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A generalized Nash solution for bargaining situations under in-
complete information has been developped by John C. Harsanyi
and the author 1). In the following this generalized Nash
solution will be applied to a one-parameter class of numeri-
cal examples.

As we know from everyday experience, two person bargaining
is a dynamic process. Usually one observes a sequence of of-
fers and counteroffers which either converges to an agree-
ment or ends in conflict.what is the purpose of this dynamié
process? In a bargaining situation with complete information
it is hard to understand why there should be a bargaining pro-
cess. Here both bargainers have full knowledge about all re-
levant aspects of the situation which determine the out-
come of the bargaining process. Both should be able to anti=-
cipate the final agreement and to reach it at once. There
should be no need for a sequence of mutual concessions.

The theory of bargaining under incomplete information pro-
vides a rational explanation for the dynamics of bargaining.
Here each of both bargainers knows some aspects of the si-
tuation not known to the other. In particular a bargainer
may not know whether the other is in a strong bargaining po-
sition or not. As we shall see, in the example of this paper,

the bargaining process serves the purpose to resolve such un-
certainties.
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In the course of the bargaining process a player in a strong
bargaining position may get the opportunity to prove his
strength and a player in a weak bargaining position may

be forced to reveal his weakness. In order to show his
strength a player will act in a stubborn way. Thereby he
takes a risk of conflict which is too high for a player in
a weak bargaining position. The dynamics of the bargaining
process appears to be a vehicle for the credible exchange
of information. Creditibility is supplied by the willing-
ness to take a risk of conflict.

1. A simple bilateral monopoly situation

The incomplete information bargaining situation considered
in this paper has the following economic interpretation:

The government is willing to give a contract to two firms,
called 1 and 2. In order to get the contract the two firms
must agree about the division of the amount of 100, which is
the gross profit from this contract. One firm alone cannot
get the contract. In order to decide whether an agreement

on the division of the gross profit is profitable for

firm i, it is necessary to know the opportunity costs for
firm i, which depend on the degree of capacity utilization.
We assume that the degree of capacity utilization is either
low, in which case the opportunity costs are 0, or high,

in which case the opportunity costs are a, where a is a con-
stant with 04 a £50. Table 1 shows the dependence of the
opportunity costs on the degree of capacity utilization.

The number in the upper left corner of a field refers to
firm 1 and the number in the lower right corner refers to

firm 2
H L
_ a a
H
a (0]
firm 1
L 0] 0
a 0

Table 1: Opportunity costs (conflict point)
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firm 2. The symbols H and L stand for "high" and "low".

If for firm i the degree of capacity utilization is high, then
we say that firm i is of type H; in the same way we speak of
type L if the degree of capacity utilization is low. We as-
sume that the four type combinations (H,H), (H,L,), (L,H) and
(L,L) have equal probabilities (table 2). The information
given by tables 1 and 2 is common to both firms.

firm 2
— H L
SHEN
firm 1
IR

Table 2: Probability matrix

Each of both firms has additional information because it knows
its own type but this information remains incomplete since

the type of the other firm is unknown. We assume that the
firms are unable to prove that they are of a certain type.
Therefore the incompletemess of information cannot be re-
moved by communication. Since a firm of type L would improve
its bargaining position by a false statement about its type,
if such lies were believed, a firm of type H cannot effective-
ly communicate the fact that it is of type H.

An agreement between the two firms is a division of the amount
of 100; let z be the share of firm 1; then 100 - z is the
share of firm 2. In the theory of i}sjan agreement is given

4
firm 2
H L
Z Z
H

100~2 100~z

firm 1 B
L |2 Z

100~2 100-2z

Table 3: Bimatrix representation of an agreement
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by a bimatrix u = (uikm) where U, is the payoff of player i

if player 1 is of type k and player 2 is of type m. The bi-
matrix corresponding to an agreement between the two firms

is given by table 3. In order to adapt to the example to the nota-
tion of the theory, we shall refer to the types H and L as

types 1 and 2, respectively, whenever this is more convenient.

Formally, the conflict point (table 1) is also an agree-
ment in the sense that it is an element of the agreement
set U of [HS].

Since the theory of [ﬁg} has been developed for finite agree-
ment sets only, we assume that there is a smallest unit of
money whose value is €; the share z must be an integer mul-
tiple of ¢ with O£z £100; furthermore 1/¢ is a (possibly
very large) positive integer.

In order to be able to apply the theory to the example we
assume that the utilities of both firms are linear in money.
The firms are the players in an incomplete information bar-
gaining situation S = (U,e,r), where the agreement set U con-
tains the conflict point ¢ and the agreement bimatrices of
table 3. The conflict point ¢ is the opportunity cost bimatrix
of table 1 and the probability matrix r is given by table 2.

Sometimes it is convenient to regard the bargaining situation
of the example as a game played by the four types or "sub-
players" as we shall also call them. The subplayers will be
numbered from 1 to 4. The numbers 1,...,4 refer to types H and

L of player 1 and types H and L of player 2 in that order.

2. The bargainind model

The theory of [HS] is based on a bargaining model which
describes the bargaining process as a sequence of discrete

stages t = 1,...,T. The model transforms a bargaining situ-



ation into a'bargaining game. It will be useful to summarize
the model by the following five rules:

Rule 1: At each stage each of both players makes an offer.
An offer is an agreement ueU. The offers are made simul-
taneously without knowledge of the offer made by the op-
ponent at the same stage. Only after both offers have
been made each offer is made known to the other player.

Rule 2: An offer which has not been made before by the
same player is called a new offer. Bargaining results in
conflict if at some stage t both players fail to make a
new offer. If this happens bargaining ends and the players
receive their conflict payoffs.

Rule 3: An offer which at some stage t has been made by
both players - possibly at an earlier stage by one of

them - is called an accepted offer. If a situation is
reached where there is exactly one accepted offer, agree-
ment is reached at that offer. If this happens, bargaining
ends and the players receive the payoffs specified by the
agreement.

Rule 4: If a situation is reached where there are two
accepted offers - this happens if both players make offers
which have been made by the other player in previous stages -
then a random decision selects one of both players with

equal probabilities; the selected player then chooses one

of both accepted offers which thereby becomes the agree-
ment reached by the bargaining process. Bargaining ends and
the players receive the payoffs specified by the agreement.

Rule 5: If at stage t a situation is reached where there is
at least one new offer and no accepted offer, then bargaining
proceeds to the next stage t+1.



The bargaining game: The application of rules 1 -5toa

bargaining situation yields a bargaining game. The bargain-
ing game can be regarded as a finite game in extensive

form played by the subplayers V.46 swphe The strategies

in this game are called bargaining strategies. A bargaining
strategy prescribes an offer ueU to every possible situation
in which a decision may be required from a subplayer. (In

the case of rule 4 the choice is restricted to the two ac-
cepted offers.)

3. The solution concept

The generalized Nash solution developed in [HS] is based
on the idea that the bargaining game is played in a non-
cooperative way. Generally only equilibrium points are re-
garded as legitimate candidates for a solution of a non-
cooperative game. The view which is taken by the theory
of [HS} is in one sense narrower and in another sense wider
than that. On the one hand, only such equilibrium points
are considered as reasonable which have an additional pro-
perty, called strictness, and on the other hand, not only
strict equilibrium points but also probability mixtures

of strict equilibrium points are regarded as possible

rational ways of playing the noncooperative bargaining game.

A strict equilibrium point is characterized by the property
that the payoffs of the players remain unchanged if one
player,say player j, uses an alternative best reply to the
equilibrium strategies of the other players, whereas they
continue to play their equilibrium strategies. It has been
argued in [HS} that only strict equilibrium points lead

to stable payoff configurations. The example will show in

which sense non-strict equilibrium points may be very un-
stable.

The idea that probability mixtures of strict equilibrium
points represent reasonable ways of behavior, too, is based

on the assumption that the players can make their behavior



dependent on commonly observed random events which take
place before the beginning of the game 2). The random

events serve as signals which tell the players which of
several strict equilibrium points will be played in the

game.

If one takes this point of view one might wish to have a
theory which prescribes a unique probability mixture of
Strict equilibrium points to every bargaining game. The theory
proposed in [Hé] is less detailed than that. It uniquely de-
termines a payoff vector for the subplayers in the bargain-
ing game which belongs to at least one probability mixture
of strict equilibrium points. This payoff vector is called
the generalized Nash solution. A probability mixture of
strict equilibrium points which yields the generalized Nash
solution as its payoff vector will be referred to as a re-
presentation of the solution.

The finiteness of the agreement set U facilitates the de-
velopment of the theory but it also complicates its appli-
cation. Since it does not seem to be very interesting to
explore the question how the generalized Nash solution for

the example depends on ¢ we shall not look for the exact
solution but for an approximate one which comes arbitrari-

ly close to the exact solution as ¢ approaches zero. We shall
exhibit an approximate solution which can be represented by

a probability mixture of at most two strict equilibrium points
in pure strategies. In order to have a short name for this re-
presentation of the approximate solution we shall call it

the main representation. The next section describes the equili-
brium points of the bargaining game which occur in the main
Tepresentation.

2) As has been pointed out by R.J. Aumann, an even wider range

of coordinated ways of behavior should be regarded as rea-
sonable. We shall not explore these possibilities here.

See R.J. Aumann,Subjectivity and Correlation in Randomized Stra-
tegies, Research Program in Game Theory and Mathematical Economics
Research Memorandum No. 84, Jerusalem/Israel, January 1973.
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4. A distinquishing and a non-distinquishing equilibrium

point of the bargaining game

For the whole range O £a £50 of the opportunity cost para-
meter a the bargaining game has one special strict equili-
brium point in pure strategies which we call non-distinguish-
ing since here both types behave in the same way. For

25 + € £a 450 we also consider another strict pure stra-
tegy equilibrium point which we call distinguishing since
ﬁere the behavior depends on the type of the player.

The ndn~distinguishing and the distinguishing equilibrium
points are very different from each other but in some less
important situations they prescribe the same behavior. Both
equilibrium points require all four subplayers to follow
the "general" recommendations (G1) and (G2) stated below.
Later the general recommendations will be completed by
"specific" recommendations which are different for both
equilibrium points.

the recommendations first describe the situation they apply
to and then the required behavior. Unfortunately, it is ne-
Cessary to cover many situations which can never arise if the
equilibrium strategies are played. For the purpose of con-
structing a representation of the approximate solution, if
does not matter very much in many of theses cases, which re-
commendations are given. Nevertheless, it is desirable to re-
present the approximate solution by equilibrium points which
specify reasonable choices in all possible situations even if
this complicates the exposition.

Sometimes we shall say that a player "demands d" or "chooses
d as his demand" , where de is a number between O and 100.
These words mean that an agreement is offered which corres-
ponds to z = d if we speak about player 1 and to z = 100-4d if
we speak about player 2. (See table 3.)

Whereever the recommendations refer to a stage k we shall

assume k > 1. Separate recommendations are given for stage 1.



The lowest payoffs in the offers which a player has made in
Stage 1,...,k-1 is called his "lowest previous demand" at

stage k. Consider the highest payoff which a playver receives
in the offers made by the other player in the stages 1,...,k=1.

It will be convenient to call this amount the player's "con-
Ceded payoff" at stage k.

The general recommendations are as follows:

(G1) At a stage k your lowest previous demand is lower than

your conceded payoff. In this case choose your conceded

payoff at stage k as your demand at stage k.

(G2) You have to choose between two accepted agreements. In
this case choose that one which is more favorable to you.

if there is one; if both are equally favorable to you3)
select the conflict point.

The specific recommendations do not apply wherever the general
recommendations are relevant. This will not be explicitly men-~
tioned in the text of the specific recommendations. The non-

distinguishing equilibrium point is described by the following
recommendations (N1) to (N3).

(N1) At stage 1 demand 50.

(N2) Your conceded payoff at stage k is not greater than 50.
In this case at stage k demand 50,

(N3) Your conceded payoff at stage k is greater than 50.

In this case choose your conceded payoff at stage k as
your demand at stage k.

The description of the distinguishing equilibrium point is more
complicated. Separate recommendations must be given to both

types. A type H subplayer obeys the recommendations (H1), (H2)

3) This case cannot arise unless one of the two accepted agree-

ments is the conflict point. Since formally the conflict
point is a possible agreement, this case is not excluded
by the rules of the bargaining game.
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and (H3) stated below. Unless he himself has deviated from
his equilibrium strategy in the past, he always demands 75-¢.
Why he demands exactly 75-¢ will be partly explained in section 6.

(H1) At stage 1 demand 75-¢.

(H2) At stages 1,...,k-1 your demand was always 75-¢.
In this case at stage k demand 75-¢.

(H3) At at least one of the stages 1,¢0¢,k=1 your demand was
different from 75-¢.In this case select your demand at

stage k as prescribed by recommendations (N2) and (N3).

A type L subplayer in the distinguished equilibrium point
obeys the specific recommendations (L1) to (L4) stated below.
For the purpose of having a suggestive way of expressing the
content of (L3) and (%4) we introduce the following definition.
"The other player's expected offer at stage k" is that offer
which will be made by the other player at stage k if he is a
type H subplayer who obeys the general recommendations (G1)

and (G2) and the specific recommendations (#1), (H2) and (H3).

Recommendations (L3) and (L4) have the interpretation that
in these situations the type L subplayer acts on the assumption
that the other player is a type H subplayer.

(L1) At stage 1 demand 75-¢.

(L2) At stage 1 your demand was 75-¢ and the other player's
demand was 75-¢. In this case at stage 2 demand 50.

(L3) At a stage k where (L2) does not apply your conceded pay-
" off is not greater than your payoff in the other player's
expected offer. In this case choose the other player's
expected offer at stage k as your offer at stage k.

(L4) At a stage k where (L2) does not apply your conceded
payoff is greater than your payoff in the otherkplayer‘s
expected offer. In this case choose your conceded pay-
off at stage k as your demand at stage k.
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Equilibrium plays: If both players follow the specific recommen-

dation (N1), both of them demand 50 at stage 1 and agreement
is reached immediately. The non-distinguishing equilibrium
point yields an equilibrium payoff of 50 for each of the
four subplayers.

Suppose that the strategies prescribed by the distinguishing
equilibrium point are played. If this happens the demands of
the subplayers are those shown in table 4. A type H subplaver

demands
stage 1 stage 2 stage 3
type H 75 - ¢ 75 - ¢ 75 = ¢
type L 75 - ¢ 50 25 + ¢
Table 4: Equilibrium demands of the distinguishing equilibrium

point

75 - ¢ at stage 1,2 and 3 because of (H1) and (H2). A type L sub-
player demands 75 - ¢ at stage 1 and 50 at stage 2 according

to (L1) and (L2). At stage 3 a type L subplayer.applies (L3).

He chooses the other player's expected offer as his offer and
demands 25 + ¢. After at most three stages the play is over.

If two type H subplayers meet, conflict results at stage 2.

If a type H subplayer has a type L opponent, then at stage 3

an agreement is reached where the type H subplayer receives

75 - ¢ and the type L subplayer receives 25 + e. In the case of
two type L subplayers an agreement is reached at stage 2 where
both receive 50. The equilibrium payoffs are shown in the bi-
matrix of table 5. Since for each of both types both types of
the other player have the conditional probability 1/2, the

expected equilibrium

H L payoff
a 75=¢ 1 _ € a
H gtz ts
a 25+¢
SR
25+¢ 50 1 .
L = =
372 + 35
15=¢ 50

Table 5: Payoffs at the distinguishing equilibrium point
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types have the expected payoffs indicated at the right of
the bimatrix.

5. Strictness of the non-distinguishing and the distinguishing
equilibrium points

Up to now we did not yet §rove that the equilibrium points
described in the last section are in fact equilibrium points
of the bargaining game. In the following we shall do this
and,moreover, we shall show that both equilibrium points

are strict.

The non-distinguishing equilibrium point: We first look

at the non-distinguishing equilibrium point. Obviously no
deviation yields a payoff of more than 50 if the other player
plays his equilibrium strategy. This shows that the non-
distinguishing equilibrium point is an equilibrium point.

In order to prove that it is strict, we must look at the al-
ternative best replies. Clearly, an alternative best reply
must lead to an agreement where both players receive a

payoff of 50 if the other player follows his equilibrium
strategy. An alternative best reply leaves the other player's
payoff unchanged. This shows that the non-distinguishing
equilibrium point is strict.

For the limiting case a = 50 the behavior prescribed by the
non-distinguishing equilibrium point still has the proper-—
ties of an equilibrium point but this equilibrium point
fails to be strict. Strategies which lead to conflict are
alternative best replies for a type H subplayer. Therefore
the limiting case a = 50 is excluded from the range OLa <50
where we consider the non-distinguishing equilibrium point.

The distinguishing equilibrium point, situation of a type H

subplayer: Let us now turn our attention to the distinguish-
ing equilibrium point which is defined for 25 + e ca £50.
Consider the situation of a type H subplayer. Suppose that
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the other player behaves as prescribed by the distinguish-
ing equilibrium point. If the type H subplayer plays his
equilibrium strateqgy, he receives 75 - ¢,if the other
player is of type L, and he receives a, if the other player
is of type H. As we shall see no deviation can improve

his payoff in at least one of these cases.

Suppose that the other player is of type H. Because of
(H1) and (H2) the other player's demand will always be

75 - €. A deviation will either lead to conflict or to

an agreement where the deviator receives 25 + e¢. Since we
have 25 + ¢ £La, this does not improve his payoff.

Suppose that the other player is of type L. The deviation
is without consequence if it does not occur before stage 3.
If the deviator's demand was 75-¢ at stages 1 and 2 then
this offer will be accepted by a type L opponent at stage 3.
Assume that the first deviation from the demand 75-¢ oc-
curs at stage 1 or stage 2. After this has happened the type L
opponent will have to apply (L3). According to (N2) he will
expect a demand of 50 and act accordingly. This means that
the deviator must either face conflict or accept an agree-
ment which gives him 50 or less. (He has the choice to
demand even less than 50,if he is foolish enough to do so.)

A deviation cannot improve the payoff of a type H subplayer.

An alternative best reply must have the property that it

leads to conflict if the other player is of type H and to the
same agreement as the equilibrium strategy if the other

player is of type L. This shows that as far as the equilibrium
strategy of a type H subplayer is concerned, the distinguishing
equilibrium point has the properties of a strict equilibrium
point.

The distinguishing equilibrium point, situation of a type L
subplayer: Consider the situation of a type L subplayer.
Suppose that the other player behaves as prescribed by the
distinguishing equilibrium point. If the type L subplayer
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plays his equilibrium strategy he receives 25 + ¢ if the
other player is of type H. He receives 50 if the other
player is of type L.

Assume that the other player is a type H subplayer. No de-
viation of the type L subplayer yields more than 25 + €.

if at least once he asks for less, he will not even get

that much. This follows by (G1) and (G2). If he never asks

for less, then the other player's demand will always be 75-¢.
This follows by (H1) and (H2). Clearly, in this case the type L
subplayer cannot get more than 25 + ¢. Moreover he cannot

get this payoff unless the same agreement is reached with

a type H subplayer as by the equilibrium strategy.

In the following it will be ﬁseful to distinguish between
two kinds of deviation strategies of a type L subplayer.
Consider a deviation strategy where a type L subplayer de-
mands 75 - ¢ at stage 1 and where he also demands 75 - ¢ at
stage 2 if both players' demands at stage 1 were 75 - e. If
he does this he behaves as if he were a type H subplayer.
We may say that he imitates type H. Therefore we call such
strategies "imitation strategies”. Other strategies are
called "non-imitation strategies”.

We shall first look at the non-imitation strategies. Here

it will be shown that a non-imitation strategy cannot vield

a higher payoff than 50 if the other player is a type L sub-
player who uses his equilibrium strategy. Moreover, in order
to yield 50 the non-imitation strategy must lead to the

same agreement as the equilibrium strategy. In view of our
result for the case that the other player is of type H, this
is sufficient in order to prove that as far as the non-
imitation strategies are concerned the distinguishing equi-
librium point has the properties of a strict equilibrium point.

Non-imitation strategies: We can distinguish two classes of
non-imitation strategies. Class 1 contains all those non-imi-
tation strategies where at stage 1 the demand is different




from 75 - e¢. Class 2 contains the remaining non-imitation

strategies.

In the following it will be assumed that the other player is

a type L subplayer who plays his equilibrium strategy. We

have to show that under these circumstances the deviator
cannot get more than 50 and that he cannot get 50 unless

his non-imitation strategy always leads to the agreement where
both he and the other type L subplayer receive 50.

We shall first do this for the non-imitation strategies in
class 1.

Non-imitation strategies, class 1: It will be convenient to

distinguish 4 subclasses of class 1.

Subclass 1.1

the demand at stage 1 is smaller than 25+¢.

Subclass 1.2 the demand at stage 1 is 25+¢.

Subclass 1.3 the demand at stage 1 is greater than

25+¢ and smaller than 50.

Subclass 1.4 the demand at stage 1 is not smaller than 50.
In the case of subclass 1.1, at stage 2 the other player finds
himself in a situation where (G1) applies. He accepts the de-
viator's offer from stage 1. The deviator's expected payoff

is less than 25 '+ €.

In the case of subclass 1.2 agreement is reached at stage 1.
The deviator receives 25 + €.

In the case of subclass 1.3, at stage 2 the other player
finds himself in a situation where (L4) applies. He expects
a demand of 50 but his conceded payoff is greater than 50.
He demands his conceded payoff. At stage 3 there will be one

or two accepted agreements. The deviator's expected payoff
is less than 50.

In the case of subclass 1.4, at stage 2 the other player
finds himself in a situation where (L3) applies. He expects
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a demand of 50 and his conceded payoff is not greater than

50. His demand at stage 2 is 50. Moreover at any later stage k
which may occur he will always find himself in a situation
where (G1), (G2), (L3) or (L4) apply. Whereever (L3) or (L4)
apply, he will expect a demand of 50. The deviator cannot

get more than 50 and he cannot get 50 unless the agreement

is reached where both receive 50.

The exploration of the 4 subclasses has shown that as far

as the non-imitation strategies of class 1 are concerned,

the distinguishing equilibrium point has the properties of
a strict equilibrium point. '

Non-imitation strategies, class 2: Here we shall distinguish
3 subclasses according to the demand of the deviator at

stage 2 if the demands of both players were 75 - ¢ at stage 1.
For the sake of shortness we shall refer to this demand as
the demand at stage 2.

Subclass 2.1 ¢ the demand at stage 2 is smaller than 50.

Subclass 2.2 the demand at stage 2 is 50.

20

Subclass 2.3

the demand at stage 2 is greater than 50.

In the case of subclass 1.1 the other player applies (G1)

at stage 2. In the case of subclass 2.2 agreement is reached
at stage 2. In both cases the deviator does not get more than
50. If he gets 50 then the other player gets 50, too.

In the case of subclass 2.3 the other player applies (L3)

at stage 3. He expects a demand of 50 and his own demand at
stage 3 is 50. Moreover at any later stage k which may occur
he will always find himself in a situation where (G1), (G2),
(L3) or (L4) apply. His own demand will be never less than 50.
The deviator cannot get more than 50 and if he gets 50, the
other player receives 50, too. |
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The exploration of the non-imitation strategies is now
completed. As far as the non-imitation strategies are
concerned, the distinguishing equilibrium point has the
properties of a strict equilibrium point.

Imitation strategies: In the following we shall show that

the expected payoff of a type L subplayer is smaller than
his expected equilibrium payoff at the distinguishing equi-
librium point if he uses an imitation strategy whereas the
other player behaves as prescribed by the distingquishing
equilibrium point. This remains to be shown in order to
prove that the distinguishing equilibrium point is a

strict equilibrium point of the bargaining game.

Suppose that the other player is a type H subplayer who
follows his equilibrium strategy. In this case the use of
an imitation strategy leads to conflict at stage 2. The
deviator's payoff is O.

Among the imitation strategies there is one where the type L
subplayer always behaves as if he were a type H subplayer

who obeys the prescriptions of the distinguishing equilibrium
point. This imitation strategy will be called the "bluff
strategy". Unlike the bluff strategy other imitation strate-
gies may fail to imitate the type H subplayer's behavior

in many situations which may arise at stage 2 or later stages.

Now assume that the other player is a type L subplayer who
follows his equilibrium strategy. In this case the use of the
bluff strategy will produce the following result. The deviator
demands 75 - ¢ at stages 1,2 and 3. At stage 1 the other player
demands 75 - ¢, at stage 2 he demands 50 and at stage 3 he
demands 25 + ¢. At stage 3 an agreement is reached where the
deviator receives 75 - ¢ and the other player receives 25 + ¢.

Up to stage 2 other imitation strategies will lead to the same
demands as the bluff strategy but there may be a difference at
stage 3. A difference will not be important as long as the de-
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viator's demand at stage 3 is neither 25 + ¢ nor 50. Only
if this happens two accepted agreements are reached at

stage 3. Clearly, this situation is less favorable to the
deviator than that produced by the bluff strategy. Conse-

quently, we can concentrate our attention on the bluff
strateqgy.

If the other player obeys the prescriptions of the distin-
guishing equilibrium point, a type L subplayer who uses the
bluff strategy will receive a payoff of O if the other

player is of type H,and a payoff of 75 - ¢ if the other pléyer

is of type L. Since both types of the other player are equal-
ly probable this yields an expected payoff of 37 % - %

for the deviating type L subplayer. This expected payoff is
smaller than the expected payoff 37 % + % at the distinguishing
equilibrium point. Consequently, the distinguishing equilibrium

point is a strict equilibrium point.

6. Why exactly 75 = ¢ ?

At first glance it is hard to understand why the demand pres-
cribed by (H1), (H2) and (L1) should be exactly 75 - e. In order
to give a partial explanation for this, which shows why this
demand is not greater than 75 - ¢, let us look at a modified
set of recommendations where the demand 75 - ¢ is replaced

by some demand b with 50 £b £100 where b is a multiple of e.
The modified recommendations (H1), (H2) and (L1) together
with the other recommendations for the distinguishing equi-
librium point describe a strategy combination for the bargain=-
ing game which we shall call the "b-modification" of the
distinguishing equilibrium point.

As we shall see a b-modification with b)>» 75 - ¢ fails to be a
strict equilibrium point. For b = 75 the strictness property
is lost and for b > 75 the b-modification fails to be an equi-
librium point. For b £75 a b-modification is a strict equi-
librium point if a is sufficiently large. 100 - b a is a suf-
ficient condition.
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Suppose that we have b /75 and 100 - b<a. In the same way as

this has been done in section 5 for the distinguishing equilibrium
point, we can prove that the b-modification is a strict equili-
brium point. It is sufficient to replace 75 - ¢ by b and

25 + € by 100 - b. This shall not be done here in detail.

In order to show that for b» 75 - ¢ the b-modification fails

to be an equilibrium point for the whole range O <a 450 of

the opportunity cost parameter, it is sufficient to 1l0ok at
those strategies of a type L subplayer which correspond to

the bluff strategy. In order to have a convenient name we shall
speak of a b=modification bluff stragegy. A type L subplayer
uses a b-modification bluff strategy if he always behaves

in the same way as if he were a type H subplayer who obeys

the prescriptions of the b-modification.

If all four subplayers behave as prescribed by the b-modi-
fication,then the payoffs are as described in the first
two rows of table 6. If one type L subplayer uses his
b-modification bluff strategy whereas the other three sub-
players behave as prescribed by the b-modification, then
the payoffs in the third row of table 6 result. for b >75
the expected payoff b/2 is greater then 75-(b/2). The b-mo-
dification bluff strategy yields a higher expected payoff
than the type I strategy prescribed by the b-modification.
Consequently for b > 75 the b-modification fails to be an
equilibrium point.

H L Expected payoff
S ———
éa b
H i _ a+b
| a| 100-b .
[100-b |50 "
i H -
[ b 50
0 b
L-bluff b
al 100-b 2

Table ¢ : b-modification payoffs
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With the help of arguments used in section 5 it can be
seen easily that for b = 75 the b-modification is an
equilibrium point. The strictness property, however,
is lost. The b-modification bluff strategy is an al-
ternative best reply which drastically changes the ex-
pected payoffs of the subplayers on the other side.

It is very important for them whether the equilibrium
strategy or the b-modification bluff strategy is used
by the type L player.

It seems to be desirable to have a theory which yields
b = 75 - ¢ rather than b = 75. Intuitively it is clear
that the b-modification with b = 75 is a much less
stable equilibrium point than the distinguishing equi-
librium point. This is the reason why John C. Harsanyi
and the author felt that they should require strictness
in the theory of EﬁS}.

It is now understandable that the demand prescribed by
(H1), H2) and (L1) is not greater than 75 - e.

7. Some remarks on the structure of the distinguishing

equilibrium point.

If the distinguishing equilibrium is played conflict
results if the type combination is (H,H) and different
agreements are reached for the three other type combi-
nations (4,L), (L,H) and (L,L). (Here the letters indicate
the types of player 1 and 2 in that order). It is inter-
esting to see how this dependence on the type combination
is achieved by the dynamics of the bargaining process.

At stage 1 both types make the same demand 75 - €. There-
fore at the beginning of stage 2 a player does not know
more about the other player's type than before the start
of the game. After both players have made their opening
demands of 75 - ¢, a type H player must risk conflict

by the repetition of this demand. If he does not repeat
his demand a type L player on the other side will insist
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on a payoff of 50. If he repeats his demand he demonstrates
the strength of his bargaining position. A type L player
does not repeat his opening demand. His demand of 50 re-
veals the weakness of his bargaining position. If both
play their equilibrium strategies, both players know the
other player's type after the completion of stage 2. The
dynamics of the bargaining process are such that this in-
formation is effectively transmitted.

Some of the features of the distinguishing equilibrium

point are arbitrary and without much importance from the
point of view of the theory of[HSj. (The same is true for the
the non-distinguishing equilibrium point.) In order to make
this clear, we introduce the following definition. Two equi-
librium points of the bargaining game are called "result
equivalent" if for every type combination both equilibrium
points produce the same probability distribution over the
possible end results (the agreements in U and conflict). In
particular, an equilibrium point is result equivalent to

the distinguishing equilibrium point if (H,H) leads to
conflict and (H,L), (L,H), (L,L) lead to the agreements
(75-¢, 25+¢), (25+¢, 75-¢), (50,50), resp. (here the first
number is player 1's payoff and the second one is player 2's
payoff.)

It can be seen easily that the bargaining game has many
equilibrium points which are result equivalent to the
distinguishing equilibrium point. Nevertheless, some of the
details of the behavior prescribed by the distinguishing
equilibrium point are less arbitrary than one might think
at first glance. In order to show this we shall prove

a proposition about the demands in stage 1.

Proposition on first stage demand equality: Consider an
equilibrium point of the bargaining game where the equi-
librium strategies of the type H subplayers prescribe

demands of 75 - ¢ at stage 1. If an equilibrium point of
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this kind is result equivalent to the distinguishing equi-
librium point then the equilibrium strategies of the type L
subplayers prescribe demands of 75 - ¢ at stage 1.

Proof of the proposition: Suppose that there is an equili-

brium point of the bargaining game which is result equi-
valent to the distinguishing equilibrium point and has the
property that at stage 1 the type H subplayers demand 75 - €,
whereas at least one type L subplayer, say the type L sub-
player of player 1, demands something else. Assume that

all subplayers with the exception of player 2's type L sub-
player obey the prescriptions of this hypothetical equi-
librium point. As we shall see player 2's type L subplayer
can improve his payoff by adopting the following mode of
behavior: at stage 1 de demands 75 - €; if he observes

that the other player's demand is 75 - ¢ at stage 1, he
demands 25 + ¢ at stage 1; if he observes that the other
player's demand at stage 1 is different from 75 - €, then
at stage 2 and all later stages which may occur, he be-
haves as if he were a type H subplayer who obeys the pres-
criptions of the hypothetical equilibrium point. In this way
he receives 25 + ¢ if the other player is of type H and

75 - ¢ if the other player is of type L. The hypothetical
equilibrium strategy yields 25 + ¢ if the other player is
of type H and 50 if the other player is of type L. This is
a contradiction which shows that the proposition is true.

Interpretation: the fact that at stage 1 a type L subplayer

behaves in the same way as a type H subplayer is not an
arbitrary feature of the distinguishing equilibrium point.
At stage 1 both types begin with the same high demand.

A type L player does not prematurely reveal the weakness

of his bargaining position. Thereby he deters the type L
subplayer of the other player from posing as a type H sub-
player. The type H subplayer of the other player is forced
to demonstrate his strength by taking the risk of conflict.
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8. The main representation

The nature of the solution concept applied in this paper has
been explained in section 3. The approximate solution is a
payoff vector for the four subplayers. The main representa-
tion is a special probability mixture of equilibrium points
which yields this payoff vector. It is the purpose of this
section to describe the main representation and its depen-
dence on the opportunity cost parameter. Proofs are deferred
to later sections.

The main representation is a probabilit? mixture of the non-
distinguishing equilibrium point and the distinguishing equi-
librium point. The probabilities depend on the opportunity cost
parameter. Let p(a) be the probability of the distinguishing
equilibrium point; the probability of the non~distinguishing
equilibrium point is 1-p(a).

Since we are not interested in the influence of the para-
meter ¢ we do not compute the exact expected payoffs at the
main representation but the limit of these payoffs for ¢ —0.
These payoffs will be called the "limit payoffs". The limit
payoffs:for the distingquishing equilibrium point are 37% + %
for type H and 37% for type L. (See table 5). In order to com-
pute the limit payoffs for the main representation one multi-
plies these payoffs by p(a) and then adds SO0(1-p(a)), the
term which comes from the non-distinguishing equilibrium
point. Table 7 shows how p(a) and the limit payoffs depend
on the opportunity cost parameter. The limit payoffs are also
shown in figure 1.

Only in the small intervall between 33% and 37% the main
representation is a proper probability mixture where both
equilibrium points have positive probabilities. Everywhere
else the main representation prescribes just one of both

equilibrium points.
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opportunity probability of
cost para- the distinguish- limit payoffs
meter ed equilibrium
point
a p(a) type H type L
0 £a £33} 0 50 50
1 1 3a-100 3 25a
ddg <& &g =75 73-50
1 1 ,a 1
= a £ s e nA
372 &£a 450 1 372 +5 372

Table 7: the main representation

For O £a £33% only the non-distinguishing equilibrium point
appears in the main representation. The generalized Nash so-

lustion does not yield different payoffs for both types unless

the opportunity cost parameter is sufficiently high.
For 37%{&&{550 only the distinguishing equilibrium point

appears in the main representation. As one would expect, p(a)

is a non decreasing function of the opportunity cost para-

meter.
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9. Preparation of the proof that the main representation

represents an approximate generalized Nash solution

The remaining sections of the paper will show that the main
representation described in section 8 is in fact the re-
presentation of an approximate generalized Nash solution.

In the following we shall use the notation and the termi-
nology of [HS]. As has been explained at the end of section 1,
the subplayers will be numbered from 1 to 4.

The generalized Nash solution X = (51,...,§;) is a vector

of expected payoffs for each of the four subplayers.
Sometimes, in order to make the dependence on ¢ visible,

we shall use the notation %€= (§$,...,§Z) for the generalized
Nash solution.

Let x° = (x?,...,xi) be the payoff vector which belongs to
the main representation described in section 8. {Here the
e-terms are not neglected.) Let x = (i},...,ié) be the

limit payoff vector with the limit payoffs from table 7.

For ¢ = O the payoff vector x® converges to X.

Suppose that X°= (Q?,...,§4) is an expected payoff vector
which in the same way as x® has a representation by a pro-
bability mixture of strict equilibrium points of the bar-
gaining game. (Qeis a function of € and a.) A payoff vector QE
of this kind is called an "approximate solution” of the bar-
gaining situation if for ¢—0 everywhere in the intervall

0 £a £50 the payoff vectors %€ ana x° converge to the same
limit. In this precise sense we shall prove that x® is an

approximate solution.

The generalized Nash solution X is an element of the equili-
brium set X. The equilibrium set X is the convex hull of the
set of all strict equilibrium payoff vectors. Since we do not
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have a complete overview over all strict equilibrium

points of the bargaining game, we cannot maximize the
generalzed Nash product over X. The task of finding the
limit of the generalized Nash solution for ¢ O will be at-
tacked in another way. We shall construct a "substitute
equilibrium set" X' which contains X as a subset. The
generalized Nash product assumes its maximum over X' at

the limit payoff wvector X for the main representation.

With the help of this fact it is possible to show that x°
is an approximate solution.

In this section we shall prove that X must satisfy an
important condition (equation (21)) which can be used for
the construction of the substitute equilibrium set. This
condition can be derived from the noncooperative equili-
brium properties of X and from axion 2 (player symmetry).
One consequence of this condition is that we must have
?12_§; and §32;§4 as one would expect intuitively. It is
interesting that this can be shown with the help of

axiom 2 alone without making use of the other axioms.

Since our example is symmetric with regard to the players,
it follows from axiom 2 (player symmetry) that the gene-
ralized Nash solution satisfies:

(1) x1 = x3
and

~ ~
(2) X, = X,

since X is an element of X, it can be represented as a
mixture of a finite number of strict equilibrium
payoff vectors yJ:

a.yJ with
1

(3) X =
3

a. = 1

1 3

[ <]
e Gy

3

and Oz:aj £1 for j = 1,...J. To each of the yJ we can find
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a strict equilibrium point

s [N I PSS, |
(4) t’ = (t1,t2,t3,t4)
Because of the symmetry of the bargaining game we can
construct a new strict equilibrium point t‘ﬂ':I by inter-
J. Let yJ+J be
. Obviously yJ+3 is

changing the roles of player 1 and 2 in t

the conditional payoff vector of tJ+J

derived from yJ by interchanging the players. Therefore
because of (1) and (2) we have

(5) J+3

~
X =

3

a.y
1 ]

I I

Tt is now clear that the conditional payoff vector %

can be realized by a probability mixture of strict equi-
librium points which is completely symmetriec with regard

to the players; the equilibrium points t‘,...,tZJ must

be used with probabilities aj/2 where oy equals to @ e for

j = J+1,...,2J. From now on we shall refer to that mixture as
the "symmetric mixture".

Let ka be the probability that the conflict point ¢ is
reached in the symmetric mixture. (The conflict point can

be reached as the result of a conflict offer sequence

or as an agreement.) Le ka be the complementary probabili-

ty 1—wkm. Now consider the case that an agreement other than c
is reached in the symmetric mixture; let Zym be the condi-
tional expectation of player 1's payoff in such an agreement
if player 1 is of type k and player 2 is of type m. Since
agreements other than c have the form of table 3, the con-
ditional expectation of player 2's payoff corresponding

to z, . is 100-z, . We use the symbol z, . for 100-2z, ..

Since player 1 and player 2 behave exactly symmetrically
in the symmetric mixture we must have

(6)

12 21
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and

(7) Zyem = Z K for k = 1,2 and m = 1,2
For k = m equation (7) yields
(8)

It can now be seen easily that the components of X can be

written as follows:4)
(9) %, = %, = l(w +W,.,)a + 1w '50 + lw z

1 3 27117712 211 212712
(10) X =%, = 4W,.Z.. + Yi._.50

Y 212712 2 22

The fact that the symmetric mixture is a mixture of equili-
brium points puts constraints on the parameters ka and Zym
in (9) and (10). In order to derive such constraints we look
at certain specific deviations from the behavior prescribed

by the symmetric mixture.

Consider the following deviation of subplayer 1: while all
other subplayers stick to the equilibrium behavior, subplayer 1
"imitates" subplayer_Z, i.e. instead of t? he uses tg in all
equilibrium points tJ occurring in the symmetric mixture.

Let x; be the first component of the conditional payoff
vector which belongs to the mixture of strategy combinations
resulting from this deviation. In the new mixture the pro-
babilities of conflict between subplayer 1 and subplayers 3
and 4 are w21 and w22 because subplayer 1 now behaves in the
fame way as subplayer 2. Nevertheless, xa is different from
X, since the conflict payoff of player 1 is not 0. The de-

viation payoff §1 can be written as follows:

For ﬁ12 = O a conditional expectation z,, does not exist;
but in that case an arbitrary value can be given to z

12
without any influcence on the validity of (8) and (9).
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= 1 lf. > l—‘ ®
(1) X9 = 5(Wy, + Wysla + W 5245 + 30,550

We now consider the following deviation of subplayer 2:
while all other subplayers stick to the behavior prescribed
by the symmetric mixture, subplayer 2 im@tates subplayer 1,
i.e. instead of t% he uses t? in every tJ. The following

conditional payoff x,' of subplayer 2 results from this deviation:
2

"o . 1
(12) Xy = 31150 + 5W, 52,5

Since the symmetric mixture is a mixture of equilibrium
points, we must have

(13) xq £%,
and

[1] ~
(14) X f;xz

Because of (13) and (14) the following is true:

(15) Xy = Xy LXy = X, £% = X)
Equations (9) - (11) yield
~ _1
(16) x{ - X, = 7(W12 + sz)a
and
i n__l
(17) Xy = X5 = 2(w11 + W, ,la

Therefore (15) is equivalent to (18):

1 o o~ 1



The quantities

. 1 .
(19) Wy = 5(W + Wy5)
and
(20) W, = MW, + W..)
2 = 3y, 22

have an obvious interpretation: W, is the probability that
a player of type i reaches conflict (i.e. the conflict point

Or agreement at c.) Condition (18) can now be written as
follows:

o~ P
(21) Woa £ X, —xzé;w1a

2
Since W2 cannot be negative it follows from (21) that we
must have §1z X,. Because of axiom 1 (profitability) we
must have §1> a. Therefore it follows from (9) that W, 21
is true. This together with (21) yields:

(22) Wy W,z

Condition (21) gives upper and lower borders for the dif-
ference between §1 and ?2. In the beginning of the next

section we shall derive an equation for the sum of §1 and §é.

10. Maximizing the generalized Nash product over a substitute
equilibrium set '

Adding up equations (9) and (10) we receive

(23) X, + Xy = W1a + 7(W11 + w22)50 + 7W12-100

because of

~—— o 1-— _ -
(24) (w11 + wzz)so + =W, 100 = (2-W

3912 =W,)50

N =

9
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this is equivalent to

(25) %, + %, = 100 = (50-a)W, - 50W,
With (21) and (25) we have derived two conditions for X
which involve only W4 and W, and neither z,, nor any of

the probabilities Wik * For the application of these con-
ditions to our problem of maximizing the generalized Nash
Product it is important that W, and W2 cannot be chosen inde -
pendently. Because of (19) and (20) we must have

=1 - 1

(22) and (26) yield

1

Let X' be the set of all conditional payoff vectors
X = (x1,...,x4) with x, = x4 and Xy = Xgu such that
the conditions (27),

(28) W,atx, = x,LW,a
and
(29) X4 + X, = 100 = (SO—a)W1 - 50W2

are satisfied for at least one pair of probabilities w1
and w2 with w1z;1. Because of (21) and (25) the genera-
lized Nash solution ¥ must be an element of X'. Instead of
maximizing the generalzed Nash product over the equilibri-
um set X we shall approach our task by maximizing over X'.

Therefore X' might be thought of as a substitute for the
equilibrium set X.
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Since in our example all the marginal probabilities are
equal to 1/2 and since in X' we always have Xy = Xg and
Xy = Xy, the generalized Nash product over X° is equal to

(30) P = (x1-a)x2
Define

(31) D = x1;x2
and

(32) E = x1;x2

Equation (30) is equivalent to
(33) P = (E+D-a) (E-D)

With the help of (31) and (32) the conditions (28) and (29)
can be written as follows:

(34) w'%enéw~

LS ]

(35) E = 50 - (25-§)w1 - 25w,

Taking the partial derivative of (33) with respect to D we
Teceive ‘

(36) ' P = 3D + &

Q>

Because of (34) and w1z.1 we must have
(37) Dc%

(36) and (37) yield

ap
(38) 557 O
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Consequently, for fixed W, and W2 we must make D as big as
possible in order to maximize P. Because of (34) this means

that D must be chosen in the following way:

(39) D = W,

N

The task of maximizing P over X' has now been reduced to
the task of maximizing P as a function of W1 and w2, sub-
ject to the side condition (27). Because of (35) and (39)
we have

(40) E+D-a=50~-a+ (a-25)w1 - 25w2
and
(41) E -D= 50 - 25W1 - 25w2

It is clear from (33), (40 and (41) that for fixed W1 the
probability W2 must be chosen as small as possible. Be-
cause of (27) this means

1

- Z o

(42) Wz 6] for W, <5
and

(43) W, = W, = 1 for W, > 1

2 1 2 1= 2

In view of equations (40) to (43) we can now maximize P

as a function of w1: for w1e-% we have

(44) P = (50 - a + (a-25)w1)(50 = 25w1)
and for w1> L we receive

= 2

(45) P = (62-12- - a + (a=50)W,) (62% ~ SoW,)
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In order to show that we can exclude the possibility
that the maximum is assumed in the interval %_,le;1 we
take derivative of (45):

dp

= 191 - -
§w. = 123 (9a-500+(400-8a)W,)

(46)
1

Because of a £50 the expression 400-8a is non-negative.
Therefore we have

(47) dP  £42]) (a- >1

aW.' ,_~,122(a 100) £0 for W1 -
Consequently, the function (45) assumes its maximum over
the interval %é:w14.1 at W, = %. This means that the maxi-
mum of P over oé:w1<:1 must be assumed in the interval
0 £W, é% . Taking the derivative of (44) we receive

dap _ ' 1
(48) 5W1 = 25(3a 100-2(a-25)w1) for w1ﬁ:§

For OZa f33% the following is true:
(49) 3a - 100 - 2(a-25)w1éfw1(A-50)é:0

Therefore within this interval dP/dW1 is always negative.
Consequently, the maximum of P is assumed at

(50) W, =0 for 0Za 1;33%

From (48) it can be seen easily that the maximum is as-
sumed at

_ 3a-100
(51) W, = 337100 for 33} za 537%
For 37% ¢£a £50 and 0« w, 1;—12— we have
(52) 3a-100-2 (a=25)W, > 0

Therefore the maximum is assumed at

1
(53) Wy =4 for 373La 250
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From (42), (50), (51) and (53) we can compute D and E
by (39) and (35); from there the components of the vector

which maximizes the generalized Nash product over X' can

be determined with the help of (30) and (31). The result

is nothing else but the limit payoff vector X = (§1,...,ig),
for the main representation. The subplayers 1 and 3 receive
the type H limit payoff and the subplayers 2 and 4 receive
the type L limit payoff from table 7.

11. Completion of the proof that the main representation
represent an approximate generalized Nash solution

In order to prove that x%, the payoff vector of the main
representation, is an approximate solution we have to show
that for e 0 the exact solution %€ and x% converge to the
same limit:

1im x%= lim %*©

(54) €0 e—0

This is the definition of an approximate solution. X is the
limit of x°:

€=-
(55) t{?ox X

It remains to be shown that we have

1im %%=x
(56) eE?Ox =3

For this purpose we introduce the following definition.
Let X' be the closed hull of the substitute equilibrium
set. Since the generalized Nash product is a continuous
function of x, the maximum of the generalized Nash product

over X" is assumed at x, too.

The substitute equilibrium set X' is defined by the linear
inequalities (27), (28), (29) and W1A,1 together with

Xy = Xg and X, = Xg. Since these inecqualities are
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linear in Xir %oy W1 and w2 it can be seen

easily that X' is convex. Thereforé X" is convex, too.

Since for x> a and x2:>0 the logarithm of the generalized
Nash product P is a strictly concave function of X and Xy
the maximum of P over X" cannot be assumed anywhere else but

at x.

For every value of ¢ let X° be the ©quilibrium set of the bar-
gaining situation. Unlike Xx® the substitute equilibrium set X'
does not depend on e. The set X® is a subset of X'. Every x°©

is an element of X'.

€ be

the generalized Nash product of %€, Moreover, let P be the

Let P® be the generalized Nash product of x% and let B

generalized Nash product of X. Since P® is the maximum of the
generalized Nash product over X% and since X% is a subset of
X' we must have

€

(57) p* < B

& p

(57) together with (55) yields

lim P® = P
A 10]

(58)
Suppose (56) does not hold. Then in view of the boundedness
of X' it must be possible to find a sequence €EqrEqreee of

values of ¢ such that the sequence of the corresponding ge-

o€

neralized Nash solutions ¥ converges to some limit ¥ which

is different from X. Nevertheless, because of the continuity

of the generalized Nash product it follows by (58) that P is the
generalized Nash product of X. On the other hand, ¥ belongs

to X" and the generalized Nash product assumes its maximum

over X" at X only. We must have X = X. This controdiction

shows that (56) is true and that x° is an approximate solu-

tion.
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12. Some remarks on the relationship between
the approximate and the exact solution

Tt is interesting to note that the maximization of the ge-
neralized Nash product over X' does not only uniquely de-
termine the components of % but also the probabilities W, .

and the conditional expectations Zym connected to X . Because

of W2 = 0 we have

(59) W12 = 0
and

(60) W22 = 0

(59) together with (50, (51) and (53) yields

s , 1
(61) Woq = o) for 0 4a £33§

_ 3a-100 1 sl
(62) Wy = 335 for 335 £a £375

- 1,4z
(63) Wiq = 1 for 375 +a <50

The conditional expectations Z44 and z,, are determined
by (8). With the help of (59) and (60) the conditional ex-
pectation z,, can be computed from the components of Xx.

We receive

_ 1
(64) Z4y = 50 for O4fa 4;33—3-
- 3a-100 1
(65) 212 = 50 4+ 25 ==3E" for 33'3" < a <50
(66)) z,, = 75 for 3732-z;a £50

W11 is nothing else than the probability p(a) from table 7.
The results (59) to (66) show that the main representation
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has some important features other than the limit pavoffs
which are uniquely determined by the generalized Nash solu-
tion. In particular it follows that for e¢-—>0 the conflict
probabilities connected to any representation of %¥¢ must
converge to those given in (59) to (63).

One may ask the obvious question whether there is any
difference between the approximate solution and the exact
one. There is no such difference for O4«a ﬁSB% since here

x® is equal to x and X belongs to every x*. Contrary to this
for 33% &£a £50, the approximate solution is different from
the exact one. In the following we shall sketch a proof for
this assertion.

It is possible to construct a mixed strict equilibrium point
of the bargaining game which can be substituted for the
distinguishing equilibrium point in the main representa-
tion; thereby one receives an expected payoff vector with

a higher generalized Nash product. In the following this
equilibrium point will be called the"mixed distinguishing
equilibrium point".

We shall not describe the mixed distinguishing equilibrium
point in detail. Instead of this, only those plays will be
described which may result if all four subplayers play
their equilibrium strategies. Along the lines of sections

4 and 5 one can find recommendations which prescribe a strict
equilibrium point with these equilibrium plays.

The equilibrium behavior is as follows:

Stage 1: Both types demand 75.

Stage 2: A type H subplayer demand 75, a type L subplayer
demands 50.

Stage 3: Both players select one of the demands d with
d >75. EBEach of these demands is chosen with the
same probability.
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Stage 4: (a) If in stage 3 both players have made the same
demand then the type H subplayer demands 75-e¢
and the type L subplayer demands 25+e.

(b) If in stage 3 different demands have been made
by the players then the type H subplayer demands
75 and the type L subplayer demands 25.

If an equilibrium point of this kind is played instead of

the distinguishing equilibrium point in a modified main re-
presentation then an expected payoff vector £% results which
is a convex linear combination of x® and X. Because of the
concavity properties of the generalized Nash product £€ yields

a higher generalized Nash product than x°.
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