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A SIMPLE MODEL OF IMPERFECT COMPETITION, WHERE 4 ARE

FEW AND 6 ARE MANY

It is a widely held belief that in imperfect markets the
tendency, to cooperate depends on the number of competitors .
E.H.Chamberlin's distinction between the small group and the
large group is based on this assumption[ 1 ]. Cooperative
forms of behaviour like joint profit maximization are assumed
to be typical for markets with a small number of competitors
and non-cooperative equilibria are expected, if the number of
suppliers is sufficiently large.

The theory presented in this paper investigates the connection
between the number of competitors and the tendency to cooperate
within the context of a simple model. The proposition that

few suppliers will maximize their joint profits whereas many
suppliers are likely to behave non-cooperatively does not
appear as an assumption but as a conclusion of the theory.

The investication is based on the symmetric Cournot model

with linear cost and linear demand, supplemented by specific
institutional assumptions about the possibilities of cooperation.
Cooperative forms of behavior are modelled as moves in a
non-cooperative game. Game-theoretic reasoning is employed in
order to find a unique solution for this game.

The distinction between the small group and the large group
remains unsatisfactory as long as "small" and "large" are
only vagquely defined. Where does the small group end and where
does the large group begin? For the simple model of this paper
a definite answer can be given to this question: 5 is the
dividing line between few and many.



The formal description of the possiblities of cooperation

is an important part of the model. It is assumed that the
firms are free to form enforcible quota cartels, but before
this can be done, each firm must decide whether it wants to
participate in cartel bargaining or not. These decisions must
be made without knowledge of the corresponding decisions of
the other firms. Those firms who have decided to participate
may then form a quota cartel. A quota is an upper bound for
the supply of a firm. A quota cartel agreement is a system of
quotas for all cartel members. The model assumes that each
firm, which participates in cartel bargaining, proposes

exactly one cartel agreementl)

and that a quota system for a
group of firms becomes binding, if all members of the group

have proposed that system.

Before the supply decision is made, the outcome of the
bargaining is made known to all firms in the market. If an
agreement has been reached, the cartel members cannot exceed
their quotas.

This is an extremely simplified picture of cartel bargaining
but hopefully at least some of the relevant features of real
imperfect markets are captured. Note that nobody can be forced
to come to the bargaining table. Cartels may or may not include
all firms in the market. Once an agreement has been reached, it
cannot be broken. This means that enforcement problems are
excluded from the analysis. The only kind of agreement which is
allowed, is a system of quotas.

1 One may think of this as a final proposal which is formally

made after extensive informal discussions. The idea that
at the end of the bargaining process the bargainers make
simultaneous final proposals is maybe more realistic than
it appears at first glance. Stevens' book on collective
bargaining[ 13 ]conveys the impression that agreemtns are
often reached by virtually simultaneous last moment
concessions after a period of apparent stagnation of the
bargaining process.



Within the framework of these institutional assumptions it
is advantageous to form a cartel, but if the number of
competitors is sufficiently large, it may be even more
advantageous to stay out of a cartel formed by others. The
fact that the position of an outsider becomes relatively
more attractive as the number of competitors is increased,
is the basic intuitive reason for the results of this paper.

The task of finding a unigque solution for the model presented
in this paper cannot be attacked without putting it into a
wider framework. It is necessary to develop a solution concept
for a class of games, which contains the model as a special
case. Only in this way the desirable properties of the proposed
solution of the model can be properly described.

Sections 2,3 and 4 contain some game-theoretic results which

may be of interest beyond the main purpose of this paper.

l. THE MODEL

The complete model takes the form of a non-cooperative
n-person game in extensive form, where the players are n firms
numbered from 1,...,n. For the limited purpose of this paper
it seems to be adequate to avoid a formal definition of a game
in extensive formz), but some remarks must be made about the

sense in which the words "extensive form" will be useed.

l.l EXTENSIVE FORMS In this paper a slight generalization of
the usual testbook definition of a game in extensive form is
used. It is necessary to permit infinitely many choices at some
or all information sets of the personal players (this excludes
the random player). The set of all choices at an information
set of a personal player may be a set, which it topologically
equivalent to the union of a finite number of convex subsets

of some euclidean space. Apart from that the properties of a
finite gametree are retained as much as possible. The set of all

2)See [ S:Iorl: 6 J. It will be assumed that the reader is

familiar with the concept of a game in extensive form and
with other basic concepts of game theory



choices at an information set of the random player is finite.
Only such games are permitted, which have a finite upper bound
for the length of the play. Another slight deviation from the
usual definition concerns the pavoff. The payoff of a player is
a real number or - =,

The games considered in this paper will always be games with
perfect recall, where each player always knows all his previous
choicesal Therefore it is convenient to exclude all games which
do not have this property from the definition of an extensive
form. For the purpose of this paper a game in extensive form
will be always a possibly infinite game with perfect recall
which has the properties mentioned above. Sometimes a game

in extensive form will simply be called an "extensive form"

or a "game", whete no confusion can arise.

It would be quite tedious to describe the model with the

help of the terminology of extensive form games. Instead

of this a set of rules shall be formulated, which contains all
the information needed for the construction of an extensive
form. Apart from inessential details like the order, in which
simultaneous decisions are represented in the game tree, the
extensive form representation of the model is fully determined
by this description in an obvious way. Therefore it will be
sufficient to relate only some of the features of the model to
the formal structure of the extensive form. This will be done
after the description of the rules is complete.

1.2 STRUCTURE OF THE MODEL. Wherever this is convenient firm i
is called player i. The set N=(1l,...,n) of the n first positive
integers is interpreted as the set of all players. The subsets
of N are called coalitions.

3) The formal definition of games with perfect recall can

be found in [ 5 ]. For infinite games with perfect
recall see [ , 7.



It is convenient to look at the game as a sequence of three
successive stages: 1) the participation decision stage, where
the firms decide, whether they want to participate in the
cartel bargaining or not; 2) the cartel bargaining stage,
where the proposals are made, which may or may not lead to
cartel agreements; 3) the supply decision stage, where each
firm selects a supply quantity.

At each stage the players know the outcome of the previous
stages but they do not know the decisions of the other players

at the same stage or at later stages.

The firms are motivated by their gross profits derived

from the cost and demand relationship of the Cournot model.
It is assumed, that the firms want to maximize expected gross
profits in the sense of probability theory, subject to the
constraint that the probability of negative gross profits is
zero. This is not unreasonable if one imagines a situation,

- where non-negative gross profits are necessary for survival.

1.3 COST AND DEMAND. The same homogenous good is supplied
i* The
quantity xi is a non-negative real number. x=[xi,...,xn)

by all firms. The supply of firm i is denoted by x

is the supply vector. It is assumed that there is no

capacity limit. The cost function is the same for each firm:

(1Y K, =P + cx 2 X

i i ?0 H i=l'c."n

3

F and c are positive parameters. Total supply

S

determines the price p
B =8 & for O« X <«
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a
(3) D

0 for X > 8
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Here we assume q>0 and 8 > c,

It is always possible to choose the
units of measurement for money and for the commodity in such
a way that the parameters a and B take the following values

(4) a==-1

(5)

w™
i

=
+

(o]

Therefore we shall always assume that (4) and (5) hold. This
simplifies our formulas without entailing any loss of generality.
Because of (4) and (5) a simple relationship between the total
supply X and the profit margin

(6) g=p=-c

is obtained:

1 - x for O3 X2t 4+ s
(7) g= A

L -c for X 21 #+¢
Define
(8) Pi = X9 for i = 3,0,

The variable Pi is the gross profit of firm i; it is the
profit without consideration of fixed costs. One may
imagine that the fixed costs are "prepaid" and that the
availability of liquid funds depends on the gross profit.

The assumption about the motivation of the firms can be
expressed by a von-Neumann-Morgenstern utility function:

B, e B ¥ D
(9) u, = & ™ y, - o S RS

u, is player i's utility. Note that uy does not depend on the
parameter c.4)

Q If (9) did not have certain mathematical advantages, it would

be preferable to work with the simpler assumption u,=P,.

The main advantage of (9) is the possibility to prove
lemma 6 in section 4.



1.4 THE PARTICIPATION DECISION STAGE. Formally the
participation decision is modelled as the selection of a

zero-one variable Zg- Each player i may either select zi=0,

which means that he does not want to participate or zi=l,

which means that he wants to participate. The decision is

made simultaneously by all players; each player must choose

his zy without knowing the participation decisions of the

other players. The result of the participation decisions is a
participation decision vector 1z = (zl,...,zn). Those players i
who have selected X - 1l are called participators; the other
players are called non-participators. The set of all participators,
or in other words, the set of all i with zi=1 is denoted by 2.

At the end of the participation decision stage, the vector

z = (zl,...,zn)is made known to all plavers. In the cartel
bargaining stage and the supply decision stage the players can
base their decisions on the knowledge of Z.

1.5 THE CARTEL BARGAINING STAGE. In the cartel bargaining
stage eaeh participator i ¢ Z must propose a quota system for
a coalition C which contains himself as a member.

(10) ¥y= (y,

1j)

2 ¢ € ¢ 2 ; A4

'ij ?_0

JeC i

Yi is called the proposal of participator i. The notation
(Yij)jec indicates that Y, contains a quota Yij for each
participator j ¢ C.A non-participator does not make a proposal
and no quotas can be proposed for non-participators. The quotas
Yij can be arbitrarv non-negative real numbers or «. Within the
restriction 1 e C ¢ Z a participator i is free to propose a
quota system for any coalition C he wants. The special case
where i is the only member of C is not excluded ;such proposals

correspond to unilateral commitmentss).

b The result of the analysis would not change, if unilateral
commitments were excluded. The reader will have no difficulty
to see that this is true.



The participators must make their proposals simultaneously;
each participator knows the participation decision vector

z =(zl,...,zn), when he makes his proposal Yi' but he does
not know the proposals of the other participators.

A quota system YC for a coalition C € Z becomes a binding
agreement, if and only if the following is true:

C jtn::C=Y

i for all 1 ¢ Cs

This means that all members of C propose the same quotas for C.

Unanimity of the members 1is required for a cartel agreement.

The system of proposals

{12) %= (Yi)iez

determines which binding agreements are reached. In (12) the
same notational convention is used as in (10) and (11):

the expression i ¢ Z indicates that Y contains exactly one
proposal for each participator i ¢ Z.

TE YC is a binding agreement, then the guotas Yy assigned by

YC to the participators i ¢ C are called "binding quotas".

Since it is convenient to define a "binding quota vector"

W =(yl,...,yn) which contains a binding quota yi for every

player 1 € N, the "binding quota" ¥ B8 is assigned to those
players 1, who are not in coalitions for which binding agreements
have been reached.

At the end of the cartel bargaining stage the system of

proposals Y is made known to all players. The system of proposals
uniquely determines the binding quota vector y =(v1,...,yn).

Note that the system of proposals Y contains a complete
description of the course of the game up to the end of the

cartel bargaining stage, since the knowledge of Y implies

the knowledge of Z.



1.6 THE SUPPLY DECISION STAGE, In the supply decision stage
eaeh player i selects a supply quantity X4 subject to the
restriction

(13) O < x; ¢ y;

The players must make their decisions simultaneously; each

3= Loo...:n

player knows Z, Y and y, when he selects his quantity Xy but

he does not know the supply decisions of the other players.

At the end of the supply decision stage, each player i receives
u; as his payoff. uy is computed according to (2), (7), (8)
and (9).

1.7 SOME FEATURES OF THE EXTENSIVE FORM REPRESENTATION OF THE MODEL
In spite of the fact that a detailed formal description of the
extensive form representation of the model is not needed, it

may be useful to point out some of its features. Let us denote
the extensive form representation of the model byIJ'. (The
symbol ' will be used for extensive forms). The representation
of the decisions in the game tree of r! follows the order of

the stages and simultaneous decisions are represented in the
order given by the numbering of the players, the lower numbers
coming first. This arbitrary convention about simultaneous
decisions is needed, since the tree structure of the extensive
form requires a successive representationof simultaneous choices.

In the information partition, the participation stage is
represented by n information sets, one for each player; the
decision situations of a player i at the beginnina of the
cartel bargaining stage correspond to 2n-l information sets,
one for each Z with i € Z; the supply decision stage is
represented by infinitely many information sets: each player
has one information set for each proposal system Y. A play of
the game corresponds to a triple (z,Y,x), where z =(zl,...,zn)
15:2 is the

proposal system and x =(K1,...,xn) is the vector of supplies.

is the participation decision vector, Y = (Y



-10-

It will be important for the game theoretic analysis of the

1, that the game rl has

extensive form representation T
subgames. Obviously after the participation decisions have been
made and the set of participators Z is known to all players, the
rest of the game corresponds to a subgame; this subgame is

denoted by r;.
these subgames cartel bargaining subgames. The cartel bargaining

There are 2" subgames of this kind. We call

subgames do not have the participation decision stage, but they
still have the other two stages. After a system of proposals Y
has been made another kind of subgame arises, which is denoted
by F;.
are called supply decision subgames. There are infinitely

In these subgames only supply decisions are made; they

many supply decision subgames, one for each Y. Obviously for

Y= (1,) the supply decision subgame ri
17 %¢8,

Y is a subgame of the

cartel bargaining subgame r;.

A subgame, which contains at least one information set and
which is not the whole game itself is called a proper subgame.
(The information set may be an information set of the random
player.) A game in extensive form is called indecomposable,

if it does not have any proper subgames; otherwise the game

is called decomposable. Obviously the supply decision subgames
: 5
Z

P; are indecomposable and the cartel bargaining subgames T
are decomposable.
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2. PERFECT EQUILIBRIUM SETS.

Any normative theory which gives a complete answer to the
question how the plavers should behave in a specific non-
cooperative game must take the form of an equilibrium point.
Theories which prescribe non-equilibrium behavior are self-
destructing prohecies, since at least one plaver is motivat-
ed to deviate, if he exmects that the others act according

to the theory. Therefore, if one wants to find a rational so-
lution for a non-cooperative game, one must look for equili-
brium points.

For games in extensive form it is important to make a distinc-
tion between perfect and imperfect eaquilibrium points. The
concepnt of a nerfect equilibrium point will be introduced in sub-
section 2.3. There the reasons for the exclusion of imperfect

equilibrium points will be exnlained.

The solution concept pronosed in this paper does not prescribe
nerfect equilibrium points hut nerfect ecuilibrium sets. A ner-
fect equilibrium set may be described as a class of perfect
equilibrium roints, which are essentiallv eaquivalent as far

as the pavoff interests of the mnlavers are concerned. A so-
lution concept which prescribes nerfect equilibrium sets

does not agive a comnlete answer to the question how the play-
ers should behave in the game, but the answer is wvirtually
complete in the sense that only unimportant details are left
open. Such details may be filled in by non-strategic pro-

. > ; 6)
minence considerations.

Some bhasic aame theoretic definitions and notations are in-
troduced in 2.1 and 2.2.

2.1 BEHAVIOR STRATEGIES.The way in which the words"extensive form"

are understood in this paper has been explained in subsection 1.1.
The games considered here are always with perfect recall. H.W.Kuhn
has proved a theorem about finite games with perfect recall

®) see [9}
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which shows that nothing is lost if one restricts one's
attention to equilibrium points in behavior strategies.vj
R.J. Aumann has generalized this theorem to games in exten-
sive form, where a continuum of choices may be available

8)

at some or all information sets. In view of these results
the game-theoretic analysis will be in terms of behavior

strategies.

Letu,i be the set of all information sets U of player i in
an n-person game in extensive form T.

A behavior strategy 9y is a system of probability distri-

butions qtlover the choices at U, containing one distribution
q for every U e'ui. This is expressed by the following no-
tation:

(14) g = {q[J Uéu
. &

A finite behavior strategy is a behavior strateqgy which

has the property that the distributions qtjassign positive
probabilities to a finite number of choices at U and zero
probabilities to all other choices. Such distributions are
called finite distributions.

For the purposes of this paper it will be sufficient to con-
sider finite behavior strategies only. Therefore from now on,
a strategy will be always a finite behavior strategy. Note
that the pure strategies are included in this definition

as special cases, since a pure strategy T, can be regard-
ed as a behavior strateagy whose distributions qtjassigns

1 to one of the choices at U and zero to all others.

The set of all strategies ay of player i in an n-person

game in extensive form is denoted by Qi. A strategy combi-

nation q = (ql, S qn) for ris a vector with n components
whose i-th component is a strategy a; € Qi' The set of all
pure strategies L of player i is denoted by Hi. A pure stra-
tegy combination for F'is a strategy combination & =

SN e
1
nn) with LI ni. For every given strategy combination

L. see[ 5 ] p.213

8) see [ 1] p.639
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a = (qlf"" q. ) a payoff vector H(q) = (H]}q), i Hn(q} )
is determined in the usual way.

The symbol I'with various indices attached to it will be

used for games in extensive form. The same index will be

used for the game and its information sets, strategies,
strategy combinations etc.In this wav, notations introduced
for a general game will be carried over to specific games in

extensive form.

2.2 EQUILIBRIUM POINTS. It is convenient to introduce the

following notation. If in a strategy combination q = (ql,...qn)
the i-th component is replaced by a strategy ry then a new

strategy combination results which is denoted by q/ri. Consider
a strateqy combination s = (sl,... sn) for ' A strateqgy r

i
for player i with

(15) Hi(s/ri) = max Hi(s/qi)
qieﬂi

is called a best reply to the strategy combination s. An equi-

librium noint (in finite behavior strategies) for a game in

extensive form ris a strateqy combination s = (sl, iy Sn)

with the following property:

(16) Hi{s) = max Hi(s/qi}

EQ,
4894

An eguilibrium point can be described as a strategy comhi-

nation whose components are best replies to this combination.

2.3 PERFECT EQUILIBRIUM POINTS. It has been argued elsewhere 9)
that one recuirement which should be satisfied by an equilibrium

point selected as the solution of a non-cooperative game is a
property called perfectness. In order to describe this property
some further definitions are needed.

Consider an n-person game T in extensive form. Let I'' be a
subgame of r and let g = (ql, ekt qn) be a strategy com-
bination for . The system of probability distributions

9) See[lO] or [ 11]
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assigned by q; to information sets of plaver i in I is a
strategv qi' for I''; this strateqy qi' is called induced by

9; Oon r' and the strategy combination q' = (¢'se..0q! ) is
called induced by o on I'. N

A perfect equilibrium point s = (sl,...,sn) for an n-person

game in extensive form I is an equilibrium point (in finite
behavior strategies) which induces an equilibrium point on
every subgame of T. An equilibrium point which is not per-

fect is called imperfect.

An imperfect equilibrium point may prescribe absurd modes of
behavior in a subgame which cannot be reached because of

the behavior prescribed in earlier parts of the game; if the
subgame were reached by mistake, some players would be mo-
tivated to deviate from the prescribed behavior. It is na-
tural to require that the behavior prescribed by the solution
should be in equilibrium in every subgame, regardless of
whether the subgame is reached or not. Any reasonable solu-
tion concept for non-cooperative games in extensive form

should have the property that it prescribes perfect equili-
brium points.

2.4 TRUNCATIONS. A set M of subgames of a given extensive
form game I is called a multisubgame of T, if no subgame in

M is a subgame of another subgame in M. A proper multisubgame

of T is a multisubgame which contains only proper subgames of T'.

Let s = (Sl""’sn) be a strategv combination for I'. For every-
proper multisubgame M of ' we construct a new game in the follow-
ing way: Every subgame I ¢ M is replaced by the payoff vector
H'(s') which in T'' belongs to the strategy combination s' =

'3 1IN sﬁ) induced by s on I'', This means that every I'' ¢ M
is taken away; thereby the Starting point of I becomes

an endpoint of the new game; the payoff vector at this end-

point is the equilibrium payoff vector H'(s'). The new game is
denoted by T( T ,M,s). The games T( I' ,M,s) are called s~-trunca-
tions.
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If ay is a strategy for I', then the strategy induced by q; on
T(r ,M,s) is defined in the same way as the strategy induced on
a subgame; the induced strategy assigns the same probability
distribution to an information set as ay does. A strategy
combination g for T = T(I,M,s) is called induced by a strategy
combination g for I, if each of the components of g is induced
by the corresponding component of g.

LEMMA 1. Let M be a proper multisubgame of a game I' and let s
be a strategy combination for I'. Then H(s) = H(s) holds for
the payoff vector H(S) belonging to the strategy combination
s induced by s on T = T(r,M,s),

PROOFIO). Consider an endpoint z of I'. Let z(z) be that endpoint

of T which is on the play to z. The strategy combination s
generates a probability distribution over the set of all end-
points of I'. The payoff vector H(s) is the expected value of
the pavoff vectors at the endpoints with respect to this
distribution. The payoff wvector H'(s') which belongs to the
combination s' induced by s on a subgame I'' of I' beginning at
one of the endpoints z of T is the conditional expectation of
the payoff vector at z under the condition that an endpoint z
of T with z = z (z) is reached. This together with the
definition of I' and its payoff function H shows that the lemma
is true.

LEMMA 2. Let M be a proper multisubgame of a game I' and let s
be a perfect equilibrium point for I'. Then the strategy combi -
nation s induced by s on T = T(r,M,s) is a perfect equilibrium
point of r.

PROOF. Assume that s is not a perfect equilibrium point. Then
there must be a subgame T, of I such that in this subgame at
least one of the players, say player j, has a strategy Ei for T
such that in T' his payoff H (s' /rJ) is greater than his payoff
Hj(s ) at the combination s' induced by s on P'.The subgame T'
is the s'~truncation T(r',M',s') of some subgame I'' of I', where
s' is the equilibrium point induced by s on I''* and M' is the
set of subgames of I'' which are in M.

lo)Only a sketch of a proof is given here, since a detailed proof
would require a formal definition of the extensive form.
A detailed proof would be analogous to the proof of Kuhn's
theorem 2. See [5] p,206.
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Let r3 be that stratfqy for r' which agrees with f% for the
information sets in I'' and agrees with plaver j's ecguilibrium
ftrftegy s% from s' everywhere else. It follows from ﬁ%(gffé} >
H_.(s') that because of lemma 1 for this strategy r% we must

have H&(S'/ré) > H%(s'} for player j's payoff in I''. This cannot
be true, since s' must be an equilibrium point.

2.5 BRICKS. Let s be a strategy combination for a game T.
The indecomposable subgames of I' and of the s-truncation of T

are called s-bricks of I'. (This includes improper subgames

like indecomposable truncations or the game I itself if T is in-
decomposable. Obviously only the payoffs of the s-itricks depend
on the strategy combination s. If I' is a game in extensive
form, then the game tree of ' together with all the elements of
the description of the extensive form apart from the pavyoff
function (information sets, choices, probabilities of random

choices etc.) is called the payoffless game of I'. A payoffless

brick of I' is the payoffless game of an s-brick of T.

With respect to s-bricks and payoffless bricks, induced strategies
and strateqy combinations are defined in the same way as for
subgames and truncations. '

Obviously the payvoffless bricks of an extensive form I' generate
a partition of the set of all information sets of I'. Every
information set of I' is in one and only one payoffless brick

of I'. A strategy combination g for I' is fully determined by the
strateqgy combinations induced by g on the payoffless bricks of T.

Two strategy combinations r and s for I' are called brick
equivalent if every r-brick coincides with the corresponding
s-bricks. A set S of strategy combinations for I' is called brick-
producing if two strategy combinations reS and seS are always
brick equivalent. Obviously every s in a brick producing set S
generates the same system of s-bricks.

2.6 THE DECOMPOSITION RANK OF A GAME. A maximal proper subgame

of a game I' in extensive form is a proper subgame I'' of I' which

is not a proper subgame of another proper subgame of T.
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The decomposition rank of a game I' in extensive form is defined

recursively by the following two properties: (a) indecomposable
games have decomposition rank 1 and (b) for m=2,3,... a game T
has the decomposition rank m if every maximal proper subgame

of I' has a decomposition rank of at most m-1 and if the
decomposition rank of at least one maximal proper subgame of T
is m-1.

Obviously this definition assigns a finite decomposition rank
to every game in extensive form in the sense of this paper,
since the play length is bounded from above.

2.7 A DECOMPOSITION PROPERTY OF PERFECT EQUILIBRIUM POINTS.
In this subsection a theorem is proved which shows that perfect

equilibrium points have an important property which may be called
a "decomposition propverty" since it relates the perfect
equilibrium point to the equilibrium points induced on the bricks
of the game. |

Let M be the set of all maximal proper subgames of a decomposable
game I'. The s-truncation T = T(r,M,s) with respect to this
multisubgame is called the indecomposable s-truncation of T.

The notation T(r,s) is used for the indecomposable s-truncation.

THEOREM 1. A strategy combination s for a game I' in extensive

form is a perfect equilibrium point of ', if and only if an
equilibrium point is induced by s on every s-brick of T.

PROOF. It follows from the definition of a perfect equilibrium
point and from lemma 2, that a perfect equilibrium point s
induces equilibrium points on the s-bricks. Therefore we only
have to show that s is a perfect equilibrium point if equilibrium
points are induced on the s-bricks. In order to prove this,
induction on the decomposition rank is used.

The assertion is trivially true for decomposition rank 1. Assume
that it is true for decomposition ranks 1,...,m. Let s be a
strategy combination for a game I' with decomposition rank m+l,
such that s induces equilibrium points on every s-brick of T.
Since the assertion is true for 1,...,m, the strategy combination
S induces a perfect equilibrium point on every maximal
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subgame of T.

Assume that s is not a perfect equilibrium point of r. If s

were an eauilibrium point, then s would be a perfect equilibrium
point, since perfect equilibrium points are induced on every
maximal subgame. Therefore s is not an equilibrium point. There
must be a player j with a strategy rj for ', such that

Hj(s/rj) > Hj(s) holds for his payoff in T.

Consider the indecomposable s-truncation T = T(r,s). This game T
is an s-brick of I'. Let s be the strategy combination induced

3 on T.
At every endpoint of the game TI'= T(F,s/rj) the payoff of
player j is at most as high as his payoff at the same endpoint
in T. This follows from the fact that equilibrium points are

by s on T and let ;j be the strategy induced by r

induced by s on the maximal proper subgames of I'. Therefore
ﬁj(E/Ej) > f%(g) must hold for player j's payoff in I' since
otherwise Hj(s/rj) > Hj(s) cannot be true. This contradicts
the assumption that an equilibrium point is induced by s on
the s-brick.

The following correlary is an immediate consequence of the
theorem and the fact that the strategy combinations s' induced
by s on a subgame I'' of I' or one of its s-truncations generate
s-bricks of I'' which coincide with the corresponding s-bricks
of T.

CORRELARYll)

Let F=T(F,M,s} be an s-truncation of a game T

in extensive form. Then the strateqy combination s is a perfect
equilibrium point for ' if and only if the following two
conditions are satisfied: 1) the strategy combination s induced
by s onT is a perfect equilibrium point for ¥x -0 . P every
F'e M the strategy combination s' induced by s on I'' is a perfect
equilibrium point for r°'.

2.8 PERFECT EQUILIBRIUM SETS. Two equilibrium points r and s

for a game I' are called payoff equivalent if we have H(r) = H(s)
for the payoff vectors of r and s. An equilibrium set S for T

is a non-empty class of payoff equivalent eguilibrium points, s for
', which is not a proper subset of another class of this kind.
Obviously every equilibrium point s for I' belongs to one and only
one equilibrium set for I'. This equilibrium set is called the
equilibrium set of s. '

lD_This correlary of theorem 1 is similar to Kuhn's theorem 3.

See [5],p.208.
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Two perfect eaquilibrium points r and s for I' are called subgame
payoff equivalent,if for everv subgame T'(including the improper
subgame I') the eguilibrium points r' and s' induced by r and s
on I'' are payoff equivalent. A perfect equilibrium set S for

' is a non-empty class of subgame payoff equivalent perfect
equilibrium points s for I', which is not a proper subset of
another class of this kind. Obviously every perfect equilibrium
points s for I' belongs to one and only perfect ecuilibrium

set for I'. This perfect equilibrium set is called the perfect

equilibrium set of s.

A set of strateqy combinations R' is induced by a set R, if
every element r'e R' is induced by some r ¢ R. The definition

of an induced set of strategies is analogous.

LEMMA 3. A perfect equilibrium set S for a game I' in extensive
form induces a perfect equilibrium set S' on every subgame
Bt - - BF

PROOF. Obviouslyv the set S' induced by S on I'' is a set of
subgame pavoff equivalent perfect ecquilibrium points. Let r'

be a perfect equilibrium point for I'' which is subgame pavoff
equivalent to the perfect equilibrium points s'e S'. Any

S € S can be changed by replacing the behavior prescribed bv s

on I'' by the behavior prescribed by r'. The result is a

strategy combination a for I'. Let M be the multisubgame containing
r'' as its only element. Obviously we have T = T(r ,M,q) =

T(r,M,s). It follows by lemma 2 and by the correlary of

theorem 1 that g is a perfect equilibrium point for T.

It remains to be shown that a is subgame payoff equivalent
to the elements of S. If this is true r' must belong to S'.
Let T'" be a subgame of I' and let ag" and s" be the strategy
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combinations induced on I'" by g and s, respectively. If T"
~is a subgame of I'" or if I'' is not a proper subgame of T'",
then H" (g") = H" (s") follows immediately from the fact that

q agrees with s on T and with r' on I''., Let I'' be a proper
subgame of I'" and let S" be induced by S on I'"; then T" =
T(r",M,s") is a subgame of I = T(r,M,s). Hence by lemma 1

we have H"(s") = H"(s") = H" (q") for the strategy combination

s" induced by both s and g on I'". This proves the lemma.

Let S be a perfect equilibrium set for I'. Obviously for reS

and seS we always have T(I',M,s) = T(r,M,r). Therefore the
s-truncation T(T,M,s) with seS is denoted by T(I,M,S).

The games T(I',M,S) are called S-truncations. Since for seS

the s-pricks are }ndecomposable subgames of S-truncations,
every perfect equilibrium set is a brick-producing set in the
sense of 2.5. If S is a brick-producing set, then the s-bricks
with seS are also called S-obricks and T(r,s) is denoted by

T(r,S). The game T(I',S) is the indecomposable S-truncation
of T.

LEMMA 4. A perfect equilibrium set S for a game I' induces a
perfect equilibrium set S on every S-truncation T = T(r,N,S).

PROOF. It follows from lemma 2 that the elements of S are
perfect equilibrium points. It remains to be shown that a)
anv two equilibrium points r and s with r ¢ S are subgame

payoff equivalent and b) if a perfect equilibrium point q

for T is subgame payoff equivalent to the elements of S,

then g is an element of 8§.

We first prove a). The perfect equilibrium points r and s

are induced by some reS and some seS, resp. Let r and s be
such strategy combinations. Let T' be a subgame of T and let

r' and s' ve the strategy combinations induced by r and 5,
resp. on T'. We must show H'(r') = H'(s'). This is obviously
true if T' is a subgame of I'. If I'' is not a subgame of T,
then a subgame of I'' exists, such that T' is an S'-truncation
of I'', where S' is the set which is induced by S on I''. Let r'
and s' be the strategy combinations induced on I'' by r and s,
resp. We must have H'(r') = H'(r') and H'(S') = H'(s') because
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of lemma 1 and H'(r') = H'(s') since r and s are subgame
payoff equivalent. This shows that r and s are subgame payoff
equivalent.

Consider a perfect equilibrium point q for T which is subgame
payoff equivalent to the elements of S. We have to show that
a belongs to S. Let g be a strategy combination for T which
agrees with q on T and agrees with some s € S everywhere
else. It follows from the correlary of theorem 1 that g is a
perfect equilibrium point for T.

Assume that g does not belong to S. Then there must be a
subgame I'' of I' where the payoff vector H'(a') belonging to

the strateqgy combination induced by g on I'' does not agree Wwith
the payoff vector H'(s') belonging to the strategy combination
induced by s on I''. Obviously this subgame I'' cannot be in M.
Therefore some s-truncation T'=T(r',M',s) of I'' must be a proper
subgame of T. Because of lemma 1 the payoff vector H'(q')
belonging to the strateqy combination g' induced by a' on T'

is the same as the payoff vector H'(s'). This contradiction
shows that g belongs S. Therefore a belongs to S. This proves
the lemma.

LEMMA 5. A perfect equilibrium set S for a game I' induces an
equilibrium set S' on every S-brick I'' of T,

PROOF. Since S-bricks are indecomposable subgames of S-trunca-
tions the assertion follows from lemma 3 and lemma 4.

2.9 A DECOMPOSITION PROPERTY OF PERFECT EQUILIBRIUM SETS. In the
following it is shown that similar results as in 2.7 can be
obtained for perfect equilibrium sets.

THEOREM 2, Let S be a perfect equilibrium set for a game I' in
extensive form. Then a strategy combination s for I' is an
element of S, if and only if for every S-brick I'' of I' the
strateqy combination s' induced by s on I'' is an element of
the equilibrium set S' induced by S on I''.
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PROOF. The onlv-if pmart of the theorem follows from the definition
of an induced set of strateay combinations. The if-part remains to
be shown. This is done by induction on the decomposition rank of

. The assertion is triviallv true for decomposition rank 1.
Assume that it is true for decomposition rank 1,...,m.

Consider a strategv combination s which induces a strateqy
combination s ¢ S on everv S-brick I'of TI'.It follows from the
induction hypothesis that for everv proper subgame I'"of I' the
strateqgy combination s”induced by s on I'"is in the perfect
ecuilibrium set 5" induced by S on I'". There is no difference

between an S-brick of I'"and the coresmonding S-~brick of T.

Let S be the ecuilibrium set induced on the indecomvosable
S-truncation T= T ( I ,S). The strategy combination s induced
by s on the S-brick ' belongs to S. Since perfect equilibrium
voints s”are induced on the maximal pnroper subgames I'"of TI',the
S-brick T is also an s-brick. Moreover everv other S- 'rick is
also an s-brick. It follows by theorem 1 that s is a perfect
equilibrium point. We must have H(s) = F(8) because of lemma 1.

This shows that s belongs to S.

CORRELARY. Let S be a perfect emquilibrium set for a game T

in extensive form and let f='T( I'M,8) be an/ S-truncation of I'.
Then a strategy combination s for T is an element of S, if and
only if the following two conditions are satisfied: 1) The
strategv combination § induced bv s on T is in the perfect
equilibrium set S induced by S on Tand 2) For everyTl' M, the
strateqy combination s’ induced by s onT!' is in the perfect
equilibrium set S' induced by S on T,

PROOF. The S-bricks and S’- ricks coincide with the corresponding
S-bricks. Therefore for s ¢ S the induced strategy combination s
and s'are in T and T'resp. On the other hand, if s satisfies

1) and 2), then the strategy combinations induced by s on the
S-.ricks are in the eauilibrium sets induced bv S. This shows
that the correlary follows from the theorem.
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THEOREM 3. Let S be a brick- roducinag set of strateqy combinations

for a game ' in extensive form. Then S is a perfect equilibrium
set, if and only if the following two conditions are satisfied.

1) For every S-brick I'' ,the set S'induced by S onT''is an
ecullibrium set for T'. 2) If a strateay cembination s for T

has the property that for every S-brick I'' the strategy combination
s' induced bv s onT'is in the set S’'induced by S on ', then s

18 in B.

PROOF. If 1) and 2) are satisfied, then it follows from

theorem 1 that the elements s € S are perfect eguilibrium points.
Take any fixed r ¢ S and let R be the perfect equilibrium set

of r. Obviously there is no difference between corresnonding r-
bricks, R-bricks and S-bricks. It follows from lemma 5 that an
equilibrium set R’is induced bv R on every r-brick I''. Since every
equilibrium point is in a uniaquely determined eocuilibrium set,

R' must agree with the set S' induced by S onT'. It follows by.
theorem 2;that R and S are identical sets.

If S is a perfect eaquilibrium set, then lemma 5 has the
consequence that 1l)is satisfied and it follows by theorem 2
that 2) is satisfied, too.

2.10 INTERPRETATION. The notion of a perfect equilibrium set

is a natural modification of the notion of a perfect equilibrium
point. Since all the perfect ecuilibrium points s in a given
perfect equilibrium set are subgame pavoff equivalent, one can
take the noint of view, that the differences between them are
unimportant.

Theorem 1 shows that a perfect equilibrium point s is fully
determined by the equilibrium points induced on the s-bricks.
Theorem 3 shows that a perfect ecuilibrium set S is fully
determined bv the ecuilibrium sets S'induced on the S-bricks. In
order to describe S it is sufficient to describe these eaduilibrium
sets S'.
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3. THE SOLUTION CONCEPT.

The game~theoretic conceptsdeveloped here serve the limited
purpose of constructing a theory which is just general enough
to provide a solid basis for the analysis of the game T
described in section 1. The solution concept of this paper is
not applicable outside a certain class of games with special
properties. No attempt is made to attack the difficult task

of selecting a unique solution for every non-cooperative game.lz)

For the class of games where it is defined, the solution concept
proposed here is the only one of its kind, which has four
desirable properties. Two of these properties concern the
relationship of the solution of a game to the solutions of its
subgames and truncations. The third property is a symmetry
property. The fourth property is based on the idea that the
players have a tendency to act in their common interest if this
is compatible with the other three properties.

3.1 SOLUTION FUNCTIONS. A solution function for a class K

of games in extensive form is defined as a function which assigns
a perfect equilibrium set L(I') to every game I' in the class K.

The equilibrium set L(I') is called the L-solution or simply the
solution of I', where it is clear which solution function L is
considered. The payoff vector belonging to L(T) is called the
L-value of I'. The L-value of I' is denoted by V(I ,L) = (Vltr,L),...,
vn(r,L)).

It may happen that the solution L(I') is a perfect equilibrium
set which contains exactly one perfect equilibrium point. In this
case the single perfect equilibrium point in L(T) will also be
called the solution of I', where the danger of misunderstandings
cannot arise.

lz)The author is collaborating with John C.Harsanyi on the
elaboration of a theory of this kind. Some of the ideas

presented here go back to this common work which is not yet
complete. See 4]
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3.2 SUBGAME CONSISTENCY. A class K of games is called subgames
complete, if for ' ¢ K every subgame of T is also in K.

A solution function L for a class K of games is called subgame
consistent, if for every I' ¢ K the L-solution L(r') of r' is
induced by L(I') on every proper subgame T''of TI' with I'' ¢ K.

Note that subgame consistency is not implied by the definition
of a perfect equilibrium set. If L(Ir') is a perfect equilibrium
set then it must induce some perfect equilibrium set on a
subgame I''of I', but it does not follow, that for I''e K this
perfect equilibrium set is the L-solution of TI.

Subgame consistency means that the behavior in a subgame depends
on this subgame only. This is reasonable, since as far as the
strategic situation of the players is concerned, those parts of
the game, which are outside the subgame, become irrelevant once
the subgame has been reached.

3.3 TRUNCATION CONSISTENCY. Let L be a solution function for
a subgame complete class K. For any multisubgame M of a game
I ¢ K, the L(r)-truncation T=T7(r,M,L(Ir) ) can be formed. For the
sake of shortness, this game T is denoted by T(r ,M,L). The games

T(r,M,L) are called L-truncations of I'. The indecomposable
L-truncations are called L-bricks. For the indecomposable L(TI)-
truncation T(r,L(l))the notation T(r,L) is used. T(r,L) is the
indecomposable L-truncation of T.

A class K of games in extensive form is called L-complete,if the
solution function L is defined on K and if K is a subgame complete
class with the additional property that for I' € K every
L-truncation of I' is in K.
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A solution function L for a class K of games in extensive
form is, called truncation consistent, if for every T e K
the L-solution L(I') induces the L-solution L(T) on every
L-truncation T = T(r,M,L) with T ¢ K.

It is intuitively clear that a reasonable subgame consistent
solution function L should also be truncation consistent. If
L(r') is the behavior expected in the subgames I''e M, then the
strategic situation in T = T(r,M,L) is essentially the same as
in that part of T which corresponds to T.

3.4 CONSISTENT EXTENSIONS. Consider a solution function Ll
for a class Kl of indecomposable games. In the following for
any such L an extension to a wider class K will be constructed.
It will be shown that the extended solution function L is the
only subgame consistent and truncation consistent solution

function for K such that L coincides with Ll on Kl'

Let L be a solution function for a class K of games in extensive
form. L is called a consistent extension of a solution function
Ll for a class Kl of indecomposable games, if the following
conditions (2 and (B) are satisfied:

(A) REGION. The set of all indecomposable games in K is

the set Kl‘ For m & 2.3,.... the Set Km of all games T ¢ K
with decomposition rank m is equal to the set of all games T
in extensive form, such that the maximal proper subgames of T

are in the sets Kyreeer, K _, and the indecomposable L-truncation

T(r,L) is in K-

~

(B) SOLUTION. For every T ¢ Kl we have L(TI') = Ll(r).

If ' is a decomposable game T' ¢ K, then L(Ir') induces L(I'')
on every maximal proper subgame I'' of ' and L(T(r,L) ) on
the indecomposable L-truncation T(r,L) of T.
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Later it will be shown that (A) and (B) imply subgame
consistency and truncation consistence. This justifies the
name "consistent extension".

THEOREM 4. Every solution function Ll for a class of
indecomposable games Kl has a uniquely determined consistent
extension.

PROOF. (A) and (B) provide a recursive definition of L and

K. If the classes Kl""’Km-l are known and L is known for
games in these classes, then Km is given by (A). It remains
to be shown that for every T « Km a unicue perfect equilibrium
set L(I') is determined by condition (B). This can be seen by
induction on M. The assertion is trivially true for T e Kl‘

If the assertion is true for games in Kl""'K -1' then it

follows by the correlary of theorem 2, that for TI' ¢ Km the
set L(l') is a perfect equilibrium set for T.

THEOREM 5. The consistent extension L of a solution function

L, for a class Ky of indecomposable games has an L-complete
region K. The consistent extension L is subgame consistent
andﬂtruncation consistent. For every I' ¢ K the Ll—solution
Ll(r) is induced by L(r') on every L-brick T of T.

PROOF. Let K be the union of the sets KyreeerK . Let Lo

be that solution function for Km’ which agrees with L on Rm‘

The theorem holds, if for m = 1,2,3,... the class Km is Lm =
complete and L is subgame consistent and truncation consistent.
For m = 1 this is trivially true. Assume that the assertion

holds for Rm' It follows from (A) that K is L - complete.

m+1 m+1
Since Lm is subgame consistent and Lm agrees with Lm for the
proper subgames of games in Km+1' the solution function Lm+l

is subgame consistent because of (B).



-28-

The truncation consistency of Lm+1 can be seen as follows.
Consider an Lm+1-truncation | 80 T(P,M,Lm+l) of a game

I e Km+1' It has to be shown, that Lm+1(r) induces Lm+l(r"}
on I'". The maximal proper subgames of TI'" are Lm-truncations
of maximal proper subgames of I'. The maximal proper subgames
of I' are in Km. Since Lm is truncation consistent, L

m+1
induces Lm(r') on every maximal proper subgame T of T".

(r)

The indecomposable Lm—truncation of T is the same game as
the indecomposable Lm-truncation of r". 1t follows from (B)

that Lm+1(r) induces Lm(T(F",Lm))on T(F",Lm). This shows that
Lm+l(F“) and Lm+l(F) induce the same perfect equilibrium sets
on the maximal proper subgames T'' of I'" and on T(r",Lm).
According to lemma 4 a perfect equilibrium set is induced by
Lpe (T) on r*. It follows by the correlary of theorem 2 that
this perfect equilibrium set must be equal to Lm+l(r").

It is a simple consequence of the truncation consistency and
the subgame consistency of L, that Ll(f) is induced by L(T)

on every L=briek I oF T.

THEOREM 6. The consistent extension L of a solution function

Ll for a class Kl of indecomposable games in extensive form

is the only subgame consistent and truncation consistent solution
function L, which agrees with Ll on Kl and has the additional
property that L together with its region K satisfies condition
(A).

PROOF. A subgame consistent and truncation consistent solution
function whose region has property (A) must have the property

(B) . Therefore theorem 6 is a direct consequence of theorems
4 and 5.
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3.5 SIMULTANEITY GAMES. The construction of a consistent
extension is a way of reducing the task of solving the

decomposable games in K to the simpler task of solving the
indecomposable games in Kl' For the purpose of finding a
solution for the game Plof section 1, the class Kl must be
large enough to generate a class K containing rl. In the
following a class of wery simple indecomposable games will
be specified. The class K, underlying the solution function
applied to rlwill be a subclass of this class of
"simultaneity games".

A simultaneity game is an n-person game in extensive form,

where each of the players 1,...,n has at most one information
set and where each of these information sets intersects every
play of the game. A simultaneity game can be interpreted as
a game, where those players, who have information sets, make
simultaneous decisions without getting information about

any random choices which might occur before the decisions

are made.

3.6 NORMAL FORMS. Since every plaver has at most one

information set there is no difference between behavior

strategies and ordinary mixed strategies in simultaneity games.
Therefore a simultaneity game is adeaquatelv described by its

normal form 13).

Let I' be an n-person game in extensive form, he normal form
of I is the pair G = (H;H), where II = (Hl,...,nn) is the

strateqgy set vector, whose i-th component is the set ui of all

pure strategies L of player i in r and where H is the payoff
function which assigns the corresponding payoff vector H(x)=

(Hl(u),...,Hn(x) ) to every pure strateqy combination
o= (ul,...,un) for T . A normal form (without reference to

an extensive form) is a structure G = (I',H) with the same

13jThis is not true for extensive forms in general. The normal

form does not preserve the distimnction between perfect and
imperfect equilibrium points. In simultaneity games all
equilibrium points are perfect and every normal form is
isomorphic to the normal form of some simultaneity game.
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properties where the %x; may be arbitrary mathematical objects.

A finite mixed strateqgy of player i is a probability distribution

over I, which assigns positive probabilities to a finite number
of pure strategies ny € my and zero probabilities to the other
pure strategies of player i. Since only finite behavior strategies
are considered here, in this paper a mixed strategy will be

always a finite mixed strategy.

Two n-person normal forms G = (n,H) and G'= (n',H') are called
isomorphic, if for each player i there is a one-to-one maPping f£;
L}

{ of
his pure strategies in o o , such that the same payoff vector is

from the set My of his pure strategies in G onto the set I

assigned to corresponding pure strategy combination in both normal

forms. A system of one-to-one mappings £ = (f fn) of this

1'0.-'
kind is called an isomorphism from G to G'.

An isomorphism f = (fl,...,fn) from G to G'can be extended to

the mixed strategies. For every mixed strategy 9; for G let fiﬁxi)
be that mixed strateqgy ay for G which assigns the same probability
to a pure strateqy fi("i) as gy assiqgns to my- In this way every
mixed strategy combination a= @{1,...;4n) for G corresponds to a
mixed strateqy combination q'=(fﬁql),..., fn(qn)') PO

3.7 SYMMETRIES. Consider a normal form G’ which results from a

normal form G by a renumbering of the players. In this case an

isomorphism from G to G' is called a symmetry of G. A symmetry
of G may be described as an automorphism of G, i.e. a mapping of
G onto itself which preserves the structure of G.

A symmetry preserving equilibrium point s for a game T is an

equilibrium point which is invariant under all symmetries of the
normal form of I'. A symmetry preserving equilibrium set S

for a game I is an equilibrium set, which is invariant under all
symmetries of the normal form of I'. This means that with respect

to every symmetry every r ¢ S corresponds to some s € S. Note that
an equilibrium point $ in a symmetry preserving equilibrium set S
need not be symmetry preserving. Only the set S as a whole is
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invariant under the symmetries of the normal form of the game.

A perfect equilibrium point s for a game is called locally
symmetry preserving, if a symmetry preserving equilibrium point s’
is induced by s on every s-brick T'"of ' . A perfect equilibrium

set S for a game TI' is called locally symmetry preserving, if

a symmetry preserving equilibrium set S is induced by S on every
S-brick I''of ' . Note that the elements of a locally symmetry
preserving perfect equilibrium set need not be locally symmetry
preserving.

The name "local" is used in these definitions since the symmetries
of the normal form of an s-brick or S-brick may not be present in
other parts of the game. The following two theorems show, that
local symmetry preservation is in harmony with the decomposition
properties of perfect equilibrium points or sets.

THEOREM 7. A perfect equilibrium potnt s for a game I is locally

symmetry preserving if and only if a locally symmetry preserving
perfect equilibrium point is induced by s on every subgame and
every s-truncation of T .

THEOREM 8. A perfect equilibrium set S for a game I is locally

symmetry preserving if and only if a locally symmetry preserving
perfect equilibrium set is induced by S on every subgame and every

S-truncation of T .

PROOF OF THEOREMS 7 AND 8. Since the s-bricks and S-bricks are
indecomposable subgames of s~-truncations and S-truncations resp.,
the if-parts of both theorems follow directly from the definition
of "locally symmetry preserving”. The equilibrium point s’induced
by s on a subgame or an s-truncation generates s' =-bricks which
coincide with the corresponding s-bricks. This together with
lemmata 1 and 2 shows, that theorem 7 holds. With the help of
lemmata 3 and 4 an analogous arqument can be made in order to
complete the proof'of theorem 8.
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3.8 SYMMETRICAL SOLUTION FUNCTIONS. A solution function L for
a class K of games is called symmetrical, if it assigns locally

symmetry preserving perfect equilibrium set L(I') to every
game T e K.

If one player corresponds to another under a symmetry of an
L-brick I'* of a game T ¢ K, then the strategic situation of
both players in I'' is essentially the same. It is reasonable
to expect, that rational players who are in the same strategic
situation behave in the same way. Therefore it is natural to
require that a solution function should be symmetrical.

If ' is an indecomposable game, then a locally symmetry
preserving perfect equilibrium set of T' is nothing else than

a symmetry preserving equilibrium set of I'. Therefore a solution
function Ll for a class Kl of indecomposable games is symmetrical,
if and only if it assians a symmetry preserving equilibrium

set L(I') to every game T ¢ Kl.

THEOREM 9., The consistent extension L of a solution function L

1
for a class Kl of indecomposable games is symmetrical if and

only if L, is symmetrical.

PROOF. It follows directly from the definition of a symmetrical
1 is
symmetrical. If Ly is symmetrical, then by theorem 5 for every

' e K the equilibrium set Ll(r} is induced by L(I') on every
L-brick T of I'. This shows that L is symmetrical, if Ll is
symmetrical.

solution function that L cannot be symmetrical unless L

3.9 PAYOFF OPTIMALITY. A player in a game I' in extensive form
is called inessential,if in the normal form of I' the payoffs of
the other players do not depend on the strategy of player i.
This is the case, if for every strategy combination = for T

we have'Hj(t) = Hj(I/ll) for every x! e I and every player j

3 i
with § # i. The players who are not inessential are called

essential. Obviously in a simultaneity game a player without
an information set is inessential.
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I£f S is an equilibrium set or a perfect equilibrium set for a
game ', then the payoff vector H(s) for the equilibrium points
s € S is denoted by H(S) = {Hl(S),...,Hn(S)). The payoff vector
H(S) is called the equilibrium payoff vector at S.

Let R and S be two ecquilibrium sets or two perfect equilibrium
sets for a game I'. The set S is called weakly payoff superior

to R if for every essential player i in I' we have Hi(S) > Hi{R),
if in addition to this we have Hi(S) > Hi(R) for at least one
essential player i, then S is called strongly pavoff superior

to R. A perfect equilibrium set S for I' is called weakly
subgame payoff superior to another perfect equilibrium set R
for 1, if for every subgame T'' of I' (including I') the perfect

equilibrium set S' induced by S on I'' is weakly payoff superior
to the perfect equilibrium set R' induced by R on I''. A perfect
equilibrium set S for I' is called strongly subgame payoff
superior to another perfect equilibrium set R for T, if S is
weakly subgame superior to R and if in addition to this for at

least one subgame I'' of T' the perfect equilibrium set S' induced

on I'' by S is strongly payoff superior to the perfect equilibrium
set R' induced by Ron I'',

Let K be a class of n-person games in extensive form and let A
be a set of solution functions for K. The solution function
L ¢ A is called payoff optimal in A if for every L € A and

I''e K the L-solution L(I') is not strongly subgame pavoff superior
to the L-solution L(T).

The solution concept of this paper is based on the idea that it
is natural to select a payoff optimal solution function from a
class of subgame consistent and truncation consistent symmetrical
solution functions. If a perfect equilibrium set S for T is
strongly subgame payoff superior to another perfect equilibrium
set R, then it is in the common interest of the essential players
in some subgames and not against the common interest of the
essential plavers in the other subgames to coordinate their
expectations at S rather than R. The concept of payoff optimality
is similar to the familiar notion of Pareto-optimality. The
analogy becomes clear if one takes the point of view that plaver i
in one subgame and player i in another subgame have different
interests and therefore should be treated as if they were
different persons.
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Definitions which do not take into account the possibility that
the interests of the same player diverge in different parts of
the game, cannot do justice to the structure of extensive form
games. Therefore it is necessary to look at the pavoffs in all
possible subgames. 1In this respect the definition of a payoff
optimal solution function is in the same spirit as the definition
of a perfect eaquilibrium point.

3.10 DISTINGUISHED EQUILIBRIUM SETS. A distinguished
equilibrium set for an indecomposable game I' is a symmetry
preserving eauilibrium set S for I' with the following additional

property: if R is a symmetry preserving equilibrium set for T,
WNnici 1o difforent fram S. then S 1s strongly payoff superior to R.

Obviously an indecomposable game can have at most one distinauished
eaquilibrium set and not every indecomposable game has a
distinguished equilibrium set. An indecomposable game which has

a distinguished eaquilibrium set is called distinquished.

Later the class of all'distinguished simultaneity games will ke
of spmecial importance. It is natural to regard the distinguished
equilibrium set of a distinquished simultaneity game as the
solution of this game. It is in the common interest of the
essential players to coordinate their expectations to an
equilibrium point in this set.

In this paper the same intuitive araqument is not applied to
indecomposable games in general. It is not clear, whether for
indecomposable games with complicated information structures the
svmmetries of the normal form sav something méanianul about the
extensive form in all possible cases. Only within the class of
simultaneity cgames it is justified to rely on definitions based

on the normal form.
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3,11 THE DISTINGUISHED SOLUTION FUNCTION. Let Rl be the set
of all distinquished simultaneity games and let il be that
solution function for K, which assigns the distinguished

1
equilibrium set of I to every I ¢ K, The distinquished

solution function is the consistent extension L of this solution

function il'

The distinquished solution function is the solution concept of
this paper. The following theorem summarizes the desirable
properties of this solution concept,

THEOREM 10. Let X be the region of the distinquished solution
function L, The set A of all subgame consistent and truncation

consistent symmetrical solution functions L for K contains one
and only one solution function which is payoff optimal in A.
This is the distinquished solution function L

PROOF, It follows from theorems 5 and 9 that L is in A, It

is a consequence of the definition of a distinquished equilibrium
set that a solution function L, which is payoff optimal in A,
must assign the distinguished equilibrium set to every
distinguished simultaneity game in K. It follows by theorem 6
that a solution function L cannot be payoff optimal in A, if it



Fiqure 2: The indecomposable L-truncation T = T(F,ﬂ) of the

game T represented in fiqure 1.
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The indecomposable L-truncation F = T(r,ﬁ) of T is represented
in figqure 2. In T player 1 is the only essential player.
Obviously T has a distinguished equilibrium set, whose only
equilibrium point prescribes the left choice. Consequently T

is in the region K of L. The L-solution L(I) prescribes the left
choice at every information set.

The game I' has another perfect equilibrium point which prescribes
the right choice r at every information set. This equilibrium
point is the only element of a perfect equilibrium set R.
Obviously R is locally symmetry preserving. The L-value of T

is v(r,i) = (4,4,4). The equilibrium payoff vector at R is

H(R) = (5,5,5).

This shows that another locally symmetry preserving perfect
equilibrium set can be strongly payoff superior to the L-solution
of a game in K. At first glance one may think that in view of
such cases it is questionable, whether L is a reasonable solution
function. With the help of the example of figure 1, it can be
easily understood, why this is not a valid counterargument
against the distinguished solution function. At the beginning of
the game r of figure 1 all players prefer R to i(r), but player 1
knows that after the subgame T'" will have been reached plavyers

2 and 3 must be expected to coordinate their expectations at
L(r"), since this in their common interest. The fact that R is
strongly payoff superior to L(r) in the whole game will then be

a matter of the past.

Already at the end of section 3.9 it has been pointed out, that
the interests of the same player may diverge in different parts
of the game and that therefore the efficiency idea behind the
definition of the concept of payoff optimality must be applied
to all payoffs of all subgames rather than to the payoffs of the
whole game only. The numerical example of figure 1 illustrates
this point.
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4. THE SOLUTION OF THE MODEL

In the following the solution concept developed in sections

3 and 4 will be applied to the extensive form r! of the model
described in section 1. The upper index 1 in the symbol rt

has been used in order to distinguish this game from other
games. Since only games related to this game will appear in

the remainder of the paper, we drop the upper index 1 and use
the symbol I'' without any index in order to denote the extensive
form of the model described in section 1. Accordingly the
notation I', will be used for the supply decision subgames and

Z
the cartel bargaining subgames will be denoted by I'_,. Another

notational simplification concerns the distinguisheg solution
function L. Here we shall use the symbol L instead of i, since
no other solution function appears in the remainder of the
paper. The distinguished solution of a game will simply be

called the solution of this game.

The computation of the solution of the extensive form I' of the
model will follow a "cutting back procedure", which works its
way backwards from the end of the game to its beginning by
solving indecomposable subgames and forming truncations. First
the supply decision subgames TY will be solved. Then truncated
cartel bargaining subgames fz are formed as L-truncations of the
cartel bargaining subgames. After these games have been solved
the indecomposable L-truncation T of T can be formed and solved.
The games whose solutions are found in this way are the L-bricks
of I'. Finally the solution of I' can be put together from the
solutions of the L-bricks of T.

The path to the solution of T' is not the shortest possible one.
The detours have the purpose to exhibit some interesting
properties of the model and its solution.
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4.1 LEMMATA ON THE SUPPLY DECISION SUBGAME. Obviously the
supply decision subgames T

y are simultaneity games. A strategy

ay for FY is a finite probability distribution over the interval
os-xis Yy The following lemma will show, that only the pure

strategies are important.

LEMMA 6., Let s = (sl,...,sn) be an equilibrium point for a

supply decision subgame T, ;then s is a pure strategy combination.

=
PROOF. In order to prove the lemma, it is sufficient to show
that for every strategy combination q={q1,...,qn) each plavyer i
has exactly one best reply ry which is a pure strategy. Let us
distinguish two cases. In case 1 the supply X, = O is the only
pure strateqgy which guarantees a non-negative gross profit Pi,
no matter which of the pure strategies occuring in the mixed
strategies qj of the other plavers are realized. In case 2

player i can choose a supply X;>0 which guarantees a non-negative
gross profit P,, no matter which of the pure strategies occuring
in the mixed strategies qj of the others are realized. It

follows from (9) that in case 1 the supply x;=0 is the only

best reply of player 1i.

Now consider case 2. Let ij be the greatest supply xj such
that qj assigns a positive probability to xj.

Define

(173 % = X .
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Obviously we must have ii < 1. In order to be sure to receive

a non-negative gross profit, playver i must select a supply Xy

in the closed intervall O < Xy £ ;i' where Qi is the minimum of

b Y and l-ii. It follows from g=1 - X, that in this intervall the
expected gross profit of player i is a strictly concave quadratic
function. Consequently player i has exactly one best reply, which

is a supply X, with 0 < .;15_ X

i %
REMARK. If the players had the utility function ui=Pi instead
of (9), a similar argument would not go through, since over the

whole range xi > 0, the variable P, is not a concave function

i
oFk-%.

i
Lemma 1 shows that we can restrict our attention to pure strategy
combinations. In the following a pure strategy combination forr‘Y
is identified with the corresponding supply decision vector

x=(xl,...,xn).

In lemma 2 a function ¢i(xi} is introduced, which is called
the reaction function of player i. This function is indeed

the familiar reaction function from the Cournot oligopoly theory.

In lemma 8, equation (21) we shall define a related function

n;(x), vhich is called the fitting-in-function. 14) | The fact
that this function depends on the total supply X, rather than on Xi

makes it a useful instrument for the analysis of the Cournot model.

LEMMA 7. Let (xl,...,xn) be a pure strategy combination

(xl,...,xn) for a supply decision subgame FY define

(18)  x;= ¥ x,

j=1
341
Then
l"‘Xi -]
(19) ¢fxi) = max [0, min [——g= , yih

is player i's best reply to (xl,...,xn)

ll)The concept of a fitting-in function has beeen introduced for

a wide class of oligopoly models in [12]. The German name is
"Einpassungsfunktion”.
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PROOF. Consider first the case Xi > 1. In this case Xy = 0 is
the only supply which gives players i a non-negative gross profit

and 9, (X,;) = O is the best reply to x = (xl,...,xn).

In the case xi < 1l player i's gross profit is negative outside
the intervall 0 <« Xy 4 l - xi. Within this intervall the function
xi(l_xi_xi) assumes its maximum at x;, = (1 - xi)/z. This shows
that for Xi <1l the best reply to (xl,...,xn) is given by (19).

LEMMA 8. Let R, be a supply decision subgame with the binding
quota vector y = (yl,...,vn). Define

(20) oy (X) = max [0, min 1-X,yy

for { = 1,...,n (the function ni(x} is called player i's
fitting-in function). For every X> O and for i=1l,...,n the
function ni(x) satisfies the condition

(21) ni(X}=mi(¥~ni{X) )
and for every fixed X > O the only solution of the equation

(22) xi B Qi (X"xi)

is Xy = ing (X) .

PROOF. »; (X;) 1is monotonically non-increasing. Therefore
04 (X-x;) =X, is monotonically decreasing in X;. Consequently for
every X > O there is at most one Xy satisfying (22). It remains

to be shown that (21) is true, (19) vyields

1=X+ X i
ny }:th

(23) 9y (X=ny(X) ) > max [0, min L
= - ]




il

In order to prove (21) we distinguish the following three
cases (24),(25) and (26)

(24) L% w0
(25) D1 %=y
(26) yi_<l -X

In case (24) we have ni(X) = 0. If we insert this on the right
side of (23), we see that because of (24) condition (21) is
satisfied. Now consider case (25). In this case nitx) is equal
to 1-X. It is clear fram (23] and {(25) that (21) holds in this
case too. In case (26) we have ni(X) is equal to Yy Inequality
(26) implies

1—X+yi
(27) S Do, oo

This shows that (21) is satisfied.

4.2 THE SOLUTION OF THE SUPPLY DECISION SUBGAME

In the following the results of the last section will be used in
order to find the solutions of the supplvy decision subgames.
For this purpose we introduce the total fitting-in function n(X):

(28) n(Xx) = ﬂni(m = 3> max 0, min ”1—-x,yi'f;
i=1 i=] ; .



Figqure 3: The fitting-in diagram for n=3 and Y™ ey Y= . 4,

¥Ya

3

X=

.1 . The intersection of n(X) with the 45°—line is at

.7 « The equilibrium point is at X,= v 3, X,= o3 1 X3= R 5
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Consider the pure strategy equilibrium point (xl,...,xn) of rY
and let X be the total supply belonging to x=(xl,...,xn). It
follows from the definition of an equilibrium point and from
lemma 7 that (22) must hold for i=1,...,n. In view of lemma 8
this means that we must have x,= ni(x). Hence we also must
have

(29) X = n(X)

Moreover, it is clear that any solution X of (29) together with
equations (21) generates an equilibrium point (xl,...,xn).

A convenient graphical representation of the solutions of (29)
can be given with the help of a diagram which shows n(X) and
the 45°-line. This diagram will be called the fitting-in diagram.
An example is given in figure 3. 1In the fitting-in diagram the
solutions of (29) are represented by the intersections of n(X)
with the 45°-line. Since n(X) is a continuous non-increasing
function with n(0) >0 and n(l) = O, it is clear that n(X) has
exactly one intersection with the 45°-1ine and FY has exactly
one equilibrium point, whose total supply X satisfies the
inequality

(30) 0« X =)

The resultswhich just have been derived, are summarized by the
following theorem.

THEOREM 11l. Let FY be a supply decision subgame. Then Ty has a
unique equilibrium point. This equilibrium point is an equilibrium
point (xl,...,xn) in pure strategies. The total supply X

belonging to (xl,...,xn) is the unique solution of the equation
X=n(X) and satisfies the inequality O <X < 1. Moreover we have
x; =ny (X) for 4 =1,...n. (Here n and n; are defined as in

(28) and (20) resp. ).
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REMARK. Since PY
L(FY) is the equilibrium set with this equilibrium point as its
single element. Obviously T

has only one equilibrium point, the solution

y is a distinguished simultaneity

game.

4.3 PROPERTIES OF THE SUPPLY DECISION EQUILIBRIUM.

In this section the determination of the solution of the cartel
bargaining subgames Fz will be prepared by the derivation of
some results on the equilibrium points of the supply decision
subgames. We first look at the special case of a supply decision
subgame TY with a binding quota vector (yl,...,yn) with ¥ =
for 1 = 1,...,n. We call this case the unrestricted case.

The unrestricted case is an important limiting case. If no cartel
agreements were possible then the egquilibrium point of the
unrestricted case would be the non-cooperative solution of the
model.

LEMMA 9. Let FY be a supply decision subgame with a binding

guota vector y = (yl,...,vn) with Y, =, Then the components of

the equilibrium point (xl,...,xn) for r, are given by

4

(31) x,= n—h for 1 = 1,...,n

and player i's profit Pi at (xl,...,xn) is givan by

1

(32) P, = —=—s 3
(n+1)2 fDr i _— 1,-.-,11.

i=



g B=

PROOF. Because of (28), (29) and (30) we have
(33) X = n(1l-X)

>
(34) X =T

(31) is a consequence of (34) and (20). Equation (32) follows
by (7) and (8).

LEMMA 10. Let Ty be a supply decision subgame of a given cartel
bargaining subgame P Let (xl,...,xn) be the equilibrium point
of Ty and let k be the number of non-participators (the number
of players in N-Z). Define

(35) B, = ) K,

ie2

Then the following is true:

- 1 __(1-x,) f ' -

(37) x, =< -R=k
PROOF. Since no quotas are fixed for non-participators we have
(38) Y, == for 1¢ H-z

This together with (20) and (30) vields

(39) xi = 1 =X For 1 g N-%
Define

o
0L Beg “i..T4

ieN=-7
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(39) yields

(41) Xy, = k(1-X,-X
K

(42) Xy, = 7 (1-X,)

N-Z)

(39) shows that the equilibrium supply x, is the same for
all i e N-2. This together with (42) proves (36). Because
of (42) we have

(43) 1 =X=1-X - %4y

1
(44) l~-X= k+1 (l-xz)

The inequality

(45) W< I -~ % Eor A 32

is a consequence of (20)and (30). This together with (44) yields

k
(46) XZS-I;E (l—XZ)

(46) is equivalent to (37).

REMARK. Note that because of (31) in the unrestricted case X
is equal to the upper bound on the right side of (37).

LEMMA 11. 0Under the assumptions of lemma 10 let Pi be player i's
gross profit at the equilibrium point (xl,...,xn) of Ty.
Define

(47) P = z:;pi

a ie2

Then the following is true:

ek ;. S
(48) Pz 5y Xz(l xz"'??ﬁ?IT
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PROOF. Because of (30) we can write

(49) P, = Xz(l-X)

This together with (44) yields

: 4

(50) Py, = 31 Xy

(1~xz)

The right side of (50) assumes its maximum at xz=1/2.
This proves (48).

4.4 THE SOLUTIONS OF THE TRUNCATED CARTEL BARGAINING SUBGAMES.

Let rz be a cartel bargaining subgame. The indecomposable
L-truncation ?Z=T(F,L) of Pz is called the truncaéted cartel
bargaining subgame for Z. 1In this section it will be shown

that ?z has a distinguished equilibrium set.

Consider an equilibrium point §, of a truncated cartel bargaining

Z
subgame fz, such that the equilibrium payoffs at s, are

the gross profits (32) obtained in the unrestricteg case of a
supply decision subgame. Formally an equilibrium point of this
kind may very well involve cartel agreements as we shall see

in lemma 12, but such cartel agreements have no economic
significance and therefore will be called inessential. No cartel

bargaining is necessary in order to achieve the payoffs (32).

The solution of fz depends on the number k of players in N-Z.
As we shall see, for k 2 (n-1)/2 the equilibrium payoffs connected
to the equilibrium points in L(fz) are the gross profits (32).

In this case only inessential cartel agreements result from the
equilibrium points in L(fz). For k <(n-1)/2 the situation is
different. Here the equilibrium payoffs at L(rz} are greater

than those of the unrestricted case of a supply decision subgame.

Generally the solution L(fz) of a truncated cartel bargaining
subgame contains many eaquilibrium points. There are two reasons
for this: different proposal systems may lead to the same quota
vector and different quota vectors may lead to the same
equilibrium payoffs in the supply decision subgame.
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For our purposes, it is not necessary to describe L(fz) in
detail. It is sufficient to exhibit one equilibrium point

in L(F,) and to describe L(Fz) as that equilibrium set, which
contains this equilibrium point.

LEMMA 12. Let fz be a truncated cartel bargaining subgame.
Then the following system of proposals Y is an eaquilibrium
point in pure strategies for T

z:
{51) Y = (Yi)iez where for every ieZ
P (Yij]jez with Ny = o

The binding quota vector (yl,...,yn) generated by this
equilibrium point has the property for 1=1....;n.

PROOF. Formally an agreement results from Y, but this agreement
is an inessential one, since the binding quota vector has the
property Per for 1= 1,...,0.

We must show that no deviation of a player jeZ can improve his
gross profit. The only deviation which can change the binding
quota vector is a deviation to a proposal for the one-person
coalition ({j} containing j as its only element. Let y! be the
quota which player i proposes for himself. The new binding quota
vector has yi as its j=-th component and Y9 » for all i =+ 5.

The proposal system (51) has the result that all players get the
gross profit from (32). It is clear from the proof of lemma 4

that the new binding cuota cannot lead to a different result
unless we have

(52) xy = mbn[l—x,ysl =y}
Because of

(53) x; = 1-X for i # 3

we must have

(84) X = yi + {n=1) (1-X)
WL

(55) X ~ + e

(56) PR G
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This together with (52) yields
1-v}
n

(57) y._'rl_<

(58) }3_5 H%T
Because of (7),(8) and (56) player j's gross profit P% after
the deviation can be written as follows:

(59) P! = % gt

1 %A

In the interval 0_5y55_1/(n+1) the profit Pi is an increasing
function of yi. Therefore we must have

g 1 ! . 1
(60) P%— AR s (1 15 LT

This shows that the deviation to yi does not improve player j's

gross profit above fts equilibrium value from (32). Consequently
(51) is an equilibrium point of T,.
THEOREM 12. Let FZ be a truncated cartel bargaining subgame

where the number k of non-participators satisfies the inequality

n-1

Then FZ is a distinguished simultaneity game and the
distinguished equilibrium set §z contains the pure strategy

equilibrium point (51) from lemma 12. The equilibrium payoffs at
§z are the gross profits (32) from lemma 9.

PROOF. The symmetries of fz correspond to those permutations
of N which leave Z and N-Z unchanged. Since at the equilibrium
point (51) the players in Z have equal payoffs and the players
in N-2 have equal pavyoffs, the equilibrium set §z of this
equilibrium point is symmetry preserving.
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We have to show that Fz is a distinguished simultaneity game

and that 8, is the distinguished equilibrium set of Fz.
the players in N-Z are inessential and since every symmetry

Since

preserving equilibrium set must give the same payoff to all
players in Z, it is sufficient to show, that the joint gross
profit PZ of the players in Z at (51) cannot be surpassed by
the joint gross profit of the players in Z at any other
equilibrigm point of Fz'
For any supply decision subgame of rz the joint equilibrium
supply Xz of the players in 2 is bounded by the right side of
(37). If the lower bound for k from (6l1) is inserted on the
right side of (37) we get

(62) X,

Ml!—'

It can be seen from (50),that in the interval 0_5ngvl/2
the joint gross profit P, of the players in Z is a monotonically

increasing function of Xy Therefore P, cannot be greater than

z
the profit at the upper bound of X, in (37) which is assumed

at the supplies specified in (31). This shows that the

eguilibrium set Sz is the distinguished equilibrium point of
fz and that the equilibrium payoffs at §z are the gross profits

(32). Obviously Fi is a distinguished simultaneity game.

LEMMA 13. Let fz be a truncated cartel bargaining subgame,

where the number k of non-participators satisfies the inequality
=1l

(63) k < )

Then the following system of proposals Y is an equilibrium

point in pure strategies for Fz.

(64) Twm ) ion where for every i ¢ 2

PR | .
Y, = (Yij)icz with Yi3 = T(05K) for all J ¢ 2
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The equilibrium payoffs at this equilibrium point are the
following gross profits:

S 1
(65) By ™ 4 (n-k)(k+1) for i e %
(66) P, = e R for 1 ¢ N-Z
4 (k+1)2

PROOF. Let PY be the supply decision subgame resulting from
(64) and let (xl,...,xn) with the total supply X be the
equilibrium point of ry. Obviously the binding guota vector
(yl,...,yn) of Ly is as follows:

(67) vy s for i ¢ 2

(68) R for 1 ¢ N-Z

Because of (28), (29) and (30) the total supply X satisfies the
condition

(69) X = k(1-X) + (n-K) min [1-X,573=y]

In the following it will be shown that we must have

£ i

(70)  min [1-X, iT%%Ei] = o

If (70) were wrong, (69) would assume the form
(71) X = n (1-X)

This yields

n

(72) X = n—+i-

Consequently (70) cannot be wrong unless the follewing is true

1 S
n+l 2(n=-k)

(73)



o

It is an immediate consequence of (63) that we must have

(74)  2(n=k) > 2(n-25%) =n +1

This contradicts (73). Therefore (70) is correct. By theorem 11
we have Xy = ni(x). With the help of (20) this yields

(75) xi = QT%:ET for S

The eaquilibrium supplies for i € N-Z, can be computed from
(75) and (36). We receive

2 1 -
(76) xi = 5TE$TT for i e N=-2Z

The profit margin g at (xl,...,xn) is given by

1

07 g% spie

It follows that the gross profits at (xl,...,xn) are the gross
profits Py in (65) and (66).

It remains to be shown that the proposal system (64) is an
equilibrium point of F'z‘ It is not necessary to look at the
inessential players in N-Z. Consider a player j € Z. Player j

has two kinds of deviations. Some deviations have the result

that the new binding quota vector gives a quota of « to every
player including player j. As we can see from lemma 9, if this
happens player j's pavoff after the deviation is equal to l/(n+1)2.
Later we shall show that (63) implies

1 |
(7% 4 (n-k) (k+1) 2 (n+1) 2

This inequality togebher with (65) has the consequence that a
deviation of the kind considered above is unprofitable. The only
other possibility of a deviation of a player j ¢ Z 1is a deviation
to a proposal for the one-person coalition {j} which would result
in some binding quota Yy for player j and binding quotas y, =«

for all other players i.
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From the fact that the proposal system (51) from lemma (12)

is an equilibrium point where according to lemma 9 every player
receives 1/(n+1)2 as his equilibrium payoff, we can conclude
that such deviations are not more profitable than those which
vield binding quota vectors i for all players i.

In order to prove that (63) implies (78), we observe that the
partial derivative of 4(n-k) (k+1l) with respect to k is

4 (n-1-2k). Obviously this is positive, if k satisfies

0< k < (n-1)/2. Therefore in the interval O < k <(n-1)/2 the
gross profit Pi in (65) is a monotonically decreasing function of
k. At k=(n-1)/2 the gross profit Pi assumes the value 1/(n+l)2.
This shows that (78) holds for k < (n-1)/2.

REMARK. In the conrse of the proof of lemma 13, it has been
shown that for k < (n-1)/2 the gross profit (65) of a participator
is bounded by (78). The lower bound 1/{n+l)2 is the supply
decision equilibrium payoff of the unrestricted case. If k is
equal to (n-1)/2 then (64) is an equilibrium point in the
equilibrium set E; from theorem 12. 1In this case the cartel
agreement resulting from (64) is inessential. Note that both for

i1 €2, and 1 ¢ N-Z the equilibrium payoffs become smaller if the
number k of non-participators is increased within the interval

O <k « In=11/32,

-

THEOREM 13. Let Tz be a truncated cartel bargaining subgame,

where the number k of non-participators satisfies the inequality

(79 x < 25i

Then Fz is a distinguished simultaneity game and the distinguished
equilibrium set Sz of Fz contains the pure strategy equilibrium
point (64). The equilibrium payoffs at §z are the gross profits
*(65) and ' (66) from lemma 13.
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PROOF. Let §z be the equilibrium set of khe equilibrium point
(64). In the same way as in the proof of theorem 12 we can see

that Sz is symme®ry preserving.

In order to show that TZ is a distinguished simulteneity game

and §, is the distinguished equilibrium set of FZ it is
sufficient to show that the joint equilibrium payoff of the
players in Z cannot be surpassed by the joint gross profit of
the players in Z at any other equilibrium point of Fz. It can
be seen from (65) that the joint equilibrium payoff of the
players in ‘Z is equal to the upper bound in (48). This upper
bound cannot be surpassed by the joint equilibrium gross profit
Pz of the players in Z in any supply decision subgame of Fz.
This completes the proof.

REMARK. Generally éZ contains many equilibrium points. This
can be seen easily for the trivial case n=1, and k=0 where any
binding quota ylg_l/z is compatible with the monopolist's
optimal supply X, = l1/2. For n> 1, it is also possible that Sz
contains more than one equilibrium point. In order to see this,
one may look at the case n=4, k=0. There one can find
equilibrium points which achieve the binding quota vector of
(64) by two 2-person agreements. Since this is an unimportant
detail, no proof is given here.

4.5 THE PARTICIPATION DECISION BRICK. Let T be the
indecomposable L-truncation T = TIr,L) of the extensive form
of the model FTwill be called the participation decision brick.
In T each player i has two strategies: he may choose 5 = 0
or z, = 1. The payoff function of the participation decision
brick is described in theorem 14. Up to n=10, the numerical

values of the payoffs are tabulated in table 1.

THEOREM 14. Let z = (zl....,zn) be a pure strategy combination
for the participation decision brick T and let Z be the set of
all players i with Ny - 1 (the set of all participators). Let

k be the number of players in N-Z. Then player i's payoff ﬁi(z)
in T is as follows:
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Number Number Payoff Payoff
of of of a oFf a
plavers non-partici- participator non-partici-
pators pator
n =1 k =0 . 25000 ”
k=1 - . 25000
n =2 k =0 . 12500 o
k» 2 01111 «11111%
n =3 k =0 .08333 -
k »1 .06250 .06250
n = 4 k =0 .06250 .
k =1 .04167 .06250
k & 2 . 04000 . 04000
n=2>5 k=0 . 05000 =
k =1 .03125 .06250
k23 .02778 .02778
n==s k =0 .04167 "
k =1 .02500 .06250
k =2 .02083 .02778
k > 3 .02041 .02041
5 =1 k =0 «03571 -
k =1 .02083 .06250
k = 2 .01667 .02778
E » 3 .01562 .01562
n =8 k =0 03125 “*
k =1 .01786 .06250
k = 2 .01389 .02778
k =3 .01250 .01562
k > 4 -01235 .01235
n =9 k =0 .02778 &
k=1 .01562 .06250
k = 2 .01190 .02778
k =3 .01042 .01562
k> 4 . 01000 .01000
n = 10 k =0 .02500 -
k =1 .01389 .06250
k = 2 .01042 .02778
k =3 .00893 .01562
k = 4 .00833 .01000
kK *»S .00826 .00826

Table 1: Payoffs for the participation decision brick up to n = 10
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—-—1—2— for 3 =1, ... 0, EREL
(n+1l) 7
o 1 for 4 ¢ 3, 48 5 <254
i 4 (n-k) (k+1) 2
: 1 n-1
-!———2— for 1 e N-z, if k <23

(k+1)

PROOF. (80) is an immediate consequence of theorems 12 and 13.

4.6 PROPERTIES OF THE PAYOFF OF THE PARTICIPATION DECISION BRICK.

In this section several useful properties of the payoff function ﬁi
of T shall be derived.

LEMMA 14. Let z =
for the participation decision brick Tand let i be one of the
players. Let m be the number of non-participators in N-(if.

(21""'zn) be a pure strategy combination

Define
———l——j— for m <« n-3
4 (m+2) 2
(81) A(n,m)=
| 1 2 for m 2 n-3
| (n+1) 2
L
1 1 for m <221
’ 4 (n-m) (m+1) 2
(82) B(n,m) = o
!
| 2 for m> D7l

(n+1)2 2
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Then we have
(83) ﬁi(z)

A(nm)} for z,= 0

(84) ﬁi(Z) B(n,m) for z,=1

PROOF. The lemma is an immediate consequence of theorem 14.
In the case of z;= 0O we have k = m+l and in the case of

z, = 1l we have k = m.

LEMMA 15. Let m and n be integers with O<ms<n. Define

(85) D(n,m) = A(n,m) - B(n'm)
We have
L i 1 : n-4
’l- 4 (m+2) 2 d(n-m) (m+1) for ms 3
F
|
i 1 . ;
(86) D n,m)= IR e i n- n
( ) (n+1) 2 i (h-m) (m+1) for g S M S e
f 0 n=-1
L for m > 5
and

(88) D(n,m) > 0 for n 25 and meZ234

n-3 n=-2
(89) D(n,m) < O for g A g -
(90) D(n,m) =0 for m 224

PROOF. (86) is an immediate consequence of lemma 14. The
equation D(4,0) = O follows by (86) . Now assume n >5 and
mg (n-4) /2. Under this condition (88) is equivalent to
(91)  (n-m) (m+l) - (m+2)2 > o.
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Because of n> 5 this inequality holds for m = O. Since

m< (n-4) /2 implies n>2m + 4 we receive an upper bound for
the left side of (91) if we substitute m + 4 for n-m. Thus
for m >0 inequality (91) follows by (92).

(92) (m + 4)(m+l) - (Me2)% =m > O
In order to show that (89) is true, we have to examine whether

(93) - d(n-m) i) ~ tnei)® =0

holds for m=(n-3)/2 and for m=(n-2) /2. For m=(n-3)/2 the
expression on the left side of (93) is equal to -4 and for
m=(n-2)/2 we receive -1. Equation (90) is implied by (86).

LEMMA 16. Let m and n be integers with O <m <n-1. Them we have

(94) A(n,m+l) - A(n,m) <0 for m < n;3
(95) A(n,m+l) - A(n,m) =0 for m 1“;
(96) B(n,m+l) - B(n,m) <O for m <n;1
(97) B(n,m+l) - B(n,m)- 0 for m »2>2

PROOF. (95) and (97) are an immediate consequence of (81) and
(82) . Obviously (94) holds for m <(n~5)/2. Since both for
m=(n-5) /2 and m=(n-4) /2 the expression l/4(m+2)2 is greater
than 1/(n+1)2, inequality (94) holds for these values of m too.
In order to show, that (96) is true we observe that the
derivationr 4f(n-m) (m+1l) with respect to m is equal to n-1-2m.
For m <(n-1l) /2 this is positive. Therefore (96) holds for

m <(n=3)/2. For m=(n-3)/2 we have

(98)  4(n-m) (m+1) = (n+3) (n-1) < (n+1)?
and for m=(n-2)/2 we receive

(99}  4(n-m) (1) = Mmeddn < (0al)®
Therefore (96€) holds for these values of m too.
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LEMMA 17. The payoff function H of the participation
decision brick I has the following property:

iz 1 A
(100) Hi(z) > (n—m—z for i—l,...,n

and for every pure strategy combination z = (zl,...,zn)

PROOF . Lemma 16 shows that A(n,m) and B(n,m) are non-increasing
functions of m. For m=n these functions are equal to 1/(n+l)2.
The assertion follows by lemma 14.

4.7 PURE STRATEGY EQUILIBRIUM POINTS OF THE PARTICIPATION
DECISION BRICK. One does not have to look at the question which
are the pure strategy equilibrium points of T if one wants to
find the solution of I', but with respect to the interpretation
of the solution it is of some interest tc know the answer to
this question. The pure strategy equilibrium points can be
classified according to the number k of non-participators. In
the case k=0 we speak of a joint profit maximization equilibrium
point. Here the joint gross profit of all players is the
monopoly gross profii 1/4. If k is greater than O but smaller
than (n-1)/2, then we speak of a partial cartel equilibrium
point. Here the behavior of the players results in a cartel
bargaining subgame, whose solution requires an essential cartel
agreement, which is partial, since it does not include the
non-participators. In the case k > (n-1) /2 we speak of an
unrestricted Cournot equilibrium point. Here every player
receives the payoff 1/(n+1)2 which is the gross profit connected
to the Cournot solution of the model without any quota restric-
tions.

As we shall see, for small n, up to n=4 joint profit
equilibrium points are available but not for n > 4. This is the
reason why 4 is small, but 5 is not. Partial cartel equilibria
can be found for every n with n > 4. The number of non-partici-
pators must be either equal to (n-3)/2 or to (n-2)/2.This means
that for every n > 4 there is only one possibility for the number
k of non-participators. There are altogether qb partial cartel
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equilibrium points, where k is the uniquely determined number
of non-participators. All these equilibrium points can be
mapped into each other by the symmetries of the game.

THEOREM 15. Let z=(zl,...,zn) be a pure strategy combination
for the participation decision brick I'. Then z is an equilibrium
point of T if and only if n and the number non-participators k
connected to z satisfy one of the following three conditions
(101) , (102) and (103).

(101) k=0 and n=4

n-2

(102) 0 < 5

£ Kk <

(103) kel

PROOF . In the first part of the proof we show that in all
three cases z is an equilibrium point. For every player i

let m; be the number of non-participators in N-{i}. It follows
by lemma 14 that in the case that player i is a participator,
he has no reason to deviate ,if we have D(n,mi)j 0. On the
other hand, if he is a non-participator, he has no reason

to deviate, if we have D(n,miiz 0.

If (101) is trme, then mi=0 holds for i=1l,...,n. Equation (90)
yields D(1,0)=0, inequality (89) yields D(2,0) <O and D(3,0) <O.
Finally (87) covers the case n=4,

Now assume that (102) is satisfied. If i is a participator,
then we have m, = k. Inequality (89) shows that a participator
has no reason to deviate. If i is a non-participator, then
mi=k-1. Because of (102) we must have n2 4. For n=4 condition
(102) yields m
reason to deviate. The same is true for n >5 in view of (88)
and (102).

4{0. Equation (87) shows that player i has no
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In the case of (103) we have mi_;(n-l)/2 for i=l_ ... .n.
This means that in view of (90) nobody has a reason to deviate.

In order to prove that T has no other pure strategy equilibrium
points than those covered by (101),(102) and (103), we observe
that k must satisfy one of the following two conditions (104)
and (l105), if the former three conditions are not satisfied

by k:

(104) %<2 ana 255

n-1
2 e

(105)

Consider the case (104) and assume that player i is a
participator. We have o B k and (88) shows that player i has

a reason to deviate. Now consider case (1l05) and assume that
player i is a non-participator. We have m, = k-1 and (89) shows
that player i has a reason to deviate.

REMARK. Note that generally (103) allows us to find very many
unrestricted Cournot equilibrium points. All these equilibrium
points are very weak in the sense that no player can loose '
anything by a deviation as we can see from lemma 17. For n = 2
and n = 3 the joint profit maximization equilibrium point is
strong in the sense that a deviation of a player decreases his
payoff. This is not true for n = 1 and n = 4, for n >5 the
partial cartel ecuilibrium points are strong in the same sense.
Here n = 4 is an exception. For n > 5 the strongness of the
partial cartel equilibrium points is due to (88) and (89);
inequality (88) does not include n = 4,

4.8 MIXED STRATEGY EQUILIBRIUM POINTS OF THE PARTICIPATION
DECISION BRICK. We shall not try to get a complete overview

over the mixed strategy equilibrium points of T, but we must

look at some of their propverties in order to derive the solution
of T.
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A mixed strategy combination of the participation decision
brick T can be represented by a vector of probabilities

(106) w = (wl,...,wn)
with

(107) Dew, <1 for 4 % J,uee,sB

g =
where wy is the probability that player i selects B, : B

In the following this representation of mixed strategies and
mixed strategy combinations will always be used. ﬁ(w)={ﬁltw),...,
ﬁn(w) ) is the payoff vector associated with w.

LEMMA 18. Let w = (wlfx..,wn) be a mixed strategy ecuilibrium
point for T with

(108) ﬁj(w) > sk

(n+1) 2
for some player j. Then wj:»wé implies
(109) t’ij (w) < ﬁj,(w)
PROOF. Let A, be the payoff of plaver j which he receives

J
if he selects zj=0, while all the other players i use their

mixed strategies W, in w. Similarly let Bj be the payoff of
player j, if he uses zj=1 while the others use W, Let Aj;
and Bj,be defined in the same way for player j'. Let W be

the probability that exactly m of the players in N-{j}-{j'}become
non-participators, if these players use their mixed strategies

Wy . We have:

o= =2
110 A. =w , W atnm) + {(l1=-w.}) 2. W A(NOh,m+l
( ) j 3 ar n (n,m) ( WI) Lo = ( )
n=2 r 1
(111) A, =/, W _ A(n,m+l) + w,, (A(n,m)-A(n,m+1)
3 m 3 -
m=0 &
Similar equations hold for Bj,Aj,and Bj,:

n-2
5 » \
112) By 2 W, fs(n,m+1) + wy,(B(n,m)-B(n,m+1)|
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n-2 = =
113) Ay =5 W [Amml) +w @ - A(n,m+l)) |

i
e

i) Bow | W

W rB(n,m+1) + w.@ﬁ(n;m} - B(n,m+19ﬁ
] o 3 ] -

Since w is an equilibrium point, the following must be true:

i
=
fu
¥
o
w

(115) ﬁj(w)

(116)  Hy(w)

i

3

1}

"

b
e

w

Let us distinguish the two (overlapping) cases

i
>

(i ﬁj(w)

3
and :
(118) Hj(w) = Bj

As we shall see in case (117) there must be at least one m with
Wm >0 such that A(n,m) - A(n,m+l) is negative and in case (1l18)
there must be at least one m with wm > 0 such that B(n,m) -
B(n,m+1l) is negative. Cohsider the case (117). Let m' be the
smallest number withtﬂm. > 0. Suppose that the difference

A(n,m) - A(n,m+l) vanishes for m = m'. Then this difference
also vanishes for all m2m'. This follows by (94) and (95).
Moreover because A(n,m) is equal to l/(n+1)2, equation (111)
yields Aj = l/(n+l)2. Since this is excluded by (108), the
difference A(n,m) - A(n,m+l) is negative for m = m'. In the
same way it can be shown that in the case (118) the difference

B(n,m) - B(n,m+l) must be negative for m = m'.

In view of this result a comparison of (111) and (113) shows

-
H

that because of wj> wj, the following is true for Ajz.Bj
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(119) “ﬁj(w) = A, <A.,< H.(w)

Similarly (112) and (114) yield in the case of le-Aj=

(120) Hj (W) - Bj< Bj|_§ qu(w)

LEMMA 19. Let z=(zl,...,zn) be a pure strategy equilibrium
point of the participation decision brick I' where the number

k of non-participators satisfies O<k < n(i.e. z is a partial
cartel equilibrium point). Then for zj = 1 and z% = 0 we have

1
(n+1) 2

(121) Hj.(z) > Hj(Z)

PROOF. k satisfies (102). Therefore (9€¢) shows that B(n,k-1)

is greater than l/(n+l)2. The payoff Hj(z) is equal to B(n,k-1).
It follows by the application of (120) to the special case of

2, that (121} 1s true.

LEMMA 20. Let S be a symmetry preserving equilibrium set of
the participation decision brickl‘1 with

1

122 B.{8) > it
(122) B (5) > 0

o 1 & &, .00

Let w = (wl,o..,wn) be an equilibrium point in S. Then we have

(123) o, o, for 4 = 2,c..0
PROOF. T is completely symmetric. Therefore the payoff at S
is the same for every player i. If (123) were not true, then in
view of (122) lemma 18 could be applied to w; this would lead

to the conclusion that the payoffs of two players are not equal
at w,.

4.9 THE SOLUTION OF THE PARTICIPATION DECISION BRICK. With the
help of the results of the last section, it is now possible
to find the solution of T. First a theorem will show that for
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n > 1 the game I' has exactly one equilibrium point with the
properties (122) and (123). This equilibrium point turns out
to be the only element in the distinguished equilibrium set
of I.

THEOREM 16. For n > 1 the participation decision brick T
has exactly one equilibrium point w=(w1,...,wn) with the
properties (122) and (123). Moreover the following is true
for this equilibrium point:

(124) My = 1 for 1. <8 < 4

(125) 0 < Wy < 5 for q =4

PROOF. The possibility wl=0 is excluded by (122), since
wl=0 leads to the payoff 1/(n+1)2for all players. Henceforth
we shall assume w,>0. The pure strategy z,=0 is a best reply
of player 1 to w if and only if the following expression D
is non-negative.

n=1

. Tt
(126) D = 5. ( m )Wl

m=0

n_m(l-ul)mD(n,m)

It is a consequence of the definition of D(n,m) that D is
nothing else than player i's payoff for z,=0 minus player i's
payoff for zi=l, if the other players use their strategies

Wy in w. The pure strategy zi=l is a best reply to w, if and

only if D is non-positive. Let M be that number which satisfies
the condition

(127) 953 <M < “;2

Obviously for every n there is exactly one such number m.

Lemma 15 shows that D(n,m) vanishes for m>m. Therefore we
have

m
(128) 0= §  ("Yw,"™(1-w) (n,m)
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For n=2 and n=3 we have m=0. Inequality (89) shows that
D(2,0) and D(3,0) are negative. Therefore in these two cases
D is negative for every wi with 0 < Wy o< 1. The same is also
true for n=4 where m assumes the value 1l; here we have D(4,0) =0
by (87) and D(4,1) < O by (89). For any equilibrium point w
with 0 = Wy ¢ 1 the expression D must vanish since both zi=0
and zi=l are best replies to w. Since D is negative for every
Wy with 0 =< Wy ¢ 1l in the cases n=2, n=3 and n=4, this shows,
that in these cases the joint profit maximization equilibrium
point with w1=1 is the only equilibrium point with the
properties (122) and (123).

In the following we shall assume n>4., Theorem 15 shows, that

there is no joint profit maximization equilibrium point for n>4.
Therefore we must have 0 < s l. Define

w

i 158

(129) h = —d
T=]

If one divides D by wln—m(1~wl)m, one receives

(130) = D' = ‘i‘ (“;l)hﬁ‘““mn,m} =0
m=0

Obviously for O < w; < 1 the expression D' vanishes, if and

only if D vanishes. The condition D=0 is not only necessary

but also sufficient for a strateqgy combination w with (122),

(123) and (125) being an equilibrium point. This shows that

we in order to find these equilibrium points we have to look for

the solutions of the equation:

m

sl
m=0 m

n=l, =My 0 m)=0
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It remains to be shown that for n>4 equation (131) has
exactly one positive solution h. From this h the uniquely
determined value of w, can be computed by

o
(132) Vi ® YIR
It can be seen from (88),(89) and (127) that the following

is true
(133) Din,m) >0 for m s<m and n >4

(134) Din.m) <0 for n > 4

In order to make use of this fact we rewrite (131) as
follows

1 25
v on=1,.MmM-m W o -
(135) \ f w 18 Ringne ~{ & )D(n,m)

m=0

For n>4 the left side of (135) is an increasing function of h
which goes to infinity as h goes to infinity. The right side
of (135) is a positive constant. This means that (135) has
exactly one positive solution h. The proof of the theorem
has shown that the following correlary is true:

CORRELARY. For n>4 the probability Wy belonging to the
unicuely determined equilibrium point w=(wl,...,wn) of T with
the properties (122) and (123) can be computed by (132) where

h is the unique positive solution of (135) and m is that integer
which satiafies (127).

THEOREM 17. The participation decision brick T is a distinguished
simultaneity game. For n>1 the distinguished equilibrium set §

of T contains exactly one equilibrium point. For n=1l,...,4 the
distinguished equilibrium set S contains the joint profit

maximization equilibrium point where every player always chooses
to participate. For n2>5 the equilibrium point s € S is a
mixed strateqy equilibrium point where each player chooses to
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participate with the same probability Wy with O < w, < s
This probability can be computed by (132), where h is the
unique positive solution of (135).

PROOF. Obviously in the trivial case n=1 the joint profit
maximization equilibrium point is in S. Apart from this the
theorem is an immediate consequence of lemma 20, theorem 16
and the correlary of theorem 16.

4.10 THE SOLUTION OF THE MODEL. In section 2.10 we have seen
that a perfect equilibrium set is fully determined by the
equilibrium sets induced on the bricks of the game. In the

preceding sections the L-bricks of TI' have been constructed

and their solutions have been determined (theorems 11,12,13

and 17). Since all the L-bricks are distinguished simultaneity
games, the game I' is in the region of the distinguished solution
function. The solution of I' can be characterized as follows:

THEOREM 18. The distinguished solution of T' is the set S

of all strategy combinations s for ©' with the property that
the strategy combinations induced by s on the supply decision
subgames T on the truncated cartel bargaining subgames Tz

and on the participation decision brick I are in the

distinguished equilibrium sets of these games.

PROOF. Obviously S is a brick producing set. S satisfies the
conditions 1) and 2) in theorem 3. Therefore S is a perfect
equilibrium set. In view of the subgame consistency and the
truncation consistency of the distinguished solution function,
it is clear that S is the solution of T.

4.11 THE PARTICIPATION PROBABILITY AS A FUNCTION OF THE

NUMBER OF PLAYERS. For n > 1 the solution prescribes a uniquely
determined probability of choosing zi=l. We call this probability
Wy the participation probability. According to theorem 16

for n=2,3,4 the participation probability is equal to 1.




-72-

For n > 4 the participation probability w, can be computed

as described in the corellary of theorem 16. In the following
the participation probabllity will be denoted by wl(n) in order
to indicate its dependence on the number of players. Similarly
the symbol h(n) will be used for the uniquely determined
positive solution of (135). Table 2 in subsection 5,1

shows the values of wl(n) for n=2,..:;15. 1t is clear from

this table that wl(n) is not monotonically decreasing. Neverthe-
less within the range of the table wl(n) has a tendency to
decrease, since for n=4,...,13 the difference w1(n+2)-w1(n)

is always negative, even though wl(n) is greater than wl(n-l)
for odd values of n with n > 5. In the following we shall

prove that wlfnJ is always below a certain upper bound which

goes to zero as n goes to infinity.

THEOREM 19. For n=5,6,... let h(n) be the uniquely determined
positive root of equation (135) and let wl(n) be the

participation probability vy computed from h=h(n) by (132).
Define

(n-m)D (n,m)
D (n ,f-1)

(136) b (n) for n=5 6,7 ,...

where m is the integer determined by (127). We have

(n+5) (n-1)
(n-4) (n+1) 2

for n=5,7.9,..

|
(137) b(n)= ¢

{ (n+4)n
\_2 (n=-4) (n+1)?

tor ne6 . 8,10,:..
For every n=5,6,7,... the following inecualities hold:

(138) h(n) < b(n)

b(n)
(139) wltn) S TIElRT

(140) b(n+2) < b(n)
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Moreover we have

(141) lim wl(n) = '1dm hi(n) = 1lim b(n) = O

n-+ow Nn-+oo Nn-—+w
PROOF. h(n) satisfies the inequality

(142)  AZDD(n,E1hm) < -(zhD(n,m)

for n=5,6,... . This is a consequence of (133) and (135).
Inequality (142) together with (136) shows that (138) holds
for n=5,6,... . In order to prove (137), we evaluate the
expression on the right side of (136) with the help of (86).

n=m ]

(143) (a-RiDin M & oY T D

m

(144) mD(n,m-1) = Fr5 = IE-HFI)

For n=5,7,9,... the integer m is equal to (n-3)/2. In this
case equations (143) and (144) yield

2 o B SR 1
(145) (n-m)D(n,m) = S int11 2 20n+D)
(146) mD(n,M~1) = — ;

12 | Z(eS)

(147) (n-m)D(n,m) = - 2(n+1§2(n—1)

(148) FDlm il » wwidlho .
2(n-1) 2 (n+5)

(149)  b(n) = 222 (-1)
(n-4) (n+1) 2

Now assume n=6,8,10,... . Here m is equal to (n-2)/2 and (143)
and (l44) can be evaluated as follows

for nx5,7 ...

5 = JB) = n+2 B
{(150) (n-m)D(n,m) 5731175 >

2t s o o
£151) mD (n,m~-1) = .2 3 (n¥d)

(152) (n-m)D (n,M) = - EETH%E)?
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o i 2n-8
153 Bl (n ) = pm o
i s 2n* (n+4)

& (n+d)n
2 (n-4) (n+1) 2

(154) b(n) for n=6.8,..:
In view of the fact that h/(l+h) is a monotonically increasing
function of h, it is clear that (139) is a consequence of (138).
Since both for n=5,7,... and n=6,8,... the nominator of b(n)
is quadratic in n whereas the denominator is cubic in n, one
can see immediately, that (141) holds. In order to prove (140)
we look at the derivatives of the logarithms of the expressions
on the right side of (137). In this way one can see that (140)
holds for n=5,7,... if we have

1 : 3 1 2

(155) n+5 * n-1 n-4d n+l ° 0.

Since n-4 is smaller than n-1 and n+l is smaller than n+5, the
right side of (155) is negative. Similarly for n=6,8,...
inequality (140) is implied by

1 .. 3

1
n+d T n " n-4 BeL @

(156)

4.12 THE CARTEL PROBABILITY. On the basis of the assumption
that the solution of the model correctly describes the behavior

of the oligopolists, it is interesting to ask the question,
how often it will occur that the oligopolists use the cooperative
possibilities of the cartel bargaining stage in order to collude
in a significant way. As an answer to this not yet precise

question we shall define a "cartel probability".

As we know from 4.4, in the cartel bargaining stage the
character of the behavior prescribed by the equilibrium points
in the solution of the model crucially depends on the number k
of non-participators. For k > (n-1)/2 an equilibrium point in
the solution may lead to cartel agreements, but these cartel
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agreements are inessential. The equilibrium payoffs in the
cartel bargaining subgame are those, which would be obtained,
if no cartels were possible.

Contrary to this for k <(n-1) /2, the cooperative possibilities
of the cartel bargaining stage are used at the equilibrium
points in the solution. The participators receive greater gross
profits than they could get without cartel agreements. Moreover,
since their joint gross profit is equal to the upper bound

on the right side of (48), one can say that they make the best
possible use of their opportunity to form cartels.

In view of what has been said, it is convenient to intorudce

the following way of speaking. We say that a cartel arrangement
is reached by an equilibrium point s of T in a cartel bargaining
subgame T if the equilibrium point s

77 7 induced by s on T
has the property that for each of the participators the

equilibrium payoff at s, is greater than the payoff l/(1+n)2,
which is achieved at the unrestricted Cournot equilibrium. If

a cartel arrangement is reached by s in T

Z

z,then the players in
Z are called insiders and the players in N-Z are called out-

siders with respect to the cartel arrangement.

Obviously for all eaquilibrium points s in the solution a cartel
arrangement is reached by s in Fz, if and only if the number k
of non-participators is smaller than (n-1)/2. The probability
that k will be smaller than (n-1l)/2 if an eqguilibrium point s
in the solution is plaved is the same one for all equilibrium
points in the solution. This is trivially true for n=1, where
the case k <(n-1) /2 cannot occur; for n=2,3,... every equilibrium
point in L(I') prescribes the same behavior in the participation
decision stage, namely the selection of zi=1 with probability
wl(n); the probability that k will be smaller than (n-1)/2 is
uniquely determined by wl(n). This suggests the following
definition: The cartel probability is the probability that a
cartel arrangement will be reached if an equilibrium point in

L(T') is played. The symbol W(n) will be used for this cartel
probability.
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As we have seen above, W(n) is the probability that k will
be smaller than (n-1l)/2. Obviously we have

(157) w(l)

0]
(158) Win) = 1 for n = 2,3,4.

For n=5,6,... the cartel probability can be computed as
follows:

m
(159) W(n) = Zwtn,k)
k=0

where m is the uniquely determined integer satisfying (127)
and where

N. T g Bp 1 n=k
(160) W(n,k) = (k)ﬁl-wl(n[} _wl(nl
is the probability that there will be exactly k non-participators
if the players choose to participate with probability wl(n).

4.14 THE CARTEL PROBABILITY AS A FUNCTION OF THE NUMBER OF
PLAYERS. Table 2 in subsection 5.1 shows the values of

W(n) for 2,...,9. It is clear from this table that W(n) does
not monotonically decrease as a function of n. A weaker
statement about W(n) will be proved in the following. It will
be shown, that W(n) is below a certain upper bound which goes
to zero as n goes to infinity. With the help of this upper
bound it can be seen, that W(n) is very small outside the table.

A further property of D(n,m) is needed, in order to derive these
results.

LEMMA 21. D(n,m) has the following property

(161) D(n,m+l) <D(n,m)

for n=6,7,... and m=0,...,Mm~2 where m is the uniquely determined
integer satisfying (127).
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PROOF. In view of (86) for m=0,...,Mi-1 we have
1 1 i
(162) D(n,m) = ——mm = g
b 4(m+2)2 4 (n-m) (m+1)

In order to prove the lemma it is sufficient to show that the
following is true:

3D(n,m)

(163) ¥

<0 For O <m < h - 1

(162) yields

(164) iDin.m) . _ 1 = n=2m~1
8 2m+2)3 4 (n-m) 2 (m+1) 2

In order to find an upper bound for the right side of (164) we
make use of the fact that m+2 is notgreater than 2(m+l) and that

n-2m-1 is smaller than n-m:

3 p(n,m) g 1 ) 4
(165) 3w <7 T3 T 2 (D) (m2)

In view of (l62) this is equivalent to

(166) 3D(n,m) = 2
AERA. 4 ~ Sy pmm
(88) shows that D(n,m) is positive for m=1l,...,m-1

LEMMA 22, For n=5,6,... the cartel probability W(n) has the
following property:

: ., mb(n)

where m is the integer satisfying (127) and W(n,k) is defined
by (160).

W(n,m)

PROOF. As we have seen in the proof of theorem 19 expression D
in (128) is equal to zero for n=5,6,..., since there wltn)

is positive and smaller than 1, which has the consequence that
both zi=0 and zi=1 are best replies to w in T. If one makes

use of

n-1l. _ _n.n-m+l
(168) (1) = Q==

the equation D = O can be written as follows

@ "
(169) > W(n,m2*p(n,m) = o
m=0
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It follows by (161) and (88) that for m=1,...,M-1 we have
(170) D(n,m) > D( pfi-1l) > O

Define

(171) W' = W(n) - W(n,m)

In view of (170) equation (169) implies the following
inequality

(172) W'E:§il D(n,@-1) <= Win,®2" p(n,m)

With the help of (136) it can be seen that this is equivalent
to

(173) W'j_ﬁ:%xi b(n)W(n,m)

(167) is an immediate consequence of (173) and (171).

LEMMA 23. For n=5,6,... the probability W(n,m) has the
following property:

n-m
(174) W(n,m) < (g)T£%%%%%Tn—

where m is the integer satisfying (127).

PROOF. For the sake of shortness we shall sometimes write
Wy and b instead of wl(n) and b(n) resp. Obviously we have

bn-ﬁ B n-m b m
175 ——m e Gy 0 oy

Therefore it is sufficient to show that the following is true:

— - n-m m
n=m,, m b (. b ?
(176) Wy (1 wl) < (l+b)nd_ 15
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In order to prove this we show that the derivative

n-m m
3 Wy (1-wy)
(177) awl

s n-m-1 m=-1
(n-m - nwl)wl (1 wl)

is non-neqgative in the interval 0 < vy <! bf(1+b) . This

is true if we have

b(n) E n-m
dblad S8 B

Condition (178) is egquivalent to

(179) . bm) < 28

With the help of (137) we can compute

(180) (5} = 1.113
(181) b(6) = .306
(182) b(7) = .375

(180) shows that (179) holds for n=5. Since (n-m)/n is always
greater than 1 and both b(6) and b(7) are already smaller

than 1, it can be seen with the help of (140) that (179) is
satisfied for n=5,6,7,.:.

THEOREM 20. For n=5,6,... define

[ m _Bm] T
(183) V(n) ﬁ'+nm+l] } :1+b(nﬂn

where M is the integer determined by (127) and b(n) is defined

as in (137). The cartel probability W(n) satisfies the
following inequality

(184) W(n) < V(n) for n=5,.6....
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Moreover we have
(185) Vin+2)} <¥Vin) for n=5,6,...
and

(186) lim W(n) = 1im V(n) = O

n-eo n-+w

PROOF. (184) follows by lemma 22 and lemma 23. Since h/(1l+h)
is a monotonically increasing function of h it follows by
(140) that we have

b (n+2) b(n)

(187) TR m+IT < I5B(n)

for n=5,6,... . In the same way as (176) has been proved in
the proof of lemma 24, one can see that (177) implies an
inequality analoguous to (177), where Wy corresponds to
b(n+2) /(1+b(n+2) ) and b corresponds to b(n). If one makes
use of the relationship (175) this inequality can be written
as follows:

ase il i Bl
Ll+b(n+2) M 1+b (n)m

This inequality will be used in order to prove (184). In order
to do this we also have to use the following equation, which
is a consequence of (137):

I i
;:n+j:fn 1:2 T (R
T R e s
‘-'— (n+2)n 2f°r n=6'8’.-0
2(n=4) (n+1)

It can be seen easily that the derivatives of the logarithms

of the expressions on the right side of (189) with respect to n
are negative jtherefore the first factor in (183) is decreased,
if n is increased by 2. This together with (188) shows that

the following is true:



) -

‘n+2'
m+1 b(n+2)

MY (1+b(n+2) )

m/

(190) Vin+2) < V(n)

2

Here it is important to notice that m is always increased
by 1 if n is increased by 2. Inedquality (190) is equivalent
to

(n+2) (n+l1) b (n+2) V (n)
m+1) (0-F+1)  [1+b(n+2)?2

(191) V(n+2) <
Since m+l is not smaller than (n-1)/2 and (n-m+l) is not
smaller than (n+4)/2 we have

(n+2) (n+1) & 4(n+1)(n+2}
(fi+l) (n-m+1) — " (n-1) (n+4)

(192)

(192) is equivalent to

(n+2) (n+1) e 28
(f+l) (n-p+l) — (n=1) (n+4)

(193)

Obviously the expression on the right side of (193) is a
monotonically decreasing function of n., For n=5 this expression

assumes the value 4.77778.

This shows that the following is true for n=5,6,...
(n+2) (n+1)

(194) < A, 77778
(M+1) (n-m+1)
Since the derivative
d /. b . i

| —

(195) ol

’ 4
(1+b) 2 (1+b)
is positive in the interval O<b < 1, we can conclude from

S L SR

(196) & = ,19835
(1+b(7) )

and

(197) ——~*9i§lf5 = ,11238

(1+b(8) )



.

that in view of (140) we have

(198) ——2(0*2) 59835
[1+b(n+2)]2

for n=5,6,... . This together with (195) and (197) vields

(199) V(n+2) < .94768 V(n) for n=5,6,...

(186) is an immediate consequence of (199).

REMARK. Table 2 in subsection 5.1 contains the statement
that for n=10,11,... the cartel probability W(n) is smaller
than .000l1. for n=10,...,15 the computation of W(n) from wl(n}
shows that this is true. V(15) and V(16) are both smaller than
.0000001. Therefore it follows by (184) and (185) that for
n=15,16,... the cartel probability is below .0000001.
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5. INTERPRETATION OF THE RESULTS.

It is the purpose of this section to discuss the intuitive
significance of the results obtained in section 4 and to draw
some heuristic conclusions with respect to possible generaliza-
tions to more complicated models. An informal description of
the solution of the model is given, mainly for the benefit of
those readers who are not interested in technical details.

5.1 WHAT HAPPENS AT THE SOLUTION OF THE MODEL. Technically
the solution of the model is a set of equilibrium points. Mainly
in the cartel bargaining stage differences between the

equilibrium points in the solution arise, but these differences
are unimportant, since all the equilibrium points in the
solution lead to the same equilibrium payoffs, not only in the

game as whole, but also in every subgame.

In order to have an easy way of speaking about the behavior

at the solution a distinction between a cartel agreement and

a cartel arrangement has been introduced in 4.12. Since the
formation of cartels is costless, the solution does not exclude
that economically ineffective cartel agreements are reached,
where nothing can be gained by a cartel. Thus for example it
may happen, that the participators agree to limit their supplies
by very high cquotas which do not restrict them in any significant
way. In such cases we say that the cartel agreements do not
constitute a cartel arrangement. We speak of a cartel arrange-
ment, if the participators successfully use the possibilities

of cartel formation in order to get a higher profit, than they
would get, if cartels were not possible.

Let us first look at the trivial case n=1 which has the
pecularity that the solution permits any behavior at the
participation decision stage. This is due to the fact that

here the participation decision stage is strategically irrelevant.
As a participator at the cartel bargaining stage the monopolist
should not fix a quota below his monopoly supply 1/2, but

apart from that the solution permits anything. In the supply
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decision stage the monopolist supplies the quantity 1/2.
His payoff is the monopoly gross profit 1/4. The monopolist
never reaches a cartel arrangement, since he does not need

any cartel agreements, in order to achieve his monopoly profit.

For n=2,3,... every equilibrium point in the solution prescribes
the same behavior in the participation decision stage: each

of the players decides to participate with the same probability
wltn). For n=2,...,15 this participation probability w, (n) is
tabulated in table 2. The participation probability wltn)

goes to O as n goes to infinity.

In the cartel bargaining stage the behavior at the solution
crucially depends on the number k of non-participants. Every
equilibrium point in the solution has the property that a
cartel arrangement is reached if and only if the number k of
non-participators is smaller than (n-1)/2.

In the case k>(n-1)/2 it may simply happen that no cartel
agreement is reached but the solution also permits the
possibility that economically ineffective cartel agreements

are reached. In the case k<(n-l) /2 where a cartel arrangement
occurs, the simplest way in which this may happen is the
formation of one cartel where all the participators are members
and have equal gquotas, such that the quotas of all participators
sum up to the joint quota of 1/2. The joint quota of 1/2
maximizes the joint equilibrium payoff of the cartel in the
supply decision subgame after the quota agreement. The solution
also permits the possibility that the participators achieve

the same quota system by splitting into several coalitions with
seperate cartel agreements. At least for some n this is possible.

In the case k<(n-1) /2 where a cartel arrangement is reached,
the non-participators are also called outsiders and the
participators are also called insiders. For various n and k
the equilibrium payoffs in the cartel bargaining subgame at
the solution are given in table 2 under the headings "gross
profit of an insider" and "gross profit of an outsider".



For n=10,11,...

the cartel probability

W(n) is smaller than

number | number |gross gross gross partici-| probabi~- | cartel| expected
of of profit profit | profit pation lity of proba-| gross
players out- of an of an of a probabi~| a cartel |bility| profit
ﬁ siders|in- out- supplier lity arrange- of an
sider sider in the ment with oligo-
unrestric- X out~ . polist
ted Cournot siders
equilibrium
n k i 1 1
4 (n-k) (k*’ﬂv 4 (k+l)2 (n+l)2 wl ‘n) W(n ,k) W(n )
: - o L1111 1.0000 |1-9990 13 000d .1250
3 0 el .0625 1.0000 |1:9990 13 0000 .0833
: - A8 4 .0400 1.0000 1.0008 1.0000] .0625
5 (o] .0500 .ggg;
: gy D825 | oria .5263 3 . 2221 .0304
6 o] .0417 .0000
1 .0250 .0625 -g?ié
¢ s -0278 | 5004 .1857 ; .013d .0205
7 o] .0357 .0000
1 .0208 .0625 -gg;g
2 .0167 .0278 0156 2380 .0103 .0157
B 0 .0312 -0000
1 .0179 .0625 - 0000
2 .0139 .0278 -gggg
# o 138 | G .1067 " .000§ .0124
9 0 .0278 .0000
3 .0156 .0625 . 0000
2 .0119 .0278 .0001
The solution up to n=15

Table 2:

.0001.
number partici-
of pation

suppliers| probability
n wy (n)
10 o755
11 .1203
12 .0585
33 .0971
14 .0476
15 .0822

_58-»
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For a cartel bargaining subgame with k>(n~-1l) /2 the
equilibrium payoffs at the solution are those of the
unrestricted Cournot equilibrium , For n=2,...,9 these
gross profits are also tabulated in table 2.

The solution exhibits a surprising change of behavior at n=5.
For n=2, n=2 and n=4 each of the oligipolists decides to
participate in the cartel bargaining and the outcome of the
cartel bargaining is the maximization of the joint profit

of all players. For n>4 the joint profit maximization by all
players fails to occur at the solution; the mixed strategy
behavior in the participation decision stage only occasionally
results in a cartel bargaining subgame, where all players are
participators. The probability W(n,0) for this event is given
in table 2 under the heading "probability of a cartel arrange-
ment with k outsiders"”. Already for n=5 this probability is
only .0404 and for n>5 it is always smaller than .000l.

5.2 WHY 4 ARE FEW AND 6 ARE MANY. The probability that a
cartel arrangement is reached, if an equilibrium point in the
solution is played, is called cartel probability. This cartel
probability W(n) is tabulated in table 2. For n=2,3,4 the cartel
probability is equal to 1. One may say that with respect to the
solution of the model up to n=4 the number of oligopolists is
small. For n>5 the cartel probability is approximately 1% or
smaller,'which.means that an outside observer will only rarely
observe a cartel arrangement. Economically for n>5 the

solution is not very different from the behavior which could

be expected, if no cartel agreements were possible. This can

be seen, if one compares the equilibrium payoff at the solution
for the whole game with the equilibrium profit for the unre-
stricted Cournot equilibrium. Both profits are tabulated in
table 2 under the headings "expected gross profit of an
oligipolist" and "gross profit of a supplier at the unrestricted
Cournot equilibrium", For n>5 the expected gross profit of an

oligopolist at the solution is only slightly greater than the
gross profit of a supplier at the unrestricted Cournot
equilibrium.
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The case n=5 may be considered an intermediate case, since
here the cartel probability of approximately 22% is still
quite substantial. Note that for n=5 most of the cartel
arrangements are cartel arrangements with 4 insiders and

1 outsider.

Why is n=5 the dividing line between the small group and

the large group? The main reason for this can be explained
with the help of a heuristic argument. Assume that n is at
least 3 and suppose that player j expects that each of the
other players will decide to participate and that the joint
profit of all players will be maximized and split evenly,

if he decides to participate too. If he does not participate,
he expects the others to form a cartel with a joint quota

of 1/2 in order to maximize the joint equilibrium payoff of
the cartel in the supply decision stage. In the case of the
joint profit maximization by all plavers his share of the
joint gross profit of 1/4 is eaqual to 1/4n. If he does not
participate, he becomes an outsider with respect to a cartel
whose total supply is 1/2. His optimal supply will be 1/4,
the price will be 1/4 and his gross profit will be 1/16. The
basic fact is, that up to n=4 the joint gross profit share

of 1/4n is not smaller than the outsider gross profit of

1/16, whereas for n>4 the outsider gross profit is greater than
the joint gross profit share. This destroys the possibility of
a joint profit maximization equilibrium for n»>4.

5.3 THE STRATEGIC SITUATION IN THE PARTICIPATION DECISION

STAGE. In order to understand the strategic situation in the
participation decision stage, one must look at the game which
has been introduced in 4.5 as the "participation decision brick".
The participation decision brick results from the model, if one
substitutes every cartel bargaining subgame by the payoff

vector which is obtained in this subgame if the players behave
in a way which is compatible with the solution.
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In 4.7 the pure strategy equilibrium points of the participation
decision brick have been explored. For n=1l,...,4 the partici-
pation decision brick has a "joint profit maximization
equilibrium point", where every player always decides to
participate and a maximal joint profit for all players is
reached. This pure strategy equilibrium point is not available
for n>4. There the only pure strategy equilibrium point which
treats the players symmetrically is the "unrestricted Cournot
equilibrium point", where every player decides not to
participate.

Por n>4 the participation decision brick has "partial cartel
equilibrium points" where for even n exactly (n-2)/2 players
and for odd n exéétly (n-3) /2 players are non-participators.
Here the non-participators have higher payoffs than the
participators. The players are treated in an asymmetrical way.
Therefore the symmetry requirement underlying the solution
concept of this paper excludes the partial cartel equilibrium
points as possible candidates for a solution of the participation
decision brick. Apart from the lack of symmetry the partial
cartel equilibrium points are quite attractive. Thus for
example in the case n=5 and k=1 an insider receives .0312 and
the outsider receives .0625, whereas at the solution every
player receives .0304 only (see table 2.). Nevertheless it is
not implausible to expect that the players will fail to
coordinate their expectations at a partial cartel equilibrium
point, since nobody has more reason than anybody else to be
satisfied with the less profitable role of an insider.

5.4 POSSIBLE GENERALIZATIONS. One may ask the question how
much of the analysis depends on the linearity assumptions

about cost and demand. Only a detailed investigation can show
what happens if these assumptions are relaxed, but it is a
plausible conjecture that apart from some special cases

one will always find a more or less sharp dividing line between
few and many beyond which the players fail to exhibit the
typical small group behavior. Whether the dividing line will

be at n=5 or somewhere else, will depend on the cost and demand
functions.
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The model is symmetric with respect to the players. It
would be desirable to develop a theory for a more general
model which admits some asymmetries like different cost
functions for different plavers. For this purpose one would
need a more general solution concept.
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