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A SIMPLE MODEL OF IMPERFECT COMPETITION, WHERE 4 ARE

FEW AND 6 ARE MANY

It is a widely held belief that in ~perfeet markets the

tendeney, to eooperate depends on the number of eompetitors.

E.H.Chamberlin's distinetion between the small group and the

large group is based on this assumption[ I ] . Cooperative
forms of behaviour like joint profit maximization are assumed

to be typieal for markets with a small number of eompetitors

and non-eooperative equilibria are expeeted, if the number of

suppliers is suffieiently large.

The theory presented in this paper investigates the eonneetion

between the number of eompetitors and the tendeney to eooperate

within the eontext of a simple model. The proposition that

few suppliers will maximize their joint profits whereas many

suppliers are likely to behave non-eooperatively does not

appear as an assumption but as a eonelusion of the theory.

The investigation is based on the sYmmetrie Cournot model

with linear eost and linear demand, supplemented by speeifie

institutional assumptions about the possibilities of eooperation.

Cooperative forms of behavior are modelled as moves in a

non-eooperative game. Game-theoretie reasoning is employed in

order to find a unique solution for this game.

The distinetion between the small group and the

remains unsatisfaetory as long as "small" and

only vaguely defined. Where does the small group

does the large qroup beqin? For the simple model

adefinite answer ean be given to this question:

dividing line between few and many.

large group

Nlarge" are
end and where

of this paper

5 is the
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The formal description of the possiblities of cooperation

is an important part of the model. It is assumed that the

firms are free to form enforcible quota cartels, but before

this can be done, each firm must decide whether it wants to

participate in cartel barqaining or not. These decisions must

be made without knowledge of the corresponding decisions of

the other firms. Those firms who have decided to participate

may then form a quota cartel. A quota is an upper bound for

the supply of a firm. A quota cartel agreement is a system of

quotas for all cartel members. The model assumes that each

firm, which participates in cartel bargaining, proposes

exactly one cartel agreementl) and that a quota system for a

group of firms becomes binding, if all members of the group

have proposed that system.

Before the supply decision is made, the outcome of the

bargaining is made known to all firms in the market. If an

agreement has been reached, the cartel members cannot exceed

their quotas.

This is an extremely simplified picture of cartel bargaining

but hopefully at least some of the relevant features of real

imperfect markets are captured. Note that .nobodycan be forced

to come to the bargaining table. Cartels may or may not include

all firms in the rnarket.Once an agreement has been reached, it

cannot be broken. This means that enforcement problems are

excluded from the analysis. The only kind of agreement which is

allowed, is a system of quotas.

1) One may think of this as a final proposal which is formally
made after extensive informal discussions. The idea that
at the end of the bargaining process the bargainers make
simultaneous final proposals is maybe more realistic than
it appears at first glance. Stevens' book on collective
bargaining[ l3Jconveys the impression that agreemtns are
often reached by virtually simultaneous last moment
concessions after aperiod of apparent stagnation of the
bargaining process.
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Within the framework of these institutional assurnptionsit

is advantageous to form a cartel, but if the nurnberof

competitors is sufficiently large, it may be even more

advantageous to stay out of a cartel formed by others. The

fact that the position of an outsider becomes relatively

more attractive as the number of competitors is increased,

is the basic intuitive reason for the results of this paper.

The task of finding a unique solution for the model presented

in this paper cannot be attacked without putting it into a

wider framework. It is necessary to develop a solution concept

for a class of garnes,which contains the model as a special

case. Only in this way the desirable properties of the proposed

solution of the model can be properly described.

Sections 2,3 and 4 contain some qame-theoretic results which

may be of interest beyond the main purpose of this paper.

1. THE MODEL

The complete model takes the form of a non-cooperative

n-person garnein extensive form, where the players are n firms

nurnberedfrom l,...,n. Por the lirnitedpurpose of this paper

it seems to be adequate to avoid a formal definition of a garne

in extensive form2), but some remarks must be made about the

sense in which the words "extensive form" will be useed.

1.1 EXTENSIVE FORMS In this paper a slight generalization of

the usual testbook definition of a garnein extensive form is

used. It is necessary to permit infinitely many choices at some

or all information sets of the personal players (this excludes

the random player). The set of all choices at an information

set of a personal player may be a set, which it topologically

equivalent to the union of a finite nurnberof convex subsets

of some euclidean space. Apart from that the properties of a

finite garnetreeare retained as much as possible. The set of all

2)See [ 5] or[ 6 J. It will
farniliar with the concept of
with other basic concepts of

be assumed that the reader is
a garne in extensive form and
garne theory
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choices at an information set of the random p1ayer is finite.

On1y such games are permitted, which have a finite upper bound

for the 1ength of the p1ay. Another slight deviation from the

usua1 definition concerns the payoff. The payoff of a p1ayer is

areal number or - m.

The games considered in this paper will a1ways be games with

perfect reca11, where each p1ayer a1ways knows all his previous

choices3~ Therefore it is convenient to exc1ude all games which

do not have this property from the definition of an extensive

form. For the purpose of this paper a game in extensive form

will be a1ways a possib1y infinite game with perfect reca11

which has the properties mentioned above. Sometimes agame

in extensive form will simp1y be ca11ed an "extensive form"

or a "game", where no confusion can arise.

It wou1d be quite ~edious to describe the model with the

he1p of the termino1ogy of extensive form games. Instead

of this a set of ru1es sha11 be formu1ated, which contains all

the information needed for the construction of an extensive

form. Apart from inessentia1 details 1ike the order, in which

simu1taneous decisions are represented in the game tree, the

extensive form representation of the model is fu11y determined

by this description in an obvious way. Therefore it will be

sufficient to re1ate on1y some of the features of the model to

the formal structure of the extensive form. This will be done

after the description of the ru1es is comp1ete.

1.2 STRUCTURE OF THE MODEL.Wherever this is convenient firm i

is ca11ed player i. The set N=(l,...,n) of the n first positive

integers is interpreted as the set of all p1ayers. The subsets

of N are ca11ed coa1i tions.

3)
The formal definition of games with perfect reca11 can
be found in [ 5 J. For infinitegames with perfect
reca11 see [ 1 J.
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It is convenient to look at the game as a sequence of three

successive stages: 1) the participation decision stage, where

the firms decide, whether they want to participate in the

cartel bargaining or not; 2) the cartel bargaining stage,

where the proposals are made, which may or may not lead to

cartel agreements; 3) the supply decision stage, where each

firm selects a supply quantity.

At each stage the

stages butthey do

at the same staqe

players know the outcome of the previous

not know the decisions of the other players

or at later stages.

The firms are motivated by their gross profits derived

from the cost and demand relationship of the Cournot model.

It is assumed, that the firms want to maximize expected gross

profits in the sense of probability theory, ~ubject to the

constraint that the probability of neqative qross profits is

zero. This is not unreasonable if one imagines a situation,

where non-negative qross profits are necessary for survival.

1.3 COST AND DEMAND. The same homogenous good is supplied

by all firms. The supply of firm i is denoted by xi. The

quantity xi is a non-negative real number. x=(xi'...,xn)
is the supply vector. It is assumed that there is no

capacity limit. The cost function is the same for each firm:

i = 1,..., n

Fand c are positive parameters. Total supply
n

(2) X = i~l xi

determines the price p
B

B - a X for o < X < -- - a
,

(3) p=

0 for X >
a
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Here we assume ~>o and ß > c.

It is a1ways possib1e to choose the

units of measurement for money and for the commodity in such

ß take the fo110wing va1uesa way that the parametem~ and

(4) a = - 1

(5) ß = 1 + C

Therefore we sha11 a1ways assume that (4) and (5) hold. This

simp1ifies our formu1as without entai1ing any 10ss of genera1ity.

Because of (4) and (5) a simple relationship between the total

supp1y X and the profit margin

The variable Pi is the gross
profit without consideration

imagine that the fixed costs

avai1abi1ity of liquid funds

profit of firm i; it is the

of fixed costs. One may

are "prepaid" and that the

depends on the gross profit.

(9) u =i i = 1,...,n

Ui is p1ayer i's uti1ity. Note that Ui does not depend on the
parameter c.4)

4) If (9) did not have certain mathematical advantaqes, it wou1d

be preferable to work with the simpler assump~ion ui=Pi.
The main advantage of (9) is the possibility to prove
lemma 6 in section 4.

(6) 9 = P - c

is obtained:

J1 - X
for OXl+c

(7) 9 =
L -c for X > 1 + C

Define

(8) Pi = xig for i = 1,...,N.
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1.4 THE PARTICIPATION DECISION STAGE. Formally the

participation decision is modelled as the selection of a

zero-one variable zi. Each player i may either select zi=O'

which means that he does not want to participate or zi=l,
which means that he wants to participate. The decision is

made simultaneously by all playersi each player must choose

his zi without knowing the participation decisions of the
other players. The result of the participation decisions is a

participation decision vector z = (zl,...,zn). Those players i

who have selected zi = 1 are called participatorsi the other
players are called ~-participators. The set of all participators,

or in other words, the set of all i with zi=l is denoted by Z.
At the end of the participation decision stage, the vector

Z = (zl,...,zn)is made known to all players. In the cartel
bargaining stage and the supply decision stage the players can

base their decisions on the knowledge of Z.

1.5 THE CARTEL BARGAINING STAGE. In the cartel bargaining

stage eaeh participator i E Z must propose a quota system for

a coalition C which contains himself as a member.

(10)
Yi= (Yij)jEC i i E C ~ Z Yi . > 0

J -

Yi is called the proposal of participator i. The notation
(y~ .) . C

indicates that Yi contains a quota Yi ' for each
-.i;:) JE . J

participatorj E C.A non-participatordoes not make a proposal

and no quotas can be proposed for non-participators. The quotas

Yij can be arbitrary non-negative real numbers ot~. Within the
restriction i E C ~ Z a participator i is free to propose a

quota system for any coalition C he wants. The special case

where i is the only member of C is not excludedisuch proposals

correspond to unilateral commitments5).

5)
The re~ult of the analysis would not chanqe, if unilateral
commitments were excluded. The reader will have no difficulty
to see that this is true.
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The participators must make their proposals simu1taneous1y;

each participator knows the participation decision vector

z =(Zl,...,zn)' when he makes his proposa1 Yi, but he does
not know the proposals of the other participators.

A quota system Yc for a coa1ition C ~ Z becomes a binding
agreement, if and on1y if the fo11owing is true:

for all i E C.

This means that all members of C propose the same quotas for C.

Unan1mity of the members 1s required for a carte1 agreement.

The system of proposals

(12) Y = (Yi) ie:Z

determines which binding agreements are reached. In (12) the

same notationa1 convention is used as in (10) and (11):

the expression i E Z ind1cates that Y conta1ns exact1y one

proposa1 for each participatori e: Z.

If YC is a binding agreement, then the quotas Yi assigned by

YC to the participators i e:C are ca11ed "binding auotas".
Since it is convenient to define a "binding quota vector"

v = (YY""Yn) which contains a binding quota Yi for every

p1ayer i e: N, the "binding quota" Y1 = m is assigned to those
p1ayers i, who are not in coa1itions for which binding aareements

have been reached.

At the end of the carte1 bargaining stage the system of

proposals Y is made known to all p1ayers. The system of proposals

unique1y determines the binding quota vector y = (V1""'Yn)'
Note that the system of proposals Y contains a cornp1ete

descr1ption of the course of the game up to the end of the

carte1 bargaininq stage, since the know1edqe of Y imp1ies

the know1edqe of Z.
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1.6 THE SUPPLY DECISION STAGE. In the supp1y decision stage

eaeh p1ayer i se1ects a supp1y quantity Xi subject to the
restriction

(13) ~ Yi i = 1,...,n

The p1ayers must make their decisions simu1taneous1Yi each

p1ayer knows Z, Y and y, when he se1ects his quantity xi' but
he does not know the supp1y decisions of the other p1ayers.

At the end of the supp1y decision stage, each p1ayer i receives

ui as his payoff. ui is computed according to (2), (7), (8)
and (9).

1.7 SOME FEATURES OF THE EXTENSIVE FORM REPRESENTATION OF THE MODEL

~n spite of the fact that a detai1ed formal description of the

extensive form representation of the model is not needed, it

may be usefu1 to point out some of its features. Let us denote

the extensive form representation of the model byr1. (The

symbol r will be used for extensive forms). The representation

of the decisions in the game tree of r1 fo11ows the order of

the stages and simu1taneous decisions are represented in the

order given by the numberinq of the p1ayers, the lower numbers

coming first. This arbitrary convention about simu1taneous

decisions is needed, since the tree structure of the extensive

form requires a successive reprssentationof simu1taneous choices.

In the information partition, the participation stage is

represented by n information sets, one for each p1ayer: the

decision situations of a p1ayer i at the beginning of the
n~

carte1 bargaining stage correspond to 2 information sets,

one for each Z with i E Zi the supp1y decision stage is

represented by infinite1y many information sets: each p1ayer

has one information set for each proposa1 system Y. A p1ay of

the game corresponds to a trip1e (z,Y,x), vlhere z = (zl,...,zn)

is the participation decision vector, Y = (Yi)iEZ is the

proposa1 system and x = (x1'...,xn) is the vector of supp1ies.
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It will be important for the game theoretic analysis of the
1 1

extensive form representationr , that the game r has

subgames. Obviously after the participation decisions have been

made and the set of participators Z is known to all players, the

rest of the game corresponds to a subgame; this subgame is
1 n

denoted by rZ. There are 2 subgames of this kind. We call
these subgames cartel bargaining subgames. The cartel bargaining

subgames do not have the participation decision stage, but they

still have the other two stages. After a system of proposals Y

has been made another kind of subgame arises, which is denoted
1

by ry. In these subgames only supply decisions are made; they

are called supply decision subgames. There are infinite1y

many supply decision subgames, one for each Y. Obviously for
1

Y = (Yi)iEZ the supply decision subgame ry is a subgame of the
, 1

cartel bargaining subgame rZ.

A subgame, which contains at least one information set and

which is not the whole game itself is called a proper subgame.

(The information set may be an information set of the random

player.) A game in extensive form is called indecomposable,

if it does not have any proper subgames; otherwise the game

is called decomposable. Obviously the supply decision subgames

r; are indecomposable and the cartel bargaining subgames r~

are decomposable.
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2. PERFECT EQUILIBRIUM SETS.

Any normative theory whieh gives a eomplete answer to the

question how the players should behave in a speeifie non-

eooperative game must take the form of an eauilibrium point.

Theories whieh preseribe non-equilibrium behavior are self-

destruetinq proheeies, sinee at least one player is motivat-

ed to deviate, if he expeets that the others aet aeeording

to the theory. Therefore, if one wants to find a rational so-

lution for a non-eooperative game, one must look for equili-

brium points.

For games in extensive form it is important to make a distine-

tion between perfeet and i~perfeet e~uilibrium points. The

eoneept of a nerfeet equilibrium point will be introdueed in sub-

seetion 2.3. There the reasons for the exelusion of imperfeet

eouilibrium points will be explained.

~he solution concept pronosed in this paper does not preseribe

nerfeet equilibrium points hut nerfeet eouilibrium sets. A per-

feet e0uilibrium set may be deserihed as a class of perfeet

eouilihrium points, which are essential lv eouivalent as far

as the pavoff interests of the nlavers are eoneerned. ~ so-

lution eoneept whieh preseribes nerfect equilibrium sets

does not qive a eomnlete answcr to the question how the play-

ers should behave in the game, hut the answer is virtuallv

complete in the sense that only unimportant details are left

open. Such details may be filled in bv non-strategie pro-

minence considerations.6)

Some hasic game theoretie definitions and notations are in-

troduced in 2.1 and 2.2.

2.1 BEHAVIOR STRATEGIES.The way in whieh the words"extensive form"

are understood in this paper has been explained in subsection 1.1.

The games eonsidered here are always with perfeet reeall. H.W.Kuhn

has proved a theorem about finite games with perfeet recall

6) see [ 9J
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which shows that nothing is lost if one restricts onels

attention to equilibrium points in behavior strategies.7)

R.J. Aumann has generalized this theorem to garnes in exten-

sive form, where a continuum of choices may be available

at some or all information sets.8) In view of these results

the game-theoretic analysis will be in terms of behavior

strategies.

Let ~i be the set of all information sets U of player i in
an n-person game in extensive form f.

A behavior strategv qi is a system of probability distri-

butions qu over the choices at U, containing one distribution

q for every U € ~i. This i5 expressed by the following no-
tation:

(14) qi = [Tu}U€!J i
A finite behavior strategy is a behavior strategy which

has the property that the distributions q U assign positive
probabilities to a finite number of choices at U and zero

probabilities to all other choices. Such distributions are

called finite distributions.

Por the purposes of this paper it will be sufficient to con-

sider finite behavior strategies only. Therefore from now on,

a strategy will be always a finite behavior strategy. Note

that the pure strategies are included in this definition

as special cases, since a pure strategy ni can be regard-

ed as a behavior strateqy whose distributions q U assign s
1 to one of the choices at U and zero to all others.

The set of all strategies q. of player i in an n-person1

game in extensive form is denoted by Qi. A strategy combi-

nation q = (Ql' ..., qn) for fis a vector with n components

whose i-th component is a strategy qi € Ql' The set of all

pure strategies ni of player i is denoted by nie A pure stra-

~ combination for fis a strategy combination n = (11,.."

In) with li € nie For every given strategy combination

7) see [ 5 ] p. 213

8) see [ 1 ] p.639
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q = (q 1 ,. . ., q.) a p3.yoff vector H (q) = (H 1(q), ..., Hn (q) )
is determined in the usual way.

The symbol r with various indices attached- to it will be

used for games in extensive form. The same index will be

used for the game and its information sets, strategies,

strategy combinations etc.In this way, notations introduced

for a general game will be carried over to specific games in

extensive form.

2.2 EQUILIBRIUM POINTS. It is convenient to introduce the

following notation. If in a strategy combination q = (ql,...qn)

the i-th component i9 replaced by a strategy ri then a new

strategy combination results which is denoted by q/ri. Consider

a strategy combination s = (sI"" sn) for r. A strategy ri
for player i with

is called a best reply to the strategy combination s. An equi-

librium ooint (in finite behavior strategies) for a game in

extensive form ris a strategy combination s = (sI' ..., sn)

with the following property:

(16)

An equilibrium point can be described as a strategy combi-

nation whose components are best replies to this combination.

2.3 PERFECT EQUILIBRIUMPOINTS. It has been argued elsewhere 9)

that one reauirement which should be satisfied by an equilibrium

point selected as the solution of a non-cooperative game is a

property called perfectness. In order to describe this property

some further definitions are needed.
- -. --..

Consider an n-person

subgame of rand let

bination for r. The

game r in extensive form. Let r I be a

q = (ql' ..., qn) be a strategy com-
system of probability distributions

9) See [10] or [ IIJ
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assigned by q. to information sets of p1ayer i in r' is a1

strategv qil for r I; this strategy qil is ea1led indueed by

qi on r' and the strategy eombination ql = (~I ,...,q~ ) is
eal1ed indueed by 0 on rl.

Aperfeet equilihrium point s = (sl,...,sn) for an n-person

game in extensive form r is an equilibrium point (in finite

behavior strategies) whieh induees an equilibrium point on

every subgame of r. An equilibrium point whieh is not per-

feet is ealled imperfeet.

An imperfeet equilibrium point may preseribe absurd modes of

behavior in a subgame whieh eannot be reaehed beeause of

the behavior preseribed in ear1ier parts of the game; if the

subgame were reaehed by mi stake, some players would be mo-

tivated to deviate from the preseribed hehavior. It is na-

tural to require that the hehavior preseribed by the solution

should be in equilibrium in every subgame, regardless of

whether the subgame is reaehed or not. Any reasonable solu-

tion eoneept for non-eooperative qames in extensive form

should have the property that it preseribes perfeet equili-

brium points.

2.4 TRUNCATIONS. A set M of subgames of a given extensive

form game fOis ealled a multisubgame of f, if no subgame in

M is a subgame of another subgame in M. A proper multisubgarne

of r is a mul tisubqame whieh eontains only proper subgames of f

Let s = (sl,...,sn) be a strategy eombination for f. For every

proper multisubgame M of r we eonstruet a new game in the follow-

inq way: Every subgame r' e M is replaeed by the payoff veetor

HI (Si) whieh in rl belongs to the strategy eombination Si =
( si,..., s~) indueed by s on fl. This means that every fl e M

is taken away; thereby the Starting point of r/beeomes

an endpoint of the new game; the payoff veetor at this end-

point is the equilibrium payoff veetor HI (Si). The new game is

denoted by T( r ,M,s). The games T( r ,M,s) are ealled s-trunea-

tions.
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If qi is a strategy for r, then the strategy induced by qi on
T(r,M,s) is defined in the same way as the strategy induced on

a subgame; the 1nduced strategy assigns the same probability

distribution to an information set as qi does. A strategy
combinationq for F = T(r,M,s) is ca11ed inducedby a strategy

combination q for r, if each of the components of q is induced

by the corresponding component of q.

LEMMA 1. Let M be a proper multisubgame of agame rand let s

be a strategycombinationfor r. Then H(s) = H(s) ho1ds for

the payoff vector H(S) be10ngingto the strategycombinat1on

s inducedby s on F = T(r,M,s).

10) -
PROOF . Consider an endpoint z of r. Let z(z) be that endpoint

of r which is on the p1ay to z. The strategy combination s

generates a probability distribution over the set of all end-

points of r. The payoff vector H(s) is the expected value of

the payoff vectors at the endpoints with respect to this

distribution. The payoff vector H' (s') which be10ngs to the

cOmbination Si induced bV s on a subgame rl of r beginning at

one of the endpoints Z of r is the conditiona1expectationof

the payoff vector at zunder the condition that an endpoint z

of r with z = z (z) is reached. This together with the

definition of rand its payoff function H shows that the lemma

is true.

LEMMA 2. Let M be a proper multisubgame of

be a perfect equi1ibrium point for r. Then

nation s induced by s on F = T(r,M,s) is a

point of r.

agame rand let s

the strategycombi-

perfect equi1ibrium

PROOF. Assume that s is not a perfect equi1ibrium point. Then

there must be a subgame r, of r such that in this subgame at

least one of :he p1ayers, s~y ~la:er j, has a strategy rj for rl
such that in rl his payoff H!(s'/r!) 1s greater than his payoff
_ _ _ J J _ _ _

Hj(S') at the combination s' induced by s on F'.The.subgame rl
is the s'-truncation T(r',M',~') of some subgame rl of r, where

s' is the equi1ibrium point induced by s on r' and M' is the

set of subgames of rl which are in M.

Id)Only a sketch of a proof is given here, since a detai1ed proof
would require a formal definition of the extensive form.
A detai1ed proof wou1d be ana1ogous to the proof of Kuhn's
theorem2. See [51 p, 206 .
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Let r! be that strategy for r' which agrees with r! for the
J _ J

information sets in r' and aarees with player j's eauilibrium

strategy s! from s' everywhere else. It follows from H!(s/r!) >_ _' J J J
H .(s')that because of lemma 1 for this strategyr! we mustJ J
have H!(s'/r!) > H!(s') for player j's payoff in r'. This cannotJ J J
be true, since s' must be an equilibrium point.

2.5 BRICKS. Let s be a strategy combination for agame r.

The indecomposable subgames of rand of the s-truncation of r

are called s-bricks of r. (This includes improper subgames

like indecomposable truncations or the game r itself if r is jn-

decomposable. Obviously only the payoffs of the s-Lricks depend

on the strategy combination s. If r is a game in extensive

form, then the game tree of r together with all the elements of

the description of the extensive form apart from the payoff

function (information sets, choices, probabilities of random

choices etc.) is called the payoffless game of r. A payoffless

brick of r is the payoffless game of an s-brick of r.

With respect

and strategy

subgames and

to s-bricks and payoffless bricks, induced strategies

combinations are defined in the same way as for

truncations.

Obviously the payoffless bricks of an extensive form r genera te

a partition of the set of all information sets of r. Every

information set of r is in one and only one payoffless brick

of r. A strategy combination q for r is fully determined by the

strategy combinations induced by q on the payoffless bricks of r.

Two strategy combinations rand s for rare called brick

equivalent if every r-brick coincides with the corresponding

s-bricks. A set S of strategy combinations for r is called brick-

producing if two strategy combinations rES and SES are always

brick equivalent. Obviously every s in a brick producing set S

generates the same system of s-bricks.

2.6 THE DECOMPOSITIONRANK OF AGAME. A maximal proper subgame

of agame r in extensive form is a proper subgame r' of r which

is not a proper subgame of another proper subgame of r.
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The decomposition rank of agame r in extensive form is defined

recursively by the following two properties: (a) indecomposable

games have decomposition rank 1 and (b) for m=2,3,... agame r

has the decomposition rank m if every maximal proper subgame

of r has a decomposition rank of at most m-l and if the

decomposition rank of at least one maximal proper subgame of r

is m-l.

Obviously this definition assigns a finite decomposition rank

to every game in extensive form in the sense of this paper,

since the play length is bounded from above.

2.7 A DECOMPOSITION PROPERTY OF PERFECT EQUILIBRIUM POINTS.

In this subsection a theorem is proved which shows that

equilibrium points have an important property which may

a "decomposition property" since it relates the perfect

equilibrium point to the equilibrium points induced on the bricks

of the game.

Let M be the set of all maximal proper subgames of a decomposable

game r. The s-truncation r = T(r,M,s) with respect to this

multisubgarneis called the indecomposable s-truncation of r.

The notation T(r,s) is used for the indecomposable s-truncation.

perfect
be called

THEOREM 1. A strategy combination s for a garne r in extensive

form is a perfect equilibrium point of r, if and only if an

equilibrium point is induced by s on every s-brick of r.

PROOF. It follows from the definition of a perfect equilibrium

point and from lemma 2, that a perfect equilibrium point s

induces equilibrium points on the s-bricks. Therefore we only

have to show that s is a perfect equilibrium point if equilibrium

points are induced on the s-bricks. In order to prove this,

induction on the decomposition rank is used.

The assertion is trivially true for decomposition rank 1. Assume

that it is true for decomposition ranks l,...,m. Let s be a

strategy combination for agame r with decomposition rank m+l,

such that s induces equilibriumpoints on every s-brick of r.

Since the assertion is true for l,...,m, the strategy combination

s induces a perfect equilibrium point on every maximal
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subgame of r.
Assume that s is not a perfect equi1ibrium point of r. If s

were an equi1ibrium point, then s wou1d be a perfect equi1ibrium

point, since perfect equi1ibrium points are induced on every

maximal subgame. Therefore s is not an equi1ibrium point. There

must be a p1ayer j with a strategy r. for r, such thatJ
H.(s/r.) > H.(s) ho1ds for his payoff in r.J J J

Consider the indecomposab1e s-truncation r = T(r,s). This game r

is an s-brick of r. Let s be the strategy combination induced

by s on rand let rj be the strategy induced by rj on r.

At every endpoint of the game rl= T(r,s/rj) the payoff of
p1ayer j 1s at most as high as his payoff at the same endpoint

in r. This fo11ows from the fact that equi1ibrium points are

induced by s on the maximal proper subgames of r. Therefore
H

J' (sir.) > li.(s) must hold for p1ayer jls payoff in r sinceJ J
otherwise H. (sir.) > H.(s) cannot be true. This contradicts

J J J
the assumptionthat an equi1ibriumpoint is induced by s on
the s-brick.

The fo11owing corre1ary is an immediateconsequenceof the

theorem and the fact that the strategy combinations Si induced

by s on a subgame rl of r or one of its s-truncations generate

s-bricks of rl which coincide with the correspondings-bricks
of r.

11) -
CORRELARY Let r=T(r,M,s) be an s-truncation of agame r

in extensive form. Then the strategy combination s is a perfect

equi1ibrium point for r if and on1y if the fo11owing two

conditions are satisfied: 1) the strategy combination s induced

by s on r is a perfect equi1ibrium point for r; 2). For every

rlE M the strategy combination Si induced by s on rl is a perfect

equi1ibrium point for rl.

2.8 PERFECT EQUILIBRIUM SETS. Two equi1ibriumpoints rand s

for agame rare ca11ed payoff equivalent if we have H(r) = H(s)

Dor the payoff vectors of rand s. An equi1ibrium set S for r

is a non-empty c1ass of payoff equivalent equi11brium points, s for

r, which is not a proper subset of another c1ass of this kind.

Obviouslyeveryequilibriumpoint s for r be10ngs to one and on1y
one equilibriumset for r. This equilibriumset is ca11ed the

equilibriumset of s.

11)
.This corre1aryof theorem1 is simi1arto Kuhnlstheorem3.
See [S],p.208.
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Two perfeet eauilibrium points rand s for rare ealled subgame

pavoff equivalent,if for every subgame r' (ineluding the improper

subgame r) the equilibrium points r' and s' indueed by rand s

on r' are payoff equivalent. A perfeet equilibrium set S for

r is a non-empty elass of subgame payoff equivalent perfeet

equilibrium points s for r, whieh is not a proper subset of

another elass of this kind. Obviously every perfeet equilibrium

points s for r belongs to one and only perfeet eauilibrium

set for r. This perfeet equilibrium set is ealled the perfeet

eauilibrium set of s.
.

A set of strategy eombinations R' is indueed by a set R, if

every element r'E R' is indueed by some r E R. The definition

of an indueed set of strategies is analogous.

LEMMA 3. Aperfeet equilibrium set S for agame r in extensive

form induees aperfeet equilibrium set S' on every subgame
r' of r.

PROOF. Obviously the set S' indueed by S on r' is a set of

subgame payoff equivalent perfeet eauilibrium points. Let r'

be aperfeet equilibrium point for r' whieh is subgame payoff

eauivalent to the perfeet equilibrium points SiE S'. Any

SES ean be ehanged by reDlaeing the behavior preseribed by s

on r' by the behavior preseribed by r'. The result is a

strategy eombination a for r. Let M be the multisubgame eontaining

r' ~s its only element. Obviously we have r = T(r,M,q) =
T(r,M,s). It follows by lemma 2 and by the eorrelary of

theorem 1 that a is aperfeet equilibrium point for r.

It remains to be shown that q is subgame payoff equivalent

to the elements of S. If this is true r' must belong to Se.

Let r" be a subgame of rand let qltand s" be the strategy
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combinations induced on r" by q and s, respectively. If r"

is a subgame of r" or if rl is not a proper subgame of r",

then H"(q") = H"(s") follows immediately from the fact that

q agrees with s on rand with rl on rl. Let rl be a proper

subgame of r" and let S" be induced by S on r"; then r" =

T(r",M,s") is a subgame of r = T(r,M,s). Hence by lemma 1

we have B"(s") = B"(S") = H"(q") for the strategy combination

s" induced by both sand q on r". This proves the lemma.

Let S be a perfect equilibrium set for r. Obviously for rES

and SES we always have T(r,M,s) = T(r,M,r). Therefore the

s-truncation T(T,M,s) with SES is denoted by T(r,M,S).

The games T(r,M,S) are called S-truncations. Since for SES

the s-oricks are .indecomposable subgames of S-truncations,

every perfect equilibrium set is a brick-producing set in the

sense of 2.5. If S is a brick-?roducin~ set, then the s-bricks

with SES are also called S-üricks and T(r,s) is denoted by

T(r,S). The game T(r,S) is the indecomposable S-truncation

of r.

LEMMA 4. A perfect equilibrium set S for agame r induces a

perfect equilibrium set S on every S-truncation r = T(r,N,S).

PROOF.

perfect

any two

payoff
for F

then q

It follows fram lemma 2 that the elements of S are

equilibrium points. It remains to be shown that a)

equilibrium points rand s with rES are subgame

equivalent and b) if a perfect equilibrium point q

is subgame payoff e~uivalent to the elements of S,

is an element of S.

We first prove a). The perfeet equilibrium points rand s

are induced by some rES and some SES, resp. Let rand s be

such strategy combinations. Let rl be a subgame of Fand let

rl and Si 0e the strategy combinations induced by rand s,

resp. on rl. We must show BI (rl) = BI (Si). This is obviously

true if rl is a subgame of r. If rl is not a subgame of r,

then a subgame of rl exists, ~uch that rl is an SI-truncation

of rl, where Si is the set which is induced by S on rl. Let rl

and Si be the strategy combinations induced on rl by rand s,

resp. We must have HI(rl) = HI(rl) and HI (51) = HI (Si) because
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of lemma land H'(r') =

payoff equiva1ent. This

equivalent.

Consider aperfeet equilibrium point q for F whieh is subgame

payoff equiva1ent to the elements of S. We have to show that

q belongs to S. Let q be a strategy eombination for r whieh

agrees with q on Fand agrees with some SES everywhere

else. It fo110ws from the eorre1ary of theorem 1 that q is a

perfeet equi1ibrium point for r.

H' (s') sinee rand s are subgame

shows that rand s are subgame payoff

Assume that q does not be10ng to S. Then there must be a

subgame r' of r where the payoff veetor H' (01) be10nging to

the strategy eombination indueed by q on r' does not agree with

the payoff veetor H' (s') be10nging to the strategy eombination

indueed by s on r'. Obvious1y this subgame r' eannot be in M.

Therefore some s-truneation F'=T(r',M',~) of r' must be a proper

subgame of F. Beeause of lemma 1 the payoff veetor Ü'(q')

belonging to the strategy eombination q' indueed by q' on F'

is the same as the payoff veetor H' (s'). This eontradietion

shows that q be10ngs S. Therefore q be10ngs to S. This proves

the lemma.

LEMMA 5. Aperfeet equilibrium set S for agame r induees an

equi1ibrium set S' on every S-briek r' of r.

PROOF. Sinee S-brieks are indeeomposab1esubgamesof S-trunea-
tions the assertion fo110ws from lemma 3 and lemma 4.

2.9 A DECOMPOSITION PROPERTY OF PERFECT EQUILIBRIUM SETS. In the

fol10wing it is shown that simi1ar results as in 2.7 ean be

obtained for perfeet equi1ibrium sets.

THEOREM 2. Let S be aperfeet equi1ibrium set for agame r in

extensive form. Then a strategy eombination s for r is an

element of S, if and on1y if for every S-briek r' of .rthe

strategy eombination s' indueed by s on r' is an element of

the equi1ibrium set S' indueed by S on r'.
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PROOF. The only-if part of the theorem follows from thc definition

of an induced set of strateqy co~binations. The if-part remains to

be shown. This is done bv induction on the decomposition rank of

r. The assertion is trivially true for decomposition rank 1.

Assume that it is true for decomposition rank l,...,m.

Consider a strategy combination s which induces a strategy

combination SES on every S-brick r'ol r.It follows from the

induction hypothesis that for everv proper subga.'11er"of r the

strateqy combination s"induced by 5 on r"is in thc perfeet

enuilibrium set SN induced by S on rll. Therc is no difference

bet\.,reenan S-brick of fitand the corespondinq S-brick of r.

Let S be the eauilibrium set induced on the indecom~osable

S-truncation r = T ( r , S). The strateqy combination s induced

bv s on the S-brick r belongs to S. Since perfeet e~uilibrium

points s"are induced on the maximal proper subqames r"of r,the

S-brick fis also an s-brick. ~oreover every other S- 'rick is

also an s-brick. It follows by theorem 1 that s is aperfeet

eauilibrium point. We must have H(s) = ~(s) beeause of lemma 1.

This shows t~at s belonqs to S.

COR~ELARY. Let S be aperfeet e0uilibrium set for agame r

in extensive form and let r = T ( r,~t ,S) be an S-truncation of r.

Then a strategy eombination s for r is an element of S, if and

only if the followinq two eonditions are satisfied: 1) The

strategy eombination s indueed by s on f is in the perfeet

eauilibrium set S indueed by S on fand 2) For every r 'E M, the

stratelJv eombination s'indueed by s on f' is in thc perfeet

e~uilibrium set S'indueed by S on r '.

PROOF. The S-brieks and S'- rieks eoineide with the eorresponding

S-brieks. Therefore for SES the indueed strategy eombination s

and s'are in fand r'resp. On the other hand, if s satisfies

1) and 2), then the strategy eombinations indueed by s on the

S-,rieks are in the eouilibrium sets indueed by S. This shows

that the eorrelary follows from the theor~.
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THEOREM 3. Let S be a briek--rodue1nq set of strateqv eomb1nations

for, agame r in extensive form. Then S 1s aperfeet equilibriurn

set, if and only if the following two eondit1ons are satisf1ed.

1) For every S-Lriek r' ,the set S'1ndueed by S on r' 1s an

eauilibr1um set for r'. 2) If a strateqy eomb1nat1on s for r

has the property that for every S-briek r'the strategy eomb1nation

s'indueed bv s on r' 1s in the set S'indueed by S on r', then s

is in S.

PROOF. If 1) and 2) are sat1sf1ed, then 1t follows from

theorem 1 that the elements SES are perfeet eouilibr1um points.

Take any fixed rES and let R be the perfeet equilibr1um set

of r. Obviously there 1s no differenee bet\oleeneorrespondinq r-

br1eks, R-brieks and S-brieks. It follows from lemma 5 that an

e0uilibrium set n)is indueed by R on every r-br1ek r'. Sinee every

enui11brium point i5 in a uninuely deterrn1ned enu1l1br1um set,

R' must aqree wi th the set Si indueed by S on r'. It follows by.

theorem 2,that Rand S are identieal sets.

If S 1s a perfeet eou1libriu~ set, then lemma 5 has the

eonse0uenee that 1)1s satisfied and it folloHs Ly theorem 2

that 2) is sat1sfied, too.

2.10 INTERPRETATION. The notion of aperfeet equilibrium set

is a natural modifieation of the not ion of aperfeet equilibrium

point. Sinee all the perfeet eoui11brium points s in a given

perfeet equ1librium set are subgame payoff equivalent, one ean

take the Doint of view, that the differenees between them are

unimportant.

Theorem 1 shows that aperfeet eouilibr1um point s is fully

deterrnined by the equilibrium points indueed on the s-brieks.

Theorem 3 shows that aperfeet e0uilibrium set S is fully

determined hy the e~uilibriurn sets S'indueed on the 8-br1eks. In

order to deser1be S it is suffieient to deseribe these e~u1l1brium

setsS'.
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3. THE SOLUTION CONCEPT

The game-theoretic conceptsdeveloped here serve the limited

purpose of constructing a theory which is just general enough
1

to provide a solid basis for the analysis of the game r

described in section 1. The solution concept of this paper is

not applicable outside a certain class of games with special

properties. No attempt is made to attack the difficult task
12)

of selecting a unique solution for every non-cooperative game.

For the class of games where it is defined, the solution concept

proposed here is the only one of its kind, which has four

desirable properties. Two of these properties concern the

relatiOnship of the solution of agame to the solutions of its

subgames and trunca~ions. The third property is a symmetry

property. The fourth property is based on the idea that the

players have a tendency to act in their common interest if this

is compatible with the other three properties.

3.1 SOLUTION FUNCTIONS. A ~olution function for a class K

of games in extensive form is defined as a function which assigns

a perfect equilibrium set L(r) to every game r in the class K.

The equilibrium set L(r) is called the L-solution or stmply the

solution of r, where it is clear which solution function L is

considered. The payoff vector belonging to L(r) is called the

L-value of r. The L-value of r i8 denoted by V(r,L) = (Vl(r,L) ,...,
V (r,L».n

It may happen that the solution L(r) is a perfect equilibrium

set which contains exactly one perfect equilibrium point. In this

case the single perfect equilibrium point in L(r) will also be

called the solution of r, where the danger of misunderstandings

cannot arise.

l2)The author is collaborating with John
elaboration of a theory of this kind.
presented here go back to this common
complete. See _'4J

C.Harsanyi on the
Some of the ideas
work which is not yet
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3.2 SUBGAME CONSISTENCY. A elass K of games is ealled subgames

eomplete, if for r E K every subgame of r is also in K.

A solution funetion L for a elass K of games is ealled subgame

eonsistent, if for every r E K the L-solutionL(rl) of rl 1s

indueed by L(r) on every proper subgame rlof r with rl E K.

Note that subgame eonsisteney is not implied by the definition

of aperfeet equilibrium set. If L(r) is aperfeet equilibrium

set then it must induee some perfeet equilibrium set on a

subgame rlof r, but it does not follow, that for rlE K this

perfeet equilibrium set is the L-solution of r.

Subgame eonsisteney means that the behavior in a subgame depends

on this subgame only. This is reasonable, sinee as far as the

strategie situation of the players is eoneerned, those parts of

the game, whieh are outside the subgame, beeome irrelevant onee

the subgame has been reaehed.

3.3 TRUNCATION CONSISTENCY. Let L be a solution funetion for

a subgame eomplete elass K. For any multisubgame M of agame

r E K, the L(r)-truneation r=T(r,M,L(r) ) ean be formed. For the

sake of shortness,this game r is denoted by T(r,M,L).The games

T(r,M,L) are ealled L-truneations of r. The indeeomposable

L-truneations are ealled L-brieks. For the indeeomposable L(r)-

truneation T(r,L(r»the notation T(r,L) is used. T(r,L) is the

indeeomposable L-truneation of r.

A elass K of games in extensive form is ealled L-eomplete,if the

solution funetion L is defined on K and if K is a subgame eomplete

elass with the additional property that for r E K every
L-truneationof r is in K.



~-~ - -- -----

-26-

A solution function L for a class K of games in extensive

form is, called truncation consistent, if for every r E K

the L-solution L(r) induces the L-solution L(r) on every

L-truncation r = T(r,M,L) with r E K.

It is intuitively clear that a reasonable subgame consistent

solution function L should also be truncation consistent. If

L(r') is the behavior expected in the subgames rlE M, then the

strategie situation in r = T(r,M,L) is essentiallythe same as

in that part of r which corresponds to r.

3.4 CONSISTENT EXTENSIONS. Consider a solution function Ll

for a class Kl of indecomposable games. In the following for
any such L an extension to a wider class K will be constructed.

It will be shown that the extended solution function L is the

only subgame consistent and truncation consistent solution

function for K such that L coincides with LI on KI.

Let L be a solution function for a class K of games in extensive

form. L is called a consistent extension of a solution function

LI for a class KI of indecomposable games, if the following
conditions (J1J and (B) are satisfied:

(A) REGION. The set of all indecomposable games in K is

the set Kl. For m = 2,3,... the set Km of all games r E K

with decomposition rank m is equal to the set of all games r

in extensive form, such that the maximal proper subgames of r

are in the sets KI'...' Km-l and the indecomposable L-truncation

T(r,L) is in Kl.

(B) SOLUTION. For every r E Kl we have L(r) = Ll(r).
If r is a decomposable game r E K, then L(r) induces L(r')

on every maximal proper subgame rl of rand L(T(r,L) ) on

the indecomposableL-truncationT(r,L) of r.
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Later it will be shown that (A) and (B) imply subgame

consistency and truncation consistence. This justifies the

name IIconsistent extension".

THEOREM 4. Every solution function LI for a class of

indecomposable games Kl has a uniquely determined consistent
extension.

PROOF. (A) and (B) provide a recursive definition of Land

K. If the classes Kl,...,Km-l are known and L is known for
games in these classes, then K is given by (A). It remainsm

to be shown that for every r E Km a unique perfeet equilibrium

set L(r) is determined by condition (B). This can be seen by

induction on M. The assertion is trivially true for r E Kl.

If the assertion is true for games in Kl,...,Km_l, then it

follows by the correlary of theorem 2, that for r E K them
set L(r) is aperfeet equilibrium set for r.

THEOREM 5. The consistent extension L of a solution function

LI for a elass Kl of indecomposable games has an L-eomplete
region K. The consistent extension L is subgame consistent

and truncation consistent. For every r E K the LI-solution
A ~

Ll(r) is indueed by L(r) on every L-briek r of r.

PROOF. Let Km be the union of the sets Kl,...,Km. Let Lm
be that solution function for K ' which agrees with L on R .m. m

The theorem holds, if for m = 1,2,3,... the class ~ is Lm -

eomplete and L is subgame consistent and truneation consistent.m
For m = 1 this is trivially true. Assume that the assertion

holds for Km. It follows from (A) that Km+l is Lm+l - complete.

Sinee L is subgame consistentand L agrees with L for them m m

proper subgamesof games in Km+l' the solution funetionLm+l
is subgame consistentbeeause of (B).
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The truncation consistency of Lm+l can be seen as follows.

Consider an Lm+l-truncation r" = T(r,M'~+l) of agame

r E: Km+l. It has to be shown, that Lm+l (r) induces Lm+l (r")

on r". The maximal proper subgames of f" are Lm-truncatiQns

of maximal proper subgames of f. The maximal proper subgames

of r are in K . Since L is truncationconsistent,L +l(f)m m m

induces Lm(f') on every maximal proper subgame f of r".

The indecomposableL -truncationof f is the same game asm

the indecomposable L -truncation of f". It follows from (B)m

that Lm+l(f) induces Lm(T(r",Lm»On T(r",Lm). This shows that

Lm+l (f") and Lm+l (r) induce the same perfeet eauilibrium sets

on the maximal proper subgames r' of f" and on T(r",Lm).

According to lemma 4 aperfeet equilibrium set is indueed by

Lm+l(r) on r". It follows by the eorrelary of theorem 2 that

this perfeet eauilibrium set must be eaual to Lm+l(r").

It is a simple eonsequenee of the truneation eonsisteney and

the subgame eonsisteney of L, that Ll(f) is induced by L(r)
~

on every L-briek f of r.

THEOREM 6. The eonsistent extension L of a solution funetion

Ll for a elass Kl of indeeomposable games in extensive form

is the only subgame eonsistent and truneation eonsistent solution

funetion L, whieh agrees with Ll on Kl and has the additional
property that L together with its region K satisfies eondition

(A).

PROOF. A subgame eonsistent and truneation eonsistent solution

funetion whose region has property (A) must have the property

(B). Therefore theorem 6 is a direet eonsequenee of theorems

4 and 5.
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3.5 SIMULTANEITY GAMES. The eonstruetion of a eonsistent

extension is a way of redueing the task of solving the

deeomposable games in K to the simpler task of solving the

indeeomposable games in Kl. For the purpose of finding a

solution for the game r1of seetion 1, the elass Kl must be
larqe enough to generate a elass K eontaining r1. In the

following a elass of very simple indeeomposable games will

be speeified. The elass Kl underlying the solution funetion
applied to r1will be a subelass of this elass of

"simultaneity games".

A simultaneitygame is an n-person game in extensiveform,

where eaeh of the players l,...,n has at most one information

set and where eaeh of these information sets interseets every

play of the game. A simultaneity game ean be interpreted as

agame, where those players, who have information sets, make

simultaneous deeisions without getting information about

any random ehoiees whieh miqht oeeur before the deeisions

are made.

3.6 NORMAL FORMS. Sinee every player has at most one

information set there is no differenee between behavior

strategies and ordinary mixed

Therefore a simultaneity qame
13)normal form

strategies in simultaneity games.

is ade~uately deseribed by its

Let r be an n-person game in extensive form~ he normal form

of r is the pairG = (n,H), where n = (nl,...,nn) is the

strategy set veetor, whose i-th eomponent is the set ßi of all

pure strategies wi of player i in rand where H is the payoff
funetion whieh assigns the eorresponding payoff veetor H(.)=

(H1(~),...,Hn(.) ) to every pure strategy eombination

. = (Il'...'~n) for r. A normal form (withoutreferenee to
an extensive form) is a strueture G = (ß,H) with the same

IJI
This is not true for extensive forms in general. The normal
form does not preserve the disttnetion between perfeet and
imperfeet equilibrium points. In simultaneity games all
equilibrium points are perfeet and every normal form is
isomorphie to the normal form of some simultaneity game.
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properties where the 11 may be arbitrary mathemat1eal objeets.

A finite mixed strategy of player i is a probability distribution

over ni, whieh assigns positive probabilities to a finite number

of pure strategies 1i E ni and zero probabilities to the other
pure strategies of player i. Sinee only finite behavior strategies

are eonsidered here, in this paper a mixed strategy will be

always a finite mixed strategy.

Two n-person normal forms G = (n,H) and GI= (nI ,HI) are ealled

isomorphie, if for eaeh player i there is a one-to-one mapping fi

from the set ni of his pure strategies in G onto the set ni of
I

his pure strategies in G ,sueh that the same payoff vector is

assigned to corresponding pure strategy combination in both normal

forms. A system of one-to-one mappinqs f = (fl,..., fn) of this

kind is ealled an isomorphism from G to GI .

An isomorphism f = (fl,...,fn) from G to G'ean be extended to

the mixed strategies. For every mixed strategy qi for G let fi (qi)

be that mixed strateqy qi for ~ which assigns the same probability

to a pure strateqy f1(wi) as 9i assigns to Wie In this way every

mixed strategy combinat1on 0= (ql'.",q n) for G corresponds to a

mixed strateqy eombination q 1= (f I(ql ) , . . ., f n (qn)" ) foz: GI.

3.7 SYMMETRIES. Consider a normal form G' which results from a

normal form G by a renumbering of the players. In this case an
J

isomorphism from G to G is called a syrnmetry of G. A symrnetry

of G may be deseribed as an automorphism of G, i.e. a mapping of

G onto itself whieh preserves the structure of G.

A syrnmetry preserving equilibrium point s for a garne r is an

equilibriurn point which is invariant under all symrnetries of the

normal form of r. A symmetry preserving equilibrium set S

60r agame r is an equilibrium set, which is invariant und er all

sYmmetries of the normal form of r. This means that with respeet

to every symrnetry every rES eorresponds to some SES. Note that

an equilibrium point * in a syrnmetry preservinq equilibrium set S

need not be symmetry preserving. Only the set S a8 a whole is
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invariant under the symmetries of the normal form of the game.

Aperfeet equi1ibrium point 5 for agame is ea11ed loea11y

symmetry preserving, if a symmetry preservinq equi1ibrium point sJ

is indueed by 5 on every s-briek r"of r. Aperfeet equi1ibrium

set S for agame r is ea11ed loea11y symmetry preserving, if
I

a symmetry preserving equi1ibrium set S is indueed by S on every

S-~riek r'of r . Note thatthe elementsof a loea11ysymmetry
preserving perfeet equi1ibrium set need not be loeally symmetry

preservinq.

The name "loealllis used in these definitions sinee the symmetries

of the normal form of an s-briek or S-briek may not be present in

other parts of the game. The followinq two theorems show, that

loeal symrnetrypreservation is in harmony with the deeomposition

properties of perfeet equilibrium points or sets.

THEOREM 7. Aperfeet equi1ibrium potnt 5 for agame r is loeally

symmetry preserving if and on1y if a loeally symmetry preserving

perfeet equi1ibrium point is indueed by s on every subgame and

every s-truneation of r .

THEOREM 8. Aperfeet equilibrium set S for agame r is loeally

symmetry preserving if and only if a loeally symmetry preserving

perfeet equilibrium set is indueed by S on every subgame and every
S-truneation of r

PROOF OF THEOREMS 7 AND8. Sinee the s-brieksand S-brieks are

indeeomposable subgames of s-truneations and S-truneations resp.,

the if-parts of both theorems follow direetly from the definition

of "loeally symmetry preserving". The equi J.jbrium point 5 Iindueed

by s on a subgame or an s-truneation generates s) -brieks whieh

eoineide with the eorresponding s-brieks. This together with

lemmata land 2 shows, that theorem 7 holds. With the help of

lemmata 3 and 4 an analogous argument ean be made in order to

eomp1ete the proof of theorem 8.
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3.8 SYMMETRICAL SOLUTION FUNCTIONS. A solution funetion L for

a elass K of games is ealled symmetrieal, if it assigns loeally

syrometrypreserving perfeet equilibrium set L(r) to every

game r E K.

If one player eorresponds to another under a symmetry of an

L-briek r' of agame r E K, then the strategiesituationof

both players in r' is essentially the same. It is reasonable

to expeet, that rational players who are in the same strategie

situation behave in the same way. Therefore it is natural to

require that a solution funetion should be syrometrieal.

If r is an indeeomposable game, then a loeally symmetry

preserving perfeet equilibrium set of r is nothing else than

a symmetry preserving equilibrium set of r. Therefore a solution

funetion LI for a elass KI of indeeomposable games is symmetrieal,
if and only if it assigns a symmetry preserving equilibrium

set L(r) to every game r E KI.

THEOREM 9. The eonsistent extension L of a solution funetion LI

for a elass KI of indeeomposable games is syrometriealif and

only if LI is symmetrieal.

PROOF. It follows direetly from the definition of a syrometrieal

solution funetion that L eannot be sYmmetrieal unless LI is

svrnmetrieal.If LI is syrometrieal,then by theorem 5 for every
A

r E K the equilibrium set LI(r) is indueed by L(r) on every
A .

L-briek r of r. This shows that L is syrometrieal, 1f LI is
symmetrieal.

3.9 PAYOFF OPTIMALITY. A player in agame r in extensive form

is ealled inessential,if in the normal form of r the payoffs of

the other players do not depend on the strategy of player i.

This is the ease, if for every strategy eombination _ for r

we have Hj(.) = Hj(~/-l) for every -1 E Ri and every player j
with j ~ i. The players who are not inessential are ealled

essential. Obviously in a simultaneity game a player without

an information set is inessential.
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If S is an equilibrium set or aperfeet equilibrium set for a

game r, then the payoff veetor H(s) for the equilibrium points

SES is denoted by H(S) = (Hl(S),...,Hn(S». The payoff veetor
H(S) is ealled the equilibrium payoff veetor at S.

Let Rand S be two equilibrium sets or two perfeet equilibrium

sets for agame r. The set S is ealled weakly payoff superior

to R if for every essentialplayer i in r we have Hi(S) ~ Hi(R),

if in addition to this we have Hi(S) > Hi(R) for at least one
essential player i, then S is ealled strongly payoff superior

to R. Aperfeet equilibrium set 5 for r is ealled weakly

subgame payoff superior to another perfeet equilibrium set R

for r, if for every subgame r' of r (ineluding r) the perfeet

equilibrium set 5' indueed by 5 on r' is weakly payoff superior

to the perfeet equilibrium set R' induced by R on r'. Aperfeet

equilibrium set 5 for r is called strongly subgame payoff

superior to another perfeet equilibrium set R for r, if 5 is

weakly subgame superior to Rand if in addition to this for at

least one subgame r' of r the perfeet equilibrium set 5' indueed

on r' by S is strongly payoff superior to the perfeet equilibrium

set R' indueed by R on r'.

Let K be a class of n-person games in extensive form and let A

be a set of solution functions for K. The solution funetion

E E A is called payoff optimal in A if for every L E A and

r E K the L-solution L(r) is not strongly subgame payoff superior

to the i-solution L(r).

The solution concept of this paper is based on the idea that it

is natural to select a payoff optimal solution funetion from a

class of subgame eonsistent and truneation consistent symmetrical

solution functions. If aperfeet equilibrium set S for r is

strongly subgame payoff superior to another perfeet equilibrium

set R, then it is in the eommon interest of the essential players

in some subgames and not against the eommon interest of the

essential players in the other subgames to eoordinate their

expeetations at 5 rather than R. The eoneept of payoff optimality

is similar to the familiar notion of pareto-optimality. The

analogy beeomes elear if one takes the point of view that player i

in one subgame and player i in another subgame have different

interests and therefore should be treated as if they were

different persons.
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Definitions which do not take into account the possibility that

tbe interests of the same player diverge in different parts of

the qame, cannot do justice to the structure of extensive form

games. Therefore it is necessary to look at the payoffs in all

possible subgames. In this respect the definition of a payoff

optimal solution function is in the same spirit as the definition

of a perfect ecruilibriuM point.

3.10 DISTINGUISHED EQUILIBRIUM SETS. A distinguished

equi1ibrium set for an indecomposab1e game r is a symmetry

preserving eauilibrium set S for r with the fo11owing additional

property; if R is a symrnetry preserving equi1ibrium set for r,

wn~~l1 ~Q d~EEo~o~e ~rnm ~. then S is strong1y payoff superior to R.

Obviously an indecomposable qame can have at most one distin~uished

eauilibrium set and not every indecomposable game has a

distinguished equilibrium set. An indecomposable qame which has

a distinguished equilibrium set is called distinquished.

Later the class of all:distinguished simultaneity games will be

of snecial irnportance. It is natural to regard the distinguished

equilibrium set of a distinryuished simultaneity game as the

solution of this qarne. It is in the cornmon interest of the

essential players to coordinate their expectations to an

equilibrium point in this set.

In this paper the same intuitive arqument is not applied to

indecomposable qames in qeneral. It is not clear, whether for

indecomposable qames with complicated information structures the

symmetries of the normal form say somethinq meaninqful about the

extensive form in all possible cases. Only within the class of

simultaneity qMJeS it is justified to rely on definitions based

on the normal form.
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3.11 THE DISTINGUISHED SOLUTION FUNCTION. Let K1 be the set

of all distinquished simu1taneity games and let L1 be that

solution function for K1 which assigns.the distinguished

equi1ibriumset of r to every r E K1. The distinquished
solution function is the consistent extension L of this solution

function L1.

The distinguished solution function is the solution concept of

this paper. The fo11owing theorem summarizes the desirab1e

properties of this solution concept.

THEOREM 10. Let K be the region of the distinguished solution

function L. The set A of all subgame consistentand truncation

consistent symmetrica1 solution functions L for K contains one

and on1y one solution function which is payoff optimal in A.

This is the distinguishedsolution function L.

PROOF. It fo11ows from theorems 5 and 9 that L is in A. It

is a consequence of the definition of a distinguished equi1ibrium

set that a solution function L, which is payoff optimal in A,

must assiqn the distinguished equi1ibrium set to every

distinguishedsimu1taneitygame in K. It fo11ows by theorem 6

that a solution function L cannot be payoff optimal in A, if it

is different from L. It remains to be shown that L 1s payoff

optimal in A.

Assurnethat i is not payoff optimal. Then there must be a

solution function L E A and agame r E K such that L(r) is

strong1y subgame payoff superior to L(r). In order to show,

that this is impossible, it is sufficient to prove that for no

garne r E R a symmetrypreservingperfect equi1ibriumset R can

be found, which is different from L(r) and weakly subgame payoff

superior to i(r). Let K ~e the set of all games r E K with am .

decomposition rank of at most ffi.The assertion is proved by
induction on m.

------- - - --- - - - -

._.~ _../
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Fiqure 2: The indecomposab1e L-truncation f = T(r,L) of the

qame r represented in fiqure 1.
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The indecomposable L-truncation r = T(r,L) of r is represented

in figure 2. In r player 1 is the only essentialplayer.

Obviously r has a distinguished equilibrium set, whose only

equilibrium point prescribes the left choice. Consequently r

is in the region K of L. The L-solution L(r) prescribes the left

choice at every information set.

The game r has another perfect equilibrium point which prescribes

the right choice r at every information set. This equilibrium

point is the only element of a perfect equilibrium set R.

Obviously R is locally symmetry preserving. The L-value of r

is v(r,L) = (4,4,4). The equilibriumpayoff vector at R is

H(R) = (5,5,5).

ThiR shows that another locally syrnmetrypreserving perfect

equilibrium set can be strongly payoff superior to the L-solution

of a game in K. At first glance one may.think that in view of

such cases it is questionable, whether L is a reasonable solution

function. With the help of the example of figure 1, it can be

easily understood, why this is not a valid counterargument

against the distinguished solution function. At the beginning of

the game r of figure 1 all players prefer R to L(r), but player 1

knows that after the subgame r" will have been reached players

2 and 3 must be expected to coordinatetheir expectationsat

L(r"), since this in their common interest. The fact that R is

strongly payoff superior to L(r) in the whole game will then be

a matter of the paste

Already at the end of section 3.9 it has been pointed out, that

the interests of the same player may diverge in different parts

of the game and.that therefore the efficiency idea behind the

definition of the concept of payoff optimality must be applied

to all payoffs of all subgames rather than to the payoffs of the

whole game only. The numerical example of figure 1 illustrates

this point.
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4. THESOLUTION OF THE MODEL

In the fo11owing the solution concept deve10ped in sections
1

3 and 4 will be app1ied to the extensive form r of the model
1

described in section 1. The upper index 1 in the symbol r

has been used in order to distinguish this game from other

games. Since on1y games re1ated to this game will appear in

the remainder of the paper, we drop the upper index 1 and use

the symbol r without any index in order to denote the extensive

form of the model described in section 1. According1y the

notation rz will be used for the supp1y decision subgames and

the carte1 bargaining subgames will be denoted by ry. Another
notationa1 simp1ification concerns the distinguished solution

N ~

functionL. Here we sha11 use the symbol L insteadof L, since

no other solution function appears in the remainder of the

paper. The distinguished solution of a game will simp1y be

ca11ed the solution of this game.

The computation of the solution of the extensive form r of the

model will fo11ow a "cutting back procedure", which works its

way backwards from the end of the game to its beginning by

solving indecomposab1e subgames and forming truncations. First

the supp1y decision subgames ry will be solved. Then truncated

carte1 bargaining subgames Fz are formed as L-truncations of the
carte1 bargaining subgames. After these games have been solved

the indecomposab1e L-truncation r of r can be formed and solved.

The games whose solutions are found in this way are the L-bricks

of r. Fina11y the solution of r can be put together from the

solutions of the L-bricks of r.

The path to the solution of r is not the shortest poss.1b1eone.

The detours have the purpose to exhibit some interesting

properties of the model and its solution.



-- - --- ~-

-41-

4.1 LF~TA ON THE SUPPLY DECISION SUBGAME. Obviously the

supply decision subgarnesry are simul~aneity garnes.A strategy

qi for ry is a finite probability distribution over the interval

O~xi~ Yi. The following lemma will show, that only the pure
strategies are important.

LEMMA 6. Let s = (sl,...,sn) be an equilibrium point for a

supply decision subgarne ryithen s is a pure strategy combination.

PROOF. In order to prove the lemma, it is sufficient to show

that for every strategy combination q=(ql,...,qn) each player i

has exactly one best reply ri which is a pure strategy. Let us

distinguish two cases. In case 1 the supply xi = 0 is the only

pure strategy which guarantees a non-negative gross profit Pi'
no matter which of the pure strategies occuring in the mixed

strategies q. of the other players are rea1ized. In case 2J

player i can choose a supp1y xi>0 which guarantees a non-negative

gross profit Pi' no matter which of the pure strategies occuring
in the mixed strategies q. of the others are rea1ized. ItJ

fo1lows from (9) that in case 1 the supp1y xi= 0 is the only
best reply of player i.

Now consider case 2. Let Xj be the greatest supply xj such

that qj assigns a positive probability to xjo

Define
n

(17) Xi = 1: Xj
j=l

j=l=i
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Obviously we must have Xi < 1. In order to be sure to receive

a non-negative gross profit, player i must select a supply xi
/\ '"

in the closed intervall 0 ~ xi ~ xi' where xi is the minimum of

Yi and I-Xi. It follows from gel - X, that in this intervall the
expected gross profit of player i is a strictly concave quadratic

function. Consequently player i has exactly one best reply, which
roJ ,..- "-

is a supply xi with 0 ~ ,xl~ xi.

REMARK. If the players had the utility function ui=Pi instead
of (9), a similar argument would not go through, since over the

whole range xi ~ 0, the variable Pi is not a concave function

of xi.

Lemma 1 shows that we can restrict our attention to pure strategy

combinations. In the following a pure strategy combination forry
is identified with the corresponding supply decision vector

x= (xl'... ,xn) .

In lemma 2 a function ~i(Xi) is introduced, which is called

the reaction function of player i. This function is indeed

the familiar reaction function from the Cournot oligopoly theory.

In lemma 8, equation (21) we shall define a related function
14)

1)i(X), '.,hichis called the fitting-in-function . The fact

that this function depends on the total supply X, rather than on Xi'
makes it a useful instrument for the analysis of the Cournot model.

LEMMA 7. Let (Xl'...,Xn) be a pure strategy combination

(Xl'...,Xn) for a supply decision subgame ry define

(18)

Then

[

l-X

(19) 'tXi) = max 0, min [~ ' Yi~

is player i's best reply to (Xl'...,Xn)

l4)
The concept of a fitting-in function has beeen introduced for
a wide class of oligopoly models in [12J. The German name is
"Einpassungsfunktion".
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PROOF. Consider first the ca se Xi ~ 1. In this ca se xi = 0 is

the only supply which gives players i a non-ne9ativegross profit

and ~i(Xi) = 0 is the best reply to x = (Xl'...,Xn).

In the case Xi < 1 player i 18 gross profitis negative outside

the intervall 0 ~ xi ~ 1 - Xi. Within this intervall the function

xi (l-Xi-xi) assumes its maximum at xi = (1 - Xi)/2. This shows

that for Xi < 1 the best reply to (xl'... ,xn) is given by (19).

LEMMA 8. Let ~ be a supply decis10n subgame with the binding

quota vector y = (Yl'...'vn). Define

r '
(20) ni (X) = max 0, min l-X'Yi

for i = l,...,n (the function ni (X) is called player i's
fitting-in function). For every X~ 0 and for i=l,...,n the

function ni (X) satisfies the condition

and for every fixed X ~ 0 the only solution of the equation

is

PROOF. 'i (Xi) is monotonically non-increasing. Therefore

~i (X-xi)-xi is monotonically decreasing in xi. Consequently for

---

every X 0 there is at most one xi satisfying (22) . It remains

to be shown that (21) is true, (19) yields

.- l-X+n (X} :"1
(23)

'i (X-f"Ii(X) ) >
max 10, min f i 'Y1\iL . 2 .::l



-44-

In order to prove (21) we distinguishthe followingthree

cases (24), (25) and (26)

(24)

(25)

(26)

l-X~O

O<l-X<Yi

Yi~ 1 -x

In ca se (24) we have ~i(X) = o. If we insert this on the right
side of (23), we see that because of (24) condition (21) 1s

satisfied. Now consider case (25). In this case ~i(X) is equal
to I-X. It is clear from (23) and (25) that (21) holds in this

case too. In case (26) we have ~i(X) is equal to Vi. Inequality
(26) implies

l-X+Yi
Yi ~ 2(27)

This shows that (21) is satisfied.

4.2 THE SOLUTION OF THE SUPPLY DECISION SUBGAME

In the following the results of the last section will be used in

order to find the solutions of the supply decision subgames.

For this purpose we introduce the total fitting-in function ~(X):

(28)
.,(X) = ~ ~i (X) = ~ max ro, mini=l i=l

,
-I,

r-l-X,Yij
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Consider the pure strategy equilibrium point (Xl'...,Xn) of ry

and let X be the total supply belonging to x=(xl'...,xn). It
follows from the definition of an equilibrium point and from

lemma 7 that (22) must hold for i=l,...,n. In view of lemma 8

this means that we must have xi= 0i(X). Hence we also must
have

(29) X = 0 (X)

Moreover, it is clear that any solution X of (29) together with

equations (21) generates an equilibrium point (xl'...,xn).
A convenient graphical representation of the solutions of (29)

can be given with the help of a diagram which shows o(X) and
o

the 45 -line. This diagram will be called the fitting-in diagram.

An example is given in figure 3. In the fitting-in diagram the

solutions of (29) are represented by the intersections of o(X)

with the 450-line. Since o(X) is a continuous non-increasing

function with 0(0) ~O and 0(1) = 0, it is clear that o(X) has
o

exactly one intersection with the 45 -line and ry has exactly
one equilibrium point, whose total supply X satisfies the

inequality

(30) 0 ~ X < 1

The resultswhich just have been derived, are summarized by the

following theorem.

THEOREM 11. Let ry be a supply decision subgame. Then ry has a
unique equilibrium point. This equilibrium point is an equilibrium

p~lnt (Xl'...,Xn) in pure strategies. The total supply X

belonging to (xl'...,xn) is the unique solution of the equation
X='1(X) and satisfies the inequality 0 ~ X < 1. Moreover we have

xi = '1i (X) for i = l,..~n. (Here 0 and 0i are defined as in

(28) and QO) resp. ).
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REMARK. Since ry has only one equilibrium point, the solution

L(ry) is the equilibrium set with this equilibrium point as its

single element. Obviously ry is a distinguished simultan~ity
game.

4.3 PROPERTIES OF THE SUPPLY DECISION EQUILIBRIUM.

In this section the determination of the solution of the cartel

bargaining subgames rz will be prepared by the derivation of
some results on the equilibrium points of the supply decision

subgames. We first look at the special case of a supply decision

subgame ry with a binding quota vector (Yl'...'Yn) with Yi = m
for i = l,...,n. We call this case the unrestricted case.

The unrestricted case is an important limiting case. If no cartel

agreements were possible then the equilibrium point of the

unrestricted case would be the non-cooperative solution of the

model.

LEMMA 9. Let ry be a supply decision subgame with a binding

quota vector y = (Yl'...'Yn) with Yi = m. Then the components of

the equilibrium point (xl'...,xn) for ry are given by

(31) x = 1 fi n+l or i = l,...,n

and player ils profit Pi at (xl'...,xn) is givBn by

(32)
1P =--

i (n+l)2 for i = l,...,n.
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PROOF. Because of (28), (29) and (30) we have

(33 )

(34 )

(31)

by (7 )

x = n(l-X)
X = .2!-

n+l
is a consequence of (34) and (20).
and (8) .

Equation (32) follows

LEMMA 10. Let ry be a supply decision subgarneof a given cartel

bargaining subgarnerz. Let (Xl'...,Xn) be the equilibriurnpoint

of ry and let k be the nurnberof non-participators (the nurnber
of players in N-Z). Define

PROOF. Since no quotas are fixed for non-participators we have

(38) Yi = - for i E N-z

(35) Xz = LXi
iEZ

Then the following is true:

(36 ) xi = k ; 1 (l-Xz)
for i E N-Z

(37) Xz
< --U=.k- . n+l

This together with (20) and (30) yields

(39 ) xi
= 1 - X for i E N-Z

Define

(40) XN-Z
\'

=L,xi
iEN-Z
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(39) yield~

(41) XN-Z =
(42) ~-Z =

k(l-X -x )Z N-Z
k

k+l (l-XZ)

(39) shows that the equilibrium supply xi is the same for
all i e N-Z. This together with (42) proves (36). Because

of (42) we have

(43) 1 x = 1 - Xz - XN-Z

X = k~l (l-Xz)
(44) 1

The inequality

(45) Mi< 1 - X for i E Z

is a consequence of (20)and (30). This together with (44) yields

(46)

(46)

kX <.~ (1-X )Z- .L+'" Z

is equivalent to (37).

REMARK. Note that because of (31) in the unrestricted case X
Z

is equa1 to the upper bound on the right side of (37).

LEMMA 11. Under the assumptions of lemma 10 let Pi be p1ayer ils

gross profit at the equilibrium point (xl'...,xn) of ry.

Define

(47)

Then the following is true:

(48) Pz = k~1 Xz(l-Xz)~~
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PROOF. Because of (30) we can write

(49 ) P = X (I-X)Z Z

This together with (44) yields

1
(50) Pz = k+l XZ(l-XZ)

The right side of (50) assumes its maximum at Xz=1/2.
This proves (48).

4.4 THE SOLUTIONS OF THE TRUNCATED CARTEL BARGAINING SUBGAMES.

Let rZ be a cartel bargaining subgame. The indecomposable

L-truncation rZ=T(r,L) of rZ is called the truncated cartel
bargaining subgame for z. In this section it will be shown

that rz has a distinguished equilibriurnset.

Consider an equilibrium point Sz of a truncated cartel bargaining

subgame fz, such that the equilibrium payoffs at Sz are
the gross profits (32) obtained in the unrestricted case of a

supply deci,sionsubgame. Formally an equilibrium point of this

kind may very weIl involve cartel agreements as we shall see

in lemma 12, but such cartel agreements have no economic

significanceand thereforewill be called inessential.No cartel

bargaining is necessary in order to achieve the payoffs (32).

The solution of fz depends on the number k of players in N-Z.
As we shall see, for k ~(n-l)/2 the equilibriurnpayoffs connected

to the equilibrium points in L(fz) are the gross profits (32).
In this case only inessential cartel agreements result from the

equilibriurnpoints in L(fZ). For k «n-l)/2 the situation is

different. Here the equilibriurnpayoffs at L(rZ) are greater
than those of the unrestricted case of a supply decision subgame.

Generally the solution L(fz) of a truncated cartel bargaining
subgame contains many equilibriurnpoints. There are two reasons

for this: different proposal systems may lead to the sarnequota

vector and different quota vectors may lead to the same

equilibriurnpayoffs in the supply decision subgame.
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For our purposes, it is not necessary to describe L(fz) in
detail. It is sufficient to exhibit one equilibrium point

in L(rz) and to describe L(fz) as that equilibrium set, which
contains this equilibrium point.

LEMMA 12. Let Fz be a truncated cartel bargaining subgame.
Then the following system of proposals Y is an equilibrium

point in pure strategies for Fz:

(51) Y = (Yi)itZ

Yi = (Yij)jtZ

where for every itZ

with vij
= 00

The binding quota vector (Yl'...'Yn) genera ted by this

equilibrium point has the prop~rty Yi=- for i=l,...,n.

PROOF. Formally an agreement results from Y, but this agreement

is an inessential one, since the binding quota vector has the

property Yi= 00 for i = l,...,n.
We must show that no deviation of a player jtZ can improve his

gross profit. The only deviation which can change the binding

quota vec~or is a deviation to a proposal for the one-person

coalition {j} containing j as its only element. Let y! be theJ
quota which player i proposeS for himself. The new binding quota

vector has Yj as its j-th component and Yi= 00for all i + j.

The proposal system (51) has the result that all players get the

gross profit from (32). It is clear from the proof of lemma 4

that the new bindinq quota cannot lead to a different result

unless we have

(52) xj = m~n[l-x,YjJ = yj
Because of

(53) xi = l-X for i + j

we must have

(114)
X = Yj + (n:l) (l-X)

(55) n-l !1X = - +n n
l-y!

(56) I-X = -.::..J.n
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This together with

1-v'

Yj~ ~
(52) yie1ds

(57)

(58) Yj~ n;l

Because of (7),(8) and (56) p1ayer j's gross profit p! afterJ
the deviation can be written as fo11ows:

In the interval 0 ~ yj ~ 1/ (n+1) the profit Pj is an increasing
function of y!. Thereforewe must haveJ

(60) Pj = ~ . n~l (l-n;l) = (n~l)2

This shows that the deviation to Yi does not improve player j's
gross profit above tts equilibrium va1ue from (32). Consequent1y

(51) is an equi1ibrium point of rz.

THEOREM 12. Let rz be a truncated carte1 bargaining subgame
where the number k of non-participators satisfies the inequa1ity

(61)
n-l

k ?.-r

Then rz is a distinguished simu1taneity game and the

distinguished equi1ibrium set Sz contains the pure strategy

equi1ibrium point (51) from lemma 12. The equi1ibrium payoffs at

Sz are the gross profits (32) from lemma 9.

PROOF. The symmetries of rZ correspond to those permutations
of N which leave Z and N-Z unchanged. Since at the equi1ibrium

point (51) the players in Z have equa1 payoffs and the p1ayers

in N-Z have equal payoffs, the equi1ibrium set Sz of this
equilibrium point is symmetry preserving.
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We have to show that rZ is a distinguished simu1taneity game

and that Sz is the distinguished equi1ibrium set of rz. Since
the p1ayers in N-Z are inessentia1 and since every symmetry

preserving equi1ibrium set must give the same payoff to all

p1ayers in Z, it is sufficient to show, that the joint gross

profit Pz of the p1ayers in Z at (51) cannot be surpassed by
the joint gross profit of the p1ayers in Z at any other

equi1ibri,um point of rz.

For any supp1y decision subgame of rz the joint equi1ibrium

supp1y Xz of the p1ayers in Z is bounded by the right side of
(37). If the lower bound for k from (61) is inserted on the

right side of (37) we get

1
(62) XZ~2

It can be seen from (50),that in the interval 0 ~ XZ~ 1/2

the joint gross profit Pz of the p1ayers in Z is a monotonica11y

increasing function of XZ. Therefore Pz cannot be greater than

the profit at the upper bound of Xz in (37) which is assumed
at the supp1ies specified in (31). This shows that the

equi1ibrium set Sz is the distinguished equi1ibrium point of
rand that the equi1ibrium payoffs at S are the gross profits
z -1 z

(32). Obvious1y rz is a distinguishedsimu1taneitygame.

LEMMA 13. Let rz be a truncated cartel bargaining subgame,
where the number k of non-participators satisfies the inequa1ity

(63) k ~ n;l

Then the fo11owing system of proposals Y is an equi1ibrium

point in pure strategies for rz.

(64) Y = (Yi)iEZ where for every i E Z

Yi = (Yij)iEZ with Yij = ~/:_~\ for all j E Z
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The equilibrium payoffs at this equilibrium point are the

following gross profits:

PROOF. Let r be the supply decision subgame resulting fromy
(64) and let (Xl'...,Xn) with the total supply X be the

equilibriumpoint of ry. Obviouslythe binding quota vector
(Yl'...'y) of r is as folIows:n y

1
2 (n-k)(67) for i E Z

(68) GD for i E N-Z

Because of (28), (29) and (30) the total supply X satisfiesthe
condition

(69) X = k(l-X) + (n-k) ~in [1-X'2{~_k\J

In the following it will be shown that we must have

(70) min [I-X,
1 ,

2 (n-k)J =
1

2 (h-k)

If (70) were wrong, (69) would assume the form

(71) X = n (I-X)

This yields

(72) X = n
n+l

Consequently (70) cannot be wrong unless the follwwing is true

(73) 1 < 1
n+l 2 (n-k)

( 65) Pi =
1 for i E Z

4 (n-kX(k+l)

(66) P - 1 for i E N-Zi -
4(k+l)2
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It is an immediate consequence of (63) that we must have

(74)
n-1

2(n-k) ~ 2 (n--r) = n + 1

This contradicts (73). Therefore (70)

we have xi = ~i (X). With the he1p of

x - 1i - 2(n-k)

is correct. By theorem 11

(20) this yie1ds

(75) for i E Z

The equi1ibrium supplies for i E N-Z, can be computed from

(75) and (36). We receive

(76)
1

21k+l)
for i E N-Z

The profit margin 9 at (xl'...,xn) is given by

(77) 9 =
1

2(k+l)

It follows that the gross profits at (Xl'...,Xn) are the gross

profits Pi in (65) and (66).

It remains to be shown that the proposal system (64) is an

equilibriumpointof r . It is not necessaryto lookat thez
inessentialplayersin N-Z. Considera playerj E Z. Player j
has two kinds of deviations. Some deviations have the result

that the new binding quota vector gives a quota of ~ to every

player including player j. As we can see from lemma 9, if this

happens player jls payoff after the deviation is equal to l/(n+l)2.

Later we shall show that (63) implies

(78)
1

4 (n-k) (k+l)

1
(n+l'f'

This inequality togehher with (65) has the consequence that a

deviation of the kind considered above is unprofitable. The only

other possibility of a deviation of a player j E Z is a deviation

to a proposal for the one-person coalition {j} which would result

in some binding quota yj for player j and binding quotas Yi=-
for all other players i.
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From the fact that the proposal system (51) from lemma (12)

is an equilibrium point where according to lemma 9 every player
2 '

receives l/(n+l) as his equilibrium payoff, we can conclude

that such deviations are not more profitable than those which

yield binding quota vectors Yi = m for all players i.

In order to prove that (63) implies (78), we observe that the

partial derivative of 4(n-k) (k+l) with respect to k is

4 (n-1-2k) . Obviously this is positive, if k satisfies

o ~ k < (n-l) /2. Therefore in the interval 0 ~ k ~ (n-l)/2 the

gross profit Pi in (65) is a monotonically decreasinq function of
2

k. At k=(n-l)/2 the gross profit Pi assumes the value l/(n+l) .
This shows that (78) holds for k < (n-l)/2.

REMARK. In the conrse of the proof of lemma 13, it has been

shown that for k ~ (n-l)!2 the gross profit (65) of a participator
2

is bounded by (78). The lower bound l/(n+l) is the supply

decision equilibrium payoff of the unrestricted case. If k is

equal to (n-l)/2 then (64) is an equilibrium point in the

equilibrium set S from theorem 12. In this case the cartelz
agreement resulting from (64) is inessential. Note that both for

i E Z, and i E N-Z the equilibriumpayoffs become smaller if the

number k of non-participators is increased within the interval

o < k < (n-l)/2.

-
THEOREM 13. Let r be a truncated cartel bargaining subgame,z
where the number k of non-participators satisfies the inequality

n-l
(79) k < ~

Then r is a distinguishedsimultaneitygame and the distinguishedz _ _
equilibrium set Sz of rz contains the pure strategy equilibrium

point (64). The"equilibrium payoffs at Sz are the gross profits
.(65)' and' (66) from lemma 13.
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PROOF. Let Sz be the equilibrium set
(64). In the same way as in the proof

that Sz is symmewry preserving.

of hhe equilibrium point

of theorem l~ we can see

.. .

In order to show that rz is a distinguished simulteneity game

and Sz is the distinguished equilibrium set of rz it is
sufficient to show that the joint equilibrium payoff of the

players in Z cannot be surpassed by the joint gross profit of

the players in Z at any other equilibrium point of TZ. It can
be seen from (65) that the joint equilibrium payoff of the

pl,yers in'Z is equal to the upper bound in (48). This upper

bound cannot be surpassed by the joint equilibrium gross profit

Pz of the players in Z in any supply decision subgame of rZ.
This completes the proof.

REMARK. Generally Sz contains many equilibrium points. This
can be seen easily for the trivial case n=l, and k=O where any

binding quota Yl~1/2 is compatible with the monopolistls

optimal supply xl = 1/2. For n~l, it is also possible that Sz
contains more than one equilibrium point. In order to see this,

one may look at the case n=4, k=O. There one can find

equilibrium points which achieve the binding quota vector of

(64) by two 2-person agreements. Since this is an unimportant

detail, no proof is given here.

4.5 THE PARTICIPATION DECISION BRICK. Let f be the

indecomposable L-truncation f = T1r,L) of the extensive form

of the model.rwill be called the participation decision brick.

~n f each player i has two strategies: he may choose zi = 0

or zi = 1. The payoff function of the participation decision
brick is described in theorem 14. Up to n=lO, the numerical

values of the payoffs are tabulated in table 1.

THEOREM 14. Let Z = (Zl'...'Zn) be a pure strategy combination
for the participation decision brick rand let Z be the set of

all players i with zi = 1 (the set of all participators). Let

k be the number of players in N-Z. Then player ils payoff Hi(Z)
in f is as foliows:
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Table 1: Payoffs for the participation decision brick up to n = 10

Number Number Payoff Payoff
of of of a of a

players non-partici- participator non-partici-
pators pator

n = 1 k = 0 .25000 -

k = 1 - .25000

n = 2 k = 0 .12500 -

k > 1 .01111 .11111

n = 3 k = 0 .08333 -

k 1 .06250 .06250

n = 4 k = 0 .06250 -

k = 1 .04167 .06250
k 2 .04000 .04000

n = 5 k = 0 .05000 -

k = 1 .03125 .06250
k 2 .02778 .02778

n = 6 k = 0 .04167 -

k ::: 1 .02500 .06250
k = 2 .02083 .02778
k 3 .02041 .02041

n = 7 k = 0 .03571 -

k = 1 .02083 .06250
k = 2 .01667 .02778
k 3 .01562 .01562

n = 8 k = 0 .03125 -
k = 1 .01786 .06250
k = 2 .01389 .02778
k = 3 .01250 .01562
k 4 .01235 .01235

n = 9 k = 0 .02778 -

k = 1 .01562 .06250
k = 2 .01190 .02778
k = 3 .01042 .01562
k 4 .01000 .01000

n = 10 k = 0 .02500 -

k = 1 .01389 .06250
k = 2 .01042 .02778
k = 3 .00893 .01562
k = 4 .00833 .01000
k .?-..5 .00826 .00826
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r---!
, (n+1) 2

for i - 1 if n-1- , ..., n, k~-
2

(80) for i E Z, if k
n-1<-

2

for i E N-Z, if k < n-1
2

PROOF. (80) is an immediate consequence of theorems 12 and 13.

4.6 PROPERTIES OF THE PAYOFF OF THE PARTICIPATION DECISION BRICK.

In t~is section several useful properties of the payoff function Hi
of fshall be derived.

LEMMA 14. Let Z = (zl,...,zn) be a p~e strategy combination
for the participation decision brick rand let i be one of the

players. Let m be the number of non-participators in N-[i'~.
Define

r 1

(82) I 4 en-m) (m+ for m < n-1Ben,m) = I 1) 2')

,

; 1
(n+l) 2 for m? n-l2

1

(81 )

4 (m+2) 2"
for m

n-3

A(n,m)=

I

<-

I

2

1

I (n+l)2
for m n-3

L

> -
2
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Then we have

(84)

for Zi= 0

zi= 1

(83)

for

PROOF.

In the

z - 1i -

immediate consequence of theorem 14.

have k = m+l and in the case of

LEMMA 15. Let m and n be integers with 0 ~ m ~ n. Define

(85) D(n,m) = A(n,m) - B(n,m)

We have

PROOF. (86) is an immediate consequence of lemma 14. The

equation D (4 ,0) = 0 fo1lows by (86) . Now asswne n ~ 5 and

m ~ (n-4)/2. Under this condition (88) is equivalent to

(91) .(n-m) (m+l) - (m+2)2. > o.

Hi(Z) = A (n,m)

Hi(Z) = B(n,m)

The lemma i9 an

case of zi= 0 we
we have k = m.

r

1 1 n-4
4 (m+2) 2

-
41n-mflm+l) tor m- 2

(86) D(n,m)=

1

1 1 n-3 .< m < n-2
(n+l)2

-
4 (n-m) (m+lr

for
2 - --r

0 for n-l
L

m.).-
- 2

and

(8?) D(4,0) = 0

(88) D (n ,m) ) 0 for n S
and m.:5n;4

(89) D (n ,m) < 0 for n-3 n-2
-r m

(90) D(n,m) = 0 for n-1m >-- 2
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Because of n~5 this inequality holds for m = o. Since
m~ (n-4)/2 implies n~2m + 4 we receive an upper bound for

the left side of (91) if we substitute m + 4 for n-m. Thus

for m >0 inequality (91) follows by (92).

(92) (tn + 4)(m+l)
2

(rn+2) = rn > 0

In order to show that (89) is true, we have to examine whether

2(93) 4 (n-m) (m+l) - (n+l) < 0

holds for m=(n-3)/2 and ~or m=(n-2)/2.

expressionon the left side of (93) is

m=(n-2)/2 we receive -1. Equation (90)

For m=(n-3)/2 the

equal to -4 and for

is implied by (86).

LEMMJI.16. Let m and n be integer s wi th 0 ~ m.5.n -1. Them we have

(97) B(n,m+l) - B(n,m) ~ 0
n-l

for m ~~

PROOF. (95) and (97) are an immediate consequence of (81) and

(82). Obviously (94) holds for m «n~5)/2. Since both for
2

m=(n-5)/2 and m=(n-4)/2 the expression 1/4(m+2) is greater

than 1/(n+l)2, inequality (94) holds for these values of m too.

In order to show, that (96) is true we observe that the

derivation of(n-m)(m+l)with respect to m is equal to n-l-2m.
For m «n-l)/2 this is positive. Therefore (96) holds for

m «n-3)/2. For m=(n-3)/2 we have

2
(98) 4 (n-m) (m+l) = (n+3) (n-l) < (n+l)

and for m=(n-2)/2 we receive
2

(99) 4 (n-m) (m+l) = (n+2) n < (n+l)

Therefore (96) holds for these values of m too.

(94) A (n ,m+l) - A(n,m) < 0 for rn n-3<-
2

(95) A(n,m+l) = 0
n-3

- A(n,rn) for m

(96) B(n,m+l) - B(n,m) < 0
n-l

for m <
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LE~mA 17. The payoff function H of the participation
decision brick r has the followingproperty:

- 1
Hi(Z) ~

,....-I

and for every pure strategy combination Z = (zl,...,zn)

(100) f or i = 1 , . . . , n

PROOF. Lemma 16 shows that A(n,m) and B(n,m) are non-increasing
2

functions of m. For m=n these functions are equal to l/(n+l) .

The assertion follows by lemma 14.

4.7 PURE STRATEGY EQUILIBRIUM POINTS OF THE PARTICIPATION

DECISION BRICK. One does not have to look at the question which

are the pure strategy equilibriumpoints of r if one wants to

find the solution of r, but with respect to the interpretation
of the solution it is of some interest to know the answer to

this question. The pure strategy equilibrium points can be

classified according to the number k of non-participators. In

the case k=O we speak of a joint profit maximization equilibrium

point. Here the joint gross profit of all players is the

monopoly gross profi~ 1/4. If k is greater than 0 but smaller

than (n-l)/2, then we speak of a partial cartel equilibrium

point. Here the behavior of the players results in a cartel

bargaining subgame, whose solution requires an essential cartel

agreement, which is partial, since it does not include the

non-participators. In the case k~ (n-l)/2 we speak of an

unrestricted Cournot equilibrium point. Here every player
2

receives the payoff l/(n+l) which is the gross profit connected

to the Cournot solution of the model without any quota restrie-

tions.

As we shall see, for small n, up to n=4 joint profit

equilibriumpoints are availablebut not for n ~ 4. This is the

reason why 4 is small, but 5 is not: Partial cartel equilibria

can be found for every n with n~4. The number of non-partiei-

pators must be either equal to (n-3)/2 or to (n-2)/2.This means

that for every n~4 there is only one possibility for the number
n

k of non-?articipators. There are altogether (k) partial cartel
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equi1ibrium points, where

of non~participators. All

rnapped into each other by

k is the unique1y

these equi1ibrium

the symrnetriesof

deterrnined nurnber

points can be

the garne.

THEOREM 15. Let Z=(Zl'...'Zn) be a pure strategy combination
for the participation decision brick r. Then Z is an equi1ibriurn

point of f if and on1y if n and the nurnber non-participators k

connected ~o Z satisfy one of the fo11owing three conditions

(101),(102) and (103).

(101)

(102)

(103)

k = 0 and n ~ 4

o < n-3-<
2 -

k > n+l--y-

k <n-2-2

PR09F. In the first part of the proof we show that in all

three cases Z is an equi1ibrium point. For every p1ayer i

let rnibe the nurnberof non-participators in N~{i}. It fo11ows
by lemma 14 that in the case that p1ayer i is a participator,

he has no reason to deviate,if we have D(n,mi)~ o. On the
other hand, if he is a non-participator, he has no reason

to deviate, if we have D(n,mi}~ O.

If (101) is trne, then mi=O ho1ds for i=l,...,n. Equation (90)
yields D(l,O)=O, inequa1ity (89) yie1ds D(2,O} <0 and D(3,0) <0.

Fina11y (87) covers the case n=4.

Now assurne that (102) is satisfied. If ! is a participator,

then we have rni = k. Inequality (89) shows that a participator

has no reason to deviate. If i is a non-participator, then

mi=k-1. Because of (102) we rnust have n~ 4. For n=4 condition

(102) yie1ds rni=O. Equation (87) shows that p1ayer i has no
reason to deviate. The same is true for n ~5 in view of (88)

and (102).
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In the case of (103) we have mi ~ (n-1)/2 for i=l,...,n.
This means that in view of (90) nobody has a reason to deviate.

In order to prove that r has no other pure strategy equi1ibrium

points than those covered by (101) ,(102) and (103), we observe

that kmust satisfy one of the fo11owing two conditions (104)

and (105), if the former three conditions are not satisfied

by k:

Consider the case (104) and assurne that p1ayer i is a

participator. We have mi = k and (88) shows that p1ayer i has
a reason to deviate. Now consider case (105) and assume that

p1ayer i is a non-participator. We have mi = k-l and (89) shows
that player i has a reason to deviate.

REMARK. Note that generally (103) a1lows us to find very many

unrestricted Cournot equilibrium points. All these equilibrium

points are very weak in the sense that no player can loose

anything by a deviation as we can see from lemma 17. For n = 2

and n = 3 the joint profit maximization equilibrium point is

strong in the sense that a deviation of a player decreases his

payoff. This is not true for n = 1 and n = 4, for n ~5 the

partial cartel equilibrium points are strong in the same sense.

Here n = 4 is an exception. For n~ 5 the strongness of the

partial cartel equilibrium points is due to (88) and (89);

inequality (88) does not include n = 4.

4.8 MIXED STRATEGY E UILIBRIUM POINTS OF THE PARTICIPATION

DECISION BRICK. We shall not try to get a complete overview

over the mixed strategyequilibriumpoints of f, but we must

look at some of their properties in order to derive the solution

of r.

(104)
n-3 and n> 5k < '---2

(105)
n-1 n- <k "22 -
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A mixed strategy combination of the participation decis~on

brick r can be representedby a vector of probabilities

(106)

with

(107) o ~w i ~ 1 for i = 1.,... ,n

where wi is the probability that player
In the following this representation of

mixed stnategy combinations will always

Hn(W) ) is the payoff vector associated

i selects zi = 1.

mixed strategies and

be used. H(W)=(H1(W) ,...,
with w.

LEMMA 18. Let w = (w1,'...,wn) be a mixed stzrategy eauilibrium

point for r with

PROOF. . Let Aj be the payoff of player j which he receives
if he selects z.=O, while all the other players i use theirJ

mixed strategies wi in w. Similarly let Bj be the payoff of

player j, if he uses zj=l while the others use Wie Let Aj'
and B'Ibe defined in the same way for player jl. Let W beJ m
the probability that exactly m of the players in N-{j}-{i'}become

non-participators, if these players use their mixed strategies

Wie We have: n-2 n-2

~ t'lmA(n,m) + (l-w4t) >= WmA(n,m+l)m=O J m=O

W fA(n,m+l) + w., (A(n,m)-A(n,m+l»)'rn_ J ..J

Similar

(112)

equations
n-2

B
j= ~ Wmm=O

hold for B. ,A., and B
j
':

J J

fB (n ,m+l) + Wj,(B (n ,m) -B (n,m+l»)]L.

(108 ) H. (w) > -L___
J (n+l)2

for some player j. Then wj > W j
implies

(109) Hj(W) < H., (w)J

(110) A. = w'lJ J

(111) A. = ff
J m=o
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(113)
n-2

A. = ~
J' ~

m=O

_ 1

Wm L.A(n,m+1) + Wj(A(n,m) - A(n,m+1V I

(114)
n-2

Bj' =L ~m=O Wm[B(n,m+1) + wj(A(n,m) - B(n,m+1~j

Since W is an equi1ibrium point, the fo11owing must be true:

(117)

and

(118) H ,(w) = B.
J J

As we sha11 see in ca se (117) there must be at least one m with

Wm >0 such that A(n,m) - A(n,m+1) is negative and in case (118)
there must be at least one m with W >0 such that B(n,m)m
B(n,m+1) is negative. Cobsider the case (117). Let m' be the

sma11est number with Wm, >0. Suppose that the difference
A(n,m) - A(n,m+1) vanishes for m = m'. Then this difference

also vanishes for all m~m'. This fo11ows by (94) and (95).

Moreover because A(n,m) is equa1 to 1/(n+1)2, equation (111)
2

yie1ds Aj = 1/(n+1) . Since this is exc1uded by (108), the
difference A(n,m) - A(n,m+1) is negative for m = m'. In the

same way it can be shown that in the case (118) the difference

B(n,m) - B(n,m+1) must be negative for m = m'.

In view of this resu1t a comparison of (111) and (113) shows

that because of w. > W
j

, the fo11owingis true for A.~ B,:J J J

(115) H, (w)
;- l= max

Aj ,BjJJ

(116) H'I(W) = max rA ." B ,,1J ' J J:-

Let us distinguish the two (over1apping) cases



-67-

(119) = A. < A. I < H..(w)
J J - J

Sirni1ar1 y (112) and (114) Yie1d in the ease of B.> A.:
J- J

(120)

LEMMA 19. Let Z=(Zl'...'Zn) be a pure strategy equi1ibriurn
point of the partieipation deeision briek r where the number

k of non-partieipatorssatisfies0 < k < n(i. e. Z is a partial

earte1 equ11ibriurnpoint). Then for z. = 1 and Z'. = 0 we haveJ J

( 121)
- 1

Hj,(Z) > Hj(Z) > "-;;1\2

PROOF. k sat1sf1es (102). Therefore (96) shows that B(n,k-1)
2

1s greater than 1/(n+1) . The payoff Hj(Z) 1s equa1 to B(n,k-1).
It fo11ows by the app1ieation of (120) to the special ease of

z, that (121) is true.

LEMMA 20. Let S be a symmetry preserving equi1ibriurnset of
1

the partieipation deeision br1ekf with

- - 1
(122) Hi (S) > 2 for i = 1,...,n(n+1)

Let w = (w1' ,wn) be an equ11ibrium point in S. Then we have

(123) w.
~ for i = 2,...,n

PROOF. r is eornp1ete1ysymmetrie. Therefore the payoff at S

is the same for every p1aver i. If (123) were not true, then in

view of (122) lemma 18 eou1d be app1ied to w; this wou1d lead

to the eone1usion that the payoffs of two p1ayers are not equa1
at w.

4.9 THE SOLUTION OF THE PARTICIPATION DECISION BRICK. With the

he1p of the resu1ts of the last seetion, it is now possib1e

to find the solution of r. First a theoremwill show that ~or
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n > 1 the game r has exact1y one equi1ibrium point with the

properties (122) and (123). This equi1ibrium point turns out

to be the on1y element in the distinguished equi1ibrium set

of r.

THEOREM 16. For n > 1 the participation decision brick r

has exact1y one equi1ibrium point w=(w1'...,wn) with the
properties (122) and (123). Moreover the fo11owing is true

for this equi1ibrium point:

(124) w1 = 1 for 1 < n < 4

(125) o < w1< 1 for n > 4

PROOF. The possibi1ity w1=O is exc1uded by (122), since

w1=O leads to the payoff 1/(n+1)2for all p1ayers. Henceforth

we sha11 assume w1>O. The pure strategy zi=O is a best rep1y
of p1ayer i to w if and on1y if the fo11owing expression D

is non-negative.
n-1
r-' n-1 n-m m

(126) D = LI (m )w1 (l-T"l)D(n,m)
m=O

It is a consequence of the definition of D(n,m) that D is

nothing else than p1ayer i's payoff for zi=O minus p1ayer i's

payoff for zi=l, if the other p1ayers use their strategies

wi in w. The pure strategy zi=l is a best rep1y to w, if and
on1y if D is non-positive. Let rnbe that number which satisfies

the condition

(127)
n-3
-,:- ~ In < n-2, --r

Obvious1y for every n there is exact1y one such number m.

Lemma 15 shows that D(n,m) vanishes for m>m. Therefore we

have

(128)
m

D = ~-,
,

m=O

n-1 n-m m
( m )w1 (1-w1) D(n,m)
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For n=2 and n=3 we have ffi=O.Inequa1ity (89) shows that

D(2,0) and D(3,0) are negative. Therefore in these two cases

D is negative for every wi with 0 < w1 < 1. The same is also
true for n=4 where m assurnes the va1ue 1; here we have D(4,O) =0

by (87) and D(4,1) < 0 by (89). Por any equi1ibrium point w

with 0 < w1 < 1 the expressionD must vanish since both zi=O

and zi=l are best rep1ies to w. Since D is negative for every

w1 with 0 < w1 < 1 in the cases n=2, n=3 and n=4, this shows,
that in these cases the joint profit maximization equilibrium

point with w1=1 is the only equilibrium point with the
properties (122) and (123).

In the fol1owing we shall assume n>4. Theorem 15 shows, that

there is no joint profit maximization equi1ibrium point for n>4.

Thereforewe must have 0 < w1 < 1. Define

(129)

n-ffi In

If one divides D by w1 (1-w1), one receives

D' = ~ (n-l)hm-nD(n1m) = 0
m=O m

(130)

Obvious1y for 0 < w1 < 1 the expression D' vanishes, if and
on1y if 0 vanishes. The condition 0=0 is not on1y necessary

but also sufficient for a strategy combination w with (122),

(123) and (125) beinq an equi1ibrium point. This shows that

we in order to find these equilibrium points we have to look for

the solutions of the equation:

m 1
-

\ n_"1 n- m-m
/ ( )h 0 (n,m)=0
"m=Ö m

(131)
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It remains to be shown that for n>4 equation (131) has

exact1y one positive solution h. From this h the unique1y

determined va1ue of w1 can be computed by

(132)
h

wl= l+h

It can be seen from (88) ,(89) and (127) that the fol1owing

is true

(133) D (n,m) > 0 for m < ffi and n > 4

(134) D (n,m) < 0 for n > 4

In order to make use of this fact we rewrite (131) as

follows

(135)

For n>4 the 1eft side of (135) is an increasing function of h

which goes to infinity as h goes to infinity. The right side

of (135) is a positive constant. This means that (135) has

exact1y one positive solution h. The proof of the theorem

has shown that the fo11owing corre1ary is true:

CORRELARY. For n>4 the probability w1 belonging to the

unique1y determined equilibrium point w= (w1,...""n) of r with
the properties (122) and (123) can be computed by (132) where

h is the unique positive solution of (135) and m is that integer

which satiafies (127).

THEOREM 17. The participation decision brick r is a distinguished

simultaneity game. For n>l the distinguished equi1ibrium set S

of f contains exact1y one equi1ibrium point. For n=1,...,4 the

distinguished equi1ibrium set S contains the joint profit

maximization equi1ibrium point where every p1ayer a1ways chooses

to participate. For n~5 the equi1ibrium point s € S is a

mixed strategy equi1ibrium point where each p1ayer chooses to
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participate with the same probability wl with 0 < wl < 1.

This probability can be computed by (132), where h is the

unique positive solution of (135).

PROOF. Obviously in the trivial case n=l the joint profit

maximization equilibrium point is in S. Apart from this the

theorem is an immediate consequence of lemma 20, theorem 16

and the correlary of theorem 16.

4.10 THE SOLUTION OF THE MODEL. In section 2.10 we have seen

that aperfeet equilibrium set is fully determined by the

equilibrium sets induced on the brieks of the game. In the

preeeding seetions the L-bricks of r have been eonstrueted

and their solutions have been determined (theorems 11,12,13

and 17). Sinee all the L-brieks are distinguished simultaneity

games, the qame r is in the region of the distinguished solution
function. The solution of r ean be charaeterized as folIows:

THEOREM 18. The distinguished solution of r is the set S

of all strategy combinations s for r with the property that

the strategy eombinations induced by s on the supply deeision

subgames r on the truncatedcartel bargaininqsubgamesTZy, -

and on the partieipation decision brick r are in the

distinguished equilibrium sets of these games.

PROOF. Obviously S is a brick producing set. S satisfies the

condl t I.ons 1) and 2) in theorem3. ThereforeS is a perfect
equilibrium set. In view of the subgame consistency and the

truneation eonsisteney of the distinguished solution function,

it is clear that S is the solution of r.

4.11 THE PARTICIPATION PROBABILITY AS A FUNCTION OF THE

NUMBER OF PLAYERS. For n > 1 the solutionpreseribesa uniquely

determined probability of choosing zi=l. We call this probability

wl the partieipation probability. Aceording to theorem 16
for n=2,3,4 the participation probability is equal to 1.
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por n > 4 the participationprobabilitywl can be computed
as described in the corellary of theorem 16. In the following

the participation probabllity will be denoted by w1(n) 1n order
to indicate its dependence on the number of players. Similarly

the symbol h(n) will be used for the uniquely determined

positive solution of (135). Table 2 in subsection ~l

shows the values of w1(n) for n=2,...,15. It is clear from

this table that wl(n) is not monotonically decreasing. Neverthe-

less within the ranqe of the table w1(n) has a tendency to

decrease, since for n=4,...,13 the difference w1(n+2)-w1(n)

is always negative, even though wl(n) is greater than w1(n-l)
for odd values of n with n > 5. In the followingwe shall

prove that wl(n) is always below a certain upper bound which
goes to zero as n goes to infinity.

THEOREf-i 19.

positive root

participation

Define

Por n=5,6,...

of equation

probability

let h(n) be the uniquely

(135) and letwl(n) be the

wl computed from h=h(n) by

determined

(132) .

(n-rn) D (n ,m)

roD (n , m -1 )

where rn is the integer determined by (127). We have

(136) ben) = for n=5,6,7,...

(137) b(n)= I

(n+5) (n-l)

(n-4) (n+1) 2

1 (n+4)n
\.2 (n-4) (n+ 1) 2

for n=5,7 ,9, . . .

for n=6,8,10,...

Por every n=5,6,7,... the following ineQualities hold:

(138) h(n) ben)

(139) wl (n)
ben)
l+b (n)

(140) b(n+2) < b (n)
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Moreover we have

for n=5,6,... . This is a consequence of (133) and (135).

Inequa1ity (142) together with (136) shows that (138) ho1ds

for n=5,6,... . In order to prove (137), we eva1uate the

expression on the right side of (136) with the he1p of (86).

n-m 1
(143) (n~)D(n,m) = (n+1)2 - 4(m+l)

- - m _ 1
(144) roD(n,m-1) = 4 (m+1) 2 4 (-n-m+1)

For n=5,7,9,... the integer in is equa1 to (n-3)/2. In this

ca se equations (143) and (144) yie1d

(149)

1
2(n+1)

1
2 (n+5)

4
2 (n+1)'l, (n-l)

4n-16

mD(n,m-1) = 2(n-i)2(n+S)

(n+5) (n-1) for n=5, 7,. ..
b (n) = (n-4) (n+1) 2

(n-m)D(n,m) =

(145) (n-m)D(n,m) = _ .n+3

2 (T\+1) 2
n-3

2(n-1)2
(146) mD(n ,rn-I) =

(147)

(148)

Now assume n=6,8,10,... . Here in is equa1 to (n-2)/2 and (143)
and (1~4) can be eva1uated as fo11ows

( 141) 1im w1(n) = 1im h(n) = 1im ben) = 0
n....ao n....... n....ao

PROOF. h(n) satisfies the inequa1ity

(142)
n-1 n-l -

(m_1)D(n,ffi-l)h(n) -( in )D(n,m)

n+2 1
(150)

(n-ffi)D(n,m) = 2(n+1)2 - !n
n-2 1

( 151)
ffiD(n,m-1) = 2n2 - 2(n+4)

1
(152) (n-m)D(n,M) = - 2n(n+1)2
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(153) roD(n ,nO
2n-8

= 2n2(n+4)

(154)
(n+4) n

b (n) = . _ : 'i for n=6, 8, . . .

In view of the fact that h/(l+h) is a monotonica11y increasing

function of h, it is c1ear that (139) is a consequence of (138).

Since both for n=5,7,... and n=6,8,... the nominator of ben)

is quadratic in n whereas the denominator is cubic in n, one

can see immediate1y, that (141) ho1ds. In order to prove (140)

we look at the derivatives of the logarithms of the expressions

on the right side of (137). In this way one can see that (140)

ho1ds for n=5,7,... if we have

(155) -L+-Ln+5 n-1
1

n-4
2
n+1 <

O.

Since n-4 is sma11er than n-1 and n+1 is sma11er than n+5, the

right side of (155) is negative. Simi1ar1y for n=6,8,...
inequa1ity (140) is imp1ied by

111 2
n+4 + n- n-4 - n+1 < 0(156)

4.12 THE CARTEL PROBABILITY. On the basis of the assumption

that the sol~tion of the model correct1y describes the behavior

of the oligopo1ists, it is interesting to ask the question,

how often it will occur that the oligopo1ists use the cooperative

possibi1ities of the carte1 bargaining stage in order to co11ude

in a significant way. As an answer to this not yet precise

question we sha11 define a "carte1 probability".

As we know from 4.4, in the carte1 bargaining stage the

character of the behavior prescribed by the equi1ibrium points

in the solution of the model crucia11y depends on the number k

of non-participators. For k ~ (n-1)/2 an equi1ibrium point in

the solution may lead to carte1 agreements, but these carte1
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agreements are inessential. The equilibrium payoffs in the

cartel bargaining subgame are those, which would be obtained,

if no cartels were possible.

Contrary to this for k«n-I)/2, the cooperative possibilities

of the cartel bargaining stage are used at the equilibrium

points in the solution. The participators receive greater gross

profits than they could get without cartel agreements. Moreover,

since their joint gross profit is equal to the upper bound

on the right side of (48), one can say that they make the best

possible use of their opportunity to form cartels.

In view of what has been said, it is convenient to intorudce

the following way of speaking. We say that a cartel arrangement

is reached by an eauilibrium point s of r in a cartel bargaining

subgame rz' if the equilibrium point Sz induced by s on rZ
has the property that for each of the participators the

2
equilibrium payoff at Sz is greater than the payoff l/(l+n) ,

'Jhichis achieved at the unrestricted Cournot equilibrium. If

a cartel arrangement is reached by s in rz,then the players in
Z are called insiders and the players in N-Z are called out-

siders with respect to the cartel arrangement.

Obviously for all eauilibrium points s in the solution a cartel

arrangement is reached by s in rZ' if and only if the number k
of non-participators is smaller than (n-I)/2. The probability

that k will be smaller than (n-I)/2 if an equilibrium point s

in the solution is played is the same one for all eauilibrium

points in the solution. This is trivially true for n=l, where

the case k«n-I)/2 cannot occur; for n=2,3,... everyequilibrium

point in L(r) prescribes the same behavior in the participation

decision stage, namely the selection of zi=l with probability

wI(n); the probability that k will be smaller than (n-I)/2 is

uniquely determined by wI(n). This suggests the following
definition: The cartel probability is the probability that a

cartel arrangement will be reached if an eauilibrium point in

L(r) is played. The symbol Wen) will be used for this cartel

probability.
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As we have seen above, W(n) is the probability that k will

be smaller than (n-l)/2. Obviously we have

(157) W(l) = 0

(158) W(n) = 1 for n = 2,3,4.

For n=5,6,... the cartel probability can be computed as

folIows:

m
W(n) = E W(n,k)

k=o

where m is the uniquely determined integer satisfying (127)

(159)

and where

(160) W(n,k)

is the probability that there will be exactly k non-participators

if the players choose to participate with probability wl(n).

4.14 THE CARTEL PROBABILITY AS A FUNCTION OF THE NUMBER OF

PLAYERS. Table 2 in subsection 5.1 shows the values of

W(n) for 2,...,9. It is clear from this table that W(n) does

not monotonically decrease as a function of n. A weaker

statement about W(n) will be proved in the following. It will

be shown, that W(n~ is below a certain upper bound which goes

to zero as n goes to infinity. With the help of this upper

bound it can be seen, that W(n) is very small outside the table.

A further property of D(n,m) is needed, in order to derive these
results.

LEMMA 21. D(n,m) has the following property

(161) D (n,m+l) < D (n ,m)

for n=6,7,... and m=O,...,m-2 where ffiis the uniquely determined

integer satisfying (127).
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In view of (86) for

1
D(n,m) = 2

4 (m+2)

m=O,...,m-1 we have
1 ..

4 (n-m) (m+1)

In order to prove the lemma it is sufficient to show that the

fo11owing is true:

In order to find an upper bound for the right side of (164) we

make use of the fact that m+2 is notgreater than 2(m+1) and that

n-2m-1 is sma11er than n-m:

LEMMA 22. For n=S,6,... the carte1 probability W(n) has the

fo11owing property:

I mb(n) _
(167) W(n) ~ 1+ n-ffi+1 W(n,m)

L

where m is the integer satisfying (127) and W(n,k) is defined

by (160).

PROOF. As we have seen in the proof of theorem 19 expressionD

in (128) is equa1 to zero for n=5,6,..., since there w1(n)
is positive and sma11er than 1, which has the consequence that

both zi=O and zi=l are best replies to w in r. If one makes
use of

(168) (n-l) = (n)n-m+lm m n

the equation D = 0 can be written as follows

(169)~ W(n,m)n-~+lD(n,m) = 0
m=o

(163) a D (n ,m) < 0 for 0 m.sm-1am

(162) yie1ds

(164) a D(n,m) = _ 1 n-2m-1+
am

2(m+2)3 4 (n-m) 2 (m+1) 2

(16 S) a D(n ,m) 1 + 1< -
2 (n-m) (m+1) (m+2)3m -

2(m+2)3

In view of (162) this is equiva1ent to

(166) 3 D(n ,m) 2< -
m+2 D(n,m)3m -

(88) shows that D(n,m) is positive for m=1,...,ffi-1
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It fo11ows by (161) .and (88) that for m=1,...,m-1 we have

(170) D (n ,m) ~ D (n,fii-1) > 0

Define

(171) W' = Wen) - W(n,ffi)

In view of (170) equation (169) imp1ies the fo11owing

inequa1ity

(172) w.n-rn+1 D(n,m-1)n
n-m

< - W(n,m)- D(n,m)n

With the he1p of (136) it can be seen that this is equiva1ent

to

(173)

(167) is an immediate consequence of (173) and (171).

LEMMA 23. For n=5,6,... the probability W(n,m) has the

fo11owing property:

~
-ffi

W (n in )
< (~) b (n)

, - m +b n(174)

where m is the integer satisfying (127).

PROOF. For the sake of shortness we sha11 sometimes write

w1 and b instead of w1(n) and ben) resp. Obvious1y we have

(175)

Therefore it is sufficient to show that the fo11owing is true:

(176)
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In order to prove this we show that the derivative

(177)

is non-negativein the interval0 ~ w1 ~ b/(l+b). This
is true if we have

(178) ben)
l+h(nT

<
n-m
n

Condition (178) is equiva1ent to

(179)

(180) shows that (179) ho1ds for n=5. Since (n-m)/n is a1ways

greater than 1 and both b(6) and b(7) are a1ready smal1er

than 1, it can be seen with the he1p of (140) that (179) is

satisfied for n=5,6,7,... .

THEOREM 20. For n=5,6,... define

(183) V(n) = ~+ rob JnÜ
(

~\
)LJ n-m+fJ m

._~ (n)] n-ffi

:1+b (n)l n--

where m is the integer determined by

as in (137). The carte1 probabi1ity

fo11owing inequa1ity

(127) and ben) is defined

Wen) satisfies the

(184) Wen) .5 V(n) for n=5,6,...

With the he1p of (137) we can compute

(180) b(5) = 1.111

(181) b(6) = .306

(182) b(7) = .375
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Moreover we have

(185) V(n+2) <V(n) for n=5,6,...

and

(186) 11m Wen) = 'lim V(n) = 0

PROOF. (184) follows by lemma 22 and lemma 23. Since h/(l+h)

is a monotonically increasing function of h it follows by

(140) that we have

(187) b (n+2)
1+b(n+2)

ben)
< l+b(n)

for n=5,6,... . In the same way as (176) has been proved in

the proof of lemma 24, one can see that (177) implies an

inequality analoguous to (177), where wl corresponds to
b(n+2)/(1+b(n+2» and b corresponds to ben). If one makes

use of the relationship (175) this inequality can be written

as follows:

(188) 5:>(n+2)] n-m
r ...-
Ll+b (n+221 m

< ~ (n)J n-m

;l+b (n~

This inequality will be used in order to prove (184). In order

to do this we also have to use the following equation, which

is a consequence of (137):

(189) roben) _
n-m+l -

(n+3) (n-l)

(n-4) <n+l) 2
for n=5,7,...

:

.,

I

l
-. (n+2)n ~for n=6,8,...
2 (n-4) (n+l~

It can be seen easily that the derivatives of the logarithms

of the expressions on the right side of (189) with respect to n

are negative :therefore the first factor in (183) is decreased,

if n is increased by 2. This together with (188) shows that

the following is true:
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(190) V(n+2) <

/n+2\
n\+1

(T\ \
; ffiI

., ,

b(n+2)

(1+b in-+-2) )2
V(n)

Here it 1s important to notice that m is a1ways increased

by 1 if n is increased by 2. Inequa1ity (190) is equiva1ent

to

(191) V(n+2) <
(n+2) (n+1)

(m+1) (n-m+1)

b(n+2)

[1+b (n+2~ 2

V (n)

Since m+1 is not sma11er than (n-1)/2 and (n-m+1) is not

sma11er than (n+4)/2 we have

(192) (n+2) (n+1) (n+1) (n+2)

(ffi+1)(n-m+l) .:!4 (n-1) (n+4)

(192) .is equiva1ent to

(193) (n+2)(n+1) ~ 4 + 28

Obvious1y the expression on the right side of (193) is a

monotonica11y decreasing function of n. For n=5 this expression

assurnes the va1ue 4.77778.

This shows that the fo11owing is true for n=5,6,...

(194) ~n+~~(n+1) ~ 4.77778
(ffi+1) (n-ffi+1)

Since the derivative

2

(195) ~b (- --E-j = .1-b.
(1+b)2 (1+b)4

is positive in the interva1 0< b < 1, ';Jecan conc1ude from

(196) b(7)

(l+b (7) ~ = .19835

and

(197) b (8)

(1+b(8) )'2

= .11238
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that in view of (140) we have

_ _b(n+2) < .19835
[1+b(n+2)J2 -

for n=5,6,... . This together with (195) and (197) yie1ds

(198)

(199) V(n+2) ~ .94768 yen) for n=5,6,...

(186) is an immediate consequence of (199).

REMARK. Tab1e 2 in subsection 5.1 contains the statement

that for n-10,11,...the carte1 probabilityWen) is sma11er

than .0001. for n=10,...,15 the computationof Wen) from w1(n)
shows that this is true. V(15) and V(16) are both sma11er than

.0000001. Therefore it fo11ows by (184) and (185) that for

n=15,16,... the carte1 probability is be10w .0000001.
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5. INTERPRETATION OF THE RESDLTS.

It is the purpose of this section to discuss the intuitive

significance of the results obtained in section 4 and to draw

some heuristic conclusions with respect to possible generaliza-

tions to more complicated models. An informal description of

the solution of the model is given, mainly for the benefit of

those readers who are not interested in technical details.

5.1 WHAT HAPPENS AT THE SOLUTION OF THE MODEL. Technically

the solution of the model is a set of equilibrium points. Mainly

in the cartel bargaining stage differences between the

equilibrium points in the solution arise, but these differences

are unimportant, since all the equilibrium points in the

solution lead to the same equilibrium payoffs, not only in the

game as whole, but also in every subgame.

In order to have an easy way of speaking about the behavior

at the solution,a distinction between a cartel agreement and

a cartel arrangement has been introduced in 4.12. Since the

formation of cartels is costless, the solution does not exclude

that economically ineffective cartel agreements are reached,

where nothing can be gained by a cartel. Thus for example it

may happen, that the participators agree to limit their supplies

by very high quotas which do not restrict them in any significant

way. In such cases we say that the cartel agreements do not

constitute a cartel arrangement. We speak of a cartel arrange-

ment, if the participatorssuccessfully use the possibilities

of cartel formation in order to get a higher profit, than they

would get, if cartels were not possible.

Let us first look at the trivial case n=l which has the

pecularity that the solution permits any behavior at the

participation decision stage. This is due to the fact that

here the participation decision stage is strategically irrelevant.

As a participator at the cartel bargaining stage the monopolist

should not fix a quota below his monopoly supply 1/2, but

apart from that the solution permits anything. In the supply
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decision stage the monopolist supp1ies the quantity 1/2.

His payoff is the monopoly gross profit 1/4. The monopolist

never reaches a carte1 arrangement, since he does not need

any carte1 agreements, in order to achieve his monopoly profit.

For n=2,3,... every equi1ibrium point in the solution prescribes

the same behavior in the participation decision stage: each

of the p1ayers decides to participate with the same probability

w1(n). For n=2,...,15 this participation probability w1(n) is
tabulated in tab1e 2. The participation probability w1(n)

goes to 0 as n goes to infinity.

In the carte1 bargaining stage the behavior at the solution

crucia11y depends on the number k of non-participants. Every

equi1ibrium point in the solution has the property that a

carte1 arrangement is reached if and on1y if the number k of

non-participators 1s sma11er than (n-1)/2.

In the case k~(n-l)/2 it may simp1y happen that no carte1

agreement is reached but the solution also permits the

possibi1ity that economica11y ineffective carte1 agreements

are reached. In the case k«n-1)/2 where a carte1 arrangement

occurs, the simp1est way in which this may happen is the

formation of one carte1 where all the participators are members

and have equa1 quotas, such that the quotas of all participators

sum up to the joint quota of 1/2. The joint quota of 1/2

maximizes the joint equi1ibrium payoff of the carte1 in the

supp1y decision subgame after the quota agreement. The solution

also permits the possibi1ity that the participators achieve

the same quota system by splitting into severa1 coa1itions with

seperate carte1 agreements. At least for some n this is possib1e.

In the case k«n-1)/2 where a carte1 arrangement is reached,

the non-participators are also ca11ed outsiders and the

participators are also ca11ed insiders. For various n and k

the equi1ibrium payoffs in the carte1 bargaining subgame at

the solution are given in tab1e 2 under the headings "gross

profit of an insider" and "gross profit of an outsider".



Tab1e 2: The solution up to n=15

For n=10,11,...
the carte1 probability
W(n) is sma11er than
.0001.

I
co
U'I
I

number number gross gross gross partici- probabi- carte1 expected

of of profit profit profit pation 1ity of proba- gross

p1ayers out- of an of an of a probabi- a cartel bi1ity profit

siders in- out- supp1ier 1ity arrange- of an

sider sider in the ment with oligo-
unrestric- k out- polist
ted Cour not siders

equi1ibriwr

n k 1 1 1
4 (n-k) (k+lf 4 (k+1)2

2
w1 (n) W(n,k) W(n)(n+1)

2 0 .1250 .1111 1.0000 1.0000 1.000C .1250

3 0 .0833 .0625 1.0000
1.0000 1.0000 .0833

4 0 .0625 1.0000 1.0000.0400 1.0000 .0625

5 0 .0500 .0404

1 .0312 .0625 .1817
. .222].0278 .5263 .0304

6 0 .0417 .0000

1 .0250 .0625 .0011

2 .0208 .0278 .0118
.01C.0204 .1857 .0205

7 0 .0357 .0000

1 .0208 .0625 .0010

2 .0167 .0278 .0093
.0156 .2380 . .010 .0157

8 0 .0312 .0000

1 .0179 .0625 .0000

2 .0139 .0278 .0000

3 .0125 .0156 .0006
.OOOE.0123 .1067 .0124

9 0 .0278 .0000
1 .0156 .0625 .0000
2 .0119 .0278 .0001
3 .0104 .0156 .0100 .0008 .OOO( .0100.1587

number partici
of pation

supp1iers probabi1ity

n w1 (n)

10 .0755
11 .1203
12 .0585
13 .0971
14 .0476
15 .0822
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For a cartel bargaining subgame with k~(n-l)/2 the

equilibrium payoffs at the solution are those of the

unrestricted Cournot equilibrium. Fbr n=2,...,9 these

gross profits are also tabulated in table 2.

The solution exhibits a surprising change of behavior at n=5.

For n=2, n=2 and n=4 each of the oligipolists decides to

participate in the cartel bargaining and the outcome of the

cartel bargaining is the maximization of the joint profit

of all players. Ebr n>4 the joint profit maximization by all

players fails to occur at the solution; the mixed strategy

behavior in the participation decision stage only occasionally

results in a cartel bargaining subgame, where all players are

participators. The probability W(n,O) for this event is given

in table 2 under the heading "probability of a cartel arrange-

ment with k outsiders". Already for n=5 this probability is

only .0404 and for n>5 it is always smaller than .0001.

5.2 WHY 4 ARE FEW AND 6 ARE MANY. The probability that a

cartel arrangement is reached, if an equilibrium point in the

solution is played, is called cartel probability. This cartel

probability W(n) is tabulated in table 2. For n=2,3,4 the cartel

probability is equal to 1. One may say that with respect to the

solution of the model up to n=4 the number of oligopolists is

small. For n>5 the cartel probability is approximately 1% or

smaller, whichm~ans thatan outside observer will only rarely

observe a cartel arrangement. Economically for n>5 the

solution is not very different from the behavior which could

be expected, if no cartel agreements were possible. This can

be seen, if one compares the equilibrium payoff at the solution

for the whole game with the equilibrium profit for the unre-

stricted Cournot equilibrium. Both profits are tabulated in

table 2 under the headings lIexpectedgross profit of an

oligipolist" and "gross profit of a supplier at the unrestricted

Cournot equilibriumll,For n>5 the expected gross profit of an

oligopolist at the solution is only slightly greater than the
gross profit of a supplier at the unrestricted Cournot

equilibrium.
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The case n=5 may be considered an intermediate case, since

here the cartel probability of approximately 22% is still

quite substantial. Note that for n=5 most of the cartel

arrangements are cartel arrangements with 4 insiders and

1 outsider.

Why is n=5 the dividing line between the small group and

the large group? The main reason for this can be explained

with the help of a heuristic argument. Assume that n is at

least 3 and suppose that player j expects that each of the

other players will decide to participate and that the joint

profit of all players will be maximized and split evenly,

if he decides to participate too. If he does not participate,

he expects the others to form a cartel with a joint quota

of 1/2 in order to maximize the joint equilibrium payoff of

the cartel in the supply decision staqe. In the case of the

joint profit maximization by all players his share of the

joint gross profit of 1/4 is equal to 1/4n. If he does not

participate, he becomes an outsider with respect to a cartel

whose total supply is 1/2. His optimal supply will be 1/4,

the price will be 1/4 and his gross profit will be 1/16. The

basic fact is, that up to n=4 the joint gross profit share

of 1/4n is not smaller than the outsider gross profit of

1/16, whereas for n>4 the outsider gross profit is greater than

the joint gross profit share. This destroys the possibility of

a joint profit maximization equilibrium tor n>4.

5.3 THE STRATEGIC SITUATION IN THE PARTICIPATION DECISION

STAGE. In order to understand the strategie situation in the

participation decision stage, one must look at the game which

has been introduced in 4.5 as the "participation decision brick".

The participation decision brick results fram the model, if one

substitutes every cartel bargaining subgame by the payoff

vector which is obtained in this subgame if the players behave

in a way which is compatible with the solution.
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In 4.7 the pure strategy equilibrium points of the participation

decision brick have been explored. For n=1,...,4 the partici-

pation decision brick has a "joint profit maximization

equilibrium point", where every player always decides to

participate and a maximal joint profit for all players is

reached. This pure strategy equilibrium point is not available

for n>4. There the only pure strategy equilibrium point which

treats the players symmetrically is the "unrestricted Cournot

equilibrium point", where every player decides not to

participate.

Por n~4 the participation decision brick has "partial cartel

equilibrium points" where for even n exactly (n-2)/2 players

and for odd n exactly (n-3)/2 players are non-participators.

Here the non-participators have higher payoffs than the

participators. The players are treated in an asymmetrical way.

Therefore the symmetry requirement underlying the s~lution

concept of this paper excludes the partial cartel equilibrium

points as possible candidates for a solution of the participation

decision brick. Apart from the lack of symmetry the partial

cartel equilibrium points are quite attractive. Thus for

example in the case n=5 and k=l an insider receives .0312 and

the outsider receives .0625, whereas at the solution every

player receives .0304 only (see table 2.). Nevertheless it is

not implausible to expect that the players will fail to

coordinate their expectations at a partial cartel equilibrium

point, since nobody has more reason than anybody else to be

satisfied with the less profitable role of an insider.

5.4 POSSIBLE GENERALIZATIONS. One may ask the question how

much of the analysis depends on the linearity assumptions

about cost and demand. Only a detailed investiqation can show

what happens if these assumptions are relaxed, but it is a

plausible conjecture that apart from some special cases

one will always find a more or less sharp dividing line between

few and many beyond which the players fail to exhibit the

typical small group behavior. Whether the dividing line will

be at n=5 or somewhere else, will depend on the cost and demand

functions.
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The model is symmetrie with respeet to the players. It

would be desirable to develop a theory for a more general

model whieh admits some asymmetries like different eost

funetions for different players. For this purpose one would

need a more general solution eoneept.
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