a;, to accept HO, and a,, to reject HO with losses

as given in the following table (in which ¢ and ¢, are positive

constants).
H H
o 1
s % €
a, <, 0]
Furthermore P(el) = p, P(ez) = 1-p be the prior distributions for

states of nature 61 and 0, respectively.
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If there are no observations available (no data case) the
Bayes action is chosen on the basis of Bayes risks which yields

in this particular case:

Bp(al)

cl(l-p)

Bp(az) = c,p-
The minimum of this determines the proper action. Now suppose
that at least one observation from thé population is being taken, at
a certain cost. The cost of observation being fixed at each observation,
the Bayes decision rule for a given observation is the one that minimizes
the Bayes risk, e.g. the likelihood ratio rule: v
Reject Ho if fo Cl(l_p)
£y P

Accept HO otherwise
where fi denotes the density of the observation under Hi'

2
£ e_X /2
Since o _ _ eZ—Zx
£ e=(x=2)%/2

the inequality for rejecting HO can be expressed in terms of x as

c

|
+ 5 log D S F(p).

1
x > 1 > log ) {=5

c
For example, if c](l—p) = c,P, then do act as though the mean is 0O

if the observation is closer to O than to 2, otherwise act as though
the mean is 2. The minimum Bayes risk for given p = P(HO) implying

the rejection limit F(p) is then

p(p) = ¢ pate B(1-p) = c,p f:l-<1>(F)_] + ¢, (I-p)e(F-2)
where ¢ (+) is the probability distribution fumction of the standard
normal distribution. The total cost of taking an observation and
using the Bayes rule for that observation is the value of p(p) plus
the cost of the observation. The minimum Bayes risk, over all rules
that use either no observations or one observation, can be found
graphically (see Figure 1). The figure shows p(p) with zero cost of
observation, and also with two other constant costs of observation

(moderate and high) and the rejection limit F(p) is shown for the two

hypotheses.



The Bayes rule for the situation pictured in the figure is as

follows
(1) if p<c, reject HO with no observation,
(ii) if c<p < d take the observation and use the
appropriate Bayes rule, V
(iii) if p=d, accept ho with no observation.
).

E 1N

///3!1i£h observation cost

| _» moderate observation
cost

zero ohseprvation cost

Figure 1

The argument above can also be used for the study of a
sequential problem in which at most n+l steps are permitted in order
to determine the Bayes procedures in the class of procedures re-
quiring either n or n+l steps.

Thus suppose one considers only stopping rules that require
at least n observations. If such a stopping rule is to be a part
of a Bayes procedure, the associated terminal decision rule, where-
ever the sampling stops, is an ordinary fixed sample size Bayes
decision rule. For stopping rules calling for exactly n observations,
with a terminal decision at that point, a Bayesian decision rule is
obtained by applying the posterior probabilities for HO and H1
directly to the original loss structure.

Thus if at least n and at most n+l observations are assumed
one is in almost the same position as in the example above - with
the notable difference that in place of the prior p in this example
one now uses the posterior probabilities based on the first n

observations. Given the random vector Z = (Xl""’Xn) of the first
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n observations and the original prior probabilities p = P(HO)

and I-p = P(H]) the posterior probability can be calculated as

follows: E_(2)
b, = P(H {Z =2z) = N
B, = P(Hliz = z) ﬁé%g%fliil
where
£ (z) = £(z[H) =Pz = z[H )
f£,(z) = f(ziHI) =Pz = ziH])

denote the probability (or density) functions of the data Z, and
w(z) = pf_(2) + (1-p)E, (2).

The expected posterior loss is computed for each action.

cl(l‘P)fl(Z)
Accept HO:O + ¢y = w2
Reject H :c.p +0 = ©2P%o (%)
J 0 2P, w(z)

If the first is larger one should reject HO, if the second
is larger one should accept HO.
Therefore, the critical region is the set of Z-values

defined by the rule

' . £,(2) ¢, (1-p)
Reject HO if fl(z) < )P

The constant c](l—p)/czp cannot be calculated without knowing
the losses ¢ and c, and the prior probabilities, however, it can be
shown that the family of tests satisfying this rule includes all
Bayes tests and only Bayes tests. The ration L = fo/f1 is called the
likelihood ratio and tests with critical region are called likelihood
ratio tests. Analogously, we can deal with the case of sequential

tests.
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The inequality that determines whether or not the observation
is to be taken, e.g. c<ﬁo<d where c amd d are determined as in the
example above. They can be expressed in terms of the likelihood

ratio, by substitution for the posterior probability p

5
o
WfO(Z)

d .
ks wE (D) +(1-0f,(2)
By rearranging this formula
l—wfl(z)
c<lt — o oL
wfo(z) d
or in terms of
Ln = fo(z)/fl(z)
with
_ I-w € _ -W d
a= \ l=g ? b= % 1-d

Then the Bayes procedure is as follows:

Calculate the likelihood ratio based an n observations, if it falls

in the interval from a to b, take one more observation and use the

Bayes test for n+l observations. If the likelihood ratio for the

n observations is less than a, reject Ho’ if it exceeds b accept HO

without taking the (n+1)-st observation.

.15. The Sequential Likelihood (Probability) Ratio Test

This test has been first developed by A. Wald‘[~16_7 and is
designed for testing a simple hypothesis H0>against a simple
alternative Hl' For a test to achieve error sizes o and B, define
constants a = o/(1-8) and b = (1-0)/B and use these as limits for
the likelihood ratio Ln computed after each observation is taken.
If Ln <a, the sampling stops and the null hypothesis is rejected,
if Ln 2 b the sampling stops and the null hypothesis is accepted.
If a<Ln<b, another observation is taken. The test assumes the

availability of observations X]’X and that at least one

L
observation is taken. It can be shown that although the error

Slzes actually achieved with the test are not exactly those
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specified, they are close enough for practical purposes. It can
be shown that the sequential likelihood ratio test terminates with
probability 1 both under HO and H]. Wald and Wolfowitz 1_17_7
have shown that for assigned error sizes the sequential likelihood
ratio test minimizes the expected number of observations n. Define

the expécted number by
E(logLn)

E() = —

where Z is the logarithm of the likelhood for a single observation,

and the numerator is approximately given by

E(logLﬁ) = (log a)P(rej.Ho)+(log b)P(acc.Ho)

For the case of Bernoulli population, given the observation z,

-2z
/ Z 1
(6 | 2) [eo\ /1 eo“\
log ———— = logk ] K ;
2(9]| z), 6, -6,
60(1—6]) 1-60

]

z log -—s——— + log b
61(1 60) 1 81

where 2( ¢ |z) denotes the likelihood function of the Bernoulli

parameter to be tested for z = 0,-1.

Thus we have

90(1‘61) 1-90
EZ = z lOg W + 10g 1"9]

The sequential likelihood ratio test looks very much like
the Bayes sequential procedure defined in the precee ding section. The
essential difference is that there is no zero stage in the sequential
likelihood ratio test, with the probability of making a decision with
no data at all because a specific loss structure is not assumed.
It can be shown, however, that given any sequential likelihood
ratio test there exist losses ¢ and <, and a sampling cost per
observation such that the Bayes sequential test for some prior
distribution is exactly the given sequential likelihood ratio test.
Various further results, extensions and generalizations on

optimal stopping rules and sequential analysis can be found in recent
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issues of Annals of Math. Statistics (Annals of Prcbability and
Annals of Statistics) and the Proc. Berkeley Symposia on Math.
Statistics and Probability.
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